WO2024009575A1 - Combustion system - Google Patents

Combustion system Download PDF

Info

Publication number
WO2024009575A1
WO2024009575A1 PCT/JP2023/014271 JP2023014271W WO2024009575A1 WO 2024009575 A1 WO2024009575 A1 WO 2024009575A1 JP 2023014271 W JP2023014271 W JP 2023014271W WO 2024009575 A1 WO2024009575 A1 WO 2024009575A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
boiler
heat exchanger
vaporizer
flow rate
Prior art date
Application number
PCT/JP2023/014271
Other languages
French (fr)
Japanese (ja)
Inventor
原栄 崔
俊郎 藤森
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2024009575A1 publication Critical patent/WO2024009575A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L17/00Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues

Definitions

  • Ammonia is known as a fuel that does not emit CO2 .
  • Patent Documents 1 and 2 disclose equipment that uses ammonia as fuel. In these documents, ammonia is stored in liquid state. Before being combusted, liquid ammonia is vaporized and combusted in a gaseous state. In these documents, the exhaust heat after combustion is used to vaporize ammonia.
  • the present disclosure aims to provide a combustion system that can improve energy efficiency.
  • a combustion system includes a vaporizer that heats liquid ammonia using a heat medium, a boiler that is connected to the vaporizer and burns fuel containing ammonia from the vaporizer, and a flue that is connected to the boiler.
  • an induced draft fan disposed in the duct to guide exhaust gas from the boiler, and a heat exchanger disposed upstream of the induced draft fan in the flue, the heat exchanger having a circulating flow path through which a heat medium flows.
  • the heat exchanger is cyclically connected to the vaporizer, and the heat exchanger cools the exhaust gas flowing through the flue by means of a heat transfer medium that receives cold energy from liquid ammonia.
  • the combustion system may include a recovery device that recovers condensed water from the cooled exhaust gas.
  • the recovery device may be connected to the boiler, and may supply condensed water to the boiler as make-up water.
  • the combustion system may include a control device that adjusts the flow rate of the heat medium based on at least one of the temperature of the exhaust gas, the flow rate of the exhaust gas, and the flow rate of ammonia.
  • FIG. 1 is a schematic diagram showing a combustion system according to an embodiment.
  • FIG. 2 is a graph showing the relationship between temperature and saturated water vapor pressure.
  • FIG. 1 is a schematic diagram showing a combustion system 100 according to an embodiment.
  • the combustion system 100 may also be simply referred to as a "system.”
  • the system 100 includes a tank 1, a vaporizer (EVA) 2, a boiler 3, a heat exchanger (HEX) 4, an electrostatic precipitator (ESP) 5, an induced draft fan (IDF) 6, It includes a chimney 7, a recovery device 8, a steam turbine 50, a generator 60, and a control device 90.
  • EVA vaporizer
  • HEX heat exchanger
  • ESP electrostatic precipitator
  • IDF induced draft fan
  • the components of the system 100 are not limited to these, and the system 100 may further include other components. Additionally, system 100 may not include at least one of the components described above.
  • a tank (ammonia supply source) 1 supplies liquid ammonia to a vaporizer 2.
  • Tank 1 stores liquid ammonia.
  • Tank 1 is connected to vaporizer 2 by flow path L1.
  • Liquid ammonia in the tank 1 is supplied to the vaporizer 2 via the flow path L1.
  • the flow path L1 is provided with a pump P1 for sending liquid ammonia.
  • the pump P1 may be communicably connected to the control device 90 by wire or wirelessly, and the control device 90 may control the operation of the pump P1.
  • the vaporizer 2 heats liquid ammonia from the tank 1 using a heat medium, which will be described later, that is heated by the heat exchanger 4.
  • the heated liquid ammonia vaporizes into gaseous ammonia.
  • the heat carrier is cooled by liquid ammonia in the vaporizer 2 and receives cold energy from the liquid ammonia.
  • the vaporizer 2 is connected to the boiler 3 by a flow path L2.
  • the boiler 3 includes a combustor 31 that burns fuel containing gaseous ammonia from the vaporizer 2.
  • the combustor 31 may burn a mixed fuel containing ammonia and other fuel such as pulverized coal. Further, for example, the combustor 31 may burn only ammonia. Further, for example, the combustor 31 may burn only fuel other than ammonia, if necessary.
  • the boiler 3 heats water using heat from combustion to generate steam. In the combustor 31, exhaust gas is generated by combustion.
  • the steam turbine 50 is connected to the boiler 3 through a flow path L3. Steam generated in the boiler 3 is supplied to the steam turbine 50 via a flow path L3. The steam turbine 50 is rotated by steam from the boiler 3. The generator 60 rotates together with the steam turbine 50 and generates electricity.
  • a heat exchanger 4 an electrostatic precipitator 5, and an induced draft fan 6 are arranged in this order from the boiler 3 to the flue L4 that connects the boiler 3 and the chimney 7.
  • the system 100 may further include other equipment (not shown) in the flue L4. Exhaust gas generated in the boiler 3 flows from the boiler 3 toward the chimney 7 through the flue L4.
  • the heat exchanger 4 is disposed downstream of the boiler 3 in the flue L4 and is connected to the boiler 3. Further, the heat exchanger 4 is cyclically connected to the vaporizer 2 through a circulation passage L5. A heat medium flows through the circulation channel L5. The heat exchanger 4 cools the exhaust gas flowing through the flue L4 using the heat medium that has received cold energy from the liquid ammonia in the vaporizer 2. This causes some of the water vapor in the exhaust gas to condense into water. In another aspect, the heat medium is heated in the heat exchanger 4 by exhaust gas.
  • the combustion reaction equation of ammonia is shown as 2NH 3 +1.5O 2 ⁇ N 2 +3H 2 O.
  • the equivalence ratio is 1, three molecules of water are produced from two molecules of ammonia. Therefore, when the boiler 3 burns only ammonia, more than 70% of the exhaust gas can become water vapor in terms of volume ratio. For example, when the boiler 3 burns only pulverized coal, about 10 to 20% of the exhaust gas can become water vapor.
  • the exhaust gas flowing through the flue L4 contains more water vapor.
  • the exhaust gas is cooled by the heat medium in the heat exchanger 4, and a portion of the water vapor in the exhaust gas is condensed into water. Therefore, even when the exhaust gas contains a large amount of water vapor, the water vapor in the exhaust gas can be reduced in the heat exchanger 4.
  • the heat medium flowing through the circulation path L5 may be, for example, brine.
  • the brine may be an aqueous solution containing sodium chloride, calcium chloride, or the like.
  • the heat medium is not limited to this, and other fluids may be used.
  • the heat transfer medium may be a fluid having a freezing point lower than the boiling point of liquid ammonia.
  • a recovery device 8 is provided in the heat exchanger 4.
  • the recovery device 8 recovers condensed water from the exhaust gas cooled by the heat medium in the heat exchanger 4 .
  • the recovery vessel 8 may be a tank or a pit connected to the bottom of the heat exchanger 4.
  • the recovery device 8 may recover condensed water that falls to the bottom of the heat exchanger 4 from the exhaust gas.
  • the position where the recovery device 8 is provided is not limited to this, and the recovery device 8 is installed at a position downstream of the heat exchanger 4 in the flue L4, for example, a position between the heat exchanger 4 and the induced draft fan 6. may be provided.
  • the recovery vessel 8 is connected to the boiler 3 through a flow path L6.
  • the condensed water recovered by the recovery device 8 is supplied to the boiler 3 as make-up water via the flow path L6. Therefore, water produced by combustion of ammonia can be reused in the boiler 3.
  • the flow path L6 is provided with a pump P2 for sending condensed water.
  • the pump P2 may be communicably connected to the control device 90 by wire or wirelessly, and the control device 90 may control the operation of the pump P2.
  • the flow path L6 may be provided with a filter (not shown), such as a reverse osmosis membrane (RO), for purifying the condensed water.
  • RO reverse osmosis membrane
  • the collector 8 may be connected to other equipment (not shown) in the system 100 and the condensed water may be recycled there as industrial water.
  • condensed water may be reused as water for injection in a cooling tower.
  • the condensed water may be purified and then reused as agricultural water or drinking water.
  • the electrostatic precipitator 5 is disposed downstream of the heat exchanger 4 in the flue L4 and is connected to the heat exchanger 4.
  • the electrostatic precipitator 5 removes particles (soot and dust) from exhaust gas. Specifically, the electrostatic precipitator 5 applies a high voltage between a discharge electrode and a dust collection electrode to generate corona discharge. Ions are generated by corona discharge. Particles in the exhaust gas charged by the ions are attracted to the dust collection electrode by electrostatic attraction. Particles collected on the dust collection pole are removed.
  • the induced draft fan 6 is arranged downstream of the electrostatic precipitator 5 in the flue L4, and is connected to the electrostatic precipitator 5.
  • the induced draft fan 6 guides exhaust gas from the boiler 3 to the chimney 7.
  • the induced draft fan 6 maintains the boiler 3 at negative pressure.
  • exhaust gas is pressurized.
  • the exhaust gas is cooled by the heat medium in the heat exchanger 4, so the volume of the exhaust gas flowing through the flue L4 is reduced. Therefore, the volume of exhaust gas flowing into the induced draft fan 6 is reduced. This can also reduce the load on the induced draft fan 6. Furthermore, as the volume of exhaust gas decreases, the boiler 3 is more likely to be maintained at a negative pressure.
  • the chimney 7 is arranged downstream of the induced draft fan 6 in the flue L4, and is connected to the induced draft fan 6.
  • the chimney 7 releases exhaust gas to the outside.
  • a pump P3 for circulating the heat medium is provided in the circulation passage L5.
  • Pump P3 is communicably connected to control device 90 by wire or wirelessly.
  • Control device 90 controls the operation of pump P3.
  • a valve V1 is provided in the circulation flow path L5.
  • the valve V1 is communicably connected to the control device 90 by wire or wirelessly.
  • the control device 90 adjusts the flow rate of the heat medium flowing through the circulation path L5 by controlling the opening degree of the valve V1.
  • the system 100 includes a temperature sensor S1 in the flue L4. Temperature sensor S1 is arranged to measure the temperature of the exhaust gas flowing out of heat exchanger 4. For example, the temperature sensor S1 is placed downstream of the heat exchanger 4 in the flue L4. However, the position of the temperature sensor S1 is not limited to this, and the temperature sensor S1 may be placed at another position.
  • the system 100 includes a flow rate sensor S2 in the flue L4.
  • the flow rate sensor S2 is arranged to measure the flow rate of exhaust gas flowing through the flue L4.
  • the flow rate sensor S2 is placed downstream of the heat exchanger 4 in the flue L4.
  • the position of the flow rate sensor S2 is not limited to this, and the flow rate sensor S2 may be placed at another position.
  • the system 100 includes a flow rate sensor S3 in the flow path L1.
  • Flow sensor S3 is arranged to measure the flow rate of liquid ammonia sent from tank 1 to vaporizer 2.
  • the flow rate sensor S3 is arranged at a position upstream of the vaporizer 2 and upstream of the pump P1 in the flow path L1.
  • the position of the flow rate sensor S3 is not limited to this, and the flow rate sensor S3 may be placed at another position.
  • the temperature sensor S1 and the flow rate sensors S2 and S3 are communicably connected to the control device 90 by wire or wirelessly, and transmit measured data to the control device 90.
  • system 100 may further include other sensors. Also, in other embodiments, system 100 may not include at least one of temperature sensor S1 and flow rate sensors S2, S3.
  • the control device 90 controls the whole or part of the system 100.
  • controller 90 may include one or more computers.
  • the operations of the control device 90 described in this disclosure may be performed by one computer, or may be performed separately by multiple computers.
  • the control device 90 includes components such as a processor 90a, a storage device 90b, and a connector 90c, and these components are connected to each other via a bus.
  • the processor 90a includes a CPU (Central Processing Unit).
  • the storage device 90b includes a hard disk, a ROM in which programs and the like are stored, and a RAM as a work area.
  • the control device 90 is communicably connected to the components of the system 100 via a connector 90c in a wired or wireless manner.
  • control device 90 may further include other components such as a display device such as a liquid crystal display or a touch panel, and an input device such as a keyboard, buttons, or a touch panel.
  • a display device such as a liquid crystal display or a touch panel
  • an input device such as a keyboard, buttons, or a touch panel.
  • the operation of the control device 90 described in this disclosure may be realized by having the processor 90a execute a program stored in the storage device 90b.
  • FIG. 2 is a graph showing the relationship between temperature and saturated water vapor pressure.
  • the horizontal axis shows temperature
  • the vertical axis shows saturated water vapor pressure.
  • the control device 90 may store 60° C. in the storage device 90b as the exhaust gas temperature threshold.
  • the threshold value is not limited to 60° C. and may vary depending on various factors such as the performance of the induced draft fan 6, for example.
  • the processor 90a of the control device 90 controls the system 100 so that the temperature of the exhaust gas received from the temperature sensor S1 is less than the above threshold value.
  • the processor 90a controls the valve V1 to adjust the flow rate of the heat medium flowing through the circulation path L5 so that the temperature of the exhaust gas received from the temperature sensor S1 becomes less than a threshold value.
  • processor 90a may control valve V1 to increase the flow rate of the heat medium.
  • processor 90a may control valve V1 to reduce the flow rate of the heat medium.
  • the processor 90a may adjust the flow rate of the heat medium based on a parameter other than the temperature of the exhaust gas.
  • the processor 90a may adjust the flow rate of the heat medium based on the flow rate of exhaust gas received from the flow rate sensor S2. For example, when the flow rate of the exhaust gas received from the flow rate sensor S2 increases, the processor 90a may control the valve V1 to increase the flow rate of the heat medium. Conversely, when the flow rate of the exhaust gas received from the flow rate sensor S2 decreases, the processor 90a may control the valve V1 to reduce the flow rate of the heat medium.
  • the processor 90a may adjust the flow rate of the heat medium based on the flow rate of liquid ammonia received from the flow rate sensor S3. For example, when the flow rate of liquid ammonia received from flow sensor S3 increases, processor 90a may control valve V1 to increase the flow rate of the heat medium. Conversely, when the flow rate of liquid ammonia received from flow sensor S3 decreases, processor 90a may control valve V1 to reduce the flow rate of the heat medium.
  • the system 100 as described above includes a vaporizer 2 that heats liquid ammonia using a heat medium, a boiler 3 that is connected to the vaporizer 2 and burns fuel containing ammonia from the vaporizer 2, and a boiler 3 that is connected to the boiler 3. It includes an induced draft fan 6 that is disposed in the flue L4 and guides exhaust gas from the boiler 3, and a heat exchanger 4 that is disposed upstream of the induced draft fan 6 in the flue L4.
  • the heat exchanger 4 is cyclically connected to the vaporizer 2 through a circulation path L5 through which a heat medium flows.
  • the heat exchanger 4 cools the exhaust gas flowing through the flue L4 using a heat medium that has received cold energy from liquid ammonia.
  • the exhaust gas contains more water vapor.
  • the water vapor in the exhaust gas can be reduced in the heat exchanger 4. Therefore, an increase in the load on the induced draft fan 6 can be suppressed.
  • the heat obtained from the exhaust gas can be used to vaporize liquid ammonia. Thus, energy efficiency can be improved when system 100 uses ammonia as a fuel.
  • the system 100 also includes a recovery device 8 that recovers condensed water from the cooled exhaust gas. According to such a configuration, condensed water can be stored for reuse.
  • the recovery device 8 is connected to the boiler 3 and supplies condensed water to the boiler 3 as make-up water. According to such a configuration, the amount of water newly added to the system 100 as make-up water for the boiler 3 can be reduced.
  • the system 100 also includes a control device 90 that adjusts the flow rate of the heat medium based on at least one of the temperature of the exhaust gas, the flow rate of the exhaust gas, and the flow rate of ammonia. According to such a configuration, the flow rate of the heat medium can be appropriately adjusted depending on the operating status of the system 100.
  • system 100 includes the electrostatic precipitator 5 in the flue L4. In other embodiments, system 100 may not include electrostatic precipitator 5.
  • the present disclosure can promote the use of ammonia, which leads to reduced CO2 emissions, so that it can, for example, support Goal 7 of the Sustainable Development Goals (SDGs) for affordable, reliable, sustainable and modern energy. and Goal 13: “Take urgent action to combat climate change and its impacts.”
  • SDGs Sustainable Development Goals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

This combustion system 100 is provided with: a vaporizer 2 that heats liquid ammonia with a heating medium; a boiler 3 that is connected to the vaporizer 2 and burns an ammonia-containing fuel coming from the vaporizer 2; an induced draft fan 6 that is arranged in a flue L4 connected to the boiler 3 and guides a discharged gas from the boiler 3; and a heat exchanger 4 that is arranged upstream of the induced draft fan 6 in the flue L4. The heat exchanger 4 is connected to the vaporizer 2 in a circulating manner through a circulating flow path L5 through which the heating medium flows. The heat exchanger 4 cools a discharged gas flowing through the flue L4 with the heating medium that receives a cold thermal energy from the liquid ammonia.

Description

燃焼システムcombustion system
 本開示は、燃焼システムに関する。本出願は2022年7月5日に提出された日本特許出願第2022-108342号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to combustion systems. This application claims the benefit of priority based on Japanese Patent Application No. 2022-108342 filed on July 5, 2022, the contents of which are incorporated into this application.
 アンモニアは、COを放出しない燃料として知られている。例えば、特許文献1,2は、アンモニアを燃料として使用する設備を開示する。これらの文献では、アンモニアは、液体状態で貯蔵される。液体アンモニアは、燃焼される前に気化され、気体状態で燃焼される。これらの文献では、アンモニアを気化するために、燃焼後の排熱が使用される。 Ammonia is known as a fuel that does not emit CO2 . For example, Patent Documents 1 and 2 disclose equipment that uses ammonia as fuel. In these documents, ammonia is stored in liquid state. Before being combusted, liquid ammonia is vaporized and combusted in a gaseous state. In these documents, the exhaust heat after combustion is used to vaporize ammonia.
特開2020-139638号公報JP2020-139638A 特開2019-196882号公報JP2019-196882A
 上記のような燃焼システムでは、エネルギ効率をさらに向上することが望まれている。 In combustion systems such as those described above, it is desired to further improve energy efficiency.
 本開示は、エネルギ効率を向上することができる燃焼システムを提供することを目的とする。 The present disclosure aims to provide a combustion system that can improve energy efficiency.
 本開示の一態様に係る燃焼システムは、熱媒体によって液体アンモニアを加熱する気化器と、気化器に接続され、気化器からのアンモニアを含む燃料を燃焼するボイラと、ボイラに接続された煙道に配置され、ボイラからの排ガスを誘導する誘引通風機と、煙道において誘引通風機の上流に配置される熱交換器であって、当該熱交換器は、熱媒体が流れる循環流路によって、気化器に循環的に接続され、当該熱交換器は、液体アンモニアから冷熱エネルギを受け取った熱媒体によって、煙道を流れる排ガスを冷却する、熱交換器と、を備える。 A combustion system according to one aspect of the present disclosure includes a vaporizer that heats liquid ammonia using a heat medium, a boiler that is connected to the vaporizer and burns fuel containing ammonia from the vaporizer, and a flue that is connected to the boiler. an induced draft fan disposed in the duct to guide exhaust gas from the boiler, and a heat exchanger disposed upstream of the induced draft fan in the flue, the heat exchanger having a circulating flow path through which a heat medium flows. The heat exchanger is cyclically connected to the vaporizer, and the heat exchanger cools the exhaust gas flowing through the flue by means of a heat transfer medium that receives cold energy from liquid ammonia.
 燃焼システムは、冷却された排ガスから凝縮水を回収する回収器を備えてもよい。 The combustion system may include a recovery device that recovers condensed water from the cooled exhaust gas.
 回収器は、ボイラに接続されてもよく、凝縮水を補給水としてボイラに供給してもよい。 The recovery device may be connected to the boiler, and may supply condensed water to the boiler as make-up water.
 燃焼システムは、排ガスの温度、排ガスの流量、および、アンモニアの流量の少なくとも1つに基づいて、熱媒体の流量を調整する制御装置を備えてもよい。 The combustion system may include a control device that adjusts the flow rate of the heat medium based on at least one of the temperature of the exhaust gas, the flow rate of the exhaust gas, and the flow rate of ammonia.
 本開示によれば、エネルギ効率を向上することができる。 According to the present disclosure, energy efficiency can be improved.
図1は、実施形態に係る燃焼システムを示す概略図である。FIG. 1 is a schematic diagram showing a combustion system according to an embodiment. 図2は、温度と飽和水蒸気圧との関係を示すグラフである。FIG. 2 is a graph showing the relationship between temperature and saturated water vapor pressure.
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す具体的な寸法、材料および数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Specific dimensions, materials, numerical values, etc. shown in such embodiments are merely examples for easy understanding, and do not limit the present disclosure unless otherwise specified. In this specification and drawings, elements having substantially the same functions and configurations are designated by the same reference numerals to omit redundant explanation, and elements not directly related to the present disclosure are omitted from illustration. do.
 図1は、実施形態に係る燃焼システム100を示す概略図である。以下、燃焼システム100は、単に「システム」とも称され得る。例えば、システム100は、タンク1と、気化器(EVA)2と、ボイラ3と、熱交換器(HEX)4と、電気集じん機(ESP)5と、誘引通風機(IDF)6と、煙突7と、回収器8と、蒸気タービン50と、発電機60と、制御装置90と、を備える。システム100の構成要素はこれらに限定されず、システム100は、その他の構成要素をさらに備えてもよい。また、システム100は、上記の構成要素のうちの少なくとも1つを含んでなくともよい。 FIG. 1 is a schematic diagram showing a combustion system 100 according to an embodiment. Hereinafter, the combustion system 100 may also be simply referred to as a "system." For example, the system 100 includes a tank 1, a vaporizer (EVA) 2, a boiler 3, a heat exchanger (HEX) 4, an electrostatic precipitator (ESP) 5, an induced draft fan (IDF) 6, It includes a chimney 7, a recovery device 8, a steam turbine 50, a generator 60, and a control device 90. The components of the system 100 are not limited to these, and the system 100 may further include other components. Additionally, system 100 may not include at least one of the components described above.
 タンク(アンモニア供給源)1は、液体アンモニアを気化器2に供給する。タンク1は、液体アンモニアを貯蔵する。タンク1は、流路L1によって気化器2に接続される。タンク1内の液体アンモニアは、流路L1を介して気化器2に供給される。例えば、流路L1には、液体アンモニアを送るためのポンプP1が設けられる。ポンプP1は、制御装置90と有線または無線で通信可能に接続されてもよく、制御装置90は、ポンプP1の動作を制御してもよい。 A tank (ammonia supply source) 1 supplies liquid ammonia to a vaporizer 2. Tank 1 stores liquid ammonia. Tank 1 is connected to vaporizer 2 by flow path L1. Liquid ammonia in the tank 1 is supplied to the vaporizer 2 via the flow path L1. For example, the flow path L1 is provided with a pump P1 for sending liquid ammonia. The pump P1 may be communicably connected to the control device 90 by wire or wirelessly, and the control device 90 may control the operation of the pump P1.
 気化器2は、熱交換器4によって加熱される後述の熱媒体によって、タンク1からの液体アンモニアを加熱する。加熱された液体アンモニアは、気体アンモニアへと気化する。別の観点では、熱媒体は、気化器2において、液体アンモニアによって冷却され、液体アンモニアから冷熱エネルギを受け取る。気化器2は、流路L2によってボイラ3に接続される。 The vaporizer 2 heats liquid ammonia from the tank 1 using a heat medium, which will be described later, that is heated by the heat exchanger 4. The heated liquid ammonia vaporizes into gaseous ammonia. In another aspect, the heat carrier is cooled by liquid ammonia in the vaporizer 2 and receives cold energy from the liquid ammonia. The vaporizer 2 is connected to the boiler 3 by a flow path L2.
 ボイラ3は、気化器2からの気体アンモニアを含む燃料を燃焼する燃焼器31を含む。例えば、燃焼器31は、アンモニアと、例えば微粉炭等の他の燃料と、を含む混合燃料を燃焼してもよい。また、例えば、燃焼器31は、アンモニアのみを燃焼してもよい。また、例えば、燃焼器31は、必要に応じて、アンモニア以外の他の燃料のみを燃焼してもよい。ボイラ3は、燃焼による熱によって水を加熱し、水蒸気を生成する。燃焼器31では、燃焼によって排ガスが発生する。 The boiler 3 includes a combustor 31 that burns fuel containing gaseous ammonia from the vaporizer 2. For example, the combustor 31 may burn a mixed fuel containing ammonia and other fuel such as pulverized coal. Further, for example, the combustor 31 may burn only ammonia. Further, for example, the combustor 31 may burn only fuel other than ammonia, if necessary. The boiler 3 heats water using heat from combustion to generate steam. In the combustor 31, exhaust gas is generated by combustion.
 蒸気タービン50は、流路L3によってボイラ3に接続される。ボイラ3で生成された水蒸気は、流路L3を介して蒸気タービン50に供給される。蒸気タービン50は、ボイラ3からの水蒸気によって回転させられる。発電機60は、蒸気タービン50と共に回転し、発電する。 The steam turbine 50 is connected to the boiler 3 through a flow path L3. Steam generated in the boiler 3 is supplied to the steam turbine 50 via a flow path L3. The steam turbine 50 is rotated by steam from the boiler 3. The generator 60 rotates together with the steam turbine 50 and generates electricity.
 本実施形態では、ボイラ3と煙突7とを結ぶ煙道L4に、熱交換器4、電気集じん機5および誘引通風機6が、ボイラ3からこの順番で配置される。システム100は、煙道L4に不図示の他の設備をさらに備えてもよい。煙道L4には、ボイラ3から煙突7に向かって、ボイラ3で発生した排ガスが流れる。 In this embodiment, a heat exchanger 4, an electrostatic precipitator 5, and an induced draft fan 6 are arranged in this order from the boiler 3 to the flue L4 that connects the boiler 3 and the chimney 7. The system 100 may further include other equipment (not shown) in the flue L4. Exhaust gas generated in the boiler 3 flows from the boiler 3 toward the chimney 7 through the flue L4.
 熱交換器4は、煙道L4において、ボイラ3の下流に配置され、ボイラ3に接続される。また、熱交換器4は、循環流路L5によって、気化器2と循環的に接続される。循環流路L5には、熱媒体が流れる。熱交換器4は、気化器2において液体アンモニアから冷熱エネルギを受け取った熱媒体によって、煙道L4を流れる排ガスを冷却する。これによって、排ガス中の水蒸気の一部が、水へと凝縮される。別の観点では、熱媒体は、熱交換器4において、排ガスによって加熱される。 The heat exchanger 4 is disposed downstream of the boiler 3 in the flue L4 and is connected to the boiler 3. Further, the heat exchanger 4 is cyclically connected to the vaporizer 2 through a circulation passage L5. A heat medium flows through the circulation channel L5. The heat exchanger 4 cools the exhaust gas flowing through the flue L4 using the heat medium that has received cold energy from the liquid ammonia in the vaporizer 2. This causes some of the water vapor in the exhaust gas to condense into water. In another aspect, the heat medium is heated in the heat exchanger 4 by exhaust gas.
 煙道L4を流れる排ガス中の水蒸気の量に関して、アンモニアの燃焼反応式は、2NH+1.5O→N+3HOで示される。当量比が1の場合、2分子のアンモニアから3分子の水が生成される。したがって、ボイラ3がアンモニアのみを燃焼する場合、体積比において、排ガスの70%超が水蒸気となり得る。例えば、ボイラ3が微粉炭のみを燃焼する場合には、排ガスの10~20%程度が水蒸気となり得る。 Regarding the amount of water vapor in the exhaust gas flowing through the flue L4, the combustion reaction equation of ammonia is shown as 2NH 3 +1.5O 2 →N 2 +3H 2 O. When the equivalence ratio is 1, three molecules of water are produced from two molecules of ammonia. Therefore, when the boiler 3 burns only ammonia, more than 70% of the exhaust gas can become water vapor in terms of volume ratio. For example, when the boiler 3 burns only pulverized coal, about 10 to 20% of the exhaust gas can become water vapor.
 このように、ボイラ3がアンモニアを含む燃料を燃焼する場合には、煙道L4を流れる排ガスは、より多くの水蒸気を含む。しかしながら、本実施形態では、排ガスは、熱交換器4において熱媒体によって冷却され、排ガス中の水蒸気の一部が水へと凝縮される。したがって、排ガスがより多くの水蒸気を含む場合にも、排ガス中の水蒸気を熱交換器4において低減することができる。 In this way, when the boiler 3 burns fuel containing ammonia, the exhaust gas flowing through the flue L4 contains more water vapor. However, in this embodiment, the exhaust gas is cooled by the heat medium in the heat exchanger 4, and a portion of the water vapor in the exhaust gas is condensed into water. Therefore, even when the exhaust gas contains a large amount of water vapor, the water vapor in the exhaust gas can be reduced in the heat exchanger 4.
 循環流路L5を流れる熱媒体は、例えば、ブラインであってもよい。例えば、ブラインは、塩化ナトリウムまたは塩化カルシウム等を含む水溶液であってもよい。熱媒体はこれに限定されず、その他の流体が使用されてもよい。例えば、熱媒体は、液体アンモニアの沸点よりも低い凝固点を有する流体であってもよい。 The heat medium flowing through the circulation path L5 may be, for example, brine. For example, the brine may be an aqueous solution containing sodium chloride, calcium chloride, or the like. The heat medium is not limited to this, and other fluids may be used. For example, the heat transfer medium may be a fluid having a freezing point lower than the boiling point of liquid ammonia.
 熱交換器4には、回収器8が設けられる。回収器8は、熱交換器4において、熱媒体によって冷却された排ガスから凝縮水を回収する。例えば、回収器8は、熱交換器4の底部に接続されるタンクまたはピットであってもよい。例えば、回収器8は、排ガスから熱交換器4の底部に落下する凝縮水を回収してもよい。回収器8が設けられる位置はこれに限定されず、回収器8は、煙道L4において、熱交換器4よりも下流の位置、例えば、熱交換器4と誘引通風機6との間の位置に設けられてもよい。 A recovery device 8 is provided in the heat exchanger 4. The recovery device 8 recovers condensed water from the exhaust gas cooled by the heat medium in the heat exchanger 4 . For example, the recovery vessel 8 may be a tank or a pit connected to the bottom of the heat exchanger 4. For example, the recovery device 8 may recover condensed water that falls to the bottom of the heat exchanger 4 from the exhaust gas. The position where the recovery device 8 is provided is not limited to this, and the recovery device 8 is installed at a position downstream of the heat exchanger 4 in the flue L4, for example, a position between the heat exchanger 4 and the induced draft fan 6. may be provided.
 回収器8は、流路L6によってボイラ3に接続される。回収器8で回収された凝縮水は、流路L6を介して、補給水としてボイラ3に供給される。したがって、アンモニアの燃焼によって生じる水を、ボイラ3において再利用することができる。例えば、流路L6には、凝縮水を送るためのポンプP2が設けられる。ポンプP2は、制御装置90と有線または無線で通信可能に接続されてもよく、制御装置90は、ポンプP2の動作を制御してもよい。また、流路L6には、凝縮水を浄化するための不図示のフィルタ、例えば逆浸透膜(RO)等が設けられてもよい。代替的にまたは追加的に、回収器8は、システム100中の不図示の他の設備に接続されてもよく、凝縮水は、これらにおいて工業用水として再利用されてもよい。また、例えば、凝縮水は、冷却塔において噴射用の水として再利用されてもよい。また、例えば、凝縮水は、浄化された後に農業用水または飲料用水として再利用されてもよい。 The recovery vessel 8 is connected to the boiler 3 through a flow path L6. The condensed water recovered by the recovery device 8 is supplied to the boiler 3 as make-up water via the flow path L6. Therefore, water produced by combustion of ammonia can be reused in the boiler 3. For example, the flow path L6 is provided with a pump P2 for sending condensed water. The pump P2 may be communicably connected to the control device 90 by wire or wirelessly, and the control device 90 may control the operation of the pump P2. Further, the flow path L6 may be provided with a filter (not shown), such as a reverse osmosis membrane (RO), for purifying the condensed water. Alternatively or additionally, the collector 8 may be connected to other equipment (not shown) in the system 100 and the condensed water may be recycled there as industrial water. Also, for example, condensed water may be reused as water for injection in a cooling tower. Also, for example, the condensed water may be purified and then reused as agricultural water or drinking water.
 電気集じん機5は、煙道L4において、熱交換器4の下流に配置され、熱交換器4に接続される。電気集じん機5は、排ガスから粒子(煤塵)を除去する。具体的には、電気集じん機5は、放電極と集じん極との間に高電圧をかけ、コロナ放電を生成する。コロナ放電によって、イオンが発生する。イオンによって帯電した排ガス中の粒子は、静電気引力によって集じん極へ引き付けられる。集じん極へ集められた粒子は、除去される。 The electrostatic precipitator 5 is disposed downstream of the heat exchanger 4 in the flue L4 and is connected to the heat exchanger 4. The electrostatic precipitator 5 removes particles (soot and dust) from exhaust gas. Specifically, the electrostatic precipitator 5 applies a high voltage between a discharge electrode and a dust collection electrode to generate corona discharge. Ions are generated by corona discharge. Particles in the exhaust gas charged by the ions are attracted to the dust collection electrode by electrostatic attraction. Particles collected on the dust collection pole are removed.
 誘引通風機6は、煙道L4において、電気集じん機5の下流に配置され、電気集じん機5に接続される。誘引通風機6は、ボイラ3からの排ガスを煙突7に誘導する。誘引通風機6は、ボイラ3を負圧に維持する。誘引通風機6では、排ガスが加圧される。 The induced draft fan 6 is arranged downstream of the electrostatic precipitator 5 in the flue L4, and is connected to the electrostatic precipitator 5. The induced draft fan 6 guides exhaust gas from the boiler 3 to the chimney 7. The induced draft fan 6 maintains the boiler 3 at negative pressure. In the induced draft fan 6, exhaust gas is pressurized.
 上記のように、ボイラ3がアンモニアを含む燃料を燃焼する場合には、煙道L4を流れる排ガスは、より多くの水蒸気を含む。水蒸気をより多く含む排ガスが誘引通風機6に流入する場合、誘引通風機6の負荷が増える。しかしながら、本実施形態では、熱交換器4において、排ガス中の水蒸気の一部は水へと凝縮され、排ガス中の水蒸気は低減される。したがって、ボイラ3がアンモニアを含む燃料を燃焼する場合にも、誘引通風機6の負荷の増加を抑えることができる。よって、システム100がアンモニアを燃料として使用する場合に、エネルギ効率を向上することができる。 As described above, when the boiler 3 burns fuel containing ammonia, the exhaust gas flowing through the flue L4 contains more water vapor. When exhaust gas containing more water vapor flows into the induced draft fan 6, the load on the induced draft fan 6 increases. However, in this embodiment, a portion of the water vapor in the exhaust gas is condensed into water in the heat exchanger 4, and the amount of water vapor in the exhaust gas is reduced. Therefore, even when the boiler 3 burns fuel containing ammonia, an increase in the load on the induced draft fan 6 can be suppressed. Thus, energy efficiency can be improved when system 100 uses ammonia as a fuel.
 また、本実施形態では、排ガスは、熱交換器4において熱媒体によって冷却されるので、煙道L4を流れる排ガスの体積が減少する。したがって、誘引通風機6に流入する排ガスの体積が減少する。このことも、誘引通風機6の負荷を低減することができる。また、排ガスの体積の減少に伴って、ボイラ3が負圧に維持され易くなる。 Furthermore, in this embodiment, the exhaust gas is cooled by the heat medium in the heat exchanger 4, so the volume of the exhaust gas flowing through the flue L4 is reduced. Therefore, the volume of exhaust gas flowing into the induced draft fan 6 is reduced. This can also reduce the load on the induced draft fan 6. Furthermore, as the volume of exhaust gas decreases, the boiler 3 is more likely to be maintained at a negative pressure.
 煙突7は、煙道L4において、誘引通風機6の下流に配置され、誘引通風機6に接続される。煙突7は、排ガスを外部に放出する。 The chimney 7 is arranged downstream of the induced draft fan 6 in the flue L4, and is connected to the induced draft fan 6. The chimney 7 releases exhaust gas to the outside.
 循環流路L5には、熱媒体を循環させるためのポンプP3が設けられる。ポンプP3は、制御装置90と有線または無線で通信可能に接続される。制御装置90は、ポンプP3の動作を制御する。 A pump P3 for circulating the heat medium is provided in the circulation passage L5. Pump P3 is communicably connected to control device 90 by wire or wirelessly. Control device 90 controls the operation of pump P3.
 循環流路L5には、バルブV1が設けられる。例えば、バルブV1は、制御装置90と有線または無線で通信可能に接続される。制御装置90は、バルブV1の開度を制御することによって、循環流路L5を流れる熱媒体の流量を調整する。 A valve V1 is provided in the circulation flow path L5. For example, the valve V1 is communicably connected to the control device 90 by wire or wirelessly. The control device 90 adjusts the flow rate of the heat medium flowing through the circulation path L5 by controlling the opening degree of the valve V1.
 システム100は、煙道L4に温度センサS1を備える。温度センサS1は、熱交換器4から流れ出る排ガスの温度を測定するように配置される。例えば、温度センサS1は、煙道L4において、熱交換器4の下流の位置に配置される。しかしながら、温度センサS1の位置はこれに限定されず、温度センサS1は、他の位置に配置されてもよい。 The system 100 includes a temperature sensor S1 in the flue L4. Temperature sensor S1 is arranged to measure the temperature of the exhaust gas flowing out of heat exchanger 4. For example, the temperature sensor S1 is placed downstream of the heat exchanger 4 in the flue L4. However, the position of the temperature sensor S1 is not limited to this, and the temperature sensor S1 may be placed at another position.
 システム100は、煙道L4に流量センサS2を備える。流量センサS2は、煙道L4を流れる排ガスの流量を測定するように配置される。例えば、流量センサS2は、煙道L4において、熱交換器4の下流の位置に配置される。しかしながら、流量センサS2の位置はこれに限定されず、流量センサS2は、他の位置に配置されてもよい。 The system 100 includes a flow rate sensor S2 in the flue L4. The flow rate sensor S2 is arranged to measure the flow rate of exhaust gas flowing through the flue L4. For example, the flow rate sensor S2 is placed downstream of the heat exchanger 4 in the flue L4. However, the position of the flow rate sensor S2 is not limited to this, and the flow rate sensor S2 may be placed at another position.
 システム100は、流路L1に流量センサS3を備える。流量センサS3は、タンク1から気化器2に送られる液体アンモニアの流量を測定するように配置される。例えば、流量センサS3は、流路L1において、気化器2の上流かつポンプP1の上流の位置に配置される。しかしながら、流量センサS3の位置はこれに限定されず、流量センサS3は、他の位置に配置されてもよい。 The system 100 includes a flow rate sensor S3 in the flow path L1. Flow sensor S3 is arranged to measure the flow rate of liquid ammonia sent from tank 1 to vaporizer 2. For example, the flow rate sensor S3 is arranged at a position upstream of the vaporizer 2 and upstream of the pump P1 in the flow path L1. However, the position of the flow rate sensor S3 is not limited to this, and the flow rate sensor S3 may be placed at another position.
 温度センサS1および流量センサS2,S3は、制御装置90と有線または無線で通信可能に接続され、測定されたデータを制御装置90に送信する。他の実施形態では、システム100は、他のセンサをさらに備えてもよい。また、他の実施形態では、システム100は、温度センサS1および流量センサS2,S3のうちの少なくとも1つを備えなくてもよい。 The temperature sensor S1 and the flow rate sensors S2 and S3 are communicably connected to the control device 90 by wire or wirelessly, and transmit measured data to the control device 90. In other embodiments, system 100 may further include other sensors. Also, in other embodiments, system 100 may not include at least one of temperature sensor S1 and flow rate sensors S2, S3.
 制御装置90は、システム100の全体または一部を制御する。例えば、制御装置90は、1つまたは複数のコンピュータを含んでもよい。例えば、本開示で説明される制御装置90の動作は、1つのコンピュータによって実行されてもよく、または、複数のコンピュータによって分けて実行されてもよい。制御装置90は、例えば、プロセッサ90a、記憶装置90bおよびコネクタ90c等の構成要素を含み、これらの構成要素はバスを介して互いに接続される。例えば、プロセッサ90aは、CPU(Central Processing Unit)等を含む。例えば、記憶装置90bは、ハードディスク、プログラム等が格納されるROM、および、ワークエリアとしてのRAM等を含む。制御装置90は、コネクタ90cを介して、システム100の構成要素と有線でまたは無線で通信可能に接続される。例えば、制御装置90は、液晶ディスプレイまたはタッチパネル等の表示装置、および、キーボード、ボタンまたはタッチパネル等の入力装置等、他の構成要素を更に含んでもよい。例えば、本開示で説明される制御装置90の動作は、記憶装置90bに記憶されるプログラムをプロセッサ90aに実行することによって、実現されてもよい。 The control device 90 controls the whole or part of the system 100. For example, controller 90 may include one or more computers. For example, the operations of the control device 90 described in this disclosure may be performed by one computer, or may be performed separately by multiple computers. The control device 90 includes components such as a processor 90a, a storage device 90b, and a connector 90c, and these components are connected to each other via a bus. For example, the processor 90a includes a CPU (Central Processing Unit). For example, the storage device 90b includes a hard disk, a ROM in which programs and the like are stored, and a RAM as a work area. The control device 90 is communicably connected to the components of the system 100 via a connector 90c in a wired or wireless manner. For example, the control device 90 may further include other components such as a display device such as a liquid crystal display or a touch panel, and an input device such as a keyboard, buttons, or a touch panel. For example, the operation of the control device 90 described in this disclosure may be realized by having the processor 90a execute a program stored in the storage device 90b.
 続いて、制御装置90の動作について説明する。 Next, the operation of the control device 90 will be explained.
 図2は、温度と飽和水蒸気圧との関係を示すグラフである。図2において、横軸は温度を示し、縦軸は飽和水蒸気圧を示す。 FIG. 2 is a graph showing the relationship between temperature and saturated water vapor pressure. In FIG. 2, the horizontal axis shows temperature, and the vertical axis shows saturated water vapor pressure.
 1気圧は、約1000hPaである。例えば、1気圧下において、排ガス中の水蒸気の濃度を20%未満に制御する場合、飽和水蒸気圧を、約200hPa未満に調整する必要がある(200hPa=1000hPa×0.2)。図2に示されるように、排ガスの温度を約60℃未満に制御することによって、飽和水蒸気圧を約200hPa未満に調整することができる。したがって、例えば上記の条件では、制御装置90は、排ガスの温度の閾値として、60℃を記憶装置90bに記憶してもよい。閾値は60℃に限定されず、例えば誘引通風機6の性能等の様々な要因に応じて変化し得る。 1 atm is approximately 1000 hPa. For example, when controlling the concentration of water vapor in exhaust gas to less than 20% under 1 atmosphere, the saturated water vapor pressure needs to be adjusted to less than about 200 hPa (200 hPa = 1000 hPa x 0.2). As shown in FIG. 2, by controlling the temperature of the exhaust gas to be less than about 60° C., the saturated water vapor pressure can be adjusted to less than about 200 hPa. Therefore, for example, under the above conditions, the control device 90 may store 60° C. in the storage device 90b as the exhaust gas temperature threshold. The threshold value is not limited to 60° C. and may vary depending on various factors such as the performance of the induced draft fan 6, for example.
 図1を参照して、制御装置90のプロセッサ90aは、温度センサS1から受信する排ガスの温度が、上記の閾値未満になるように、システム100を制御する。例えば、プロセッサ90aは、温度センサS1から受信する排ガスの温度が閾値未満になるように、バルブV1を制御して、循環流路L5を流れる熱媒体の流量を調整する。例えば、温度センサS1から受信する排ガスの温度が増加すると、プロセッサ90aは、熱媒体の流量を増やすようにバルブV1を制御してもよい。反対に、温度センサS1から受信する排ガスの温度が低下すると、プロセッサ90aは、熱媒体の流量を減らすようにバルブV1を制御してもよい。 Referring to FIG. 1, the processor 90a of the control device 90 controls the system 100 so that the temperature of the exhaust gas received from the temperature sensor S1 is less than the above threshold value. For example, the processor 90a controls the valve V1 to adjust the flow rate of the heat medium flowing through the circulation path L5 so that the temperature of the exhaust gas received from the temperature sensor S1 becomes less than a threshold value. For example, when the temperature of the exhaust gas received from temperature sensor S1 increases, processor 90a may control valve V1 to increase the flow rate of the heat medium. Conversely, when the temperature of the exhaust gas received from temperature sensor S1 decreases, processor 90a may control valve V1 to reduce the flow rate of the heat medium.
 代替的にまたは追加的に、プロセッサ90aは、熱媒体の流量を、排ガスの温度以外のパラメータに基づいて調整してもよい。 Alternatively or additionally, the processor 90a may adjust the flow rate of the heat medium based on a parameter other than the temperature of the exhaust gas.
 例えば、プロセッサ90aは、流量センサS2から受信する排ガスの流量に基づいて、熱媒体の流量を調整してもよい。例えば、流量センサS2から受信する排ガスの流量が増加すると、プロセッサ90aは、熱媒体の流量を増やすようにバルブV1を制御してもよい。反対に、流量センサS2から受信する排ガスの流量が低下すると、プロセッサ90aは、熱媒体の流量を減らすようにバルブV1を制御してもよい。 For example, the processor 90a may adjust the flow rate of the heat medium based on the flow rate of exhaust gas received from the flow rate sensor S2. For example, when the flow rate of the exhaust gas received from the flow rate sensor S2 increases, the processor 90a may control the valve V1 to increase the flow rate of the heat medium. Conversely, when the flow rate of the exhaust gas received from the flow rate sensor S2 decreases, the processor 90a may control the valve V1 to reduce the flow rate of the heat medium.
 また、例えば、プロセッサ90aは、流量センサS3から受信する液体アンモニアの流量に基づいて、熱媒体の流量を調整してもよい。例えば、流量センサS3から受信する液体アンモニアの流量が増加すると、プロセッサ90aは、熱媒体の流量を増やすようにバルブV1を制御してもよい。反対に、流量センサS3から受信する液体アンモニアの流量が低下すると、プロセッサ90aは、熱媒体の流量を減らすようにバルブV1を制御してもよい。 Furthermore, for example, the processor 90a may adjust the flow rate of the heat medium based on the flow rate of liquid ammonia received from the flow rate sensor S3. For example, when the flow rate of liquid ammonia received from flow sensor S3 increases, processor 90a may control valve V1 to increase the flow rate of the heat medium. Conversely, when the flow rate of liquid ammonia received from flow sensor S3 decreases, processor 90a may control valve V1 to reduce the flow rate of the heat medium.
 以上のようなシステム100は、熱媒体によって液体アンモニアを加熱する気化器2と、気化器2に接続され、気化器2からのアンモニアを含む燃料を燃焼するボイラ3と、ボイラ3に接続された煙道L4に配置され、ボイラ3からの排ガスを誘導する誘引通風機6と、煙道L4において誘引通風機6の上流に配置される熱交換器4と、を備える。熱交換器4は、熱媒体が流れる循環流路L5によって、気化器2に循環的に接続される。熱交換器4は、液体アンモニアから冷熱エネルギを受け取った熱媒体によって、煙道L4を流れる排ガスを冷却する。上記のように、ボイラ3がアンモニアを含む燃料を燃焼する場合、排ガスはより多くの水蒸気を含む。しかしながら、この構成によれば、排ガスがより多くの水蒸気を含む場合にも、熱交換器4において、排ガス中の水蒸気を低減することができる。したがって、誘引通風機6の負荷の増加を抑えることができる。また、排ガスから得られる熱を液体アンモニアの気化に使用することができる。よって、システム100がアンモニアを燃料として使用する場合に、エネルギ効率を向上することができる。 The system 100 as described above includes a vaporizer 2 that heats liquid ammonia using a heat medium, a boiler 3 that is connected to the vaporizer 2 and burns fuel containing ammonia from the vaporizer 2, and a boiler 3 that is connected to the boiler 3. It includes an induced draft fan 6 that is disposed in the flue L4 and guides exhaust gas from the boiler 3, and a heat exchanger 4 that is disposed upstream of the induced draft fan 6 in the flue L4. The heat exchanger 4 is cyclically connected to the vaporizer 2 through a circulation path L5 through which a heat medium flows. The heat exchanger 4 cools the exhaust gas flowing through the flue L4 using a heat medium that has received cold energy from liquid ammonia. As mentioned above, when the boiler 3 burns fuel containing ammonia, the exhaust gas contains more water vapor. However, according to this configuration, even when the exhaust gas contains more water vapor, the water vapor in the exhaust gas can be reduced in the heat exchanger 4. Therefore, an increase in the load on the induced draft fan 6 can be suppressed. Additionally, the heat obtained from the exhaust gas can be used to vaporize liquid ammonia. Thus, energy efficiency can be improved when system 100 uses ammonia as a fuel.
 また、システム100は、冷却された排ガスから凝縮水を回収する回収器8を備える。このような構成によれば、凝縮水を再利用のために貯留することができる。 The system 100 also includes a recovery device 8 that recovers condensed water from the cooled exhaust gas. According to such a configuration, condensed water can be stored for reuse.
 また、システム100では、回収器8は、ボイラ3に接続され、凝縮水を補給水としてボイラ3に供給する。このような構成によれば、ボイラ3の補給水として、システム100に新たに追加される水の量を低減することができる。 In the system 100, the recovery device 8 is connected to the boiler 3 and supplies condensed water to the boiler 3 as make-up water. According to such a configuration, the amount of water newly added to the system 100 as make-up water for the boiler 3 can be reduced.
 また、システム100は、排ガスの温度、排ガスの流量、および、アンモニアの流量の少なくとも1つに基づいて、熱媒体の流量を調整する制御装置90を備える。このような構成によれば、システム100の運転状況に応じて、熱媒体の流量を適切に調整することができる。 The system 100 also includes a control device 90 that adjusts the flow rate of the heat medium based on at least one of the temperature of the exhaust gas, the flow rate of the exhaust gas, and the flow rate of ammonia. According to such a configuration, the flow rate of the heat medium can be appropriately adjusted depending on the operating status of the system 100.
 以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments have been described above with reference to the accompanying drawings, the present disclosure is not limited to the above embodiments. It is clear that those skilled in the art can come up with various changes and modifications within the scope of the claims, and it is understood that these naturally fall within the technical scope of the present disclosure. be done.
 例えば、上記の実施形態では、システム100は、煙道L4に電気集じん機5を備える。他の実施形態では、システム100は、電気集じん機5を備えなくてもよい。 For example, in the above embodiment, the system 100 includes the electrostatic precipitator 5 in the flue L4. In other embodiments, system 100 may not include electrostatic precipitator 5.
 本開示は、CO放出の削減につながるアンモニアの使用を促進することができるので、例えば、持続可能な開発目標(SDGs)の目標7「手ごろで信頼でき、持続可能かつ近代的なエネルギへのアクセスを確保する」および目標13「気候変動とその影響に立ち向かうため、緊急対策を取る」に貢献することができる。 The present disclosure can promote the use of ammonia, which leads to reduced CO2 emissions, so that it can, for example, support Goal 7 of the Sustainable Development Goals (SDGs) for affordable, reliable, sustainable and modern energy. and Goal 13: “Take urgent action to combat climate change and its impacts.”
 2    気化器
 3    ボイラ
 4    熱交換器
 6    誘引通風機
 8    回収器
 90   制御装置
 100  燃焼システム
 L4   煙道
 L5   循環流路
2 vaporizer 3 boiler 4 heat exchanger 6 induced draft fan 8 recovery device 90 control device 100 combustion system L4 flue L5 circulation channel

Claims (4)

  1.  熱媒体によって液体アンモニアを加熱する気化器と、
     前記気化器に接続され、前記気化器からのアンモニアを含む燃料を燃焼するボイラと、
     前記ボイラに接続された煙道に配置され、前記ボイラからの排ガスを誘導する誘引通風機と、
     前記煙道において前記誘引通風機の上流に配置される熱交換器であって、
      当該熱交換器は、前記熱媒体が流れる循環流路によって、前記気化器に循環的に接続され、
      当該熱交換器は、前記液体アンモニアから冷熱エネルギを受け取った前記熱媒体によって、前記煙道を流れる前記排ガスを冷却する、
     熱交換器と、
     を備える、燃焼システム。
    a vaporizer that heats liquid ammonia with a heat medium;
    a boiler connected to the vaporizer and burning fuel containing ammonia from the vaporizer;
    an induced draft fan disposed in a flue connected to the boiler and guiding exhaust gas from the boiler;
    A heat exchanger disposed upstream of the induced draft fan in the flue,
    The heat exchanger is cyclically connected to the vaporizer by a circulation channel through which the heat medium flows,
    The heat exchanger cools the exhaust gas flowing through the flue by the heat medium that has received cold energy from the liquid ammonia.
    a heat exchanger;
    Combustion system.
  2.  前記冷却された排ガスから凝縮水を回収する回収器を備える、請求項1に記載の燃焼システム。 The combustion system according to claim 1, further comprising a recovery device that recovers condensed water from the cooled exhaust gas.
  3.  前記回収器は、前記ボイラに接続され、前記凝縮水を補給水として前記ボイラに供給する、請求項2に記載の燃焼システム。 The combustion system according to claim 2, wherein the recovery device is connected to the boiler and supplies the condensed water to the boiler as make-up water.
  4.  前記排ガスの温度、前記排ガスの流量、および、前記アンモニアの流量の少なくとも1つに基づいて、前記熱媒体の流量を調整する制御装置を備える、請求項1から3のいずれか一項に記載の燃焼システム。 4. The heating medium according to claim 1, further comprising a control device that adjusts the flow rate of the heat medium based on at least one of the temperature of the exhaust gas, the flow rate of the exhaust gas, and the flow rate of the ammonia. combustion system.
PCT/JP2023/014271 2022-07-05 2023-04-06 Combustion system WO2024009575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022108342 2022-07-05
JP2022-108342 2022-07-05

Publications (1)

Publication Number Publication Date
WO2024009575A1 true WO2024009575A1 (en) 2024-01-11

Family

ID=89452986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014271 WO2024009575A1 (en) 2022-07-05 2023-04-06 Combustion system

Country Status (1)

Country Link
WO (1) WO2024009575A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035041U (en) * 1989-05-31 1991-01-18
JP2013512769A (en) * 2009-12-04 2013-04-18 アルストム テクノロジー リミテッド Method and system for condensing water vapor from carbon dioxide rich flue gas
JP2019196882A (en) * 2018-05-11 2019-11-14 株式会社Ihi Steam generating facility
WO2020174726A1 (en) * 2019-02-25 2020-09-03 月島機械株式会社 Smoke prevention system, incineration facility, and smoke prevention method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035041U (en) * 1989-05-31 1991-01-18
JP2013512769A (en) * 2009-12-04 2013-04-18 アルストム テクノロジー リミテッド Method and system for condensing water vapor from carbon dioxide rich flue gas
JP2019196882A (en) * 2018-05-11 2019-11-14 株式会社Ihi Steam generating facility
WO2020174726A1 (en) * 2019-02-25 2020-09-03 月島機械株式会社 Smoke prevention system, incineration facility, and smoke prevention method

Similar Documents

Publication Publication Date Title
US7954458B2 (en) Boiler having an integrated oxygen producing device
US20120222591A1 (en) Method of and Apparatus for Selective Catalytic NOx Reduction in a Power Boiler
KR101907257B1 (en) Thermal power facility recovering moisture from exhaust gas and method for processing the recovered water of the same
JP5107419B2 (en) Combustion control device for oxyfuel boiler
Sheng et al. Simulation and comparative exergy analyses of oxy-steam combustion and O2/CO2 recycled combustion pulverized-coal-fired power plants
KR20080092348A (en) Oxy-fuel combustion with integrated pollution control
JP2011033029A (en) System and method for supplying fuel to gas turbine
Seepana et al. Optimized enriched CO2 recycle oxy-fuel combustion for high ash coals
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
WO2010036850A2 (en) Transient operation of oxy/fuel combustion system
CN104061793A (en) Step-by-step waste heat recovery system and method for electric furnace flue gas on whole temperature section
Chen et al. Efficiency enhancement of pressurized oxy‐coal power plant with heat integration
WO2024009575A1 (en) Combustion system
KR100934751B1 (en) Carbon Dioxide Highly Concentrated Pure Oxygen Combustion Boiler with Heat Exchanger to Prevent Water Condensation
JPH0694212A (en) Fossil fuel combustion boiler
WO2024009595A1 (en) Combustion system
CN101713535B (en) Burning method of gas fuel with ultra-low concentration
Feng et al. Water consumption of the integration of coal-fired power plant with CO2 post combustion system with different cooling methods
CN200993031Y (en) Residual heat power generating system with adjustable flash system
CN104315495B (en) A kind of energy-saving, environmental protection boiler equipment and boiler energy-saving processing method
CN103148502B (en) Method for alleviating corrosion of boiler preheater
CN203033942U (en) Device for recovering flue gas waste heat of coke oven
JP2014134105A (en) Hydrogen-fueled gas turbine combined cycle power generation plant
CN203598668U (en) Flue gas system
JP2019023453A (en) Power generation system using waste heat in sewage sludge incineration equipment and operation method of power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835116

Country of ref document: EP

Kind code of ref document: A1