WO2024009490A1 - Axial flow fan, air blower, and air conditioner - Google Patents

Axial flow fan, air blower, and air conditioner Download PDF

Info

Publication number
WO2024009490A1
WO2024009490A1 PCT/JP2022/027062 JP2022027062W WO2024009490A1 WO 2024009490 A1 WO2024009490 A1 WO 2024009490A1 JP 2022027062 W JP2022027062 W JP 2022027062W WO 2024009490 A1 WO2024009490 A1 WO 2024009490A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial fan
blade
edge
outer peripheral
rotation axis
Prior art date
Application number
PCT/JP2022/027062
Other languages
French (fr)
Japanese (ja)
Inventor
勝幸 山本
拓矢 寺本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/027062 priority Critical patent/WO2024009490A1/en
Publication of WO2024009490A1 publication Critical patent/WO2024009490A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • the present disclosure relates to an axial fan including a plurality of blades, a blower including the axial fan, and an air conditioner including the blower.
  • an axial fan has been proposed that has a hub serving as a rotation center and a plurality of blades provided on the outer peripheral surface of the hub (for example, see Patent Document 1).
  • the axial fan of Patent Document 1 has a bent portion on the outer circumference of each blade that is bent upward toward the suction side, and the width of the bent portion in the radial direction gradually increases from the leading edge to the trailing edge. It is formed to be.
  • the axial fan disclosed in Patent Document 1 has such a configuration that a blade tip vortex is guided smoothly from the leading edge side to the trailing edge side, and the generated blade tip vortex is difficult to leave the suction surface.
  • the present disclosure is intended to solve the above-mentioned problems, and provides an axial fan, a blower, and a fan in which blade tip vortices are stabilized even when a turbulent airflow flows toward the blade, and the efficiency is increased.
  • the purpose is to provide air conditioners.
  • the axial fan according to the present disclosure includes a hub that is rotationally driven and forms a rotating shaft, a front edge, a rear edge, an inner edge that is a part connected to the hub, and a front edge that is formed around the hub.
  • a wing having an outer edge forming an outer edge between the outer edge and the trailing edge;
  • a reduced part that forms a part where the outer diameter of the blade is smaller than that of the outer diameter part, and in the reduced part, from the inner edge side toward the outer edge, the downstream side in the flow direction of the fluid that flows when the blade rotates.
  • an outer circumferential portion forming a positive pressure surface that curves toward the upstream side from It is formed in such a way that one part is larger than the other.
  • a blower according to the present disclosure includes an axial fan configured as described above and a drive source that applies driving force to the axial fan.
  • An air conditioner includes a blower configured as described above, a motor support that supports a drive source, a condenser that condenses a refrigerant, and an evaporator that evaporates the refrigerant. Air is blown to at least one side of the container.
  • the axial fan has a reduced diameter on the leading edge side of the blade by having a reduced portion in the blade, and the portion on the leading edge side is smaller than the portion forming the outermost diameter of the blade. Since the blade is also close to the rotation axis, the circumferential speed of the blade portion on the leading edge side becomes smaller. Therefore, even if a fluid flow turbulent due to a structure such as a motor support flows into the axial fan, the circumferential speed of the leading edge side of the blade is small, so the part of the leading edge side of the blade The blade tip vortices formed in the air become smaller.
  • the axial fan has an outer circumferential portion in the reduced portion that forms a positive pressure surface that curves from the downstream side toward the upstream side as it goes from the inner circumferential side toward the outer edge.
  • the outer peripheral portion is formed such that the width in the radial direction about the rotation axis is larger at the rear edge side than at the front edge side.
  • FIG. 1 is a front view showing a schematic configuration of an axial fan according to Embodiment 1.
  • FIG. 3 is a front view of a blade in the axial fan according to the first embodiment.
  • FIG. 3 is a cross-sectional view of a blade in the axial fan according to the first embodiment.
  • FIG. 7 is a front view of a first modification of the blade in the axial fan according to the first embodiment.
  • FIG. 7 is a front view of a second modification of the blade in the axial fan according to the first embodiment.
  • FIG. 7 is a front view of a third modification of the blade in the axial fan according to the first embodiment.
  • FIG. 7 is a front view of a fourth modification of the blade in the axial fan according to the first embodiment.
  • FIG. 7 is a front view of a fifth modification of the blade in the axial fan according to the first embodiment.
  • FIG. 7 is a front view of a sixth modification of the blade in the axial fan according to the first embodiment.
  • FIG. 7 is a front view of a seventh modification of the blade in the axial fan according to the first embodiment.
  • FIG. 3 is a conceptual diagram of a radial cross section of an axial fan according to a comparative example.
  • FIG. 7 is a perspective view of an axial fan according to a second comparative example.
  • FIG. 7 is a side view of an axial fan according to a second comparative example.
  • FIG. 7 is a conceptual diagram of an outdoor unit used in an air conditioner equipped with an axial fan according to a second comparative example.
  • FIG. 15 is a conceptual diagram showing the relationship between the motor support and the axial fan in the outdoor unit used in the air conditioner shown in the comparative example of FIG. 14.
  • FIG. FIG. 7 is a front view of a blade in an axial fan according to a second embodiment.
  • FIG. 3 is a cross-sectional view of a blade in an axial fan according to a second embodiment.
  • FIG. 7 is a front view of a first modification of the blade in the axial fan according to the second embodiment.
  • FIG. 7 is a front view of a second modification of the blade in the axial fan according to the second embodiment.
  • FIG. 7 is a front view of a third modification of the blade in the axial fan according to the second embodiment.
  • FIG. 7 is a front view of a fourth modification of the blade in the axial fan according to the second embodiment.
  • FIG. 7 is a front view of a fifth modification of the blade in the axial fan according to the second embodiment.
  • FIG. 7 is a front view of a blade in an axial fan according to a third embodiment.
  • FIG. 7 is a cross-sectional view of a blade in an axial fan according to Embodiment 3.
  • FIG. 7 is a cross-sectional view of a blade in an axial fan according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view of a blade in an axial fan according to a fifth embodiment.
  • FIG. 7 is a cross-sectional view of a first modification of the blade in the axial fan according to the fifth embodiment.
  • FIG. 7 is a cross-sectional view of a blade in an axial fan according to a sixth embodiment.
  • FIG. 7 is a schematic diagram of an air conditioner according to Embodiment 7.
  • FIG. 12 is a perspective view of the outdoor unit of the air conditioner according to Embodiment 7, viewed from the outlet side.
  • FIG. 3 is a diagram for explaining the configuration of the outdoor unit from the top side.
  • FIG. 3 is a diagram showing a state in which the fan grill is removed from the outdoor unit.
  • FIG. 2 is a diagram illustrating the internal configuration of the outdoor unit with the fan grill, front panel, etc. removed.
  • FIG. 1 is a front view showing a schematic configuration of an axial fan 100 according to the first embodiment.
  • the rotation direction DR indicated by the arrow in the figure indicates the direction in which the axial fan 100 rotates.
  • a counter-rotation direction OR indicated by an arrow in the figure indicates a direction opposite to the direction in which the axial fan 100 rotates.
  • a circumferential direction CD indicated by a double-headed arrow in the figure indicates the circumferential direction of the axial fan 100.
  • the circumferential direction CD includes a rotation direction DR and a counter-rotation direction OR.
  • the Y axis shown in FIG. 1 is a direction perpendicular to the rotation axis RA of the axial fan 100, and represents the radial direction of the axial fan 100.
  • the portion on the Y2 side is located on the outer peripheral side with respect to the portion on the Y1 side
  • the portion on the Y1 side is located on the inner peripheral side with respect to the portion on the Y2 side. That is, the Y1 side of the axial fan 100 is the inner peripheral side of the axial fan 100, and the Y2 side of the axial fan 100 is the outer peripheral side of the axial fan 100.
  • the axial fan 100 is an axial impeller, and is a device that forms a fluid flow.
  • the axial fan 100 is used in a blower 55 (see FIG. 31), which will be described later, and is used, for example, as a fan for an air conditioner or a ventilation device.
  • the axial fan 100 forms a fluid flow by rotating in the rotation direction DR about the rotation axis RA.
  • the fluid is, for example, a gas such as air, and the axial fan 100 forms an airflow by rotating.
  • FIG. 1 is a view of the axial fan 100 viewed from the downstream side in the fluid flow direction.
  • the upstream side of the axial fan 100 is the air suction side of the axial fan 100
  • the downstream side of the axial fan 100 is the air outlet side of the axial fan 100.
  • the axial fan 100 includes a hub 10 connected to a rotating shaft rotated by a drive source such as a motor (not shown), and a plurality of blades 20 extending from the hub 10 toward the outer circumference. , is provided.
  • the axial fan 100 includes a so-called bossless type fan in which the leading edge side and the trailing edge side of adjacent blades 20 among a plurality of blades 20 are connected so as to form a continuous surface without using a boss. .
  • the hub 10 is connected to a rotating shaft of a drive source such as a motor (not shown).
  • the hub 10 may have a cylindrical shape, for example, or a plate shape such as a disk shape.
  • the shape of the hub 10 is not limited as long as it is connected to the rotating shaft of the drive source as described above.
  • the hub 10 is rotationally driven by a motor (not shown) or the like to form a rotation axis RA.
  • the hub 10 rotates around a rotation axis RA.
  • the rotation direction DR of the axial fan 100 is a clockwise direction as shown by the arrow in FIG.
  • the rotation direction DR of the axial fan 100 is not limited to clockwise.
  • the hub 10 may be rotated counterclockwise by changing the mounting angle of the blades 20 or the orientation of the blades 20.
  • the blades 20 are provided around the hub 10 and are formed to extend radially outward from the hub 10.
  • the plurality of blades 20 are arranged radially outward from the hub 10 in the radial direction.
  • the plurality of blades 20 are provided spaced apart from each other in the circumferential direction CD. Note that in the first embodiment, the axial fan 100 having three blades 20 is illustrated, but the number of blades 20 is not limited to three.
  • the plurality of wings 20 are each formed in the same shape around the hub 10. Further, the plurality of blades 20 are provided at equal intervals in the circumferential direction CD. Note that the wing 20 is not limited to this configuration. The plurality of blades 20 may be formed in different shapes, and may be formed at different intervals in the circumferential direction CD.
  • the blade 20 is formed in the shape of a forward-swept blade in which the outer circumference side portion protrudes more forward in the rotational direction DR than the inner circumference side portion.
  • the blades 20 are not limited to forward-swept blades, and may be formed in other shapes.
  • the blade 20 is formed in a substantially triangular shape, when viewed in the axial direction of the rotation axis RA, the width of the outer circumferential portion in the circumferential direction CD is larger than the width of the inner circumferential portion in the circumferential direction CD.
  • the blades 20 are not limited to those formed in a substantially triangular shape when viewed in the axial direction of the rotation axis RA.
  • the wing 20 includes a leading edge 21 , a trailing edge 22 , an inner edge 24 that is connected to the hub 10 , and an outer edge 23 that forms an outer edge between the leading edge 21 and the trailing edge 22 .
  • the leading edge portion 21 is formed at a portion of the blade 20 on the forward side in the rotational direction DR. That is, the front edge portion 21 is located forward of the rear edge portion 22 in the rotation direction DR.
  • the leading edge 21 is located on the upstream side of the trailing edge 22 in the flow direction of the fluid to be generated.
  • the trailing edge portion 22 is formed on the rearward side of the blade 20 in the rotational direction DR. That is, the rear edge portion 22 is located rearward with respect to the front edge portion 21 in the rotation direction DR. The trailing edge portion 22 is located downstream of the leading edge portion 21 in the flow direction of the generated fluid.
  • the axial fan 100 has a leading edge 21 as a blade end facing in the rotational direction DR of the axial fan 100, and a trailing edge 22 as a blade end opposite to the leading edge 21 in the rotational direction DR. have.
  • the outer edge portion 23 is a portion extending back and forth in the rotation direction DR so as to constitute a portion between the outermost circumferential portion of the front edge portion 21 and the outermost circumferential portion of the rear edge portion 22.
  • the outer edge portion 23 constitutes an end portion on the outer peripheral side in the radial direction (Y-axis direction) in the axial fan 100.
  • the outer edge portion 23 forms the outer circumferential edge of the blade 20 and also forms the outer circumferential edge of the axial fan 100.
  • the outer edge portion 23 is formed in an arc shape when viewed in a direction parallel to the rotation axis RA.
  • the outer edge portion 23 is not limited to an arcuate configuration when viewed in a direction parallel to the rotation axis RA.
  • the outer edge portion 23 includes a portion formed in an arc shape when viewed in a direction parallel to the rotation axis RA.
  • the length of the outer edge portion 23 in the circumferential direction CD is longer than the length of the inner edge portion 24 in the circumferential direction CD.
  • the relationship between the length of the outer edge portion 23 and the length of the inner edge portion 24 in the circumferential direction CD is not limited to this configuration.
  • the length of the outer edge 23 and the inner edge 24 in the circumferential direction CD may be equal, or the length of the inner edge 24 may be longer than the length of the outer edge 23.
  • the inner edge portion 24 is a portion extending back and forth in the rotation direction DR so as to constitute a portion between the innermost circumferential portion of the front edge portion 21 and the innermost circumferential portion of the rear edge portion 22.
  • the inner edge portion 24 constitutes an end portion on the inner peripheral side in the radial direction (Y-axis direction) in the axial fan 100.
  • the inner edge portion 24 forms the inner peripheral edge of the blade 20 and constitutes the root portion of the blade 20.
  • the inner edge portion 24 is formed in an arc shape when viewed in a direction parallel to the rotation axis RA. However, the inner edge portion 24 is not limited to an arcuate configuration when viewed in a direction parallel to the rotation axis RA.
  • the inner edges 24 of the wings 20 are connected to the hub 10, such as being formed integrally with the hub 10.
  • the inner edge portion 24 of the blade 20 is formed integrally with the outer circumferential wall of the hub 10, which is formed in a cylindrical shape.
  • the blades 20 are formed to be inclined with respect to a plane perpendicular to the rotation axis RA.
  • the blades 20 transport fluid by pushing the fluid existing between the blades 20 with the blade surfaces 28 as the axial fan 100 rotates.
  • the surface on the side where the pressure increases by pushing the fluid when the axial fan 100 rotates is defined as the positive pressure surface 25, and the surface on the back side of the positive pressure surface 25 forms the surface on which the pressure decreases.
  • the side surface is defined as a negative pressure surface 26.
  • the blade surface 28 has a surface facing the upstream side of the blade 20 as the negative pressure surface 26 and a surface facing the downstream side as the positive pressure surface 25.
  • the positive pressure surface 25 is a surface facing the rotation direction DR
  • the negative pressure surface 26 is a surface facing the opposite side to the rotation direction DR.
  • the front surface of the blade 20 is a pressure surface 25, and the rear surface of the blade 20 is a negative pressure surface 26.
  • FIG. 2 is a front view of the blades 20 in the axial fan 100 according to the first embodiment. Note that, in FIG. 2, in order to explain the configuration of the blades 20, only one blade 20 among the plurality of blades 20 is illustrated, and illustration of the other blades 20 is omitted.
  • the cylindrical surface CS shown by a dotted line in FIG. 2 is a virtual cylinder whose radius is the outermost diameter of the axial fan 100 centered on the rotation axis RA when the axial fan 100 is viewed in the axial direction of the rotation axis RA. Indicates the position of the surface.
  • the virtual cylindrical surface CS indicates the position of the blade 20 that forms the outermost diameter of the axial fan 100, and is determined by the portion that forms the outermost diameter of the axial fan 100 when the axial fan 100 rotates. It shows the rotation trajectory.
  • the portion of the blade 20 that forms the virtual cylindrical surface CS is the outer edge portion 23 of the blade 20.
  • the detailed structure of the wing 20 will be further explained using FIG. 2.
  • the wing 20 has a reduced portion 23a and an outer peripheral portion 30.
  • the blade 20 has a reduced portion 23 a at a portion on the outer peripheral side of the axial fan 100 that constitutes the outer edge of the axial fan 100 .
  • the axial fan 100 has a reduced portion 23a, and the axial fan 100 has a region where the fan diameter is reduced on the front edge side of the outer edge of the fan.
  • the reduced portion 23a of the blade 20 is such that the outer diameter of the blade 20 is reduced in a portion on the leading edge 21 side of the portion forming the outer edge 23 than in a portion on the trailing edge 22 side that forms the maximum diameter of the blade 20. form the part.
  • the reduced portion 23a is formed on the outer edge portion 23 of the blade 20.
  • the outer edge portion 23 has a tip portion 201, an inflection portion 202, and a rear end portion 203.
  • the tip portion 201 is a portion of the outer edge portion 23 located closest to the front edge portion 21 side, and is a boundary portion with the front edge portion 21 .
  • the bending portion 202 is a portion of the outer edge portion 23 that forms the outermost diameter of the blade 20 and is located closest to the tip portion 201 side.
  • the rear end portion 203 is a portion of the outer edge portion 23 located closest to the rear edge portion 22, and is a boundary portion with the rear edge portion 22.
  • the reduced portion 23a is formed between the distal end portion 201 and the rear end portion 203, and is formed from the distal end portion 201 toward the rear end portion 203 side.
  • the tip portion 201 is located closest to the leading edge portion 21 of the reduced portion 23a. That is, the reduced portion 23a includes the tip portion 201.
  • the reduced portion 23a is a portion formed such that the outer diameter of the wing 20 portion is smaller in the portion located on the leading edge portion 21 side than the portion located on the trailing edge portion 22 side. In other words, the reduced portion 23a is a portion formed such that the outer diameter of the blade 20 portion is larger in the portion located on the trailing edge 22 side than in the portion located on the leading edge 21 side. .
  • the outer diameter of the blade 20 portion is the outer diameter of the axial fan 100 centered on the rotation axis RA, and refers to the rotation in the radial direction of the axial fan 100 when viewed in the axial direction of the rotation axis RA. It is the distance between the axis RA and the outer edge 23 of the wing 20.
  • the reduced portion 23a is formed, for example, in the circumferential direction CD such that the outer diameter of the blade 20 portion gradually decreases from the portion located on the trailing edge portion 22 side to the portion located on the leading edge portion 21 side. There is. That is, the reduced portion 23a is formed such that the outer diameter of the blade 20 portion gradually decreases as it goes in the rotation direction DR.
  • the reduced portion 23a is a portion formed such that the length of the blade 20 portion in the radial direction gradually decreases as it goes in the rotation direction DR.
  • the reduced portion 23a is formed such that the outer diameter of the blade 20 portion gradually increases from the portion located on the leading edge portion 21 side toward the trailing edge portion 22 in the circumferential direction CD. That is, the reduced portion 23a is formed such that the outer diameter of the blade 20 portion gradually increases in the direction opposite to the rotational direction DR. The reduced portion 23a is formed such that the length of the blade 20 portion in the radial direction gradually increases in the direction opposite to the rotational direction DR.
  • the outer diameter of the blade 20 portion is limited to one that is formed so that in the circumferential direction CD, the outer diameter of the blade 20 portion gradually decreases from the portion located on the trailing edge portion 22 side to the portion located on the leading edge portion 21 side. It's not something you can do.
  • the reduced portion 23a may be formed such that the outer diameter of the blade 20 portion is smaller than that of the portion where the tip portion 201 is located on the trailing edge portion 22 side when viewing the blade 20 as a whole.
  • the reduced portion 23a is not limited to one in which the outer diameter of the blade 20 portion gradually changes in the circumferential direction CD, and may include a radially recessed portion or a radially protruding portion. May contain. However, the outer diameter of the reduced portion 23a is smaller than the outermost diameter of the blade 20.
  • the blade 20 has a cutout shape at the reduced portion 23a compared to the virtual outer edge 23 located on the cylindrical surface CS, which would be the outer edge 23 of the blade 20 without the reduced portion 23a. is formed.
  • the reduced portion 23a is formed to be located on the inner circumferential side (Y1 side) of the cylindrical surface CS near the rotation axis RA.
  • the cylindrical surface CS and the outer edge portion 23 in the radial direction centering on the rotation axis RA. is formed so that its width is small.
  • the radial direction around the rotation axis RA increases from the portion located on the trailing edge portion 22 side toward the tip portion 201.
  • the width between the cylindrical surface CS and the outer edge portion 23 is increased.
  • the reduced portion 23a is formed in a portion of the outer edge 23 on the front edge 21 side in the circumferential direction CD.
  • the reduced portion 23a is formed from the tip portion 201 to the bent portion 202 in the circumferential direction CD.
  • the reduced portion 23a is formed in the entire region between the tip portion 201 and the bending portion 202 in the circumferential direction CD centered on the rotation axis RA.
  • the bending part 202 is provided between the leading end part 201 and the rear end part 203 at the outer edge part 23. Further, the bending portion 202 may be provided at the same position as the rear end portion 203.
  • the reduced portion 23a may be formed in a portion of the outer edge 23 on the front edge 21 side in the circumferential direction CD, or may be formed from the front edge 21 to the rear edge 22.
  • the inflection portion 202 is a portion that forms a different curvature with respect to the cylindrical surface CS at the outer edge portion 23 of the blade 20.
  • the inflection portion 202 is a portion that forms a larger curvature than the curvature of the cylindrical surface CS in the outer edge portion 23 of the blade 20.
  • the inflection portion 202 is a portion where the curvature of the portion forming the maximum diameter of the blade 20 and the portion forming the leading edge portion 21 side is changed.
  • the bending portion 202 is a portion forming the outermost diameter of the axial fan 100 and the blades 20, and is a portion located on the virtual cylindrical surface CS when viewed in the axial direction of the rotation axis RA.
  • the inflection portion 202 is a boundary between the reduced portion 23a and a rear outer edge portion 23b, which will be described later. That is, the bending portion 202 is the rear end portion of the reduced portion 23a and the tip portion of the rear outer edge portion 23b.
  • the outer edge part 23 of the wing 20 includes a rear outer edge part 23b in a portion between the bending part 202 and the rear end part 203.
  • the wing 20 has a rear outer edge portion 23b at a portion of the outer edge portion 23 closer to the rear edge portion 22 than the reduced portion 23a.
  • the rear outer edge portion 23b is a portion of the blade 20 formed to have a constant outer diameter.
  • the rear outer edge portion 23b is a portion of the outer edge portion 23 that forms a constant outer diameter from a portion located on the front edge portion 21 side to a portion located on the rear edge portion 22 side.
  • the rear outer edge portion 23b is a portion formed along the cylindrical surface CS when viewed in the axial direction of the rotation axis RA.
  • the rear outer edge portion 23b is a portion that forms the outermost diameter of the axial fan 100 and the blades 20.
  • the rear outer edge portion 23b may be formed in a portion between the bending portion 202 and the rear end portion 203, or may be formed in the entire portion between the bending portion 202 and the rear end portion 203. .
  • the wing 20 may include a portion having a shape that does not follow the cylindrical surface CS in the outer edge portion 23 that constitutes the portion between the bending portion 202 and the rear end portion 203.
  • the blade 20 when viewed in the axial direction of the rotation axis RA, the blade 20 may include a linear portion in the outer edge portion 23 that constitutes a portion between the bending portion 202 and the rear end portion 203. .
  • the outer diameter of the blade 20 is smaller than the outer diameter of the blade 20 at a part of the outer edge portion 23 that constitutes a portion between the bending portion 202 and the rear end portion 203. It may include a portion that is smaller than the outermost diameter of 20.
  • FIG. 3 is a cross-sectional view of the blades 20 in the axial fan 100 according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the blade 20 in FIG. 2 taken along line AA when viewed in the direction of the arrows.
  • the outer peripheral portion 30 of the blade 20 will be explained using FIGS. 2 and 3.
  • the outer peripheral portion 30 forms a positive pressure surface 25 that curves from the downstream side to the upstream side in the flow direction of the fluid flowing when the blade 20 rotates as it goes from the inner edge 24 side toward the outer edge 23. do.
  • the outer peripheral part 30 is a part that has the function of reducing air resistance by rectifying the flow of air near the blade tip on the outer peripheral side of the blade 20, thereby reducing the blade tip vortex, or moving the generation direction upward.
  • the outer peripheral portion 30 is formed in the reduced portion 23a. Further, the outer peripheral portion 30 is formed along the outer edge portion 23 of the blade 20.
  • the outer peripheral portion 30 is formed from the outer edge 23 to a specific portion on the inner edge 24 side in the radial direction centered on the rotation axis RA.
  • the outer peripheral portion 30 is a portion of the blade 20 that forms the outer peripheral positive pressure surface 25a.
  • the pressure surface 25 of the blade 20 includes an outer peripheral pressure surface 25a.
  • the outer peripheral positive pressure surface 25a forms an outwardly facing surface of the blade 20, as shown in FIG.
  • the outer peripheral positive pressure surface 25a forms a surface that has a radial component around the rotation axis RA.
  • the outer peripheral positive pressure surface 25a forms a side surface of the axial fan 100.
  • the outer peripheral positive pressure surface 25a is formed to curve from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23.
  • the outer peripheral positive pressure surface 25a is formed to curve upward from the downstream side toward the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23.
  • the outer circumferential positive pressure surface 25a is formed so as to bulge on the downstream side and on the outer circumferential side.
  • the outer circumferential portion 30 is formed in the reduced portion 23a, and for example, is formed from the tip portion 201 to the bent portion 202 in the circumferential direction CD.
  • the outer peripheral portion 30 is formed in the entire area of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA. Further, the outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA is larger on the rear edge 22 side than on the front edge 21 side.
  • the outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA gradually increases from the tip portion 201 toward the bending portion 202. That is, the outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA gradually increases from the portion on the front end portion 201 side to the portion on the rear edge portion 22 side. The outer peripheral portion 30 is formed such that the width W in the radial direction gradually increases from the portion on the front edge portion 21 side to the portion on the rear edge portion 22 side.
  • the width W of the outer peripheral portion 30 shown in FIG. 2 is the width W1 in the radial direction centered on the rotation axis RA when viewed in the axial direction of the rotation axis RA (see FIG. 3). Note that the width W of the outer peripheral portion 30 may be defined as the width W2 along the positive pressure surface 25 in the radial direction centered on the rotation axis RA, as shown in FIG.
  • the cylindrical surface CL shown by the dotted line in FIG. It shows the position of the cylindrical surface.
  • the outer circumferential portion 30 is formed in a range between the virtual cylindrical surface CL and the outer edge portion 23 in the radial direction centered on the rotation axis RA. Note that the formation position of the outer circumferential portion 30 is not limited to this range, and the inner circumferential portion of the outer circumferential portion 30 may be formed to a position closer to the inner edge portion 24 than the cylindrical surface CL. That is, in the blade 20, the formation position of the cylindrical surface CL may be included in the formation range of the outer peripheral portion 30.
  • the blade 20 has an outer peripheral positive pressure surface 25a that curves upstream toward the outer peripheral side in the radial direction in the outer peripheral portion 30.
  • the outer peripheral part 30 is formed from an arbitrary position on the leading edge part 21 side to an inflection part 202 reaching the maximum diameter in the reduced part 23a, which is a region where the blade diameter is reduced.
  • the outer circumferential portion 30 has a radial width W greater at a portion on the side of the bending portion 202 that forms the maximum diameter of the blade 20 than at any arbitrary position on the leading edge portion 21 side.
  • FIG. 4 is a front view of a first modification of the blades 20 in the axial fan 100 according to the first embodiment.
  • the outer circumferential portion 30 only needs to be formed in the reduced portion 23a, and the outer circumferential portion 30 is limited to an aspect in which it is formed in the entire region from the tip portion 201 to the inflection portion 202 in the circumferential direction CD. isn't it.
  • the outer peripheral portion 30 may be formed in a part of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
  • the outer peripheral portion 30 may be formed at the rear of the tip portion 201, that is, at a portion closer to the rear edge portion 22 than the tip portion 201. As shown in FIG. 4, the outer circumferential portion 30 may not include the tip portion 201 and may be formed from a position closer to the bending portion 202 than the tip portion 201 to a position of the bending portion 202 in the circumferential direction CD. That is, the outer peripheral portion 30 may be formed in the entire area between a specific position between the tip portion 201 and the bending portion 202 and the position of the bending portion 202 in the circumferential direction CD.
  • FIG. 5 is a front view of a second modification of the blades 20 in the axial fan 100 according to the first embodiment.
  • the outer circumferential portion 30 may be formed in a partial region of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
  • the outer peripheral portion 30 may not include the bending portion 202 and may be formed from the tip portion 201 to the front of the bending portion 202 in the counter-rotation direction OR. That is, the outer circumferential portion 30 may be formed in the entire area between the position of the tip portion 201 and a specific position between the tip portion 201 and the bending portion 202 in the circumferential direction CD.
  • FIG. 6 is a front view of a third modification of the blades 20 in the axial fan 100 according to the first embodiment.
  • the outer circumferential portion 30 may be formed in a partial region of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
  • the outer peripheral portion 30 may not include the tip portion 201 and the bending portion 202 and may be formed in a region between the tip portion 201 and the bending portion 202 in the circumferential direction CD. That is, the outer peripheral part 30 may be formed from a specific position on the front edge part 21 side to a specific position on the rear edge part 22 side between the tip part 201 and the inflection part 202 in the circumferential direction CD.
  • FIG. 7 is a front view of a fourth modification of the blades 20 in the axial fan 100 according to the first embodiment.
  • the formation area of the outer circumferential portion 30 is arranged behind the tip portion 201, and the outer circumferential portion 30 is formed such that the width W gradually increases from the tip portion 201 side toward the bending portion 202 side.
  • the outer circumferential portion 30 may be formed in a triangular shape with one of its vertices being the tip portion on the front edge portion 21 side when viewed in the axial direction of the rotation axis RA.
  • FIG. 8 is a front view of a fifth modification of the blades 20 in the axial fan 100 according to the first embodiment.
  • the number of outer peripheral portions 30 in the reduced portion 23a of the blade 20 in FIGS. 1 to 7 is one.
  • the number of outer peripheral parts 30 in the reduced part 23a of the blade 20 is not limited to one, and may be plural as shown in FIG. 8. That is, the reduced portion 23a of the blade 20 may have one outer circumferential portion 30 or may have a plurality of outer circumferential portions 30.
  • FIG. 9 is a front view of a sixth modification of the blades 20 in the axial fan 100 according to the first embodiment.
  • FIG. 10 is a front view of a seventh modification of the blade 20 in the axial fan 100 according to the first embodiment.
  • the blade 20 may have a non-linear change in diameter at the reduced portion 23a. That is, in the blade 20, in the reduced portion 23a, the change in diameter in the rotational direction DR does not need to be a simple decrease, and the change in the diameter in the counter-rotation direction OR does not need to be a simple increase.
  • the outer diameter of the part on the distal end part 201 side is the same as that of the part on the rear edge part 22 side of the reduced part 23a as a whole. It is sufficient if it is formed to be smaller than the outer diameter.
  • the reduced portion 23a is not limited to a shape in which the diameter gradually increases in the counter-rotation direction OR, but as shown in FIG. It may have a recessed portion 23c that is recessed compared to a shape in which the diameter is larger.
  • the reduced portion 23a is protruded between the tip portion 201 and the bending portion 202 compared to a shape in which the diameter gradually increases toward the counter-rotation direction OR. It may have a protruding portion 23d. However, the outer diameter of the protruding portion 23d is smaller than the maximum diameter of the blade 20.
  • the outer edge portion 23 of the reduced portion 23a is not limited to a curved shape, and may include a straight portion. Further, the outer edge portion 23 of the reduced portion 23a may be formed in a wavy line shape or may be formed in a sawtooth shape.
  • FIG. 11 is a conceptual diagram of a radial cross section of an axial fan 100L according to a comparative example.
  • the axial fan 100L is a commonly used fan.
  • FIG. 11 an image of the formation of the blade tip vortex WL formed in a normal axial fan 100L will be explained using FIG. 11.
  • the rotation of the fan causes the axial fan 100L to move between a suction surface 26, which is an upstream surface on the blade surface, and a positive pressure surface 25, which is a downstream surface, in the direction in which fluid flows by the axial fan 100L.
  • a pressure difference occurs.
  • a blade tip vortex WL is generated by a fluid flow leaking from the positive pressure surface 25 to the negative pressure surface 26 due to the pressure difference.
  • the blade tip vortex WL is gradually stacked and increased from the leading edge 21 side to the trailing edge 22 side of the blade 20, and the vortex diameter is expanded.
  • FIG. 12 is a perspective view of an axial fan 100R according to a second comparative example.
  • FIG. 13 is a side view of an axial fan 100R according to a second comparative example.
  • the axial fan 100R is a fan that has a bent portion 140 like the fan of Patent Document 1.
  • the axial fan 100R has a bent portion 140 on the outer peripheral edge of each blade 20R, which is bent upward toward the suction side, and the radial width of the bent portion 140 varies from the leading edge 21 side to the trailing edge. It is formed so that it gradually becomes larger toward the portion 22 side. With this configuration, the axial fan 100R can smoothly guide the blade tip vortex WL from the leading edge 21 side to the trailing edge 22 side, and the generated blade tip vortex WL can be guided from the suction surface 26 of the blade 20. It becomes difficult to leave.
  • the blade tip vortex WL is generated from the leading edge 21 side at the outer edge 23 and flows rearward while gradually expanding. As described above, in the axial fan 100R, the size of the bent portion 140 is gradually increased from the leading edge 21 side to the trailing edge 22 side, so that the expanding blade tip vortex WL is transferred to the bent portion 140. The blade tip vortex WL is stabilized without being disturbed.
  • the axial Airflow with little turbulence flows into the flow fan 100R. Therefore, when there is no structure upstream of the axial fan 100R, the blade tip vortex WL generated on the leading edge 21 side is smaller than the blade tip vortex WL generated on the trailing edge 22 side, and The flow fan 100R does not need to take into account the influence of the blade tip vortex WL generated in the portion on the leading edge 21 side.
  • FIG. 14 is a conceptual diagram of an outdoor unit 150R used in an air conditioner equipped with an axial fan 100R according to a second comparative example.
  • FIG. 15 is a conceptual diagram showing the relationship between the motor support 155 and the axial fan 100R in the outdoor unit 150R used in the air conditioner shown in the comparative example of FIG. 14.
  • the outdoor unit 150R used in the air conditioner is a device that performs air conditioning by adjusting the temperature and humidity of the air in the indoor space to be air-conditioned.
  • the outdoor unit 150R is a refrigeration cycle device that forms a refrigerant circuit in which a compressor 153, a condenser, an expansion valve, an evaporator, etc. are connected via piping.
  • the fan 100R is housed inside a housing 151 and installed outdoors.
  • the air conditioner 150 includes an axial fan 100R, a heat exchanger 152, and a housing 151 that houses the axial fan 100R and the heat exchanger 152 inside.
  • the axial fan 100R is connected to a motor 154.
  • Motor 154 is fixed to motor support 155.
  • the motor support 155 is a structure disposed upstream of the axial fan 100R in the direction in which fluid flows by the axial fan 100R.
  • the blade 20 When a turbulent fluid flow such as the wake WT flows into the leading edge 21 on the outer peripheral side of the axial fan 100R, the blade 20 is influenced by the circumferential speed of the outer edge 23 located at the outermost periphery of the blade 20. Large fluid leakage also occurs on the leading edge 21 side of the blade, increasing the formation of blade tip vortices WL.
  • the outer edge portion 23 located at the outermost periphery of the blade 20 is a portion where the circumferential speed is the highest in the radial position of the axial fan 100R.
  • a large blade tip vortex WL is also formed on the leading edge 21 side in combination with the influence of the circumferential speed. Note that the circumferential speed of the blade 20 decreases as it approaches the rotation axis RA, and increases as it moves away from the rotation axis RA.
  • the turbulent fluid flow such as the wake WT will not flow into the axial fan 100R.
  • the blade tip vortex WL may become unstable and the fan efficiency may decrease.
  • the outer diameter of the blade 20 of the axial fan 100 is smaller in the portion on the leading edge 21 side of the portion forming the outer edge 23 than in the portion on the trailing edge 22 side forming the maximum diameter of the blade 20. It has a reduced portion 23a that forms a reduced portion.
  • the blades 20 of the axial fan 100 are curved from the downstream side to the upstream side in the direction in which fluid flows when the blades 20 rotate, from the inner edge 24 side toward the outer edge 23 in the reduced portion 23a. It has an outer peripheral portion 30 forming a positive pressure surface 25.
  • the outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA is larger on the rear edge 22 side than on the front edge 21 side.
  • the axial fan 100 has a reduced diameter on the leading edge 21 side of the blade 20 by having the reduced portion 23a in the blade 20, and the portion on the leading edge 21 side forms the outermost diameter of the blade 20. Since the blade 20 is closer to the rotation axis RA than the blade 20, the circumferential speed of the portion of the blade 20 on the leading edge 21 side becomes smaller. Therefore, even if a fluid flow disturbed by a structure such as a motor support flows into the axial fan 100, the front edge of the blade 20 is The blade tip vortex WL formed on the edge 21 side becomes smaller.
  • the axial fan 100 has an outer circumferential part 30 in the reduced part 23a, and the outer circumferential part 30 has a width W in the radial direction around the rotation axis RA that is smaller at the rear edge than at the front edge 21 side.
  • the portion on the 22 side is formed to be larger.
  • the outer peripheral portion 30 may be formed in a partial region of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
  • the axial fan 100 has an outer peripheral part 30 in a part of the reduced part 23a, and the outer peripheral part 30 has a width W in the radial direction around the rotation axis RA that is closer to the rear edge than a part on the front edge 21 side.
  • the portion on the part 22 side is formed to be larger.
  • the outer peripheral portion 30 may be formed in the entire area of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
  • the axial fan 100 has an outer circumferential portion 30 in all areas of the reduced portion 23a, and the outer circumferential portion 30 has a width W in the radial direction centered on the rotation axis RA that is rearward than the portion on the front edge 21 side.
  • the portion on the edge 22 side is formed to be larger. With this configuration, the axial fan 100 can cause the blade tip vortex WL, which expands from the leading edge 21 side to the trailing edge 22 side, to follow the outer circumference 30 .
  • the blade tip vortex WL on the negative pressure surface 26 is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
  • the circumferential speed of the blade 20 increases as the diameter increases.
  • the entire region of the reduced portion 23a is the region from the tip portion 201 to the inflection portion 202.
  • the bending portion 202 is a portion that constitutes the maximum diameter of the blade 20 and is a portion of the blade 20 where the circumferential speed is faster than the tip portion 201.
  • the axial fan 100 can further improve the stability of the blade tip vortex WL by forming the outer circumferential portion 30 from the tip portion 201 to the inflection portion 202.
  • the outer peripheral portion 30 is formed such that the width W in the radial direction around the rotation axis RA gradually increases from the portion on the front end portion 201 side to the portion on the rear edge portion 22 side.
  • the axial fan 100 can cause the blade tip vortex WL, which expands from the portion on the leading edge 21 side to the portion on the trailing edge 22 side, to further follow the outer peripheral portion 30. Therefore, in the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
  • FIG. 16 is a front view of the blades 20 in the axial fan 100 according to the second embodiment.
  • FIG. 17 is a cross-sectional view of the blades 20 in the axial fan 100 according to the second embodiment.
  • FIG. 16 in order to explain the configuration of the blade 20, only one blade 20 among the plurality of blades 20 is illustrated, and illustration of the other blades 20 is omitted.
  • FIG. 17 is a cross-sectional view of the blade 20 in FIG. 16 taken along line BB when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 10 are designated by the same reference numerals, and the description thereof will be omitted.
  • the configuration of the rear outer edge portion 23b is further specified.
  • the rear outer edge portion 23b may have a rear outer peripheral portion 40. That is, the wing 20 may further include a rear outer circumferential portion 40 in addition to the outer circumferential portion 30 .
  • the rear outer peripheral part 40 extends from the inner edge 24 side toward the outer edge 23 on the trailing edge 22 side than the reduced part 23a, from the downstream side to the upstream side in the direction of fluid flowing when the blade 20 rotates. to form a curved positive pressure surface 25.
  • the rear outer peripheral portion 40 is formed in the region of the rear outer edge portion 23b.
  • the rear outer circumferential portion 40 is formed at the rear of the outer circumferential portion 30 in the rotation direction DR, and is formed at a portion closer to the rear edge portion 22 than the outer circumferential portion 30 is.
  • the rear outer circumferential part 40 reduces the wing tip vortex WL by rectifying the air flow near the wing tip on the outer circumferential side of the blade 20, or moves the generation direction upward, thereby reducing air resistance. This is the part that has the function of reducing
  • the rear outer peripheral portion 40 is formed in the region of the rear outer edge portion 23b. Further, the rear outer peripheral portion 40 is formed along the outer edge portion 23 of the wing 20. The rear outer peripheral portion 40 is formed from the outer edge 23 to a specific portion on the inner edge 24 side in the radial direction centered on the rotation axis RA.
  • the rear outer peripheral portion 40 is a portion of the blade 20 that forms the rear outer peripheral positive pressure surface 25b.
  • the pressure surface 25 of the blade 20 includes a rear outer peripheral pressure surface 25b.
  • the rear outer peripheral positive pressure surface 25b forms an outwardly facing surface of the blade 20, as shown in FIG.
  • the rear outer peripheral positive pressure surface 25b forms a surface having a radial component around the rotation axis RA.
  • the rear outer peripheral positive pressure surface 25b forms a side surface of the axial fan 100.
  • the rear outer peripheral positive pressure surface 25b is formed to curve from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows from the inner peripheral side toward the outer edge 23.
  • the rear outer peripheral positive pressure surface 25b is formed to curve upward from the downstream side toward the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23.
  • the rear outer circumferential positive pressure surface 25b is formed so that its downstream side and outer circumferential side are bulged.
  • the rear outer peripheral part 40 may be formed in the rear outer edge part 23b, and as an example, as shown in FIG. ing.
  • the rear outer peripheral portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed to extend from the bending portion 202 to the rear edge portion 22.
  • the rear outer circumferential portion 40 is formed in a range between the virtual cylindrical surface CL and the outer edge portion 23 in the radial direction centered on the rotation axis RA. Note that the formation position of the rear outer peripheral part 40 is not limited to this range, and the inner peripheral side part of the rear outer peripheral part 40 may be formed to a position closer to the inner edge part 24 than the cylindrical surface CL. . That is, in the blade 20, the formation position of the cylindrical surface CL may be included in the formation range of the rear outer peripheral portion 40.
  • FIG. 18 is a front view of a first modification of the blades 20 in the axial fan 100 according to the second embodiment.
  • the rear outer circumferential portion 40 may be formed in the rear outer edge portion 23b.
  • the rear outer circumferential portion 40 may be formed in the entire region from the bending portion 202 to the rear end portion 203 in the circumferential direction CD. It is not limited.
  • the rear outer peripheral portion 40 may be formed at the rear of the reduced portion 23a, that is, at a portion closer to the rear edge portion 22 than the reduced portion 23a. As shown in FIG. 18, the rear outer peripheral part 40 does not include the bending part 202, and is formed from a position closer to the rear end part 203 than the bending part 202 to a position of the rear end part 203 in the circumferential direction CD. Good too. That is, the rear outer peripheral portion 40 may be formed in the entire area between a specific position between the bending portion 202 and the rear end portion 203 and the position of the rear end portion 203 in the circumferential direction CD. . The rear outer peripheral portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed to extend from a position closer to the rear end portion 203 than the bending portion 202 to the rear edge portion 22.
  • FIG. 19 is a front view of a second modification of the blades 20 in the axial fan 100 according to the second embodiment.
  • the rear outer circumferential portion 40 may not include the rear end portion 203 and may be formed from the bending portion 202 to the front of the rear end portion 203 in the counter-rotation direction OR. That is, the rear outer circumferential portion 40 may be formed in all areas between the position of the bending portion 202 and a specific position between the bending portion 202 and the rear end portion 203 in the circumferential direction CD. good.
  • the rear outer circumferential portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed from a portion on the front edge 21 side to a portion on the rear edge 22 side, and does not extend to the rear edge 22. do not have.
  • FIG. 20 is a front view of a third modification of the blades 20 in the axial fan 100 according to the second embodiment.
  • the rear outer peripheral part 40 does not include the bending part 202 and the rear end part 203, and is formed in a region between the bending part 202 and the rear end part 203 in the circumferential direction CD.
  • the rear outer peripheral portion 40 may be formed from a specific position on the front edge 21 side to a specific position on the rear edge 22 side between the bending portion 202 and the rear end portion 203 in the circumferential direction CD. good.
  • the rear outer circumferential portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed from a portion on the front edge 21 side to a portion on the rear edge 22 side, and does not extend to the rear edge 22. do not have.
  • FIG. 21 is a front view of a fourth modification of the blades 20 in the axial fan 100 according to the second embodiment.
  • the rear outer circumferential portion 40 is formed such that the width BW in the radial direction centering on the rotation axis RA gradually increases from the portion on the bending portion 202 side to the portion on the rear end portion 203 side. That is, the rear outer circumferential portion 40 is formed such that the width W in the radial direction gradually increases from the portion on the front edge 21 side to the portion on the rear edge 22 side.
  • the rear outer circumferential portion 40 may be formed in a triangular shape with one of its vertices being the tip portion on the front edge portion 21 side when viewed in the axial direction of the rotation axis RA.
  • FIG. 22 is a front view of a fifth modification of the blades 20 in the axial fan 100 according to the second embodiment.
  • the rear outer circumferential portion 40 is formed such that the width BW in the radial direction centering on the rotation axis RA gradually decreases from the portion on the bending portion 202 side to the portion on the rear end portion 203 side. That is, the rear outer circumferential portion 40 is formed such that the width W in the radial direction gradually decreases from the portion on the front edge 21 side to the portion on the rear edge 22 side.
  • the rear outer circumferential portion 40 may be formed in a triangular shape with one of its vertices being the tip portion on the rear edge portion 22 side when viewed in the axial direction of the rotation axis RA.
  • FIG. 23 is a front view of the blades 20 in the axial fan 100 according to the third embodiment.
  • FIG. 24 is a cross-sectional view of the blades 20 in the axial fan 100 according to the third embodiment.
  • FIG. 23 in order to explain the configuration of the blade 20, only one blade 20 among the plurality of blades 20 is illustrated, and illustration of the other blades 20 is omitted.
  • FIG. 24 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 22 are designated by the same reference numerals, and a description thereof will be omitted.
  • the configuration of the outer peripheral portion 30 is further specified.
  • the outer circumferential portion 30 has a first region 25a1 including the outer edge portion 23 of the fan and a second region 25a2 formed continuously on the inner circumferential side of the first region 25a1 in a radial cross section centered on the rotation axis RA.
  • the outer peripheral positive pressure surface 25a of the outer peripheral portion 30 includes a first region 25a1 and a second region 25a2.
  • the first region 25a1 forms a region located on the outer peripheral side with respect to the second region 25a2, and includes the outer edge portion 23 of the blade 20.
  • the second region 25a2 forms a region located on the inner peripheral side with respect to the first region 25a1.
  • the first region 25a1 and the second region 25a2 are formed continuously in the radial direction of the axial fan 100.
  • the first region 25a1 and the second region 25a2 may be flat surfaces or may be curved surfaces.
  • a straight line connecting the inner end point and the outer end point in the radial direction of the first region 25a1 is defined as a locus L1
  • the diameter of the second region 25a2 is defined as a locus L2.
  • a line representing a plane perpendicular to the rotation axis RA is defined as a straight line FL.
  • the angle between the locus L1 of the first region 25a1 and the straight line FL is defined as a first angle ⁇ 1.
  • the angle between the locus L2 of the second region 25a2 and the straight line FL is defined as a second angle ⁇ 2.
  • the axial fan 100 according to the third embodiment is formed such that the first angle ⁇ 1 of the first region 25a1 is larger than the second angle ⁇ 2 of the second region 25a2.
  • the axial fan 100 according to the third embodiment is formed such that the second angle ⁇ 2 of the second region 25a2 is smaller than the first angle ⁇ 1 of the first region 25a1.
  • the outer circumferential portion 30 has a locus L1 connecting the inner circumferential end point and the outer circumferential end point in the radial direction of the first region 25a1, and the rotation axis.
  • a first angle ⁇ 1 is formed with the straight line FL representing a plane perpendicular to RA.
  • the outer circumferential portion 30 is an angle formed between a locus L2 connecting an end point on the inner circumferential side and an end point on the outer circumferential side in the radial direction of the second region 25a2 and a straight line FL representing a plane perpendicular to the rotation axis RA.
  • a second angle ⁇ 2 is configured.
  • the outer peripheral portion 30 is formed such that when comparing the first angle ⁇ 1 and the second angle ⁇ 2, the first angle ⁇ 1 of the first region 25a1 is larger than the second angle ⁇ 2 of the second region 25a2. . That is, the line formed by the locus connecting the inner end point and the outer end point of each region in the radial direction of the first region 25a1 and the second region 25a2 and a straight line representing a plane perpendicular to the fan axis direction. The angle is larger in the first region 25a1 than in the second region 25a2.
  • the outer circumferential portion 30 of the axial fan 100 is formed continuously with the first region 25a1 including the outer edge portion 23 on the inner circumferential side thereof in a radial cross section centered on the rotation axis RA. and a second region 25a2.
  • the outer peripheral portion 30 is formed such that the first angle ⁇ 1 of the first region 25a1 is larger than the second angle ⁇ 2 of the second region 25a2. That is, the line formed by the locus connecting the inner end point and the outer end point of each region in the radial direction of the first region 25a1 and the second region 25a2 and a straight line representing a plane perpendicular to the fan axis direction.
  • the angle is larger in the first region 25a1 than in the second region 25a2.
  • the axial fan 100 according to the third embodiment has the outermost peripheral portion of the blade 20 curved more steeply in the radial direction around the rotation axis RA, thereby reducing the amount of fluid that separates from the positive pressure surface 25 at the outer edge of the fan.
  • the flow becomes gentler, and the blade tip vortex WL becomes more stable. Therefore, in the axial fan 100, the blade tip vortex WL is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
  • FIG. 25 is a cross-sectional view of the blades 20 in the axial fan 100 according to the fourth embodiment.
  • FIG. 25 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 24 are designated by the same reference numerals, and a description thereof will be omitted.
  • the configuration of the negative pressure surface 26 of the outer peripheral portion 30 is further specified.
  • the outer circumference 30 of the axial fan 100 according to the fourth embodiment has a negative pressure surface 26 from the upstream side to the downstream side in the direction in which fluid flows when the blades 20 rotate, in a radial cross section centered on the rotation axis RA. is depressed. More specifically, the outer peripheral portion 30 of the axial fan 100 according to the fourth embodiment has an outer peripheral negative pressure surface 26a.
  • the suction surface 26 of the blade 20 includes an outer peripheral suction surface 26a.
  • the outer negative pressure surface 26a has a cross-sectional shape concave from the upstream side to the downstream side in the direction of fluid flow by the axial fan 100. . That is, in the radial cross section of the axial fan 100, the cross-sectional shape of the outer peripheral negative pressure surface 26a is curved in a convex shape from the upstream side to the downstream side in the direction of fluid flow by the axial fan 100.
  • the outer peripheral negative pressure surface 26a is, for example, curved in an arc shape.
  • the outer peripheral negative pressure surface 26a forms a surface facing inward of the blade 20, as shown in FIG.
  • the outer peripheral negative pressure surface 26a forms a surface that has a radial component around the rotation axis RA.
  • the outer peripheral negative pressure surface 26a forms a surface on the inner side of the axial fan 100.
  • the outer peripheral negative pressure surface 26a is formed to curve from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23.
  • the outer peripheral negative pressure surface 26a is formed to curve upward from the downstream side toward the upstream side in the flow direction of the fluid formed by the axial fan 100 as it goes from the inner peripheral side toward the outer edge 23.
  • the outer peripheral portion 30 of the blade 20 moves from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows from the inner peripheral side toward the outer edge 23.
  • the blades are curved toward the Due to the outer peripheral positive pressure surface 25a and the outer peripheral negative pressure surface 26a, the outer peripheral portion 30 of the blade 20 moves from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows from the inner peripheral side toward the outer edge 23.
  • the blades are shaped so that they curve upward.
  • the outer circumference 30 of the axial fan 100 according to the fourth embodiment has a negative pressure surface 26 from the upstream side to the downstream side in the direction in which fluid flows when the blades 20 rotate, in a radial cross section centered on the rotation axis RA. is depressed. That is, the shape of the negative pressure surface 26 in the radial cross section is convex toward the downstream side. Since the blade tip vortex WL is spiral, the outer edge of the blade tip vortex WL is adjusted by forming the negative pressure surface 26 through which the blade tip vortex WL passes. Therefore, the axial fan 100 according to the fourth embodiment can stably form the blade tip vortex WL. In the axial fan 100, the blade tip vortex WL is stabilized without being disturbed, and the fan efficiency can be improved to achieve high efficiency.
  • FIG. 26 is a cross-sectional view of the blades 20 in the axial fan 100 according to the fifth embodiment.
  • FIG. 26 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 25 are designated by the same reference numerals, and the description thereof will be omitted.
  • the configuration of the outer edge portion 23 of the outer peripheral portion 30 is further specified.
  • the outer circumferential portion 30 of the axial fan 100 according to the fifth embodiment has a rounded outer edge portion 23 in a radial cross section centered on the rotation axis RA. That is, in the axial fan 100 according to the fifth embodiment, the outer edge in the radial cross section is rounded.
  • a round is a rounded portion, and is a portion formed in an R shape.
  • the corner portion between the outer surface 23e and the negative pressure surface 26 and the corner portion between the outer surface 23e and the outer peripheral positive pressure surface 25a are rounded. It is formed to have.
  • the outer surface 23e is formed linearly in the radial cross section of the axial fan 100.
  • FIG. 27 is a sectional view of a first modification of the blade 20 in the axial fan 100 according to the fifth embodiment.
  • the blade 20 of the first modification is curved so that the outer surface 23e has a round shape in the radial cross section of the axial fan 100.
  • the blade 20 of the first modification forms a continuous curved surface such that the outer edge portion 23 forms one round.
  • the outer peripheral positive pressure surface 25a and the negative pressure surface 26 are connected in one round at the outer edge portion 23.
  • the outer peripheral portion 30 of the axial fan 100 according to the fifth embodiment has a rounded outer edge portion 23 in a radial cross section centered on the rotation axis RA.
  • the outer edge portion 23 located therebetween is connected by a rounded portion, Since the fluid flow proceeds smoothly, the formation of the blade tip vortex WL can be stabilized. Therefore, in the axial fan 100, the blade tip vortex WL is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
  • FIG. 28 is a cross-sectional view of the blades 20 in the axial fan 100 according to the sixth embodiment.
  • FIG. 28 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 27 are designated by the same reference numerals, and the description thereof will be omitted.
  • the configuration of the outer edge portion 23 of the outer peripheral portion 30 is further specified.
  • the outer edge portion 23 is formed at an acute angle by the pressure surface 25 and the negative pressure surface 26 of the blade 20 in a radial cross section centered on the rotation axis RA. ing. That is, in the axial fan 100 according to the sixth embodiment, the outer edge in the radial cross section is formed at an acute angle.
  • the blades 20 are formed such that the negative pressure surface 26 and the outer pressure surface 25a form an acute angle in the radial cross section of the axial fan 100.
  • the negative pressure surface 26 and the outer peripheral positive pressure surface 25a are formed in a triangular shape so that the outer edge 23 forms the apex in the radial cross section of the axial fan 100. ing.
  • the outer circumferential portion 30 of the axial fan 100 according to the sixth embodiment is formed such that the blade thickness becomes thinner from the inner circumferential side toward the outer circumferential side in the radial cross section of the axial fan 100.
  • the outer circumferential portion 30 of the axial fan 100 according to the sixth embodiment has a negative pressure surface 26 and an outer circumferential positive pressure surface 25a in the axial direction of the rotation axis RA from the inner circumferential side to the outer circumferential side in the radial cross section of the axial fan 100. It is formed so that the distance between the two is small.
  • the outer edge portion 23 is formed at an acute angle by the pressure surface 25 and the negative pressure surface 26 of the blade 20 in a radial cross section centered on the rotation axis RA. ing. If the outer edge portion 23 is thick, the fluid flow generated at the outer edge comes into contact with the blade wall surface, making the fluid flow unstable.
  • the outer edge portion 23 is formed at an acute angle by the positive pressure surface 25 and the negative pressure surface 26 of the blades 20, so that when the fluid flow separates from the positive pressure surface 25 at the outer edge portion 23, Since the blade tip vortex WL is immediately drawn into the negative pressure surface 26 without contacting the blade wall surface, the blade tip vortex WL is stabilized. Therefore, in the axial fan 100, the blade tip vortex WL is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
  • Embodiment 7 will describe a case where the axial fan 100 and the like of Embodiments 1 to 6 described above are applied to the outdoor unit 50 of an air conditioner 70 as the blower 55.
  • FIG. 29 is a schematic diagram of an air conditioner 70 according to Embodiment 7.
  • the air conditioner 70 will be described as a device using the axial fan 100, but the axial fan 100 is not limited to that used in the air conditioner 70.
  • the axial fan 100 is used for refrigeration or air conditioning applications, such as refrigerators or freezers, vending machines, air conditioners, refrigeration equipment, water heaters, and the like.
  • the air conditioner 70 includes a compressor 64 that compresses and discharges refrigerant, a condenser 72 that condenses the refrigerant, an expansion valve 74, and an evaporator 73 that evaporates the refrigerant. ing.
  • the air conditioner 70 also includes a blower 55 (see FIG. 31).
  • the air conditioner 70 forms a refrigerant circuit 71 in which a compressor 64, a condenser 72, an expansion valve 74, and an evaporator 73 are connected in order through refrigerant piping.
  • a condenser fan 72a that blows air for heat exchange to the condenser 72 is arranged in the condenser 72. Further, an evaporator fan 73 a that blows air for heat exchange to the evaporator 73 is arranged in the evaporator 73 . At least one of the condenser fan 72a and the evaporator fan 73a is configured by the axial fan 100 of any one of the first to sixth embodiments described above.
  • the air conditioner 70 may have a configuration in which the refrigerant circuit 71 is provided with a flow path switching device such as a four-way valve that switches the flow of the refrigerant to switch between heating operation and cooling operation.
  • FIG. 30 is a perspective view of the outdoor unit 50 of the air conditioner 70 according to Embodiment 7, viewed from the outlet side.
  • FIG. 31 is a diagram for explaining the configuration of the outdoor unit 50 from the top side.
  • FIG. 32 is a diagram showing a state in which the fan grill 54 is removed from the outdoor unit 50.
  • FIG. 33 is a diagram showing the internal configuration of the outdoor unit 50 with the fan grill 54, front panel 51b, etc. removed.
  • the outdoor unit main body 51 which is a casing, is configured as a housing having a pair of left and right side surfaces 51a and 51c, a front surface 51b, a back surface 51d, a top surface 51e, and a bottom surface 51f. Openings (not shown) for sucking air from the outside are formed in the side surface 51a and the back surface 51d.
  • a blowout port 53 is formed in the front panel 52 as an opening for blowing air out to the outside. Furthermore, the air outlet 53 is covered with a fan grill 54, thereby preventing contact between the axial fan 100 and objects outside the outdoor unit main body 51, thereby ensuring safety. Note that the arrow AR in FIG. 31 indicates the flow of air.
  • a blower 55 is housed within the outdoor unit main body 51.
  • the blower 55 includes an axial fan 100 and a drive source 61, as shown in FIG.
  • the drive source 61 is a fan motor and provides driving force to the axial fan 100.
  • the axial fan 100 is connected to a rotating shaft 62 of a drive source 61 on the back side 51d, and is rotationally driven by this drive source 61.
  • the drive source 61 is attached to a motor support 69.
  • the motor support 69 is arranged between the drive source 61 and the heat exchanger 68 and supports the drive source 61.
  • the inside of the outdoor unit main body 51 is divided by a partition plate 51g, which is a wall, into a ventilation chamber 56 in which an axial fan 100 is installed and a machine room 57 in which a compressor 64 and the like are installed.
  • a heat exchanger 68 is provided on the side surface 51a side and the rear surface 51d side in the ventilation chamber 56 so as to extend in a substantially L-shape when viewed from above. Note that the shape of the heat exchanger 68 is not limited to this shape, and may be formed, for example, on a straight line in a plan view.
  • the heat exchanger 68 functions as an evaporator 73 during heating operation, and functions as a condenser 72 during cooling operation.
  • a bell mouth 63 is arranged on the radially outer side of the axial fan 100 arranged in the ventilation chamber 56.
  • the bell mouth 63 surrounds the outer peripheral side of the axial fan 100 and adjusts the flow of gas generated by the axial fan 100 and the like.
  • the bell mouth 63 is located outside the outer peripheral end of the blade 20 and is annularly provided along the rotational direction of the axial fan 100.
  • a partition plate 51g is located on one side of the bell mouth 63, and a part of the heat exchanger 68 is located on the other side.
  • the front end of the bell mouth 63 is connected to the front panel 52 of the outdoor unit 50 so as to surround the outer periphery of the air outlet 53.
  • the bell mouth 63 may be configured integrally with the front panel 52, or may be prepared as a separate body connected to the front panel 52.
  • a flow path between the suction side and the blowout side of the bellmouth 63 is configured as an air path near the blowout port 53. That is, the air path near the blower outlet 53 is separated from other spaces within the blower chamber 56 by the bell mouth 63.
  • the heat exchanger 68 provided on the suction side of the axial fan 100 includes a plurality of fins arranged in parallel so that their plate-like surfaces are parallel to each other, and heat transfer tubes passing through each fin in the direction in which the fins are arranged in parallel. It is equipped with A refrigerant circulating in the refrigerant circuit flows within the heat transfer tube.
  • the heat exchanger 68 of this embodiment is configured such that the heat transfer tubes extend in an L-shape between the side surface 51a and the back surface 51d of the outdoor unit main body 51, and the heat transfer tubes in multiple stages meander while penetrating the fins. .
  • the heat exchanger 68 is connected to the compressor 64 via piping 65, etc., and is further connected to an indoor heat exchanger, an expansion valve 74, etc. (not shown), and constitutes a refrigerant circuit 71 of the air conditioner 70. do. Further, a board box 66 is arranged in the machine room 57, and a control board 67 provided in the board box 66 controls the equipment mounted in the outdoor unit.
  • the air conditioner 70 shown in FIG. 29 includes a blower 55, a motor support 69 that supports the drive source 61, a condenser 72 that condenses refrigerant, and an evaporator 73 that evaporates the refrigerant.
  • the blower 55 shown in FIG. 31 blows air to at least one of the condenser 72 and the evaporator 73.
  • the blower 55 includes the axial fan 100 according to the first to sixth embodiments. Furthermore, the air conditioner 70 includes a blower 55 having the axial fan 100 according to the first to sixth embodiments. Therefore, in the blower 55 and the air conditioner 70 according to the seventh embodiment, the same effects as the axial fan 100 according to the first to sixth embodiments described above can be obtained.
  • the axial fan 100 of the blower 55 and the air conditioner 70 has a small circumferential velocity on the leading edge 21 side of the blade 20 even if a fluid flow disturbed by a structure such as a motor support flows into the axial fan 100. Therefore, the blade tip vortex WL formed on the leading edge 21 side of the blade 20 becomes smaller.
  • the axial fan 100 of the blower 55 and the air conditioner 70 can cause the blade tip vortex WL, which expands from the leading edge 21 side part to the trailing edge part 22 side part, to follow the outer peripheral part 30. . Therefore, in the blower 55 and air conditioner 70 equipped with the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 of the axial fan 100 is stabilized without being disturbed, improving fan efficiency and achieving high efficiency. be able to.
  • the configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
  • the inventions according to Embodiments 3 to 6 specify the configuration of the outer circumferential portion 30, but the inventions according to Embodiments 3 to 6 may be applied to the configuration of the rear outer circumferential portion 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This axial flow fan is provided with a hub that is rotationally driven and forms a rotational axis, and a blade that is formed around the hub and comprises a leading edge part, a trailing edge part, an inner edge part which is a portion connected to the hub, and an outer edge part forming an outer edge between the leading edge part and the trailing edge part. The blade comprises: a reduced part that forms, in a leading edge part-side portion of the portion forming the outer edge part, a portion in which the outer diameter of the blade is reduced compared to a trailing edge part-side portion forming the maximum diameter of the blade; and an outer peripheral part that forms, in the reduced part, a pressure side that curves from the downstream side to the upstream side in a direction in which a fluid that flows during rotation of the blade flows, as the pressure side extends from the inner edge part-side portion toward the outer edge part. The outer peripheral part is formed so that the width thereof in a radial direction about the rotational axis is greater in the trailing edge part-side portion than in the leading edge part–side portion.

Description

軸流ファン、送風機、及び、空気調和機Axial fans, blowers, and air conditioners
 本開示は、複数の翼を備えた軸流ファン、当該軸流ファンを備えた送風機、及び、当該送風機を備えた空気調和機に関するものである。 The present disclosure relates to an axial fan including a plurality of blades, a blower including the axial fan, and an air conditioner including the blower.
 従来より、回転中心となるハブと、ハブの外周面に設けられた複数枚の翼とを有する軸流ファンが提案されている(例えば、特許文献1参照)。特許文献1の軸流ファンは、それぞれの翼の外周部に、吸い込み側に反り上がるように折り曲げられた折り曲げ部を有し、折り曲げ部の半径方向の幅が、前縁から後縁にかけて次第に大きくなるように形成されている。特許文献1の軸流ファンは、当該構成により前縁側から後縁側までスムーズに翼端渦を導くというものであり、また発生した翼端渦が負圧面から離れにくくなるというものである。 Conventionally, an axial fan has been proposed that has a hub serving as a rotation center and a plurality of blades provided on the outer peripheral surface of the hub (for example, see Patent Document 1). The axial fan of Patent Document 1 has a bent portion on the outer circumference of each blade that is bent upward toward the suction side, and the width of the bent portion in the radial direction gradually increases from the leading edge to the trailing edge. It is formed to be. The axial fan disclosed in Patent Document 1 has such a configuration that a blade tip vortex is guided smoothly from the leading edge side to the trailing edge side, and the generated blade tip vortex is difficult to leave the suction surface.
特許第3979388号公報Patent No. 3979388
 軸流ファンは、ファンの上流に構造物がない状態、または、ファンが構造物から離れた状態では、翼に向かって乱れの少ない気流が流入するため、翼の前縁側で発生する翼端渦が小さい。しかし、軸流ファンの上流にモータサポート等の構造物がある場合、構造物の後流は気流が乱れている。そして、軸流ファンは、乱れた気流が翼の外周前縁に流入した場合、ファンの最外周の周速度の影響を受け、翼の前縁側で大きな気流の漏れが発生し、翼端渦の形成を増大させる。軸流ファンの上流にモータサポート等の構造物がある場合、特許文献1の軸流ファンにおける、翼の前縁側の折り曲げ部における小さい反り上がりでは、翼端渦が安定化しないため、軸流ファンの効率が低下する恐れがある。 In an axial flow fan, when there is no structure upstream of the fan or when the fan is away from the structure, a less turbulent airflow flows toward the blade, so the blade tip vortices that occur on the leading edge side of the blade is small. However, if there is a structure such as a motor support upstream of the axial fan, the airflow downstream of the structure is turbulent. In an axial fan, when turbulent airflow flows into the leading edge of the blade's outer periphery, it is affected by the circumferential speed of the fan's outermost periphery, causing a large leakage of airflow on the leading edge side of the blade, resulting in a blade tip vortex. Increase formation. If there is a structure such as a motor support upstream of the axial fan, the axial fan of Patent Document 1 cannot stabilize the blade tip vortices due to the small warpage at the bending part on the leading edge side of the blade. efficiency may decrease.
 本開示は、上述のような課題を解決するためのものであり、翼に向かって乱れた気流れが流入しても翼端渦が安定し、高効率化した軸流ファン、送風機、及び、空気調和機を提供することを目的とする。 The present disclosure is intended to solve the above-mentioned problems, and provides an axial fan, a blower, and a fan in which blade tip vortices are stabilized even when a turbulent airflow flows toward the blade, and the efficiency is increased. The purpose is to provide air conditioners.
 本開示に係る軸流ファンは、回転駆動され回転軸を形成するハブと、ハブの周囲に形成されており、前縁部、後縁部、ハブと繋がる部分である内縁部、及び、前縁部と後縁部との間の外縁を形成する外縁部を有する翼と、を備え、翼は、外縁部を形成する部分における前縁部側の部分において、翼の最大径を形成する後縁部側の部分よりも翼の外径が縮小された部分を形成する縮小部と、縮小部において、内縁部側の部分から外縁部に向かうにつれて、翼の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する正圧面を形成する外周部と、を有し、外周部は、回転軸を中心とした径方向の幅が、前縁部側の部分よりも後縁部側の部分の方が大きくなるように形成されているものである。 The axial fan according to the present disclosure includes a hub that is rotationally driven and forms a rotating shaft, a front edge, a rear edge, an inner edge that is a part connected to the hub, and a front edge that is formed around the hub. a wing having an outer edge forming an outer edge between the outer edge and the trailing edge; A reduced part that forms a part where the outer diameter of the blade is smaller than that of the outer diameter part, and in the reduced part, from the inner edge side toward the outer edge, the downstream side in the flow direction of the fluid that flows when the blade rotates. an outer circumferential portion forming a positive pressure surface that curves toward the upstream side from It is formed in such a way that one part is larger than the other.
 本開示に係る送風機は、上記構成の軸流ファンと、軸流ファンに駆動力を付与する駆動源と、を備えたものである。 A blower according to the present disclosure includes an axial fan configured as described above and a drive source that applies driving force to the axial fan.
 本開示に係る空気調和機は、上記構成の送風機と、駆動源を支持するモータサポートと、冷媒を凝縮させる凝縮器と、冷媒を蒸発させる蒸発器と、を備え、送風機は、凝縮器及び蒸発器の少なくとも一方に空気を送風するものである。 An air conditioner according to the present disclosure includes a blower configured as described above, a motor support that supports a drive source, a condenser that condenses a refrigerant, and an evaporator that evaporates the refrigerant. Air is blown to at least one side of the container.
 本開示によれば、軸流ファンは、翼に縮小部を有することによって翼の前縁部側の径が縮小しており、前縁部側の部分が翼の最外径を形成する部分よりも回転軸に近づいているため、前縁部側の翼部分の周速度が小さくなる。そのため、軸流ファンは、軸流ファンにモータサポート等の構造物により乱れた流体の流れが流入しても、翼の前縁部側の周速度が小さいために翼の前縁部側の部分に形成される翼端渦が小さくなる。さらに、軸流ファンは、内周側の部分から外縁部に向かうにつれて下流側から上流側に向かって湾曲する正圧面を形成する外周部を縮小部に有する。この外周部は、回転軸を中心とした径方向の幅が、前縁部側の部分よりも後縁部側の部分の方が大きくなるように形成されている。軸流ファンは、当該構成の外周部を有することで、前縁部側の部分から後縁部側の部分に向かって拡大する翼端渦を外周部に沿わせることができる。そのため、軸流ファンは、負圧面での翼端渦が乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。 According to the present disclosure, the axial fan has a reduced diameter on the leading edge side of the blade by having a reduced portion in the blade, and the portion on the leading edge side is smaller than the portion forming the outermost diameter of the blade. Since the blade is also close to the rotation axis, the circumferential speed of the blade portion on the leading edge side becomes smaller. Therefore, even if a fluid flow turbulent due to a structure such as a motor support flows into the axial fan, the circumferential speed of the leading edge side of the blade is small, so the part of the leading edge side of the blade The blade tip vortices formed in the air become smaller. Furthermore, the axial fan has an outer circumferential portion in the reduced portion that forms a positive pressure surface that curves from the downstream side toward the upstream side as it goes from the inner circumferential side toward the outer edge. The outer peripheral portion is formed such that the width in the radial direction about the rotation axis is larger at the rear edge side than at the front edge side. By having the outer circumferential portion with this configuration, the axial fan can cause a blade tip vortex that expands from the leading edge side portion to the trailing edge side portion to follow the outer circumferential portion. Therefore, in the axial fan, the blade tip vortices on the negative pressure surface are not disturbed and stabilized, and the fan efficiency can be improved and high efficiency can be achieved.
実施の形態1に係る軸流ファンの概略構成を示す正面図である。1 is a front view showing a schematic configuration of an axial fan according to Embodiment 1. FIG. 実施の形態1に係る軸流ファンにおける翼の正面図である。FIG. 3 is a front view of a blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の断面図である。FIG. 3 is a cross-sectional view of a blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の第1変形例の正面図である。FIG. 7 is a front view of a first modification of the blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の第2変形例の正面図である。FIG. 7 is a front view of a second modification of the blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の第3変形例の正面図である。FIG. 7 is a front view of a third modification of the blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の第4変形例の正面図である。FIG. 7 is a front view of a fourth modification of the blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の第5変形例の正面図である。FIG. 7 is a front view of a fifth modification of the blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の第6変形例の正面図である。FIG. 7 is a front view of a sixth modification of the blade in the axial fan according to the first embodiment. 実施の形態1に係る軸流ファンにおける翼の第7変形例の正面図である。FIG. 7 is a front view of a seventh modification of the blade in the axial fan according to the first embodiment. 比較例に係る軸流ファンの径方向断面の概念図である。FIG. 3 is a conceptual diagram of a radial cross section of an axial fan according to a comparative example. 第2の比較例に係る軸流ファンの斜視図である。FIG. 7 is a perspective view of an axial fan according to a second comparative example. 第2の比較例に係る軸流ファンの側面図である。FIG. 7 is a side view of an axial fan according to a second comparative example. 第2の比較例に係る軸流ファンを備えた空気調和機に用いられる室外機の概念図である。FIG. 7 is a conceptual diagram of an outdoor unit used in an air conditioner equipped with an axial fan according to a second comparative example. 図14の比較例に示す空気調和機に用いられる室外機内におけるモータサポートと軸流ファンとの関係を示す概念図である。15 is a conceptual diagram showing the relationship between the motor support and the axial fan in the outdoor unit used in the air conditioner shown in the comparative example of FIG. 14. FIG. 実施の形態2に係る軸流ファンにおける翼の正面図である。FIG. 7 is a front view of a blade in an axial fan according to a second embodiment. 実施の形態2に係る軸流ファンにおける翼の断面図である。FIG. 3 is a cross-sectional view of a blade in an axial fan according to a second embodiment. 実施の形態2に係る軸流ファンにおける翼の第1変形例の正面図である。FIG. 7 is a front view of a first modification of the blade in the axial fan according to the second embodiment. 実施の形態2に係る軸流ファンにおける翼の第2変形例の正面図である。FIG. 7 is a front view of a second modification of the blade in the axial fan according to the second embodiment. 実施の形態2に係る軸流ファンにおける翼の第3変形例の正面図である。FIG. 7 is a front view of a third modification of the blade in the axial fan according to the second embodiment. 実施の形態2に係る軸流ファンにおける翼の第4変形例の正面図である。FIG. 7 is a front view of a fourth modification of the blade in the axial fan according to the second embodiment. 実施の形態2に係る軸流ファンにおける翼の第5変形例の正面図である。FIG. 7 is a front view of a fifth modification of the blade in the axial fan according to the second embodiment. 実施の形態3に係る軸流ファンにおける翼の正面図である。FIG. 7 is a front view of a blade in an axial fan according to a third embodiment. 実施の形態3に係る軸流ファンにおける翼の断面図である。FIG. 7 is a cross-sectional view of a blade in an axial fan according to Embodiment 3. 実施の形態4に係る軸流ファンにおける翼の断面図である。FIG. 7 is a cross-sectional view of a blade in an axial fan according to a fourth embodiment. 実施の形態5に係る軸流ファンにおける翼の断面図である。FIG. 7 is a cross-sectional view of a blade in an axial fan according to a fifth embodiment. 実施の形態5に係る軸流ファンにおける翼の第1変形例の断面図である。FIG. 7 is a cross-sectional view of a first modification of the blade in the axial fan according to the fifth embodiment. 実施の形態6に係る軸流ファンにおける翼の断面図である。FIG. 7 is a cross-sectional view of a blade in an axial fan according to a sixth embodiment. 実施の形態7に係る空気調和機の概要図である。FIG. 7 is a schematic diagram of an air conditioner according to Embodiment 7. 実施の形態7に係る空気調和機の室外機を、吹出口側から見たときの斜視図である。FIG. 12 is a perspective view of the outdoor unit of the air conditioner according to Embodiment 7, viewed from the outlet side. 上面側から室外機の構成を説明するための図である。FIG. 3 is a diagram for explaining the configuration of the outdoor unit from the top side. 室外機からファングリルを外した状態を示す図である。FIG. 3 is a diagram showing a state in which the fan grill is removed from the outdoor unit. 室外機からファングリル及び前面のパネル等を除去して、内部構成を示す図である。FIG. 2 is a diagram illustrating the internal configuration of the outdoor unit with the fan grill, front panel, etc. removed.
 以下、実施の形態に係る軸流ファン、送風機、及び、空気調和機について図面を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」及び「後」等)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, an axial fan, a blower, and an air conditioner according to embodiments will be described with reference to the drawings. Note that in the following drawings including FIG. 1, the relative dimensional relationships, shapes, etc. of each component may differ from the actual ones. In addition, in the following drawings, parts with the same reference numerals are the same or equivalent, and this is common throughout the entire specification. In addition, to facilitate understanding, we use terms indicating directions (for example, "top," "bottom," "right," "left," "front," and "back," etc.) as appropriate; This is only described for convenience of explanation, and does not limit the arrangement or orientation of the device or parts.
実施の形態1.
[軸流ファン100]
 図1は、実施の形態1に係る軸流ファン100の概略構成を示す正面図である。なお、図中の矢印で示す回転方向DRは、軸流ファン100が回転する方向を示している。また、図中の矢印で示す反回転方向ORは、軸流ファン100が回転する方向と逆方向を示している。更に、図中の両向き矢印で示す周方向CDは、軸流ファン100の周方向を示している。周方向CDは、回転方向DR及び反回転方向ORを含んでいる。
Embodiment 1.
[Axial flow fan 100]
FIG. 1 is a front view showing a schematic configuration of an axial fan 100 according to the first embodiment. Note that the rotation direction DR indicated by the arrow in the figure indicates the direction in which the axial fan 100 rotates. Further, a counter-rotation direction OR indicated by an arrow in the figure indicates a direction opposite to the direction in which the axial fan 100 rotates. Further, a circumferential direction CD indicated by a double-headed arrow in the figure indicates the circumferential direction of the axial fan 100. The circumferential direction CD includes a rotation direction DR and a counter-rotation direction OR.
 また、図1に示すY軸は、軸流ファン100の回転軸RAに対して垂直な方向であって、軸流ファン100の径方向を表している。径方向においてY2側の部分はY1側の部分に対して外周側の部分に位置しており、Y1側の部分はY2側の部分に対して内周側の部分に位置している。すなわち、軸流ファン100のY1側は、軸流ファン100の内周側であり、軸流ファン100のY2側は、軸流ファン100の外周側である。 Further, the Y axis shown in FIG. 1 is a direction perpendicular to the rotation axis RA of the axial fan 100, and represents the radial direction of the axial fan 100. In the radial direction, the portion on the Y2 side is located on the outer peripheral side with respect to the portion on the Y1 side, and the portion on the Y1 side is located on the inner peripheral side with respect to the portion on the Y2 side. That is, the Y1 side of the axial fan 100 is the inner peripheral side of the axial fan 100, and the Y2 side of the axial fan 100 is the outer peripheral side of the axial fan 100.
 図1を用いて実施の形態1に係る軸流ファン100について説明する。軸流ファン100は、軸流式の羽根車であり、流体の流れを形成する装置である。軸流ファン100は、後述する送風機55(図31参照)に用いられ、例えば、空気調和機又は換気装置等のファンとして用いられる。軸流ファン100は、回転軸RAを中心として回転方向DRに回転することで流体の流れを形成する。流体は、例えば、空気等の気体であり、軸流ファン100は、回転することで気流を形成する。 An axial fan 100 according to Embodiment 1 will be described using FIG. 1. The axial fan 100 is an axial impeller, and is a device that forms a fluid flow. The axial fan 100 is used in a blower 55 (see FIG. 31), which will be described later, and is used, for example, as a fan for an air conditioner or a ventilation device. The axial fan 100 forms a fluid flow by rotating in the rotation direction DR about the rotation axis RA. The fluid is, for example, a gas such as air, and the axial fan 100 forms an airflow by rotating.
 図1の紙面に対して手前側は、流体の流れる方向において軸流ファン100に対して下流側となり、図1の紙面に対して奥側は、流体の流れる方向において軸流ファン100に対して上流側となる。したがって、図1は、流体の流れる方向の下流側から軸流ファン100を見た図である。軸流ファン100に対して上流側は、軸流ファン100に対して空気の吸込側であり、軸流ファン100に対して下流側は、軸流ファン100に対して空気の吹出側である。 The front side with respect to the paper surface of FIG. 1 is the downstream side with respect to the axial fan 100 in the fluid flow direction, and the back side with respect to the paper surface of FIG. 1 is with respect to the axial fan 100 in the fluid flow direction. This will be the upstream side. Therefore, FIG. 1 is a view of the axial fan 100 viewed from the downstream side in the fluid flow direction. The upstream side of the axial fan 100 is the air suction side of the axial fan 100, and the downstream side of the axial fan 100 is the air outlet side of the axial fan 100.
 図1に示すように、軸流ファン100は、モーター(図示は省略)等の駆動源によって回転する回転軸に接続されるハブ10と、ハブ10から外周側に向かって延びる複数の翼20と、を備える。軸流ファン100は、複数枚の翼20のうち隣り合う翼20の前縁側の部分と後縁側の部分とがボスを介さず連続面となるように接続されたいわゆるボスレス型のファンを含むものである。 As shown in FIG. 1, the axial fan 100 includes a hub 10 connected to a rotating shaft rotated by a drive source such as a motor (not shown), and a plurality of blades 20 extending from the hub 10 toward the outer circumference. , is provided. The axial fan 100 includes a so-called bossless type fan in which the leading edge side and the trailing edge side of adjacent blades 20 among a plurality of blades 20 are connected so as to form a continuous surface without using a boss. .
(ハブ10)
 ハブ10は、モータ(図示は省略)等の駆動源の回転軸と接続される。ハブ10は、例えば、円筒状に構成されてもよく、あるいは、円盤状等の板状に構成されてもよい。ハブ10は、上述したように駆動源の回転軸と接続されるものであればよく、その形状は限定されるものではない。
(Hub 10)
The hub 10 is connected to a rotating shaft of a drive source such as a motor (not shown). The hub 10 may have a cylindrical shape, for example, or a plate shape such as a disk shape. The shape of the hub 10 is not limited as long as it is connected to the rotating shaft of the drive source as described above.
 ハブ10は、モータ(図示は省略)等によって回転駆動され回転軸RAを形成する。ハブ10は、回転軸RAを中心に回転する。軸流ファン100の回転方向DRは、図1中の矢印で示すように時計回りの方向である。ただし、軸流ファン100の回転方向DRは、時計回りに限定されるものではない。ハブ10は、翼20の取り付け角度、あるいは、翼20の向き等を変更した構成にすることによって、反時計回りに回転してもよい。 The hub 10 is rotationally driven by a motor (not shown) or the like to form a rotation axis RA. The hub 10 rotates around a rotation axis RA. The rotation direction DR of the axial fan 100 is a clockwise direction as shown by the arrow in FIG. However, the rotation direction DR of the axial fan 100 is not limited to clockwise. The hub 10 may be rotated counterclockwise by changing the mounting angle of the blades 20 or the orientation of the blades 20.
(翼20)
 翼20は、ハブ10の周囲に設けられており、ハブ10から径方向外側に向かって延びるように形成されている。複数の翼20は、ハブ10から径方向外側に向かって放射状に配置されている。複数の翼20は、周方向CDにおいて、それぞれ相互に離隔して設けられている。なお、実施の形態1においては、3枚の翼20を有する軸流ファン100が例示されているが、翼20の枚数は3枚に限定されるものではない。
(Wing 20)
The blades 20 are provided around the hub 10 and are formed to extend radially outward from the hub 10. The plurality of blades 20 are arranged radially outward from the hub 10 in the radial direction. The plurality of blades 20 are provided spaced apart from each other in the circumferential direction CD. Note that in the first embodiment, the axial fan 100 having three blades 20 is illustrated, but the number of blades 20 is not limited to three.
 複数の翼20は、ハブ10の周囲において、それぞれ同一の形状で形成されている。また、複数の翼20は、周方向CDにおいて、等しい間隔で設けられている。なお、翼20は、当該構成に限定されるものではない。複数の翼20は、それぞれ異なる形状に形成されてもよく、周方向CDにおいて異なる間隔で形成されてもよい。 The plurality of wings 20 are each formed in the same shape around the hub 10. Further, the plurality of blades 20 are provided at equal intervals in the circumferential direction CD. Note that the wing 20 is not limited to this configuration. The plurality of blades 20 may be formed in different shapes, and may be formed at different intervals in the circumferential direction CD.
 翼20は、外周側の部分が内周側の部分よりも回転方向DRの前方に突き出した前進翼の形状に形成されている。なお、翼20は、前進翼に限定されるものではなく、他の形状に形成されてもよい。翼20は、回転軸RAの軸方向に見た場合に、外周側の部分の周方向CDの幅が内周側の部分の周方向CDの幅よりも大きい略三角形状に形成されている。なお、翼20は、回転軸RAの軸方向に見た場合に、略三角形状に形成されているものに限定されるものではない。 The blade 20 is formed in the shape of a forward-swept blade in which the outer circumference side portion protrudes more forward in the rotational direction DR than the inner circumference side portion. Note that the blades 20 are not limited to forward-swept blades, and may be formed in other shapes. The blade 20 is formed in a substantially triangular shape, when viewed in the axial direction of the rotation axis RA, the width of the outer circumferential portion in the circumferential direction CD is larger than the width of the inner circumferential portion in the circumferential direction CD. Note that the blades 20 are not limited to those formed in a substantially triangular shape when viewed in the axial direction of the rotation axis RA.
 翼20は、前縁部21と、後縁部22と、ハブ10と繋がる部分である内縁部24と、前縁部21と後縁部22との間の外縁を形成する外縁部23とを有する。前縁部21は、翼20において回転方向DRの前進側の部分に形成されている。すなわち、前縁部21は、回転方向DRにおいて、後縁部22に対して前方に位置している。前縁部21は、発生させる流体の流れる方向において、後縁部22に対して上流側の部分に位置している。 The wing 20 includes a leading edge 21 , a trailing edge 22 , an inner edge 24 that is connected to the hub 10 , and an outer edge 23 that forms an outer edge between the leading edge 21 and the trailing edge 22 . have The leading edge portion 21 is formed at a portion of the blade 20 on the forward side in the rotational direction DR. That is, the front edge portion 21 is located forward of the rear edge portion 22 in the rotation direction DR. The leading edge 21 is located on the upstream side of the trailing edge 22 in the flow direction of the fluid to be generated.
 後縁部22は、翼20において回転方向DRの後進側の部分に形成されている。すなわち、後縁部22は、回転方向DRにおいて、前縁部21に対して後方に位置している。後縁部22は、発生させる流体の流れる方向において、前縁部21に対して下流側の部分に位置している。軸流ファン100は、軸流ファン100の回転方向DRを向く翼端部として前縁部21を有し、回転方向DRにおいて前縁部21に対して反対側の翼端部として後縁部22を有している。 The trailing edge portion 22 is formed on the rearward side of the blade 20 in the rotational direction DR. That is, the rear edge portion 22 is located rearward with respect to the front edge portion 21 in the rotation direction DR. The trailing edge portion 22 is located downstream of the leading edge portion 21 in the flow direction of the generated fluid. The axial fan 100 has a leading edge 21 as a blade end facing in the rotational direction DR of the axial fan 100, and a trailing edge 22 as a blade end opposite to the leading edge 21 in the rotational direction DR. have.
 外縁部23は、前縁部21の最外周部と後縁部22の最外周部との間の部分を構成するように回転方向DRにおいて前後に延びる部分である。外縁部23は、軸流ファン100において、径方向(Y軸方向)の外周側の端部を構成している。外縁部23は、翼20の外周縁を形成し、また、軸流ファン100の外周縁を形成する。 The outer edge portion 23 is a portion extending back and forth in the rotation direction DR so as to constitute a portion between the outermost circumferential portion of the front edge portion 21 and the outermost circumferential portion of the rear edge portion 22. The outer edge portion 23 constitutes an end portion on the outer peripheral side in the radial direction (Y-axis direction) in the axial fan 100. The outer edge portion 23 forms the outer circumferential edge of the blade 20 and also forms the outer circumferential edge of the axial fan 100.
 外縁部23は、回転軸RAと平行な方向に見た場合に、弧状に形成されている。しかし、外縁部23は、回転軸RAと平行な方向に見た場合に、弧状に形成されている構成に限定されるものではない。なお、外縁部23は、回転軸RAと平行な方向に見た場合に、円弧状に形成された部分を含んでいる。 The outer edge portion 23 is formed in an arc shape when viewed in a direction parallel to the rotation axis RA. However, the outer edge portion 23 is not limited to an arcuate configuration when viewed in a direction parallel to the rotation axis RA. Note that the outer edge portion 23 includes a portion formed in an arc shape when viewed in a direction parallel to the rotation axis RA.
 翼20は、回転軸RAと平行な方向に見た場合に、周方向CDにおける外縁部23の長さが、周方向CDにおける内縁部24の長さよりも長く形成されている。ただし、翼20は、周方向CDにおける外縁部23の長さと内縁部24の長さとの関係が当該構成に限定されるものではない。例えば、翼20は、周方向CDにおける外縁部23の長さと内縁部24の長さとが等しくてもよく、内縁部24の長さが外縁部23の長さよりも長くてもよい。 When the blade 20 is viewed in a direction parallel to the rotation axis RA, the length of the outer edge portion 23 in the circumferential direction CD is longer than the length of the inner edge portion 24 in the circumferential direction CD. However, in the blade 20, the relationship between the length of the outer edge portion 23 and the length of the inner edge portion 24 in the circumferential direction CD is not limited to this configuration. For example, in the blade 20, the length of the outer edge 23 and the inner edge 24 in the circumferential direction CD may be equal, or the length of the inner edge 24 may be longer than the length of the outer edge 23.
 内縁部24は、前縁部21の最内周部と後縁部22の最内周部との間の部分を構成するように回転方向DRにおいて前後に延びる部分である。内縁部24は、軸流ファン100において、径方向(Y軸方向)の内周側の端部を構成している。内縁部24は、翼20の内周縁を形成し、翼20の付根部分を構成する。 The inner edge portion 24 is a portion extending back and forth in the rotation direction DR so as to constitute a portion between the innermost circumferential portion of the front edge portion 21 and the innermost circumferential portion of the rear edge portion 22. The inner edge portion 24 constitutes an end portion on the inner peripheral side in the radial direction (Y-axis direction) in the axial fan 100. The inner edge portion 24 forms the inner peripheral edge of the blade 20 and constitutes the root portion of the blade 20.
 内縁部24は、回転軸RAと平行な方向に見た場合に、弧状に形成されている。しかし、内縁部24は、回転軸RAと平行な方向に見た場合に、弧状に形成されている構成に限定されるものではない。翼20の内縁部24は、ハブ10と一体に形成されている等、ハブ10と接続されている。一例として、翼20の内縁部24は、円筒形状に形成されたハブ10の外周壁と一体に形成されている。 The inner edge portion 24 is formed in an arc shape when viewed in a direction parallel to the rotation axis RA. However, the inner edge portion 24 is not limited to an arcuate configuration when viewed in a direction parallel to the rotation axis RA. The inner edges 24 of the wings 20 are connected to the hub 10, such as being formed integrally with the hub 10. As an example, the inner edge portion 24 of the blade 20 is formed integrally with the outer circumferential wall of the hub 10, which is formed in a cylindrical shape.
 翼20は、回転軸RAに垂直な平面に対して傾いて形成されている。翼20は、軸流ファン100の回転に伴って翼20の間に存在している流体を翼面28で押すことで流体を搬送する。この際、翼20の翼面28の内、軸流ファン100の回転時に流体を押して圧力が上昇する側の面を正圧面25とし、正圧面25の裏側の面を構成し、圧力が下降する側の面を負圧面26とする。 The blades 20 are formed to be inclined with respect to a plane perpendicular to the rotation axis RA. The blades 20 transport fluid by pushing the fluid existing between the blades 20 with the blade surfaces 28 as the axial fan 100 rotates. At this time, among the blade surfaces 28 of the blades 20, the surface on the side where the pressure increases by pushing the fluid when the axial fan 100 rotates is defined as the positive pressure surface 25, and the surface on the back side of the positive pressure surface 25 forms the surface on which the pressure decreases. The side surface is defined as a negative pressure surface 26.
 翼面28は、流体の流れる方向において、翼20の上流側に向いた面が負圧面26となり、下流側に向いた面が正圧面25となる。また、正圧面25は、回転方向DRに向いた面であり、負圧面26は、回転方向DRとは反対側に向いた面である。翼20は、図1において、翼20の手前側の面が正圧面25となり、翼20の奥側の面が負圧面26となる。 In the direction of fluid flow, the blade surface 28 has a surface facing the upstream side of the blade 20 as the negative pressure surface 26 and a surface facing the downstream side as the positive pressure surface 25. Further, the positive pressure surface 25 is a surface facing the rotation direction DR, and the negative pressure surface 26 is a surface facing the opposite side to the rotation direction DR. In FIG. 1, the front surface of the blade 20 is a pressure surface 25, and the rear surface of the blade 20 is a negative pressure surface 26.
(翼20の詳細)
 図2は、実施の形態1に係る軸流ファン100における翼20の正面図である。なお、図2は、翼20の構成を説明するため、複数の翼20の内、1つの翼20のみが図示されており、他の翼20の図示が省略されている。図2において点線で示す円筒面CSは、軸流ファン100を回転軸RAの軸方向に見た場合において、回転軸RAを中心とした軸流ファン100の最外径を半径とする仮想の円筒面の位置を示している。
(Details of wing 20)
FIG. 2 is a front view of the blades 20 in the axial fan 100 according to the first embodiment. Note that, in FIG. 2, in order to explain the configuration of the blades 20, only one blade 20 among the plurality of blades 20 is illustrated, and illustration of the other blades 20 is omitted. The cylindrical surface CS shown by a dotted line in FIG. 2 is a virtual cylinder whose radius is the outermost diameter of the axial fan 100 centered on the rotation axis RA when the axial fan 100 is viewed in the axial direction of the rotation axis RA. Indicates the position of the surface.
 仮想の円筒面CSは、軸流ファン100の最外径を形成する翼20の位置を示しており、軸流ファン100が回転した場合の、軸流ファン100の最外径を形成する部分による回転軌跡を示している。仮想の円筒面CSを形成する翼20の部分は、翼20の外縁部23である。図2を用いて更に翼20の詳細な構造について説明する。翼20は、縮小部23aと、外周部30とを有する。 The virtual cylindrical surface CS indicates the position of the blade 20 that forms the outermost diameter of the axial fan 100, and is determined by the portion that forms the outermost diameter of the axial fan 100 when the axial fan 100 rotates. It shows the rotation trajectory. The portion of the blade 20 that forms the virtual cylindrical surface CS is the outer edge portion 23 of the blade 20. The detailed structure of the wing 20 will be further explained using FIG. 2. The wing 20 has a reduced portion 23a and an outer peripheral portion 30.
(縮小部23a)
 翼20は、軸流ファン100の外縁を構成する軸流ファン100の外周側の部分に縮小部23aを有する。軸流ファン100は、縮小部23aを有しており、軸流ファン100には、ファン外縁の前縁側でファン径が縮小する領域がある。
(Reduction part 23a)
The blade 20 has a reduced portion 23 a at a portion on the outer peripheral side of the axial fan 100 that constitutes the outer edge of the axial fan 100 . The axial fan 100 has a reduced portion 23a, and the axial fan 100 has a region where the fan diameter is reduced on the front edge side of the outer edge of the fan.
 翼20の縮小部23aは、外縁部23を形成する部分における前縁部21側の部分において、翼20の最大径を形成する後縁部22側の部分よりも翼20の外径が縮小された部分を形成する。縮小部23aは、翼20の外縁部23に形成されている。 The reduced portion 23a of the blade 20 is such that the outer diameter of the blade 20 is reduced in a portion on the leading edge 21 side of the portion forming the outer edge 23 than in a portion on the trailing edge 22 side that forms the maximum diameter of the blade 20. form the part. The reduced portion 23a is formed on the outer edge portion 23 of the blade 20.
 外縁部23は、先端部201と、変曲部202と、後端部203とを有する。先端部201は、外縁部23において最も前縁部21側に位置する部分であり、前縁部21との境界部分である。変曲部202は、外縁部23の翼20の最外径を形成する部分において、最も先端部201側に位置する部分である。後端部203は、外縁部23において最も後縁部22側に位置する部分であり、後縁部22との境界部分である。 The outer edge portion 23 has a tip portion 201, an inflection portion 202, and a rear end portion 203. The tip portion 201 is a portion of the outer edge portion 23 located closest to the front edge portion 21 side, and is a boundary portion with the front edge portion 21 . The bending portion 202 is a portion of the outer edge portion 23 that forms the outermost diameter of the blade 20 and is located closest to the tip portion 201 side. The rear end portion 203 is a portion of the outer edge portion 23 located closest to the rear edge portion 22, and is a boundary portion with the rear edge portion 22.
 縮小部23aは、先端部201と後端部203との間に形成されており、先端部201から後端部203側に向かって形成されている。翼20は、縮小部23aの最も前縁部21側が先端部201である。すなわち、縮小部23aは、先端部201を含んでいる。 The reduced portion 23a is formed between the distal end portion 201 and the rear end portion 203, and is formed from the distal end portion 201 toward the rear end portion 203 side. In the wing 20, the tip portion 201 is located closest to the leading edge portion 21 of the reduced portion 23a. That is, the reduced portion 23a includes the tip portion 201.
 縮小部23aは、前縁部21側に位置する部分が後縁部22側に位置する部分と比較して翼20部分の外径が小さくなるように形成されている部分である。換言すれば、縮小部23aは、後縁部22側に位置する部分が前縁部21側に位置する部分と比較して翼20部分の外径が大きくなるように形成されている部分である。なお、翼20部分の外径とは、回転軸RAを中心とした軸流ファン100の外径であって、回転軸RAの軸方向に見た場合の、軸流ファン100の径方向における回転軸RAと翼20の外縁部23との間の距離である。 The reduced portion 23a is a portion formed such that the outer diameter of the wing 20 portion is smaller in the portion located on the leading edge portion 21 side than the portion located on the trailing edge portion 22 side. In other words, the reduced portion 23a is a portion formed such that the outer diameter of the blade 20 portion is larger in the portion located on the trailing edge 22 side than in the portion located on the leading edge 21 side. . Note that the outer diameter of the blade 20 portion is the outer diameter of the axial fan 100 centered on the rotation axis RA, and refers to the rotation in the radial direction of the axial fan 100 when viewed in the axial direction of the rotation axis RA. It is the distance between the axis RA and the outer edge 23 of the wing 20.
 縮小部23aは、例えば、周方向CDにおいて、後縁部22側に位置する部分から前縁部21側に位置する部分に向かうにつれて翼20部分の外径が徐々に小さくなるように形成されている。すなわち、縮小部23aは、回転方向DRに向かうにつれて、翼20部分の外径が徐々に小さくなるように形成されている。縮小部23aは、回転方向DRに向かうにつれて、径方向における翼20部分の長さが徐々に小さくなるように形成されている部分である。 The reduced portion 23a is formed, for example, in the circumferential direction CD such that the outer diameter of the blade 20 portion gradually decreases from the portion located on the trailing edge portion 22 side to the portion located on the leading edge portion 21 side. There is. That is, the reduced portion 23a is formed such that the outer diameter of the blade 20 portion gradually decreases as it goes in the rotation direction DR. The reduced portion 23a is a portion formed such that the length of the blade 20 portion in the radial direction gradually decreases as it goes in the rotation direction DR.
 換言すれば、縮小部23aは、周方向CDにおいて、前縁部21側に位置する部分から後縁部22に向かうにつれて翼20部分の外径が徐々に大きくなるように形成されている。すなわち、縮小部23aは、回転方向DRとは反対方向に向かうにつれて、翼20部分の外径が徐々に大きくなるように形成されている。縮小部23aは、回転方向DRとは反対方向に向かうにつれて、径方向における翼20部分の長さが徐々に長くなるように形成されている。 In other words, the reduced portion 23a is formed such that the outer diameter of the blade 20 portion gradually increases from the portion located on the leading edge portion 21 side toward the trailing edge portion 22 in the circumferential direction CD. That is, the reduced portion 23a is formed such that the outer diameter of the blade 20 portion gradually increases in the direction opposite to the rotational direction DR. The reduced portion 23a is formed such that the length of the blade 20 portion in the radial direction gradually increases in the direction opposite to the rotational direction DR.
 なお、周方向CDにおいて、後縁部22側に位置する部分から前縁部21側に位置する部分に向かうにつれて翼20部分の外径が徐々に小さくなるように形成されているものに限定されるものではない。縮小部23aは、翼20全体として見た場合に、先端部201が後縁部22側に位置する部分と比較して翼20部分の外径が小さくなるように形成されていればよい。縮小部23aは、周方向CDにおいて翼20部分の外径が徐々に変化するものに限定されるものではなく、径方向に凹んだ部分を含んでいてもよく、あるいは、径方向に突出した部分を含んでいてもよい。だたし、縮小部23aの外径は、翼20の最外径よりも小さく形成されている。 Note that the outer diameter of the blade 20 portion is limited to one that is formed so that in the circumferential direction CD, the outer diameter of the blade 20 portion gradually decreases from the portion located on the trailing edge portion 22 side to the portion located on the leading edge portion 21 side. It's not something you can do. The reduced portion 23a may be formed such that the outer diameter of the blade 20 portion is smaller than that of the portion where the tip portion 201 is located on the trailing edge portion 22 side when viewing the blade 20 as a whole. The reduced portion 23a is not limited to one in which the outer diameter of the blade 20 portion gradually changes in the circumferential direction CD, and may include a radially recessed portion or a radially protruding portion. May contain. However, the outer diameter of the reduced portion 23a is smaller than the outermost diameter of the blade 20.
 翼20は、縮小部23aの部分において、縮小部23aを有していない場合の翼20の外縁部23となる円筒面CSに位置する仮想の外縁部23と比較して、切り欠かれた形状に形成されている。図2に示すように、縮小部23aは、円筒面CSに対して回転軸RAに近い内周側(Y1側)の部分に位置するように形成されている。 The blade 20 has a cutout shape at the reduced portion 23a compared to the virtual outer edge 23 located on the cylindrical surface CS, which would be the outer edge 23 of the blade 20 without the reduced portion 23a. is formed. As shown in FIG. 2, the reduced portion 23a is formed to be located on the inner circumferential side (Y1 side) of the cylindrical surface CS near the rotation axis RA.
 翼20の縮小部23aでは、回転軸RAの軸方向に見た場合に、先端部201から後縁部22に向かうにつれて、回転軸RAを中心とした径方向における円筒面CSと外縁部23との幅が小さくなるように形成されている。換言すれば、翼20の縮小部23aでは、回転軸RAの軸方向に見た場合に、後縁部22側に位置する部分から先端部201に向かうにつれて、回転軸RAを中心とした径方向における円筒面CSと外縁部23との幅が大きくなるように形成されている。 In the reduced portion 23a of the blade 20, when viewed in the axial direction of the rotation axis RA, from the tip portion 201 toward the trailing edge portion 22, the cylindrical surface CS and the outer edge portion 23 in the radial direction centering on the rotation axis RA. is formed so that its width is small. In other words, in the reduced portion 23a of the blade 20, when viewed in the axial direction of the rotation axis RA, the radial direction around the rotation axis RA increases from the portion located on the trailing edge portion 22 side toward the tip portion 201. The width between the cylindrical surface CS and the outer edge portion 23 is increased.
 縮小部23aは、周方向CDにおいて、外縁部23の前縁部21側の部分に形成されている。縮小部23aは、周方向CDにおいて、先端部201から変曲部202まで形成されている。縮小部23aは、回転軸RAを中心とした周方向CDにおいて、先端部201と変曲部202との間の全ての領域に形成されている。 The reduced portion 23a is formed in a portion of the outer edge 23 on the front edge 21 side in the circumferential direction CD. The reduced portion 23a is formed from the tip portion 201 to the bent portion 202 in the circumferential direction CD. The reduced portion 23a is formed in the entire region between the tip portion 201 and the bending portion 202 in the circumferential direction CD centered on the rotation axis RA.
 変曲部202は、外縁部23において先端部201と後端部203との間に設けられている。また、変曲部202は、後端部203と同じ位置に設けられてもよい。縮小部23aは、周方向CDにおいて、外縁部23の前縁部21側の部分に形成されてもよく、あるいは、前縁部21から後縁部22にかけて形成されてもよい。 The bending part 202 is provided between the leading end part 201 and the rear end part 203 at the outer edge part 23. Further, the bending portion 202 may be provided at the same position as the rear end portion 203. The reduced portion 23a may be formed in a portion of the outer edge 23 on the front edge 21 side in the circumferential direction CD, or may be formed from the front edge 21 to the rear edge 22.
 変曲部202は、翼20の外縁部23において円筒面CSに対して異なる曲率を形成する部分である。変曲部202は、翼20の外縁部23において円筒面CSの曲率に対して大きな曲率を形成する部分である。変曲部202は、翼20の最大径を形成する部分とそれよりも前縁部21側を形成する部分との曲率が変化する部分である。変曲部202は、軸流ファン100及び翼20の最外径を形成する部分であり、回転軸RAの軸方向に見た場合に、仮想の円筒面CSに位置する部分である。変曲部202は、縮小部23aと後述する後方外縁部23bとの境界である。すなわち、変曲部202は、縮小部23aの後端部分であり、後方外縁部23bの先端部分である。 The inflection portion 202 is a portion that forms a different curvature with respect to the cylindrical surface CS at the outer edge portion 23 of the blade 20. The inflection portion 202 is a portion that forms a larger curvature than the curvature of the cylindrical surface CS in the outer edge portion 23 of the blade 20. The inflection portion 202 is a portion where the curvature of the portion forming the maximum diameter of the blade 20 and the portion forming the leading edge portion 21 side is changed. The bending portion 202 is a portion forming the outermost diameter of the axial fan 100 and the blades 20, and is a portion located on the virtual cylindrical surface CS when viewed in the axial direction of the rotation axis RA. The inflection portion 202 is a boundary between the reduced portion 23a and a rear outer edge portion 23b, which will be described later. That is, the bending portion 202 is the rear end portion of the reduced portion 23a and the tip portion of the rear outer edge portion 23b.
 翼20の外縁部23は、変曲部202と後端部203との位置が異なる場合、変曲部202と後端部203との間の部分に後方外縁部23bを含む。翼20は、外縁部23において、縮小部23aよりも後縁部22側の部分に後方外縁部23bを有する。後方外縁部23bは、翼20の外径が一定に形成された部分である。 If the positions of the bending part 202 and the rear end part 203 are different, the outer edge part 23 of the wing 20 includes a rear outer edge part 23b in a portion between the bending part 202 and the rear end part 203. The wing 20 has a rear outer edge portion 23b at a portion of the outer edge portion 23 closer to the rear edge portion 22 than the reduced portion 23a. The rear outer edge portion 23b is a portion of the blade 20 formed to have a constant outer diameter.
 後方外縁部23bは、外縁部23において、前縁部21側に位置する部分から後縁部22側に位置する部分にかけて一定の外径を形成する部分である。後方外縁部23bは、回転軸RAの軸方向に見た場合に、円筒面CSに沿って形成されている部分である。後方外縁部23bは、軸流ファン100及び翼20の最外径を形成する部分である。後方外縁部23bは、変曲部202と後端部203との間の一部に形成されてもよく、変曲部202と後端部203との間の全ての部分に形成されてもよい。 The rear outer edge portion 23b is a portion of the outer edge portion 23 that forms a constant outer diameter from a portion located on the front edge portion 21 side to a portion located on the rear edge portion 22 side. The rear outer edge portion 23b is a portion formed along the cylindrical surface CS when viewed in the axial direction of the rotation axis RA. The rear outer edge portion 23b is a portion that forms the outermost diameter of the axial fan 100 and the blades 20. The rear outer edge portion 23b may be formed in a portion between the bending portion 202 and the rear end portion 203, or may be formed in the entire portion between the bending portion 202 and the rear end portion 203. .
 なお、翼20は、変曲部202と後端部203との間の部分を構成する外縁部23に円筒面CSに沿っていない形状の部分を含んでもよい。例えば、翼20は、回転軸RAの軸方向に見た場合に、変曲部202と後端部203との間の部分を構成する外縁部23に直線状に形成された部分を含んでもよい。また、翼20は、回転軸RAの軸方向に見た場合に、変曲部202と後端部203との間の部分を構成する外縁部23の一部において、翼20の外径が翼20の最外径よりも小さくなる部分を含んでもよい。 Note that the wing 20 may include a portion having a shape that does not follow the cylindrical surface CS in the outer edge portion 23 that constitutes the portion between the bending portion 202 and the rear end portion 203. For example, when viewed in the axial direction of the rotation axis RA, the blade 20 may include a linear portion in the outer edge portion 23 that constitutes a portion between the bending portion 202 and the rear end portion 203. . Further, when the blade 20 is viewed in the axial direction of the rotation axis RA, the outer diameter of the blade 20 is smaller than the outer diameter of the blade 20 at a part of the outer edge portion 23 that constitutes a portion between the bending portion 202 and the rear end portion 203. It may include a portion that is smaller than the outermost diameter of 20.
(外周部30)
 図3は、実施の形態1に係る軸流ファン100における翼20の断面図である。図3は、図2の翼20のA-A線位置の断面を矢視方向に見た図である。図2及び図3を用いて翼20の外周部30について説明する。外周部30は、縮小部23aにおいて、内縁部24側の部分から外縁部23に向かうにつれて、翼20の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する正圧面25を形成する。
(Outer periphery 30)
FIG. 3 is a cross-sectional view of the blades 20 in the axial fan 100 according to the first embodiment. FIG. 3 is a cross-sectional view of the blade 20 in FIG. 2 taken along line AA when viewed in the direction of the arrows. The outer peripheral portion 30 of the blade 20 will be explained using FIGS. 2 and 3. In the reduced portion 23a, the outer peripheral portion 30 forms a positive pressure surface 25 that curves from the downstream side to the upstream side in the flow direction of the fluid flowing when the blade 20 rotates as it goes from the inner edge 24 side toward the outer edge 23. do.
 外周部30は、翼20外周側の翼端附近の空気の流れを整流することで翼端渦を減少させ、あるいは発生方向を上方に移動させ、空気抵抗を減らす機能を有する部分である。外周部30は、縮小部23aに形成されている。また、外周部30は、翼20の外縁部23に沿って形成されている。外周部30は、回転軸RAを中心とする径方向において、外縁部23から内縁部24側の特定の部分にかけて形成されている。 The outer peripheral part 30 is a part that has the function of reducing air resistance by rectifying the flow of air near the blade tip on the outer peripheral side of the blade 20, thereby reducing the blade tip vortex, or moving the generation direction upward. The outer peripheral portion 30 is formed in the reduced portion 23a. Further, the outer peripheral portion 30 is formed along the outer edge portion 23 of the blade 20. The outer peripheral portion 30 is formed from the outer edge 23 to a specific portion on the inner edge 24 side in the radial direction centered on the rotation axis RA.
 外周部30は、翼20において、外周正圧面25aを形成する部分である。翼20の正圧面25は、外周正圧面25aを含んでいる。外周正圧面25aは、図2に示すように、翼20の外側に向いた面を形成する。外周正圧面25aは、回転軸RAを中心とした径方向の成分を有する方向の面を形成する。外周正圧面25aは、軸流ファン100の側面側の面を形成する。 The outer peripheral portion 30 is a portion of the blade 20 that forms the outer peripheral positive pressure surface 25a. The pressure surface 25 of the blade 20 includes an outer peripheral pressure surface 25a. The outer peripheral positive pressure surface 25a forms an outwardly facing surface of the blade 20, as shown in FIG. The outer peripheral positive pressure surface 25a forms a surface that has a radial component around the rotation axis RA. The outer peripheral positive pressure surface 25a forms a side surface of the axial fan 100.
 外周正圧面25aは、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって湾曲するように形成されている。あるいは、外周正圧面25aは、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって反り上がるように形成されている。外周正圧面25aは、下流側かつ外周側が膨らんだように形成されている。 The outer peripheral positive pressure surface 25a is formed to curve from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23. Alternatively, the outer peripheral positive pressure surface 25a is formed to curve upward from the downstream side toward the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23. . The outer circumferential positive pressure surface 25a is formed so as to bulge on the downstream side and on the outer circumferential side.
 外周部30は、縮小部23aに形成されており、一例として、周方向CDにおいて、先端部201から変曲部202まで形成されている。外周部30は、回転軸RAを中心とした周方向CDにおいて、縮小部23aの全ての領域に形成されている。また、外周部30は、回転軸RAを中心とした径方向の幅Wが、前縁部21側の部分よりも後縁部22側の部分の方が大きくなるように形成されている。 The outer circumferential portion 30 is formed in the reduced portion 23a, and for example, is formed from the tip portion 201 to the bent portion 202 in the circumferential direction CD. The outer peripheral portion 30 is formed in the entire area of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA. Further, the outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA is larger on the rear edge 22 side than on the front edge 21 side.
 外周部30は、一例として、先端部201から変曲部202に向かうにつれて、回転軸RAを中心とする径方向の幅Wが、徐々に大きくなるように形成されている。すなわち、外周部30は、回転軸RAを中心とした径方向の幅Wが、先端部201側の部分から後縁部22側の部分に向かうにつれて徐々に大きくなるように形成されている。外周部30は、前縁部21側の部分から後縁部22側の部分に向かうにつれて、径方向の幅Wが、徐々に大きくなるように形成されている。 As an example, the outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA gradually increases from the tip portion 201 toward the bending portion 202. That is, the outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA gradually increases from the portion on the front end portion 201 side to the portion on the rear edge portion 22 side. The outer peripheral portion 30 is formed such that the width W in the radial direction gradually increases from the portion on the front edge portion 21 side to the portion on the rear edge portion 22 side.
 図2に示す外周部30の幅Wは、回転軸RAの軸方向に見た場合の、回転軸RAを中心とした径方向の幅W1である(図3参照)。なお、外周部30の幅Wは、図3に示すように、回転軸RAを中心とした径方向における正圧面25に沿った幅W2と定義してもよい。 The width W of the outer peripheral portion 30 shown in FIG. 2 is the width W1 in the radial direction centered on the rotation axis RA when viewed in the axial direction of the rotation axis RA (see FIG. 3). Note that the width W of the outer peripheral portion 30 may be defined as the width W2 along the positive pressure surface 25 in the radial direction centered on the rotation axis RA, as shown in FIG.
 図2において点線で示す円筒面CLは、軸流ファン100を回転軸RAの軸方向に見た場合において、回転軸RAを中心とした半径を有する円筒面であり、先端部201を通る仮想の円筒面の位置を示している。図2に示す翼20では、外周部30は、回転軸RAを中心とする径方向において、仮想の円筒面CLと外縁部23との間の範囲に形成されている。なお、外周部30の形成位置は、当該範囲に限定されるものではなく、外周部30の内周側の部分は、円筒面CLよりも内縁部24側の位置まで形成されてもよい。すなわち、翼20は、外周部30の形成範囲に円筒面CLの形成位置が含まれてもよい。 The cylindrical surface CL shown by the dotted line in FIG. It shows the position of the cylindrical surface. In the blade 20 shown in FIG. 2, the outer circumferential portion 30 is formed in a range between the virtual cylindrical surface CL and the outer edge portion 23 in the radial direction centered on the rotation axis RA. Note that the formation position of the outer circumferential portion 30 is not limited to this range, and the inner circumferential portion of the outer circumferential portion 30 may be formed to a position closer to the inner edge portion 24 than the cylindrical surface CL. That is, in the blade 20, the formation position of the cylindrical surface CL may be included in the formation range of the outer peripheral portion 30.
 翼20は、外周部30において径方向外周側に向かうにつれて上流側に反り上がる外周正圧面25aを有している。外周部30は、翼径が縮小している領域である縮小部23aにおいて、前縁部21側の任意の位置から最大径に至る変曲部202まで形成されている。外周部30は、前縁部21側の任意の位置よりも翼20の最大径を形成する変曲部202側の部分の方が径方向の幅Wが大きい。 The blade 20 has an outer peripheral positive pressure surface 25a that curves upstream toward the outer peripheral side in the radial direction in the outer peripheral portion 30. The outer peripheral part 30 is formed from an arbitrary position on the leading edge part 21 side to an inflection part 202 reaching the maximum diameter in the reduced part 23a, which is a region where the blade diameter is reduced. The outer circumferential portion 30 has a radial width W greater at a portion on the side of the bending portion 202 that forms the maximum diameter of the blade 20 than at any arbitrary position on the leading edge portion 21 side.
 図4は、実施の形態1に係る軸流ファン100における翼20の第1変形例の正面図である。外周部30は、縮小部23aに形成されていればよい、外周部30は、周方向CDにおいて、先端部201から変曲部202までの全ての領域に形成されている態様に限定されるものではない。外周部30は、回転軸RAを中心とした周方向CDにおいて、縮小部23aの一部の領域に形成されていてもよい。 FIG. 4 is a front view of a first modification of the blades 20 in the axial fan 100 according to the first embodiment. The outer circumferential portion 30 only needs to be formed in the reduced portion 23a, and the outer circumferential portion 30 is limited to an aspect in which it is formed in the entire region from the tip portion 201 to the inflection portion 202 in the circumferential direction CD. isn't it. The outer peripheral portion 30 may be formed in a part of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
 外周部30は、先端部201よりも後方、すなわち、先端部201よりも後縁部22側の部分に形成されてもよい。外周部30は、図4に示すように、先端部201を含まず、周方向CDにおいて、先端部201よりも変曲部202側の位置から変曲部202の位置まで形成されてもよい。すなわち、外周部30は、周方向CDにおいて、先端部201と変曲部202との間の特定の位置と、変曲部202の位置との間の全ての領域に形成されてもよい。 The outer peripheral portion 30 may be formed at the rear of the tip portion 201, that is, at a portion closer to the rear edge portion 22 than the tip portion 201. As shown in FIG. 4, the outer circumferential portion 30 may not include the tip portion 201 and may be formed from a position closer to the bending portion 202 than the tip portion 201 to a position of the bending portion 202 in the circumferential direction CD. That is, the outer peripheral portion 30 may be formed in the entire area between a specific position between the tip portion 201 and the bending portion 202 and the position of the bending portion 202 in the circumferential direction CD.
 図5は、実施の形態1に係る軸流ファン100における翼20の第2変形例の正面図である。外周部30は、上述したように、回転軸RAを中心とした周方向CDにおいて、縮小部23aの一部の領域に形成されていてもよい。 FIG. 5 is a front view of a second modification of the blades 20 in the axial fan 100 according to the first embodiment. As described above, the outer circumferential portion 30 may be formed in a partial region of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
 外周部30は、図5に示すように、変曲部202を含まず、反回転方向ORにおいて、先端部201から変曲部202の前まで形成されてもよい。すなわち、外周部30は、周方向CDにおいて、先端部201の位置と、先端部201と変曲部202との間の特定の位置と、の間の全ての領域に形成されてもよい。 As shown in FIG. 5, the outer peripheral portion 30 may not include the bending portion 202 and may be formed from the tip portion 201 to the front of the bending portion 202 in the counter-rotation direction OR. That is, the outer circumferential portion 30 may be formed in the entire area between the position of the tip portion 201 and a specific position between the tip portion 201 and the bending portion 202 in the circumferential direction CD.
 図6は、実施の形態1に係る軸流ファン100における翼20の第3変形例の正面図である。外周部30は、上述したように、回転軸RAを中心とした周方向CDにおいて、縮小部23aの一部の領域に形成されていてもよい。 FIG. 6 is a front view of a third modification of the blades 20 in the axial fan 100 according to the first embodiment. As described above, the outer circumferential portion 30 may be formed in a partial region of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA.
 外周部30は、図6に示すように、先端部201と変曲部202とを含まず、周方向CDにおいて、先端部201と変曲部202との間の領域に形成されてもよい。すなわち、外周部30は、周方向CDにおける先端部201と変曲部202との間において、前縁部21側の特定の位置から後縁部22側の特定の位置まで形成されてもよい。 As shown in FIG. 6, the outer peripheral portion 30 may not include the tip portion 201 and the bending portion 202 and may be formed in a region between the tip portion 201 and the bending portion 202 in the circumferential direction CD. That is, the outer peripheral part 30 may be formed from a specific position on the front edge part 21 side to a specific position on the rear edge part 22 side between the tip part 201 and the inflection part 202 in the circumferential direction CD.
 図7は、実施の形態1に係る軸流ファン100における翼20の第4変形例の正面図である。外周部30の形成領域は先端部201より後方に配置されており、外周部30は、先端部201側から変曲部202側に向かうにつれて幅Wが徐々に拡大していくように形成されている。外周部30は、図7に示すように、回転軸RAの軸方向に見た場合に、前縁部21側の先端部分を頂点の1つとした三角形状に形成されてもよい。 FIG. 7 is a front view of a fourth modification of the blades 20 in the axial fan 100 according to the first embodiment. The formation area of the outer circumferential portion 30 is arranged behind the tip portion 201, and the outer circumferential portion 30 is formed such that the width W gradually increases from the tip portion 201 side toward the bending portion 202 side. There is. As shown in FIG. 7, the outer circumferential portion 30 may be formed in a triangular shape with one of its vertices being the tip portion on the front edge portion 21 side when viewed in the axial direction of the rotation axis RA.
 図8は、実施の形態1に係る軸流ファン100における翼20の第5変形例の正面図である。図1~図7の翼20の縮小部23aにおける外周部30の数は1つである。翼20の縮小部23aにおける外周部30の数は、1つに限定されるものではなく、図8に示すように複数でもよい。すなわち、翼20の縮小部23aは、1つの外周部30を有してもよく、複数の外周部30を有してもよい。 FIG. 8 is a front view of a fifth modification of the blades 20 in the axial fan 100 according to the first embodiment. The number of outer peripheral portions 30 in the reduced portion 23a of the blade 20 in FIGS. 1 to 7 is one. The number of outer peripheral parts 30 in the reduced part 23a of the blade 20 is not limited to one, and may be plural as shown in FIG. 8. That is, the reduced portion 23a of the blade 20 may have one outer circumferential portion 30 or may have a plurality of outer circumferential portions 30.
 図9は、実施の形態1に係る軸流ファン100における翼20の第6変形例の正面図である。図10は、実施の形態1に係る軸流ファン100における翼20の第7変形例の正面図である。翼20は、縮小部23aにおける径の変化が非線形でもよい。すなわち、翼20は、縮小部23aにおいて、回転方向DRにおける径の変化が単純減少でなくてもよく、及び、反回転方向ORにおける径の変化が単純増加でなくてもよい。縮小部23aにおいて、先端部201側の部分と後縁部22側の部分とを比較した場合に、縮小部23a全体として、先端部201側の部分の外径が後縁部22側の部分の外径よりも小さくなるように形成されていればよい。 FIG. 9 is a front view of a sixth modification of the blades 20 in the axial fan 100 according to the first embodiment. FIG. 10 is a front view of a seventh modification of the blade 20 in the axial fan 100 according to the first embodiment. The blade 20 may have a non-linear change in diameter at the reduced portion 23a. That is, in the blade 20, in the reduced portion 23a, the change in diameter in the rotational direction DR does not need to be a simple decrease, and the change in the diameter in the counter-rotation direction OR does not need to be a simple increase. In the reduced part 23a, when comparing the part on the distal end part 201 side and the part on the rear edge part 22 side, the outer diameter of the part on the distal end part 201 side is the same as that of the part on the rear edge part 22 side of the reduced part 23a as a whole. It is sufficient if it is formed to be smaller than the outer diameter.
 縮小部23aは、反回転方向ORにおいて、徐々に径の大きさが大きくなる形状に限定されるものではなく、図9に示すように、先端部201と変曲部202との間において、徐々に径の大きさが大きくなる形状と比較して凹んだ凹み部分23cを有してもよい。 The reduced portion 23a is not limited to a shape in which the diameter gradually increases in the counter-rotation direction OR, but as shown in FIG. It may have a recessed portion 23c that is recessed compared to a shape in which the diameter is larger.
 また、縮小部23aは、図10に示すように、先端部201と変曲部202との間において、反回転方向ORに向かうにつれて徐々に径の大きさが大きくなる形状と比較して突出した突出部分23dを有してもよい。ただし、突出部分23dの外径は、翼20の最大径よりも小さい。 Further, as shown in FIG. 10, the reduced portion 23a is protruded between the tip portion 201 and the bending portion 202 compared to a shape in which the diameter gradually increases toward the counter-rotation direction OR. It may have a protruding portion 23d. However, the outer diameter of the protruding portion 23d is smaller than the maximum diameter of the blade 20.
 縮小部23aの外縁部23は、曲線状に限定されるものではなく、直線状の部分を含んでもよい。また、縮小部23aの外縁部23は、波線状に形成されてもよく、鋸歯状に形成されてもよい。 The outer edge portion 23 of the reduced portion 23a is not limited to a curved shape, and may include a straight portion. Further, the outer edge portion 23 of the reduced portion 23a may be formed in a wavy line shape or may be formed in a sawtooth shape.
[軸流ファン100の動作]
 図1に示す回転方向DRに軸流ファン100が回転すると、各翼20は、正圧面25によって周囲の空気を押し出す。これにより、流体は、図1の紙面と直交する方向に流れる。より詳しくは、図1に示す回転方向DRに軸流ファン100が回転すると、図1の紙面奥側から紙面手前側に向かう流体の流れが発生する。また、軸流ファン100が回転すると、負圧面26側の圧力が正圧面25側の圧力よりも小さくなり、各翼20の周囲では、正圧面25側と負圧面26側とで圧力差が生じる。
[Operation of axial fan 100]
When the axial fan 100 rotates in the rotation direction DR shown in FIG. 1, each blade 20 pushes out surrounding air by the positive pressure surface 25. As a result, the fluid flows in a direction perpendicular to the paper plane of FIG. More specifically, when the axial fan 100 rotates in the rotational direction DR shown in FIG. 1, a fluid flow is generated from the back side of the page of FIG. 1 toward the front side of the page. Furthermore, when the axial fan 100 rotates, the pressure on the negative pressure surface 26 side becomes smaller than the pressure on the positive pressure surface 25 side, and a pressure difference occurs between the positive pressure surface 25 side and the negative pressure surface 26 side around each blade 20. .
[軸流ファン100の効果]
 図11は、比較例に係る軸流ファン100Lの径方向断面の概念図である。軸流ファン100Lは、通常用いられる一般的なファンである。まず、図11を用いて、通常の軸流ファン100Lに形成される翼端渦WLの形成イメージを説明する。
[Effects of axial fan 100]
FIG. 11 is a conceptual diagram of a radial cross section of an axial fan 100L according to a comparative example. The axial fan 100L is a commonly used fan. First, an image of the formation of the blade tip vortex WL formed in a normal axial fan 100L will be explained using FIG. 11.
 通常、軸流ファン100Lは、ファンの回転により、軸流ファン100Lによる流体の流れる方向において、翼面上の上流側の面となる負圧面26と下流側の面となる正圧面25との間に圧力差が生じる。軸流ファン100Lの外縁では、その圧力差によって正圧面25から負圧面26に流体の流れが漏れて形成される翼端渦WLが発生している。翼端渦WLは、翼20の前縁部21側から後縁部22側にかけて次第に積層増大されて渦径が拡大される。 Normally, the rotation of the fan causes the axial fan 100L to move between a suction surface 26, which is an upstream surface on the blade surface, and a positive pressure surface 25, which is a downstream surface, in the direction in which fluid flows by the axial fan 100L. A pressure difference occurs. At the outer edge of the axial fan 100L, a blade tip vortex WL is generated by a fluid flow leaking from the positive pressure surface 25 to the negative pressure surface 26 due to the pressure difference. The blade tip vortex WL is gradually stacked and increased from the leading edge 21 side to the trailing edge 22 side of the blade 20, and the vortex diameter is expanded.
 図12は、第2の比較例に係る軸流ファン100Rの斜視図である。図13は、第2の比較例に係る軸流ファン100Rの側面図である。軸流ファン100Rは、特許文献1のファンのように折り曲げ部140を有するファンである。 FIG. 12 is a perspective view of an axial fan 100R according to a second comparative example. FIG. 13 is a side view of an axial fan 100R according to a second comparative example. The axial fan 100R is a fan that has a bent portion 140 like the fan of Patent Document 1.
 軸流ファン100Rは、それぞれの翼20Rの外周縁に、吸い込み側に反り上がるように折り曲げられた折り曲げ部140を有し、折り曲げ部140の半径方向の幅が、前縁部21側から後縁部22側にかけて次第に大きくなるように形成されている。当該構成により、軸流ファン100Rは、前縁部21側から後縁部22側までスムーズに翼端渦WLを導くことができ、また、発生した翼端渦WLが翼20の負圧面26から離れにくくなる。 The axial fan 100R has a bent portion 140 on the outer peripheral edge of each blade 20R, which is bent upward toward the suction side, and the radial width of the bent portion 140 varies from the leading edge 21 side to the trailing edge. It is formed so that it gradually becomes larger toward the portion 22 side. With this configuration, the axial fan 100R can smoothly guide the blade tip vortex WL from the leading edge 21 side to the trailing edge 22 side, and the generated blade tip vortex WL can be guided from the suction surface 26 of the blade 20. It becomes difficult to leave.
 翼端渦WLは、外縁部23において前縁部21側から発生し、徐々に拡大しながら後方へ流れていく。軸流ファン100Rは、上述したように、前縁部21側から後縁部22側に向かうにつれて折り曲げ部140の大きさを徐々に大きくしているため、拡大する翼端渦WLを折り曲げ部140に沿わせることができ、翼端渦WLが乱れずに安定する。 The blade tip vortex WL is generated from the leading edge 21 side at the outer edge 23 and flows rearward while gradually expanding. As described above, in the axial fan 100R, the size of the bent portion 140 is gradually increased from the leading edge 21 side to the trailing edge 22 side, so that the expanding blade tip vortex WL is transferred to the bent portion 140. The blade tip vortex WL is stabilized without being disturbed.
 軸流ファン100Rによる流体の流れる方向において、軸流ファン100Rの上流に構造物がない状態、または、軸流ファン100Rが軸流ファン100Rの上流に配置された構造物が離れた状態では、軸流ファン100Rには乱れの少ない気流が流入する。そのため、軸流ファン100Rの上流に構造物がない状態等では、前縁部21側の部分で発生する翼端渦WLは、後縁部22側で発生する翼端渦WLよりも小さく、軸流ファン100Rは、前縁部21側の部分で発生する翼端渦WLの影響を考慮にいれなくてもよい。 In the direction of fluid flow by the axial fan 100R, if there is no structure upstream of the axial fan 100R, or if the axial fan 100R is separated from a structure placed upstream of the axial fan 100R, the axial Airflow with little turbulence flows into the flow fan 100R. Therefore, when there is no structure upstream of the axial fan 100R, the blade tip vortex WL generated on the leading edge 21 side is smaller than the blade tip vortex WL generated on the trailing edge 22 side, and The flow fan 100R does not need to take into account the influence of the blade tip vortex WL generated in the portion on the leading edge 21 side.
 図14は、第2の比較例に係る軸流ファン100Rを備えた空気調和機に用いられる室外機150Rの概念図である。図15は、図14の比較例に示す空気調和機に用いられる室外機150R内におけるモータサポート155と軸流ファン100Rとの関係を示す概念図である。次に、空気調和機に用いられる室外機150Rを用い、構造物の後流WTによる翼端渦WLへの影響について説明する。 FIG. 14 is a conceptual diagram of an outdoor unit 150R used in an air conditioner equipped with an axial fan 100R according to a second comparative example. FIG. 15 is a conceptual diagram showing the relationship between the motor support 155 and the axial fan 100R in the outdoor unit 150R used in the air conditioner shown in the comparative example of FIG. 14. Next, using the outdoor unit 150R used in an air conditioner, the influence of the wake WT of the structure on the blade tip vortex WL will be described.
 空気調和機に用いられる室外機150Rは、空調対象となる室内空間の空気の温度及び湿度を調整して空気の調和を行う装置である。室外機150Rは、圧縮機153、凝縮器、膨張弁及び蒸発器等が配管で接続された冷媒回路を形成する冷凍サイクル装置において、凝縮器又は蒸発器として機能する熱交換器152と、軸流ファン100Rとを筐体151の内部に収容し、室外に設置される。 The outdoor unit 150R used in the air conditioner is a device that performs air conditioning by adjusting the temperature and humidity of the air in the indoor space to be air-conditioned. The outdoor unit 150R is a refrigeration cycle device that forms a refrigerant circuit in which a compressor 153, a condenser, an expansion valve, an evaporator, etc. are connected via piping. The fan 100R is housed inside a housing 151 and installed outdoors.
 空気調和機150は、軸流ファン100Rと、熱交換器152と、軸流ファン100R及び熱交換器152を内部に収容する筐体151と、を備えている。軸流ファン100Rは、モータ154に接続されており。モータ154は、モータサポート155に固定されている。モータサポート155は、軸流ファン100Rによる流体の流れる方向において、軸流ファン100Rの上流側に配置された構造物である。 The air conditioner 150 includes an axial fan 100R, a heat exchanger 152, and a housing 151 that houses the axial fan 100R and the heat exchanger 152 inside. The axial fan 100R is connected to a motor 154. Motor 154 is fixed to motor support 155. The motor support 155 is a structure disposed upstream of the axial fan 100R in the direction in which fluid flows by the axial fan 100R.
 図14及び図15に示すように、モータサポート155等の構造物がある場合、構造物の下流側に流れる後流WTは、構造物によって流れが乱れている。そのため、軸流ファン100Rの上流側に配置されるモータサポート155等の構造物は、軸流ファン100Rに流入する流体の流れの乱れを発生させる。 As shown in FIGS. 14 and 15, when there is a structure such as the motor support 155, the flow of the wake WT flowing downstream of the structure is disturbed by the structure. Therefore, structures such as the motor support 155 disposed upstream of the axial fan 100R cause turbulence in the flow of fluid flowing into the axial fan 100R.
 後流WTのような乱れた流体の流れが、軸流ファン100Rの外周側の前縁部21に流入すると、翼20の最外周に位置する外縁部23の周速度の影響を受けて翼20の前縁部21側でも大きな流体の漏れが発生し、翼端渦WLの形成を増大させる。翼20の最外周に位置する外縁部23は、軸流ファン100Rの径方向位置において最も周速度が速くなる部分である。モータサポート155等による乱れた後流WTが外縁の前縁部21に流入した際に、周速度の影響の大きさと相まって前縁部21側でも大きな翼端渦WLが形成される。なお、翼20における周速度は、回転軸RAに近づくほど小さくなり、回転軸RAから離れるほど大きくなる。 When a turbulent fluid flow such as the wake WT flows into the leading edge 21 on the outer peripheral side of the axial fan 100R, the blade 20 is influenced by the circumferential speed of the outer edge 23 located at the outermost periphery of the blade 20. Large fluid leakage also occurs on the leading edge 21 side of the blade, increasing the formation of blade tip vortices WL. The outer edge portion 23 located at the outermost periphery of the blade 20 is a portion where the circumferential speed is the highest in the radial position of the axial fan 100R. When the wake WT disturbed by the motor support 155 and the like flows into the leading edge 21 of the outer edge, a large blade tip vortex WL is also formed on the leading edge 21 side in combination with the influence of the circumferential speed. Note that the circumferential speed of the blade 20 decreases as it approaches the rotation axis RA, and increases as it moves away from the rotation axis RA.
 軸流ファン100Rの折り曲げ部140のように、前縁部21側の部分が小さく反り上がるように形成されているだけでは、後流WTのような乱れた流体の流れが軸流ファン100Rに流入した場合に翼端渦WLが安定せずファン効率が低下する恐れがある。 If the portion on the front edge 21 side is only slightly curved like the bent portion 140 of the axial fan 100R, the turbulent fluid flow such as the wake WT will not flow into the axial fan 100R. In this case, the blade tip vortex WL may become unstable and the fan efficiency may decrease.
 軸流ファン100の翼20は、外縁部23を形成する部分における前縁部21側の部分において、翼20の最大径を形成する後縁部22側の部分よりも翼20の外径が縮小された部分を形成する縮小部23aを有する。また、軸流ファン100の翼20は、縮小部23aにおいて、内縁部24側の部分から外縁部23に向かうにつれて、翼20の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する正圧面25を形成する外周部30を有する。そして、外周部30は、回転軸RAを中心とした径方向の幅Wが、前縁部21側の部分よりも後縁部22側の部分の方が大きくなるように形成されている。 The outer diameter of the blade 20 of the axial fan 100 is smaller in the portion on the leading edge 21 side of the portion forming the outer edge 23 than in the portion on the trailing edge 22 side forming the maximum diameter of the blade 20. It has a reduced portion 23a that forms a reduced portion. In addition, the blades 20 of the axial fan 100 are curved from the downstream side to the upstream side in the direction in which fluid flows when the blades 20 rotate, from the inner edge 24 side toward the outer edge 23 in the reduced portion 23a. It has an outer peripheral portion 30 forming a positive pressure surface 25. The outer circumferential portion 30 is formed such that the width W in the radial direction around the rotation axis RA is larger on the rear edge 22 side than on the front edge 21 side.
 軸流ファン100は、翼20に縮小部23aを有することによって翼20の前縁部21側の径が縮小しており、前縁部21側の部分が翼20の最外径を形成する部分よりも回転軸RAに近づいているため、前縁部21側の翼20部分の周速度が小さくなる。そのため、軸流ファン100は、軸流ファン100にモータサポート等の構造物により乱れた流体の流れが流入しても、翼20の前縁部21側の周速度が小さいために翼20の前縁部21側の部分に形成される翼端渦WLが小さくなる。さらに、軸流ファン100は、縮小部23aに外周部30を有し、外周部30は、回転軸RAを中心とした径方向の幅Wが、前縁部21側の部分よりも後縁部22側の部分の方が大きくなるように形成されている。軸流ファン100は、当該構成を有することで、前縁部21側の部分から後縁部22側の部分に向かって拡大する翼端渦WLを外周部30に沿わせることができる。そのため、軸流ファン100は、負圧面26での翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。 The axial fan 100 has a reduced diameter on the leading edge 21 side of the blade 20 by having the reduced portion 23a in the blade 20, and the portion on the leading edge 21 side forms the outermost diameter of the blade 20. Since the blade 20 is closer to the rotation axis RA than the blade 20, the circumferential speed of the portion of the blade 20 on the leading edge 21 side becomes smaller. Therefore, even if a fluid flow disturbed by a structure such as a motor support flows into the axial fan 100, the front edge of the blade 20 is The blade tip vortex WL formed on the edge 21 side becomes smaller. Furthermore, the axial fan 100 has an outer circumferential part 30 in the reduced part 23a, and the outer circumferential part 30 has a width W in the radial direction around the rotation axis RA that is smaller at the rear edge than at the front edge 21 side. The portion on the 22 side is formed to be larger. With this configuration, the axial fan 100 can cause the blade tip vortex WL, which expands from the leading edge 21 side to the trailing edge 22 side, to follow the outer circumference 30 . Therefore, in the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
 また、外周部30は、回転軸RAを中心とした周方向CDにおいて、縮小部23aの一部の領域に形成されていてもよい。軸流ファン100は、縮小部23aの一部に外周部30を有し、外周部30は、回転軸RAを中心とした径方向の幅Wが、前縁部21側の部分よりも後縁部22側の部分の方が大きくなるように形成されている。軸流ファン100は、当該構成を有することで、前縁部21側の部分から後縁部22側の部分に向かって拡大する翼端渦WLを外周部30に沿わせることができる。そのため、軸流ファン100は、負圧面26での翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。 Furthermore, the outer peripheral portion 30 may be formed in a partial region of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA. The axial fan 100 has an outer peripheral part 30 in a part of the reduced part 23a, and the outer peripheral part 30 has a width W in the radial direction around the rotation axis RA that is closer to the rear edge than a part on the front edge 21 side. The portion on the part 22 side is formed to be larger. With this configuration, the axial fan 100 can cause the blade tip vortex WL, which expands from the leading edge 21 side to the trailing edge 22 side, to follow the outer circumference 30 . Therefore, in the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
 また、外周部30は、回転軸RAを中心とした周方向CDにおいて、縮小部23aの全ての領域に形成されていてもよい。軸流ファン100は、縮小部23aの全ての領域に外周部30を有し、外周部30は、回転軸RAを中心とした径方向の幅Wが、前縁部21側の部分よりも後縁部22側の部分の方が大きくなるように形成されている。軸流ファン100は、当該構成を有することで、前縁部21側の部分から後縁部22側の部分に向かって拡大する翼端渦WLを外周部30に沿わせることができる。そのため、軸流ファン100は、負圧面26での翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。ここで、翼20は、径が大きい部分ほど周速度が上がる。縮小部23aの全ての領域は、先端部201から変曲部202までの領域である。変曲部202は、翼20の最大径を構成する部分であり、翼20において周速度が先端部201よりも速い部分である。軸流ファン100は、先端部201から変曲部202まで外周部30を形成することで翼端渦WLの安定を更に向上させることができる。 Furthermore, the outer peripheral portion 30 may be formed in the entire area of the reduced portion 23a in the circumferential direction CD centered on the rotation axis RA. The axial fan 100 has an outer circumferential portion 30 in all areas of the reduced portion 23a, and the outer circumferential portion 30 has a width W in the radial direction centered on the rotation axis RA that is rearward than the portion on the front edge 21 side. The portion on the edge 22 side is formed to be larger. With this configuration, the axial fan 100 can cause the blade tip vortex WL, which expands from the leading edge 21 side to the trailing edge 22 side, to follow the outer circumference 30 . Therefore, in the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency. Here, the circumferential speed of the blade 20 increases as the diameter increases. The entire region of the reduced portion 23a is the region from the tip portion 201 to the inflection portion 202. The bending portion 202 is a portion that constitutes the maximum diameter of the blade 20 and is a portion of the blade 20 where the circumferential speed is faster than the tip portion 201. The axial fan 100 can further improve the stability of the blade tip vortex WL by forming the outer circumferential portion 30 from the tip portion 201 to the inflection portion 202.
 また、外周部30は、回転軸RAを中心とした径方向の幅Wが、先端部201側の部分から後縁部22側の部分に向かうにつれて徐々に大きくなるように形成されている。軸流ファン100は、当該構成を有することで、前縁部21側の部分から後縁部22側の部分に向かって拡大する翼端渦WLを更に外周部30に沿わせることができる。そのため、軸流ファン100は、負圧面26での翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。 Further, the outer peripheral portion 30 is formed such that the width W in the radial direction around the rotation axis RA gradually increases from the portion on the front end portion 201 side to the portion on the rear edge portion 22 side. By having the configuration, the axial fan 100 can cause the blade tip vortex WL, which expands from the portion on the leading edge 21 side to the portion on the trailing edge 22 side, to further follow the outer peripheral portion 30. Therefore, in the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
実施の形態2.
 図16は、実施の形態2に係る軸流ファン100における翼20の正面図である。図17は、実施の形態2に係る軸流ファン100における翼20の断面図である。図16は、翼20の構成を説明するため、複数の翼20の内、1つの翼20のみが図示されており、他の翼20の図示が省略されている。図17は、図16の翼20のB-B線位置の断面を矢視方向に見た図である。なお、図1~図10の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態2に係る軸流ファン100は、後方外縁部23bの構成を更に特定するものである。
Embodiment 2.
FIG. 16 is a front view of the blades 20 in the axial fan 100 according to the second embodiment. FIG. 17 is a cross-sectional view of the blades 20 in the axial fan 100 according to the second embodiment. In FIG. 16, in order to explain the configuration of the blade 20, only one blade 20 among the plurality of blades 20 is illustrated, and illustration of the other blades 20 is omitted. FIG. 17 is a cross-sectional view of the blade 20 in FIG. 16 taken along line BB when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 10 are designated by the same reference numerals, and the description thereof will be omitted. In the axial fan 100 according to the second embodiment, the configuration of the rear outer edge portion 23b is further specified.
 後方外縁部23bは、後方外周部40を有してもよい。すなわち、翼20は、外周部30に加えて更に後方外周部40を有してもよい。後方外周部40は、縮小部23aよりも後縁部22側において、内縁部24側の部分から外縁部23に向かうにつれて、翼20の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する正圧面25を形成する。 The rear outer edge portion 23b may have a rear outer peripheral portion 40. That is, the wing 20 may further include a rear outer circumferential portion 40 in addition to the outer circumferential portion 30 . The rear outer peripheral part 40 extends from the inner edge 24 side toward the outer edge 23 on the trailing edge 22 side than the reduced part 23a, from the downstream side to the upstream side in the direction of fluid flowing when the blade 20 rotates. to form a curved positive pressure surface 25.
 後方外周部40は、後方外縁部23bの領域に形成されている。後方外周部40は、回転方向DRにおいて、外周部30の後方に形成されており、外周部30よりも後縁部22側の部分に形成されている。 The rear outer peripheral portion 40 is formed in the region of the rear outer edge portion 23b. The rear outer circumferential portion 40 is formed at the rear of the outer circumferential portion 30 in the rotation direction DR, and is formed at a portion closer to the rear edge portion 22 than the outer circumferential portion 30 is.
 後方外周部40は、外周部30と同様に、翼20外周側の翼端附近の空気の流れを整流することで翼端渦WLを減少させ、あるいは発生方向を上方に移動させ、空気抵抗を減らす機能を有する部分である。後方外周部40は、後方外縁部23bの領域に形成されている。また、後方外周部40は、翼20の外縁部23に沿って形成されている。後方外周部40は、回転軸RAを中心とする径方向において、外縁部23から内縁部24側の特定の部分にかけて形成されている。 Similar to the outer circumferential part 30, the rear outer circumferential part 40 reduces the wing tip vortex WL by rectifying the air flow near the wing tip on the outer circumferential side of the blade 20, or moves the generation direction upward, thereby reducing air resistance. This is the part that has the function of reducing The rear outer peripheral portion 40 is formed in the region of the rear outer edge portion 23b. Further, the rear outer peripheral portion 40 is formed along the outer edge portion 23 of the wing 20. The rear outer peripheral portion 40 is formed from the outer edge 23 to a specific portion on the inner edge 24 side in the radial direction centered on the rotation axis RA.
 後方外周部40は、翼20において、後方外周正圧面25bを形成する部分である。翼20の正圧面25は、後方外周正圧面25bを含んでいる。後方外周正圧面25bは、図17に示すように、翼20の外側に向いた面を形成する。後方外周正圧面25bは、回転軸RAを中心とした径方向の成分を有する方向の面を形成する。後方外周正圧面25bは、軸流ファン100の側面側の面を形成する。 The rear outer peripheral portion 40 is a portion of the blade 20 that forms the rear outer peripheral positive pressure surface 25b. The pressure surface 25 of the blade 20 includes a rear outer peripheral pressure surface 25b. The rear outer peripheral positive pressure surface 25b forms an outwardly facing surface of the blade 20, as shown in FIG. The rear outer peripheral positive pressure surface 25b forms a surface having a radial component around the rotation axis RA. The rear outer peripheral positive pressure surface 25b forms a side surface of the axial fan 100.
 後方外周正圧面25bは、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって湾曲するように形成されている。あるいは、後方外周正圧面25bは、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって反り上がるように形成されている。後方外周正圧面25bは、下流側かつ外周側が膨らんだように形成されている。 The rear outer peripheral positive pressure surface 25b is formed to curve from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows from the inner peripheral side toward the outer edge 23. Alternatively, the rear outer peripheral positive pressure surface 25b is formed to curve upward from the downstream side toward the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23. There is. The rear outer circumferential positive pressure surface 25b is formed so that its downstream side and outer circumferential side are bulged.
 後方外周部40は、後方外縁部23bに形成されていればよく、一例として、図16に示すように、周方向CDにおいて、変曲部202から後端部203までの全ての領域に形成されている。後方外周部40は、回転方向DRにおいて、縮小部23aの後方に形成されており、変曲部202から後縁部22まで延びるように形成されている。 The rear outer peripheral part 40 may be formed in the rear outer edge part 23b, and as an example, as shown in FIG. ing. The rear outer peripheral portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed to extend from the bending portion 202 to the rear edge portion 22.
 後方外周部40は、回転軸RAを中心とする径方向において、仮想の円筒面CLと外縁部23との間の範囲に形成されている。なお、後方外周部40の形成位置は、当該範囲に限定されるものではなく、後方外周部40の内周側の部分は、円筒面CLよりも内縁部24側の位置まで形成されてもよい。すなわち、翼20は、後方外周部40の形成範囲に円筒面CLの形成位置が含まれてもよい。 The rear outer circumferential portion 40 is formed in a range between the virtual cylindrical surface CL and the outer edge portion 23 in the radial direction centered on the rotation axis RA. Note that the formation position of the rear outer peripheral part 40 is not limited to this range, and the inner peripheral side part of the rear outer peripheral part 40 may be formed to a position closer to the inner edge part 24 than the cylindrical surface CL. . That is, in the blade 20, the formation position of the cylindrical surface CL may be included in the formation range of the rear outer peripheral portion 40.
 図18は、実施の形態2に係る軸流ファン100における翼20の第1変形例の正面図である。後方外周部40は、後方外縁部23bに形成されていればよい、後方外周部40は、周方向CDにおいて、変曲部202から後端部203までの全ての領域に形成されている態様に限定されるものではない。 FIG. 18 is a front view of a first modification of the blades 20 in the axial fan 100 according to the second embodiment. The rear outer circumferential portion 40 may be formed in the rear outer edge portion 23b.The rear outer circumferential portion 40 may be formed in the entire region from the bending portion 202 to the rear end portion 203 in the circumferential direction CD. It is not limited.
 後方外周部40は、縮小部23aよりも後方、すなわち、縮小部23aよりも後縁部22側の部分に形成されてもよい。後方外周部40は、図18に示すように、変曲部202を含まず、周方向CDにおいて、変曲部202よりも後端部203側の位置から後端部203の位置まで形成されてもよい。すなわち、後方外周部40は、周方向CDにおいて、変曲部202と後端部203との間の特定の位置と、後端部203の位置との間の全ての領域に形成されてもよい。後方外周部40は、回転方向DRにおいて、縮小部23aの後方に形成されており、変曲部202よりも後端部203側の位置から後縁部22まで延びるように形成されている。 The rear outer peripheral portion 40 may be formed at the rear of the reduced portion 23a, that is, at a portion closer to the rear edge portion 22 than the reduced portion 23a. As shown in FIG. 18, the rear outer peripheral part 40 does not include the bending part 202, and is formed from a position closer to the rear end part 203 than the bending part 202 to a position of the rear end part 203 in the circumferential direction CD. Good too. That is, the rear outer peripheral portion 40 may be formed in the entire area between a specific position between the bending portion 202 and the rear end portion 203 and the position of the rear end portion 203 in the circumferential direction CD. . The rear outer peripheral portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed to extend from a position closer to the rear end portion 203 than the bending portion 202 to the rear edge portion 22.
 図19は、実施の形態2に係る軸流ファン100における翼20の第2変形例の正面図である。後方外周部40は、図19に示すように、後端部203を含まず、反回転方向ORにおいて、変曲部202から後端部203の前まで形成されてもよい。すなわち、後方外周部40は、周方向CDにおいて、変曲部202の位置と、変曲部202と後端部203との間の特定の位置と、の間の全ての領域に形成されてもよい。後方外周部40は、回転方向DRにおいて、縮小部23aの後方に形成されており、前縁部21側の部分から後縁部22側の部分にかけて形成されており、後縁部22までは至らない。 FIG. 19 is a front view of a second modification of the blades 20 in the axial fan 100 according to the second embodiment. As shown in FIG. 19, the rear outer circumferential portion 40 may not include the rear end portion 203 and may be formed from the bending portion 202 to the front of the rear end portion 203 in the counter-rotation direction OR. That is, the rear outer circumferential portion 40 may be formed in all areas between the position of the bending portion 202 and a specific position between the bending portion 202 and the rear end portion 203 in the circumferential direction CD. good. The rear outer circumferential portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed from a portion on the front edge 21 side to a portion on the rear edge 22 side, and does not extend to the rear edge 22. do not have.
 図20は、実施の形態2に係る軸流ファン100における翼20の第3変形例の正面図である。後方外周部40は、図20に示すように、変曲部202と後端部203とを含まず、周方向CDにおいて、変曲部202と後端部203との間の領域に形成されてもよい。すなわち、後方外周部40は、周方向CDにおける変曲部202と後端部203との間において、前縁部21側の特定の位置から後縁部22側の特定の位置まで形成されてもよい。後方外周部40は、回転方向DRにおいて、縮小部23aの後方に形成されており、前縁部21側の部分から後縁部22側の部分にかけて形成されており、後縁部22までは至らない。 FIG. 20 is a front view of a third modification of the blades 20 in the axial fan 100 according to the second embodiment. As shown in FIG. 20, the rear outer peripheral part 40 does not include the bending part 202 and the rear end part 203, and is formed in a region between the bending part 202 and the rear end part 203 in the circumferential direction CD. Good too. That is, the rear outer peripheral portion 40 may be formed from a specific position on the front edge 21 side to a specific position on the rear edge 22 side between the bending portion 202 and the rear end portion 203 in the circumferential direction CD. good. The rear outer circumferential portion 40 is formed behind the reduced portion 23a in the rotation direction DR, and is formed from a portion on the front edge 21 side to a portion on the rear edge 22 side, and does not extend to the rear edge 22. do not have.
 図21は、実施の形態2に係る軸流ファン100における翼20の第4変形例の正面図である。後方外周部40は、変曲部202側の部分から後端部203側の部分に向かうにつれて、回転軸RAを中心とする径方向の幅BWが、徐々に大きくなるように形成されている。すなわち、後方外周部40は、前縁部21側の部分から後縁部22側の部分に向かうにつれて、径方向の幅Wが、徐々に大きくなるように形成されている。後方外周部40は、回転軸RAの軸方向に見た場合に、前縁部21側の先端部分を頂点の1つとした三角形状に形成されてもよい。 FIG. 21 is a front view of a fourth modification of the blades 20 in the axial fan 100 according to the second embodiment. The rear outer circumferential portion 40 is formed such that the width BW in the radial direction centering on the rotation axis RA gradually increases from the portion on the bending portion 202 side to the portion on the rear end portion 203 side. That is, the rear outer circumferential portion 40 is formed such that the width W in the radial direction gradually increases from the portion on the front edge 21 side to the portion on the rear edge 22 side. The rear outer circumferential portion 40 may be formed in a triangular shape with one of its vertices being the tip portion on the front edge portion 21 side when viewed in the axial direction of the rotation axis RA.
 図22は、実施の形態2に係る軸流ファン100における翼20の第5変形例の正面図である。後方外周部40は、変曲部202側の部分から後端部203側の部分に向かうにつれて、回転軸RAを中心とする径方向の幅BWが、徐々に小さくなるように形成されている。すなわち、後方外周部40は、前縁部21側の部分から後縁部22側の部分に向かうにつれて、径方向の幅Wが、徐々に小さくなるように形成されている。後方外周部40は、回転軸RAの軸方向に見た場合に、後縁部22側の先端部分を頂点の1つとした三角形状に形成されてもよい。 FIG. 22 is a front view of a fifth modification of the blades 20 in the axial fan 100 according to the second embodiment. The rear outer circumferential portion 40 is formed such that the width BW in the radial direction centering on the rotation axis RA gradually decreases from the portion on the bending portion 202 side to the portion on the rear end portion 203 side. That is, the rear outer circumferential portion 40 is formed such that the width W in the radial direction gradually decreases from the portion on the front edge 21 side to the portion on the rear edge 22 side. The rear outer circumferential portion 40 may be formed in a triangular shape with one of its vertices being the tip portion on the rear edge portion 22 side when viewed in the axial direction of the rotation axis RA.
[軸流ファン100の効果]
 実施の形態2の翼20は、縮小部23aよりも後縁部22側において、内縁部24側の部分から外縁部23に向かうにつれて、翼20の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する正圧面25を形成する後方外周部40を更に有する。軸流ファン100は、縮小部23a及び外周部30によって安定化した翼端渦WLが、そのまま後方へ流れていく。軸流ファン100は、後方外周部40を有することによって、安定化した翼端渦WLを継続して形成することができ、翼20から吹き出されるまで翼端渦WLの安定を保つことができる。そのため、軸流ファン100は、負圧面26での翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。
[Effects of axial fan 100]
In the blade 20 of the second embodiment, on the trailing edge 22 side of the contracted part 23a, from the inner edge 24 side toward the outer edge 23, from the downstream side to the upstream side in the flow direction of the fluid flowing when the blade 20 rotates. It further includes a rear outer circumferential portion 40 forming a pressure surface 25 that curves toward the side. In the axial fan 100, the blade tip vortex WL stabilized by the reduced portion 23a and the outer peripheral portion 30 flows rearward as it is. By having the rear outer peripheral portion 40, the axial fan 100 can continuously form a stabilized blade tip vortex WL, and can maintain the stability of the blade tip vortex WL until it is blown out from the blade 20. . Therefore, in the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
実施の形態3.
 図23は、実施の形態3に係る軸流ファン100における翼20の正面図である。図24は、実施の形態3に係る軸流ファン100における翼20の断面図である。図23は、翼20の構成を説明するため、複数の翼20の内、1つの翼20のみが図示されており、他の翼20の図示が省略されている。図24は、図23の翼20のA-A線位置の断面を矢視方向に見た図である。なお、図1~図22の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態3に係る軸流ファン100は、外周部30の構成を更に特定するものである。
Embodiment 3.
FIG. 23 is a front view of the blades 20 in the axial fan 100 according to the third embodiment. FIG. 24 is a cross-sectional view of the blades 20 in the axial fan 100 according to the third embodiment. In FIG. 23, in order to explain the configuration of the blade 20, only one blade 20 among the plurality of blades 20 is illustrated, and illustration of the other blades 20 is omitted. FIG. 24 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 22 are designated by the same reference numerals, and a description thereof will be omitted. In the axial fan 100 according to the third embodiment, the configuration of the outer peripheral portion 30 is further specified.
 外周部30は、回転軸RAを中心とした径方向断面において、ファンの外縁部23を含んだ第1領域25a1と、その内周側に連続して形成された第2領域25a2とを有する。外周部30の外周正圧面25aは、第1領域25a1と、第2領域25a2とを含む。 The outer circumferential portion 30 has a first region 25a1 including the outer edge portion 23 of the fan and a second region 25a2 formed continuously on the inner circumferential side of the first region 25a1 in a radial cross section centered on the rotation axis RA. The outer peripheral positive pressure surface 25a of the outer peripheral portion 30 includes a first region 25a1 and a second region 25a2.
 軸流ファン100の径方向において、第1領域25a1は、第2領域25a2に対して外周側に位置する領域を形成し、翼20の外縁部23を含む。軸流ファン100の径方向において、第2領域25a2は、第1領域25a1に対して内周側に位置する領域を形成する。第1領域25a1と第2領域25a2とは、軸流ファン100の径方向において連続して形成されている。第1領域25a1及び第2領域25a2は、平坦面でもよく湾曲面でもよい。 In the radial direction of the axial fan 100, the first region 25a1 forms a region located on the outer peripheral side with respect to the second region 25a2, and includes the outer edge portion 23 of the blade 20. In the radial direction of the axial fan 100, the second region 25a2 forms a region located on the inner peripheral side with respect to the first region 25a1. The first region 25a1 and the second region 25a2 are formed continuously in the radial direction of the axial fan 100. The first region 25a1 and the second region 25a2 may be flat surfaces or may be curved surfaces.
 ここで、軸流ファン100の径方向に沿った断面において、第1領域25a1の径方向で内周側の端点と外周側の端点とを結んだ直線を軌跡L1とし、第2領域25a2の径方向で内周側の端点と外周側の端点とを結んだ直線を軌跡L2とする。 Here, in the cross section along the radial direction of the axial fan 100, a straight line connecting the inner end point and the outer end point in the radial direction of the first region 25a1 is defined as a locus L1, and the diameter of the second region 25a2 is A straight line connecting the end points on the inner circumferential side and the end points on the outer circumferential side in the direction is defined as a locus L2.
 また、軸流ファン100の径方向に沿った断面において、回転軸RAに垂直な面を表す線を直線FLとする。図24に示すように、軸流ファン100の径方向に沿った断面において、第1領域25a1の軌跡L1と直線FLとの間の角度を第1角度θ1とする。また、軸流ファン100の径方向に沿った断面において、第2領域25a2の軌跡L2と直線FLとの間の角度を第2角度θ2とする。 Further, in a cross section along the radial direction of the axial fan 100, a line representing a plane perpendicular to the rotation axis RA is defined as a straight line FL. As shown in FIG. 24, in the cross section along the radial direction of the axial fan 100, the angle between the locus L1 of the first region 25a1 and the straight line FL is defined as a first angle θ1. Further, in the cross section along the radial direction of the axial fan 100, the angle between the locus L2 of the second region 25a2 and the straight line FL is defined as a second angle θ2.
 実施の形態3に係る軸流ファン100は、第1領域25a1の第1角度θ1が第2領域25a2の第2角度θ2よりも大きくなるように形成されている。換言すれば、実施の形態3に係る軸流ファン100は、第2領域25a2の第2角度θ2が第1領域25a1の第1角度θ1よりも小さくなるように形成されている。 The axial fan 100 according to the third embodiment is formed such that the first angle θ1 of the first region 25a1 is larger than the second angle θ2 of the second region 25a2. In other words, the axial fan 100 according to the third embodiment is formed such that the second angle θ2 of the second region 25a2 is smaller than the first angle θ1 of the first region 25a1.
 外周部30は、上述したように、回転軸RAを中心とした径方向断面において、第1領域25a1の径方向における内周側の端点と外周側の端点とを結んだ軌跡L1と、回転軸RAに垂直な面を表す直線FLとのなす角度である第1角度θ1を構成する。また、外周部30は、第2領域25a2の径方向における内周側の端点と外周側の端点とを結んだ軌跡L2と、回転軸RAに垂直な面を表す直線FLとのなす角度である第2角度θ2を構成する。 As described above, in the radial cross section centered on the rotation axis RA, the outer circumferential portion 30 has a locus L1 connecting the inner circumferential end point and the outer circumferential end point in the radial direction of the first region 25a1, and the rotation axis. A first angle θ1 is formed with the straight line FL representing a plane perpendicular to RA. Further, the outer circumferential portion 30 is an angle formed between a locus L2 connecting an end point on the inner circumferential side and an end point on the outer circumferential side in the radial direction of the second region 25a2 and a straight line FL representing a plane perpendicular to the rotation axis RA. A second angle θ2 is configured.
 外周部30は、第1角度θ1と第2角度θ2とを比較した場合に、第1領域25a1の第1角度θ1が第2領域25a2の第2角度θ2よりも大きくなるように形成されている。すなわち、第1領域25a1及び第2領域25a2の、それぞれの領域の径方向における内周側の端点と外周側の端点とを結んだ軌跡と、ファン軸方向に垂直な面を表す直線とのなす角度は、第2領域25a2よりも第1領域25a1のほうが大きい。 The outer peripheral portion 30 is formed such that when comparing the first angle θ1 and the second angle θ2, the first angle θ1 of the first region 25a1 is larger than the second angle θ2 of the second region 25a2. . That is, the line formed by the locus connecting the inner end point and the outer end point of each region in the radial direction of the first region 25a1 and the second region 25a2 and a straight line representing a plane perpendicular to the fan axis direction. The angle is larger in the first region 25a1 than in the second region 25a2.
[軸流ファン100の効果]
 実施の形態3に係る軸流ファン100の外周部30は、回転軸RAを中心とした径方向断面において、外縁部23を含んだ第1領域25a1と、その内周側に連続して形成された第2領域25a2とを有する。外周部30は、第1領域25a1の第1角度θ1が第2領域25a2の第2角度θ2よりも大きくなるように形成されている。すなわち、第1領域25a1及び第2領域25a2の、それぞれの領域の径方向における内周側の端点と外周側の端点とを結んだ軌跡と、ファン軸方向に垂直な面を表す直線とのなす角度は、第2領域25a2よりも第1領域25a1のほうが大きい。実施の形態3に係る軸流ファン100は、回転軸RAを中心とした径方向において、翼20の最外周部分をより急峻な反り上がりにすることで、ファン外縁の正圧面25から離脱する流体の流れがなだらかになり、更に翼端渦WLが安定する。そのため、軸流ファン100は、翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。
[Effects of axial fan 100]
The outer circumferential portion 30 of the axial fan 100 according to the third embodiment is formed continuously with the first region 25a1 including the outer edge portion 23 on the inner circumferential side thereof in a radial cross section centered on the rotation axis RA. and a second region 25a2. The outer peripheral portion 30 is formed such that the first angle θ1 of the first region 25a1 is larger than the second angle θ2 of the second region 25a2. That is, the line formed by the locus connecting the inner end point and the outer end point of each region in the radial direction of the first region 25a1 and the second region 25a2 and a straight line representing a plane perpendicular to the fan axis direction. The angle is larger in the first region 25a1 than in the second region 25a2. The axial fan 100 according to the third embodiment has the outermost peripheral portion of the blade 20 curved more steeply in the radial direction around the rotation axis RA, thereby reducing the amount of fluid that separates from the positive pressure surface 25 at the outer edge of the fan. The flow becomes gentler, and the blade tip vortex WL becomes more stable. Therefore, in the axial fan 100, the blade tip vortex WL is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
実施の形態4.
 図25は、実施の形態4に係る軸流ファン100における翼20の断面図である。図25は、図23の翼20のA-A線位置の断面を矢視方向に見た図である。なお、図1~図24の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態4に係る軸流ファン100は、外周部30の負圧面26の構成を更に特定するものである。
Embodiment 4.
FIG. 25 is a cross-sectional view of the blades 20 in the axial fan 100 according to the fourth embodiment. FIG. 25 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 24 are designated by the same reference numerals, and a description thereof will be omitted. In the axial fan 100 according to the fourth embodiment, the configuration of the negative pressure surface 26 of the outer peripheral portion 30 is further specified.
 実施の形態4に係る軸流ファン100の外周部30は、回転軸RAを中心とした径方向断面において、翼20の回転時に流れる流体の流れる方向の上流側から下流側に向かって負圧面26が凹んでいる。より詳細には、実施の形態4に係る軸流ファン100の外周部30は、外周負圧面26aを有する。翼20の負圧面26は、外周負圧面26aを含んでいる。 The outer circumference 30 of the axial fan 100 according to the fourth embodiment has a negative pressure surface 26 from the upstream side to the downstream side in the direction in which fluid flows when the blades 20 rotate, in a radial cross section centered on the rotation axis RA. is depressed. More specifically, the outer peripheral portion 30 of the axial fan 100 according to the fourth embodiment has an outer peripheral negative pressure surface 26a. The suction surface 26 of the blade 20 includes an outer peripheral suction surface 26a.
 図25に示すように、軸流ファン100の径方向断面において、外周負圧面26aの断面形状は、軸流ファン100による流体の流れる方向における上流側から下流側へ凹んだ形状に形成されている。すなわち、軸流ファン100の径方向断面において、外周負圧面26aの断面形状は、軸流ファン100による流体の流れる方向における上流側から下流側へ凸な形状に湾曲している。外周負圧面26aは、例えば、円弧状に湾曲している。 As shown in FIG. 25, in the radial cross section of the axial fan 100, the outer negative pressure surface 26a has a cross-sectional shape concave from the upstream side to the downstream side in the direction of fluid flow by the axial fan 100. . That is, in the radial cross section of the axial fan 100, the cross-sectional shape of the outer peripheral negative pressure surface 26a is curved in a convex shape from the upstream side to the downstream side in the direction of fluid flow by the axial fan 100. The outer peripheral negative pressure surface 26a is, for example, curved in an arc shape.
 外周負圧面26aは、図25に示すように、翼20の内側に向いた面を形成する。外周負圧面26aは、回転軸RAを中心とした径方向の成分を有する方向の面を形成する。外周負圧面26aは、軸流ファン100の内側面側の面を形成する。 The outer peripheral negative pressure surface 26a forms a surface facing inward of the blade 20, as shown in FIG. The outer peripheral negative pressure surface 26a forms a surface that has a radial component around the rotation axis RA. The outer peripheral negative pressure surface 26a forms a surface on the inner side of the axial fan 100.
 外周負圧面26aは、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって湾曲するように形成されている。あるいは、外周負圧面26aは、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって反り上がるように形成されている。 The outer peripheral negative pressure surface 26a is formed to curve from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows as it goes from the inner peripheral side toward the outer edge 23. Alternatively, the outer peripheral negative pressure surface 26a is formed to curve upward from the downstream side toward the upstream side in the flow direction of the fluid formed by the axial fan 100 as it goes from the inner peripheral side toward the outer edge 23. .
 外周正圧面25a及び外周負圧面26aによって、翼20の外周部30は、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって翼板が湾曲するように形成されている。外周正圧面25a及び外周負圧面26aによって、翼20の外周部30は、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって翼板が反り上がるように形成されている。 Due to the outer peripheral positive pressure surface 25a and the outer peripheral negative pressure surface 26a, the outer peripheral portion 30 of the blade 20 moves from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows from the inner peripheral side toward the outer edge 23. The blades are curved toward the Due to the outer peripheral positive pressure surface 25a and the outer peripheral negative pressure surface 26a, the outer peripheral portion 30 of the blade 20 moves from the downstream side to the upstream side in the direction in which the fluid formed by the axial fan 100 flows from the inner peripheral side toward the outer edge 23. The blades are shaped so that they curve upward.
[軸流ファン100の効果]
 実施の形態4に係る軸流ファン100の外周部30は、回転軸RAを中心とした径方向断面において、翼20の回転時に流れる流体の流れる方向の上流側から下流側に向かって負圧面26が凹んでいる。すなわち、径方向断面における負圧面26の形状は、下流側へ凸となる。翼端渦WLは渦巻いているため、翼端渦WLが通過する負圧面26が当該構成で形成されていることで、翼端渦WLの外縁が整えられる。そのため、実施の形態4に係る軸流ファン100は、翼端渦WLを安定して形成できる。軸流ファン100は、翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。
[Effects of axial fan 100]
The outer circumference 30 of the axial fan 100 according to the fourth embodiment has a negative pressure surface 26 from the upstream side to the downstream side in the direction in which fluid flows when the blades 20 rotate, in a radial cross section centered on the rotation axis RA. is depressed. That is, the shape of the negative pressure surface 26 in the radial cross section is convex toward the downstream side. Since the blade tip vortex WL is spiral, the outer edge of the blade tip vortex WL is adjusted by forming the negative pressure surface 26 through which the blade tip vortex WL passes. Therefore, the axial fan 100 according to the fourth embodiment can stably form the blade tip vortex WL. In the axial fan 100, the blade tip vortex WL is stabilized without being disturbed, and the fan efficiency can be improved to achieve high efficiency.
実施の形態5.
 図26は、実施の形態5に係る軸流ファン100における翼20の断面図である。図26は、図23の翼20のA-A線位置の断面を矢視方向に見た図である。なお、図1~図25の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態5に係る軸流ファン100は、外周部30の外縁部23の構成を更に特定するものである。
Embodiment 5.
FIG. 26 is a cross-sectional view of the blades 20 in the axial fan 100 according to the fifth embodiment. FIG. 26 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 25 are designated by the same reference numerals, and the description thereof will be omitted. In the axial fan 100 according to the fifth embodiment, the configuration of the outer edge portion 23 of the outer peripheral portion 30 is further specified.
 実施の形態5に係る軸流ファン100の外周部30は、回転軸RAを中心とした径方向断面において、外縁部23が丸みを帯びたラウンド状に形成されている。すなわち、実施の形態5に係る軸流ファン100は、径方向断面における外縁の形状にラウンドが設けられている。ラウンドとは、丸みを帯びた形状部分であり、R状に形成された部分である。 The outer circumferential portion 30 of the axial fan 100 according to the fifth embodiment has a rounded outer edge portion 23 in a radial cross section centered on the rotation axis RA. That is, in the axial fan 100 according to the fifth embodiment, the outer edge in the radial cross section is rounded. A round is a rounded portion, and is a portion formed in an R shape.
 実施の形態5に係る軸流ファン100は、軸流ファン100の径方向断面において、外側面23eと負圧面26との角部分、及び、外側面23eと外周正圧面25aとの角部分がラウンドを有するように形成されている。外側面23eは、軸流ファン100の径方向断面において直線状に形成されている。 In the axial fan 100 according to the fifth embodiment, in the radial cross section of the axial fan 100, the corner portion between the outer surface 23e and the negative pressure surface 26 and the corner portion between the outer surface 23e and the outer peripheral positive pressure surface 25a are rounded. It is formed to have. The outer surface 23e is formed linearly in the radial cross section of the axial fan 100.
 図27は、実施の形態5に係る軸流ファン100における翼20の第1変形例の断面図である。第1変形例の翼20は、軸流ファン100の径方向断面において、外側面23eがラウンドを有するように湾曲している。第1変形例の翼20は、外縁部23が1つのラウンドを形成するように連続した曲面を形成している。第1の変形例の翼20は、軸流ファン100の径方向断面において、外縁部23において外周正圧面25aと負圧面26とを1つのラウンドでつないでいる。 FIG. 27 is a sectional view of a first modification of the blade 20 in the axial fan 100 according to the fifth embodiment. The blade 20 of the first modification is curved so that the outer surface 23e has a round shape in the radial cross section of the axial fan 100. The blade 20 of the first modification forms a continuous curved surface such that the outer edge portion 23 forms one round. In the blade 20 of the first modification, in the radial cross section of the axial fan 100, the outer peripheral positive pressure surface 25a and the negative pressure surface 26 are connected in one round at the outer edge portion 23.
[軸流ファン100の効果]
 実施の形態5に係る軸流ファン100の外周部30は、回転軸RAを中心とした径方向断面において、外縁部23が丸みを帯びたラウンド状に形成されている。実施の形態5に係る軸流ファン100は、外周部30の正圧面25の流れが負圧面26に向かう際に、その間に位置する外縁部23がラウンド状に形成された部分でつながれており、流体の流れがなだらかに進むため、翼端渦WLの形成を安定化できる。そのため、軸流ファン100は、翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。
[Effects of axial fan 100]
The outer peripheral portion 30 of the axial fan 100 according to the fifth embodiment has a rounded outer edge portion 23 in a radial cross section centered on the rotation axis RA. In the axial fan 100 according to the fifth embodiment, when the flow on the positive pressure surface 25 of the outer peripheral portion 30 is directed toward the negative pressure surface 26, the outer edge portion 23 located therebetween is connected by a rounded portion, Since the fluid flow proceeds smoothly, the formation of the blade tip vortex WL can be stabilized. Therefore, in the axial fan 100, the blade tip vortex WL is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
実施の形態6.
 図28は、実施の形態6に係る軸流ファン100における翼20の断面図である。図28は、図23の翼20のA-A線位置の断面を矢視方向に見た図である。なお、図1~図27の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態6に係る軸流ファン100は、外周部30の外縁部23の構成を更に特定するものである。
Embodiment 6.
FIG. 28 is a cross-sectional view of the blades 20 in the axial fan 100 according to the sixth embodiment. FIG. 28 is a cross-sectional view of the blade 20 in FIG. 23 taken along line AA when viewed in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 of FIGS. 1 to 27 are designated by the same reference numerals, and the description thereof will be omitted. In the axial fan 100 according to the sixth embodiment, the configuration of the outer edge portion 23 of the outer peripheral portion 30 is further specified.
 実施の形態6に係る軸流ファン100の外周部30は、回転軸RAを中心とした径方向断面において、外縁部23の部分が翼20の正圧面25と負圧面26とによって鋭角に形成されている。すなわち、実施の形態6に係る軸流ファン100は、径方向断面における外縁の形状が鋭角に形成されている。 In the outer peripheral portion 30 of the axial fan 100 according to the sixth embodiment, the outer edge portion 23 is formed at an acute angle by the pressure surface 25 and the negative pressure surface 26 of the blade 20 in a radial cross section centered on the rotation axis RA. ing. That is, in the axial fan 100 according to the sixth embodiment, the outer edge in the radial cross section is formed at an acute angle.
 より詳細には、翼20は、軸流ファン100の径方向断面において、負圧面26と外周正圧面25aとが鋭角を形成するように形成されている。実施の形態6に係る軸流ファン100の翼20は、軸流ファン100の径方向断面において、外縁部23が頂点を形成するように負圧面26と外周正圧面25aとが三角状に形成されている。 More specifically, the blades 20 are formed such that the negative pressure surface 26 and the outer pressure surface 25a form an acute angle in the radial cross section of the axial fan 100. In the blade 20 of the axial fan 100 according to the sixth embodiment, the negative pressure surface 26 and the outer peripheral positive pressure surface 25a are formed in a triangular shape so that the outer edge 23 forms the apex in the radial cross section of the axial fan 100. ing.
 実施の形態6に係る軸流ファン100の外周部30は、軸流ファン100の径方向断面において、内周側から外周側に向かうにつれて翼厚が薄くなるように形成されている。実施の形態6に係る軸流ファン100の外周部30は、軸流ファン100の径方向断面において、内周側から外周側に向かうにつれて回転軸RAの軸方向における負圧面26と外周正圧面25aとの間の距離が小さくなるように形成されている。 The outer circumferential portion 30 of the axial fan 100 according to the sixth embodiment is formed such that the blade thickness becomes thinner from the inner circumferential side toward the outer circumferential side in the radial cross section of the axial fan 100. The outer circumferential portion 30 of the axial fan 100 according to the sixth embodiment has a negative pressure surface 26 and an outer circumferential positive pressure surface 25a in the axial direction of the rotation axis RA from the inner circumferential side to the outer circumferential side in the radial cross section of the axial fan 100. It is formed so that the distance between the two is small.
[軸流ファン100の効果]
 実施の形態6に係る軸流ファン100の外周部30は、回転軸RAを中心とした径方向断面において、外縁部23の部分が翼20の正圧面25と負圧面26とによって鋭角に形成されている。外縁部23に厚みがあると、外縁で発生する流体の流れと翼壁面との接触により流体の流れが不安定になる。軸流ファン100は、外縁部23の部分が翼20の正圧面25と負圧面26とによって鋭角に形成されていることで、正圧面25から外縁部23で流体の流れが離脱した際に、翼壁面との接触なしにすぐに負圧面26に引き込まれるため、翼端渦WLが安定化する。そのため、軸流ファン100は、翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。
[Effects of axial fan 100]
In the outer peripheral portion 30 of the axial fan 100 according to the sixth embodiment, the outer edge portion 23 is formed at an acute angle by the pressure surface 25 and the negative pressure surface 26 of the blade 20 in a radial cross section centered on the rotation axis RA. ing. If the outer edge portion 23 is thick, the fluid flow generated at the outer edge comes into contact with the blade wall surface, making the fluid flow unstable. In the axial fan 100, the outer edge portion 23 is formed at an acute angle by the positive pressure surface 25 and the negative pressure surface 26 of the blades 20, so that when the fluid flow separates from the positive pressure surface 25 at the outer edge portion 23, Since the blade tip vortex WL is immediately drawn into the negative pressure surface 26 without contacting the blade wall surface, the blade tip vortex WL is stabilized. Therefore, in the axial fan 100, the blade tip vortex WL is not disturbed and stabilized, and the fan efficiency can be improved to achieve high efficiency.
実施の形態7.
[空気調和機70]
 実施の形態7は、上記実施の形態1~6の軸流ファン100等を、送風機55として空気調和機70の室外機50に適用した場合について説明する。
Embodiment 7.
[Air conditioner 70]
Embodiment 7 will describe a case where the axial fan 100 and the like of Embodiments 1 to 6 described above are applied to the outdoor unit 50 of an air conditioner 70 as the blower 55.
 図29は、実施の形態7に係る空気調和機70の概要図である。以下の説明では、軸流ファン100を用いる装置として空気調和機70について、説明するが、軸流ファン100は、空気調和機70に使用されるものに限定されるものではない。軸流ファン100は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和機、冷凍装置、及び、給湯器等の、冷凍用途又は空調用途に使用される。 FIG. 29 is a schematic diagram of an air conditioner 70 according to Embodiment 7. In the following description, the air conditioner 70 will be described as a device using the axial fan 100, but the axial fan 100 is not limited to that used in the air conditioner 70. The axial fan 100 is used for refrigeration or air conditioning applications, such as refrigerators or freezers, vending machines, air conditioners, refrigeration equipment, water heaters, and the like.
 図29に示すように、空気調和機70は、冷媒を圧縮して吐出する圧縮機64と、冷媒を凝縮させる凝縮器72と、膨張弁74と、冷媒を蒸発させる蒸発器73と、を備えている。また、空気調和機70は、送風機55(図31参照)を備えている。空気調和機70は、圧縮機64と凝縮器72と膨張弁74と蒸発器73とを順番に冷媒配管で接続した冷媒回路71を形成している。 As shown in FIG. 29, the air conditioner 70 includes a compressor 64 that compresses and discharges refrigerant, a condenser 72 that condenses the refrigerant, an expansion valve 74, and an evaporator 73 that evaporates the refrigerant. ing. The air conditioner 70 also includes a blower 55 (see FIG. 31). The air conditioner 70 forms a refrigerant circuit 71 in which a compressor 64, a condenser 72, an expansion valve 74, and an evaporator 73 are connected in order through refrigerant piping.
 凝縮器72には、熱交換用の空気を凝縮器72に送風する凝縮器用ファン72aが配置されている。また、蒸発器73には、熱交換用の空気を蒸発器73に送風する蒸発器用ファン73aが配置されている。凝縮器用ファン72a及び蒸発器用ファン73aの少なくとも一方は、上記実施の形態1~6の何れかの軸流ファン100等によって構成される。なお、空気調和機70は、冷媒回路71に冷媒の流れを切り替える四方弁等の流路切替装置を設け、暖房運転と冷房運転とを切り替える構成としてもよい。 A condenser fan 72a that blows air for heat exchange to the condenser 72 is arranged in the condenser 72. Further, an evaporator fan 73 a that blows air for heat exchange to the evaporator 73 is arranged in the evaporator 73 . At least one of the condenser fan 72a and the evaporator fan 73a is configured by the axial fan 100 of any one of the first to sixth embodiments described above. Note that the air conditioner 70 may have a configuration in which the refrigerant circuit 71 is provided with a flow path switching device such as a four-way valve that switches the flow of the refrigerant to switch between heating operation and cooling operation.
 図30は、実施の形態7に係る空気調和機70の室外機50を、吹出口側から見たときの斜視図である。図31は、上面側から室外機50の構成を説明するための図である。図32は、室外機50からファングリル54を外した状態を示す図である。図33は、室外機50からファングリル54及び前面51bのパネル等を除去して、内部構成を示す図である。 FIG. 30 is a perspective view of the outdoor unit 50 of the air conditioner 70 according to Embodiment 7, viewed from the outlet side. FIG. 31 is a diagram for explaining the configuration of the outdoor unit 50 from the top side. FIG. 32 is a diagram showing a state in which the fan grill 54 is removed from the outdoor unit 50. FIG. 33 is a diagram showing the internal configuration of the outdoor unit 50 with the fan grill 54, front panel 51b, etc. removed.
 図30~図33に示すように、ケーシングである室外機本体51は、左右一対の側面51a及び側面51c、前面51b、背面51d、上面51e並びに底面51fを有する筐体として構成されている。側面51a及び背面51dには、外部から空気を吸込むための開口部(図示は省略)が形成されている。 As shown in FIGS. 30 to 33, the outdoor unit main body 51, which is a casing, is configured as a housing having a pair of left and right side surfaces 51a and 51c, a front surface 51b, a back surface 51d, a top surface 51e, and a bottom surface 51f. Openings (not shown) for sucking air from the outside are formed in the side surface 51a and the back surface 51d.
 前面51bにおいては、前面パネル52に、外部に空気を吹出すための開口部としての吹出口53が形成されている。さらに、吹出口53は、ファングリル54で覆われており、それにより、室外機本体51の外部の物体等と軸流ファン100との接触を防止し、安全が図られている。なお、図31の矢印ARは、空気の流れを示している。 On the front surface 51b, a blowout port 53 is formed in the front panel 52 as an opening for blowing air out to the outside. Furthermore, the air outlet 53 is covered with a fan grill 54, thereby preventing contact between the axial fan 100 and objects outside the outdoor unit main body 51, thereby ensuring safety. Note that the arrow AR in FIG. 31 indicates the flow of air.
 室外機本体51内には、送風機55が収容されている。送風機55は、図31に示すように、軸流ファン100と、駆動源61とを有する。駆動源61は、ファンモータであり、軸流ファン100に駆動力を付与する。 A blower 55 is housed within the outdoor unit main body 51. The blower 55 includes an axial fan 100 and a drive source 61, as shown in FIG. The drive source 61 is a fan motor and provides driving force to the axial fan 100.
 軸流ファン100は、背面51d側にある駆動源61の回転軸62に接続されており、この駆動源61によって回転駆動される。駆動源61は、モータサポート69に取り付けられている。モータサポート69は、駆動源61と熱交換器68との間に配置されており、駆動源61を支持する。 The axial fan 100 is connected to a rotating shaft 62 of a drive source 61 on the back side 51d, and is rotationally driven by this drive source 61. The drive source 61 is attached to a motor support 69. The motor support 69 is arranged between the drive source 61 and the heat exchanger 68 and supports the drive source 61.
 室外機本体51の内部は、壁体である仕切板51gによって、軸流ファン100が設置されている送風室56と、圧縮機64等が設置されている機械室57とに分けられている。送風室56内における側面51a側と背面51d側とには、平面視において、略L字状に延びるような熱交換器68が設けられている。なお、熱交換器68の形状は、当該形状に限定されるものではなく、例えば平面視で直線上に形成されてもよい。熱交換器68は、暖房運転時において蒸発器73として機能し、冷房運転時において凝縮器72として機能する。 The inside of the outdoor unit main body 51 is divided by a partition plate 51g, which is a wall, into a ventilation chamber 56 in which an axial fan 100 is installed and a machine room 57 in which a compressor 64 and the like are installed. A heat exchanger 68 is provided on the side surface 51a side and the rear surface 51d side in the ventilation chamber 56 so as to extend in a substantially L-shape when viewed from above. Note that the shape of the heat exchanger 68 is not limited to this shape, and may be formed, for example, on a straight line in a plan view. The heat exchanger 68 functions as an evaporator 73 during heating operation, and functions as a condenser 72 during cooling operation.
 送風室56に配置された軸流ファン100の径方向外側には、ベルマウス63が配置されている。ベルマウス63は、軸流ファン100の外周側を囲い、軸流ファン100等により形成される気体の流れを整える。ベルマウス63は、翼20の外周端よりも外側に位置し、軸流ファン100の回転方向に沿って環状に設けられている。また、ベルマウス63の一方側の側方には、仕切板51gが位置し、他方側の側方には、熱交換器68の一部が位置することとなる。 A bell mouth 63 is arranged on the radially outer side of the axial fan 100 arranged in the ventilation chamber 56. The bell mouth 63 surrounds the outer peripheral side of the axial fan 100 and adjusts the flow of gas generated by the axial fan 100 and the like. The bell mouth 63 is located outside the outer peripheral end of the blade 20 and is annularly provided along the rotational direction of the axial fan 100. Furthermore, a partition plate 51g is located on one side of the bell mouth 63, and a part of the heat exchanger 68 is located on the other side.
 ベルマウス63の前端は、吹出口53の外周を囲むように室外機50の前面パネル52と接続されている。なお、ベルマウス63は、前面パネル52と一体的に構成されていてもよく、あるいは、別体として、前面パネル52につなげられる構成として用意されてもよい。このベルマウス63によって、ベルマウス63の吸込側と吹出側との間の流路が、吹出口53近傍の風路として構成される。すなわち、吹出口53近傍の風路は、ベルマウス63によって、送風室56内の他の空間と区切られる。 The front end of the bell mouth 63 is connected to the front panel 52 of the outdoor unit 50 so as to surround the outer periphery of the air outlet 53. Note that the bell mouth 63 may be configured integrally with the front panel 52, or may be prepared as a separate body connected to the front panel 52. With this bell mouth 63, a flow path between the suction side and the blowout side of the bellmouth 63 is configured as an air path near the blowout port 53. That is, the air path near the blower outlet 53 is separated from other spaces within the blower chamber 56 by the bell mouth 63.
 軸流ファン100の吸込側に設けられている熱交換器68は、板状の面が平行になるように並設された複数のフィンと、その並設方向に各フィンを貫通する伝熱管とを備えている。伝熱管内には、冷媒回路を循環する冷媒が流通する。本実施の形態の熱交換器68は、伝熱管が室外機本体51の側面51aと背面51dとにかけてL字状に延び、複数段の伝熱管がフィンを貫通しながら蛇行するように構成される。 The heat exchanger 68 provided on the suction side of the axial fan 100 includes a plurality of fins arranged in parallel so that their plate-like surfaces are parallel to each other, and heat transfer tubes passing through each fin in the direction in which the fins are arranged in parallel. It is equipped with A refrigerant circulating in the refrigerant circuit flows within the heat transfer tube. The heat exchanger 68 of this embodiment is configured such that the heat transfer tubes extend in an L-shape between the side surface 51a and the back surface 51d of the outdoor unit main body 51, and the heat transfer tubes in multiple stages meander while penetrating the fins. .
 熱交換器68は、配管65等を介して圧縮機64と接続し、さらに、図示を省略する室内側熱交換器及び膨張弁74等と接続されて、空気調和機70の冷媒回路71を構成する。また、機械室57には、基板箱66が配置されており、この基板箱66に設けられた制御基板67によって室外機内に搭載された機器が制御されている。 The heat exchanger 68 is connected to the compressor 64 via piping 65, etc., and is further connected to an indoor heat exchanger, an expansion valve 74, etc. (not shown), and constitutes a refrigerant circuit 71 of the air conditioner 70. do. Further, a board box 66 is arranged in the machine room 57, and a control board 67 provided in the board box 66 controls the equipment mounted in the outdoor unit.
 図29に示す空気調和機70は、送風機55と、駆動源61を支持するモータサポート69と、冷媒を凝縮させる凝縮器72と、冷媒を蒸発させる蒸発器73と、を備える。図31に示す送風機55は、凝縮器72及び蒸発器73の少なくとも一方に空気を送風する。 The air conditioner 70 shown in FIG. 29 includes a blower 55, a motor support 69 that supports the drive source 61, a condenser 72 that condenses refrigerant, and an evaporator 73 that evaporates the refrigerant. The blower 55 shown in FIG. 31 blows air to at least one of the condenser 72 and the evaporator 73.
[送風機55及び空気調和機70の作用効果]
 送風機55は、実施の形態1~6に係る軸流ファン100を備える。また、空気調和機70は、実施の形態1~6に係る軸流ファン100を有する送風機55を備える。そのため、実施の形態7に係る送風機55及び空気調和機70においても、上記実施の形態1~6に係る軸流ファン100と同様の効果が得られる。送風機55及び空気調和機70の軸流ファン100は、軸流ファン100にモータサポート等の構造物により乱れた流体の流れが流入しても、翼20の前縁部21側の周速度が小さいために翼20の前縁部21側の部分に形成される翼端渦WLが小さくなる。また、送風機55及び空気調和機70の軸流ファン100は、前縁部21側の部分から後縁部22側の部分に向かって拡大する翼端渦WLを外周部30に沿わせることができる。そのため、軸流ファン100を備えた送風機55及び空気調和機70は、軸流ファン100の負圧面26での翼端渦WLが乱れずに安定し、ファン効率を向上させて高効率化を図ることができる。
[Operations and effects of the blower 55 and air conditioner 70]
The blower 55 includes the axial fan 100 according to the first to sixth embodiments. Furthermore, the air conditioner 70 includes a blower 55 having the axial fan 100 according to the first to sixth embodiments. Therefore, in the blower 55 and the air conditioner 70 according to the seventh embodiment, the same effects as the axial fan 100 according to the first to sixth embodiments described above can be obtained. The axial fan 100 of the blower 55 and the air conditioner 70 has a small circumferential velocity on the leading edge 21 side of the blade 20 even if a fluid flow disturbed by a structure such as a motor support flows into the axial fan 100. Therefore, the blade tip vortex WL formed on the leading edge 21 side of the blade 20 becomes smaller. Further, the axial fan 100 of the blower 55 and the air conditioner 70 can cause the blade tip vortex WL, which expands from the leading edge 21 side part to the trailing edge part 22 side part, to follow the outer peripheral part 30. . Therefore, in the blower 55 and air conditioner 70 equipped with the axial fan 100, the blade tip vortex WL on the negative pressure surface 26 of the axial fan 100 is stabilized without being disturbed, improving fan efficiency and achieving high efficiency. be able to.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。例えば、実施の形態3~6に係る発明は、外周部30の構成を特定したものであるが、実施の形態3~6に係る発明は、後方外周部40の構成に適用してもよい。 The configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible. For example, the inventions according to Embodiments 3 to 6 specify the configuration of the outer circumferential portion 30, but the inventions according to Embodiments 3 to 6 may be applied to the configuration of the rear outer circumferential portion 40.
 10 ハブ、20 翼、20R 翼、21 前縁部、22 後縁部、23 外縁部、23a 縮小部、23b 後方外縁部、23c 凹み部分、23d 突出部分、23e 外側面、24 内縁部、25 正圧面、25a 外周正圧面、25a1 第1領域、25a2 第2領域、25b 後方外周正圧面、26 負圧面、26a 外周負圧面、28 翼面、30 外周部、40 後方外周部、50 室外機、51 室外機本体、51a 側面、51b 前面、51c 側面、51d 背面、51e 上面、51f 底面、51g 仕切板、52 前面パネル、53 吹出口、54 ファングリル、55 送風機、56 送風室、57 機械室、61 駆動源、62 回転軸、63 ベルマウス、64 圧縮機、65 配管、66 基板箱、67 制御基板、68 熱交換器、69 モータサポート、70 空気調和機、71 冷媒回路、72 凝縮器、72a 凝縮器用ファン、73 蒸発器、73a 蒸発器用ファン、74 膨張弁、100 軸流ファン、100L 軸流ファン、100R 軸流ファン、140 折り曲げ部、150 空気調和機、150R 室外機、151 筐体、152 熱交換器、153 圧縮機、154 モータ、155 モータサポート、201 先端部、202 変曲部、203 後端部。 10 hub, 20 wing, 20R wing, 21 leading edge, 22 trailing edge, 23 outer edge, 23a reduced part, 23b rear outer edge, 23c concave part, 23d protruding part, 23e outer surface, 24 inner edge, 25 positive Pressure surface, 25a outer circumference positive pressure surface, 25a1 first region, 25a2 second region, 25b rear outer circumference positive pressure surface, 26 negative pressure surface, 26a outer circumference negative pressure surface, 28 wing surface, 30 outer circumference, 40 rear outer circumference, 50 outdoor unit, 51 Outdoor unit body, 51a side, 51b front, 51c side, 51d back, 51e top, 51f bottom, 51g partition plate, 52 front panel, 53 air outlet, 54 fan grill, 55 blower, 56 blower room, 57 machine room, 61 Drive source, 62 Rotating shaft, 63 Bell mouth, 64 Compressor, 65 Piping, 66 Board box, 67 Control board, 68 Heat exchanger, 69 Motor support, 70 Air conditioner, 71 Refrigerant circuit, 72 Condenser, 72a Condensation dexterous fan, 73 evaporator, 73a evaporator fan, 74 expansion valve, 100 axial fan, 100L axial fan, 100R axial fan, 140 bending section, 150 air conditioner, 150R outdoor unit, 151 housing, 152 heat exchanger, 153 compressor, 154 motor, 155 motor support, 201 tip, 202 bending part, 203 rear end.

Claims (11)

  1.  回転駆動され回転軸を形成するハブと、
     前記ハブの周囲に形成されており、前縁部、後縁部、前記ハブと繋がる部分である内縁部、及び、前記前縁部と前記後縁部との間の外縁を形成する外縁部を有する翼と、
    を備え、
     前記翼は、
     前記外縁部を形成する部分における前記前縁部側の部分において、前記翼の最大径を形成する前記後縁部側の部分よりも前記翼の外径が縮小された部分を形成する縮小部と、
     前記縮小部において、前記内縁部側の部分から前記外縁部に向かうにつれて、前記翼の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する正圧面を形成する外周部と、
    を有し、
     前記外周部は、
     前記回転軸を中心とした径方向の幅が、前記前縁部側の部分よりも前記後縁部側の部分の方が大きくなるように形成されている軸流ファン。
    a hub that is rotationally driven and forms a rotating shaft;
    It is formed around the hub, and includes a front edge, a rear edge, an inner edge that connects with the hub, and an outer edge that forms an outer edge between the front edge and the rear edge. having wings;
    Equipped with
    The wing is
    a reduced portion forming a portion where the outer diameter of the blade is reduced in a portion on the leading edge side of the portion forming the outer edge portion than a portion on the trailing edge side forming the maximum diameter of the blade; ,
    In the contracted portion, an outer peripheral portion forming a positive pressure surface that curves from the downstream side to the upstream side in the direction of flow of fluid flowing when the blade rotates from the inner edge side toward the outer edge;
    has
    The outer peripheral portion is
    The axial flow fan is formed such that a width in a radial direction around the rotating shaft is larger in a portion on the rear edge side than in a portion on the front edge side.
  2.  前記外周部は、
     前記回転軸を中心とした周方向において、前記縮小部の一部の領域に形成されている請求項1に記載の軸流ファン。
    The outer peripheral portion is
    The axial fan according to claim 1, wherein the axial fan is formed in a part of the reduced portion in a circumferential direction around the rotating shaft.
  3.  前記外周部は、
     前記回転軸を中心とした周方向において、前記縮小部の全ての領域に形成されている請求項1に記載の軸流ファン。
    The outer peripheral portion is
    The axial flow fan according to claim 1, wherein the axial flow fan is formed in all areas of the reduced portion in a circumferential direction around the rotation axis.
  4.  前記翼は、
     前記外縁部において最も前記前縁部側に位置する部分である先端部と、
     前記外縁部の前記翼の最外径を形成する部分において、最も前記先端部側に位置する部分である変曲部と、
    を有し、
     前記縮小部は、
     前記回転軸を中心とした周方向において、前記先端部と前記変曲部との間の全ての領域に形成されており、
     前記外周部は、
     前記回転軸を中心とした径方向の幅が、前記先端部側の部分から前記後縁部側の部分に向かうにつれて徐々に大きくなるように形成されている請求項1~3のいずれか1項に記載の軸流ファン。
    The wing is
    a tip portion that is the portion of the outer edge located closest to the front edge;
    an inflection portion that is a portion of the outer edge portion that forms the outermost diameter of the blade and is located closest to the tip end;
    has
    The reduction part is
    is formed in all areas between the tip portion and the bending portion in the circumferential direction around the rotation axis,
    The outer peripheral portion is
    Any one of claims 1 to 3, wherein the width in the radial direction about the rotation axis gradually increases from the tip end side toward the rear edge side. Axial fan described in.
  5.  前記翼は、
     前記縮小部よりも前記後縁部側において、前記内縁部側の部分から前記外縁部に向かうにつれて、前記翼の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する正圧面を形成する後方外周部を更に有する請求項1~4のいずれか1項に記載の軸流ファン。
    The wing is
    On the trailing edge side of the contracting part, a pressure surface is curved from the downstream side to the upstream side in the flow direction of the fluid flowing when the blade rotates from the inner edge side toward the outer edge. The axial fan according to any one of claims 1 to 4, further comprising a rear outer peripheral portion forming a rear outer peripheral portion.
  6.  前記外周部は、
     前記回転軸を中心とした径方向断面において、前記外縁部を含んだ第1領域と、その内周側に連続して形成された第2領域とを有し、
     前記回転軸を中心とした径方向断面において、前記第1領域の径方向における内周側の端点と外周側の端点とを結んだ軌跡と、前記回転軸に垂直な面を表す直線とのなす角度である第1角度と、前記第2領域の径方向における内周側の端点と外周側の端点とを結んだ軌跡と、前記回転軸に垂直な面を表す直線とのなす角度である第2角度とを比較した場合に、前記第1領域の前記第1角度が前記第2領域の前記第2角度よりも大きくなるように形成されている請求項1~5のいずれか1項に記載の軸流ファン。
    The outer peripheral portion is
    In a radial cross section centered on the rotation axis, the first region includes a first region including the outer edge portion, and a second region is formed continuously on the inner peripheral side of the first region,
    In a radial cross section centered on the rotational axis, a line formed by a locus connecting an inner circumferential end point and an outer circumferential end point in the radial direction of the first region and a straight line representing a plane perpendicular to the rotational axis. A first angle that is an angle, a locus that connects an end point on the inner peripheral side and an end point on the outer peripheral side in the radial direction of the second region, and a straight line that represents a plane perpendicular to the rotation axis. 6. The first angle of the first region is formed so as to be larger than the second angle of the second region when two angles are compared. axial fan.
  7.  前記外周部は、
     前記回転軸を中心とした径方向断面において、前記翼の回転時に流れる流体の流れる方向の上流側から下流側に向かって負圧面が凹んでいる請求項1~6のいずれか1項に記載の軸流ファン。
    The outer peripheral portion is
    7. A suction surface according to claim 1, wherein in a radial cross section centered on the rotation axis, the suction surface is concave from the upstream side to the downstream side in the direction in which fluid flows when the blade rotates. Axial fan.
  8.  前記外周部は、
     前記回転軸を中心とした径方向断面において、前記外縁部が丸みを帯びたラウンド状に形成されている請求項1~7のいずれか1項に記載の軸流ファン。
    The outer peripheral portion is
    The axial fan according to any one of claims 1 to 7, wherein the outer edge portion is formed in a rounded shape in a radial cross section centered on the rotating shaft.
  9.  前記外周部は、
     前記回転軸を中心とした径方向断面において、前記外縁部の部分が前記翼の正圧面と負圧面とによって鋭角に形成されている請求項1~7のいずれか1項に記載の軸流ファン。
    The outer peripheral portion is
    The axial fan according to any one of claims 1 to 7, wherein in a radial cross section centered on the rotation axis, the outer edge portion is formed at an acute angle by a pressure surface and a suction surface of the blade. .
  10.  請求項1~9のいずれか1項に記載の軸流ファンと、
     前記軸流ファンに駆動力を付与する駆動源と、
     を備えた送風機。
    The axial fan according to any one of claims 1 to 9,
    a drive source that provides driving force to the axial fan;
    Blower with.
  11.  請求項10に記載の送風機と、
     前記駆動源を支持するモータサポートと、
     冷媒を凝縮させる凝縮器と、
     前記冷媒を蒸発させる蒸発器と、
    を備え、
     前記送風機は、
     前記凝縮器及び前記蒸発器の少なくとも一方に空気を送風する空気調和機。
    The blower according to claim 10;
    a motor support that supports the drive source;
    a condenser that condenses the refrigerant;
    an evaporator that evaporates the refrigerant;
    Equipped with
    The blower is
    An air conditioner that blows air to at least one of the condenser and the evaporator.
PCT/JP2022/027062 2022-07-08 2022-07-08 Axial flow fan, air blower, and air conditioner WO2024009490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027062 WO2024009490A1 (en) 2022-07-08 2022-07-08 Axial flow fan, air blower, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027062 WO2024009490A1 (en) 2022-07-08 2022-07-08 Axial flow fan, air blower, and air conditioner

Publications (1)

Publication Number Publication Date
WO2024009490A1 true WO2024009490A1 (en) 2024-01-11

Family

ID=89453181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027062 WO2024009490A1 (en) 2022-07-08 2022-07-08 Axial flow fan, air blower, and air conditioner

Country Status (1)

Country Link
WO (1) WO2024009490A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013892A (en) * 2001-04-26 2003-01-15 Daikin Ind Ltd Blower and air conditioner with blower
JP2013144951A (en) * 2012-01-16 2013-07-25 Mitsubishi Electric Corp Blower, outdoor unit, and refrigerating cycle device
WO2015030048A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Propeller fan, air-blowing device, and outdoor unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013892A (en) * 2001-04-26 2003-01-15 Daikin Ind Ltd Blower and air conditioner with blower
JP2013144951A (en) * 2012-01-16 2013-07-25 Mitsubishi Electric Corp Blower, outdoor unit, and refrigerating cycle device
WO2015030048A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Propeller fan, air-blowing device, and outdoor unit

Similar Documents

Publication Publication Date Title
JP6415741B2 (en) Blower and air conditioner equipped with the same
JP2011179330A (en) Impeller, blower, and air conditioner using the same
JP7130136B2 (en) Axial fan, air blower, and refrigeration cycle device
JPWO2017199444A1 (en) Centrifugal blower, air conditioner and refrigeration cycle apparatus
JP6811866B2 (en) Propeller fan, blower, and refrigeration cycle device
JP2011179331A (en) Blower, and air conditioner using the same
JP7062139B2 (en) Axial fan, blower, and refrigeration cycle device
WO2024009490A1 (en) Axial flow fan, air blower, and air conditioner
JP7378611B2 (en) Axial fans, blowers, and refrigeration cycle equipment
JP7258136B2 (en) Axial fan, air blower, and refrigeration cycle device
CN110892201B (en) Air conditioner
WO2022091225A1 (en) Axial-flow fan, blowing device, and refrigeration cycle device
WO2024089808A1 (en) Axial flow fan, air blower, and air conditioner
WO2015063850A1 (en) Cross-flow fan and air conditioner
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
JP7275312B2 (en) Axial fan, air blower, and refrigeration cycle device
JP7258225B2 (en) Axial fan, air blower, and refrigeration cycle device
JP6925571B1 (en) Blower, indoor unit and air conditioner
WO2017060973A1 (en) Air blower, outdoor unit, and refrigeration cycle device
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
JP7370466B2 (en) Air conditioner outdoor unit
WO2023112077A1 (en) Axial fan, blower, and refrigeration cycle device
JP2022112048A (en) Propeller fan and air-conditioner
WO2018002987A1 (en) Multi-blade fan and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950284

Country of ref document: EP

Kind code of ref document: A1