WO2024009489A1 - Noise filter - Google Patents

Noise filter Download PDF

Info

Publication number
WO2024009489A1
WO2024009489A1 PCT/JP2022/027055 JP2022027055W WO2024009489A1 WO 2024009489 A1 WO2024009489 A1 WO 2024009489A1 JP 2022027055 W JP2022027055 W JP 2022027055W WO 2024009489 A1 WO2024009489 A1 WO 2024009489A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation signal
noise
section
common mode
voltage
Prior art date
Application number
PCT/JP2022/027055
Other languages
French (fr)
Japanese (ja)
Inventor
陽 寺田
泰章 古庄
亮祐 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024531875A priority Critical patent/JPWO2024009489A1/ja
Priority to PCT/JP2022/027055 priority patent/WO2024009489A1/en
Publication of WO2024009489A1 publication Critical patent/WO2024009489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • This application relates to a noise filter.
  • an active noise filter consists of a passive part with the function of detecting noise or injecting a compensation signal, and an active part such as an operational amplifier, and cancels noise by injecting a compensation signal into the power line or ground line.
  • Active noise filters can be made smaller than passive filters.
  • a common mode noise voltage is detected at the neutral point potential of a star-connected capacitor, and a compensation current is injected into the capacitor using a control source.
  • This increases the grounding equivalent capacitance of the capacitor and reduces its impedance, making it possible to circulate the common mode noise current to the capacitor, and as a result, it becomes possible to attenuate the common mode noise current of the power line to be protected.
  • the volume of active components is generally smaller than that of passive components, and by entrusting part of the noise attenuation function to the active component, active noise filters are smaller than passive filters.
  • the compensation performance in the low frequency range may deteriorate due to the resonance phenomenon between the common mode inductor and the capacitor.
  • This application discloses a technology for solving the above-mentioned problems, and realizes a configuration that can suppress the deterioration of compensation performance in the low frequency range for generated noise in a noise filter connected to a power line.
  • the purpose is to
  • the noise filter disclosed in this application includes: A noise filter connected to a power line, a detection unit that detects noise in the power line; a compensation signal generation unit that generates a compensation signal that attenuates the noise; a compensation signal injection unit that injects the compensation signal into the power line, An output section of the compensation signal generation section is connected to one input section of the compensation signal injection section and the compensation signal generation circuit, The other input section of the compensation signal generation section is connected to the detection section, The compensation signal generation section is configured to generate the compensation signal based on a differential signal between two input signals.
  • the noise filter according to the present disclosure it is possible to suppress a decrease in compensation performance in a low frequency range.
  • FIG. 1 is a block diagram showing the configuration of a power system to which a noise filter according to a first embodiment is applied;
  • FIG. FIG. 2 is a diagram showing an example of a power converter placed in a power system.
  • FIG. 2 is a diagram showing the configuration of a passive filter.
  • FIG. 7 is a diagram showing another configuration of a passive filter.
  • 1 is a diagram showing the configuration of a noise filter according to Embodiment 1.
  • FIG. 3 is a diagram showing another configuration of the noise filter according to the first embodiment.
  • FIG. FIG. 3 is a diagram illustrating the principle of noise reduction of the noise filter according to the first embodiment.
  • 3 is a diagram showing the configuration of a noise filter according to a second embodiment.
  • FIG. 3 is a diagram showing another configuration of the noise filter according to Embodiment 2.
  • FIG. 2 is a hardware configuration diagram that is an example of a compensation signal generation unit according to Embodiments 1 and 2.
  • FIG. 1 is a diagram illustrating an example of a configuration of a power system to which a noise filter according to a first embodiment is applied.
  • a noise filter 100 is attached to the power line PL along the route where power is supplied from the power supply 200 connected to the three-phase three-wire AC power line PL to the load 400 via the power converter 300. is connected.
  • the noise filter 100 according to the present embodiment is not limited to the three-phase three-wire AC power line shown in FIG. , three-phase (three-wire or four-wire), between a power source and a power converter, between a power converter and a load, and between power converters if multiple power converters are provided. It may be a connection.
  • the purpose of applying the noise filter 100 is, for example, to satisfy noise standards between the system power supply 200 and the power converter 300, and between the power converter 300 and the load 400.
  • the ground leakage current of the motor which is a load, and the motor shaft voltage are suppressed.
  • System power supply 200, noise filter 100, power converter 300, and load 400 are each connected to power line PL and to ground line GL.
  • noise generation from the power converter 300 in the power system 1 will be described as a typical example of noise generation factors.
  • a voltage-type three-phase full-bridge circuit will be described as an example of the power converter 300, but a current-type circuit, a circuit having a DC-DC conversion, a DC-AC conversion, an AC-DC conversion, or an AC-AC conversion function, or A circuit configuration such as a multilevel converter may also be used.
  • FIG. 2 is a diagram showing the configuration of a voltage type three-phase full bridge circuit that is an example of the power converter 300.
  • semiconductor switches SW11 to SW32 each include six semiconductor switching elements each having an anti-parallel diode.
  • the semiconductor switches SW11, SW21, and SW31 on the positive side and the semiconductor switches SW12, SW22, and SW32 on the negative side are connected in series to form a leg, respectively, and three legs corresponding to the u-phase, v-phase, and w-phase are connected in parallel. are connected to form a three-phase full-bridge circuit.
  • Each arm is connected to output terminals u, v, and w corresponding to the u-phase, v-phase, and w-phase, respectively, and is connected to the power line PL via the output terminals u, v, and w.
  • a DC section is provided in parallel with the three-phase full bridge circuit, and in this DC section, a smoothing DC capacitor 310 and a DC voltage source (not shown) are connected in parallel with each other.
  • the ground parasitic capacitance Zcm exists between each line and DC part of the three-phase full bridge circuit and the ground line GL.
  • each of the semiconductor switching elements constituting the semiconductor switches SW11 to SW32 is, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipo Self-extinguishing semiconductor elements such as LAR Transistor are used. .
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipo Self-extinguishing semiconductor elements such as LAR Transistor
  • a preset voltage is output by the switching operation of semiconductor switches SW11 to SW32.
  • a normal mode noise current flows between each output terminal due to the switching ripple voltage between the output terminals.
  • a common mode voltage calculated by dividing the instantaneous sum of voltages at each output terminal by 3 is generated, and a common mode noise current flows through the ground parasitic capacitance Zcm and the ground line GL.
  • Common mode noise differs from normal mode noise in that a noise current flows to the ground.
  • FIG. 3 and 4 are diagrams showing examples of passive filters composed only of inductors and capacitors.
  • the passive filter in FIG. 3 is composed of a common mode inductor 101a and a Y capacitor 102a, and is effective in attenuating the common mode component.
  • the passive filter in FIG. 4 is composed of a normal mode inductor 101b and an be. Both figures show the case where a passive filter is applied in a three-phase three-wire system, and the black circles in the figures indicate the polarity of the common mode inductor.
  • An inductor is a component whose impedance increases as the frequency increases, and by inserting it in series with a noise source, it suppresses noise propagation.
  • a capacitor is a component whose impedance decreases as the frequency increases, and by inserting it in parallel with a noise source, it suppresses noise propagation.
  • each phase winding is magnetically coupled using one magnetic component such as ferrite, and when a common mode noise current flows, the magnetic flux generated by each phase winding is generated within the magnetic component.
  • They are inductors that strengthen each other.
  • the magnetic fluxes weaken each other, so ideally the normal mode noise attenuation effect is not exhibited.
  • the Y capacitor 102a is a capacitor connected between the power line PL of each phase and the ground line GL. Due to the existence of a path with low impedance at high frequency between the power line PL and the ground line GL on the common mode path, the noise current is returned to the ground line GL through the Y capacitor 102a, and the noise current is returned to the ground line GL to be protected or grounded. Noise flowing to the line GL can be suppressed.
  • the normal mode inductor 101b is an inductor in which, when the windings of each phase are magnetically coupled with one magnetic component, the magnetic fluxes generated by the windings of each phase strengthen each other inside the magnetic component against the normal mode noise current. be. With respect to common mode current, the magnetic fluxes generated by the windings of each phase weaken each other within the magnetic component, so ideally the common mode noise attenuation effect is not exhibited. Furthermore, if the windings of each phase are not magnetically coupled by magnetic components, the magnetic fluxes generated by the windings of each phase do not interfere with each other, resulting in a normal mode inductor. Since an inductor is similarly connected to each phase, there is also an effect of attenuating common mode noise.
  • the X capacitor 102b is a capacitor connected between each power line. Unlike the Y capacitor, it is not connected to the ground wire. Although the X capacitor 102b in FIG. 4 is illustrated as a Y connection with a neutral point in a three-phase three-wire AC power line, it may be connected in a ⁇ connection without a neutral point.
  • the connection method for the X capacitor 102b can be selected depending on the required breakdown voltage and capacity. Inserting components that have low impedance at high frequencies has the effect of suppressing line voltage noise voltage against normal mode noise.
  • the Y capacitor is a capacitor connected between each power line and the ground line, but the connection method is such that a capacitor is also inserted between the lines, and it also acts to attenuate normal mode components. However, since the capacitance of the Y capacitor is generally smaller than that of the X capacitor, the X capacitor is effective in attenuating the normal mode component.
  • the zero-phase component or harmonic component of the grid power supply side transformer flows to the ground wire as a common mode noise current on the grid power supply side in the low frequency band.
  • common mode noise currents caused by power grids are often dominated by commercial frequency components.
  • the common mode noise current on the grid power supply side in the low frequency band is determined by the sum of that caused by the grid power supply and that caused by the power converter.
  • the relationship between the Y capacitor capacity and the common mode noise current on the system power supply side in the low frequency band will be explained.
  • the limit value is set by the standard for the purpose of preventing electric shock to the human body, so as mentioned above, there is a trade-off relationship between the common mode noise current caused by the grid power supply and the common mode noise current caused by the grid power supply.
  • a normal mode or common mode current flowing on the grid power supply side in a high frequency band is measured using a LISN (Line Impedance Stabilization Network: pseudo power supply network) connected to the grid power supply side. Specifically, it is measured as a voltage (noise terminal voltage) generated when normal mode noise or common mode noise current flows through a terminal of LISN whose impedance is 50 ⁇ .
  • the high frequency band is, for example, 150 kHz or higher, which corresponds to the conduction noise band, and the above measurement method is defined as a standard.
  • the system power supply side of LISN has a low-pass filter configuration, and noise caused by the system power supply is not measured as a noise terminal voltage.
  • the noise caused by the power converter connected to the load side of the LISN is measured as the noise terminal voltage.
  • the noise caused by the power converter, measured as the noise terminal voltage is the sum of both normal mode or common mode.
  • the larger the capacitance value of the Y capacitor the better.
  • FIG. 5 is a diagram showing a configuration of the noise filter 100 according to the first embodiment
  • FIG. 6 is a diagram showing another configuration of the noise filter 100 according to the first embodiment.
  • a noise filter 100 that suppresses common mode noise on the grid power supply side includes a detection unit 120 that is connected to the power line PL and detects common mode noise, and a compensation signal generation unit 140 that generates a compensation signal that cancels out the common mode noise. , a compensation signal injection unit 130 that injects a compensation signal for canceling common mode noise into the power line PL.
  • the detection unit 120 that detects common mode noise is composed of, for example, a Y-connected capacitor.
  • the compensation signal generated by the compensation signal generation section 140 is, for example, a compensation voltage signal, and the output section of the compensation signal generation section 140 is connected to one terminal of the compensation signal injection section 130 and the input section of the compensation signal generation section 140. and output the generated compensation signals.
  • the other terminal of the input section of the compensation signal generation section 140 is connected to the detection section 120.
  • the compensation signal generation section 140 is connected to the ground line GL, and the output section of the compensation signal generation section 140 is connected in series between the compensation signal injection section 130 and the ground line GL.
  • the compensation signal injection section 130 is composed of, for example, a Y-connected capacitor. Further, for example, an inductor 110 is connected to the power line PL for the purpose of increasing noise attenuation. For the purpose of increasing the amount of noise attenuation, a Y capacitor 150 may be further connected as shown in FIG. However, the inductor 110 and the Y capacitor 150 are not essential. In FIG. 6, the noise filter 100 is connected between the power line PL and the ground line GL, but the noise filter 100 may be connected only to the power line PL.
  • a feature of the noise filter 100 according to the first embodiment is that the two input terminals of the input section of the compensation signal generation section 140 are differential inputs.
  • the voltage of the common mode component of the capacitor forming the compensation signal injection section 130 is detected as a differential voltage.
  • the compensation signal generation section 140 generates a voltage of, for example, the opposite polarity and one times or less as a compensation voltage, and outputs it in series between the compensation signal injection section 130 and the ground line GL. This cancels out the common mode voltage of the capacitor forming the compensation signal injection section 130 on the equivalent circuit of the common mode component. That is, in the configuration of noise filter 100 according to Embodiment 1, activating the capacitor forming compensation signal injection section 130 has the effect of making it function as a Y capacitor with increased apparent equivalent capacitance.
  • FIG. 7 is an equivalent circuit diagram showing the operating principle of the noise filter 100 according to the first embodiment.
  • connection points A and B are connection points A and B in FIG. 5, respectively. That is, the compensation signal injection section 130 and the compensation signal generation section 140 are connected in series between the power line PL and the ground line GL.
  • a common mode noise current from a noise voltage source Vcm caused by a power converter flows to the power supply side and flows back to the load-to-ground parasitic capacitance Zm via the inductor 110, the power supply-to-ground impedance Zg, and the ground line GL.
  • the role of the noise filter 100 is to reduce the amount of current flowing to the power supply side, that is, the power supply-to-ground impedance Zg.
  • a common mode noise current Icm from a noise voltage source Vcm is a common mode noise current Ig flowing to the power supply side and a common mode noise current flowing to the compensation signal injection unit 130 side at a connection point A between the compensation signal injection unit 130 and the power line PL. It branches into Iy.
  • the common mode voltage Vy is generated in the capacitor of the compensation signal injection section 130 by the common mode noise current Iy flowing to the compensation signal injection section 130 side.As described above, in the first embodiment, this common mode voltage Vy is detected. By doing so, the compensation signal generation unit 140 generates a voltage having the opposite polarity and one time or less of the common mode voltage Vy as the compensation voltage Vinj. That is, a compensation voltage Vinj satisfying equation (1) is generated as a compensation signal.
  • equation (1) is a comparison of the absolute values of Vinj and Vy.
  • the common mode voltage Vy is canceled out, and more of the common mode noise current Icm is distributed to the common mode noise current Iy.
  • the common mode noise current Iy increases, the common mode noise current Ig flowing to the power supply side decreases.
  • the common mode noise current Icm generated by the power converter is actively circulated to the capacitor side of the compensation signal injection unit 130, thereby reducing the common mode noise current Ig on the power supply side, which is the object of protection. It becomes possible to do so.
  • the noise filter 100 according to the first embodiment forms a high-pass filter by the capacitor of the detection section 120 and the resistance component of the input section of the compensation signal generation section 140.
  • the lower limit value of the compensation frequency can be set by designing the cutoff frequency of the high-pass filter, which is determined by the capacitance value of the capacitor of the detection section 120 and the resistance value of the input section of the compensation signal generation section 140.
  • the common mode noise current of the dominant commercial frequency component caused by the grid power supply is, for example, 50 Hz or 60 Hz
  • the frequency of the common mode noise current caused by the power converter is the dominant switching frequency component, It is approximately several kHz or more.
  • the noise filter 100 according to the first embodiment has a function of substantially increasing the equivalent capacitance of the Y capacitor, and with respect to the common mode noise current of the commercial frequency component caused by the grid power supply, it is rather It has the effect of increasing
  • the cutoff frequency of the high-pass filter formed by the capacitor of the detection unit 120 and the resistance component of the input part of the compensation signal generation unit 140 is set to be higher than the frequency of the common mode noise current caused by the grid power supply. Shifts the lower limit of the band to higher frequencies. Thereby, it is possible to suppress an increase in common mode noise current caused by the grid power supply.
  • the equivalent capacitance of the Y capacitor is increased by setting the cutoff frequency of the high-pass filter to be lower than the switching frequency, which is the frequency of the common mode noise current caused by the power converter. This makes it possible to produce the effect of actively circulating the common mode current in the Y capacitor-power converter-load route via the grounding line GL. Therefore, the common mode noise current flowing through the power supply side can be reduced.
  • the noise filter 100 has the effect of increasing the equivalent capacitance of the Y capacitor in a specific frequency range regardless of the cause of common mode current generation, so that the generation source is separated for each frequency band. Must have been. In other words, it is desirable that the frequency of the common mode noise current caused by the power system and the frequency of the common mode noise current caused by the power converter are divided. Therefore, if the frequency caused by the grid power source and the frequency caused by the power converter are close, the common mode noise current caused by the grid power source will increase, and the common mode noise current caused by the power converter will decrease. Become.
  • the compensation signal generation section 140 included in the noise filter 100 according to the first embodiment in the low frequency range will be described.
  • a general passive common mode filter configured only with a common mode inductor and a Y capacitor
  • most of the common mode noise current source flows through the power supply side below the cutoff frequency.
  • the capacitor of the compensation signal injection section 130 corresponds to the Y capacitor, and the compensation voltage increases the equivalent capacitance of the Y capacitor and lowers the impedance. .
  • the switching frequency component of the common mode noise current which is a relatively low frequency caused by the power converter, is actively circulated to the capacitor of the compensation signal injection section 130.
  • the capacitor of the compensation signal injection section 130 has a relatively low frequency, so it has a high impedance. Since the common mode noise current caused by the power converter is returned to the capacitor of the compensation signal injection section 130, it is determined by the product of the high impedance of the capacitor of the compensation signal injection section 130 and the common mode noise current. The maximum detected differential voltage and compensation voltage may become excessive.
  • the maximum detected differential voltage corresponds to the maximum value of the common mode voltage Vy of the capacitor of the compensation signal injection section 130 shown in FIG. Therefore, if the maximum detected differential voltage becomes excessive, the compensation voltage for canceling it may also become excessive.
  • the noise source impedance is, for example, approximately equal to the load-to-ground parasitic capacitance Zm, and the maximum compensation voltage is determined by the ratio of the load-to-ground parasitic capacitance Zm and the capacitance of the compensation signal injection section 130. Therefore, by making the capacitor capacity of the compensation signal injection section 130 sufficiently larger than the load-to-ground parasitic capacitance Zm, it is possible to suppress the maximum detected differential voltage and the compensation voltage.
  • Compensation signal generation section 140 generally includes an operational amplifier, a transistor, and a control power supply. By suppressing the maximum differential detection voltage and the compensation voltage, the voltage of the control power supply necessary for the compensation signal generation section 140 and the slew rate and gain bandwidth of the compensation signal generation section 140 can be reduced. However, the upper limit value of the capacitance of the capacitor of the compensation signal injection section 130 is limited due to constraints on the low frequency common mode current flowing on the system power supply side caused by the system power supply.
  • the high frequency range corresponds to the measurement range of conduction noise at the noise terminal voltage using LISN, and corresponds to the frequency range above the general cutoff frequency of a passive common mode filter.
  • most of the common mode noise current flows back to the capacitor of the compensation signal injection section 130, which essentially functions as a Y capacitor.
  • the common mode voltage component of the capacitor of the compensation signal injection section 130 functions as a small noise voltage source on the LISN side.
  • the common mode voltage component can be canceled by generating and injecting a compensation voltage signal Vinj of polarity and magnitude less than or equal to one. This makes it possible to reduce the common mode component of the noise terminal voltage applied to the 50 ⁇ terminal of LISN. This shows that common mode noise can be suppressed in a high frequency range.
  • the compensation voltage Vinj is generated so that a compensation voltage of 1 times the magnitude is output, that is, the magnitude of the gain is 1,
  • Vy - Vinj 0, the connection point A and B are equivalent to a short circuit, and all the common mode noise current Icm from the noise voltage source Vcm is circulated to the capacitor of the compensation signal injection section 130. .
  • the low frequency range refers to a frequency below the resonant frequency of the passive section composed of the capacitor of the compensation signal injection section 130 and the inductor on the power line PL.
  • the common impedance on the system power supply side is approximately 0 ⁇
  • the inductor 110 on the power line PL has a low impedance
  • the capacitor of the compensation signal injection unit 130 has a high impedance.
  • the compensation voltage Vinj is applied to almost all of the points.
  • the detected differential voltage with respect to the generated compensation voltage has a phase of 0 degrees. Therefore, if the magnitude of the gain is 1, oscillation will occur.
  • positive feedback control is performed in the low frequency range when the system power supply 200 is grounded.
  • the magnitude of the gain of the compensation signal generation section 140 needs to be less than 1 in order to prevent oscillation caused by positive feedback. be.
  • the impedance ZL of the inductor on the power line PL becomes high and the impedance of the capacitor of the compensation signal injection section 130 becomes low, so the detected differential voltage becomes smaller with respect to the output compensation voltage. . Therefore, the loop gain becomes small regardless of the power supply-to-ground impedance Zg on the power system side, so the gain of the compensation signal generation section 140 may be 1.
  • the gain may be greater than 1 times as long as it is close to 1 times. If the gain exceeds 1, the noise attenuation effect will be reduced, but if the gain is close to 1 and is larger than 1, the effect will be equivalent to that of a gain that is close to 1 and less than 1.
  • the noise filter 100 includes a detection section 120 that detects power line noise, a compensation signal generation section 140 that generates a compensation signal that attenuates the noise, and a compensation signal injection section 130 that injects the compensation signal. Since the compensation signal generation section 140 generates a compensation signal based on the difference signal between the input signal from the detection section 120 and the output signal of the compensation signal generation section 140, the compensation performance decreases in the low frequency range. is suppressed.
  • the compensation signal injection section 130 is configured with a capacitor, a voltage due to a noise component is generated in the capacitor of the compensation signal injection section 130, and the compensation signal generation section 140 detects the voltage due to the noise component as a differential voltage. Since the compensation voltage is generated as a compensation signal so as to cancel the voltage due to the noise component, it is possible to efficiently compensate the generated noise in a wide frequency band.
  • the compensation signal for canceling the noise component has the opposite polarity and the gain is set to around 1 times, but not more than 1 times. Further, in order to reduce noise in a low frequency range, if the gain of the compensation signal is 1, oscillation may occur in the circuit, which may affect noise reduction, so the gain is preferably less than 1. However, the gain may be 1 times outside the low frequency range.
  • the compensation signal generation section 140 when the generated noise is in a low frequency range, the voltage of the capacitor of the compensation signal injection section 130 is detected, and the compensation signal generation section 140 generates a compensation voltage of the opposite polarity with a gain of less than 1 times that of the detected voltage. , are output in series between the compensation signal injector 130 and the ground line GL.
  • feedforward control is used instead of feedback control that brings the detection noise closer to 0 using a compensation voltage. Therefore, in the configuration of the first embodiment, oscillation and a decrease in the detected amount due to resonance between the inductor on the power line PL and the capacitor of the compensation signal injection unit 130, which occur in conventional feedback control, do not occur. . Therefore, it is possible to perform compensation in a low frequency range below the resonant frequency of the inductor on the power line PL and the capacitor of the compensation signal injection section 130.
  • the detection unit 120 and the compensation signal injection unit 130 by configuring the detection unit 120 and the compensation signal injection unit 130 with capacitors, it is possible to make the detection unit 120 and the compensation signal injection unit 130 smaller than the configuration in which the detection unit 120 and the compensation signal injection unit 130 are configured with inductors. be. This is because capacitors have higher energy density than inductors.
  • Embodiment 1 when low frequency compensation is included as in Embodiment 1, a low frequency and large voltage is applied to the inductor, and in order to prevent magnetic saturation of the core, the core with a high saturation magnetic flux density needs to have a large cross-sectional area. There is. In other words, there is a concern that the inductor will become larger. Therefore, in this embodiment that performs low frequency compensation, by using a capacitor in the detection section 120 and the compensation signal injection section 130, the active noise filter can be more effectively miniaturized.
  • FIG. 8 is a block diagram showing the configuration of a noise filter according to the second embodiment.
  • the noise filter 100 according to the second embodiment includes detection units 120u, 120v, 120w, compensation signal injection units 130u, 130v, 130w, and compensation signal generation units 140u, 140v, 140w for each phase.
  • the point is that it has a configuration in which The other configurations are the same as those in Embodiment 1, so the explanation will be omitted.
  • the noise filter according to the first embodiment attenuates common mode noise on the power supply side, but the noise filter according to the second embodiment has the effect of attenuating normal mode noise and common mode noise on the power supply side.
  • the detection units 120u, 120v, 120w and the compensation signal injection units 130u, 130v, 130w are connected between each power line PLu, PLv, PLw and the ground line GL, and are connected by the ground line GL. , it is possible to also detect the normal mode component between each phase line and inject a compensation signal.
  • the sum of the common mode component between the power lines PLu, PLv, PLw of each phase and the ground line GL and the above-mentioned normal mode component is determined by the compensation signal injection unit 130u, 130v, 130w.
  • the compensation signal generation units 140u, 140v, and 140w By detecting the differential voltage of the compensation signal injection sections 130u, 130v, and 130w, it is possible to detect the voltage that is the sum of the normal mode and common mode noises. Then, the compensation signal generation units 140u, 140v, and 140w generate compensation voltages of, for example, opposite polarity and one times the magnitude, and perform compensation in series between the compensation signal injection units 130u, 130v, and 130w and the ground line GL. By injecting voltage, it becomes possible to cancel the noise voltage of normal mode and common mode.
  • a high-pass filter is formed by the capacitors of the detection sections 120u, 120v, and 120w and the resistances of the input sections of the compensation signal generation sections 140u, 140v, and 140w, and a high-pass filter is formed at an arbitrary compensation frequency. It is possible to set the lower limit of the band.
  • a capacitor 150u, 150v and 150w may be provided in the noise filter 100 according to the second embodiment.
  • FIG. 9 shows an example in which a capacitor is further provided in FIG. 8. Note that, as described in the first embodiment, the inductor 110 and the capacitors 150u, 150v, and 150w are not essential components. It may be provided as appropriate to enhance the noise attenuation effect.
  • the noise filter 100 according to the second embodiment has a configuration in which detection units 120u, 120v, 120w, compensation signal injection units 130u, 130v, 130w, and compensation signal generation units 140u, 140v, 140w are arranged in each phase. , it is possible to detect the sum of the normal mode component and common mode component for the power line of each phase, and inject a corresponding compensation signal, making it possible to attenuate both normal mode noise and common mode noise. . Furthermore, since noise is actively suppressed, it is possible to downsize the X capacitor that constitutes the detection section and the compensation signal injection section.
  • the compensation signal generation units 140, 140u, 140v, and 140w have a circuit configuration that generates a compensation voltage of opposite polarity to the voltage of the noise component detected from the differential voltage. , implementation can be simplified. Furthermore, the compensation signal is not limited to a voltage, but may be a compensation current.
  • the circuit configuration of the compensation signal generation units 140, 140u, 140v, and 140w can be configured with an analog circuit using an operational amplifier, for example, as described above.
  • the hardware configuration of the compensation signal generation units 140, 140u, 140v, and 140w includes a processor 142 (computer) and a storage device 144 as processing circuits, as shown in FIG. 10, for example.
  • the processor 142 includes a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), and an FPGA (Fi eld Programmable Gate Array), various logic circuits, and various signal processing circuits, etc. good. Furthermore, a plurality of processors of the same type or different types may be provided as the processors 142, and each process may be shared and executed.
  • the storage device 144 includes a RAM (Random Access Memory) that is configured to be able to read and write data from the processor 142, a ROM (Read Only Memory) that is configured to be able to read data from the processor 142, and the like. .
  • the processor 142 executes a program input from a storage device 144 such as a ROM.
  • a differential signal is calculated from the two input signals, and a gain corresponding to the noise frequency range is used to convert the differential signal to - A signal multiplied by 1 and a gain is calculated, and a corresponding signal is generated from a signal processing unit (not shown).
  • the noise filter 100 is arranged between the power supply system 200 and the power converter 300, and the noise source caused by the power converter 300 has been explained. It may be placed between the load 400 and the load 400. It is possible to suppress the ground leakage current of the load 400 or the shaft voltage of the motor that is the load.
  • the present invention also includes a configuration in which a plurality of noise filters according to Embodiment 1 that compensates for common mode noise are provided, and a configuration in which both noise filters in Embodiments 1 and 2 are provided.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

Provided is a noise filter (100) to be connected to a power line (PL), comprising: a detection unit (120) that detects noise in the power line (PL); a compensation signal generation unit (140) that generates a compensation signal which attenuates the noise; and a compensation signal injection unit (130) that injects the compensation signal into the power line (PL). The output unit of the compensation signal generation unit (140) is connected to the compensation signal injection unit (130). One input unit of the compensation signal generation unit (140) is connected to the detection unit (120) and the other input unit is connected to the output of the compensation signal generation circuit (140). The compensation signal generation unit (140) generates a compensation signal on the basis of the differential signals from the two input units.

Description

ノイズフィルタNoise filter
 本願は、ノイズフィルタに関する。 This application relates to a noise filter.
 近年の半導体デバイス技術の発展に伴う電力変換器の高スイッチング周波数化により、電力線あるいは接地線を流れる伝導ノイズが増加している。伝導ノイズを抑制する手段として、インダクタ及びコンデンサの少なくとも一方で構成されたパッシブフィルタが一般的に用いられる。そして、伝導ノイズの増加に伴い、パッシブフィルタの大型化が問題となる。他の伝導ノイズ抑制手段として、ノイズを検出または補償信号を注入する機能を備えたパッシブ部とオペアンプ等のアクティブ部で構成され、電力線あるいは接地線に補償信号を注入してノイズを打ち消すアクティブノイズフィルタがある。アクティブノイズフィルタは、パッシブフィルタに比べて、フィルタの小型化を実現可能である。 As the switching frequency of power converters increases due to the recent development of semiconductor device technology, conduction noise flowing through power lines or ground lines is increasing. As a means for suppressing conduction noise, a passive filter composed of at least one of an inductor and a capacitor is generally used. With the increase in conducted noise, increasing the size of the passive filter becomes a problem. As another conduction noise suppression means, an active noise filter consists of a passive part with the function of detecting noise or injecting a compensation signal, and an active part such as an operational amplifier, and cancels noise by injecting a compensation signal into the power line or ground line. There is. Active noise filters can be made smaller than passive filters.
 例えば、特許文献1に開示されているアクティブノイズフィルタでは、スター結線のコンデンサ中性点電位でコモンモードノイズ電圧を検出し、制御源ソースにより、コンデンサに補償電流の注入を行う。これにより、コンデンサの接地等価容量が増加し及びインピーダンスが低減するので、コモンモードノイズ電流をコンデンサに還流させることでき、その結果、保護対象の電力線のコモンモードノイズ電流を減衰させることが可能となる。アクティブ部品の体積はパッシブ部品よりも一般的に小さく、ノイズ減衰機能の一部分をアクティブ部に委ねることで、アクティブノイズフィルタはパッシブフィルタよりも小型となる。 For example, in the active noise filter disclosed in Patent Document 1, a common mode noise voltage is detected at the neutral point potential of a star-connected capacitor, and a compensation current is injected into the capacitor using a control source. This increases the grounding equivalent capacitance of the capacitor and reduces its impedance, making it possible to circulate the common mode noise current to the capacitor, and as a result, it becomes possible to attenuate the common mode noise current of the power line to be protected. . The volume of active components is generally smaller than that of passive components, and by entrusting part of the noise attenuation function to the active component, active noise filters are smaller than passive filters.
特許第5345148号公報Patent No. 5345148
 特許文献1のアクティブノイズフィルタにおいては、コモンモードインダクタとコンデンサとの共振現象により、低周波数域の補償性能が低下する場合がある。 In the active noise filter of Patent Document 1, the compensation performance in the low frequency range may deteriorate due to the resonance phenomenon between the common mode inductor and the capacitor.
 本願は、上記の課題を解決するための技術を開示するものであり、電力線に接続されたノイズフィルタにおいて、発生するノイズに対し低周波数域での補償性能の低下が抑制可能な構成を実現することを目的とする。 This application discloses a technology for solving the above-mentioned problems, and realizes a configuration that can suppress the deterioration of compensation performance in the low frequency range for generated noise in a noise filter connected to a power line. The purpose is to
 本願に開示されるノイズフィルタは、
電力線に接続されるノイズフィルタであって、
前記電力線におけるノイズを検出する検出部と、
前記ノイズを減衰させる補償信号を生成する補償信号生成部と、
前記電力線に前記補償信号を注入する補償信号注入部と、を備え、
前記補償信号生成部の出力部は、前記補償信号注入部及び前記補償信号生成回路の一方の入力部と接続され、
前記補償信号生成部の他方の入力部は前記検出部と接続され、
前記補償信号生成部は入力された二つの信号の差動信号に基づいて前記補償信号を生成する、ように構成されている。
The noise filter disclosed in this application includes:
A noise filter connected to a power line,
a detection unit that detects noise in the power line;
a compensation signal generation unit that generates a compensation signal that attenuates the noise;
a compensation signal injection unit that injects the compensation signal into the power line,
An output section of the compensation signal generation section is connected to one input section of the compensation signal injection section and the compensation signal generation circuit,
The other input section of the compensation signal generation section is connected to the detection section,
The compensation signal generation section is configured to generate the compensation signal based on a differential signal between two input signals.
 本開示によるノイズフィルタによれば、低周波数域での補償性能の低下の抑制を実現することができる。 According to the noise filter according to the present disclosure, it is possible to suppress a decrease in compensation performance in a low frequency range.
実施の形態1に係るノイズフィルタの適用された電力系システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a power system to which a noise filter according to a first embodiment is applied; FIG. 電力系システムに配置された電力変換器の一例を示す図である。FIG. 2 is a diagram showing an example of a power converter placed in a power system. パッシブフィルタの構成を示す図である。FIG. 2 is a diagram showing the configuration of a passive filter. パッシブフィルタの別の構成を示す図である。FIG. 7 is a diagram showing another configuration of a passive filter. 実施の形態1に係るノイズフィルタの構成を示す図である。1 is a diagram showing the configuration of a noise filter according to Embodiment 1. FIG. 実施の形態1に係るノイズフィルタの別の構成を示す図である。3 is a diagram showing another configuration of the noise filter according to the first embodiment. FIG. 実施の形態1に係るノイズフィルタのノイズ低減の原理を説明する図である。FIG. 3 is a diagram illustrating the principle of noise reduction of the noise filter according to the first embodiment. 実施の形態2に係るノイズフィルタの構成を示す図である。3 is a diagram showing the configuration of a noise filter according to a second embodiment. FIG. 実施の形態2に係るノイズフィルタの別の構成を示す図である。3 is a diagram showing another configuration of the noise filter according to Embodiment 2. FIG. 実施の形態1及び2に係る補償信号生成部の一例であるハードウエア構成図である。2 is a hardware configuration diagram that is an example of a compensation signal generation unit according to Embodiments 1 and 2. FIG.
 以下、本実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当する部分を示すものとする。
 以下、図面を参照しながら、本開示の実施の形態について詳細に説明する。
Hereinafter, this embodiment will be described with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
Embodiments of the present disclosure will be described in detail below with reference to the drawings.
実施の形態1.
 以下、実施の形態1に係るノイズフィルタについて、図を用いて説明する。
 図1は、実施の形態1に係るノイズフィルタが適用された電力系システムの構成の一例を示す図である。図1の電力系システム1において、三相三線交流電力線PLに接続された系統電源200から電力変換器300を介して負荷400に電力が供給される、その途中の経路の電力線PLにノイズフィルタ100は接続されている。なお、本実施の形態に係るノイズフィルタ100は、図1に示す三相三線交流電力線に限定されず、直流(蓄電池等)、交流(系統電源等)、単相(二線式または三線式)、三相(三線式または四線式)、電源と電力変換器との間、電力変換器と負荷との間、及び複数の電力変換器を備えている場合は電力変換器間等のいずれにおける接続であってもよい。
Embodiment 1.
The noise filter according to Embodiment 1 will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a configuration of a power system to which a noise filter according to a first embodiment is applied. In the power system 1 shown in FIG. 1, a noise filter 100 is attached to the power line PL along the route where power is supplied from the power supply 200 connected to the three-phase three-wire AC power line PL to the load 400 via the power converter 300. is connected. Note that the noise filter 100 according to the present embodiment is not limited to the three-phase three-wire AC power line shown in FIG. , three-phase (three-wire or four-wire), between a power source and a power converter, between a power converter and a load, and between power converters if multiple power converters are provided. It may be a connection.
 図1の電力系システム1において、ノイズフィルタ100を適用する目的は、例えば系統電源200と電力変換器300と間においてはノイズ規格を満足させることであり、電力変換器300と負荷400との間においては、例えば負荷であるモータの接地漏れ電流及びモータ軸電圧の抑制である。系統電源200、ノイズフィルタ100、電力変換器300及び負荷400はそれぞれ電力線PLに接続されるとともに、接地線GLに接続されている。電力変換器300と接地線GLとの間には対地寄生容量Zcmがあり、負荷400と接地線GLとの間には負荷対地寄生容量Zmが存在する。 In the power system 1 of FIG. 1, the purpose of applying the noise filter 100 is, for example, to satisfy noise standards between the system power supply 200 and the power converter 300, and between the power converter 300 and the load 400. In this case, for example, the ground leakage current of the motor, which is a load, and the motor shaft voltage are suppressed. System power supply 200, noise filter 100, power converter 300, and load 400 are each connected to power line PL and to ground line GL. There is a parasitic capacitance to ground Zcm between the power converter 300 and the ground line GL, and a parasitic load to ground capacitance Zm exists between the load 400 and the ground line GL.
[ノイズ発生要因の一例]
 次に、電力系システム1において、ノイズ発生要因の代表例として電力変換器300からのノイズ発生について説明する。
 以下では、電力変換器300として電圧型三相フルブリッジ回路を例に挙げて説明するが、電流型の回路、直流直流変換、直流交流変換、交流直流変換あるいは交流交流変換機能を有する回路、あるいはマルチレベル変換器等の回路構成であっても良い。
[An example of noise generation factor]
Next, noise generation from the power converter 300 in the power system 1 will be described as a typical example of noise generation factors.
In the following, a voltage-type three-phase full-bridge circuit will be described as an example of the power converter 300, but a current-type circuit, a circuit having a DC-DC conversion, a DC-AC conversion, an AC-DC conversion, or an AC-AC conversion function, or A circuit configuration such as a multilevel converter may also be used.
 図2は、電力変換器300の一例である電圧型三相フルブリッジ回路の構成を示す図である。電圧型三相フルブリッジ回路は、半導体スイッチSW11~SW32がそれぞれ逆並列ダイオードを備えた6つの半導体スイッチング素子を具備している。正極側の半導体スイッチSW11、SW21、SW31と負極側の半導体スイッチSW12、SW22、SW32とが直列に接続されてそれぞれレグを構成し、u相、v相、w相に対応する3つのレグが並列に接続されて三相フルブリッジ回路を構成する。各アームはu相、v相、w相にそれぞれ対応する出力端子u、v、wに接続され、出力端子u、v、wを介して電力線PLに接続される。三相フルブリッジ回路と並列して直流部が設けられ,この直流部においては平滑化用の直流コンデンサ310及び直流電圧源(図示せず)が互いに並列に接続されている。三相フルブリッジ回路の各線及び直流部と接地線GLとの間には、上述したように対地寄生容量Zcmが存在する。 FIG. 2 is a diagram showing the configuration of a voltage type three-phase full bridge circuit that is an example of the power converter 300. In the voltage type three-phase full bridge circuit, semiconductor switches SW11 to SW32 each include six semiconductor switching elements each having an anti-parallel diode. The semiconductor switches SW11, SW21, and SW31 on the positive side and the semiconductor switches SW12, SW22, and SW32 on the negative side are connected in series to form a leg, respectively, and three legs corresponding to the u-phase, v-phase, and w-phase are connected in parallel. are connected to form a three-phase full-bridge circuit. Each arm is connected to output terminals u, v, and w corresponding to the u-phase, v-phase, and w-phase, respectively, and is connected to the power line PL via the output terminals u, v, and w. A DC section is provided in parallel with the three-phase full bridge circuit, and in this DC section, a smoothing DC capacitor 310 and a DC voltage source (not shown) are connected in parallel with each other. As described above, the ground parasitic capacitance Zcm exists between each line and DC part of the three-phase full bridge circuit and the ground line GL.
 ここで、半導体スイッチSW11~SW32を構成するそれぞれの半導体スイッチング素子は、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等の自己消弧形の半導体素子を用いている。 Here, each of the semiconductor switching elements constituting the semiconductor switches SW11 to SW32 is, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipo Self-extinguishing semiconductor elements such as LAR Transistor are used. .
 電圧型三相フルブリッジ回路において、順変換動作または逆変換動作を行う際に、半導体スイッチSW11~SW32のスイッチング動作により、予め設定された電圧を出力する。このとき、出力端子の端子間のスイッチングリプル電圧に起因して、各出力端子間を流れるノーマルモードノイズ電流が流れる。また、各出力端子の電圧の瞬時的な和を3で除算して算出されるコモンモード電圧が発生し、対地寄生容量Zcmと接地線GLを介してコモンモードノイズ電流が流れる。ノーマルモードノイズに対しコモンモードノイズは、対地にノイズ電流が流れる点で異なる。 In a voltage-type three-phase full-bridge circuit, when performing a forward conversion operation or an inverse conversion operation, a preset voltage is output by the switching operation of semiconductor switches SW11 to SW32. At this time, a normal mode noise current flows between each output terminal due to the switching ripple voltage between the output terminals. Further, a common mode voltage calculated by dividing the instantaneous sum of voltages at each output terminal by 3 is generated, and a common mode noise current flows through the ground parasitic capacitance Zcm and the ground line GL. Common mode noise differs from normal mode noise in that a noise current flows to the ground.
[ノイズフィルタの基本動作]
 まず、パッシブフィルタの基本動作について説明する。
 図3及び図4は、インダクタとコンデンサのみで構成されたパッシブフィルタの例を示す図である。図3のパッシブフィルタはコモンモードインダクタ101aとYコンデンサ102aで構成されコモンモード成分に、図4のパッシブフィルタはノーマルモードインダクタ101bとXコンデンサ102bで構成されノーマルモード成分の減衰に効果的な構成である。いずれの図も、三相三線式においてパッシブフィルタを適用した場合であり、図中の黒丸はコモンモードインダクタの極性を示している。
[Basic operation of noise filter]
First, the basic operation of a passive filter will be explained.
3 and 4 are diagrams showing examples of passive filters composed only of inductors and capacitors. The passive filter in FIG. 3 is composed of a common mode inductor 101a and a Y capacitor 102a, and is effective in attenuating the common mode component. The passive filter in FIG. 4 is composed of a normal mode inductor 101b and an be. Both figures show the case where a passive filter is applied in a three-phase three-wire system, and the black circles in the figures indicate the polarity of the common mode inductor.
 インダクタは、周波数の増加に対してインピーダンスが増加する部品であり、ノイズ源に対して直列に挿入することで、ノイズの伝搬を抑制する。コンデンサは,周波数の増加に対してインピーダンスが減少する部品であり、ノイズ源に対して並列に挿入することで、ノイズの伝搬を抑制する。 An inductor is a component whose impedance increases as the frequency increases, and by inserting it in series with a noise source, it suppresses noise propagation. A capacitor is a component whose impedance decreases as the frequency increases, and by inserting it in parallel with a noise source, it suppresses noise propagation.
 コモンモードインダクタ101aは、各相巻線がフェライト等の1つの磁性部品を用いて磁気結合しており、コモンモードノイズ電流が流れた場合に、各相巻線が発生させる磁束が磁性部品内で強め合うインダクタである。これにより、ノーマルモードノイズ電流が流れた場合には、磁束は弱め合うため、理想的にはノーマルモードノイズの減衰効果は発揮しない。現実的には、他相巻線を通過しない磁束の漏れ成分がある。この漏れ磁束分に関しては、ノーマルモードインダクタとなり、ノーマルモードノイズを減衰させる効果がある。 In the common mode inductor 101a, each phase winding is magnetically coupled using one magnetic component such as ferrite, and when a common mode noise current flows, the magnetic flux generated by each phase winding is generated within the magnetic component. They are inductors that strengthen each other. As a result, when a normal mode noise current flows, the magnetic fluxes weaken each other, so ideally the normal mode noise attenuation effect is not exhibited. In reality, there is a leakage component of magnetic flux that does not pass through the other phase windings. This leakage magnetic flux becomes a normal mode inductor and has the effect of attenuating normal mode noise.
 Yコンデンサ102aは、各相の電力線PLと接地線GLとの間を接続したコンデンサである。コモンモード経路上で、電力線PLと接地線GLとの間に高周波で低インピーダンスとなる経路が存在することで、ノイズ電流がYコンデンサ102aを通して接地線GLに還流され、保護対象の電力線PLまたは接地線GLに流出するノイズを抑制することができる。 The Y capacitor 102a is a capacitor connected between the power line PL of each phase and the ground line GL. Due to the existence of a path with low impedance at high frequency between the power line PL and the ground line GL on the common mode path, the noise current is returned to the ground line GL through the Y capacitor 102a, and the noise current is returned to the ground line GL to be protected or grounded. Noise flowing to the line GL can be suppressed.
 ノーマルモードインダクタ101bは、各相の巻線を1つの磁性部品で磁気結合させた場合において、ノーマルモードノイズ電流に対して、各相の巻線が発生させる磁束が磁性部品内部で強め合うインダクタである。コモンモード電流に対しては、各相の巻線が発生させる磁束が、磁性部品内で弱め合うため、理想的にはコモンモードノイズの減衰効果は発揮しない。また、各相の巻線が磁性部品で磁気結合させてない場合では、各相巻線が発生させる磁束同士は干渉しないため、ノーマルモードインダクタとなる。そして、各相に同様にインダクタが接続されるため,コモンモードノイズの減衰効果もある。 The normal mode inductor 101b is an inductor in which, when the windings of each phase are magnetically coupled with one magnetic component, the magnetic fluxes generated by the windings of each phase strengthen each other inside the magnetic component against the normal mode noise current. be. With respect to common mode current, the magnetic fluxes generated by the windings of each phase weaken each other within the magnetic component, so ideally the common mode noise attenuation effect is not exhibited. Furthermore, if the windings of each phase are not magnetically coupled by magnetic components, the magnetic fluxes generated by the windings of each phase do not interfere with each other, resulting in a normal mode inductor. Since an inductor is similarly connected to each phase, there is also an effect of attenuating common mode noise.
 Xコンデンサ102bは、各電力線間に接続されたコンデンサである。Yコンデンサと異なり、接地線には接続されない。図4においてのXコンデンサ102bは、三相三線交流電力線において、中性点を持つY結線として図示しているが、中性点を持たないΔ結線の接続方法でもよい。必要な耐圧と容量に応じて、Xコンデンサ102bの接続方法を選択することができる。ノーマルモードノイズに対して、高周波で低インピーダンスとなる部品が挿入されることで、線間電圧のノイズ電圧を抑制する作用がある。Yコンデンサは、各電力線と接地線間に接続されるコンデンサであるが、線間としてもコンデンサが挿入されたような接続方法となっており、ノーマルモード成分の減衰にも作用する。しかし、一般的には、Xコンデンサに対してYコンデンサの容量は小さいため、ノーマルモード成分の減衰には、Xコンデンサが効果的である。 The X capacitor 102b is a capacitor connected between each power line. Unlike the Y capacitor, it is not connected to the ground wire. Although the X capacitor 102b in FIG. 4 is illustrated as a Y connection with a neutral point in a three-phase three-wire AC power line, it may be connected in a Δ connection without a neutral point. The connection method for the X capacitor 102b can be selected depending on the required breakdown voltage and capacity. Inserting components that have low impedance at high frequencies has the effect of suppressing line voltage noise voltage against normal mode noise. The Y capacitor is a capacitor connected between each power line and the ground line, but the connection method is such that a capacitor is also inserted between the lines, and it also acts to attenuate normal mode components. However, since the capacitance of the Y capacitor is generally smaller than that of the X capacitor, the X capacitor is effective in attenuating the normal mode component.
[Yコンデンサの動作]
 次に、Yコンデンサの動作の詳細について説明する。
 Yコンデンサが系統電源と電力変換器との間に接続された場合を例とする。この場合、考慮すべきポイントは、(1)低周波帯域の系統電源側コモンモードノイズ電流、(2)高周波帯域の系統電源側コモンモードノイズ電流、である。
[Operation of Y capacitor]
Next, details of the operation of the Y capacitor will be explained.
Let us take as an example a case where a Y capacitor is connected between a system power supply and a power converter. In this case, the points to be considered are (1) the common mode noise current on the grid power supply side in the low frequency band, and (2) the common mode noise current on the grid power supply side in the high frequency band.
(1)低周波帯域の系統電源側コモンモードノイズ電流に関しては、発生要因は系統電源に起因するものと、電力変換器に起因するものの2つある。
(1-1)系統電源に起因する、低周波帯域の系統電源側コモンモードノイズ電流について説明する。各相Yコンデンサには、系統電源の商用周波数の電圧がノーマルモードとして印加される。このとき、系統電源の構成、接地方法(対称または非対称であるか)、系統が平衡状態または不平衡状態であるか、非欠相または欠相状態であるか、各相のコンデンサ容量のばらつき等に起因して、Yコンデンサを介して商用周波数成分のコモンモードノイズ電流が接地線に流れる。また、系統商用周波数の概ね40次程度以下となる、例えば約2kHz以下においては、系統電源側トランスの零相成分または高調波成分が低周波帯域の系統電源側コモンモードノイズ電流として接地線に流れる。実際、系統電源に起因するコモンモードノイズ電流は、商用周波数成分が支配的となる場合が多い。
(1) Regarding the common mode noise current on the grid power supply side in the low frequency band, there are two causes of occurrence: one caused by the grid power supply and one caused by the power converter.
(1-1) The common mode noise current on the grid power supply side in the low frequency band caused by the grid power supply will be explained. A commercial frequency voltage of the system power supply is applied to each phase Y capacitor in normal mode. At this time, the configuration of the grid power supply, the grounding method (symmetrical or asymmetrical), whether the grid is in a balanced or unbalanced state, whether there is no open phase or open phase, variations in the capacitance of each phase, etc. Due to this, a common mode noise current of a commercial frequency component flows to the ground line via the Y capacitor. In addition, at approximately the 40th order of the grid commercial frequency or lower, for example approximately 2 kHz or lower, the zero-phase component or harmonic component of the grid power supply side transformer flows to the ground wire as a common mode noise current on the grid power supply side in the low frequency band. . In fact, common mode noise currents caused by power grids are often dominated by commercial frequency components.
(1-2)電力変換器に起因する、低周波帯域の系統電源側コモンモードノイズ電流について説明する。系統電圧、電力変換器の変調率、スイッチング周波数及びパッシブコモンモードフィルタの定数等にもよるが、電力変換器から流出するスイッチング周波数成分及び零相変調成分等も低周波帯域の系統電源側コモンモードノイズ電流として接地線に流れる。実際、電力変換器に起因するコモンモードノイズ電流は、スイッチング周波数成分が支配的となる場合が多い。 (1-2) The common mode noise current on the grid power supply side in the low frequency band caused by the power converter will be explained. Depending on the grid voltage, power converter modulation rate, switching frequency, passive common mode filter constant, etc., switching frequency components and zero-phase modulation components flowing out of the power converter may also be common mode on the grid power side in the low frequency band. Flows into the ground wire as a noise current. In fact, common mode noise current caused by power converters is often dominated by switching frequency components.
 結果として、低周波帯域の系統電源側コモンモードノイズ電流は、系統電源に起因するものと電力変換器に起因するものとの和で決定される。 As a result, the common mode noise current on the grid power supply side in the low frequency band is determined by the sum of that caused by the grid power supply and that caused by the power converter.
 Yコンデンサ容量と低周波帯域の系統電源側コモンモードノイズ電流との関係について説明する。Yコンデンサ容量を大きくすると、系統電源に起因するコモンモードノイズ電流は大きくなり、電力変換器に起因するコモンモードノイズ電流は小さくなる。一方、Yコンデンサ容量を小さくすると、系統電源に起因するコモンモードノイズ電流は小さくなり、電力変換器に起因するコモンモードノイズ電流は大きくなる。低周波帯域の系統電源側コモンモードノイズ電流は、人体の感電防止を目的として限度値が規格で定められているので、上記のようにトレードオフ関係にある系統電源に起因するコモンモードノイズ電流と電力変換器に起因するコモンモードノイズ電流の和から、規格値を満足するようなYコンデンサ容量値を選定する。 The relationship between the Y capacitor capacity and the common mode noise current on the system power supply side in the low frequency band will be explained. When the Y capacitor capacity is increased, the common mode noise current caused by the system power source becomes larger, and the common mode noise current caused by the power converter becomes smaller. On the other hand, when the Y capacitance is reduced, the common mode noise current caused by the system power supply becomes smaller, and the common mode noise current caused by the power converter becomes larger. For the common mode noise current on the grid power supply side in the low frequency band, the limit value is set by the standard for the purpose of preventing electric shock to the human body, so as mentioned above, there is a trade-off relationship between the common mode noise current caused by the grid power supply and the common mode noise current caused by the grid power supply. Select a Y capacitor capacitance value that satisfies the standard value from the sum of common mode noise currents caused by the power converter.
(2)高周波帯域の系統電源側コモンモードノイズ電流について説明する。高周波帯域の系統電源側を流れるノーマルモードまたはコモンモード電流は、系統電源側に接続されたLISN(Line Impedance Stabilization Network:疑似電源回路網)を用いて測定される。具体的には、LISNのインピーダンスが50Ωの端子にノーマルモードノイズまたはコモンモードノイズ電流が流れることで発生する電圧(雑音端子電圧)として測定される。高周波帯域は、例えば150kHz以上であり、伝導ノイズ帯に該当し、上記測定手法が規格として定められている。LISNの系統電源側はローパスフィルタの構成になっており、系統電源に起因するノイズは雑音端子電圧として測定されない。そして、LISNの負荷側に接続されている電力変換器に起因するノイズのみ雑音端子電圧として測定される。雑音端子電圧として測定される電力変換器に起因するノイズは、ノーマルモードまたはコモンモードの両モードの和である。そして、Yコンデンサ容量を大きくすることにより、コモンモードノイズの低減が可能である。 (2) The common mode noise current on the grid power supply side in the high frequency band will be explained. A normal mode or common mode current flowing on the grid power supply side in a high frequency band is measured using a LISN (Line Impedance Stabilization Network: pseudo power supply network) connected to the grid power supply side. Specifically, it is measured as a voltage (noise terminal voltage) generated when normal mode noise or common mode noise current flows through a terminal of LISN whose impedance is 50Ω. The high frequency band is, for example, 150 kHz or higher, which corresponds to the conduction noise band, and the above measurement method is defined as a standard. The system power supply side of LISN has a low-pass filter configuration, and noise caused by the system power supply is not measured as a noise terminal voltage. Then, only the noise caused by the power converter connected to the load side of the LISN is measured as the noise terminal voltage. The noise caused by the power converter, measured as the noise terminal voltage, is the sum of both normal mode or common mode. By increasing the Y capacitor capacity, common mode noise can be reduced.
 従って、高周波帯域の系統電源側コモンモードノイズ電流抑制の観点では、Yコンデンサの容量値は大きい方が良い。また、低周波帯域の系統電源側コモンモードノイズ電流は、電力変換器に起因する成分よりも系統電源に起因する成分が大きくなるようなYコンデンサの容量を選定することが望ましい。 Therefore, from the viewpoint of suppressing the common mode noise current on the system power supply side in the high frequency band, the larger the capacitance value of the Y capacitor, the better. In addition, it is desirable to select the capacitance of the Y capacitor such that the common mode noise current on the grid power supply side in the low frequency band has a larger component caused by the grid power supply than the component caused by the power converter.
 以下に、本実施の形態1に係るノイズフィルタ100の詳細について説明する。図5は、実施の形態1に係るノイズフィルタ100の構成を示す図、図6は実施の形態1に係るノイズフィルタ100の別の構成を示す図である。 The details of the noise filter 100 according to the first embodiment will be described below. FIG. 5 is a diagram showing a configuration of the noise filter 100 according to the first embodiment, and FIG. 6 is a diagram showing another configuration of the noise filter 100 according to the first embodiment.
 図5において、系統電源側のコモンモードノイズを抑制するノイズフィルタ100は、電力線PLに接続されコモンモードノイズを検出する検出部120、コモンモードノイズを相殺する補償信号を生成する補償信号生成部140、電力線PLにコモンモードノイズを相殺する補償信号を注入する補償信号注入部130を備えている。コモンモードノイズを検出する検出部120は、例えばY結線のコンデンサで構成されている。 In FIG. 5, a noise filter 100 that suppresses common mode noise on the grid power supply side includes a detection unit 120 that is connected to the power line PL and detects common mode noise, and a compensation signal generation unit 140 that generates a compensation signal that cancels out the common mode noise. , a compensation signal injection unit 130 that injects a compensation signal for canceling common mode noise into the power line PL. The detection unit 120 that detects common mode noise is composed of, for example, a Y-connected capacitor.
 補償信号生成部140で生成される補償信号は、例えば補償電圧信号であり、補償信号生成部140の出力部は補償信号注入部130と補償信号生成部140の入力部の一方の端子とに接続され、それぞれ生成された補償信号を出力する。補償信号生成部140の入力部の他方の端子は検出部120に接続されている。また、補償信号生成部140は接地線GLと接続されており、補償信号生成部140の出力部は補償信号注入部130と接地線GLとの間に直列に接続されていることになる。 The compensation signal generated by the compensation signal generation section 140 is, for example, a compensation voltage signal, and the output section of the compensation signal generation section 140 is connected to one terminal of the compensation signal injection section 130 and the input section of the compensation signal generation section 140. and output the generated compensation signals. The other terminal of the input section of the compensation signal generation section 140 is connected to the detection section 120. Further, the compensation signal generation section 140 is connected to the ground line GL, and the output section of the compensation signal generation section 140 is connected in series between the compensation signal injection section 130 and the ground line GL.
 補償信号注入部130は、例えばY結線のコンデンサで構成されている。また、電力線PLにノイズの減衰量の増強を目的として、例えばインダクタ110が接続されている。ノイズの減衰量の増強を目的としては、図6で示すように、さらにYコンデンサ150を接続してもよい。しかし、インダクタ110、Yコンデンサ150は必須ではない。図6においては、電力線PLと接地線GLとの間にノイズフィルタ100が接続されているが、ノイズフィルタ100が電力線PLにのみ接続されていてもよい。 The compensation signal injection section 130 is composed of, for example, a Y-connected capacitor. Further, for example, an inductor 110 is connected to the power line PL for the purpose of increasing noise attenuation. For the purpose of increasing the amount of noise attenuation, a Y capacitor 150 may be further connected as shown in FIG. However, the inductor 110 and the Y capacitor 150 are not essential. In FIG. 6, the noise filter 100 is connected between the power line PL and the ground line GL, but the noise filter 100 may be connected only to the power line PL.
 次に、実施の形態1に係るノイズフィルタ100の特徴について説明する。実施の形態1に係るノイズフィルタ100の特徴は、補償信号生成部140の入力部の2つの入力端子が差動入力となっている点である。この構成により、補償信号注入部130を構成するコンデンサのコモンモード成分の電圧を差動電圧として検出することになる。この差動電圧に対し、補償信号生成部140では、例えば逆極性且つ1倍以下の電圧を補償電圧として生成し、補償信号注入部130と接地線GLとの間に直列に出力する。これにより、コモンモード成分の等価回路上で、補償信号注入部130を構成するコンデンサのコモンモード電圧を打ち消すことになる。すなわち、実施の形態1に係るノイズフィルタ100の構成において、補償信号注入部130を構成するコンデンサをアクティブ化することにより、見かけの等価容量が増加されたYコンデンサとして機能させる効果がある。 Next, the characteristics of the noise filter 100 according to the first embodiment will be explained. A feature of the noise filter 100 according to the first embodiment is that the two input terminals of the input section of the compensation signal generation section 140 are differential inputs. With this configuration, the voltage of the common mode component of the capacitor forming the compensation signal injection section 130 is detected as a differential voltage. In response to this differential voltage, the compensation signal generation section 140 generates a voltage of, for example, the opposite polarity and one times or less as a compensation voltage, and outputs it in series between the compensation signal injection section 130 and the ground line GL. This cancels out the common mode voltage of the capacitor forming the compensation signal injection section 130 on the equivalent circuit of the common mode component. That is, in the configuration of noise filter 100 according to Embodiment 1, activating the capacitor forming compensation signal injection section 130 has the effect of making it function as a Y capacitor with increased apparent equivalent capacitance.
 図7は、実施の形態1に係るノイズフィルタ100の動作原理を示す等価回路図である。図7において、接続点A、Bはそれぞれ図5における接続点A、Bである。すなわち、電力線PLと接地線GLとの間に補償信号注入部130と補償信号生成部140とが直列に接続されている。例えば、電力変換器に起因するノイズ電圧源Vcmからのコモンモードノイズ電流が電源側に流れ、インダクタ110、電源対地インピーダンスZg、接地線GLを介して負荷対地寄生容量Zmに還流するものとする。電源側、すなわち電源対地インピーダンスZgに流れる電流量を低減するのがノイズフィルタ100の役割である。 FIG. 7 is an equivalent circuit diagram showing the operating principle of the noise filter 100 according to the first embodiment. In FIG. 7, connection points A and B are connection points A and B in FIG. 5, respectively. That is, the compensation signal injection section 130 and the compensation signal generation section 140 are connected in series between the power line PL and the ground line GL. For example, it is assumed that a common mode noise current from a noise voltage source Vcm caused by a power converter flows to the power supply side and flows back to the load-to-ground parasitic capacitance Zm via the inductor 110, the power supply-to-ground impedance Zg, and the ground line GL. The role of the noise filter 100 is to reduce the amount of current flowing to the power supply side, that is, the power supply-to-ground impedance Zg.
 ノイズ電圧源Vcmからのコモンモードノイズ電流Icmは、補償信号注入部130と電力線PLとの接続点Aで、電源側に流れるコモンモードノイズ電流Igと補償信号注入部130側に流れるコモンモードノイズ電流Iyとに分岐する。補償信号注入部130側に流れるコモンモードノイズ電流Iyにより補償信号注入部130のコンデンサにコモンモード電圧Vyが発生する、上述したように、本実施の形態1においては、このコモンモード電圧Vyを検出することで、補償信号生成部140では、補償電圧Vinjとしてコモンモード電圧Vyに対し逆極性且つ1倍以下の電圧を生成する。すなわち、式(1)を満たす補償電圧Vinjを補償信号として生成する。なお、式(1)はVinjとVyの絶対値について比較したものである。
  |Vinj| ≦ |Vy| ・・・(1)
A common mode noise current Icm from a noise voltage source Vcm is a common mode noise current Ig flowing to the power supply side and a common mode noise current flowing to the compensation signal injection unit 130 side at a connection point A between the compensation signal injection unit 130 and the power line PL. It branches into Iy. The common mode voltage Vy is generated in the capacitor of the compensation signal injection section 130 by the common mode noise current Iy flowing to the compensation signal injection section 130 side.As described above, in the first embodiment, this common mode voltage Vy is detected. By doing so, the compensation signal generation unit 140 generates a voltage having the opposite polarity and one time or less of the common mode voltage Vy as the compensation voltage Vinj. That is, a compensation voltage Vinj satisfying equation (1) is generated as a compensation signal. Note that equation (1) is a comparison of the absolute values of Vinj and Vy.
|Vinj| ≦ |Vy| ...(1)
 補償電圧Vinjが補償信号注入部130に出力されることにより、コモンモード電圧Vyは打ち消され、コモンモードノイズ電流Icmは、コモンモードノイズ電流Iyにより多く分配されることになる。コモンモードノイズ電流Iyが大きくなるほど、電源側に流れるコモンモードノイズ電流Igは減少する。 By outputting the compensation voltage Vinj to the compensation signal injection unit 130, the common mode voltage Vy is canceled out, and more of the common mode noise current Icm is distributed to the common mode noise current Iy. As the common mode noise current Iy increases, the common mode noise current Ig flowing to the power supply side decreases.
 以上の動作により、例えば電力変換器が発生させるコモンモードノイズ電流Icmを、補償信号注入部130のコンデンサ側に積極的に還流させることで、保護対象である電源側のコモンモードノイズ電流Igを低減することが可能となる。 Through the above operation, the common mode noise current Icm generated by the power converter, for example, is actively circulated to the capacitor side of the compensation signal injection unit 130, thereby reducing the common mode noise current Ig on the power supply side, which is the object of protection. It becomes possible to do so.
 次に、実施の形態1に係るノイズフィルタ100の詳細な動作について、(1)低周波数域、(2)高周波数域に分けて説明する。
(1)低周波数域
 実施の形態1に係るノイズフィルタ100は、検出部120のコンデンサと補償信号生成部140の入力部の抵抗成分により、ハイパスフィルタを形成している。この検出部120のコンデンサの容量値と補償信号生成部140の入力部の抵抗値で決定されるハイパスフィルタのカットオフ周波数の設計により、補償周波数の下限値を設定することが可能である。
Next, the detailed operation of the noise filter 100 according to the first embodiment will be explained separately in (1) low frequency range and (2) high frequency range.
(1) Low Frequency Range The noise filter 100 according to the first embodiment forms a high-pass filter by the capacitor of the detection section 120 and the resistance component of the input section of the compensation signal generation section 140. The lower limit value of the compensation frequency can be set by designing the cutoff frequency of the high-pass filter, which is determined by the capacitance value of the capacitor of the detection section 120 and the resistance value of the input section of the compensation signal generation section 140.
 ここで、系統電源に起因する支配的な商用周波数成分のコモンモードノイズ電流は、例えば、50Hzまたは60Hzであり、電力変換器に起因するコモンモードノイズ電流の周波数は支配的なスイッチング周波数成分となり、概ね数kHz以上である。本実施の形態1に係るノイズフィルタ100は、実質的にYコンデンサの等価容量を増加させる機能があり、系統電源に起因する商用周波数成分のコモンモードノイズ電流に関しては、対地インピーダンスの低下により、むしろ増加させてしまう作用がある。 Here, the common mode noise current of the dominant commercial frequency component caused by the grid power supply is, for example, 50 Hz or 60 Hz, and the frequency of the common mode noise current caused by the power converter is the dominant switching frequency component, It is approximately several kHz or more. The noise filter 100 according to the first embodiment has a function of substantially increasing the equivalent capacitance of the Y capacitor, and with respect to the common mode noise current of the commercial frequency component caused by the grid power supply, it is rather It has the effect of increasing
 これに対し、検出部120のコンデンサと補償信号生成部140の入力部の抵抗成分により形成されるハイパスフィルタのカットオフ周波数を、系統電源に起因するコモンモードノイズ電流の周波数以上に設定して補償帯域の下限値を高域にシフトさせる。これにより、系統電源に起因するコモンモードノイズ電流の増加を抑制することができる。同時に、ハイパスフィルタのカットオフ周波数を、電力変換器に起因するコモンモードノイズ電流の周波数であるスイッチング周波数よりも低く設定することで、Yコンデンサの等価容量を増加させる。これにより、接地線GLを介してYコンデンサ-電力変換器-負荷のルートで積極的にコモンモード電流を還流させる効果を奏することが可能となる。従って、系統電源側を流れるコモンモードノイズ電流を低減できる。 To compensate for this, the cutoff frequency of the high-pass filter formed by the capacitor of the detection unit 120 and the resistance component of the input part of the compensation signal generation unit 140 is set to be higher than the frequency of the common mode noise current caused by the grid power supply. Shifts the lower limit of the band to higher frequencies. Thereby, it is possible to suppress an increase in common mode noise current caused by the grid power supply. At the same time, the equivalent capacitance of the Y capacitor is increased by setting the cutoff frequency of the high-pass filter to be lower than the switching frequency, which is the frequency of the common mode noise current caused by the power converter. This makes it possible to produce the effect of actively circulating the common mode current in the Y capacitor-power converter-load route via the grounding line GL. Therefore, the common mode noise current flowing through the power supply side can be reduced.
 従って、実施の形態1に係るノイズフィルタ100は、コモンモード電流の発生要因に関係なく、特定の周波数範囲でYコンデンサの等価容量を増加させる作用があるため、その発生源が周波数帯域ごとに分離されている必要がある。つまり、系統電源に起因するコモンモードノイズ電流の周波数と電力変換器に起因するコモンモードノイズ電流の周波数は分割されていることが望ましい。よって、系統電源に起因する周波数と電力変換器に起因する周波数が近い場合には、系統電源に起因するコモンモードノイズ電流は増加し、電力変換器に起因するコモンモードノイズ電流は減少する作用となる。 Therefore, the noise filter 100 according to the first embodiment has the effect of increasing the equivalent capacitance of the Y capacitor in a specific frequency range regardless of the cause of common mode current generation, so that the generation source is separated for each frequency band. Must have been. In other words, it is desirable that the frequency of the common mode noise current caused by the power system and the frequency of the common mode noise current caused by the power converter are divided. Therefore, if the frequency caused by the grid power source and the frequency caused by the power converter are close, the common mode noise current caused by the grid power source will increase, and the common mode noise current caused by the power converter will decrease. Become.
 次に、実施の形態1に係るノイズフィルタ100の具備する補償信号生成部140の低周波数域における設計上の注意点について説明する。
 コモンモードインダクタとYコンデンサのみで構成された一般的なパッシブコモンモードフィルタにおいて、カットオフ周波数以下ではコモンモードノイズ電流源の大部分は系統電源側を流れている。一方で、本願の実施の形態1に係るノイズフィルタ100では、補償信号注入部130のコンデンサがYコンデンサに相当し、補償電圧により、Yコンデンサの等価容量の増加及び低インピーダンス化を実現している。つまり、電力変換器に起因する比較的低周波であるコモンモードノイズ電流のスイッチング周波数成分は、補償信号注入部130のコンデンサに積極的に還流されることになる。
Next, points to be noted in designing the compensation signal generation section 140 included in the noise filter 100 according to the first embodiment in the low frequency range will be described.
In a general passive common mode filter configured only with a common mode inductor and a Y capacitor, most of the common mode noise current source flows through the power supply side below the cutoff frequency. On the other hand, in the noise filter 100 according to the first embodiment of the present application, the capacitor of the compensation signal injection section 130 corresponds to the Y capacitor, and the compensation voltage increases the equivalent capacitance of the Y capacitor and lowers the impedance. . In other words, the switching frequency component of the common mode noise current, which is a relatively low frequency caused by the power converter, is actively circulated to the capacitor of the compensation signal injection section 130.
 ここで、補償信号注入部130のコンデンサは、比較的低周波である為、高インピーダンスである。そして、電力変換器に起因するコモンモードノイズ電流は補償信号注入部130のコンデンサに還流されることになるため、補償信号注入部130のコンデンサの高インピーダンスとコモンモードノイズ電流の積で決定される最大検出差動電圧及び補償電圧は、過大となってしまう可能性がある。ここで、最大検出差動電圧とは、図7で示した補償信号注入部130のコンデンサのコモンモード電圧Vyの最大値に相当する。そのため、最大検出差動電圧が過大となると、それを打ち消すための補償電圧も過大となる可能性がある。 Here, the capacitor of the compensation signal injection section 130 has a relatively low frequency, so it has a high impedance. Since the common mode noise current caused by the power converter is returned to the capacitor of the compensation signal injection section 130, it is determined by the product of the high impedance of the capacitor of the compensation signal injection section 130 and the common mode noise current. The maximum detected differential voltage and compensation voltage may become excessive. Here, the maximum detected differential voltage corresponds to the maximum value of the common mode voltage Vy of the capacitor of the compensation signal injection section 130 shown in FIG. Therefore, if the maximum detected differential voltage becomes excessive, the compensation voltage for canceling it may also become excessive.
 この課題に関して、ノイズ源インピーダンスは、例えば、負荷対地寄生容量Zmと概ね等しく、負荷対地寄生容量Zmと補償信号注入部130のコンデンサ容量の比で、最大補償電圧は決定される。その為、負荷対地寄生容量Zmよりも、補償信号注入部130のコンデンサ容量を十分大きくすることで、最大検出差動電圧及び補償電圧を抑制することが可能である。補償信号生成部140は、一般的にオペアンプ、トランジスタ及び制御電源で構成される。最大差動検出電圧及び補償電圧を抑制することで、補償信号生成部140の必要な制御電源の電圧並びに補償信号生成部140のスルーレート及びゲインバンド幅が削減可能である。但し、系統電源に起因する系統電源側を流れる低周波コモンモード電流の制約により、補償信号注入部130のコンデンサの容量の上限値は制限される。 Regarding this issue, the noise source impedance is, for example, approximately equal to the load-to-ground parasitic capacitance Zm, and the maximum compensation voltage is determined by the ratio of the load-to-ground parasitic capacitance Zm and the capacitance of the compensation signal injection section 130. Therefore, by making the capacitor capacity of the compensation signal injection section 130 sufficiently larger than the load-to-ground parasitic capacitance Zm, it is possible to suppress the maximum detected differential voltage and the compensation voltage. Compensation signal generation section 140 generally includes an operational amplifier, a transistor, and a control power supply. By suppressing the maximum differential detection voltage and the compensation voltage, the voltage of the control power supply necessary for the compensation signal generation section 140 and the slew rate and gain bandwidth of the compensation signal generation section 140 can be reduced. However, the upper limit value of the capacitance of the capacitor of the compensation signal injection section 130 is limited due to constraints on the low frequency common mode current flowing on the system power supply side caused by the system power supply.
(2)高周波数域
 次に、高周波数域におけるノイズフィルタ100の詳細な動作について説明する。高周波数域に関しては、LISNを用いた雑音端子電圧での伝導ノイズの測定範囲に相当し、パッシブコモンモードフィルタでの一般的なカットオフ周波数以上に該当する周波数域である。高周波数域では、コモンモードノイズ電流は、Yコンデンサとして実質的に機能している補償信号注入部130のコンデンサに大部分は還流している状態である。ここで、補償信号注入部130のコンデンサのコモンモード電圧成分は、LISN側において、小さなノイズ電圧源として機能している。実施の形態1に係るノイズフィルタ100を適用することにより、補償信号注入部130のコンデンサで発生しているコモンモード電圧Vyを、差動電圧として検出して、補償信号生成部140により、例えば逆極性且つ大きさ1倍以下の補償電圧信号Vinjを生成し注入することで、コモンモード電圧成分を相殺することができる。これにより、LISNの50Ω端子に印加される雑音端子電圧のコモンモード成分を低減することが可能となる。このことは、高周波数域でコモンモードノイズを抑制できることを示している。
(2) High frequency range Next, the detailed operation of the noise filter 100 in the high frequency range will be described. The high frequency range corresponds to the measurement range of conduction noise at the noise terminal voltage using LISN, and corresponds to the frequency range above the general cutoff frequency of a passive common mode filter. In the high frequency range, most of the common mode noise current flows back to the capacitor of the compensation signal injection section 130, which essentially functions as a Y capacitor. Here, the common mode voltage component of the capacitor of the compensation signal injection section 130 functions as a small noise voltage source on the LISN side. By applying the noise filter 100 according to the first embodiment, the common mode voltage Vy generated in the capacitor of the compensation signal injection section 130 is detected as a differential voltage, and the compensation signal generation section 140 generates a reverse voltage, for example. The common mode voltage component can be canceled by generating and injecting a compensation voltage signal Vinj of polarity and magnitude less than or equal to one. This makes it possible to reduce the common mode component of the noise terminal voltage applied to the 50Ω terminal of LISN. This shows that common mode noise can be suppressed in a high frequency range.
 次に、補償信号生成部140のゲイン設計について説明する。
 図7において、検出された補償信号注入部130のコンデンサのコモンモード成分の電圧Vyに対して、大きさ1倍の補償電圧を出力することがノイズキャンセルの観点では理想的である。すなわち、式(1)において、|Vinj| = |Vy| である。電源側の電圧ループ方程式は、VinjがVyと逆極性であることから、式(2)のようになる。
   Vy ― Vinj =(Zg+ZL)×Ig ・・・(2)
ここで、ZLはインダクタ110のインピーダンスである。
Next, gain design of the compensation signal generation section 140 will be explained.
In FIG. 7, it is ideal from the viewpoint of noise cancellation to output a compensation voltage that is one times the magnitude of the detected voltage Vy of the common mode component of the capacitor of the compensation signal injection unit 130. That is, in equation (1), |Vinj| = |Vy|. Since Vinj has the opposite polarity to Vy, the voltage loop equation on the power supply side is as shown in equation (2).
Vy - Vinj = (Zg + ZL) x Ig (2)
Here, ZL is the impedance of the inductor 110.
 大きさ1倍の補償電圧を出力する、すなわちゲインの大きさが1倍で、|Vinj| = |Vy|となるように補償電圧Vinjを生成し、補償信号注入部130のコンデンサに注入したとすると、式(2)は、0=(Zg+ZL)×Igとなる。(Zg+ZL)は有限の値を持つため、Ig=0となり、電源側に流れるコモンモードノイズ電流Igは理想的な0となる。また、Vy ― Vinj =0であるため、接続点A-B間が短絡と等価であり、ノイズ電圧源Vcmからのコモンモードノイズ電流Icmを全て補償信号注入部130のコンデンサに還流させることになる。 Suppose that the compensation voltage Vinj is generated so that a compensation voltage of 1 times the magnitude is output, that is, the magnitude of the gain is 1, |Vinj| = |Vy|, and is injected into the capacitor of the compensation signal injection unit 130. Then, equation (2) becomes 0=(Zg+ZL)×Ig. Since (Zg+ZL) has a finite value, Ig=0, and the common mode noise current Ig flowing to the power supply side becomes ideally zero. In addition, since Vy - Vinj = 0, the connection point A and B are equivalent to a short circuit, and all the common mode noise current Icm from the noise voltage source Vcm is circulated to the capacitor of the compensation signal injection section 130. .
 しかし、現実的には大きさ1倍とすることで、後述するような条件では、低周波数域でフィードバックの発振現象が発生してしまう。フィードバックの発振現象が発生すると、制御が不安定になり、ノイズキャンセル動作ができなくなる虞がある。ここで、低周波数域とは補償信号注入部130のコンデンサと電力線PL上のインダクタで構成されるパッシブ部の共振周波数以下を指す。 However, in reality, by increasing the size to 1, a feedback oscillation phenomenon will occur in the low frequency range under the conditions described below. When a feedback oscillation phenomenon occurs, the control becomes unstable and there is a possibility that the noise canceling operation will not be possible. Here, the low frequency range refers to a frequency below the resonant frequency of the passive section composed of the capacitor of the compensation signal injection section 130 and the inductor on the power line PL.
 この低周波数域では、系統電源200が接地されている場合、系統電源側コモンインピーダンスは概ね0Ωであり、電力線PL上のインダクタ110は低インピーダンス、補償信号注入部130のコンデンサは高インピーダンスである。この条件では、図7で示す、補償信号生成部140から出力される補償電圧注入端、補償信号注入部130のコンデンサ、インダクタ110、電源対地インピーダンスZgの電圧ループにおいて、補償信号注入部130のコンデンサに補償電圧Vinjが概ね全て印加されることになる。また、位相については、生成した補償電圧に対して検出した差動電圧は位相が0度である。従って、ゲインの大きさが1倍であると発振してしまうことになる。つまり、系統電源200が接地されている時の低周波数域では、正のフィードバック制御を行うことになる。以上の理由により、低周波数帯域でノイズ低減の補償を実施する場合には、正のフィードバックによる発振現象を防止する点で、補償信号生成部140のゲインの大きさは1倍未満にする必要がある。 In this low frequency range, when the system power supply 200 is grounded, the common impedance on the system power supply side is approximately 0Ω, the inductor 110 on the power line PL has a low impedance, and the capacitor of the compensation signal injection unit 130 has a high impedance. Under this condition, in the voltage loop of the compensation voltage injection end output from the compensation signal generation section 140, the capacitor of the compensation signal injection section 130, the inductor 110, and the power supply-to-ground impedance Zg shown in FIG. The compensation voltage Vinj is applied to almost all of the points. Furthermore, regarding the phase, the detected differential voltage with respect to the generated compensation voltage has a phase of 0 degrees. Therefore, if the magnitude of the gain is 1, oscillation will occur. In other words, positive feedback control is performed in the low frequency range when the system power supply 200 is grounded. For the above reasons, when performing compensation for noise reduction in a low frequency band, the magnitude of the gain of the compensation signal generation section 140 needs to be less than 1 in order to prevent oscillation caused by positive feedback. be.
 これに対して、数kΩ程度のインピーダンスを持つ漏れ電流測定フィルタを接続した場合あるいは系統電源を接地せずに電源対地インピーダンスが高くなる場合には、発振現象は生じず、ゲインを1倍に設定することが可能である。しかし、系統電源を接地することは一般的であり、電源側コモンインピーダンスが概ね0Ωとなるため、注意が必要である。 On the other hand, if a leakage current measurement filter with an impedance of several kΩ is connected, or if the grid power supply is not grounded and the power supply-to-ground impedance becomes high, oscillation does not occur and the gain is set to 1. It is possible to do so. However, it is common to ground the system power supply, and the common impedance on the power supply side is approximately 0Ω, so care must be taken.
 一方、高周波数域については、電力線PL上のインダクタのインピーダンスZLが高くなり、補償信号注入部130のコンデンサのインピーダンスが低くなる為、出力した補償電圧に対して、検出する差動電圧は小さくなる。従って、系統電源側の電源対地インピーダンスZgに関係なく、ループゲインは小さくなるため、補償信号生成部140のゲインは1でよい。 On the other hand, in the high frequency range, the impedance ZL of the inductor on the power line PL becomes high and the impedance of the capacitor of the compensation signal injection section 130 becomes low, so the detected differential voltage becomes smaller with respect to the output compensation voltage. . Therefore, the loop gain becomes small regardless of the power supply-to-ground impedance Zg on the power system side, so the gain of the compensation signal generation section 140 may be 1.
 また、ゲインは1倍近傍であれば、1倍より大きくてもよい。ゲインが1倍を超えるとノイズ減衰効果は低減するが、1倍近傍であって1倍より大きい値であれば、1倍近傍であって1倍未満のゲインと同等の効果を奏する。 Further, the gain may be greater than 1 times as long as it is close to 1 times. If the gain exceeds 1, the noise attenuation effect will be reduced, but if the gain is close to 1 and is larger than 1, the effect will be equivalent to that of a gain that is close to 1 and less than 1.
 以上のように、本実施の形態1に係るノイズフィルタ100によれば、発生ノイズに対し広周波数帯域において補償が可能である。すなわち、ノイズフィルタ100は、電力線のノイズを検出する検出部120と、ノイズを減衰させる補償信号を生成する補償信号生成部140と、補償信号を注入する補償信号注入部130と、を備えており、補償信号生成部140は、入力された検出部120からの信号と補償信号生成部140の出力信号との差分信号に基づいて、補償信号を生成するので、低周波数域での補償性能の低下が抑制される。 As described above, according to the noise filter 100 according to the first embodiment, it is possible to compensate for generated noise in a wide frequency band. That is, the noise filter 100 includes a detection section 120 that detects power line noise, a compensation signal generation section 140 that generates a compensation signal that attenuates the noise, and a compensation signal injection section 130 that injects the compensation signal. Since the compensation signal generation section 140 generates a compensation signal based on the difference signal between the input signal from the detection section 120 and the output signal of the compensation signal generation section 140, the compensation performance decreases in the low frequency range. is suppressed.
 ここで、補償信号注入部130をコンデンサで構成すると、補償信号注入部130のコンデンサにはノイズ成分による電圧が発生し、補償信号生成部140はノイズ成分による電圧を差動電圧として検出して、ノイズ成分による電圧を打ち消すように補償電圧を補償信号として生成するので、効率よく発生ノイズに対し広周波数帯域において補償が可能となる。 Here, if the compensation signal injection section 130 is configured with a capacitor, a voltage due to a noise component is generated in the capacitor of the compensation signal injection section 130, and the compensation signal generation section 140 detects the voltage due to the noise component as a differential voltage. Since the compensation voltage is generated as a compensation signal so as to cancel the voltage due to the noise component, it is possible to efficiently compensate the generated noise in a wide frequency band.
 また、ノイズ成分を打ち消す補償信号は逆極性でかつゲインを1倍近傍であって、1倍以下に設定するのがよい。また、低周波数域のノイズ低減には補償信号のゲインが1倍であると回路内で発振し、ノイズ低減に影響がある場合があるので、ゲインは1倍未満とするのがよい。しかし、低周波数域以外では、ゲインが1倍であってもよい。 Furthermore, it is preferable that the compensation signal for canceling the noise component has the opposite polarity and the gain is set to around 1 times, but not more than 1 times. Further, in order to reduce noise in a low frequency range, if the gain of the compensation signal is 1, oscillation may occur in the circuit, which may affect noise reduction, so the gain is preferably less than 1. However, the gain may be 1 times outside the low frequency range.
 すなわち、発生ノイズが低周波数域においては、補償信号注入部130のコンデンサの電圧を検出して、その電圧に対してゲインが1倍未満の逆極性の補償電圧を補償信号生成部140で生成し、補償信号注入部130と接地線GLとの間に直列に出力する。本実施の形態1では、補償電圧によって検出ノイズを0に近づけるフィードバック制御でなく、フィードフォワード制御である。そのため、従来のフィードバック制御で生じていた、電力線PL上のインダクタと補償信号注入部130のコンデンサとの共振に起因する発振及び検出量の低下が、本実施の形態1の構成では生じることはない。従って、電力線PL上のインダクタと補償信号注入部130のコンデンサの共振周波数以下の低周波域での補償が可能となる効果を奏する。 That is, when the generated noise is in a low frequency range, the voltage of the capacitor of the compensation signal injection section 130 is detected, and the compensation signal generation section 140 generates a compensation voltage of the opposite polarity with a gain of less than 1 times that of the detected voltage. , are output in series between the compensation signal injector 130 and the ground line GL. In the first embodiment, feedforward control is used instead of feedback control that brings the detection noise closer to 0 using a compensation voltage. Therefore, in the configuration of the first embodiment, oscillation and a decrease in the detected amount due to resonance between the inductor on the power line PL and the capacitor of the compensation signal injection unit 130, which occur in conventional feedback control, do not occur. . Therefore, it is possible to perform compensation in a low frequency range below the resonant frequency of the inductor on the power line PL and the capacitor of the compensation signal injection section 130.
 さらに、実施の形態1において、検出部120と補償信号注入部130とをコンデンサで構成することにより、検出部120と補償信号注入部130とがインダクタで構成される構成よりも小型化が可能である。インダクタよりもコンデンサの方が、エネルギー密度が高いためである。 Furthermore, in the first embodiment, by configuring the detection unit 120 and the compensation signal injection unit 130 with capacitors, it is possible to make the detection unit 120 and the compensation signal injection unit 130 smaller than the configuration in which the detection unit 120 and the compensation signal injection unit 130 are configured with inductors. be. This is because capacitors have higher energy density than inductors.
 また、本実施の形態1のように低周波補償を含む場合、インダクタには低周波且つ大電圧が印加され、コアの磁気飽和を防ぐ為に、飽和磁束密度が高いコアの断面積が広い必要がある。つまり、インダクタの大型化が懸念される。従って、低周波補償をする本実施の形態において、検出部120と補償信号注入部130とにコンデンサを用いることで、アクティブノイズフィルタの小型化がより効果的となる。 In addition, when low frequency compensation is included as in Embodiment 1, a low frequency and large voltage is applied to the inductor, and in order to prevent magnetic saturation of the core, the core with a high saturation magnetic flux density needs to have a large cross-sectional area. There is. In other words, there is a concern that the inductor will become larger. Therefore, in this embodiment that performs low frequency compensation, by using a capacitor in the detection section 120 and the compensation signal injection section 130, the active noise filter can be more effectively miniaturized.
実施の形態2.
 以下、実施の形態2に係るノイズフィルタについて図8を用いて説明する。
 図8は実施の形態2に係るノイズフィルタの構成を示すブロック図である。実施の形態1と異なるのは、実施の形態2に係るノイズフィルタ100は、各相に検出部120u、120v、120w、補償信号注入部130u、130v、130w及び補償信号生成部140u、140v、140wを配置した構成である点である。その他の構成は実施の形態1と同様であるので、説明を省略する。実施の形態1に係るノイズフィルタは電源側のコモンモードノイズを減衰させていたが、本実施の形態2に係るノイズフィルタは、電源側のノーマルモードノイズ及びコモンモードノイズを減衰させる効果を奏する。
Embodiment 2.
A noise filter according to Embodiment 2 will be described below with reference to FIG. 8.
FIG. 8 is a block diagram showing the configuration of a noise filter according to the second embodiment. What is different from the first embodiment is that the noise filter 100 according to the second embodiment includes detection units 120u, 120v, 120w, compensation signal injection units 130u, 130v, 130w, and compensation signal generation units 140u, 140v, 140w for each phase. The point is that it has a configuration in which The other configurations are the same as those in Embodiment 1, so the explanation will be omitted. The noise filter according to the first embodiment attenuates common mode noise on the power supply side, but the noise filter according to the second embodiment has the effect of attenuating normal mode noise and common mode noise on the power supply side.
 図8において、検出部120u、120v、120w及び補償信号注入部130u、130v、130wは、各電力線PLu、PLv、PLwと接地線GLとの間に接続されており、接地線GLでの結線により、各相線間のノーマルモード成分も検出し、補償信号を注入することが可能である。各検出部120u、120v、120wでは、各相の電力線PLu、PLv、PLwと接地線GLとの間のコモンモード成分と上述のノーマルモード成分との和が、補償信号注入部130u、130v、130wの両端電圧として現れており、この補償信号注入部130u、130v、130wの差動電圧を検出することで、ノーマルモードとコモンモードのノイズとの和の電圧を検出することが可能である。そして、補償信号生成部140u、140v、140wにて、例えば逆極性且つ大きさ1倍以下の補償電圧を生成し、補償信号注入部130u、130v、130wと接地線GLとの間に直列に補償電圧を注入することで、ノーマルモードとコモンモードのノイズ電圧を打ち消すことが可能となる。 In FIG. 8, the detection units 120u, 120v, 120w and the compensation signal injection units 130u, 130v, 130w are connected between each power line PLu, PLv, PLw and the ground line GL, and are connected by the ground line GL. , it is possible to also detect the normal mode component between each phase line and inject a compensation signal. In each detection unit 120u, 120v, 120w, the sum of the common mode component between the power lines PLu, PLv, PLw of each phase and the ground line GL and the above-mentioned normal mode component is determined by the compensation signal injection unit 130u, 130v, 130w. By detecting the differential voltage of the compensation signal injection sections 130u, 130v, and 130w, it is possible to detect the voltage that is the sum of the normal mode and common mode noises. Then, the compensation signal generation units 140u, 140v, and 140w generate compensation voltages of, for example, opposite polarity and one times the magnitude, and perform compensation in series between the compensation signal injection units 130u, 130v, and 130w and the ground line GL. By injecting voltage, it becomes possible to cancel the noise voltage of normal mode and common mode.
 ここで、実施の形態1と同様に,検出部120u、120v、120wの各コンデンサと補償信号生成部140u、140v、140wの入力部の抵抗によって、ハイパスフィルタが形成されており、任意の補償周波数帯域の下限値を設定することが可能である。 Here, as in the first embodiment, a high-pass filter is formed by the capacitors of the detection sections 120u, 120v, and 120w and the resistances of the input sections of the compensation signal generation sections 140u, 140v, and 140w, and a high-pass filter is formed at an arbitrary compensation frequency. It is possible to set the lower limit of the band.
 また、実施の形態2に係るノイズフィルタ100においても、実施の形態1と同様にノイズ減衰効果の増強を目的として、各相の電力線PLu、PLv、PLwと接地線GLとの間にコンデンサ150u、150v、150wを設けてもよい。図9は、図8にコンデンサをさらに設けた例を示している。
 なお、実施の形態1においても説明したが、インダクタ110及び、コンデンサ150u、150v、150wは必須の構成ではない。ノイズ減衰効果の増強のために、適宜設ければよい。
Also, in the noise filter 100 according to the second embodiment, a capacitor 150u, 150v and 150w may be provided. FIG. 9 shows an example in which a capacitor is further provided in FIG. 8.
Note that, as described in the first embodiment, the inductor 110 and the capacitors 150u, 150v, and 150w are not essential components. It may be provided as appropriate to enhance the noise attenuation effect.
 以上のように、本実施の形態2に係るノイズフィルタ100によれば、実施の形態1と同様に広周波数帯域で補償が可能であり、低周波数域での補償性能の低下が抑制される。また、実施の形態2に係るノイズフィルタ100は、各相に検出部120u、120v、120w、補償信号注入部130u、130v、130w及び補償信号生成部140u、140v、140wを配置した構成であるので、各相の電力線に対するノーマルモード成分とコモンモード成分の和を検出することができ、それに対応して補償信号を注入するので、ノーマルモードノイズ及びコモンモードノイズの両方を減衰させることが可能となる。さらに、能動的にノイズ抑制を行うことから、検出部及び補償信号注入部を構成するXコンデンサの小型化が可能となる。 As described above, according to the noise filter 100 according to the second embodiment, compensation is possible in a wide frequency band as in the first embodiment, and deterioration in compensation performance in the low frequency range is suppressed. Further, the noise filter 100 according to the second embodiment has a configuration in which detection units 120u, 120v, 120w, compensation signal injection units 130u, 130v, 130w, and compensation signal generation units 140u, 140v, 140w are arranged in each phase. , it is possible to detect the sum of the normal mode component and common mode component for the power line of each phase, and inject a corresponding compensation signal, making it possible to attenuate both normal mode noise and common mode noise. . Furthermore, since noise is actively suppressed, it is possible to downsize the X capacitor that constitutes the detection section and the compensation signal injection section.
 なお、実施の形態1及び2において、補償信号生成部140、140u、140v、140wでは、差動電圧から検出したノイズ成分の電圧に対し、逆極性の補償電圧を生成させる回路構成とすることで、実装の簡素化を実現することができる。さらに、補償信号は電圧に限らず、補償電流であってもよい。 Note that in the first and second embodiments, the compensation signal generation units 140, 140u, 140v, and 140w have a circuit configuration that generates a compensation voltage of opposite polarity to the voltage of the noise component detected from the differential voltage. , implementation can be simplified. Furthermore, the compensation signal is not limited to a voltage, but may be a compensation current.
 補償信号生成部140、140u、140v、140wの回路構成は、上述したように例えばオペアンプを用いたアナログ回路で構成することができる。 The circuit configuration of the compensation signal generation units 140, 140u, 140v, and 140w can be configured with an analog circuit using an operational amplifier, for example, as described above.
 また、演算器と信号増幅器とを備えた信号処理部を有する機能を、ソフトウエアで実行することも可能である。その場合、補償信号生成部140、140u、140v、140wのハードウエア構成は例えば図10に示すように、処理回路として、プロセッサ142(コンピュータ)と記憶装置144とを備えている。 Furthermore, it is also possible to execute a function having a signal processing unit including an arithmetic unit and a signal amplifier using software. In that case, the hardware configuration of the compensation signal generation units 140, 140u, 140v, and 140w includes a processor 142 (computer) and a storage device 144 as processing circuits, as shown in FIG. 10, for example.
 プロセッサ142として、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、プロセッサ142として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置144として、プロセッサ142からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、及びプロセッサ142からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。プロセッサ142は、ROM等の記憶装置144から入力されたプログラムを実行する。 The processor 142 includes a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), and an FPGA (Fi eld Programmable Gate Array), various logic circuits, and various signal processing circuits, etc. good. Furthermore, a plurality of processors of the same type or different types may be provided as the processors 142, and each process may be shared and executed. The storage device 144 includes a RAM (Random Access Memory) that is configured to be able to read and write data from the processor 142, a ROM (Read Only Memory) that is configured to be able to read data from the processor 142, and the like. . The processor 142 executes a program input from a storage device 144 such as a ROM.
 補償信号生成部140、140u、140v、140wにおいてプログラムが実行されることにより、入力された2つの信号から、差動信号算出し、ノイズの周波数域の応じたゲインを用い、差動信号に―1とゲインが乗算された信号を算出し、信号処理部(図示せず)から対応する信号を生成する。 By executing the program in the compensation signal generation units 140, 140u, 140v, and 140w, a differential signal is calculated from the two input signals, and a gain corresponding to the noise frequency range is used to convert the differential signal to - A signal multiplied by 1 and a gain is calculated, and a corresponding signal is generated from a signal processing unit (not shown).
 なお、実施の形態1及び2において、ノイズフィルタ100を系統電源200と電力変換器300との間に配置し、ノイズ源として電力変換器300に起因するものについて説明したが、電力変換器300と負荷400との間に配置してもよい。負荷400の接地漏れ電流あるいは負荷であるモータの軸電圧の抑制が可能である。 In Embodiments 1 and 2, the noise filter 100 is arranged between the power supply system 200 and the power converter 300, and the noise source caused by the power converter 300 has been explained. It may be placed between the load 400 and the load 400. It is possible to suppress the ground leakage current of the load 400 or the shaft voltage of the motor that is the load.
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this disclosure describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments may differ from those of a particular embodiment. The invention is not limited to application, and can be applied to the embodiments alone or in various combinations.
Accordingly, countless variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, this includes cases where at least one component is modified, added, or omitted, and cases where at least one component is extracted and combined with components of other embodiments.
 例えば、コモンモードノイズを補償する実施の形態1に係るノイズフィルタを複数設けた構成及び実施の形態1と2の両方のノイズフィルタを設けた構成とすることも含む。 For example, the present invention also includes a configuration in which a plurality of noise filters according to Embodiment 1 that compensates for common mode noise are provided, and a configuration in which both noise filters in Embodiments 1 and 2 are provided.
 1:電力系システム、 100:ノイズフィルタ、 101a:コモンモードインダクタ、 101b:ノーマルモードインダクタ、 102a:Yコンデンサ、 102b:Xコンデンサ、 110:インダクタ、 120,120u,120v,120w:検出部、 130,130u,130v,130w:補償信号注入部、 140,140u,140v,140w:補償信号生成部、 142:プロセッサ、 144:記憶装置、 150:Yコンデンサ、 150u,150v,150w:コンデンサ、 200:系統電源、 300:電力変換器、 400:負荷、 PL,PLu,PLv,PLw:電力線、 GL:接地線、 Zcm:対地寄生容量、 Zm:負荷対地寄生容量、 Zg:電源対地インピーダンス、 Vcm:ノイズ電圧源、 Vy:コモンモード電圧、 Vinj:補償電圧、 Icm,Ig,Iy:コモンモードノイズ電流、 SW11,SW12,SW21,SW22,SW31,SW32:半導体スイッチ。 1: Power system, 100: Noise filter, 101a: Common mode inductor, 101b: Normal mode inductor, 102a: Y capacitor, 102b: X capacitor, 110: Inductor, 120, 120u, 120v, 120w: Detection section, 130, 130u, 130v, 130w: Compensation signal injection unit, 140, 140u, 140v, 140w: Compensation signal generation unit, 142: Processor, 144: Storage device, 150: Y capacitor, 150u, 150v, 150w: Capacitor, 200: System power supply , 300: Power converter, 400: Load, PL, PLu, PLv, PLw: Power line, GL: Ground line, Zcm: Parasitic capacitance to ground, Zm: Parasitic load capacitance to ground, Zg: Impedance to power source, Vcm: Noise voltage source , Vy: common mode voltage, Vinj: compensation voltage, Icm, Ig, Iy: common mode noise current, SW11, SW12, SW21, SW22, SW31, SW32: semiconductor switch.

Claims (8)

  1.  電力線に接続されるノイズフィルタであって、
    前記電力線におけるノイズを検出する検出部と、
    前記ノイズを減衰させる補償信号を生成する補償信号生成部と、
    前記電力線に前記補償信号を注入する補償信号注入部と、を備え、
    前記補償信号生成部の出力部は、前記補償信号注入部及び前記補償信号生成部の一方の入力部と接続され、
    前記補償信号生成部の他方の入力部は前記検出部と接続され、
    前記補償信号生成部は入力された二つの信号の差動信号に基づいて前記補償信号を生成する、ノイズフィルタ。
    A noise filter connected to a power line,
    a detection unit that detects noise in the power line;
    a compensation signal generation unit that generates a compensation signal that attenuates the noise;
    a compensation signal injection unit that injects the compensation signal into the power line,
    An output section of the compensation signal generation section is connected to an input section of one of the compensation signal injection section and the compensation signal generation section,
    The other input section of the compensation signal generation section is connected to the detection section,
    The compensation signal generation unit is a noise filter that generates the compensation signal based on a differential signal between two input signals.
  2.  前記検出部及び前記補償信号注入部はそれぞれコンデンサで構成されている、請求項1に記載のノイズフィルタ。 The noise filter according to claim 1, wherein the detection section and the compensation signal injection section each include a capacitor.
  3.  前記検出部はノイズを電圧として検出し、
     前記補償信号生成部は、前記入力部の差動電圧に対して逆極性且つ大きさ1倍以下の補償電圧を生成する、請求項1または2に記載のノイズフィルタ。
    The detection unit detects noise as a voltage,
    3. The noise filter according to claim 1, wherein the compensation signal generation section generates a compensation voltage having an opposite polarity and a magnitude less than or equal to the differential voltage of the input section.
  4.  前記補償信号生成部は、前記入力部の差動電圧に対して逆極性且つ大きさ1倍未満の補償電圧を生成する、請求項3に記載のノイズフィルタ。 The noise filter according to claim 3, wherein the compensation signal generation section generates a compensation voltage having an opposite polarity and a magnitude less than 1 times the differential voltage of the input section.
  5.  前記電力線は複数相を含み、
     前記電力線の各相に、前記検出部、前記補償信号生成部及び前記補償信号注入部が配置され、
     各相に対応する前記補償信号生成部は、前記各相の検出部で検出された前記ノイズに基づき前記ノイズを減衰させる補償信号をそれぞれ生成する、請求項1から4のいずれか1項に記載のノイズフィルタ。
    the power line includes multiple phases;
    The detection unit, the compensation signal generation unit, and the compensation signal injection unit are arranged in each phase of the power line,
    5. The compensation signal generation section corresponding to each phase generates a compensation signal that attenuates the noise based on the noise detected by the detection section of each phase, respectively, according to any one of claims 1 to 4. noise filter.
  6.  前記電力線に、インダクタが接続されている、請求項1から5のいずれか1項に記載のノイズフィルタ。 The noise filter according to any one of claims 1 to 5, wherein an inductor is connected to the power line.
  7.  前記電力線に、さらにコンデンサが接続されている、請求項1から6のいずれか1項に記載のノイズフィルタ。 The noise filter according to any one of claims 1 to 6, further comprising a capacitor connected to the power line.
  8.  前記補償信号生成部は、接地線に接続され、前記電力線と前記接地線との間に直列に接続された前記補償信号注入部に前記補償信号を出力する、請求項1から7のいずれか1項に記載のノイズフィルタ。 Any one of claims 1 to 7, wherein the compensation signal generation unit is connected to a ground line and outputs the compensation signal to the compensation signal injection unit connected in series between the power line and the ground line. Noise filter as described in section.
PCT/JP2022/027055 2022-07-08 2022-07-08 Noise filter WO2024009489A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024531875A JPWO2024009489A1 (en) 2022-07-08 2022-07-08
PCT/JP2022/027055 WO2024009489A1 (en) 2022-07-08 2022-07-08 Noise filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027055 WO2024009489A1 (en) 2022-07-08 2022-07-08 Noise filter

Publications (1)

Publication Number Publication Date
WO2024009489A1 true WO2024009489A1 (en) 2024-01-11

Family

ID=89453144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027055 WO2024009489A1 (en) 2022-07-08 2022-07-08 Noise filter

Country Status (2)

Country Link
JP (1) JPWO2024009489A1 (en)
WO (1) WO2024009489A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080469A (en) * 2017-10-27 2019-05-23 三菱電機株式会社 Noise reduction device
JP6811904B1 (en) * 2020-03-24 2021-01-13 三菱電機株式会社 Noise reduction device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080469A (en) * 2017-10-27 2019-05-23 三菱電機株式会社 Noise reduction device
JP6811904B1 (en) * 2020-03-24 2021-01-13 三菱電機株式会社 Noise reduction device

Also Published As

Publication number Publication date
JPWO2024009489A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
Narayanasamy et al. A survey of active EMI filters for conducted EMI noise reduction in power electronic converters
US9455646B2 (en) Filter device, power converter and common mode noise suppression method
Xing et al. Conducted common-mode EMI reduction by impedance balancing
EP2787618B1 (en) Voltage fed feed forward active EMI filter
Chen et al. A novel inverter-output passive filter for reducing both differential-and common-mode $ dv/dt $ at the motor terminals in PWM drive systems
JP4260110B2 (en) Filter device
JP2001086734A (en) Power conversion system
US9887641B2 (en) Power converter
JP2000201044A (en) Common mode noise reducing device
KR102315575B1 (en) Method for reducing common mode current
JP6771693B1 (en) Power converter
JP2001268890A (en) Power converter system
WO2016027374A1 (en) Power conversion device
Amin et al. A review on recent characterization effort of CM EMI in power electronics system with emerging wide band gap switch
JP2001231268A (en) Power conversion device
Chen et al. Common-mode noise reduction with impedance balancing in DC-fed motor drives
JP2001268922A (en) Power converter
WO2024009489A1 (en) Noise filter
JP6251221B2 (en) Noise filter device
JP2007336766A (en) Matrix converter device
JP2015053835A (en) Noise filter
US20230308069A1 (en) Common mode filter circuit and drive device
KR20210041362A (en) Current Compensation System for Solar Generators
Iftikhar et al. Conducted EMI suppression and stability issues in switch-mode DC-DC converters
Han et al. Suppressing methods of common-mode noise in LLC resonant DC-DC converters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024531875

Country of ref document: JP

Kind code of ref document: A