WO2024009733A1 - Semiconductor device and communication system - Google Patents

Semiconductor device and communication system Download PDF

Info

Publication number
WO2024009733A1
WO2024009733A1 PCT/JP2023/022447 JP2023022447W WO2024009733A1 WO 2024009733 A1 WO2024009733 A1 WO 2024009733A1 JP 2023022447 W JP2023022447 W JP 2023022447W WO 2024009733 A1 WO2024009733 A1 WO 2024009733A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
bus
semiconductor device
output
received data
Prior art date
Application number
PCT/JP2023/022447
Other languages
French (fr)
Japanese (ja)
Inventor
圭 長尾
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024009733A1 publication Critical patent/WO2024009733A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/36Handling requests for interconnection or transfer for access to common bus or bus system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus

Definitions

  • the present disclosure relates to a semiconductor device and a communication system.
  • Patent Document 1 An example of circuit technology related to serial communication is disclosed in Patent Document 1.
  • a communication system may be constructed using a semiconductor device that performs serial communication using a protocol different from that of the application itself, as well as its own semiconductor device.
  • An object of the present disclosure is to provide a semiconductor device that can effectively construct a communication system together with a device using a protocol different from the semiconductor device itself.
  • a semiconductor device (1) includes: A semiconductor device connectable to an external transmitting device via a first bus, and connectable to an external device via a second bus, a first receiving unit configured to be able to receive received data, which is serial data, from the transmitting device via the first bus; a first transmitter configured to be connectable to the device via the second bus; Equipped with The first receiving section and the first transmitting section indicate that the bridge selection data included in the received data is ON of a through output in which the bit data is output as is between the first bus and the second bus. In this case, data corresponding to the protocol of the device included in the received data is configured to be through-outputted to the second bus.
  • the exemplary semiconductor device of the present disclosure it is possible to effectively construct a communication system together with a device using a protocol different from the semiconductor device itself.
  • FIG. 1 is a diagram showing the configuration of a communication system according to a first comparative example.
  • FIG. 2 is a diagram showing the configuration of a communication system according to a second comparative example.
  • FIG. 3 is a diagram illustrating a configuration of a communication system according to an exemplary embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a semiconductor device according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a diagram showing the data structure of received data RX when writing or reading is performed using the semiconductor device 1 as a target device.
  • FIG. 6 is a diagram illustrating another configuration example of the communication system according to the embodiment of the present disclosure.
  • FIG. 7 is a diagram showing the data structure of received data RX when writing or reading is performed using the device 10 as a target device.
  • FIG. 8 is a timing chart showing communication control when writing to the device 10.
  • FIG. 9 is a timing chart showing communication control when reading from the device 10.
  • FIG. 10 is a timing chart showing communication control when writing to the device 10 in a modified example.
  • FIG. 11 is a timing chart showing communication control when reading from the device 10 in a modified example.
  • FIG. 12 is a diagram illustrating a modification of the communication system according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram showing the configuration of a communication system 501 according to a first comparative example for comparison with the embodiment of the present disclosure.
  • the communication system 501 includes an MCU (Micro Controller Unit) 20, a CAN (Controller Area Network) transceiver 30, a CAN transceiver 40, a semiconductor device 1, and n devices 10 (n is an integer of 1 or more). Be prepared.
  • the communication system 501 is installed in a vehicle as an example, and the same applies to other communication systems described below.
  • UART Universal Asynchronous Receiver/Transmitter
  • UART is a protocol for exchanging serial data between two devices.
  • bidirectional communication is performed between a transmitting side and a receiving side using two lines.
  • CAN is a serial communication protocol standardized by international standards such as ISO11898.
  • the CAN transceiver 30 has a TXD (transmission data input) terminal 30A and an RXD (reception data output) terminal 30B.
  • the CAN transceiver 30 outputs data input to the TXD terminal 30A to the CAN bus 35, and outputs data input from the CAN bus 35 to the RXD terminal 30B.
  • the CAN transceiver 40 has an RXD terminal 40A and a TXD terminal 40B.
  • the CAN transceiver 40 outputs data input to the TXD terminal 40B to the CAN bus 35, and outputs data input from the CAN bus 35 to the RXD terminal 40A.
  • the semiconductor device 1 is an IC (integrated circuit) in which circuits with predetermined functions are integrated, and is configured as, for example, an LED (light emitting diode) driver IC.
  • the n devices 10 are ICs in which circuits with predetermined functions are integrated, and are configured as, for example, a matrix switch IC.
  • the semiconductor device 1 has an RX (reception data input) terminal 1A and a TX (transmission data output) terminal 1B.
  • the device 10 has an RX terminal 10A and a TX terminal 10B.
  • the RX terminal 1A and n RX terminals 10A are commonly connected to the RXD terminal 40A.
  • the TX terminal 1B and n TX terminals 10B are commonly connected to the TXD terminal 40B.
  • the semiconductor device 1 and the n devices 10 can be commonly connected to the same CAN transceiver 40.
  • Reception data RX output from the RXD terminal 40A is input to the RX terminal 1A and n RX terminals 10A.
  • the device address of one of the semiconductor device 1 and n devices 10 is specified in the received data RX.
  • transmission data TX output from the TX terminal 1B and n TX terminals 10B is input to the TXD terminal 40B.
  • a communication system 502 according to the second comparative example shown in FIG. 2 uses CAN transceivers 401 and 402 instead of the CAN transceiver 40, as a difference from the first comparative example.
  • a CAN transceiver 401 is connected to the semiconductor device 1, and a CAN transceiver 402 is connected to the n devices 10.
  • CAN transceivers 401 and 402 perform CAN communication with CAN transceiver 30.
  • FIG. 3 is a diagram illustrating a configuration of a communication system 50 according to an exemplary embodiment of the present disclosure.
  • the semiconductor device 1 has an RXD (reception data output) terminal 1C and a TXD (transmission data input) terminal 1D in addition to an RX terminal 1A and a TX terminal 1B.
  • RX terminal 1A is connected to RXD terminal 40A of CAN transceiver 40.
  • TX terminal 1B is connected to TXD terminal 40B of CAN transceiver 40. That is, the RX terminal 1A and TX terminal 1B are connected to the RXD terminal 40A and TXD terminal 40B via the bus BS1.
  • Communication of reception data RX and transmission data TX is possible via bus BS1.
  • Reception data RX and transmission data TX are serial data.
  • the RXD terminal 1C is connected to the RX terminals 10A of the n devices 10.
  • TXD terminal 1D is connected to TX terminals 10B of n devices 10. That is, the RXD terminal 1C and TXD terminal 1D are connected to the RX terminal 10A and TX terminal 10B by a bus (local bus) BS2.
  • Communication of reception data BRX and transmission data BTX is possible via bus BS2.
  • Reception data BRX and transmission data BTX are serial data.
  • the protocols supported by the semiconductor device 1 and the n devices 10 are different.
  • the CAN transceiver 40 writes or reads to the semiconductor device 1
  • the received data RX output from the RXD terminal 40A to the RX terminal 1A is composed only of data corresponding to the protocol of the semiconductor device 1.
  • Write is a process of writing data to a target device
  • Read is a process of reading data from a target device.
  • the semiconductor device 1 outputs the transmission data TX from the TX terminal 1B to the TXD terminal 40B after receiving the reception data RX.
  • the received data RX output from the RXD terminal 40A to the RX terminal 1A includes data corresponding to the protocol of the device 10.
  • the semiconductor device 1 turns on the bridge function and outputs data included in the received data RX that corresponds to the protocol of the device 10 from the RXD terminal 1C as the received data BRX. Through output means to output bit data as is.
  • the device address of the device 10 is specified in the received data BRX.
  • the device 10 which is the target device (the device specified by the device address), outputs the transmission data BTX from the TX terminal 10B to the TXD terminal 1D. Since the bridge function is on, the semiconductor device 1 outputs the transmission data BTX through the TX terminal 1B as the transmission data TX.
  • the CAN transceiver 40 can write and read to the semiconductor device 1 and the device 10.
  • costs can be reduced by reducing the number of CAN transceivers 40 and reducing the amount of wiring.
  • FIG. 4 is a block diagram of the semiconductor device 1 according to the embodiment of the present disclosure.
  • the semiconductor device 1 includes a first receiving section 11, a first transmitting section 12, a second receiving section 13, a second transmitting section 14, and a control section 15 as functional blocks.
  • FIG. 4 illustrates only functional blocks related to communication functions in the communication system 50, and may include other functional blocks. For example, if the semiconductor device 1 is an LED driver, it has a block function related to LED driving.
  • the first receiving unit 11 receives received data RX via the RX terminal 1A.
  • the first transmitter 12 outputs the received data BRX via the RXD terminal 1C.
  • the second receiving unit 13 receives the transmission data BTX via the TXD terminal 1D.
  • the second transmitter 14 outputs transmission data TX via the TX terminal 1B.
  • the control section 15 controls the first receiving section 11, the first transmitting section 12, the second receiving section 13, and the second transmitting section 14.
  • the control unit 15 has a register 151.
  • FIG. 5 is a diagram showing the data structure of received data RX when writing or reading is performed using the semiconductor device 1 as a target device.
  • the received data RX shown in FIG. 5 is composed only of data corresponding to the protocol of the semiconductor device 1.
  • the frame FR is composed of bit data from a start bit S to a stop bit P.
  • the start bit S is at low level and the stop bit P is at high level.
  • bit data of a predetermined number of bits is arranged.
  • 8-bit bit data is arranged. That is, the frame FR is composed of 10 bits of bit data.
  • the received data RX includes a synchronization frame SYNC, a Read/Write etc. frame RWD, a data number frame ND, a register address frame AD, a data frame DT, and a CRC (Cyclic Redundancy Check) frame CR in order from the beginning.
  • a synchronization frame SYNC a Read/Write etc. frame RWD
  • a data number frame ND a data number frame ND
  • a register address frame AD a data frame DT
  • CRC Cyclic Redundancy Check
  • the synchronization frame SYNC is bit data for setting the baud rate in the semiconductor device 1.
  • the Read/Write etc. frame RWD includes a device address DA, a bridge bit BR, a broadcast/parity bit B/PA, and a Read/Write bit RW.
  • the device address DA is bit data (5-bit data in the example of FIG. 5) indicating the address of the target device (semiconductor device 1).
  • the bridge bit BR is bit data indicating whether the bridge function of the semiconductor device 1 is on or off.
  • Broadcast/parity bit B/PA is bit data indicating on/off of broadcast of semiconductor device 1 or the parity of data address DA.
  • the Read/Write bit RW is bit data indicating Read or Write.
  • broadcast/parity bit B/PA indicates whether broadcast is on or off.
  • a plurality of semiconductor devices 1 are connected to the CAN transceiver 40.
  • a device 10 is connected to each semiconductor device 1.
  • all of the plurality of semiconductor devices 1 become target devices.
  • broadcast/parity bit B/PA becomes the parity of device data DA. This makes it possible to detect errors in the device data DA.
  • the protocols are different for each group of devices 10 connected to each of the plurality of semiconductor devices 1, when the broadcast of the semiconductor device 1 is turned on, the same received data RX is different as received data BRX. The data will be transmitted to the devices 10 according to the protocol, and the protocol will become incompatible with some devices 10. Therefore, when the bridge function is turned on, broadcasting is not performed.
  • the data number frame ND is bit data indicating the number of frames of the data frame DT.
  • Register address frame AD is bit data indicating an address in register 151.
  • the data frame DT is bit data indicating the data body to be transmitted by the received data RX.
  • the CRC frame CR is bit data indicating an error detection code added to the data frame DT. Note that when the Read/Write bit RW indicates Read, the data frame DT and CRC frame CR are not included in the received data RX.
  • FIG. 7 is a diagram showing the data structure of received data RX when writing or reading is performed with the device 10 as the target device.
  • the synchronization frame SYN and Read/Write etc. frame RWD in the received data RX shown in FIG. 7 are as described above.
  • the data number frame ND indicates the number of frames for the end condition of through output, unlike the case shown in FIG. Control using the data number frame ND will be described later.
  • device data DDT follows the data number frame ND.
  • the device data DDT is data that corresponds to the protocol of the device 10, and is to be output as received data BRX.
  • Device data DDT includes device address BDA.
  • the device address BDA indicates the address of the device 10 that is the target device.
  • the position where the device address BDA is placed in the device data DDT is a position according to the protocol of the device 10.
  • FIG. 8 is a timing chart showing communication control when writing to the device 10. From the top of FIG. 8, reception data RX, reception data output selection signal (RX output select), transmission data output selection signal (TX output select), reception data BRX, transmission data BTX, and transmission data TX are shown (FIG. 9 ⁇ The same applies to Figure 11).
  • the received data RX has the configuration shown in FIG. 7.
  • the received data RX is received by the first receiving unit 11 (FIG. 4).
  • the control unit 15 By receiving the first start bit S1 (low level) of the reception data RX, the control unit 15 recognizes the start of reception of the reception data RX. Thereafter, the control unit 15 recognizes that the bridge function is on from the bridge bit BR included in the received data RX, and recognizes that it is a write from the Read/Write bit RW.
  • the control unit 15 changes the received data output selection signal in the register 151 from a low level to a high level at the stop bit P1 of the data number frame ND (timing t1).
  • timing t1 the control unit 15 changes the received data output selection signal in the register 151 from a low level to a high level at the stop bit P1 of the data number frame ND.
  • the first receiving section 11 and the first transmitting section 12 output the received data RX as is as the received data BRX. That is, through output of device data DDT (FIG. 7) is performed.
  • the control unit 15 When the received data output selection signal becomes high level, the control unit 15 starts counting the number of frames of received data RX (that is, the number of frames of device data DDT). When the counted number of frames reaches the number of frames indicated by the received data number frame ND, the control unit 15 switches the received data output selection signal to low level and stops the through output (timing t2). Thereafter, the received data BRX is fixed at a high level.
  • FIG. 9 is a timing chart showing communication control when reading from the device 10.
  • the received data RX has the configuration shown in FIG. 7.
  • the control unit 15 After receiving the first start bit S1 (low level) of the received data RX, the control unit 15 recognizes that the bridge function is on based on the bridge bit BR included in the received data RX, and also sets the Read/Write bit. It recognizes that it is Read by RW.
  • the control unit 15 changes both the reception data output selection signal and the transmission data output selection signal in the register 151 from a low level to a high level at the stop bit P1 of the data number frame ND. timing t1).
  • through-output of reception data RX and transmission data BTX is started.
  • the first receiving section 11 and the first transmitting section 12 output the received data RX as is as the received data BRX, that is, through-output of the device data DDT (FIG. 7) is performed.
  • the second receiving section 13 and the second transmitting section 14 output the transmission data BTX sent from the device 10 as transmission data TX.
  • the control unit 15 When the received data output selection signal and the transmitted data output selection signal become high level, the control unit 15 starts counting the total number of frames of the received received data RX and the received transmitted data BTX. When the counted number of frames reaches the number of frames indicated by the received data number frame ND, the control unit 15 switches both the received data output selection signal and the transmitted data output selection signal to low level, and stops the through output (timing t2). Thereafter, the received data BRX is fixed at a high level, and the transmitted data TX is fixed at Hi-z (high impedance).
  • the number of frames received by the semiconductor device 1 can be used as the condition for terminating the through output.
  • the frame number count does not proceed during the interruption, so through output may be interrupted by mistake. You can avoid putting it away. That is, interruption of the through output can be avoided regardless of the interrupt time, and therefore it is less likely to be restricted by the specifications of the MCU 20.
  • the condition for terminating the through output is not limited to the number of frames described above, but may be the number of bits or the time during which the data received by the semiconductor device 1 is continuously at a high level, as in a modification described below.
  • FIG. 10 is a timing chart showing communication control when writing to the device 10 in a modified example.
  • the control unit 15 monitors whether the number of bits in which the received data RX is continuously at a high level reaches a predetermined number of bits, and switches the received data output selection signal to a low level at the timing (timing t2) when the received data RX reaches a predetermined number of bits. to stop through output. Thereafter, the received data BRX is fixed at a high level.
  • the predetermined number of bits may be selected from a plurality of candidates (eg, 12 bits/24 bits/48 bits/96 bits).
  • control unit 15 may monitor whether the time during which the received data RX is continuously at a high level reaches a predetermined time.
  • the predetermined time may be selected from a plurality of candidates (eg, 10 ⁇ s/20 ⁇ s/30 ⁇ s/50 ⁇ s).
  • FIG. 11 is a timing chart showing communication control when reading from the device 10 in a modified example.
  • reception of transmission data BTX is completed and transmission data BTX is fixed at high level.
  • the control unit 15 monitors whether the number of bits in which the transmission data BTX is continuously at a high level reaches a predetermined number of bits, and at the timing (timing t2) when the transmission data BTX reaches a predetermined number, the reception data output selection signal and the transmission data output selection signal are set. Switch the signal to low level to stop through output. Thereafter, the received data BRX is fixed at high level, and the transmitted data TX is fixed at Hi-z. Note that the predetermined number of bits may be selected from a plurality of candidates.
  • control unit 15 may monitor whether the time during which the transmission data BTX is continuously at a high level reaches a predetermined time.
  • the predetermined time may be selected from a plurality of candidates.
  • the TX terminal 10B of the device 10 may be connected to the bus BS1 connected to the TX terminal 1B of the semiconductor device 1.
  • the semiconductor device (1) includes A semiconductor device connectable to an external transmitter (40) via a first bus (BS1) and connectable to an external device (10) via a second bus (BS2), a first receiving unit (11) configured to be able to receive received data (RX) that is serial data from the transmitting device via the first bus; a first transmitter (12) configured to be connectable to the device via the second bus; Equipped with The first receiving unit and the first transmitting unit are configured such that bridge selection data (BR) included in the received data turns on a through output that outputs bit data as it is between the first bus and the second bus.
  • the data (DDT) corresponding to the protocol of the device included in the received data is configured to be through-outputted to the second bus (first configuration).
  • the first receiving section (11) and the first transmitting section (12 ) may be configured to stop through output to the second bus when the number of received frames of the received data reaches a predetermined number of frames (second configuration).
  • the data (ND) indicating the predetermined number of frames may be included in the received data (RX) (third configuration).
  • the first receiving section (11) and the first transmitting section (12 ) is configured to stop the through output to the second bus when the number of bits or time at which the received data continuously reaches a predetermined logic level reaches a predetermined number of bits or a predetermined time.
  • the predetermined number of bits or the predetermined time may be selectable from a plurality of candidates (fifth configuration).
  • a second receiving section (13) configured to be connectable to the device (10) via the second bus (BS2); a second transmitter (14) configured to be connectable to the transmitter (40) via the first bus (BS1); Equipped with When the bridge selection data (BR) indicates through output is on and the read/write selection data (RW) included in the reception data (RX) indicates read, the second reception section
  • the transmission data (BTX) which is the received serial data, may be configured to be output from the second transmission unit to the first bus (sixth configuration).
  • the read/write selection data (RW) included in the received data (RX) indicates read
  • the first receiving section (11) and the first transmitting section (12 ), the second receiving unit (13), and the second transmitting unit (14) the sum of the number of received frames of the received data and the number of received frames of the transmitted data (BTX) is a predetermined number of frames. It may be configured to stop through output to the first bus (BS1) and the second bus (BS2) when the second bus (BS2) reaches the above (seventh configuration).
  • the first receiving section (11) and the first transmitting section (12 ), the second receiving section (13), and the second transmitting section (14) are arranged so that the transmission data (BTX) continuously reaches a predetermined logic level by a predetermined number of bits or by a predetermined time. It may be configured to stop through output to the first bus (BS1) and the second bus (BS2) when the second bus (BS1) reaches the target (eighth configuration).
  • the received data (RX) includes a device address (DA) of the semiconductor device (1) and a broadcast/parity bit (B/PA).
  • the broadcast/parity bit indicates whether broadcast is on or off for the semiconductor device
  • the broadcast/parity bit may indicate the parity of the device address (ninth configuration).
  • a communication system (50) includes a semiconductor device (1) having any one of the first to ninth configurations, the transmitting device (40), the device (10), (10th configuration).
  • the present disclosure can be used, for example, in an in-vehicle communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Transfer Systems (AREA)
  • Bus Control (AREA)

Abstract

A semiconductor device (1) comprises a first reception unit (11) configured to receive reception data (RX) as serial data from a transmission device (40) via a first bus (BS1), and a first transmission unit (12) configured to connect to a device (10) via a second bus (BS2). The first reception unit and the first transmission unit are configured to perform thru-output of data (DDT) corresponding to the protocol of the device included in the reception data to the second bus when bridge selection data (BR) included in the reception data indicates that thru-ouput, in which bit data is output as-is between the first bus and the second bus, is in an on state.

Description

半導体装置、および通信システムSemiconductor devices and communication systems
 本開示は、半導体装置、および通信システムに関する。 The present disclosure relates to a semiconductor device and a communication system.
 シリアル通信機能を備えた半導体装置が種々のアプリケーションで利用されている。 Semiconductor devices equipped with serial communication functions are used in various applications.
 なお、シリアル通信に関する回路技術の一例は、特許文献1に開示されている。 Note that an example of circuit technology related to serial communication is disclosed in Patent Document 1.
特開2017-224946号公報JP2017-224946A
 ここで、アプリケーションにおいては、自身の半導体装置とともに、自身とは異なるプロトコルを用いてシリアル通信を行う半導体装置(デバイス)を使用して通信システムを構築する場合がある。 Here, in an application, a communication system may be constructed using a semiconductor device that performs serial communication using a protocol different from that of the application itself, as well as its own semiconductor device.
 本開示は、自身とは異なるプロトコルのデバイスとともに通信システムを効果的に構築することが可能となる半導体装置を提供することを目的とする。 An object of the present disclosure is to provide a semiconductor device that can effectively construct a communication system together with a device using a protocol different from the semiconductor device itself.
 本開示の一態様に係る半導体装置(1)は、
 外部の送信装置と第1バスにより接続可能、かつ外部のデバイスと第2バスにより接続可能な半導体装置であって、
 前記送信装置から前記第1バスを介してシリアルデータである受信データを受信可能に構成される第1受信部と、
 前記デバイスと前記第2バスを介して接続可能に構成される第1送信部と、
 を備え、
 前記第1受信部および前記第1送信部は、前記受信データに含まれるブリッジ選択データが前記第1バスと前記第2バスとの間でビットデータをそのまま出力するスルー出力のオンを示している場合、前記受信データに含まれる前記デバイスのプロトコルに対応したデータを前記第2バスへスルー出力するように構成される。
A semiconductor device (1) according to one aspect of the present disclosure includes:
A semiconductor device connectable to an external transmitting device via a first bus, and connectable to an external device via a second bus,
a first receiving unit configured to be able to receive received data, which is serial data, from the transmitting device via the first bus;
a first transmitter configured to be connectable to the device via the second bus;
Equipped with
The first receiving section and the first transmitting section indicate that the bridge selection data included in the received data is ON of a through output in which the bit data is output as is between the first bus and the second bus. In this case, data corresponding to the protocol of the device included in the received data is configured to be through-outputted to the second bus.
 本開示の例示的な半導体装置によれば、自身とは異なるプロトコルのデバイスとともに通信システムを効果的に構築することが可能となる。 According to the exemplary semiconductor device of the present disclosure, it is possible to effectively construct a communication system together with a device using a protocol different from the semiconductor device itself.
図1は、第1比較例に係る通信システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a communication system according to a first comparative example. 図2は、第2比較例に係る通信システムの構成を示す図である。FIG. 2 is a diagram showing the configuration of a communication system according to a second comparative example. 図3は、本開示の例示的な実施形態に係る通信システムの構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a communication system according to an exemplary embodiment of the present disclosure. 図4は、本開示の例示的な実施形態に係る半導体装置のブロック図である。FIG. 4 is a block diagram of a semiconductor device according to an exemplary embodiment of the present disclosure. 図5は、半導体装置1を対象デバイスとしてWriteあるいはReadを行う場合の受信データRXのデータ構成を示す図である。FIG. 5 is a diagram showing the data structure of received data RX when writing or reading is performed using the semiconductor device 1 as a target device. 図6は、本開示の実施形態に係る通信システムの別の構成例を示す図である。FIG. 6 is a diagram illustrating another configuration example of the communication system according to the embodiment of the present disclosure. 図7は、デバイス10を対象デバイスとしてWriteあるいはReadを行う場合の受信データRXのデータ構成を示す図である。FIG. 7 is a diagram showing the data structure of received data RX when writing or reading is performed using the device 10 as a target device. 図8は、デバイス10に対するWriteを行う場合の通信制御を示すタイミングチャートである。FIG. 8 is a timing chart showing communication control when writing to the device 10. 図9は、デバイス10に対するReadを行う場合の通信制御を示すタイミングチャートである。FIG. 9 is a timing chart showing communication control when reading from the device 10. 図10は、変形例においてデバイス10に対するWriteを行う場合の通信制御を示すタイミングチャートである。FIG. 10 is a timing chart showing communication control when writing to the device 10 in a modified example. 図11は、変形例においてデバイス10に対するReadを行う場合の通信制御を示すタイミングチャートである。FIG. 11 is a timing chart showing communication control when reading from the device 10 in a modified example. 図12は、本開示の実施形態に係る通信システムの変形例を示す図である。FIG. 12 is a diagram illustrating a modification of the communication system according to the embodiment of the present disclosure.
 以下、本開示の例示的な実施形態について、図面を参照して説明する。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
<1.通信システム>
 図1は、本開示の実施形態との対比のための第1比較例に係る通信システム501の構成を示す図である。通信システム501は、MCU(Micro Controller Unit)20と、CAN(Controller Area Network)トランシーバ30と、CANトランシーバ40と、半導体装置1と、n個(nは1以上の整数)のデバイス10と、を備える。通信システム501は、一例として車載用としており、以下説明する他の通信システムについても同様である。
<1. Communication system>
FIG. 1 is a diagram showing the configuration of a communication system 501 according to a first comparative example for comparison with the embodiment of the present disclosure. The communication system 501 includes an MCU (Micro Controller Unit) 20, a CAN (Controller Area Network) transceiver 30, a CAN transceiver 40, a semiconductor device 1, and n devices 10 (n is an integer of 1 or more). Be prepared. The communication system 501 is installed in a vehicle as an example, and the same applies to other communication systems described below.
 MCU20とCANトランシーバ30との間では、UART(Universal Asynchronous Receiver/Transmitter)による通信が行われる。UARTは、2つのデバイス間でシリアルデータを交換するためのプロトコルである。UARTでは、送信側と受信側の間で2本のラインにより双方向の通信が行われる。 Communication is performed between the MCU 20 and the CAN transceiver 30 using a UART (Universal Asynchronous Receiver/Transmitter). UART is a protocol for exchanging serial data between two devices. In UART, bidirectional communication is performed between a transmitting side and a receiving side using two lines.
 CANトランシーバ30,40との間では、CANバス35による通信が行われる。CANは、国際標準規格のISO11898等で標準化されているシリアル通信プロトコルである。 Communication is performed between the CAN transceivers 30 and 40 via the CAN bus 35. CAN is a serial communication protocol standardized by international standards such as ISO11898.
 CANトランシーバ30は、TXD(送信データ入力)端子30AとRXD(受信データ出力)端子30Bを有する。CANトランシーバ30は、TXD端子30Aに入力されたデータをCANバス35へ出力し、CANバス35から入力されたデータをRXD端子30Bから出力する。 The CAN transceiver 30 has a TXD (transmission data input) terminal 30A and an RXD (reception data output) terminal 30B. The CAN transceiver 30 outputs data input to the TXD terminal 30A to the CAN bus 35, and outputs data input from the CAN bus 35 to the RXD terminal 30B.
 CANトランシーバ40は、RXD端子40AとTXD端子40Bを有する。CANトランシーバ40は、TXD端子40Bに入力されたデータをCANバス35へ出力し、CANバス35から入力されたデータをRXD端子40Aから出力する。 The CAN transceiver 40 has an RXD terminal 40A and a TXD terminal 40B. The CAN transceiver 40 outputs data input to the TXD terminal 40B to the CAN bus 35, and outputs data input from the CAN bus 35 to the RXD terminal 40A.
 半導体装置1は、所定機能の回路が集積化されたIC(集積回路)であり、例えばLED(発光ダイオード)ドライバICとして構成される。n個のデバイス10は、所定機能の回路が集積化されたICであり、例えばマトリクススイッチICとして構成される。 The semiconductor device 1 is an IC (integrated circuit) in which circuits with predetermined functions are integrated, and is configured as, for example, an LED (light emitting diode) driver IC. The n devices 10 are ICs in which circuits with predetermined functions are integrated, and are configured as, for example, a matrix switch IC.
 半導体装置1は、RX(受信データ入力)端子1AとTX(送信データ出力)端子1Bを有する。デバイス10は、RX端子10AとTX端子10Bを有する。RX端子1Aおよびn個のRX端子10Aは、RXD端子40Aに共通接続される。TX端子1Bおよびn個のTX端子10Bは、TXD端子40Bに共通接続される。 The semiconductor device 1 has an RX (reception data input) terminal 1A and a TX (transmission data output) terminal 1B. The device 10 has an RX terminal 10A and a TX terminal 10B. The RX terminal 1A and n RX terminals 10A are commonly connected to the RXD terminal 40A. The TX terminal 1B and n TX terminals 10B are commonly connected to the TXD terminal 40B.
 図1に示す第1比較例では、半導体装置1とn個のデバイス10が同じプロトコルに対応しているため、半導体装置1とn個のデバイス10を同じCANトランシーバ40に共通接続することができる。RXD端子40Aから出力される受信データRXは、RX端子1Aおよびn個のRX端子10Aに入力される。受信データRXには、半導体装置1およびn個のデバイス10のうちいずれかのデバイスアドレスが指定されている。また、TX端子1Bおよびn個のTX端子10Bから出力される送信データTXは、TXD端子40Bに入力される。 In the first comparative example shown in FIG. 1, since the semiconductor device 1 and the n devices 10 support the same protocol, the semiconductor device 1 and the n devices 10 can be commonly connected to the same CAN transceiver 40. . Reception data RX output from the RXD terminal 40A is input to the RX terminal 1A and n RX terminals 10A. The device address of one of the semiconductor device 1 and n devices 10 is specified in the received data RX. Further, transmission data TX output from the TX terminal 1B and n TX terminals 10B is input to the TXD terminal 40B.
 しかしながら、半導体装置1とn個のデバイス10の対応するプロトコルが異なる場合は、図1に示す第1比較例の構成では対応が困難となる。そこで、このような場合は、図2に示すような第2比較例の構成をとることができる。 However, if the semiconductor device 1 and the n devices 10 have different protocols, the configuration of the first comparative example shown in FIG. 1 is difficult to handle. Therefore, in such a case, a second comparative example configuration as shown in FIG. 2 can be adopted.
 図2に示す第2比較例に係る通信システム502は、第1比較例との相違点として、CANトランシーバ40の代わりにCANトランシーバ401,402を用いる。CANトランシーバ401が半導体装置1に接続され、CANトランシーバ402がn個のデバイス10に接続される。CANトランシーバ401,402は、CANトランシーバ30とCAN通信を行う。 A communication system 502 according to the second comparative example shown in FIG. 2 uses CAN transceivers 401 and 402 instead of the CAN transceiver 40, as a difference from the first comparative example. A CAN transceiver 401 is connected to the semiconductor device 1, and a CAN transceiver 402 is connected to the n devices 10. CAN transceivers 401 and 402 perform CAN communication with CAN transceiver 30.
 このように、プロトコルの異なるデバイスをグループ化(半導体装置1のグループとn個のデバイス10のグループ)することで、プロトコルの異なるデバイスを用いて通信制御を行うことができる。しかしながら、CANトランシーバ401,402のようにCANトランシーバの個数が増加し、配線量が増加することでコスト上昇の課題がある。 In this way, by grouping devices with different protocols (a group of semiconductor devices 1 and a group of n devices 10), communication control can be performed using devices with different protocols. However, as the number of CAN transceivers such as CAN transceivers 401 and 402 increases and the amount of wiring increases, there is a problem of increased costs.
 そこで、このような課題を解決すべく、以下に説明するような本開示の実施形態が実施される。図3は、本開示の例示的な実施形態に係る通信システム50の構成を示す図である。 Therefore, in order to solve such problems, embodiments of the present disclosure as described below are implemented. FIG. 3 is a diagram illustrating a configuration of a communication system 50 according to an exemplary embodiment of the present disclosure.
 図3に示す構成において、CANトランシーバ40と半導体装置1とn個のデバイス10との間でUARTによる通信が行われる。半導体装置1は、RX端子1AおよびTX端子1Bに加えて、RXD(受信データ出力)端子1CとTXD(送信データ入力)端子1Dを有する。RX端子1Aは、CANトランシーバ40のRXD端子40Aに接続される。TX端子1Bは、CANトランシーバ40のTXD端子40Bに接続される。すなわち、RX端子1A,TX端子1Bは、バスBS1によりRXD端子40A,TXD端子40Bに接続される。バスBS1を介して受信データRXおよび送信データTXの通信が可能である。受信データRXおよび送信データTXは、シリアルデータである。 In the configuration shown in FIG. 3, communication is performed between the CAN transceiver 40, the semiconductor device 1, and the n devices 10 using the UART. The semiconductor device 1 has an RXD (reception data output) terminal 1C and a TXD (transmission data input) terminal 1D in addition to an RX terminal 1A and a TX terminal 1B. RX terminal 1A is connected to RXD terminal 40A of CAN transceiver 40. TX terminal 1B is connected to TXD terminal 40B of CAN transceiver 40. That is, the RX terminal 1A and TX terminal 1B are connected to the RXD terminal 40A and TXD terminal 40B via the bus BS1. Communication of reception data RX and transmission data TX is possible via bus BS1. Reception data RX and transmission data TX are serial data.
 RXD端子1Cは、n個のデバイス10のRX端子10Aに接続される。TXD端子1Dは、n個のデバイス10のTX端子10Bに接続される。すなわち、RXD端子1C,TXD端子1Dは、バス(ローカルバス)BS2によりRX端子10A,TX端子10Bに接続される。バスBS2を介して受信データBRXおよび送信データBTXの通信が可能である。受信データBRXおよび送信データBTXは、シリアルデータである。 The RXD terminal 1C is connected to the RX terminals 10A of the n devices 10. TXD terminal 1D is connected to TX terminals 10B of n devices 10. That is, the RXD terminal 1C and TXD terminal 1D are connected to the RX terminal 10A and TX terminal 10B by a bus (local bus) BS2. Communication of reception data BRX and transmission data BTX is possible via bus BS2. Reception data BRX and transmission data BTX are serial data.
 図3に示す本開示の実施形態に係る構成においては、半導体装置1とn個のデバイス10とで対応するプロトコルが異なっている。CANトランシーバ40が半導体装置1に対してWriteあるいはReadを行う場合、RXD端子40AからRX端子1Aに出力される受信データRXは、半導体装置1のプロトコルに対応するデータのみから構成される。なお、Writeとは、対象デバイスに対してデータを書き込む処理であり、Readとは、対象デバイスからデータを読み出す処理である。Readの場合、半導体装置1は、受信データRXを受信した後にTX端子1BからTXD端子40Bに送信データTXを出力する。 In the configuration according to the embodiment of the present disclosure shown in FIG. 3, the protocols supported by the semiconductor device 1 and the n devices 10 are different. When the CAN transceiver 40 writes or reads to the semiconductor device 1, the received data RX output from the RXD terminal 40A to the RX terminal 1A is composed only of data corresponding to the protocol of the semiconductor device 1. Note that Write is a process of writing data to a target device, and Read is a process of reading data from a target device. In the case of Read, the semiconductor device 1 outputs the transmission data TX from the TX terminal 1B to the TXD terminal 40B after receiving the reception data RX.
 一方、CANトランシーバ40がデバイス10に対してWriteあるいはReadを行う場合、RXD端子40AからRX端子1Aに出力される受信データRXには、デバイス10のプロトコルに対応するデータが含まれる。このとき、半導体装置1は、ブリッジ機能をオンとして、受信データRXに含まれるデバイス10のプロトコルに対応するデータを受信データBRXとしてRXD端子1Cからスルー出力する。スルー出力とは、ビットデータをそのまま出力することである。受信データBRXには、デバイス10のデバイスアドレスが指定される。 On the other hand, when the CAN transceiver 40 writes or reads to the device 10, the received data RX output from the RXD terminal 40A to the RX terminal 1A includes data corresponding to the protocol of the device 10. At this time, the semiconductor device 1 turns on the bridge function and outputs data included in the received data RX that corresponds to the protocol of the device 10 from the RXD terminal 1C as the received data BRX. Through output means to output bit data as is. The device address of the device 10 is specified in the received data BRX.
 Readの場合、対象デバイス(デバイスアドレスで指定されるデバイス)であるデバイス10は、TX端子10BからTXD端子1Dに送信データBTXを出力する。半導体装置1は、ブリッジ機能がオンのため、送信データBTXを送信データTXとしてTX端子1Bからスルー出力する。 In the case of Read, the device 10, which is the target device (the device specified by the device address), outputs the transmission data BTX from the TX terminal 10B to the TXD terminal 1D. Since the bridge function is on, the semiconductor device 1 outputs the transmission data BTX through the TX terminal 1B as the transmission data TX.
 このように本開示の実施形態によれば、半導体装置1とデバイス10のプロトコルが異なっている場合でも、CANトランシーバ40は、半導体装置1およびデバイス10に対してWriteおよびReadを行うことができる。第2比較例(図2)と比べて、CANトランシーバ40の個数を減らし、配線量を減らすことでコストを削減できる。 As described above, according to the embodiment of the present disclosure, even if the protocols of the semiconductor device 1 and the device 10 are different, the CAN transceiver 40 can write and read to the semiconductor device 1 and the device 10. Compared to the second comparative example (FIG. 2), costs can be reduced by reducing the number of CAN transceivers 40 and reducing the amount of wiring.
<2.半導体装置の構成>
 図4は、本開示の実施形態に係る半導体装置1のブロック図である。半導体装置1は、機能ブロックとして、第1受信部11、第1送信部12、第2受信部13、第2送信部14、および制御部15を備える。なお、図4は、通信システム50における通信機能に関する機能ブロックのみを図示しており、その他の機能ブロックを備えてもよい。例えば、半導体装置1がLEDドライバである場合は、LED駆動に関するブロック機能を備える。
<2. Configuration of semiconductor device>
FIG. 4 is a block diagram of the semiconductor device 1 according to the embodiment of the present disclosure. The semiconductor device 1 includes a first receiving section 11, a first transmitting section 12, a second receiving section 13, a second transmitting section 14, and a control section 15 as functional blocks. Note that FIG. 4 illustrates only functional blocks related to communication functions in the communication system 50, and may include other functional blocks. For example, if the semiconductor device 1 is an LED driver, it has a block function related to LED driving.
 第1受信部11は、RX端子1Aを介して受信データRXを受信する。第1送信部12は、RXD端子1Cを介して受信データBRXを出力する。第2受信部13は、TXD端子1Dを介して送信データBTXを受信する。第2送信部14は、TX端子1Bを介して送信データTXを出力する。 The first receiving unit 11 receives received data RX via the RX terminal 1A. The first transmitter 12 outputs the received data BRX via the RXD terminal 1C. The second receiving unit 13 receives the transmission data BTX via the TXD terminal 1D. The second transmitter 14 outputs transmission data TX via the TX terminal 1B.
 制御部15は、第1受信部11、第1送信部12、第2受信部13、および第2送信部14を制御する。制御部15は、レジスタ151を有する。 The control section 15 controls the first receiving section 11, the first transmitting section 12, the second receiving section 13, and the second transmitting section 14. The control unit 15 has a register 151.
<3.受信データの構成>
 図5は、半導体装置1を対象デバイスとしてWriteあるいはReadを行う場合の受信データRXのデータ構成を示す図である。図5に示す受信データRXは、半導体装置1のプロトコルに対応するデータのみから構成される。
<3. Received data structure>
FIG. 5 is a diagram showing the data structure of received data RX when writing or reading is performed using the semiconductor device 1 as a target device. The received data RX shown in FIG. 5 is composed only of data corresponding to the protocol of the semiconductor device 1.
 UARTでは、フレームと呼ばれるデータ単位により通信が行われる。図5に示すように、フレームFRは、スタートビットSからストップビットPまでのビットデータで構成される。スタートビットSはローレベル、ストップビットPはハイレベルとなる。スタートビットSとストップビットPの間には、所定ビット数のビットデータが配置される。図5の例では、8ビットのビットデータが配置される。すなわち、フレームFRは、10ビットのビットデータから構成される。 In UART, communication is performed in data units called frames. As shown in FIG. 5, the frame FR is composed of bit data from a start bit S to a stop bit P. The start bit S is at low level and the stop bit P is at high level. Between the start bit S and stop bit P, bit data of a predetermined number of bits is arranged. In the example of FIG. 5, 8-bit bit data is arranged. That is, the frame FR is composed of 10 bits of bit data.
 図5に示すように、受信データRXは、同期フレームSYNC、Read/Write等フレームRWD、データ数フレームND、レジスタアドレスフレームAD、データフレームDT、およびCRC(Cyclic Redundancy Check)フレームCRを先頭から順に有する。 As shown in FIG. 5, the received data RX includes a synchronization frame SYNC, a Read/Write etc. frame RWD, a data number frame ND, a register address frame AD, a data frame DT, and a CRC (Cyclic Redundancy Check) frame CR in order from the beginning. have
 同期フレームSYNCは、半導体装置1にボーレートを設定するためのビットデータである。 The synchronization frame SYNC is bit data for setting the baud rate in the semiconductor device 1.
 Read/Write等フレームRWDは、デバイスアドレスDA、ブリッジビットBR、ブロードキャスト/パリティビットB/PA、およびRead/WriteビットRWを含む。デバイスアドレスDAは、対象デバイス(半導体装置1)のアドレスを示すビットデータである(図5の例では5ビットデータ)。ブリッジビットBRは、半導体装置1のブリッジ機能のオンオフを示すビットデータである。ブロードキャスト/パリティビットB/PAは、半導体装置1のブロードキャストのオンオフあるいはデータアドレスDAのパリティを示すビットデータである。Read/WriteビットRWは、ReadあるいはWriteを示すビットデータである。 The Read/Write etc. frame RWD includes a device address DA, a bridge bit BR, a broadcast/parity bit B/PA, and a Read/Write bit RW. The device address DA is bit data (5-bit data in the example of FIG. 5) indicating the address of the target device (semiconductor device 1). The bridge bit BR is bit data indicating whether the bridge function of the semiconductor device 1 is on or off. Broadcast/parity bit B/PA is bit data indicating on/off of broadcast of semiconductor device 1 or the parity of data address DA. The Read/Write bit RW is bit data indicating Read or Write.
 ここで、ブリッジビットBR=0でブリッジ機能のオフ、すなわち通常モードを示す(図5に示す受信データRXでは、ブリッジ機能はオフ)。この場合、ブロードキャスト/パリティビットB/PAは、ブロードキャストのオンオフを示す。ブロードキャスト/パリティビットB/PA=0の場合、ブロードキャストのオフを示し、ブロードキャスト/パリティビットB/PA=1の場合、ブロードキャストのオンを示す。 Here, the bridge bit BR=0 indicates the off of the bridge function, that is, the normal mode (in the received data RX shown in FIG. 5, the bridge function is off). In this case, broadcast/parity bit B/PA indicates whether broadcast is on or off. Broadcast/parity bit B/PA=0 indicates broadcast off, and broadcast/parity bit B/PA=1 indicates broadcast on.
 なお、半導体装置1のブロードキャストを行う場合、図6に示すように、CANトランシーバ40に複数の半導体装置1が接続される。それぞれの半導体装置1には、デバイス10が接続される。ブロードキャストがオンの場合、複数の半導体装置1のすべてが対象デバイスとなる。 Note that when broadcasting the semiconductor devices 1, as shown in FIG. 6, a plurality of semiconductor devices 1 are connected to the CAN transceiver 40. A device 10 is connected to each semiconductor device 1. When broadcast is on, all of the plurality of semiconductor devices 1 become target devices.
 ブリッジビットBR=1でブリッジ機能のオンを示す(後述する図7に示す受信データRXでは、ブリッジ機能はオン)。この場合、ブロードキャスト/パリティビットB/PAは、デバイスデータDAのパリティとなる。これにより、デバイスデータDAの誤り検出を行うことができる。なお、図6に示す構成において、複数の半導体装置1それぞれに接続されるデバイス10のグループごとにプロトコルが異なる場合、半導体装置1のブロードキャストをオンとすると、同じ受信データRXが受信データBRXとして異なるプロトコルのデバイス10に送信されることになり、一部のデバイス10ではプロトコルが不適合となってしまう。そこで、ブリッジ機能をオンとする場合は、ブロードキャストは行わないようにしている。 Bridge bit BR=1 indicates that the bridge function is on (in the received data RX shown in FIG. 7, which will be described later, the bridge function is on). In this case, broadcast/parity bit B/PA becomes the parity of device data DA. This makes it possible to detect errors in the device data DA. Note that in the configuration shown in FIG. 6, if the protocols are different for each group of devices 10 connected to each of the plurality of semiconductor devices 1, when the broadcast of the semiconductor device 1 is turned on, the same received data RX is different as received data BRX. The data will be transmitted to the devices 10 according to the protocol, and the protocol will become incompatible with some devices 10. Therefore, when the bridge function is turned on, broadcasting is not performed.
 データ数フレームNDは、データフレームDTのフレーム数を示すビットデータである。レジスタアドレスフレームADは、レジスタ151におけるアドレスを示すビットデータである。データフレームDTは、受信データRXにより送信するデータ本体を示すビットデータである。CRCフレームCRは、データフレームDTに対して付加される誤り検出符号を示すビットデータである。なお、Read/WriteビットRWがReadを示す場合は、データフレームDTおよびCRCフレームCRは受信データRXに含められない。 The data number frame ND is bit data indicating the number of frames of the data frame DT. Register address frame AD is bit data indicating an address in register 151. The data frame DT is bit data indicating the data body to be transmitted by the received data RX. The CRC frame CR is bit data indicating an error detection code added to the data frame DT. Note that when the Read/Write bit RW indicates Read, the data frame DT and CRC frame CR are not included in the received data RX.
 図7は、デバイス10を対象デバイスとしてWriteあるいはReadを行う場合の受信データRXのデータ構成を示す図である。図7に示す受信データRXにおける同期フレームSYNおよびRead/Write等フレームRWDは、先述の通りである。 FIG. 7 is a diagram showing the data structure of received data RX when writing or reading is performed with the device 10 as the target device. The synchronization frame SYN and Read/Write etc. frame RWD in the received data RX shown in FIG. 7 are as described above.
 図7に示す受信データRXにおいて、データ数フレームNDは、図6に示す場合と異なり、スルー出力の終了条件のためのフレーム数を示す。データ数フレームNDを用いた制御については、後述する。 In the received data RX shown in FIG. 7, the data number frame ND indicates the number of frames for the end condition of through output, unlike the case shown in FIG. Control using the data number frame ND will be described later.
 図7に示す受信データRXにおいては、データ数フレームNDの後にデバイスデータDDTが続く。デバイスデータDDTは、デバイス10のプロトコルに対応するデータであり、受信データBRXとしてスルー出力される対象である。デバイスデータDDTは、デバイスアドレスBDAを含む。デバイスアドレスBDAは、対象デバイスであるデバイス10のアドレスを示す。デバイスアドレスBDAがデバイスデータDDTにおいて配置される位置は、デバイス10のプロトコルに応じた位置となる。 In the received data RX shown in FIG. 7, device data DDT follows the data number frame ND. The device data DDT is data that corresponds to the protocol of the device 10, and is to be output as received data BRX. Device data DDT includes device address BDA. The device address BDA indicates the address of the device 10 that is the target device. The position where the device address BDA is placed in the device data DDT is a position according to the protocol of the device 10.
<4.スルー出力制御>
 ここで、半導体装置1によるスルー出力制御、すなわちブリッジ機能がオンの場合の制御について述べる。
<4. Through output control>
Here, through output control by the semiconductor device 1, that is, control when the bridge function is on, will be described.
 図8は、デバイス10に対するWriteを行う場合の通信制御を示すタイミングチャートである。図8の上段から順に、受信データRX、受信データ出力選択信号(RX output select)、送信データ出力選択信号(TX output select)、受信データBRX、送信データBTX、および送信データTXを示す(図9~図11でも同様)。受信データRXは、図7に示す構成となる。 FIG. 8 is a timing chart showing communication control when writing to the device 10. From the top of FIG. 8, reception data RX, reception data output selection signal (RX output select), transmission data output selection signal (TX output select), reception data BRX, transmission data BTX, and transmission data TX are shown (FIG. 9 ~The same applies to Figure 11). The received data RX has the configuration shown in FIG. 7.
 受信データRXは、第1受信部11(図4)により受信される。受信データRXの先頭のスタートビットS1(ローレベル)を受信したことにより、制御部15は、受信データRXの受信開始を認識する。その後、制御部15は、受信データRXに含まれるブリッジビットBRによりブリッジ機能がオンであることを認識するとともに、Read/WriteビットRWによりWriteであることを認識する。 The received data RX is received by the first receiving unit 11 (FIG. 4). By receiving the first start bit S1 (low level) of the reception data RX, the control unit 15 recognizes the start of reception of the reception data RX. Thereafter, the control unit 15 recognizes that the bridge function is on from the bridge bit BR included in the received data RX, and recognizes that it is a write from the Read/Write bit RW.
 その後、データ数フレームNDが受信されると、データ数フレームNDのストップビットP1で制御部15は、レジスタ151における受信データ出力選択信号をローレベルからハイレベルとする(タイミングt1)。これにより、受信データRXのスルー出力が開始され、第1受信部11および第1送信部12は、受信データRXをそのまま受信データBRXとして出力する。すなわち、デバイスデータDDT(図7)のスルー出力が行われる。 Thereafter, when the data number frame ND is received, the control unit 15 changes the received data output selection signal in the register 151 from a low level to a high level at the stop bit P1 of the data number frame ND (timing t1). As a result, through output of the received data RX is started, and the first receiving section 11 and the first transmitting section 12 output the received data RX as is as the received data BRX. That is, through output of device data DDT (FIG. 7) is performed.
 受信データ出力選択信号がハイレベルになったときに制御部15は、受信される受信データRXのフレーム数(すなわち、デバイスデータDDTのフレーム数)のカウントを開始する。カウントしたフレーム数が受信されたデータ数フレームNDが示すフレーム数に到達すると、制御部15は、受信データ出力選択信号をローレベルに切り替え、スルー出力を停止させる(タイミングt2)。以降、受信データBRXは、ハイレベル固定となる。 When the received data output selection signal becomes high level, the control unit 15 starts counting the number of frames of received data RX (that is, the number of frames of device data DDT). When the counted number of frames reaches the number of frames indicated by the received data number frame ND, the control unit 15 switches the received data output selection signal to low level and stops the through output (timing t2). Thereafter, the received data BRX is fixed at a high level.
 図9は、デバイス10に対するReadを行う場合の通信制御を示すタイミングチャートである。この場合、受信データRXは、図7に示す構成となる。 FIG. 9 is a timing chart showing communication control when reading from the device 10. In this case, the received data RX has the configuration shown in FIG. 7.
 受信データRXの先頭のスタートビットS1(ローレベル)が受信された後、制御部15は、受信データRXに含まれるブリッジビットBRによりブリッジ機能がオンであることを認識するとともに、Read/WriteビットRWによりReadであることを認識する。 After receiving the first start bit S1 (low level) of the received data RX, the control unit 15 recognizes that the bridge function is on based on the bridge bit BR included in the received data RX, and also sets the Read/Write bit. It recognizes that it is Read by RW.
 その後、データ数フレームNDが受信されると、データ数フレームNDのストップビットP1で制御部15は、レジスタ151における受信データ出力選択信号および送信データ出力選択信号をともにローレベルからハイレベルとする(タイミングt1)。これにより、受信データRXおよび送信データBTXのスルー出力が開始される。第1受信部11および第1送信部12は、受信データRXをそのまま受信データBRXとして出力し、すなわち、デバイスデータDDT(図7)のスルー出力が行われる。受信データBRXの出力完了後、第2受信部13および第2送信部14は、デバイス10から送られる送信データBTXを送信データTXとしてスルー出力する。 Thereafter, when the data number frame ND is received, the control unit 15 changes both the reception data output selection signal and the transmission data output selection signal in the register 151 from a low level to a high level at the stop bit P1 of the data number frame ND. timing t1). As a result, through-output of reception data RX and transmission data BTX is started. The first receiving section 11 and the first transmitting section 12 output the received data RX as is as the received data BRX, that is, through-output of the device data DDT (FIG. 7) is performed. After the output of the received data BRX is completed, the second receiving section 13 and the second transmitting section 14 output the transmission data BTX sent from the device 10 as transmission data TX.
 受信データ出力選択信号および送信データ出力選択信号がハイレベルになったときに制御部15は、受信される受信データRXと受信される送信データBTXのフレーム数の総和のカウントを開始する。カウントしたフレーム数が受信されたデータ数フレームNDが示すフレーム数に到達すると、制御部15は、受信データ出力選択信号および送信データ出力選択信号をともにローレベルに切り替え、スルー出力を停止させる(タイミングt2)。以降、受信データBRXは、ハイレベル固定となり、送信データTXはHi-z(ハイインピーダンス)固定となる。 When the received data output selection signal and the transmitted data output selection signal become high level, the control unit 15 starts counting the total number of frames of the received received data RX and the received transmitted data BTX. When the counted number of frames reaches the number of frames indicated by the received data number frame ND, the control unit 15 switches both the received data output selection signal and the transmitted data output selection signal to low level, and stops the through output (timing t2). Thereafter, the received data BRX is fixed at a high level, and the transmitted data TX is fixed at Hi-z (high impedance).
 このように本実施形態では、半導体装置1が受信するフレームの数によりスルー出力終了の条件とすることができる。特に、本実施形態であれば、MCU20における割込み処理により、受信データRXのMCU20からの送信が中断した場合でも、中断の間はフレーム数のカウントは進まないため、スルー出力が誤って中断されてしまうことを回避できる。すなわち、割込み時間によらずにスルー出力の中断を回避できるため、MCU20の仕様による制限を受けにくい。 As described above, in this embodiment, the number of frames received by the semiconductor device 1 can be used as the condition for terminating the through output. In particular, in this embodiment, even if transmission of received data RX from the MCU 20 is interrupted due to interrupt processing in the MCU 20, the frame number count does not proceed during the interruption, so through output may be interrupted by mistake. You can avoid putting it away. That is, interruption of the through output can be avoided regardless of the interrupt time, and therefore it is less likely to be restricted by the specifications of the MCU 20.
<5.スルー出力制御の変形例>
 スルー出力終了の条件としては、先述したフレーム数に限らず、以下説明する変形例のように、半導体装置1が受信するデータが連続してハイレベルとなるビット数あるいは時間としてもよい。
<5. Modified example of through output control>
The condition for terminating the through output is not limited to the number of frames described above, but may be the number of bits or the time during which the data received by the semiconductor device 1 is continuously at a high level, as in a modification described below.
 図10は、変形例においてデバイス10に対するWriteを行う場合の通信制御を示すタイミングチャートである。ここでは、受信データ出力選択信号がハイレベルとなってスルー出力が開始された後、受信データRXの受信が完了し、受信データRXはハイレベル固定となる。制御部15は、受信データRXが連続してハイレベルとなるビット数が所定ビット数に到達するかを監視しており、到達したタイミング(タイミングt2)で受信データ出力選択信号をローレベルに切り替えてスルー出力を停止させる。以降、受信データBRXは、ハイレベル固定となる。なお、上記所定ビット数は、複数の候補(例:12ビット/24ビット/48ビット/96ビット)から選択できるようにしてもよい。 FIG. 10 is a timing chart showing communication control when writing to the device 10 in a modified example. Here, after the received data output selection signal becomes high level and through output is started, reception of the received data RX is completed and the received data RX is fixed at high level. The control unit 15 monitors whether the number of bits in which the received data RX is continuously at a high level reaches a predetermined number of bits, and switches the received data output selection signal to a low level at the timing (timing t2) when the received data RX reaches a predetermined number of bits. to stop through output. Thereafter, the received data BRX is fixed at a high level. Note that the predetermined number of bits may be selected from a plurality of candidates (eg, 12 bits/24 bits/48 bits/96 bits).
 なお、制御部15は、上記のようなビット数ではなく、受信データRXが連続してハイレベルとなる時間が所定時間に到達するかを監視してもよい。この場合、上記所定時間は、複数の候補(例:10μs/20μs/30μs/50μs)から選択できるようにしてもよい。 Note that instead of monitoring the number of bits as described above, the control unit 15 may monitor whether the time during which the received data RX is continuously at a high level reaches a predetermined time. In this case, the predetermined time may be selected from a plurality of candidates (eg, 10 μs/20 μs/30 μs/50 μs).
 図11は、変形例においてデバイス10に対するReadを行う場合の通信制御を示すタイミングチャートである。ここでは、受信データ出力選択信号および送信データ出力選択信号がハイレベルとなってスルー出力が開始された後、送信データBTXの受信が完了し、送信データBTXはハイレベル固定となる。制御部15は、送信データBTXが連続してハイレベルとなるビット数が所定ビット数に到達するかを監視しており、到達したタイミング(タイミングt2)で受信データ出力選択信号および送信データ出力選択信号をローレベルに切り替えてスルー出力を停止させる。以降、受信データBRXは、ハイレベル固定となり、送信データTXは、Hi-z固定となる。なお、上記所定ビット数は、複数の候補から選択できるようにしてもよい。 FIG. 11 is a timing chart showing communication control when reading from the device 10 in a modified example. Here, after the reception data output selection signal and the transmission data output selection signal become high level and through output is started, reception of transmission data BTX is completed and transmission data BTX is fixed at high level. The control unit 15 monitors whether the number of bits in which the transmission data BTX is continuously at a high level reaches a predetermined number of bits, and at the timing (timing t2) when the transmission data BTX reaches a predetermined number, the reception data output selection signal and the transmission data output selection signal are set. Switch the signal to low level to stop through output. Thereafter, the received data BRX is fixed at high level, and the transmitted data TX is fixed at Hi-z. Note that the predetermined number of bits may be selected from a plurality of candidates.
 なお、制御部15は、上記のようなビット数ではなく、送信データBTXが連続してハイレベルとなる時間が所定時間に到達するかを監視してもよい。この場合、上記所定時間は、複数の候補から選択できるようにしてもよい。 Note that instead of monitoring the number of bits as described above, the control unit 15 may monitor whether the time during which the transmission data BTX is continuously at a high level reaches a predetermined time. In this case, the predetermined time may be selected from a plurality of candidates.
 このような変形例によれば、受信データRXにデータ数フレームNDを含める必要がなく、スルー出力の終了条件を設定できる。なお、上記所定ビット数あるいは上記所定時間を複数の候補から選択する場合は、スルー出力の中断を回避するため、MCU20における割込み時間よりも長い時間に相当する候補を選択する。 According to such a modification, there is no need to include the data number frame ND in the received data RX, and it is possible to set the termination condition for through output. Note that when selecting the predetermined number of bits or the predetermined time from a plurality of candidates, select a candidate corresponding to a time longer than the interrupt time in the MCU 20 in order to avoid interruption of through output.
<6.その他>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味および範囲内に属する全ての変更が含まれると理解されるべきである。
<6. Others>
Note that the various technical features disclosed in this specification can be modified in addition to the above-described embodiments without departing from the gist of the technical creation. That is, the above embodiments should be considered to be illustrative in all respects and not restrictive, and the technical scope of the present invention is not limited to the above embodiments, and the claims Ranges and equivalents should be understood to include all changes falling within the range.
 例えば、デバイス10のTX端子10Bからの送信データ出力時にはRX端子10Aへのコマンドが必ず必要である場合、すなわち、デバイス10の送信データ出力がRX端子10Aへの入力により完全に制御できる場合は、デバイス10のTX端子10Bのブリッジは不要である。この場合、図12に示すように、デバイス10のTX端子10Bを半導体装置1のTX端子1Bに接続されるバスBS1に接続してもよい。 For example, if a command to the RX terminal 10A is absolutely necessary when outputting transmission data from the TX terminal 10B of the device 10, that is, if the transmission data output of the device 10 can be completely controlled by inputting to the RX terminal 10A, A bridge for the TX terminal 10B of the device 10 is not required. In this case, as shown in FIG. 12, the TX terminal 10B of the device 10 may be connected to the bus BS1 connected to the TX terminal 1B of the semiconductor device 1.
<7.付記>
 以上のように、本開示の一態様に係る半導体装置(1)は、
 外部の送信装置(40)と第1バス(BS1)により接続可能、かつ外部のデバイス(10)と第2バス(BS2)により接続可能な半導体装置であって、
 前記送信装置から前記第1バスを介してシリアルデータである受信データ(RX)を受信可能に構成される第1受信部(11)と、
 前記デバイスと前記第2バスを介して接続可能に構成される第1送信部(12)と、
 を備え、
 前記第1受信部および前記第1送信部は、前記受信データに含まれるブリッジ選択データ(BR)が前記第1バスと前記第2バスとの間でビットデータをそのまま出力するスルー出力のオンを示している場合、前記受信データに含まれる前記デバイスのプロトコルに対応したデータ(DDT)を前記第2バスへスルー出力するように構成される(第1の構成)。
<7. Additional notes>
As described above, the semiconductor device (1) according to one embodiment of the present disclosure includes
A semiconductor device connectable to an external transmitter (40) via a first bus (BS1) and connectable to an external device (10) via a second bus (BS2),
a first receiving unit (11) configured to be able to receive received data (RX) that is serial data from the transmitting device via the first bus;
a first transmitter (12) configured to be connectable to the device via the second bus;
Equipped with
The first receiving unit and the first transmitting unit are configured such that bridge selection data (BR) included in the received data turns on a through output that outputs bit data as it is between the first bus and the second bus. In the case shown, the data (DDT) corresponding to the protocol of the device included in the received data is configured to be through-outputted to the second bus (first configuration).
 また、上記第1の構成において、前記受信データ(RX)に含まれるリード/ライト選択データ(RW)がライトを示している場合、前記第1受信部(11)および前記第1送信部(12)は、前記受信データの受信されたフレーム数が所定フレーム数に到達した場合に、前記第2バスへのスルー出力を停止させるように構成されることとしてもよい(第2の構成)。 Further, in the first configuration, when the read/write selection data (RW) included in the received data (RX) indicates write, the first receiving section (11) and the first transmitting section (12 ) may be configured to stop through output to the second bus when the number of received frames of the received data reaches a predetermined number of frames (second configuration).
 また、上記第2の構成において、前記所定フレーム数を示すデータ(ND)は、前記受信データ(RX)に含まれることとしてもよい(第3の構成)。 Furthermore, in the second configuration, the data (ND) indicating the predetermined number of frames may be included in the received data (RX) (third configuration).
 また、上記第1の構成において、前記受信データ(RX)に含まれるリード/ライト選択データ(RW)がライトを示している場合、前記第1受信部(11)および前記第1送信部(12)は、前記受信データが連続して所定の論理レベルとなるビット数あるいは時間が所定ビット数あるいは所定時間に到達した場合に、前記第2バスへのスルー出力を停止させるように構成されることとしてもよい(第4の構成)。 Further, in the first configuration, when the read/write selection data (RW) included in the received data (RX) indicates write, the first receiving section (11) and the first transmitting section (12 ) is configured to stop the through output to the second bus when the number of bits or time at which the received data continuously reaches a predetermined logic level reaches a predetermined number of bits or a predetermined time. (fourth configuration).
 また、上記第4の構成において、前記所定ビット数あるいは前記所定時間は、複数の候補から選択可能であることとしてもよい(第5の構成)。 Furthermore, in the fourth configuration, the predetermined number of bits or the predetermined time may be selectable from a plurality of candidates (fifth configuration).
 また、上記第1から第5のいずれかの構成において、前記デバイス(10)と前記第2バス(BS2)を介して接続可能に構成される第2受信部(13)と、
 前記送信装置(40)と前記第1バス(BS1)を介して接続可能に構成される第2送信部(14)と、
 を備え、
 前記ブリッジ選択データ(BR)がスルー出力のオンを示し、かつ前記受信データ(RX)に含まれるリード/ライト選択データ(RW)がリードを示している場合、前記第2受信部が前記デバイスから受信したシリアルデータである送信データ(BTX)を前記第2送信部から前記第1バスへスルー出力するように構成されることとしてもよい(第6の構成)。
Further, in any one of the first to fifth configurations, a second receiving section (13) configured to be connectable to the device (10) via the second bus (BS2);
a second transmitter (14) configured to be connectable to the transmitter (40) via the first bus (BS1);
Equipped with
When the bridge selection data (BR) indicates through output is on and the read/write selection data (RW) included in the reception data (RX) indicates read, the second reception section The transmission data (BTX), which is the received serial data, may be configured to be output from the second transmission unit to the first bus (sixth configuration).
 また、上記第6の構成において、前記受信データ(RX)に含まれるリード/ライト選択データ(RW)がリードを示している場合、前記第1受信部(11)、前記第1送信部(12)、前記第2受信部(13)、および前記第2送信部(14)は、前記受信データの受信されたフレーム数と前記送信データ(BTX)の受信されたフレーム数の総和が所定フレーム数に到達した場合に、前記第1バス(BS1)および前記第2バス(BS2)へのスルー出力を停止させるように構成されることとしてもよい(第7の構成)。 Further, in the sixth configuration, when the read/write selection data (RW) included in the received data (RX) indicates read, the first receiving section (11) and the first transmitting section (12 ), the second receiving unit (13), and the second transmitting unit (14), the sum of the number of received frames of the received data and the number of received frames of the transmitted data (BTX) is a predetermined number of frames. It may be configured to stop through output to the first bus (BS1) and the second bus (BS2) when the second bus (BS2) reaches the above (seventh configuration).
 また、上記第6の構成において、前記受信データ(RX)に含まれるリード/ライト選択データ(RW)がリードを示している場合、前記第1受信部(11)、前記第1送信部(12)、前記第2受信部(13)、および前記第2送信部(14)は、前記送信データ(BTX)が連続して所定の論理レベルとなるビット数あるいは時間が所定ビット数あるいは所定時間に到達した場合に、前記第1バス(BS1)および前記第2バス(BS2)へのスルー出力を停止させるように構成されることとしてもよい(第8の構成)。 Further, in the sixth configuration, when the read/write selection data (RW) included in the received data (RX) indicates read, the first receiving section (11) and the first transmitting section (12 ), the second receiving section (13), and the second transmitting section (14) are arranged so that the transmission data (BTX) continuously reaches a predetermined logic level by a predetermined number of bits or by a predetermined time. It may be configured to stop through output to the first bus (BS1) and the second bus (BS2) when the second bus (BS1) reaches the target (eighth configuration).
 また、上記第1から第8のいずれかの構成において、前記受信データ(RX)には、前記半導体装置(1)のデバイスアドレス(DA)、およびブロードキャスト/パリティビット(B/PA)が含まれ、
 前記ブリッジ選択データ(BR)がスルー出力のオフを示す場合、前記ブロードキャスト/パリティビットは、前記半導体装置に対するブロードキャストのオンオフを示し、
 前記ブリッジ選択データがスルー出力のオンを示す場合、前記ブロードキャスト/パリティビットは、前記デバイスアドレスのパリティを示すこととしてもよい(第9の構成)。
Further, in any one of the first to eighth configurations, the received data (RX) includes a device address (DA) of the semiconductor device (1) and a broadcast/parity bit (B/PA). ,
When the bridge selection data (BR) indicates through output is off, the broadcast/parity bit indicates whether broadcast is on or off for the semiconductor device,
When the bridge selection data indicates that through output is on, the broadcast/parity bit may indicate the parity of the device address (ninth configuration).
 また、本開示の一態様に係る通信システム(50)は、上記第1から第9のいずれかの構成の半導体装置(1)と、前記送信装置(40)と、前記デバイス(10)と、を備える(第10の構成)。 Further, a communication system (50) according to an aspect of the present disclosure includes a semiconductor device (1) having any one of the first to ninth configurations, the transmitting device (40), the device (10), (10th configuration).
 本開示は、例えば、車載用の通信システムに利用することが可能である。 The present disclosure can be used, for example, in an in-vehicle communication system.
   1   半導体装置
   1A  RX端子
   1B  TX端子
   1C  RXD端子
   1D  TXD端子
  10   デバイス
  10A  RX端子
  10B  TX端子
  11   第1受信部
  12   第1送信部
  13   第2受信部
  14   第2送信部
  15   制御部
  30,40  CANトランシーバ
  30A  TXD端子
  30B  RXD端子
  35   CANバス
  40   CANトランシーバ
  40A  RXD端子
  40B  TXD端子
  50   通信システム
 151   レジスタ
 401,402 CANトランシーバ
 501,502   通信システム
 BS1,BS2   バス
1 Semiconductor device 1A RX terminal 1B TX terminal 1C RXD terminal 1D TXD terminal 10 Device 10A RX terminal 10B TX terminal 11 First receiving section 12 First transmitting section 13 Second receiving section 14 Second transmitting section 15 Control section 30, 40 CAN Transceiver 30A TXD terminal 30B RXD terminal 35 CAN bus 40 CAN transceiver 40A RXD terminal 40B TXD terminal 50 Communication system 151 Register 401, 402 CAN transceiver 501, 502 Communication system BS1, BS2 bus

Claims (10)

  1.  外部の送信装置と第1バスにより接続可能、かつ外部のデバイスと第2バスにより接続可能な半導体装置であって、
     前記送信装置から前記第1バスを介してシリアルデータである受信データを受信可能に構成される第1受信部と、
     前記デバイスと前記第2バスを介して接続可能に構成される第1送信部と、
     を備え、
     前記第1受信部および前記第1送信部は、前記受信データに含まれるブリッジ選択データが前記第1バスと前記第2バスとの間でビットデータをそのまま出力するスルー出力のオンを示している場合、前記受信データに含まれる前記デバイスのプロトコルに対応したデータを前記第2バスへスルー出力するように構成される、半導体装置。
    A semiconductor device connectable to an external transmitting device via a first bus, and connectable to an external device via a second bus,
    a first receiving unit configured to be able to receive received data, which is serial data, from the transmitting device via the first bus;
    a first transmitter configured to be connectable to the device via the second bus;
    Equipped with
    The first receiving section and the first transmitting section indicate that the bridge selection data included in the received data is ON of a through output in which the bit data is output as is between the first bus and the second bus. In this case, the semiconductor device is configured to output data included in the received data that corresponds to a protocol of the device to the second bus.
  2.  前記受信データに含まれるリード/ライト選択データがライトを示している場合、前記第1受信部および前記第1送信部は、前記受信データの受信されたフレーム数が所定フレーム数に到達した場合に、前記第2バスへのスルー出力を停止させるように構成される、請求項1に記載の半導体装置。 When the read/write selection data included in the received data indicates write, the first receiving section and the first transmitting section perform a process when the number of received frames of the received data reaches a predetermined number of frames. 2. The semiconductor device according to claim 1, wherein the semiconductor device is configured to stop through output to the second bus.
  3.  前記所定フレーム数を示すデータは、前記受信データに含まれる、請求項2に記載の半導体装置。 The semiconductor device according to claim 2, wherein data indicating the predetermined number of frames is included in the received data.
  4.  前記受信データに含まれるリード/ライト選択データがライトを示している場合、前記第1受信部および前記第1送信部は、前記受信データが連続して所定の論理レベルとなるビット数あるいは時間が所定ビット数あるいは所定時間に到達した場合に、前記第2バスへのスルー出力を停止させるように構成される、請求項1に記載の半導体装置。 When the read/write selection data included in the received data indicates write, the first receiving section and the first transmitting section determine the number of bits or the time period during which the received data continuously reaches a predetermined logic level. 2. The semiconductor device according to claim 1, wherein the semiconductor device is configured to stop through output to the second bus when a predetermined number of bits or a predetermined time is reached.
  5.  前記所定ビット数あるいは前記所定時間は、複数の候補から選択可能である、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the predetermined number of bits or the predetermined time can be selected from a plurality of candidates.
  6.  前記デバイスと前記第2バスを介して接続可能に構成される第2受信部と、
     前記送信装置と前記第1バスを介して接続可能に構成される第2送信部と、
     を備え、
     前記ブリッジ選択データがスルー出力のオンを示し、かつ前記受信データに含まれるリード/ライト選択データがリードを示している場合、前記第2受信部が前記デバイスから受信したシリアルデータである送信データを前記第2送信部から前記第1バスへスルー出力するように構成される、請求項1から請求項5のいずれか1項に記載の半導体装置。
    a second receiving section configured to be connectable to the device via the second bus;
    a second transmitter configured to be connectable to the transmitter via the first bus;
    Equipped with
    When the bridge selection data indicates that through output is on, and the read/write selection data included in the received data indicates read, the second reception section transmits the transmission data that is serial data received from the device. 6. The semiconductor device according to claim 1, wherein the semiconductor device is configured to perform through output from the second transmitter to the first bus.
  7.  前記受信データに含まれるリード/ライト選択データがリードを示している場合、前記第1受信部、前記第1送信部、前記第2受信部、および前記第2送信部は、前記受信データの受信されたフレーム数と前記送信データの受信されたフレーム数の総和が所定フレーム数に到達した場合に、前記第1バスおよび前記第2バスへのスルー出力を停止させるように構成される、請求項6に記載の半導体装置。 When the read/write selection data included in the received data indicates read, the first receiving section, the first transmitting section, the second receiving section, and the second transmitting section receive the received data. 2. The transmitter is configured to stop through-output to the first bus and the second bus when the sum of the number of frames received and the number of frames of the transmitted data received reaches a predetermined number of frames. 6. The semiconductor device according to 6.
  8.  前記受信データに含まれるリード/ライト選択データがリードを示している場合、前記第1受信部、前記第1送信部、前記第2受信部、および前記第2送信部は、前記送信データが連続して所定の論理レベルとなるビット数あるいは時間が所定ビット数あるいは所定時間に到達した場合に、前記第1バスおよび前記第2バスへのスルー出力を停止させるように構成される、請求項6に記載の半導体装置。 When the read/write selection data included in the received data indicates read, the first receiving section, the first transmitting section, the second receiving section, and the second transmitting section are configured so that the transmitted data is continuous. 7. The through output to the first bus and the second bus is stopped when the number of bits reaches a predetermined number of bits or a predetermined time reaches a predetermined logic level. The semiconductor device described in .
  9.  前記受信データには、前記半導体装置のデバイスアドレス、およびブロードキャスト/パリティビットが含まれ、
     前記ブリッジ選択データがスルー出力のオフを示す場合、前記ブロードキャスト/パリティビットは、前記半導体装置に対するブロードキャストのオンオフを示し、
     前記ブリッジ選択データがスルー出力のオンを示す場合、前記ブロードキャスト/パリティビットは、前記デバイスアドレスのパリティを示す、請求項1から請求項8のいずれか1項に記載に記載の半導体装置。
    The received data includes a device address of the semiconductor device and a broadcast/parity bit,
    When the bridge selection data indicates through output is off, the broadcast/parity bit indicates on/off of broadcast for the semiconductor device,
    9. The semiconductor device according to claim 1, wherein when the bridge selection data indicates that through output is on, the broadcast/parity bit indicates parity of the device address.
  10.  請求項1から請求項9のいずれか1項に記載の半導体装置と、前記送信装置と、前記デバイスと、を備える通信システム。 A communication system comprising the semiconductor device according to any one of claims 1 to 9, the transmitter, and the device.
PCT/JP2023/022447 2022-07-04 2023-06-16 Semiconductor device and communication system WO2024009733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-107479 2022-07-04
JP2022107479 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024009733A1 true WO2024009733A1 (en) 2024-01-11

Family

ID=89453232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022447 WO2024009733A1 (en) 2022-07-04 2023-06-16 Semiconductor device and communication system

Country Status (1)

Country Link
WO (1) WO2024009733A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067654A (en) * 2005-08-30 2007-03-15 Denso Corp Communication system and communication apparatus
JP2018173856A (en) * 2017-03-31 2018-11-08 キヤノン株式会社 Information processor and method for controlling the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067654A (en) * 2005-08-30 2007-03-15 Denso Corp Communication system and communication apparatus
JP2018173856A (en) * 2017-03-31 2018-11-08 キヤノン株式会社 Information processor and method for controlling the same

Similar Documents

Publication Publication Date Title
US7756123B1 (en) Apparatus, system, and method for swizzling of a PCIe link
US20040260851A1 (en) Data transmission method for microprocessors in a programmable logic controller
US8363748B2 (en) Two-way communication circuit, two-way communication system, and communication method of two-way communication circuit
US20050165989A1 (en) I2C communication system and method enabling bi-directional communications
US8135872B2 (en) USB controller and a testing method of the USB controller
EP3544239B1 (en) Controller area network (can) device and method for operating a can device
US5978865A (en) System for performing DMA transfers where an interrupt request signal is generated based on the value of the last of a plurality of data bits transmitted
WO2002077835A1 (en) Communication control semiconductor device and interface system
US20220239576A1 (en) Error detection test device for a subscriber station of a serial bus system and method for testing mechanisms for detecting errors in a communication in a serial bus system
US20080159188A1 (en) Serial interface apparatus performing asynchronous serial data transfer using asynchronous serial communication method
CN100462955C (en) Substitute SATA host for communicating with a sata device
US7231467B2 (en) Method and apparatus for providing an inter integrated circuit interface with an expanded address range and efficient priority-based data throughput
US7177283B2 (en) Transmitting and receiving circuit and transmitting and receiving method
US11909553B2 (en) Frame screening unit, user station for a serial bus system, and method for communicating in a serial bus system
KR20190008855A (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, PROGRAM, AND COMMUNICATION SYSTEM
US10572436B2 (en) Apparatus and method for multi-master solution on MDIO communication bus
WO2024009733A1 (en) Semiconductor device and communication system
US11343065B2 (en) Serial bidirectional communication circuit and method thereof
US6463496B1 (en) Interface for an I2C bus
CN106664231A (en) Transmission unit with checking function
CN110113209B (en) MIPI (Mobile industry processor interface) protocol-based inter-device communication method and equipment topological structure
US6912607B2 (en) Method and apparatus for ascertaining the status of multiple devices simultaneously over a data bus
US7546518B2 (en) Received data compensating device
TW202213115A (en) Error signaling windows for phase-differential protocols
US6460092B1 (en) Integrated circuit for distributed-type input/output control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835267

Country of ref document: EP

Kind code of ref document: A1