WO2024009896A1 - 無機球状粒子を含むスラリーの製造方法 - Google Patents

無機球状粒子を含むスラリーの製造方法 Download PDF

Info

Publication number
WO2024009896A1
WO2024009896A1 PCT/JP2023/024298 JP2023024298W WO2024009896A1 WO 2024009896 A1 WO2024009896 A1 WO 2024009896A1 JP 2023024298 W JP2023024298 W JP 2023024298W WO 2024009896 A1 WO2024009896 A1 WO 2024009896A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
separation membrane
classification
particle size
size distribution
Prior art date
Application number
PCT/JP2023/024298
Other languages
English (en)
French (fr)
Inventor
勝正 中原
肇 片山
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024009896A1 publication Critical patent/WO2024009896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof

Definitions

  • the present invention relates to a method for producing a slurry containing inorganic spherical particles, and more particularly to a method for producing a slurry containing inorganic spherical particles by wet classification.
  • Inorganic spherical particles conventionally used for applications such as cosmetics, optical members, resin compositions, and paint compositions are required to have particle uniformity.
  • Wet classification is known as a technique for improving particle uniformity, and various classification techniques using wet classification have been proposed.
  • Patent Document 1 discloses a method for obtaining a slurry containing no coarse particles as a filtrate by supplying a slurry containing coarse particles to an ultrasonic filter equipped with a filter medium having an opening of 2 to 40 ⁇ m and filtering it. ing.
  • Patent Document 2 discloses a method of removing particles larger than a desired particle size by dead-end filtration using a resin media filter.
  • a resin media filter is regenerated by ultrasonic irradiation during or after filtration.
  • Patent Document 3 discloses a wet classification device that includes a filter unit and two types of ultrasonic generators with different frequencies.
  • the filter unit used is one in which through-holes of 5 to 50 ⁇ m are formed by electroforming, and particles passing through the through-holes are collected by a pressure reducing means.
  • Patent Document 1 removes coarse particles while preventing clogging of the filter medium by ultrasonically vibrating the slurry containing coarse particles and the filter medium, and classifies the slurry into a slurry with a narrow particle size distribution. isn't it. According to the study by the present inventors, in the method described in Patent Document 2, there was a tendency that the filter gradually became clogged and the regeneration rate of the filter gradually decreased.
  • an object of the present invention is to provide a method for manufacturing a slurry containing inorganic spherical particles by wet classification, and a method for continuously obtaining inorganic spherical particles with a narrow particle size distribution.
  • the present invention relates to the following (1) to (8).
  • a slurry production method in which slurry is produced by permeating a slurry crude liquid containing inorganic spherical particles through a separation membrane, the method comprising: the separation membrane has pores of approximately uniform size; Forming a flow along the separation membrane surface on the primary side of the separation membrane, A method for producing slurry, comprising irradiating the separation membrane with ultrasonic waves.
  • the method for producing slurry according to (1) above wherein the separation membrane surface is inclined with respect to the horizontal.
  • the present invention it is possible to classify particles with a size close to the pore diameter of the separation membrane used, so a slurry containing inorganic spherical particles with a narrow particle size distribution can be produced, and production efficiency is also improved because it can be produced continuously by wet classification. can.
  • FIG. 1 is a schematic configuration diagram of a classification apparatus according to a first embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the classification cell, with FIG. 2(a) being an exploded perspective view, and FIG. 2(b) being a sectional view along the longitudinal direction of FIG. 2(a).
  • FIG. 3 is a schematic configuration diagram of a classification device according to the second embodiment.
  • FIG. 4 is a schematic configuration diagram of a classification device according to a third embodiment.
  • FIG. 5 is a schematic configuration diagram of a classification device according to a fourth embodiment.
  • FIG. 6 is a schematic configuration diagram of a classification device according to a fifth embodiment.
  • FIG. 7 is a schematic configuration diagram of a classification device according to a sixth embodiment.
  • FIG. 1 is a schematic configuration diagram of a classification apparatus according to a first embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the classification cell, with FIG. 2(a) being an exploded perspective view, and FIG. 2(b) being
  • FIG. 8 is a graph showing the particle size distribution of slurry A before classification.
  • FIG. 9 is a graph showing the classification test results of Example 1
  • FIG. 9(a) is a graph showing the particle size distribution of the filtrate
  • FIG. 9(b) is a graph showing the particle size distribution of the residual liquid in the slurry tank before classification. It is a graph showing distribution.
  • FIG. 10 is a graph showing the classification test results of Example 2.
  • FIG. 10(a) is a graph showing the particle size distribution of the filtrate
  • FIG. 10(b) is a graph showing the particle size distribution of the residual liquid in the slurry tank before classification. It is a graph showing distribution.
  • FIG. 11 is a diagram showing the classification test results of Example 3, and is a graph showing the particle size distribution of the filtrate.
  • FIG. 12 is a diagram showing the classification test results of Example 4, and is a graph showing the particle size distribution of the filtrate.
  • FIG. 13 is a graph showing the classification test results of Example 5
  • FIG. 13(a) is a graph showing the particle size distribution of the filtrate
  • FIG. 13(b) is a graph showing the particle size distribution of the residual liquid in the slurry tank before classification. It is a graph showing distribution.
  • FIG. 14 is a graph showing the classification test results of Example 6.
  • FIG. 14(a) is a graph showing the particle size distribution of the filtrate
  • FIG. 14(b) is a graph showing the particle size distribution of the residual liquid in the slurry tank before classification. It is a graph showing distribution.
  • FIG. 15 is a graph showing the classification test results of Example 7.
  • FIG. 15(a) is a graph showing the particle size distribution of the filtrate
  • FIG. 15(b) is a graph showing the particle size distribution of the residual liquid in the slurry tank before classification. It is a graph showing distribution.
  • FIG. 16 is a graph showing the classification test results of Example 8
  • FIG. 16(a) is a graph showing the particle size distribution of the filtrate
  • FIG. 16(b) is a graph showing the particle size distribution of the residual liquid in the slurry tank before classification. It is a graph showing distribution.
  • FIG. 17 is a diagram showing the classification test results of Example 9, and is a graph showing the particle size distribution of the filtrate.
  • FIG. 18 is a graph showing the classification test results of Example 10,
  • FIG. 18(a) is a graph showing the particle size distribution of the filtrate
  • FIG. 18(b) is a graph showing the particle size distribution of the residual liquid in the slurry tank before classification. It is a graph showing distribution.
  • the present invention provides a slurry production method in which slurry is produced by passing a slurry crude liquid containing inorganic spherical particles through a separation membrane, the separation membrane having pores of approximately uniform size,
  • This is a slurry manufacturing method in which a flow is formed along the surface of a separation membrane on the primary side and the separation membrane is irradiated with ultrasonic waves.
  • the dead-end filtration method tends to cause clogging of the separation membrane, but in the present invention, the classification is performed continuously by using the cross-flow filtration method.
  • Inorganic spherical particles are inorganic particles that have a spherical shape.
  • the material of the inorganic particles include inorganic metal oxides such as silica, alumina, zirconia, and titania, and metals such as silicon and aluminum.
  • inorganic metal oxides such as silica, alumina, zirconia, and titania
  • metals such as silicon and aluminum.
  • particles with a narrow particle size distribution are useful for chromatography purposes and as fillers, etc.
  • silica particles or alumina particles are preferably used because they have extremely small thermal expansion and have high fluidity and high filling properties in chromatography.
  • silica particles are particularly preferred.
  • the shape of the inorganic spherical particles may be spherical. "Being spherical” means that the average circularity of the projected cross section of the inorganic spherical particles is preferably 0.80 or more, more preferably 0.85 or more, and even more preferably 0.90 or more. The upper limit is not particularly limited, and is most preferably 1.
  • Circularity is determined by photographing particles using a scanning electron microscope (e.g., "JCM-7000" manufactured by JEOL Ltd.) and using image analysis software, such as that attached to a particle image analysis device (e.g., "Morphologi4" manufactured by Malvern Co., Ltd.). It is calculated by determining the area and circumference of the particle using image analysis software and applying it to the following formula. Note that the calculated circularity of 20 particles is defined as the average circularity.
  • Circularity Perimeter of a circle with equal projected area / Perimeter of particle Perimeter of circle with equal projected area: When a particle is observed from directly above, find the area of the particle's shadow on the plane below, and calculate this Calculate a circle equal to the area and the length of the outline of that circle Perimeter of the particle: Length of the outline of the shadow of the particle reflected on the plane below when the particle is observed from directly above
  • the slurry crude liquid refers to the slurry before the separation membrane permeation operation, and refers to the slurry in which the particle size distribution of inorganic spherical particles is wider than after the separation membrane permeation operation.
  • the "separation membrane permeation operation” is also referred to as "classification” hereinafter.
  • the particle size distribution is measured using a Coulter counter, and the particle size d50 at which the cumulative volume is 50% in the volume-based particle size distribution curve is defined as the average particle size. Further, the uniformity of the particle size distribution is evaluated using the ratio of the particle diameter d10 at which the cumulative volume is 10% and the particle diameter d90 at which the cumulative volume is 90% as a uniformity coefficient (d90/d10).
  • the concentration of inorganic spherical particles in the slurry crude liquid is 0.05 because if the opening diameter of the pores of the separation membrane is the same, the lower the concentration, the faster the flow rate of the filtrate will be, but the concentration of inorganic spherical particles in the filtrate will be lower. ⁇ 10.0% by mass is preferred. Classification can be performed efficiently when the content of inorganic spherical particles is 0.05 to 10.0% by mass.
  • the content of the inorganic spherical particles is more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and more preferably 5.0% by mass or less, 2.5% by mass. % or less is more preferable.
  • the slurry crude liquid has a viscosity of 1.0 to 5.0 mPa ⁇ s at 25°C.
  • the viscosity of the crude slurry is 5.0 mPa ⁇ s or less, the flow of the crude slurry on the primary side of the separation membrane is not obstructed.
  • the viscosity of the slurry crude liquid is more preferably 2.0 mPa ⁇ s or less, and even more preferably 1.5 mPa ⁇ s or less.
  • the viscosity of the slurry crude liquid is the liquid viscosity at 25°C measured with a B-type viscometer.
  • a separation membrane is a membrane equipped with a plurality of holes (through holes) used to classify crude slurry.
  • the material for the separation membrane include organic materials and metals.
  • the metal include nickel and stainless steel.
  • the present invention uses a separation membrane having pores of approximately uniform size. For this reason, a metal separation membrane whose pore size can be precisely controlled is preferable, and for example, an electroformed sieve is preferably used.
  • substantially uniform is a concept that includes not only the case where the shape and/or size of the holes are completely the same, but also the case where the shape and/or size differs to the extent of manufacturing error. It is. Specifically, it means that the size of the opening of the hole (opening diameter) is within the range of the central value (average opening diameter) ⁇ 0.5 ⁇ m. The center value does not have to be measured for all holes, and may be a statistical value. Further, the opening diameter of the pore means the diameter of the circumscribed circle of the opening of the pore in a plan view of the separation membrane.
  • the size of the pore openings should be in the range of 1.0 to 10 ⁇ m in terms of the average opening diameter. preferable. Since the average opening diameter is within the above range and the distribution is substantially uniform, inorganic spherical particles can be classified with high accuracy.
  • the average aperture diameter can be measured from the image obtained by observing the separation membrane with a scanning electron microscope. For example, using image analysis software, approximately 600 holes are measured, and the average opening diameter and standard deviation are obtained.
  • the pore size of the separation membrane is determined by the ratio of the pore opening diameter B/volume average particle diameter A to the desired volume average particle diameter A of the inorganic spherical particles in the resulting slurry, which is 0.5 to 2. It is preferable to use a separation membrane having a pore size of .0.
  • a separation membrane having pores with a size such that the ratio B/A is 0.5 or more, particles having a desired volume average particle diameter can be obtained, and the size is such that the ratio B/A is 2.0 or less.
  • the ratio B/A is more preferably 0.7 or more, even more preferably 0.9 or more, more preferably 1.6 or less, and even more preferably 1.3 or less.
  • the shape of the pore openings in the separation membrane is not particularly limited, and examples of the shape of the separation membrane in plan view include a circle, an ellipse, a square, and a rectangle.
  • the thickness of the separation membrane is not particularly limited, but is preferably 5 to 100 ⁇ m. When the thickness is 5 ⁇ m or more, the strength of the separation membrane is maintained and it becomes difficult to break, and when it is 100 ⁇ m or less, the filtrate flows easily and the filtration time can be shortened.
  • the thickness of the separation membrane is more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the thickness of the separation membrane can be measured using a film thickness meter such as a micrometer.
  • the ratio of the average opening diameter to the thickness of the separation membrane is preferably 0.05 to 0.5. When the ratio is 0.05 or more, the permeation rate increases, and when the ratio is 0.5 or less, the strength of the separation membrane is maintained.
  • the ratio of the average opening diameter to the thickness of the separation membrane is more preferably 0.1 or more, even more preferably 0.15 or more, and more preferably 0.4 or less, and 0.3 or less. More preferred.
  • the slurry crude liquid forms a flow along the separation membrane surface on the primary side of the separation membrane.
  • the primary side of the separation membrane is the side that supplies the crude slurry
  • the secondary side of the separation membrane is the side from which the slurry that has passed through the separation membrane flows out.
  • the flow along the separation membrane surface refers to a flow substantially parallel to the main surface of the separation membrane. That is, in this manufacturing method, there are two types of slurry flows: a flow perpendicular to the separation membrane surface that passes through the separation membrane surface, and a flow parallel to the separation membrane surface that does not pass through the separation membrane surface. In other words, a state of cross flow occurs.
  • the flow on the primary side of the separation membrane may be a flow along the separation membrane surface, and may be an upward flow, a downward flow, or a horizontal flow.
  • the upward flow is a flow upward in the direction of gravity.
  • the flow on the primary side of the separation membrane is preferably an upward flow or a downward flow, and an upward flow is more preferable.
  • the flow rate of the slurry crude liquid is more preferably 0.5 L/min or more, even more preferably 1.0 L/min or more, and more preferably 2.5 L/min or less, 2.0 L/min. The following are more preferred.
  • the flow rate ratio between the primary side and the secondary side is preferably 1:0.001 to 1:0.2. When the flow rate ratio is within the above range, classification can be performed efficiently.
  • the flow rate ratio between the primary side and the secondary side is more preferably 0.005 or more on the secondary side to 1 on the primary side, further preferably 0.01 or more, and more preferably 0.1 or less. More preferably, it is 0.05 or less.
  • the average filtrate outflow rate is preferably 0.1 to 5.0 L/h per 10 cm 2 of area of the separation membrane. Classification can be performed efficiently when the average filtrate outflow rate is within the above range.
  • the average filtrate outflow rate is more preferably 0.5 L/h or more, even more preferably 2.0 L/h or more, and more preferably 4.0 L/h or less, 3.0 L/h or less. is even more preferable.
  • the average filtrate flow rate is obtained by measuring the flow rate per unit time.
  • the separation membrane is irradiated with ultrasound.
  • Ultrasonic irradiation prevents clogging of the separation membrane.
  • Ultrasonic irradiation refers to transmitting ultrasonic waves to a target object through water or cleaning fluid.
  • Ultrasonic irradiation is preferably carried out under conditions of 5 to 40°C, frequency of 10 to 100 kHz, and output of 20 to 1000 W. Ultrasonic irradiation within the above range can prevent inorganic spherical particles from accumulating at the pore openings of the separation membrane and reducing the filtrate outflow rate.
  • the temperature of the slurry crude liquid is more preferably 15°C or higher, even more preferably 20°C or higher, more preferably 35°C or lower, and even more preferably 30°C or lower.
  • the frequency of the irradiated ultrasonic waves is more preferably 15 kHz or higher, even more preferably 18 kHz or higher, more preferably 50 kHz or lower, and even more preferably 40 kHz or lower.
  • the ultrasonic irradiation output is more preferably 50 W or more, even more preferably 80 W or more, more preferably 500 W or less, and even more preferably 200 W or less.
  • the ultrasonic wave may be irradiated from the outside of the container housing the separation membrane, or an ultrasonic vibrator may be provided inside the container housing the separation membrane.
  • an ultrasonic vibrator may be provided inside the container housing the separation membrane.
  • the separation membrane surface is preferably inclined with respect to the horizontal.
  • the state where the separation membrane surface is horizontal is the state where the separation membrane is installed perpendicular to the direction of gravity. That is, it is parallel to the water surface.
  • the term "tilted” refers to a state in which the separation membrane is tilted away from a horizontal state.
  • the angle of inclination is preferably 30 degrees or more, particularly preferably 90 degrees, since the average filtrate outflow rate increases. That is, it is particularly preferable to install the membrane surface along the direction of gravity.
  • the volume average particle size of the inorganic spherical particles in the obtained slurry is preferably 0.5 to 10 ⁇ m, and the preferable average particle size may be set within the above range depending on the purpose of filtration and the use of the obtained slurry.
  • the uniformity coefficient (d90/d10) of the particle size distribution of the inorganic spherical particles in the obtained slurry is preferably more than 1.0 and not more than 2.0, more preferably more than 1.0 and not more than 1.5.
  • the uniformity of the particle size distribution can be confirmed by the uniformity coefficient (d90/d10), and the closer the uniformity coefficient is to 1, the more uniform the particle size distribution is.
  • two or more separation membranes with different pore opening diameters may be used as the separation membrane.
  • the separation membrane permeation operation twice or more using two or more different separation membranes, the slurry crude liquid is divided into three or more types of slurry with different average particle diameters, a small uniformity coefficient, and a narrower particle size distribution. becomes possible.
  • the slurry obtained on the secondary side is separated using another separation membrane with a different and smaller opening diameter.
  • the slurry is divided into three types: a slurry with an average particle diameter of X, a slurry with an average particle diameter larger than X, and a slurry with an average particle diameter smaller than X.
  • the first to fourth embodiments are a method of irradiating ultrasonic waves from the outside of a container that accommodates a separation membrane
  • the fifth to sixth embodiments are methods of applying ultrasonic waves to the inside of a container that accommodates a separation membrane.
  • This method includes a sonic vibrator.
  • FIG. 1 is a schematic diagram of a classification apparatus according to a first embodiment of the present invention.
  • the classification device 11 in the first aspect of the present invention includes a pre-classification slurry tank 1, an ultrasonic cleaning tank 20, and a filtrate recovery tank 30.
  • a pre-classified slurry 2 is stored inside the pre-classified slurry tank 1, and by stirring the pre-classified slurry 2 with a stirring device 3, sedimentation of particles can be prevented.
  • the solvent can be replenished by the solvent replenishment line 7, and the amount of the pre-classified slurry 2 can always be kept constant even as the filtration progresses.
  • the inside of the ultrasonic cleaning tank 20 is filled with water 21, and a classification cell 22 having a separation membrane 23 is immersed therein.
  • the pre-classified slurry 2 is sent to the lower inlet of the classification cell 22 through the slurry supply line 5.
  • the slurry filtered through the separation membrane 23 passes through the filtrate outflow line 24 and is recovered as a filtrate 31 in a filtrate recovery tank 30 .
  • the slurry that has not been filtered by the separation membrane 23 passes through the slurry return line 6 from the upper outlet of the classification cell 22 and returns to the pre-classification slurry tank 1.
  • the entire classification cell 22 is immersed in the ultrasonic cleaning tank 20 and the separation membrane 23 is vertically disposed while applying ultrasonic vibration, and the slurry 2 before classification is disposed on the surface of the separation membrane 23.
  • This is an upward trend. Not only is the pre-classified slurry and separation membrane subjected to ultrasonic vibration, but also the upward flow of the pre-classified slurry prevents the separation membrane from being blocked by particles.
  • FIG. 2 is a diagram illustrating the configuration of the classification cell.
  • FIG. 2(a) is an exploded perspective view showing the internal structure of the classification cell 22, and FIG. FIG.
  • a cell bottom plate 40 having a recessed portion is provided with a slurry inlet 41 and a slurry outlet 42.
  • a gasket 43, a separation membrane 23, and a gasket 43 are arranged in this concave in this order from the bottom, and a cell lid 44 having a filtrate outlet 45 on the convex portion is stacked to form an integrated classification cell 22.
  • the gasket 43 is open at the center, and the area of the opening of the gasket 43 is the area of the separation membrane in contact with the slurry, that is, the filtration area.
  • the inside of the classification cell 22 is separated by the separation membrane 23 into a chamber on the slurry inlet 41 and slurry outlet 42 sides and a chamber on the filtrate outlet 45 side, so that only the slurry that has passed through the separation membrane 23 flows out from the filtrate outlet 45. . Furthermore, the flow direction of the slurry in the chambers on the slurry inlet 41 and slurry outlet 42 sides is perpendicular to the flow direction of the filtrate passing through the separation membrane 23, resulting in so-called cross-flow filtration. By using a cross-flow filtration method, clogging of the separation membrane by particles can be prevented.
  • FIG. 1 A second embodiment of the invention is shown in FIG.
  • the separation membrane 23 is arranged vertically as in the first embodiment, but the pre-classified slurry 2 is passed from the upper entrance of the classification cell 22 to the classification cell 22.
  • the slurry that has flowed into the cell and has not been filtered by the separation membrane 23 passes through the slurry return line 6 from the lower outlet of the classification cell 22 and returns to the pre-classification slurry tank 1. That is, the pre-classified slurry 2 flows downward on the surface of the separation membrane 23.
  • FIG. 1 A third embodiment of the present invention is shown in FIG.
  • the separation membrane 23 is arranged horizontally, and the pre-classification slurry 2 flows into the classification cell 22 from the lower inlet of the classification cell 22 and is not filtered by the separation membrane 23.
  • the slurry is configured to return to the pre-classification slurry tank 1 through the slurry return line 6 from the other outlet below the classification cell 22. That is, the pre-classified slurry 2 flows horizontally on the surface of the separation membrane 23, and the filtrate flows out from above the classification cell 22.
  • FIG. 1 A fourth embodiment of the present invention is shown in FIG.
  • the separation membrane 23 is arranged horizontally as in the third embodiment, but the pre-classified slurry 2 is passed from the upper entrance of the classification cell 22 to the classification cell 22.
  • the slurry flowing into the cell and not being filtered by the separation membrane 23 passes through the slurry return line 6 from the other outlet above the classification cell 22 and returns to the pre-classification slurry tank 1. That is, the pre-classified slurry 2 forms a horizontal flow on the surface of the separation membrane 23, and the filtrate flows out from below the classification cell 22.
  • the classification device 15 of the fifth embodiment includes a pre-classification slurry tank 1, a classification chamber 50, and a filtrate recovery tank 30, and is equipped with an ultrasonic vibrator 53 inside a container that accommodates a separation membrane 23.
  • the classification chamber 50 consists of a vibrating body side housing 51 and a filtrate side housing 52, and the vibrating body side housing 51 is provided with an ultrasonic vibrating body 53.
  • the separation membrane 23 is installed in the filtrate side housing 52 with a gasket 43 so as to be parallel to the ultrasonic vibrator 53 .
  • the area of the opening of the gasket 43 is the area of the separation membrane 23 in contact with the slurry, that is, the filtration area.
  • the pre-classified slurry tank 1 contains a pre-classified slurry 2, and by stirring the pre-classified slurry 2 with the stirring device 3, sedimentation of particles can be prevented. Moreover, the solvent can be replenished by the solvent replenishment line 7, so that the amount of the pre-classified slurry 2 can be kept constant even as the filtration progresses.
  • the pre-classified slurry 2 that has flowed into the classification chamber 50 through the slurry supply line 5 is filtered while being subjected to ultrasonic vibration, and the filtrate 31 flows out through the filtrate outflow line 24 to the filtrate recovery tank 30 and is not filtered.
  • the slurry passes through the slurry return line 6 and returns to the pre-classification slurry tank 1.
  • the pre-classified slurry 2 flows horizontally on the surface of the separation membrane 23, and the filtrate 31 flows out from below the separation membrane 23.
  • FIG. 16 of the sixth embodiment is a device obtained by rotating the classification chamber 50 of the fifth embodiment 90 degrees counterclockwise.
  • the pre-classified slurry 2 flows upward on the surface of the separation membrane 23, and the filtrate 31 flows out from the side of the separation membrane 23.
  • ⁇ Evaluation method> The particle size distribution of the slurry was measured using a Coulter counter, and the particle size d50 at which the cumulative volume was 50% in the volume-based particle size distribution curve was defined as the average particle size. Further, the uniformity of the particle size distribution was evaluated using the ratio of the particle diameter d10 at which the cumulative volume is 10% and the particle diameter d90 at which the cumulative volume is 90% as a uniformity coefficient (d90/d10).
  • Pre-classification slurry A is made by dispersing fine spherical silica particles (average circularity 0.95) in water at a concentration of 1.0%. The particle size distribution of this slurry is shown in FIG. Pre-classification slurry A had an average particle diameter d50 of 3.66 ⁇ m and a uniformity coefficient (d90/d10) of 2.14.
  • the classification apparatus 11 shown in FIG. 1 including the classification cell 22 having the configuration shown in FIG. 2 was used.
  • the separation membrane in the classification cell was an electroformed sieve made of nickel and having a thickness of 30 ⁇ m, a pore diameter of 5.0 ⁇ m, a hole pitch of 10.0 ⁇ m, and an aperture ratio of 23%.
  • the gasket was made of silicone rubber and had a thickness of 1.5 mm, and the filtration area of the electroformed sieve was 12.25 cm 2 (length 7 cm x width 1.75 cm). Desalinated water was continuously replenished so that the liquid level in the pre-classification slurry tank remained constant. The classification results are shown in Table 2.
  • the amount of filtrate after 240 minutes of operation was 11.0 L, and the average filtrate outflow rate was 2.75 L/h, allowing for rapid classification.
  • the particle size distribution of the filtrate at this time is shown in FIG. 9(a).
  • the average particle diameter d50 was 3.40 ⁇ m, the uniformity coefficient (d90/d10) was 1.95, and no particles larger than 6.0 ⁇ m were contained.
  • the particle size distribution of the residual liquid in the pre-classification slurry tank is shown in FIG. 9(b).
  • the average particle diameter d50 was 4.84 ⁇ m, and the uniformity coefficient (d90/d10) was 1.93. In this way, it was possible to continuously classify particles with a wide particle size distribution into two types of particles with different average particle diameters d50, a small uniformity coefficient (d90/d10), and a narrow particle size distribution in a short time.
  • Example 2 The pre-classified slurry A was classified in the same manner as in Example 1 except that the classifier 12 of FIG. 3 was used instead of the classifier 11 of FIG. 1.
  • the classification results are shown in Table 2.
  • the amount of filtrate after 230 minutes of operation was 11.0 L, and the average filtrate outflow rate was 2.87 L/h, allowing for rapid classification.
  • the particle size distribution of the filtrate at this time is shown in FIG. 10(a).
  • the average particle diameter d50 was 3.39 ⁇ m
  • the uniformity coefficient (d90/d10) was 1.96
  • no particles larger than 6.0 ⁇ m were contained Further, the particle size distribution of the residual liquid in the slurry tank before classification is shown in FIG. 10(b).
  • the average particle diameter d50 was 4.86 ⁇ m, and the uniformity coefficient (d90/d10) was 1.92. As in Example 1, it was possible to continuously classify particles with a wide particle size distribution into two types of particles with different average particle diameters d50, a small uniformity coefficient (d90/d10), and a narrow particle size distribution in a short time.
  • Example 3 The pre-classified slurry A was classified in the same manner as in Example 1 except that the classifier 13 of FIG. 4 was used instead of the classifier 11 of FIG. 1.
  • the classification results are shown in Table 2.
  • the amount of filtrate after 60 minutes of operation was 0.9 L, and the average filtrate outflow rate was 0.90 L/h.
  • the average filtrate outflow rate was slow, and since classification using a separation membrane with a pore size of 5 ⁇ m had been confirmed in Examples 1 and 2, the operation was stopped after 60 minutes.
  • the particle size distribution of the filtrate at this time is shown in FIG.
  • the average particle diameter d50 was 3.38 ⁇ m
  • the uniformity coefficient (d90/d10) was 1.96
  • the outflow rate of the filtrate was slow, it was possible to continuously obtain particles with a narrow particle size distribution and a small average particle diameter d50 and uniformity coefficient (d90/d10) from particles with a wide particle size distribution.
  • Example 4 The pre-classified slurry A was classified in the same manner as in Example 1 except that the classifier 14 in FIG. 5 was used instead of the classifier 11 in FIG. 1.
  • the classification results are shown in Table 2.
  • the amount of filtrate after 60 minutes of operation was 0.7 L, and the average filtrate outflow rate was 0.70 L/h.
  • the average filtrate outflow rate was slow, and since classification using a separation membrane with a pore size of 5 ⁇ m had been confirmed in Examples 1 and 2, the operation was stopped after 60 minutes.
  • the particle size distribution of the filtrate at this time is shown in FIG.
  • the average particle diameter d50 was 3.39 ⁇ m
  • the uniformity coefficient (d90/d10) was 1.96
  • the outflow rate of the filtrate was slow, it was possible to continuously obtain particles with a narrow particle size distribution and a small average particle diameter d50 and uniformity coefficient (d90/d10) from particles with a wide particle size distribution.
  • Example 5 Classification was carried out in the same manner as in Example 1, except that the separation membrane in the classification cell was changed to a nickel electroformed sieve with a thickness of 30 ⁇ m, a pore diameter of 4.5 ⁇ m, a hole pitch of 10.0 ⁇ m, and an aperture ratio of 18%. Pre-slurry A was classified. The classification results are shown in Table 2. The amount of filtrate after 330 minutes of operation was 8.8 L, and the average filtrate outflow rate was 1.60 L/h. The particle size distribution of the filtrate at this time is shown in FIG. 13(a). The average particle diameter d50 was 3.25 ⁇ m, the uniformity coefficient (d90/d10) was 1.94, and no particles larger than 5.5 ⁇ m were contained.
  • the average particle diameter d50 was 4.79 ⁇ m, and the uniformity coefficient (d90/d10) was 1.67. In this way, it was possible to continuously classify particles with a wide particle size distribution into two types of particles with different average particle diameters d50, a small uniformity coefficient (d90/d10), and a narrow particle size distribution.
  • Example 6 Classification was carried out in the same manner as in Example 1, except that the separation membrane in the classification cell was changed to a nickel electroformed sieve with a thickness of 30 ⁇ m, a pore diameter of 4.0 ⁇ m, a hole pitch of 10.0 ⁇ m, and an aperture ratio of 15%. Pre-slurry A was classified. The classification results are shown in Table 2. The amount of filtrate after 900 minutes of operation was 6.5 L, and the average filtrate outflow rate was 0.43 L/h. The particle size distribution of the filtrate at this time is shown in FIG. 14(a). The average particle diameter d50 was 3.17 ⁇ m, the uniformity coefficient (d90/d10) was 1.93, and no particles larger than 5.0 ⁇ m were contained.
  • the average particle diameter d50 was 4.08 ⁇ m, and the uniformity coefficient (d90/d10) was 1.98. In this way, it was possible to continuously classify particles with a wide particle size distribution into two types of particles with different average particle diameters d50, a small uniformity coefficient (d90/d10), and a narrow particle size distribution.
  • Example 7 The filtrate slurry obtained in Example 6 (hereinafter referred to as pre-classified slurry B) was classified. 4.5 L of pre-classified slurry B (silica concentration 0.4%) was put into the pre-classified slurry tank of the classifier 11 in FIG. Slurry B before classification was classified in the same manner as in Example 1, except that the pore diameter was changed to 3.0 ⁇ m, the hole pitch was 8.0 ⁇ m, and the aperture ratio was 13%. The classification results are shown in Table 2. The amount of filtrate after 930 minutes of operation was 11.8 L, and the average filtrate outflow rate was 0.76 L/h. The particle size distribution of the filtrate at this time is shown in FIG. 15(a).
  • the average particle diameter d50 was 2.46 ⁇ m, the uniformity coefficient (d90/d10) was 1.80, and no particles larger than 4.0 ⁇ m were contained. Further, the particle size distribution of the residual liquid in the slurry tank before classification is shown in FIG. 15(b). The average particle diameter d50 was 3.51 ⁇ m, and the uniformity coefficient (d90/d10) was 1.42. In this way, even if the particles had a narrow particle size distribution before classification, they could be continuously classified into two types of particles with different average particle diameters d50, small uniformity coefficients (d90/d10), and even narrower particle size distributions. .
  • the slurry A before classification has a small uniformity coefficient (d90/d10) shown in FIG. 14(b), FIG. 15(a), and FIG. 15(b). This shows that the particles could be classified into three types with narrow particle size distribution.
  • Example 8 The filtrate slurry obtained in Example 7 (hereinafter referred to as pre-classified slurry C) was classified. 4.5 L of pre-classified slurry C (silica concentration 0.1%) was put into the pre-classified slurry tank of the classifier 11 in Fig. 1, and the separation membrane in the classification cell was replaced with a nickel electroformed sieve with a thickness of 20 ⁇ m. Slurry C before classification was classified in the same manner as in Example 1, except that the pore diameter was changed to 2.0 ⁇ m, the hole pitch was 6.0 ⁇ m, and the aperture ratio was 10%. The classification results are shown in Table 2. The amount of filtrate after 500 minutes of operation was 7.1 L, and the average filtrate outflow rate was 0.85 L/h.
  • the particle size distribution of the filtrate at this time is shown in FIG. 16(a).
  • the average particle diameter d50 was 1.45 ⁇ m
  • the uniformity coefficient (d90/d10) was 1.50
  • no particles larger than 3.0 ⁇ m were contained.
  • the particle size distribution of the residual liquid in the slurry tank before classification is shown in FIG. 16(b).
  • the average particle diameter d50 was 2.64 ⁇ m
  • the uniformity coefficient (d90/d10) was 1.57. In this way, even if the particles had a narrow particle size distribution before classification, they could be continuously classified into two types of particles with different average particle diameters d50, small uniformity coefficients (d90/d10), and even narrower particle size distributions. .
  • the slurry A before classification is as shown in FIG. 14(b), FIG. 15(b), FIG. 16(a), and FIG. 16(b). This shows that the particles could be classified into four types with a small uniformity coefficient (d90/d10) and a narrow particle size distribution.
  • Example 9 The pre-classified slurry A was classified using the classifier 15 shown in FIG.
  • the ultrasonic vibrator was made of titanium alloy with a diameter of 36, the ultrasonic transmission frequency was 19.5 kHz, and the output was 180 W.
  • Classification conditions are shown in Table 1.
  • 4.5 L of pre-classified slurry A was pumped into the classification chamber at a flow rate of 1.5 L/min.
  • the separation membrane in the classification chamber was a nickel electroformed sieve with a thickness of 30 ⁇ m, a pore diameter of 5.0 ⁇ m, a hole pitch of 10.0 ⁇ m, and an aperture ratio of 23%.
  • the filtration area of the electroformed sieve was 21.23 cm 2 (diameter 5.2 cm ⁇ ).
  • Example 10 The pre-classified slurry A was classified in the same manner as in Example 9, except that the classifier 16 in FIG. 7 was used instead of the classifier 15 in FIG. 6.
  • the classification results are shown in Table 2.
  • the amount of filtrate after 150 minutes of operation was 11.0 L, and the average filtrate outflow rate was as fast as 4.40 L/h.
  • the particle size distribution of the filtrate at this time is shown in FIG. 18(a).
  • the average particle diameter d50 was 3.42 ⁇ m
  • the uniformity coefficient (d90/d10) was 1.98, and no particles larger than 6.0 ⁇ m were contained.
  • FIG. 18(b) The particle size distribution of the residual liquid in the slurry tank before classification is shown in FIG. 18(b).
  • the average particle diameter d50 was 4.84 ⁇ m, and the uniformity coefficient (d90/d10) was 1.92.
  • Example 10 in which the separation membrane was installed vertically, as in Examples 1 and 2, particles with a wide particle size distribution were collected in a short time with different average particle diameters d50, a small uniformity coefficient (d90/d10), and a narrow particle size distribution. Continuous classification into two types of particles was possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、湿式分級によって無機球状粒子を含むスラリーを製造する方法であって、粒度分布の狭い無機球状粒子を連続的に得る方法を提供する。本発明は、無機球状粒子を含むスラリー粗液を、分離膜に通過させてスラリーを製造する製造方法であって、分離膜が略均一な大きさの孔を有し、分離膜の一次側において分離膜面に沿った流れを形成し、分離膜に超音波を照射するものである。

Description

無機球状粒子を含むスラリーの製造方法
 本発明は、無機球状粒子を含むスラリーの製造方法に関し、さらに詳しくは、湿式分級による無機球状粒子を含むスラリーの製造方法に関する。
 化粧料、光学部材、樹脂組成物、塗料組成物等の用途に従来用いられている無機球状粒子は、粒子の均一性が求められる。粒子の均一性を向上させる技術として湿式分級が知られており、湿式分級を用いた分級技術が種々提案されている。
 特許文献1には、粗大粒子を含むスラリーを目開きが2~40μmの濾材を具備した超音波濾過機に供給して濾過することにより、粗大粒子を含まないスラリーを濾液として得る方法が開示されている。
 特許文献2には、樹脂製メディアフィルターを用いて、デッドエンド濾過により所望の粒子径よりも大きい粒子を除去する方法が開示されている。特許文献2に記載の方法では濾過中または濾過後に超音波照射して樹脂製メディアフィルターを再生している。
 特許文献3には、フィルタユニットと周波数の異なる2種類の超音波発生器を備えた湿式分級装置が開示されている。フィルタユニットは、電鋳処理によって5~50μmの貫通孔が設けられたものを用い、減圧手段によって貫通孔を通過した粒子を回収している。
日本国特開平3-106984号公報 日本国特許第5638390号公報 日本国特許第5683975号公報
 無機球状粒子の使用においては、性能向上のために、用いる無機球状粒子を精密に分級することが求められるが、従来知られている方法では狭い粒度分布を持つスラリーを連続的に得ることができなかった。特許文献1に記載の方法は、粗大粒子を含むスラリー及び濾材を超音波振動することによって濾材の閉塞を防止しつつ粗大粒子を除去するものであり、粒度分布の狭いスラリーに分級しているわけではない。特許文献2に記載の方法では、本発明者らの検討によるとフィルターが徐々に目詰まりを起こしフィルターの再生率が徐々に低下していく傾向がみられた。また、粗大粒子を除去するものであり、粒度分布の狭いスラリーに分級しているわけではない。そして、特許文献3に記載の方法では、フィルタユニットの貫通孔が閉塞しやすいために、周波数の異なる2種類の超音波発生器が必要になっているだけでなく、分級を一時的に中断する目詰まり除去工程も必要となるため、製造効率が低い。さらには、本湿式分級装置によってどのような粒度分布のスラリーが得られるのかについては何ら記載されていない。
 そこで、本発明は、湿式分級によって無機球状粒子を含むスラリーを製造する方法であって、粒度分布の狭い無機球状粒子を連続的に得る方法を提供することを課題とする。
 本発明者らは鋭意検討した結果、均一な大きさの孔を有する分離膜を用い、分離膜の一次側において分離膜面に沿った流れを形成しながら分級するとともに、分離膜に超音波を照射することにより、上記課題を解決できることを見出し、本発明を完成させるに至った。
 本発明は、下記(1)~(8)に関するものである。
(1)無機球状粒子を含むスラリー粗液を、分離膜に透過させてスラリーを製造するスラリー製造方法であって、
 前記分離膜が略均一な大きさの孔を有し、
 前記分離膜の一次側において分離膜面に沿った流れを形成し、
 前記分離膜に超音波を照射する、スラリー製造方法。
(2)前記分離膜面を水平に対して傾斜させる、前記(1)に記載のスラリー製造方法。
(3)前記分離膜が容器に収容されており、前記容器の外側から前記超音波を照射する、前記(1)または(2)に記載のスラリー製造方法。
(4)得られたスラリーにおける無機球状粒子の平均粒子径が0.5~10μmである、前記(1)~(3)のいずれか一つに記載のスラリー製造方法。
(5)得られたスラリーにおける無機球状粒子の粒度分布の均等係数(d90/d10)が1.0超2.0以下である、前記(1)~(4)のいずれか一つに記載のスラリー製造方法。
(6)前記分離膜として、孔の開口径が異なる2以上の分離膜を用いる、前記(1)~(5)のいずれか一つに記載のスラリー製造方法。
(7)得られたスラリーにおける無機球状粒子の所望の体積平均粒子径Aに対する前記分離膜の孔の開口径Bの比(B/A)が0.5~2.0となる大きさの孔を有する分離膜を用いる、前記(1)~(6)のいずれか一つに記載のスラリー製造方法。
(8)前記無機球状粒子がシリカ粒子である、前記(1)~(7)のいずれか一つに記載のスラリー製造方法。
 本発明によれば、用いる分離膜の孔径付近の大きさで粒子を分級できるので、粒度分布の狭い無機球状粒子を含むスラリーを製造でき、また湿式分級により連続的に製造できるので製造効率も向上できる。
図1は、第1の実施の形態の分級装置の概略構成図である。 図2は、分級セルの構成を説明する図であり、図2の(a)は分解斜視図であり、図2の(b)は(a)の長手方向に沿った断面図である。 図3は、第2の実施の形態の分級装置の概略構成図である。 図4は、第3の実施の形態の分級装置の概略構成図である。 図5は、第4の実施の形態の分級装置の概略構成図である。 図6は、第5の実施の形態の分級装置の概略構成図である。 図7は、第6の実施の形態の分級装置の概略構成図である。 図8は、分級前スラリーAの粒度分布を示すグラフである。 図9は、例1の分級試験結果を示す図であり、図9の(a)は濾液の粒度分布を示すグラフであり、図9の(b)は分級前スラリー槽内の残液の粒度分布を示すグラフである。 図10は、例2の分級試験結果を示す図であり、図10の(a)は濾液の粒度分布を示すグラフであり、図10の(b)は分級前スラリー槽内の残液の粒度分布を示すグラフである。 図11は、例3の分級試験結果を示す図であり、濾液の粒度分布を示すグラフである。 図12は、例4の分級試験結果を示す図であり、濾液の粒度分布を示すグラフである。 図13は、例5の分級試験結果を示す図であり、図13の(a)は濾液の粒度分布を示すグラフであり、図13の(b)は分級前スラリー槽内の残液の粒度分布を示すグラフである。 図14は、例6の分級試験結果を示す図であり、図14の(a)は濾液の粒度分布を示すグラフであり、図14の(b)は分級前スラリー槽内の残液の粒度分布を示すグラフである。 図15は、例7の分級試験結果を示す図であり、図15の(a)は濾液の粒度分布を示すグラフであり、図15の(b)は分級前スラリー槽内の残液の粒度分布を示すグラフである。 図16は、例8の分級試験結果を示す図であり、図16の(a)は濾液の粒度分布を示すグラフであり、図16の(b)は分級前スラリー槽内の残液の粒度分布を示すグラフである。 図17は、例9の分級試験結果を示す図であり、濾液の粒度分布を示すグラフである。 図18は、例10の分級試験結果を示す図であり、図18の(a)は濾液の粒度分布を示すグラフであり、図18の(b)は分級前スラリー槽内の残液の粒度分布を示すグラフである。
 以下、本発明について説明するが、以下の説明における例示によって本発明は限定されない。なお、本明細書において、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 また、本明細書において、「質量」は「重量」と同義である。
 本発明は、無機球状粒子を含むスラリー粗液を、分離膜を透過させてスラリーを製造するスラリー製造方法であって、前記分離膜が略均一な大きさの孔を有し、前記分離膜の一次側において分離膜面に沿った流れを形成し、前記分離膜に超音波を照射する、スラリー製造方法である。デッドエンド濾過方式では分離膜の目詰まりを起こしやすいが、本発明ではクロスフロー濾過方式で行うことで連続的に分級を行う。
 無機球状粒子とは、無機粒子であって形状が球状のものである。前記無機粒子の材質としては、シリカ、アルミナ、ジルコニア、チタニア等の無機金属酸化物、シリコン、アルミニウム等の金属等が挙げられる。このうち粒度分布が狭い粒子はクロマトグラフィー用途や、フィラー等として有用であり、シリカ粒子またはアルミナ粒子が好ましく用いられ、熱膨張が極めて小さく、クロマトグラフィーにおいて高流動性・高充填性を有することから、シリカ粒子が特に好ましい。
 無機球状粒子の形状は球状であればよい。「球状である」ことは、無機球状粒子の投影断面の平均円形度が0.80以上である場合が好ましく、0.85以上がより好ましく、0.90以上がさらに好ましい。上限は特に限定されず、1であることが最も好ましい。
 円形度は、粒子を走査型電子顕微鏡(例えば、日本電子株式会社製「JCM-7000」)により撮影し、画像解析ソフト、例えば粒子画像解析装置(例えば、マルバーン社製「Morphologi4」)に付属の画像解析ソフトを用いて粒子の面積と周長を求め、下記式に当てはめて算出することにより求められる。なお、20個の粒子の円形度を求めたものを平均円形度とする。
 円形度=投影面積の等しい円の周長/粒子の周長
 投影面積の等しい円の周長:ある粒子を真上から観察したとき、下の平面に映った粒子の影の面積を求め、この面積に等しい円を計算し、その円の輪郭の長さ
 粒子の周長:粒子を真上から観察したとき、下の平面に映った粒子の影の輪郭の長さ
 スラリー粗液とは、分離膜透過操作前スラリーのことを示し、無機球状粒子の粒度分布が分離膜透過操作後よりも広いスラリーのことを指す。「分離膜透過操作」を以下「分級」ともいう。
 粒度分布の計測はコールターカウンターによって行い、体積基準の粒度分布曲線において累積体積が50%となる粒子径d50を平均粒子径とする。また、累積体積が10%となる粒子径d10と累積体積が90%となる粒子径d90の比を均等係数(d90/d10)として粒度分布の均一性を評価する。
 スラリー粗液の無機球状粒子の濃度は、分離膜の孔の開口径が同じなら濃度が低いほど濾液の流出速度は速くなるが、濾液中の無機球状粒子の濃度は低くなるので、0.05~10.0質量%が好ましい。無機球状粒子の含有量が0.05~10.0質量%であると効率的に分級が行える。無機球状粒子の含有量は、0.1質量%以上であるのがより好ましく、0.5質量%以上がさらに好ましく、また、5.0質量%以下であるのがより好ましく、2.5質量%以下がさらに好ましい。
 スラリー粗液は、25℃における粘度が、1.0~5.0mPa・sであるのが好ましい。スラリー粗液の粘度が5.0mPa・s以下であると分離膜の一次側におけるスラリー粗液の流れを阻害することがない。スラリー粗液の粘度は、2.0mPa・s以下であるのがより好ましく、1.5mPa・s以下がさらに好ましい。
 スラリー粗液の粘度は、B型粘度計で測定した25℃の液粘度である。
 分離膜は、スラリー粗液を分級するために用いられる、複数の孔(貫通孔)を備えた膜のことである。分離膜の材質としては有機材料や金属等が挙げられる。該金属としては、ニッケル、ステンレス鋼等が挙げられる。
 粒度分布が狭いスラリーを得るために、本発明では略均一な大きさの孔を有する分離膜を用いる。このため、孔の大きさを精密に制御可能な金属製の分離膜が好ましく、例えば、電鋳篩が好ましく用いられる。
 なお、本明細書において「略均一」とは、孔の形状及び/又は寸法が完全に一致している場合のみならず、製造上の誤差程度に形状及び/又は寸法が異なる場合も包含する概念である。具体的に、孔の開口部の大きさ(開口径)が、中心値(平均開口径)±0.5μmの範囲内であることを意味する。中心値は、全ての孔に対して計測しなければならないものではなく、統計的なものであってもよい。また、孔の開口径とは、分離膜の平面視における孔の開口部の外接円の直径を意味する。
 孔の開口部の大きさは、体積平均粒子径が0.5~10.0μmで粒度分布の狭い球状粒子を得るためには、平均開口径にて1.0~10μmの範囲であるのが好ましい。平均開口径が前記範囲であり、かつその分布が略均一であることにより、無機球状粒子を精度よく分級できる。
 平均開口径は、分離膜を走査型電子顕微鏡で観察し、得られた画像から計測可能である。例えば画像解析ソフトを用い、約600個の孔を測定し、平均開口径と標準偏差が得られる。
 本発明において、分離膜はその孔の大きさが、得られるスラリーにおける無機球状粒子の所望の体積平均粒子径Aに対する比で、孔の開口径B/体積平均粒子径Aが0.5~2.0となる大きさの孔を有する分離膜を用いるのが好ましい。前記比B/Aが0.5以上となる大きさの孔を有する分離膜を用いることで所望の体積平均粒子径を持つ粒子が得られ、比B/Aが2.0以下となる大きさの孔を有する分離膜を用いることでよりシャープな粒度分布をもつ粒子が得られる。前記比B/Aは、0.7以上であるのがより好ましく、0.9以上がさらに好ましく、また、1.6以下であるのがより好ましく、1.3以下がさらに好ましい。
 分離膜における孔の開口部の形状は特に限定されず、分離膜の平面視における形状にて、円、楕円、正方形、長方形等が挙げられる。
 分離膜の厚さは特に限定されないが、5~100μmが好ましい。厚さが5μm以上であると、分離膜の強度が保たれて破損しにくくなり、100μm以下だと、濾液が流れやすくなり濾過時間を短くできる。分離膜の厚さは、10μm以上であることがより好ましく、20μm以上がさらに好ましく、また、50μm以下であることがより好ましく、30μm以下がさらに好ましい。分離膜の厚さはマイクロメータ等の膜厚計を用いて計測可能である。
 分離膜の厚さに対する平均開口径の比(平均開口径/分離膜厚さ)は、0.05~0.5が好ましい。前記比が0.05以上だと、透過速度が大きくなり、0.5以下だと分離膜の強度が保たれる。分離膜の厚さに対する平均開口径の比は、0.1以上であるのがより好ましく、0.15以上がさらに好ましく、また、0.4以下であるのがより好ましく、0.3以下がさらに好ましい。
 本製造方法において、スラリー粗液は、分離膜の一次側において分離膜面に沿った流れを形成する。分離膜の一次側とは、スラリー粗液を供給する側であり、分離膜の二次側とは、分離膜を透過したスラリーが流出する側である。分離膜面に沿った流れとは分離膜の主面と略平行な流れをいう。すなわち本製造方法において、分離膜面を透過する分離膜面に垂直方向の流れと、分離膜面を透過しない分離膜面に平行な流れの2種類のスラリーの流れが存在する。すなわち、クロスフローの状態となる。分離膜の一次側の流れは分離膜面に沿った流れであればよく、上昇流であっても、下降流であっても、水平流であってもよい。ここで上昇流とは重力方向上向きの流れである。本発明では、流出速度の観点から、分離膜の一次側の流れは上昇流又は下降流であるのが好ましく、上昇流がさらに好ましい。
 本製造方法の一次側におけるスラリー粗液の流量は、分離膜の面積10cmあたりで、0.2~3.0L/min(=12~180L/h)が好ましい。スラリー粗液の流量が前記範囲であると効率的に分級が行える。スラリー粗液の流量は、0.5L/min以上であるのがより好ましく、1.0L/min以上がさらに好ましく、また、2.5L/min以下であるのがより好ましく、2.0L/min以下がさらに好ましい。
 一次側と二次側の流量比は、1:0.001~1:0.2が好ましい。流量比が前記範囲であると効率的に分級が行える。一次側と二次側の流量比は、一次側の1に対して二次側が0.005以上であるのがより好ましく、0.01以上がさらに好ましく、また、0.1以下であるのがより好ましく、0.05以下がさらに好ましい。
 平均濾液流出速度は、分離膜の面積10cmあたりで、0.1~5.0L/hが好ましい。平均濾液流出速度が前記範囲であると効率的に分級が行える。平均濾液流出速度は、0.5L/h以上であるのがより好ましく、2.0L/h以上がさらに好ましく、また、4.0L/h以下であるのがより好ましく、3.0L/h以下がさらに好ましい。平均濾液流出速度は、単位時間当たりの流出量を測定して得られる。
 本スラリー製造方法では、分離膜に超音波を照射する。超音波を照射することで、分離膜の目詰まりを防げる。超音波照射とは、超音波を水や洗浄液の液中を通じて目的物に伝達させることを指す。
 超音波照射は、5~40℃、周波数10~100kHz、出力20~1000Wの条件で行うのが好ましい。前記範囲で超音波照射することで、分離膜の孔の開口部に無機球状粒子が堆積して濾液流出速度が低下するのを防げる。スラリー粗液の温度は、15℃以上がより好ましく、20℃以上がさらに好ましく、また、35℃以下であるのがより好ましく、30℃以下がさらに好ましい。照射する超音波の周波数は、15kHz以上であるのがより好ましく、18kHz以上がさらに好ましく、また、50kHz以下であるのがより好ましく、40kHz以下がさらに好ましい。そして、超音波の照射出力は、50W以上であるのがより好ましく、80W以上がさらに好ましく、また、500W以下であるのがより好ましく、200W以下がさらに好ましい。
 超音波は、分離膜を収容する容器の外側から照射してもよいし、分離膜を収容する容器の内部に超音波振動体を備えていてもよい。分離膜を収容する容器の外側から照射する製造方法では1つの超音波照射槽の中に分離膜を収容する容器を複数個並列に配置することも可能であり、ナンバリングアップによる量産化に好適である。
 本製造方法において、分離膜面は、水平に対して傾斜していることが好ましい。分離膜面が水平である状態とは、分離膜を重力方向に対して垂直となるように設置した状態である。すなわち、水面に対して平行である状態である。傾斜しているとは、水平である状態から外れて分離膜が傾いている状態を指す。傾斜角度は、平均濾液流出速度が大きくなることから、30度以上が好ましく、90度が特に好ましい。すなわち、重力方向に沿って膜面を設置することが特に好ましい。
 本製造方法において、得られるスラリーにおける無機球状粒子の体積平均粒子径は0.5~10μmであることが好ましく、前記範囲で濾過の目的や得られるスラリーの用途等により好ましい平均粒子径を設定すればよい。
 本製造方法において、得られるスラリーにおける無機球状粒子の粒度分布の均等係数(d90/d10)は1.0超2.0以下であることが好ましく、1.0超1.5以下がさらに好ましい。均等係数(d90/d10)により粒度分布の均一性を確認でき、均等係数が1に近いほど粒度分布が均等である。
 本製造方法において、分離膜として、孔の開口径が異なる2以上の分離膜を用いてもよい。異なる2以上の分離膜を用いて分離膜透過操作を2回以上行うことで、スラリー粗液を、平均粒子径が異なり、均等係数が小さくて粒度分布がさらに狭い3種類以上のスラリーに分けることが可能となる。例えば、スラリー粗液に対して、ある開口径の分離膜を用いて分離膜透過操作を行ったあと、二次側で得られたスラリーを開口径が異なるより小さい別の分離膜を用いて分離膜透過操作を行った場合、平均粒子径がXであるスラリーと、Xよりも大きいスラリーと、Xよりも小さいスラリーの3つに分けられる。
 以下、本発明のスラリー製造方法を6つの実施の態様に基づいて説明するが、以下の説明における例示によって本発明は限定されない。なお、同一の部材には同一の符号を付し、重複する説明は省略する。
 第1~第4の実施の態様は、分離膜を収容する容器の外側から超音波を照射する方法であり、第5~第6の実施の態様は、分離膜を収容する容器の内部に超音波振動体を備えている方法である。第1~第4の実施の態様の製造方法では、1つの超音波洗浄槽の中に分級セルを複数個並列に配置することも可能であり、ナンバリングアップによる量産化に好適である。
(第1の実施の態様)
 図1は本発明の第1の実施の態様に係る分級装置の概略構成図である。
 本発明の第1の態様における分級装置11は、分級前スラリー槽1と超音波洗浄槽20と濾液回収槽30を含む。分級前スラリー槽1の内部には分級前スラリー2が収容されており、撹拌装置3によって分級前スラリー2を撹拌することによって、粒子の沈降が防止できるようになっている。また、溶媒補充ライン7によって溶媒を補充できるようになっており、濾過の進行によっても分級前スラリー2の量を常に一定に保つことができるようになっている。
 超音波洗浄槽20の内部は水21で満たされており、内部に分離膜23を有する分級セル22が浸漬されている。送液ポンプ4を起動すると分級前スラリー2はスラリー供給ライン5を通って分級セル22の下方の入口に送られる。分離膜23で濾過されたスラリーは濾液流出ライン24を通って、濾液回収槽30に濾液31として回収される。分離膜23で濾過されなかったスラリーは、分級セル22の上方の出口からスラリー戻りライン6を通って、分級前スラリー槽1へ戻っていく。
 すなわち、第1の実施の態様は、分級セル22全体を超音波洗浄槽20に浸漬して超音波振動をかけつつ、分離膜23を垂直に配置し、分級前スラリー2は、分離膜23表面で上昇流となっているものである。分級前スラリー及び分離膜が超音波振動を受けるだけでなく、分級前スラリーが上昇流であることによって粒子による分離膜の閉塞を防止している。
 図2は分級セルの構成を説明する図であり、図2の(a)は分級セル22の内部構造を示す分解斜視図であり、図2の(b)は(a)の長手方向に沿った断面図である。凹部を有するセル底板40にはスラリー入口41とスラリー出口42が設けられている。この凹に下方から順に、ガスケット43、分離膜23、ガスケット43を配置し、凸部に濾液出口45を有するセル蓋44を重ねて、一体化された分級セル22になっている。
 ガスケット43は中央部が開口しており、ガスケット43の開口部の面積がスラリーに接する分離膜の面積、すなわち濾過面積となっている。分級セル22の内部は分離膜23によって、スラリー入口41及びスラリー出口42側の室と濾液出口45側の室に隔離されているので、分離膜23を通過したスラリーだけが濾液出口45から流出する。またスラリー入口41及びスラリー出口42側の室のスラリーの流れ方向と分離膜23を通過する濾液の流れ方向が直交しており、いわゆるクロスフロー濾過となっている。クロスフロー濾過の方式にすることによって、粒子による分離膜の閉塞を防止できる。
(第2の実施の態様)
 本発明の第2の実施の態様を図3に示す。本発明の第2の態様における分級装置12は、第1の実施の態様と同様に分離膜23を垂直に配置しているが、分級前スラリー2が分級セル22の上方の入口から分級セル22に流入し、分離膜23で濾過されなかったスラリーは、分級セル22の下方の出口からスラリー戻りライン6を通って、分級前スラリー槽1へ戻っていくようにしたものである。すなわち分級前スラリー2は、分離膜23の表面で下降流となっているものである。
(第3の実施の態様)
 本発明の第3の実施の態様を図4に示す。本発明の第3の態様における分級装置13は、分離膜23を水平に配置し、分級前スラリー2が分級セル22の下方の入口から分級セル22に流入し、分離膜23で濾過されなかったスラリーは、分級セル22の下方のもう一方の出口からスラリー戻りライン6を通って、分級前スラリー槽1へ戻っていくようにしたものである。すなわち分級前スラリー2は、分離膜23の表面で水平流となっており、濾液は分級セル22の上方から流出する。
(第4の実施の態様)
 本発明の第4の実施の態様を図5に示す。本発明の第4の態様における分級装置14は、第3の実施の態様と同様に分離膜23を水平に配置しているが、分級前スラリー2が分級セル22の上方の入口から分級セル22に流入し、分離膜23で濾過されなかったスラリーは、分級セル22の上方のもう一方の出口からスラリー戻りライン6を通って、分級前スラリー槽1へ戻っていくようにしたものである。すなわち分級前スラリー2は分離膜23の表面で水平流となっており、濾液は分級セル22の下方から流出する。
(第5の実施の態様)
 本発明の第5の実施の態様を図6に示す。第5の実施の態様の分級装置15は、分級前スラリー槽1と分級室50と濾液回収槽30を含み、分離膜23を収容する容器の内部に超音波振動体53を備えている。分級室50は、振動体側筐体51と濾液側筐体52から成り、振動体側筐体51には超音波振動体53が設けられている。濾液側筐体52には、ガスケット43によって分離膜23が超音波振動体53と平行になるように設置されている。ガスケット43の開口部の面積がスラリーに接する分離膜23の面積、すなわち濾過面積となっている。
 分級前スラリー槽1の内部には分級前スラリー2が入っており、撹拌装置3によって分級前スラリー2を撹拌することによって、粒子の沈降が防止できるようになっている。また、溶媒補充ライン7によって溶媒を補充することができるようになっており、濾過の進行によっても分級前スラリー2の量を常に一定に保つことができるようになっている。スラリー供給ライン5を通って分級室50へ流入した分級前スラリー2は、超音波振動を受けつつ濾過されて、濾液31は濾液流出ライン24を通って濾液回収槽30へ流出し、濾過されなかったスラリーは、スラリー戻りライン6を通って、分級前スラリー槽1へ戻っていく。分級前スラリー2は分離膜23の表面で水平流となっており、濾液31は分離膜23の下方から流出する。
(第6の実施の態様)
 本発明の第6の実施の態様を図7に示す。第6の実施の態様の分級装置16は、第5の実施の態様の分級室50を反時計回りに90度回転させた装置である。分級前スラリー2は分離膜23の表面で上昇流となっており、濾液31は分離膜23の側方から流出する。
 以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。なお、特に説明のない限り、「部」、「%」はそれぞれ、「質量部」、「質量%」を表す。例1~10は実施例である。
<評価方法>
 スラリーの粒度分布の計測はコールターカウンターによって行い、体積基準の粒度分布曲線において累積体積が50%となる粒子径d50を平均粒子径とした。また、累積体積が10%となる粒子径d10と累積体積が90%となる粒子径d90の比を均等係数(d90/d10)として粒度分布の均一性を評価した。
(例1)
 分級前スラリーAの分級を行った。分級前スラリーAは球状シリカ微粒子(平均円形度0.95)を濃度1.0%で水に分散したものである。このスラリーの粒度分布を図8に示す。分級前スラリーAは、平均粒子径d50が3.66μm、均等係数(d90/d10)が2.14であった。
 図2に示した構成の分級セル22を備えた図1の分級装置11を用いた。超音波洗浄槽20は、シャープ(株)製UT-107M型(槽容量3L、超音波発信周波数37kHz、出力90W)を用いた。分級条件を表1に示す。
 4.5Lの分級前スラリーAを分級セルへ1.5L/minの流量でポンプにより送液した。分級セル内の分離膜は、ニッケル製、厚さ30μmの電鋳篩で孔径5.0μm、孔のピッチ10.0μm、開口率23%のものを用いた。ガスケットはシリコンゴム製で厚さ1.5mm、電鋳篩の濾過面積は12.25cm(長さ7cm×幅1.75cm)であった。分級前スラリー槽の液面が一定になるように、連続的に脱塩水を補給した。分級結果を表2に示す。
 240分運転後の濾液量は11.0Lで、平均濾液流出速度が2.75L/hであり、速い速度で分級できた。
 この時の濾液の粒度分布を図9の(a)に示す。平均粒子径d50は3.40μm、均等係数(d90/d10)は1.95であり、6.0μm以上の粒子は含有していなかった。また分級前スラリー槽内の残液の粒度分布を図9の(b)に示す。平均粒子径d50は4.84μm、均等係数(d90/d10)は1.93であった。
 このように、粒度分布の広い粒子を短時間で平均粒子径d50が異なり、均等係数(d90/d10)が小さくて粒度分布の狭い2種類の粒子に連続的に分級できた。
(例2)
 図1の分級装置11の代わりに、図3の分級装置12を用いた以外は例1と同様の方法で、分級前スラリーAの分級を行った。分級結果を表2に示す。
 230分運転後の濾液量は11.0Lで、平均濾液流出速度が2.87L/hであり、速い速度で分級できた。
 この時の濾液の粒度分布を図10の(a)に示す。平均粒子径d50は3.39μm、均等係数(d90/d10)は1.96であり、6.0μm以上の粒子は含有していなかった。また分級前スラリー槽内の残液の粒度分布を図10の(b)に示す。平均粒子径d50は4.86μm、均等係数(d90/d10)は1.92であった。
 例1と同様に、粒度分布の広い粒子を短時間で平均粒子径d50が異なり、均等係数(d90/d10)が小さくて粒度分布の狭い2種類の粒子に連続的に分級できた。
(例3)
 図1の分級装置11の代わりに、図4の分級装置13を用いた以外は例1と同様の方法で、分級前スラリーAの分級を行った。分級結果を表2に示す。
 60分運転後の濾液量は0.9Lで、平均濾液流出速度は0.90L/hであった。例3は平均濾液流出速度が遅かったため、孔径5μmの分離膜を用いた分級については例1、2で確認できていることから、運転時間を60分で停止した。
 この時の濾液の粒度分布を図11に示す。平均粒子径d50は3.38μm、均等係数(d90/d10)は1.96であり、6.0μm以上の粒子は含有していなかった。
 濾液の流出速度は遅かったが、粒度分布の広い粒子から平均粒子径d50と均等係数(d90/d10)が小さくて粒度分布の狭い粒子を連続的に得ることができた。
(例4)
 図1の分級装置11の代わりに、図5の分級装置14を用いた以外は例1と同様の方法で、分級前スラリーAの分級を行った。分級結果を表2に示す。
 60分運転後の濾液量は0.7Lで、平均濾液流出速度は0.70L/hであった。例4は平均濾液流出速度が遅かったため、孔径5μmの分離膜を用いた分級については例1、2で確認できていることから、運転時間を60分で停止した。
 この時の濾液の粒度分布を図12に示す。平均粒子径d50は3.39μm、均等係数(d90/d10)は1.96であり、6.0μm以上の粒子は含有していなかった。
 濾液の流出速度は遅かったが、粒度分布の広い粒子から平均粒子径d50と均等係数(d90/d10)が小さくて粒度分布の狭い粒子を連続的に得ることができた。
(例5)
 分級セル内の分離膜を、ニッケル製、厚さ30μmの電鋳篩で孔径4.5μm、孔のピッチ10.0μm、開口率18%のものに変えた以外は例1と同様にして、分級前スラリーAの分級を行った。分級結果を表2に示す。
 330分運転後の濾液量は8.8Lで、平均濾液流出速度が1.60L/hであった。
 この時の濾液の粒度分布を図13の(a)に示す。平均粒子径d50は3.25μm、均等係数(d90/d10)は1.94であり、5.5μm以上の粒子は含有していなかった。また分級前スラリー槽内の残液の粒度分布を図13の(b)に示す。平均粒子径d50は4.79μm、均等係数(d90/d10)は1.67であった。
 このように、粒度分布の広い粒子を平均粒子径d50が異なり、均等係数(d90/d10)が小さくて粒度分布の狭い2種類の粒子に連続的に分級できた。
(例6)
 分級セル内の分離膜を、ニッケル製、厚さ30μmの電鋳篩で孔径4.0μm、孔のピッチ10.0μm、開口率15%のものに変えた以外は例1と同様にして、分級前スラリーAの分級を行った。分級結果を表2に示す。
 900分運転後の濾液量は6.5Lで、平均濾液流出速度が0.43L/hであった。
 この時の濾液の粒度分布を図14の(a)に示す。平均粒子径d50は3.17μm、均等係数(d90/d10)は1.93であり、5.0μm以上の粒子は含有していなかった。また分級前スラリー槽内の残液の粒度分布を図14の(b)に示す。平均粒子径d50は4.08μm、均等係数(d90/d10)は1.98であった。
 このように、粒度分布の広い粒子を平均粒子径d50が異なり、均等係数(d90/d10)が小さくて粒度分布の狭い2種類の粒子に連続的に分級できた。
(例7)
 例6で得られた濾液スラリー(以下、分級前スラリーBと記す)の分級を行った。4.5Lの分級前スラリーB(シリカ濃度0.4%)を図1の分級装置11の分級前スラリー槽に投入し、分級セル内の分離膜を、ニッケル製、厚さ30μmの電鋳篩で孔径3.0μm、孔のピッチ8.0μm、開口率13%のものに変えた以外は例1と同様の方法で、分級前スラリーBの分級を行った。分級結果を表2に示す。
 930分運転後の濾液量は11.8Lで、平均濾液流出速度が0.76L/hであった。
 この時の濾液の粒度分布を図15の(a)に示す。平均粒子径d50は2.46μm、均等係数(d90/d10)は1.80で、4.0μm以上の粒子は含有していなかった。また分級前スラリー槽内の残液の粒度分布を図15の(b)に示す。平均粒子径d50は3.51μm、均等係数(d90/d10)は1.42であった。
 このように、分級前の粒度分布が狭い粒子であっても、平均粒子径d50が異なり、均等係数(d90/d10)が小さくて粒度分布がさらに狭い2種類の粒子に連続的に分級できた。
 また、例6と例7の分級操作により、分級前スラリーAは、図14の(b)、図15の(a)及び図15の(b)に示す均等係数(d90/d10)が小さくて粒度分布の狭い3種類の粒子に分級できたことを示している。
(例8)
 例7で得られた濾液スラリー(以下、分級前スラリーCと記す)の分級を行った。4.5Lの分級前スラリーC(シリカ濃度0.1%)を図1の分級装置11の分級前スラリー槽に投入し、分級セル内の分離膜を、ニッケル製、厚さ20μmの電鋳篩で孔径2.0μm、孔のピッチ6.0μm、開口率10%のものに変えた以外は例1と同様の方法で、分級前スラリーCの分級を行った。分級結果を表2に示す。
 500分運転後の濾液量は7.1Lで、平均濾液流出速度が0.85L/hであった。
 この時の濾液の粒度分布を図16の(a)に示す。平均粒子径d50は1.45μm、均等係数(d90/d10)は1.50で、3.0μm以上の粒子は含有していなかった。また分級前スラリー槽内の残液の粒度分布を図16の(b)に示す。平均粒子径d50は2.64μm、均等係数(d90/d10)は1.57であった。
 このように、分級前の粒度分布が狭い粒子であっても、平均粒子径d50が異なり、均等係数(d90/d10)が小さくて粒度分布がさらに狭い2種類の粒子に連続的に分級できた。
 また、例6と例7と例8の分級操作により、分級前スラリーAは、図14の(b)、図15の(b)、図16の(a)及び図16の(b)に示す均等係数(d90/d10)が小さくて粒度分布の狭い4種類の粒子に分級できたことを示している。
(例9)
 図6の分級装置15を用いて分級前スラリーAの分級を行った。超音波振動体は、36φのチタン合金製で、超音波発信周波数は19.5kHz、出力は180Wであった。分級条件を表1に示す。
 4.5Lの分級前スラリーAを分級室へ1.5L/minの流量でポンプにより送液した。分級室内の分離膜は、ニッケル製、厚さ30μmの電鋳篩で孔径5.0μm、孔のピッチ10.0μm、開口率23%のものを用いた。電鋳篩の濾過面積は21.23cm(直径5.2cmφ)であった。分級前スラリー槽の液面が一定になるように、連続的に脱塩水を補給した。分級結果を表2に示す。
 60分運転後の濾液量は0.4Lで、平均濾液流出速度が0.4L/hであった。例9は平均濾液流出速度が遅かったため、孔径5μmの分離膜を用いた分級については例1、2で確認できていることから、運転時間を60分で停止した。
 この時の濾液の粒度分布を図17に示す。平均粒子径d50は3.40μm、均等係数(d90/d10)は1.97であり、6.0μm以上の粒子は含有していなかった。
 濾液の流出速度は遅かったが、粒度分布の広い粒子から平均粒子径d50と均等係数(d90/d10)が小さくて粒度分布の狭い粒子を連続的に得ることができた。
(例10)
 図6の分級装置15の代わりに、図7の分級装置16を用いた以外は例9と同様の方法で、分級前スラリーAの分級を行った。分級結果を表2に示す。
 150分運転後の濾液量は11.0Lで、平均濾液流出速度は4.40L/hと速かった。
 この時の濾液の粒度分布を図18の(a)に示す。平均粒子径d50は3.42μm、均等係数(d90/d10)は1.98であり、6.0μm以上の粒子は含有していなかった。また分級前スラリー槽内の残液の粒度分布を図18の(b)に示す。平均粒子径d50は4.84μm、均等係数(d90/d10)は1.92であった。
 分離膜を垂直に設置した例10は、例1及び例2と同様に、粒度分布の広い粒子を短時間で平均粒子径d50が異なり、均等係数(d90/d10)が小さくて粒度分布の狭い2種類の粒子に連続的に分級できた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2022年7月6日出願の日本特許出願(特願2022-109236)に基づくものであり、その内容はここに参照として取り込まれる。
 1  分級前スラリー槽
 2  分級前スラリー
 3  撹拌装置
 4  送液ポンプ
 5  スラリー供給ライン
 6  スラリー戻りライン
 7  溶媒補充ライン
 11~16 分級装置
 20 超音波洗浄槽
 21 水
 22 分級セル
 23 分離膜(篩)
 24 濾液流出ライン
 30 濾液回収槽
 31 濾液
 40 セル底板
 41 スラリー入口
 42 スラリー出口
 43 ガスケット
 44 セル蓋
 45 濾液出口
 50 分級室
 51 振動体側筐体
 52 濾液側筐体
 53 超音波振動体

Claims (8)

  1.  無機球状粒子を含むスラリー粗液を、分離膜に透過させてスラリーを製造するスラリー製造方法であって、
     前記分離膜が略均一な大きさの孔を有し、
     前記分離膜の一次側において分離膜面に沿った流れを形成し、
     前記分離膜に超音波を照射する、スラリー製造方法。
  2.  前記分離膜面を水平に対して傾斜させる、請求項1に記載のスラリー製造方法。
  3.  前記分離膜が容器に収容されており、前記容器の外側から前記超音波を照射する、請求項1または2に記載のスラリー製造方法。
  4.  得られたスラリーにおける無機球状粒子の体積平均粒子径が0.5~10μmである、請求項1または2に記載のスラリー製造方法。
  5.  得られたスラリーにおける無機球状粒子の粒度分布のd90/d10均等係数が1.0超2.0以下である、請求項1または2に記載のスラリー製造方法。
  6.  前記分離膜として、孔の開口径が異なる2以上の分離膜を用いる、請求項1または2に記載のスラリー製造方法。
  7.  得られたスラリーにおける無機球状粒子の所望の体積平均粒子径Aに対する前記分離膜の孔の開口径Bの比(B/A)が0.5~2.0となる大きさの孔を有する分離膜を用いる、請求項1または2に記載のスラリー製造方法。
  8.  前記無機球状粒子がシリカ粒子である、請求項1または2に記載のスラリー製造方法。
PCT/JP2023/024298 2022-07-06 2023-06-29 無機球状粒子を含むスラリーの製造方法 WO2024009896A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109236 2022-07-06
JP2022109236 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024009896A1 true WO2024009896A1 (ja) 2024-01-11

Family

ID=89453462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024298 WO2024009896A1 (ja) 2022-07-06 2023-06-29 無機球状粒子を含むスラリーの製造方法

Country Status (1)

Country Link
WO (1) WO2024009896A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919376A (en) * 1997-06-10 1999-07-06 Cae Ransohoff Inc. Filtration apparatus and method
WO2005068045A1 (en) * 2004-01-05 2005-07-28 Delaware Capital Formation, Inc. Crossflow pressure liquid filtration with ultrasonic enhancement
JP2023059306A (ja) * 2021-10-15 2023-04-27 株式会社石垣 クロスフロー湿式分級装置及びそれを用いた湿式分級方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919376A (en) * 1997-06-10 1999-07-06 Cae Ransohoff Inc. Filtration apparatus and method
WO2005068045A1 (en) * 2004-01-05 2005-07-28 Delaware Capital Formation, Inc. Crossflow pressure liquid filtration with ultrasonic enhancement
JP2023059306A (ja) * 2021-10-15 2023-04-27 株式会社石垣 クロスフロー湿式分級装置及びそれを用いた湿式分級方法

Similar Documents

Publication Publication Date Title
US5384989A (en) Method of ultrasonically grinding workpiece
US5164094A (en) Process for the separation of substances from a liquid and device for effecting such a process
JP2981547B1 (ja) クロスフロー型マイクロチャネル装置及び同装置を用いたエマルションの生成または分離方法
US3782547A (en) Structure for ultrasonic screening
JP5047503B2 (ja) スラリー分離装置、及びその装置を利用したスラリー供給システム
US10201652B2 (en) Acoustophoretic separation of lipid particles from red blood cells
CN1305547C (zh) 过滤装置及其使用方法
Wakeman et al. An experimental study of electroacoustic crossflow microfiltration
CA2909950A1 (en) Excipient removal from pharmacological samples
US6620226B2 (en) Bubble elimination tube with acutely angled transducer horn assembly
BR102013009292A2 (pt) Aparelho para fabricação de partículas finas e toner
JPH0657302B2 (ja) 中空糸膜フイルタの逆洗方法
AU2002316039B2 (en) Dynamic settler
US20090211991A1 (en) Filtering a dispersed phase (e.g. oil) from a continuous liquid (e.g. water) of a dispersion
WO2024009896A1 (ja) 無機球状粒子を含むスラリーの製造方法
US7572375B2 (en) Method and device for treating fine particles
Pirkonen et al. Ultrasound assisted cleaning of ceramic capillary filter
CN113692310B (zh) 用于除气的系统和方法
JP4125706B2 (ja) 基板の製造方法
JP2012076038A (ja) 分級方法および分級管
JPH11300253A (ja) ロールコーター塗布装置
JP7356108B2 (ja) 水処理方法
Qaisrani et al. Influence of two-phase flow on cake layer resistance and flux enhancement in spiral wound and submerged flat sheet microfiltration membrane modules
US20210268448A1 (en) Filter screen
JP6509622B2 (ja) 処理システム及び処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835428

Country of ref document: EP

Kind code of ref document: A1