WO2024009463A1 - Terminal, wireless communication method and base station - Google Patents

Terminal, wireless communication method and base station Download PDF

Info

Publication number
WO2024009463A1
WO2024009463A1 PCT/JP2022/026993 JP2022026993W WO2024009463A1 WO 2024009463 A1 WO2024009463 A1 WO 2024009463A1 JP 2022026993 W JP2022026993 W JP 2022026993W WO 2024009463 A1 WO2024009463 A1 WO 2024009463A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
signal
dci
coreset
Prior art date
Application number
PCT/JP2022/026993
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/026993 priority Critical patent/WO2024009463A1/en
Publication of WO2024009463A1 publication Critical patent/WO2024009463A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • UE User Equipment
  • QCL quasi-co-location
  • TCI state/spatial relationship
  • TCI states to multiple types of signals (channels/RSs) is being considered. However, there are cases where it is not clear how to indicate the TCI status. If the method of indicating the TCI status is not clear, there is a risk of deterioration in communication quality, throughput, etc.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately apply TCI states.
  • a terminal receives configuration parameters related to a unified transmission configuration indication (TCI) state, and includes instructions regarding the unified TCI state and downlink control information (DL) for scheduling or triggering a downlink (DL) signal.
  • DCI downlink control information
  • CORESET control resource set
  • a control unit determines a TCI state or QCL assumption to be applied to the specific DL signal, based on a TCI state or pseudo-colocation (QCL assumption) corresponding to the specific CORESET pool index.
  • FIGS. 1A to 1C are diagrams illustrating examples of schemes 0 to 2 regarding SFN.
  • FIG. 2 is a diagram illustrating an example of simultaneous beam updating across multiple CCs.
  • 3A and 3B are diagrams illustrating an example of a common beam.
  • FIGS. 4A and 4B are diagrams illustrating examples of single DCI-based multi-TRP transmission and multi-DCI-based multi-TRP transmission, respectively.
  • 5A and 5B are diagrams illustrating an example of the TCI field within the DCI.
  • 6A and 6B are diagrams illustrating an example of setting/instructing a joint TCI state in a single DCI-based multi-TRP.
  • FIGS. 7A and 7B are diagrams illustrating an example of setting/instructing a separate TCI state in a single DCI-based multi-TRP.
  • FIGS. 8A and 8B are diagrams illustrating an example of setting/instructing a joint TCI state corresponding to a first value of the CORESET pool index in a multi-DCI-based multi-TRP.
  • 9A and 9B are diagrams illustrating an example of setting/instructing a joint TCI state corresponding to a second value of the CORESET pool index in a multi-DCI-based multi-TRP.
  • FIG. 10 is a diagram showing an overview of UE operations according to the first to fifth embodiments.
  • FIGS. 10 is a diagram showing an overview of UE operations according to the first to fifth embodiments.
  • FIG. 11A and 11B are diagrams illustrating an example of a method for selecting a TCI code point when a joint/DL TCI state is indicated.
  • FIG. 12 is a diagram illustrating an example of application of TCI status according to option 5-1-1.
  • FIG. 13 is a diagram illustrating an example of settings according to the sixth embodiment.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 18 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the UE performs reception processing (e.g. reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
  • reception processing e.g. reception, demapping, demodulation, Controlling at least one of decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, and encoding
  • the TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
  • the TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc.
  • the TCI state may be set in the UE on a per-channel or per-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
  • the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined for QCL.
  • QCL types A-D may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below: ⁇ QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, ⁇ QCL type B (QCL-B): Doppler shift and Doppler spread, ⁇ QCL type C (QCL-C): Doppler shift and average delay, - QCL type D (QCL-D): Spatial reception parameters.
  • Control Resource Set CORESET
  • channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
  • QCL Control Resource Set
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Uplink Shared Channel (Physical Uplink Shared Channel).
  • the channel may be at least one of a physical uplink control channel (PUCCH) and a physical uplink control channel (PUCCH).
  • the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding
  • the signal may be at least one of a tracking reference signal (SRS), a tracking CSI-RS (also referred to as a tracking reference signal (TRS)), and a QCL detection reference signal (also referred to as a QRS).
  • SRS tracking reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • the SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • An RS of QCL type X in a TCI state may mean an RS that has a QCL type You can.
  • QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving one shot of DMRS, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receiving beam determination during DMRS reception.
  • TRS1-1, 1-2, 1-3, and 1-4 are transmitted, and TRS1-1 is notified as a QCL type C/D RS depending on the TCI state of the PDSCH.
  • the UE can use information obtained from past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation.
  • the QCL source for PDSCH is TRS1-1
  • the QCL target is DMRS for PDSCH.
  • the PDSCH may be scheduled with a DCI having a TCI field.
  • the TCI state for PDSCH is indicated by the TCI field.
  • the TCI field of DCI format 1_1 is 3 bits, and the TCI field of DCI format 1_2 is 3 bits at maximum.
  • the UE In RRC connected mode, if the first intra-DCI TCI information element (upper layer parameter tci-PresentInDCI) is set to "enabled" for a CORESET that schedules a PDSCH, the UE shall It is assumed that a TCI field exists in the DCI format 1_1 of the transmitted PDCCH.
  • upper layer parameter tci-PresentInDCI upper layer parameter
  • the UE can determine the DCI format of the PDSCH transmitted in the CORESET. Assume that there is a TCI field in DCI 1_2 with the DCI field size indicated by the second intra-DCI TCI information element.
  • the PDSCH may be scheduled with a DCI without a TCI field.
  • the DCI format of the DCI is DCI format 1_0, or DCI format 1_1/1_2 in the case where the intra-DCI TCI information element (upper layer parameter tci-PresentInDCI or tci-PresentInDCI-1-2) is not set (enabled). You can.
  • a PDSCH is scheduled with a DCI that does not have a TCI field, and if the DL is greater than or equal to a threshold (timeDurationForQCL), the UE assumes that the TCI state or QCL assumption for the PDSCH is the same as the TCI state or QCL assumption (default TCI state) of the CORESET (e.g., scheduling DCI). .
  • a threshold timeDurationForQCL
  • the TCI state (default TCI state) of the PDSCH is the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of that CC (of a specific UL signal). It may be. Otherwise, the TCI state of the PDSCH (default TCI state) may be the TCI state of the lowest TCI state ID of the PDSCH in the active DL BWP of the scheduled CC.
  • MAC CEs are required: a MAC CE for activation/deactivation related to PUCCH space and a MAC CE for activation/deactivation related to SRS space.
  • PUSCH spatial relationships follow SRS spatial relationships.
  • At least one of the MAC CE for activation/deactivation related to PUCCH space and the MAC CE for activation/deactivation related to SRS space may not be used.
  • both the spatial relationship and PL-RS for PUCCH are not configured in FR2 (applicable condition, second condition), default assumption of spatial relationship and PL-RS for PUCCH (default spatial relationship and default PL-RS) applies.
  • both the spatial relationship for SRS (SRS resource for SRS, or SRS resource corresponding to SRI in DCI format 0_1 that schedules PUSCH) and PL-RS are not configured (applicable condition, second condition)
  • Default assumptions of spatial relationship and PL-RS (default spatial relationship and default PL-RS) apply for PUSCH and SRS scheduled by DCI format 0_1.
  • the default spatial relationship and default PL-RS are based on the TCI state or QCL assumption of the CORESET with the lowest CORESET ID in the active DL BWP. There may be. If no CORESET is configured in the active DL BWP on that CC, the default spatial relationship and default PL-RS may be the active TCI state with the lowest ID of the PDSCH in the active DL BWP.
  • the spatial relationship of PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource with the lowest PUCCH resource ID among the active spatial relationships of PUCCH on the same CC.
  • the network needs to update the PUCCH spatial relationships on all SCells even if no PUCCH is transmitted on the SCell.
  • the application conditions for the default spatial relationship/default PL-RS for SRS may include that the default beam path loss enable information element for SRS (upper layer parameter enableDefaultBeamPlForSRS) is set to valid.
  • the application condition of the default spatial relationship/default PL-RS for PUCCH may include that the default beam path loss enable information element for PUCCH (upper layer parameter enableDefaultBeamPlForPUCCH) is set to valid.
  • the application condition for the default spatial relationship/default PL-RS for PUSCH scheduled by DCI format 0_0 is that the default beam path loss enable information element for PUSCH scheduled by DCI format 0_0 (upper layer parameter enableDefaultBeamPlForPUSCH0_0) is set to valid. It may also include.
  • the RRC parameter (parameter for enabling default beam PL for PUCCH (enableDefaultBeamPL-ForPUCCH), parameter for enabling default beam PL for PUSCH (enableDefaultBeamPL-ForPUSCH0_0)), or SRS If the parameter (enableDefaultBeamPL-ForSRS) is configured and no spatial relationship or PL-RS is configured, the UE applies the default spatial relationship/PL-RS.
  • the above thresholds are: time duration for QCL, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI”, “Threshold- “Sched-Offset”, “ beamSwitchTiming, schedule offset threshold, scheduling offset threshold, etc.
  • the threshold may be reported by the UE as the UE capability (per subcarrier interval).
  • the offset (scheduling offset) between the reception of DL DCI and the corresponding PDSCH is smaller than the threshold timeDurationForQCL, and at least one TCI state configured for the serving cell of the scheduled PDSCH is "QCL type D" and the UE is configured with two default TCI enable information elements (enableTwoDefaultTCIStates-r16) and at least one TCI code point (code point of the TCI field in the DL DCI) indicates two TCI states.
  • the DMRS port of the serving cell's PDSCH or PDSCH transmission occasion is QCLed with the RS with respect to the QCL parameters associated with the two TCI states corresponding to the lowest code point of the TCI code points containing the two different TCI states ( quasi co-located) (2 default QCL assumption decision rule).
  • 2 Default TCI Enablement Information Element indicates the Rel. 16 operation is enabled.
  • a default TCI state for single TRP As the default TCI state of PDSCH in 15/16, a default TCI state for single TRP, a default TCI state for multi-TRP based on multi-DCI, and a default TCI state for multi-TRP based on single DCI are specified.
  • the default TCI state of aperiodic CSI-RS (A (periodic)-CSI-RS) in 15/16 is the default TCI state for single TRP, the default TCI state for multi-TRP based on multi-DCI, and the default TCI state for multi-TRP based on single DCI.
  • a default TCI state for multi-TRP is specified.
  • Multi TRP In NR, one or more Transmission/Reception Points (TRPs) (multi TRPs (MTRPs)) communicate with the UE using one or more panels (multi-panels). DL transmission is being considered. Further, it is being considered that the UE performs UL transmission using one or more panels for one or more TRPs.
  • TRPs Transmission/Reception Points
  • multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • Multi-TRPs may be connected by an ideal/non-ideal backhaul, and information, data, etc. may be exchanged.
  • Each TRP of the multi-TRP may transmit a different code word (CW) and a different layer.
  • NJT Non-Coherent Joint Transmission
  • NJT Non-Coherent Joint Transmission
  • TRP #1 modulates and layer-maps a first codeword to a first number of layers (e.g., 2 layers) to transmit a first PDSCH using a first precoding.
  • TRP #2 modulates and maps the second codeword, performs layer mapping, and transmits the second PDSCH using a second number of layers (eg, 2 layers) using a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap in at least one of time and frequency resources.
  • first PDSCH and second PDSCH may be assumed not to be in a quasi-co-location (QCL) relationship.
  • Reception of multiple PDSCHs may also be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI).
  • Multi-TRP single-DCI based multi-TRP.
  • Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH), respectively (multi-master mode, multi-DCI based multi-DCI). TRP)).
  • PDSCH transport block (TB) or codeword (CW) repetition across multiple TRPs
  • repetition schemes URLLC schemes, e.g. Schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RVs may be the same or different for multiple TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • one control resource set (CORESET) in the PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
  • the UE may determine that the multi-TRP is based on multi-DCI.
  • TRP may be replaced with CORESET pool index.
  • CORESET pool index A CORESET pool index of 1 is set.
  • Two different values eg, 0 and 1) of the CORESET pool index are set.
  • the UE may determine multi-TRP based on single DCI.
  • the two TRPs may be translated into two TCI states indicated by the MAC CE/DCI.
  • the "Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE (Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE) is used.
  • the DCI for common beam indication may be a UE-specific DCI format (for example, DL DCI format (for example, 1_1, 1_2), UL DCI format (for example, 0_1, 0_2)), or a UE-group common (UE-group Common) DCI format may be used.
  • DL DCI format for example, 1_1, 1_2
  • UL DCI format for example, 0_1, 0_2
  • UE-group Common UE-group Common
  • Multi-TRP PDCCH For the reliability of multi-TRP PDCCH based on non-single frequency network (SFN), the following considerations 1 to 3 are considered.
  • SFN non-single frequency network
  • the following considerations 1 to 3 are considered.
  • Encoding/rate matching is based on one repetition, and the same coded bits are repeated in other repetitions.
  • Each repetition has the same number of control channel elements (CCEs), the same coded bits, and corresponds to the same DCI payload.
  • CCEs control channel elements
  • Two or more PDCCH candidates are explicitly linked to each other. The UE knows the link before decoding.
  • Two sets of PDCCH candidates (within a given search space (SS) set) are respectively associated with two TCI states of the CORESET.
  • the same CORESET, the same SS set, and PDCCH repetition in different monitoring occasions are used.
  • Two sets of PDCCH candidates are associated with two SS sets, respectively. Both SS sets are associated with a CORESET, and each SS set is associated with only one TCI state of that CORESET. Here, the same CORESET, two SS sets, is used.
  • a CORESET pool index is set for each CORESET.
  • SFN single frequency network
  • RRC signaling/MAC CE upper layer signaling
  • SFN contributes to at least one of the operation and reliability improvement of HST (high speed train).
  • each search space set is associated with a corresponding CORESET (enhancement 2 ).
  • the two search space sets may be associated with the same or different CORESETs.
  • One (maximum one) TCI state can be set/activated for one CORESET using upper layer signaling (RRC signaling/MAC CE).
  • two search space sets are associated with different CORESETs with different TCI states, it may mean repeated transmission of multiple TRPs. If two search space sets are associated with the same CORESET (CORESET with the same TCI state), it may mean repeated transmission of a single TRP.
  • HST high speed train
  • the large antenna transmits outside/inside the tunnel.
  • the transmission power of a large antenna is about 1 to 5W.
  • the transmission power of a small antenna is about 250 mW.
  • Multiple small antennas (transmission/reception points) with the same cell ID and a distance of 300 m form a single frequency network (SFN). All small antennas within an SFN transmit the same signal at the same time on the same PRB. It is assumed that a terminal transmits and receives data to and from one base station. In reality, multiple transmitting and receiving points transmit the same DL signal.
  • transmission and reception points in units of several kilometers form one cell. Handover is performed when crossing cells. This allows the frequency of handovers to be reduced.
  • NR data is transmitted from a transmission point (e.g., RRH) in order to communicate with a terminal (hereinafter also referred to as UE) included in a mobile object such as a high-speed train (HST) that moves at high speed. It is assumed that beams will be used.
  • RRH transmission point
  • HST high-speed train
  • An RRH that forms a beam in one direction may be called a uni-directional RRH.
  • the beam When the beam is formed in a direction opposite to the direction of travel of the mobile unit (UE), the mobile unit experiences a negative Doppler shift ( ⁇ f D ) from each RRH.
  • a plurality of beams (for example, two or more) are transmitted from the RRH.
  • beams are formed both in the traveling direction of the moving body and in the opposite direction.
  • An RRH that forms beams in multiple directions may be referred to as a bi-directional RRH.
  • the UE communicates in the same way as in single TRP.
  • the mobile switches between the two RRHs from a negative Doppler-shifted signal to a positive Doppler-shifted signal with higher power.
  • the maximum Doppler shift change that requires correction is from -f D to +f D , which is twice as much as in the case of unidirectional RRH.
  • a positive Doppler shift may be read as information regarding a positive Doppler shift, a Doppler shift in a positive (positive) direction, and Doppler information in a positive (positive) direction.
  • the negative Doppler shift may be read as information regarding a negative Doppler shift, a negative Doppler shift, or Doppler information in a negative direction.
  • the tracking reference signal (TRS), DMRS, and PDSCH are commonly transmitted (using the same time and frequency resources) to the two TRPs (RRHs) (regular SFN, transparent transparent SFN, HST-SFN).
  • RRC parameters for distinguishing between transmission using single TRP and transmission using SFN are defined. If the UE reports the corresponding UE capability information, it may differentiate between receiving a single TRP DL channel/signal and receiving a PDSCH assuming SFN based on the RRC parameters. On the other hand, the UE may assume a single TRP and perform transmission and reception using SFN.
  • the TRS is transmitted TRP-specifically (using different time/frequency resources depending on the TRP).
  • TRS1 is transmitted from TRP#1
  • TRS2 is transmitted from TRP#2.
  • TRS and DMRS are transmitted TRP-specifically.
  • TRS1 and DMRS1 are transmitted from TRP#1
  • TRS2 and DMRS2 are transmitted from TRP#2.
  • Schemes 1 and 2 can suppress sudden changes in Doppler shift and appropriately estimate/compensate Doppler shift. Since the DMRS of Scheme 2 is increased more than that of Scheme 1, the maximum throughput of Scheme 2 is lower than that of Scheme 1.
  • the UE switches between single TRP and SFN based on upper layer signaling (RRC information element/MAC CE).
  • the UE may switch scheme 1/scheme 2/NW pre-compensation scheme based on upper layer signaling (RRC information element/MAC CE).
  • RRC information element/MAC CE upper layer signaling
  • the base station uses a Doppler pre-compensation scheme (Pre-Doppler Compensation scheme, Doppler pre-Compensation scheme, Implementation of a network (NW) pre-compensation scheme (NW pre-compensation scheme, HST NW pre-compensation scheme, TRP pre-compensation scheme, TRP-based pre-compensation scheme) is being considered.
  • NW pre-compensation scheme HST NW pre-compensation scheme
  • TRP pre-compensation scheme TRP-based pre-compensation scheme
  • TRP performs Doppler compensation in advance when transmitting a DL signal/channel to the UE, thereby making it possible to reduce the influence of Doppler shift when the UE receives the DL signal/channel.
  • the Doppler precompensation scheme may be a combination of Scheme 1 and Doppler shift precompensation by the base station.
  • the TRP that forms a beam in the forward direction of the moving path and the TRP that forms the beam in the opposite direction to the forward direction of the moving path perform Doppler correction and then Transmits DL signals/channels.
  • TCI field TCI status field
  • each TCI code point TCI code point (TCI field code point, DCI code point) using RRC information element/MAC CE (e.g. Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)/DCI (TCI field)
  • RRC information element/MAC CE e.g. Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE
  • TCI field TCI field
  • a UE may decide to receive a single TRP PDSCH when it is configured/indicated to have one TCI state. Further, when the UE is configured/instructed to set two TCI states, the UE may determine to receive an SFN PDSCH using multi-TRP.
  • one MAC CE can update the beam index (TCI state) of multiple CCs.
  • the UE can be configured with up to two applicable CC lists (eg, applicable-CC-list) by RRC.
  • the two applicable CC lists may correspond to the in-band CA in FR1 and the in-band CA in FR2, respectively.
  • the MAC CE activates the TCI state associated with the same CORESET ID on all BWP/CCs in the applicable CC list.
  • TCI state of PDSCH MAC CE activates TCI state on all BWP/CCs in the applicable CC list.
  • the MAC CE activates the spatial relationships associated with the same SRS resource ID on all BWPs/CCs in the applicable CC list.
  • the UE is configured with an applicable CC list indicating CCs #0, #1, #2, #3 and a list indicating 64 TCI states for each CC's CORESET or PDSCH.
  • the UE is configured with an applicable CC list indicating CCs #0, #1, #2, #3 and a list indicating 64 TCI states for each CC's CORESET or PDSCH.
  • the corresponding TCI state is activated in CC #1, #2, and #3.
  • the UE may follow procedure A below.
  • Procedure A The UE sends an activation command to map up to eight TCI states to code points in the DCI field (TCI field) within one CC/DL BWP or within one set of CC/BWPs. Receive.
  • TCI field DCI field
  • the applicable list of CCs is determined by the CCs indicated in the activation command and the same The set applies to all DL BWPs within the indicated CC.
  • CORESETPoolIndex CORESET Pool index
  • ControlResourceSet CORESET information element
  • the UE may follow procedure B below.
  • Procedure B If the UE configures up to two lists of cells for simultaneous TCI state activation with the simultaneous TCI update list (simultaneousTCI-UpdateList-r16 and simultaneousTCI-UpdateListSecond-r16), the simultaneous TCI cell list (simultaneousTCI- CellList), the UE has index p in all configured DL BWPs of all configured cells in one list determined from the serving cell index provided by the MAC CE command. For CORESET, apply the antenna port quasi co-location (QCL) provided by the TCI state with the same activated TCI state ID value.
  • QCL quasi co-location
  • a concurrent TCI cell list may be provided for concurrent TCI state activation.
  • the UE may based on the following procedure C.
  • the spatial relationship information (spatialRelationInfo) for the SP or AP-SRS resource configured by the SRS resource information element (upper layer parameter SRS-Resource) is activated/updated by the MAC CE. If the CC's applicable list is indicated by the simultaneous spatial update list (upper layer parameter simultaneousSpatial-UpdateList-r16 or simultaneousSpatial-UpdateListSecond-r16), then the applicable list of CCs is specified by the same SRS resource in all BWPs in the indicated CC.
  • the spatial relationship information is applied to the SP or AP-SRS resource with the ID. Only if the UE is not provided with different values of the CORESET pool index (CORESETPoolIndex) in the CORESET information element (ControlResourceSet) and is not provided with at least one TCI code point that is mapped to two TCI states; For one set of CC/BWP, the spatial relationship information (spatialRelationInfo) for the SP or AP-SRS resource configured by the SRS resource information element (upper layer parameter SRS-Resource) is activated/updated by the MAC CE. Ru.
  • Simultaneous TCI cell list (simultaneousTCI-CellList), simultaneous TCI update list (at least one of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16) are serving cells whose TCI relationships can be updated simultaneously using MAC CE. This is a list of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16 do not include the same serving cell.
  • the simultaneous spatial update list (at least one of the upper layer parameters simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16) is a list of serving cells whose spatial relationships can be updated simultaneously using the MAC CE.
  • simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16 do not include the same serving cell.
  • the simultaneous TCI update list and the simultaneous spatial update list are set by the RRC
  • the CORESET pool index of the CORESET is set by the RRC
  • the TCI code point mapped to the TCI state is indicated by the MAC CE.
  • unified/common TCI framework According to the unified TCI framework, UL and DL channels can be controlled by a common framework.
  • the unified TCI framework is Rel. Instead of specifying the TCI state or spatial relationship for each channel as in 15, it is possible to specify a common beam (common TCI state) and apply it to all channels of UL and DL. A common beam may be applied to all channels of UL, and a common beam for DL may be applied to all channels of DL.
  • One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are considered.
  • the UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL.
  • the UE assumes different TCI states (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool) for each of UL and DL. You may.
  • the default beams of UL and DL may be aligned by beam management based on MAC CE (MAC CE level beam instruction).
  • the default TCI state of the PDSCH may be updated to match the default UL beam (spatial relationship).
  • DCI-based beam management may dictate a common beam/unified TCI state from the same TCI pool (joint common TCI pool, joint TCI pool, set) for both UL and DL.
  • X (>1) TCI states may be activated by the MAC CE.
  • the UL/DL DCI may select one from X active TCI states.
  • the selected TCI state may be applied to both UL and DL channels/RSs.
  • a TCI pool may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by the MAC CE (active TCI state, active TCI pool, set).
  • Each TCI state may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as the QCL type A/D RS.
  • the number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RSs, and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RSs. may be specified. At least one of N and M may be notified/set/instructed to the UE via upper layer signaling/physical layer signaling.
  • the UE is told that It may also mean that the TCI status) is notified/set/instructed.
  • the UE is This may mean that UL TCI states (corresponding to TRPs) and Y DL TCI states (corresponding to Y TRPs) are notified/set/instructed.
  • the UL TCI state and the DL TCI state may mean a TCI state common to UL and DL (i.e., joint TCI state), or may mean a TCI state of each of UL and DL (i.e., separate TCI state). You may.
  • the UE is notified/set/instructed separately of one UL TCI state and one DL TCI state for a single TRP. (separate TCI state for a single TRP).
  • the UE is notified/set/instructed of the TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs. (joint TCI state for multiple TRPs).
  • the UE has multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs. It may also mean that the state is notified/set/instructed (separate TCI states for multiple TRPs).
  • the UE may use the two TCI states set/instructed as the UL TCI state, and may use one TCI state of the two TCI states set/instructed as the DL TCI state.
  • N and M are 1 or 2
  • the values of N and M may be 3 or more, or N and M may be different.
  • the case of M>1/N>1 may indicate at least one of TCI status indications for multiple TRPs and multiple TCI status indications for interband CA.
  • the RRC parameters configure multiple TCI states for both DL and UL.
  • the MAC CE may activate multiple TCI states among the configured multiple TCI states.
  • the DCI may indicate one of multiple activated TCI states.
  • the DCI may be a UL/DL DCI.
  • the indicated TCI state may be applied to at least one (or all) of the UL/DL channels/RSs.
  • One DCI may indicate both UL TCI and DL TCI.
  • one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL, respectively.
  • At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be referred to as a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good.
  • the multiple TCI states activated by the MAC CE may be referred to as an active TCI pool (active common TCI pool).
  • RRC parameters upper layer parameters that configure multiple TCI states
  • configuration information that configures multiple TCI states, or simply "configuration information.”
  • being instructed to one of a plurality of TCI states using a DCI may mean receiving instruction information that instructs one of a plurality of TCI states included in the DCI. , it may be simply receiving "instruction information”.
  • the RRC parameters configure multiple TCI states (joint common TCI pool) for both DL and UL.
  • the MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of UL and DL may be configured/activated.
  • the DL DCI or the new DCI format may select (instruct) one or more (for example, one) TCI state.
  • the selected TCI state may be applied to one or more (or all) DL channels/RSs.
  • the DL channel may be PDCCH/PDSCH/CSI-RS.
  • the UE has Rel. 16 TCI state operations (TCI framework) may be used to determine the TCI state of each channel/RS of the DL.
  • TCI framework 16 TCI state operations (TCI framework) may be used to determine the TCI state of each channel/RS of the DL.
  • the UL DCI or the new DCI format may select (instruct) one or more (eg, one) TCI state.
  • the selected TCI state may be applied to one or more (or all) UL channels/RSs.
  • the UL channel may be PUSCH/SRS/PUCCH. In this way, different DCIs may indicate UL TCI and DL DCI separately.
  • the DCI format that indicates the TCI state may be a specific DCI format.
  • the specific DCI format may be DCI format 1_1/1_2 (defined in Rel. 15/16/17).
  • the DCI format (DCI format 1_1/1_2) that indicates the TCI state may be a DCI format without DL assignment.
  • a DCI format without DL assignment, a DCI format without scheduling PDSCH (DCI format 1_1/1_2), a DCI format without one or more specific fields (DCI format 1_1/1_2), one or more They may be interchanged with each other, such as DCI format (DCI format 1_1/1_2) in which specific fields are set to fixed values.
  • the specific fields are the TCI field, the DCI format identifier field, the carrier indicator field, and the bandwidth portion (BWP) indicator field.
  • BWP bandwidth portion
  • TDRA Time Domain Resource Assignment
  • DAI Downlink Assignment Index
  • TPC Transmission Power Control
  • PUCCH resource indicator field PUCCH resource indicator field
  • PDSCH-to-HARQ feedback timing indicator field if present.
  • the particular field may be set as a reserved field or may be ignored.
  • the specific fields include the Redundancy Version (RV) field, the Modulation and Coding Scheme (MCS) field, New Data Indicator field, and Frequency Domain Resource Assignment (FDRA) field.
  • RV Redundancy Version
  • MCS Modulation and Coding Scheme
  • FDRA Frequency Domain Resource Assignment
  • the RV field may be set to all 1s.
  • the MCS field may be set to all ones.
  • the NDI field may be set to zero.
  • Type 0 FDRA fields may be set to all zeros.
  • Type 1 FDRA fields may be set to all ones.
  • the FDRA field for the dynamic switch (upper layer parameter dynamicSwitch) may be set to all zeros.
  • the common TCI framework may have separate TCI states for DL and UL.
  • the offset (scheduling offset) between the reception of the DL DCI and the PDSCH corresponding to it is smaller than a specific threshold (e.g., timeDurationForQCL), and the common TCI state (parameter for setting the common TCI state (DLorJointTCIState /UL-TCIState)) is not set (hereinafter also referred to as case A), the UE determines the TCI state (QCL) to apply to the PDSCH according to predetermined rules.
  • a specific threshold e.g., timeDurationForQCL
  • the UE determines to apply the TCI state associated with the lowest CORESET ID in the latest monitoring slot of the active BWP on the component carrier (CC) to the PDSCH.
  • the UE shall transmit the TCI state associated with the lowest CORESET ID with the same CORESET pool index value in the latest monitoring slot of the active BWP in the CC to the PDSCH. It is determined that this applies to
  • the UE determines that the TCI state of the lowest TCI code point among the TCI code points to which two different TCI states for PDSCH are associated is to be applied to the PDSCH. .
  • the UE determines that the TCI state of the lowest TCI state ID for PDSCH in the active BWP in the scheduled CC (scheduled CC) is applied to the PDSCH.
  • the offset (scheduling offset) between the reception of the DL DCI and the corresponding PDSCH is smaller than a specific threshold (e.g., timeDurationForQCL), and the common TCI state (parameter for setting the common TCI state (DLorJointTCIState /UL-TCIState)) is set (hereinafter may be referred to as case B), the UE determines the TCI state (QCL) to apply to the PDSCH according to predetermined rules.
  • a specific threshold e.g., timeDurationForQCL
  • the UE shall correspond to the lowest CORESET ID in the most recent monitoring slot of the active BWP in the CC. It is determined that the TCI state is applied to the PDSCH.
  • PCI Physical Cell Identifier/Identity
  • the QCL (especially QCL type D) assumption for CORESET in the lowest CC ID is ) may be applied to the PDSCH in the CC.
  • the UE determines to apply the indicated TCI state to the PDSCH.
  • the offset (scheduling offset/triggering offset) between the reception of the DL DCI and the corresponding aperiodic (A-)CSI-RS is smaller than a certain threshold (e.g., beamSwitchTiming), and If the common TCI state (common TCI state configuration parameter (DLorJointTCIState/UL-TCIState)) is not configured (hereinafter also referred to as case C), the UE sets the TCI state (QCL) that applies to the A-CSI-RS. ) is determined according to predetermined rules.
  • a certain threshold e.g., beamSwitchTiming
  • the UE determines to apply the QCL assumption of the DL signal to the A-CSI-RS. Otherwise, the UE determines to apply the TCI state associated with the lowest CORESET ID in the latest monitoring slot of the active BWP in the CC to the A-CSI-RS.
  • the UE changes the QCL assumption of the DL signal to the A-CSI-RS. - Determined to apply to CSI-RS. Otherwise, the UE determines to apply the TCI state associated with the lowest CORESET ID with the same CORESET pool index value in the latest monitoring slot of the active BWP in the CC to the A-CSI-RS.
  • the UE determines that the TCI state of the lowest TCI code point among the TCI code points to which two different TCI states for PDSCH are associated is to be applied to the A-CSI-RS.
  • the UE determines that the TCI state of the lowest TCI state ID for PDSCH in the active BWP in the scheduled CC (scheduled CC) is applied to the A-CSI-RS. .
  • the offset (scheduling offset/triggering offset) between the reception of the DL DCI and the corresponding A-CSI-RS is smaller than a specific threshold (e.g., beamSwitchTiming), and the common TCI state (common
  • a specific threshold e.g., beamSwitchTiming
  • the common TCI state common
  • the UE sets the TCI state (QCL) to be applied to the A-CSI-RS in a predetermined manner. Decided according to the rules.
  • the UE shall apply the TCI state corresponding to the lowest CORESET ID in the latest monitoring slot of the active BWP in the CC to the A-CSI-RS. to decide.
  • the QCL (especially QCL type D) assumption for CORESET in the lowest CC ID is ) may be applied to the A-CSI-RS in the CC.
  • the UE determines to apply the indicated TCI state to the A-CSI-RS.
  • the UE cannot assume different default QCLs for buffering DL signals in different BWP/CCs.
  • the assumed operation of the UE's QCL in such a case has not been sufficiently studied.
  • the present inventors came up with a method for appropriately setting/instructing/applying TCI states in signal/channel transmission/reception using multi-TRP.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), joint TCI state, Separate DL/UL TCI state, unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • TCI state downlink Transmission Configuration Indication state
  • DL TCI state uplink TCI state
  • UL TCI state uplink TCI state
  • joint TCI state Separate DL/UL TCI state, unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc.
  • TCI state downlink Transmission Configuration Indication state
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • the panel identifier (ID) and the panel may be read interchangeably. That is, TRP ID and TRP, CORESET group ID and CORESET group, etc. may be read interchangeably.
  • one of two TCI states associated with one code point of TRP, transmission point, panel, DMRS port group, CORESET pool, TCI field may be read interchangeably.
  • single (single) TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably.
  • multi-TRP, multi-TRP system, multi-TRP transmission, and multi-PDSCH may be interchanged.
  • a single DCI, a single PDCCH, multiple TRPs based on a single DCI, activated two TCI states on at least one TCI code point, at least one code point of a TCI field mapped to two TCI states. and that a particular index (eg, a TRP index, a CORESET pool index, or an index corresponding to a TRP) is set for a particular channel/CORESET may be read interchangeably.
  • no CORESET pool index (CORESETPoolIndex) value of 1 is set for any CORESET, and no code point in the TCI field is mapped to two TCI states. .
  • multiple TRPs, channels using multiple TRPs, channels using multiple TCI state/spatial relationships, multiple TRPs being enabled by RRC/DCI, multiple TCI states/spatial relationships being enabled by RRC/DCI, At least one of the multi-TRP based on the single DCI and the multi-TRP based on the multi-DCI may be read interchangeably.
  • CORESETPoolIndex CORESET Pool index (CORESETPoolIndex) value of 1 is set for a multi-TRP, CORESET based on multi-DCI, and multiple specific indexes (e.g., TRP index, CORESET “Pool index” or “TRP-corresponding index) is set” may be read interchangeably.
  • single DCI sDCI
  • single PDCCH multi-TRP system based on single DCI
  • sDCI-based MTRP activated two TCI states on at least one TCI code point
  • multi-DCI multi-PDCI
  • multi-PDCCH multi-PDCCH
  • multi-TRP system based on multi-DCI
  • mDCI-based MTRP two CORESET pool indexes
  • the QCL of the present disclosure may be interchanged with QCL type D.
  • TCI state A is the same QCL type D as TCI state B
  • TCI state A is the same as TCI state B
  • TCI state A is the same as TCI state B and QCL type D.” "There is” may be read interchangeably.
  • the code points of the DCI field 'Transmission Configuration Indication', the TCI code points, the DCI code points, and the code points of the TCI field may be read interchangeably.
  • single TRP and SFN may be read interchangeably.
  • HST, HST scheme, high-speed movement scheme, scheme A, scheme B, scheme 1, scheme 2, NW pre-compensation scheme, HST scheme 1, HST scheme 2, and HST NW pre-compensation scheme are interchangeable. It's okay to be hit.
  • PDSCH/PDCCH using single TRP may be read as PDSCH/PDCCH based on single TRP, single TRP PDSCH/PDCCH.
  • PDSCH/PDCCH using SFN may be read as PDSCH/PDCCH using SFN in multichannel, PDSCH/PDCCH based on SFN, and SFN PDSCH/PDCCH.
  • receiving DL signals (PDSCH/PDCCH) using SFN means transmitting the same data (PDSCH)/control information (PDCCH) to multiple It may also mean receiving from a sending/receiving point.
  • Receiving a DL signal using SFN also means using the same time/frequency resources and/or the same data/control information using multiple TCI states/spatial domain filters/beams/QCLs. It may also mean receiving the information.
  • HST-SFN scheme Rel. SFN scheme after Rel.17
  • new SFN scheme new HST-SFN scheme
  • Rel. HST-SFN Scenario 17 and Later HST-SFN Scheme for HST-SFN Scenario, SFN Scheme for HST-SFN Scenario, Scheme 1, Scheme A, HST-SFN Scheme A/B, HST-SFN Type A/ B.
  • Doppler pre-compensation scheme, Scheme 1 (HST Scheme 1) and at least one of the Doppler pre-compensation schemes may be read interchangeably.
  • Doppler pre-compensation scheme, base station pre-compensation scheme, TRP pre-compensation scheme, pre-Doppler compensation scheme, Doppler pre-compensation scheme, NW pre-compensation scheme, HST NW pre-compensation scheme, TRP pre-compensation scheme , TRP-based pre-compensation scheme, HST-SFN scheme A/B, and HST-SFN type A/B may be read interchangeably.
  • a pre-compensation scheme, a reduction scheme, an improvement scheme, and a correction scheme may be read interchangeably.
  • PDCCH/search space (SS)/CORESET with linkage, linked PDCCH/SS/CORESET, and PDCCH/SS/CORESET pair may be read interchangeably.
  • PDCCH/SS/CORESET without linkage, unlinked PDCCH/SS/CORESET, and independent PDCCH/SS/CORESET may be read interchangeably.
  • two linked CORESETs for PDCCH repetition two CORESETs respectively associated with two linked SS sets, may be read interchangeably.
  • SFN-PDCCH repetition PDCCH repetition
  • two linked PDCCHs two linked PDCCHs
  • one DCI received across the two linked search spaces (SS)/CORESETs may be read interchangeably. good.
  • PDCCH repetition, SFN-PDCCH repetition, PDCCH repetition for higher reliability, PDCCH for higher reliability, PDCCH for reliability, two linked PDCCHs are interchanged. Good too.
  • PDCCH reception method PDCCH repetition, SFN-PDCCH repetition, HST-SFN, and HST-SFN scheme may be interchanged.
  • the PDSCH reception method, single DCI-based multi-TRP, and HST-SFN scheme may be interchanged.
  • single DCI-based multi-TRP repetition may be NCJT of enhanced mobile broadband (eMBB) service (low priority, priority 0), or URLLC service (high priority) of ultra-reliable and low latency communications service.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications service.
  • Priority and priority 1 may be repeated.
  • a PDSCH for multiple TRPs based on a single DCI may be mutually read as a PDSCH to which TDM/FDM/SDM for multiple TRPs (defined in Rel. 16) is applied.
  • a PDSCH for multiple TRPs may be mutually read as a PDSCH to which TDM/FDM/SDM for multiple TRPs based on a single DCI (defined in Rel. 16) is applied.
  • the PUSCH/PUCCH/PDCCH for multiple TRPs based on a single DCI is mutually connected to the repetition transmission (repetition) of PUSCH/PUCCH/PDCCH for multiple TRPs (defined in Rel. 17 or later). It may be read differently.
  • the SFN PDSCH/PDCCH is Rel.
  • SFN PDSCH/PDCCH defined in 17 and later may be read interchangeably.
  • TCI state/QCL/spatial relationship for each channel. To do this, the default TCI state/QCL/spatial relationships described above may be used.
  • applying TCI state/QCL assumptions to each channel/signal/resource may mean applying TCI state/QCL assumptions to transmission and reception of each channel/signal/resource.
  • the terms “small,” “less,” “short,” and “low” may be read interchangeably.
  • the terms “ignore,” “drop,” “cancel,” “suspend,” and “postpone” may be used interchangeably.
  • repetition, repeated transmission, and repeated reception may be interchanged.
  • channel may be interchanged.
  • DL channel may be interchanged.
  • DL signal may be interchanged.
  • DL signal/channel transmission/reception of DL signal/channel, DL reception, and DL transmission
  • UL channel, UL signal, UL signal/channel, transmission/reception of UL signal/channel, UL reception, and UL transmission may be read interchangeably.
  • the first TCI state may correspond to the first TRP.
  • a second TCI state may correspond to the second TRP.
  • the n-th TCI state may correspond to the n-th TRP.
  • a first CORESET pool index value (e.g., 0), a first TRP index value (e.g., 1), and a first TCI state (first DL/UL (joint/separate) TCI states) may correspond to each other.
  • a second CORESET pool index value (e.g., 1), a second TRP index value (e.g., 2), and a second TCI state (second DL/UL (joint/separate) TCI states) may correspond to each other.
  • a method that targets two TRPs that is, when at least one of N and M is 2
  • the number of TRPs may be three or more (plurality)
  • each embodiment may be applied to correspond to the number of TRPs. In other words, at least one of N and M may be a number greater than two.
  • one beam instruction DCI may indicate multiple TCI states for each TRP.
  • the plurality of TCI states may be, for example, a maximum of two joint TCI states, or a maximum of four separate DL/UL TCI states (two DL TCI states and two UL TCI states). good.
  • one TCI state may mean one joint (DL/UL) TCI state, or may refer to at least one of one DL (separate) TCI state and one UL (separate) TCI state. It can also mean
  • Multi-PDCCH may be assumed to be supported when multiple TRPs utilize ideal backhaul/non-ideal backhaul (see Figure 4B). .
  • one DCI associated with one TRP may indicate the TCI state corresponding to the TRP.
  • ideal backhaul may also be called DMRS port group type 1, reference signal related group type 1, antenna port group type 1, CORESET pool type 1, etc.
  • Non-ideal backhaul may be referred to as DMRS port group type 2, reference signal related group type 2, antenna port group type 2, CORESET pool type 2, etc. The names are not limited to these.
  • the field (TCI field) that indicates the TCI status included in the DCI may follow at least one of the following options 0-1 and 0-2.
  • the TCI field defined up to 15/16 may be reused (see FIG. 5A).
  • the DCI may include one TCI field.
  • the number of bits in the TCI field may be a specific number (for example, 3).
  • the TCI field defined up to 15/16 may be expanded (see FIG. 5B).
  • the DCI may include a plurality of (for example, two) TCI fields.
  • the number of bits in each TCI field may be a specific number (eg, 3).
  • DL/UL (joint) TCI state may be activated for the UE using MAC CE.
  • the UE may then be instructed to a first DL/UL (joint) TCI state and a second DL/UL (joint) TCI state using DCI (beam indication) (see FIG. 6A). ).
  • the TCI code point indicated by the beam instruction may correspond to one or more (two) TCI states (first joint TCI state/second joint TCI state) (see FIG. 6B).
  • all of the TCI code points corresponding to an active TCI state correspond to two TCI states, but at least one of the TCI code points corresponding to an active TCI state corresponds to two TCI states.
  • An association corresponding to the above may also be used. By using such an association, it is possible to dynamically switch between single TRP and multi-TRP.
  • DL (separate) TCI state and UL (separate) TCI state may be activated for the UE using MAC CE.
  • the UE uses the DCI (Beam Indication) to enter a first DL (Separate) TCI state and a first UL (Separate) TCI state, a second DL (Separate) TCI state and a second UL ( separate) TCI state (see FIG. 7A).
  • DCI Beam Indication
  • the TCI code point indicated by the beam instruction corresponds to one or more (two) TCI states (first separate (DL/UL) TCI state/second separate (DL/UL) TCI state). (See FIG. 7B).
  • all TCI code points corresponding to the active TCI state correspond to two TCI states (first separate (DL/UL) TCI state/second separate (DL/UL) TCI state).
  • an association may be used in which at least one of the TCI code points corresponding to an active TCI state corresponds to two TCI states. By using such an association, it is possible to dynamically switch between single TRP and multi-TRP.
  • the TCI state activated by the MAC CE an example was shown in which separate TCI states are activated in the DL TCI state and the UL TCI state, but even in the case of the separate TCI state, the activated The DL TCI state and UL TCI state to be provided may include a common TCI state.
  • At least one of setting of the TCI state by RRC, activation by MAC CE, and instruction by DCI may be performed for each CORESET pool index.
  • a CORESET pool index of the first value e.g. 0
  • the UE configuration of TCI state by RRC, activation by MAC CE
  • Instructions may also be given by the DCI (see FIG. 8A).
  • the indicated TCI state corresponding to the first value of the CORESET pool index may be referred to as a first TCI state.
  • the TCI code point indicated by the beam instruction may correspond to one TCI state (first joint TCI state) (see FIG. 8B).
  • a CORESET pool index of a second value (e.g. 1), configuration of TCI state by RRC, activation by MAC CE; Instructions may also be given by the DCI (see FIG. 9A).
  • the indicated TCI state corresponding to the second value of the CORESET pool index may be referred to as a second TCI state.
  • the TCI code point indicated by the beam instruction may correspond to one TCI state (second joint TCI state) (see FIG. 9B).
  • the UE may determine that one TCI state is indicated. At this time, the UE may perform an operation using a single TRP.
  • multi-DCI-based multi-TRP described above has been described as an example using a joint TCI state, it can also be appropriately applied to a case using a separate TCI state.
  • indicated TCI state, Rel. 17 TCI state, common TCI state, and unified TCI state may be read interchangeably.
  • common TCI states applied to channels/signals utilizing multi-TRP Rel. 17TCI state, Rel. 18TCI states may be read interchangeably.
  • the UE may apply the indicated TCI state to a particular channel/signal.
  • the specific channel/signal may be a UE-dedicated DL channel/signal.
  • the UE-specific DL channel/signal may be a UE-specific PDCCH/PDSCH/CSI-RS (eg, an aperiodic (A-) CSI-RS).
  • the specific channel/signal may be a specific UL channel/signal.
  • a specific UL channel/signal can be a DCI-indicated PUSCH (indicated by a dynamic grant), a configured grant PUSCH, multiple (all) unique PUCCHs (resources), SRS (e.g. aperiodic (A-))SRS).
  • One or more (for example, two) indicated TCI states may be indicated based on the method described in the zeroth embodiment above.
  • the number of TCI states instructed to the UE is one or two, but the number of TCI states instructed is not limited to this.
  • the number of TCI states instructed to the UE may be three or more (for example, four).
  • a single TRP PDSCH may be scheduled with a specific DCI (DCI format).
  • the specific DCI format may be, for example, DCI format 1_0 (or a DCI format that does not include a TCI field).
  • the specific DCI format may be DCI format 1_1/1-2.
  • the particular DCI format may indicate one TCI state.
  • the QCL assumption for a single TRP PDSCH may be the default TCI state.
  • the default TCI state may be one TCI state (in any DCI format).
  • the single TRP PDSCH may be scheduled as a single layer MIMO (with single layer MIMO) PDSCH.
  • the single TRP PDSCH may be the PDSCH when multiple TRPs (for example, CORESET pool index) are not configured in the UE.
  • the single TRP PDSCH may be a PDSCH scheduled at least in CSS CORESET.
  • a single TRP PDSCH may be a PDSCH scheduled with a CORESET of only a CSS (or a CSS other than a type 3 CSS).
  • the following embodiments of the present disclosure may be applied to a multi-TRP PDSCH.
  • a single TRP PDSCH may be scheduled with a specific DCI (DCI format).
  • the specific DCI format may be DCI format 1_1/1-2.
  • the particular DCI format may indicate two TCI states.
  • the QCL assumption for PDSCH of multi-TRP may be the default TCI state.
  • the default TCI state may be two TCI states (in any DCI format).
  • the multi-TRP PDSCH may be scheduled as a multi-layer MIMO (with multi-layer MIMO) PDSCH.
  • the multi-TRP PDSCH may be a PDSCH when the UE is configured to repeatedly transmit multi-TRP. At this time, the multi-TRP PDSCH may be scheduled as a PDSCH with repetition transmission (using TDM/FDM/SDM).
  • the multi-TRP PDSCH may be a PDSCH when SFN scheme A/B is configured in the UE.
  • a multi-TRP PDSCH may be a PDSCH with multiple TCI states.
  • the following embodiments of the present disclosure may be applied to a single TRP PDCCH.
  • the single TRP PDCCH may be a PDCCH related to a CORESET in which SFN scheme A/B is not configured.
  • the PDCCH of a single TRP may be a PDCCH related to a CORESET (of two linked SSs) in which repeated transmission is not configured.
  • the following embodiments of the present disclosure may be applied to a multi-TRP PDCCH.
  • the multi-TRP PDCCH may be a PDCCH related to a CORESET in which SFN scheme A/B is configured.
  • the single TRP PUSCH/PUCCH may be a PUSCH/PUCCH for which repeated transmission of multiple TRPs is not set.
  • the multi-TRP PUSCH/PUCCH may be a PUSCH/PUCCH on which repeated transmission of the multi-TRP is configured.
  • each embodiment of the present disclosure describes a PDSCH that is subjected to single DCI-based NCJT, a PDSCH that is subjected to multi-DCI-based NCJT, repeated transmission of a PDSCH that is subjected to single DCI-based SDM/TDM/FDM, and PDCCH/PUCCH that uses multiple TRPs.
  • / PUSCH repeated transmission operations related to multi-TRP in inter-cell, beam management for multi-TRP, and when a common TCI state is set in at least one of the HST/SFN schemes. good.
  • the extension of the common TCI state may be used for beam pointing in inter-band carrier aggregation.
  • one or more TCI states of a plurality of different bands may be designated using one MAC CE/DCI.
  • TCI states may be indicated to the UE by the beam indication DCI.
  • the TCI state may be referred to as an "indicated TCI state.”
  • a list of TCI states may be configured for the UE.
  • the list may include multiple TCI states.
  • the list of TCI states may be configured using RRC signaling.
  • the TCI state may be referred to as a "configured TCI state.”
  • the UE may be configured with a list of TCI states, and one or more TCI states may be activated from the list.
  • the TCI state may be activated using the MAC CE.
  • the TCI state may also be referred to as a "TCI state to be set.”
  • the UE may apply at least one of the "set TCI states" to each channel/signal. At this time, the UE selects one or more of the "TCI states to be set” (for example, , 2) TCI states may be applied.
  • first may be read as “second” or “nth” (n is an integer of 3 or more).
  • upper layer signaling RRC/MAC CE is provided to the UE. ) may be used to select/determine which TCI state.
  • step S1001 it may be determined whether a common TCI state is set.
  • step S1001 If it is determined in step S1001 that a common TCI state is set, then it may be determined whether transmission using multi-DCI multi-TRP is set (step 1002).
  • step S1002 if it is determined that transmission using multi-DCI multi-TRP is set, it may be determined to apply the first/second embodiment.
  • an RRC parameter (enabler, for example, enableDefaultTCI-StatePerCoresetPoolIndex or a parameter newly defined in Rel. 18) is set to enable the default TCI state/QCL for multi-DCI multi-TRP. It may be determined whether or not.
  • step S1002 if it is determined that transmission using multi-DCI multi-TRP is not set, then it may be determined whether transmission using single-DCI multi-TRP is set (step S1003).
  • step S1003 if it is determined that transmission using a single DCI multi-TRP is set, it may be determined to apply the third/fourth (/fifth) embodiment.
  • step S1003 if it is determined that transmission using single DCI multi-TRP is not set, the above-mentioned Rel.
  • the operations regarding the default QCL in No. 17 may be applied.
  • an RRC parameter (enabler, for example, enableTwoDefaultTCI-States or a parameter newly defined in Rel. 18) is set to enable the default TCI state/QCL for multiple TRPs of a single DCI. It may be determined whether or not.
  • steps S1001 to S1003 described above is only an example.
  • the order of steps S1001 to S1003 described above may be any order, or each step may be determined independently.
  • the first embodiment relates to TCI status/QCL of a channel in multi-DCI-based multi-TRP.
  • a uniform TCI state may be set for the UE.
  • the UE may be configured with RRC parameters for setting unified TCI state.
  • the RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
  • the configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state.
  • the configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
  • a unified TCI state is set, a (separate) DL/UL/Joint TCI state is set, and RRC parameters related to the setting of the unified TCI state (for example, DLorJointTCIState/UL-TCIState ) may be read interchangeably.
  • Channel/signal transmission/reception using multi-DCI multi-TRP may be configured for the UE.
  • this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter).
  • the particular threshold may be determined based on UE capability information reported by the UE.
  • timeDurationForQCL/beamSwitchTiming may be used as the specific threshold value, or a specific parameter (defined in Rel. 18 or later) may be used.
  • the UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method.
  • the particular DL channel/signal may be, for example, a PDSCH.
  • the particular method may be a method based on TCI state or QCL assumptions corresponding to a particular COREST pool index.
  • the specific method may be a method described in at least one of Embodiments 1-1 to 1-3 below.
  • the UE may apply QCL assumptions/TCI states corresponding to a particular CORESET ID to a particular DL channel/signal (eg, PDSCH).
  • a particular DL channel/signal eg, PDSCH
  • the particular CORESET ID may be a predetermined (eg, lowest) CORESET ID with the same CORESET pool index (as the CORESET that schedules the PDSCH) in the latest monitoring slot.
  • the latest monitoring slot may be a monitoring slot in an active BWP in one CC.
  • the CORESET for that particular CORESET ID is the CORESET in the active BWP in the CC with the lowest CC ID. There may be.
  • the "TCI state indicated”/"TCI state set” is applied to the CORESET, the "TCI state indicated”/"TCI state set” is a specific DL channel/signal (e.g. , PDSCH).
  • a specific DL channel/signal e.g. , PDSCH
  • the UE determines that any one TCI state among the multiple TCI states is applied to a specific DL channel/signal (e.g., PDSCH). You can.
  • a specific DL channel/signal e.g., PDSCH
  • the UE sets the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the CORESET pool index with a first value (e.g., 0) and a CORESET with a second value (e.g., 1).
  • the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the pool index may be applied to a specific DL channel/signal (eg, PDSCH).
  • the determined/selected CORESET is the one in the active BWP in the CC with the lowest CC ID. You can.
  • two TCI states may be indicated by one beam indicating DCI.
  • the UE may apply the first indicated TCI state and the second indicated TCI state indicated in each DCI for each of the PDSCHs.
  • DCI #1 indicates TCI state #1 and TCI state #2
  • DCI #2 indicates TCI state #3 and TCI state #4
  • the UE TCI state #1 and TCI state #2 may be applied to DCI #2
  • TCI state #3 and TCI state #4 may be applied to PDSCH #2 related to DCI #2.
  • the specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state.”
  • the UE may decide to apply the above embodiment 1-2.
  • the UE may decide to apply the above embodiment 1-1.
  • the UE also allows receiving at least one of the PDSCH from any or all (both) serving cells and the PDSCH from non-serving cells at the same time (time domain (e.g., slot/symbol)). may be done.
  • time domain e.g., slot/symbol
  • Embodiment 1-2 when Embodiment 1-2 is applied in inter-cell, the UE may switch to intra-cell operation.
  • the base station may instruct the UE regarding the switching.
  • the instruction may be given by RRC/MAC CE/DCI.
  • At least one of the above embodiments 1-1 to 1-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
  • the particular RRC parameter/setting may be, for example, a parameter that enables the default TCI state per CORESET pool index (e.g., "enableDefaultTCI-StatePerCoresetPoolIndex"), or a Rel. It may be a specific parameter defined after 18.
  • the UE does not need to assume multiple default QCLs in order to buffer DL channels/signals, and the UE processing can be simplified.
  • TCI state/QCL assumptions can be appropriately applied to DL channels/signals (for example, PDSCH) that utilize multi-DCI and multi-TRP.
  • the second embodiment relates to channel TCI status/QCL in multi-DCI-based multi-TRP.
  • a uniform TCI state may be set for the UE.
  • the UE may be configured with RRC parameters for setting unified TCI state.
  • the RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
  • the configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state.
  • the configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
  • Channel/signal transmission/reception using multi-DCI multi-TRP may be configured for the UE.
  • this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter).
  • the particular threshold may be determined based on UE capability information reported by the UE.
  • the UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method.
  • the particular DL channel/signal may be, for example, A-CSI-RS.
  • DL channels/signals may not exist in the same symbol as the symbol in which the particular DL channel/signal is transmitted.
  • the particular method may be a method based on TCI state or QCL assumptions corresponding to a particular COREST pool index.
  • the specific method may be, for example, the method described in at least one of Embodiments 2-1 to 2-3 below.
  • the UE may apply QCL assumptions/TCI states corresponding to a particular CORESET ID to a particular DL channel/signal (eg, A-CSI-RS).
  • QCL assumptions/TCI states corresponding to a particular CORESET ID to a particular DL channel/signal (eg, A-CSI-RS).
  • the particular CORESET ID may be a predetermined (eg, lowest) CORESET ID with the same CORESET pool index (as the CORESET that triggers the A-CSI-RS) in the latest monitoring slot.
  • the latest monitoring slot may be a monitoring slot in an active BWP in one CC.
  • the CORESET for that particular CORESET ID is the CORESET in the active BWP in the CC with the lowest CC ID. There may be.
  • the UE may determine one QCL assumption for each CORESET pool index.
  • the "TCI state indicated”/"TCI state set” is applied to the CORESET, the "TCI state indicated”/"TCI state set” is a specific DL channel/signal (e.g. , A-CSI-RS).
  • a specific DL channel/signal e.g. , A-CSI-RS
  • the UE assigns any one TCI state (for example, the selected first TCI state) among the multiple TCI states to a specific DL channel. / signal (for example, A-CSI-RS).
  • the UE sets the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the CORESET pool index with a first value (e.g., 0) and a CORESET pool with a second value (e.g., 1).
  • Either the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for indexing may be applied to a specific DL channel/signal (for example, A-CSI-RS). .
  • the UE determines the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the CORESET pool index of the first (or second) value (e.g., 0 (or 1)).
  • the first (or second) value e.g., 0 (or 1)
  • a specific DL channel/signal e.g, A-CSI-RS
  • the determined/selected CORESET is the one in the active BWP in the CC with the lowest CC ID. You can.
  • two TCI states may be indicated by one beam indicating DCI.
  • the UE may apply either the first indicated TCI state or the second indicated TCI state indicated in each DCI for each of the A-CSI-RSs.
  • the UE - Apply either TCI state #1 or TCI state #2 to RS #1, and apply either TCI state #3 or TCI state #4 to A-CSI-RS #2 related to DCI #2. You can.
  • the specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state.”
  • the UE may decide to apply the above embodiment 2-2.
  • the UE may decide to apply the above embodiment 2-1.
  • the UE may also transmit the A-CSI-RS from any or all (both) serving cells and/or the A-CSI-RS from non-serving cells at the same time (time domain (e.g., slot/symbol )).
  • time domain e.g., slot/symbol
  • Embodiment 2-2 when Embodiment 2-2 is applied in inter-cell, the UE may switch to intra-cell operation.
  • the base station may instruct the UE regarding the switching.
  • the instruction may be given by RRC/MAC CE/DCI.
  • At least one of the above embodiments 2-1 to 2-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
  • the particular RRC parameter/setting may be, for example, a parameter that enables the default TCI state per CORESET pool index (e.g., "enableDefaultTCI-StatePerCoresetPoolIndex"), or a Rel. It may be a specific parameter defined after 18.
  • TCI state/QCL assumptions can be appropriately applied to DL channels/signals (for example, A-CSI-RS) that utilize multi-DCI and multi-TRP.
  • the third embodiment relates to TCI status/QCL of a channel in single DCI-based multi-TRP.
  • a uniform TCI state may be set for the UE.
  • the UE may be configured with RRC parameters for setting unified TCI state.
  • the RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
  • the configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state.
  • the configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
  • Channel/signal transmission/reception using single DCI multi-TRP may be configured for the UE.
  • Corresponding to at least one TCI code point with multiple (eg, two) TCI states may mean that channel/signal transmission/reception using multiple TRPs of a single DCI is configured.
  • this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter).
  • the particular threshold may be determined based on UE capability information reported by the UE.
  • the UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method.
  • the particular DL channel/signal may be, for example, a PDSCH.
  • the particular method may be based on a TCI state corresponding to a particular TCI code point or a unified TCI state corresponding to an index regarding a particular transmission/reception point (TRP).
  • the specific method may be, for example, the method described in at least one of Embodiments 3-1 to 3-3 below.
  • the UE may apply QCL assumptions/TCI states corresponding to specific TCI code points to specific DL channels/signals (eg, PDSCH).
  • the particular TCI code point is a predetermined (e.g., lowest) TCI code point corresponding to multiple (e.g., two) different TCI states for the PDSCH (in the active BWP in the scheduled CC). It may be a TCI code point.
  • the TCI codepoint may be associated with one or more (eg, two) UL TCI states.
  • the TCI codepoint may be associated with one or more (eg, two) UL TCI states apart from multiple joint/DL TCI states.
  • the "TCI state indicated”/"TCI state set” is applied to the CORESET, the "TCI state indicated”/"TCI state set” is a specific DL channel/signal (e.g. , PDSCH).
  • a specific DL channel/signal e.g. , PDSCH
  • the UE may decide to apply the multiple TCI states to a specific DL channel/signal (for example, PDSCH).
  • a specific DL channel/signal for example, PDSCH
  • the UE determines the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the index for the TRP with a first value (e.g., 0) and the index for the TRP with a second value (e.g., 1).
  • the “indicated TCI state (joint TCI state/DL (separate) TCI state)” for the index may be applied to a specific DL channel/signal (eg, PDSCH).
  • the specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state.”
  • the UE may decide to apply the above embodiment 3-2.
  • the UE may decide to apply the above embodiment 3-1.
  • the UE also allows receiving at least one of the PDSCH from any or all (both) serving cells and the PDSCH from non-serving cells at the same time (time domain (e.g., slot/symbol)). may be done.
  • time domain e.g., slot/symbol
  • Embodiment 3-2 when Embodiment 3-2 is applied in inter-cell, the UE may switch to intra-cell operation.
  • the base station may instruct the UE regarding the switching.
  • the instruction may be given by RRC/MAC CE/DCI.
  • At least one of the above embodiments 3-1 to 3-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
  • the specific RRC parameters/settings may be, for example, a parameter that enables two default TCI states (e.g., "enableTwoDefaultTCI-States"), or a Rel. It may be a specific parameter defined after 18.
  • the UE does not need to assume multiple default QCLs in order to buffer DL channels/signals, and the UE processing can be simplified.
  • TCI state/QCL assumptions can be appropriately applied to a DL channel/signal (for example, PDSCH) that uses multiple TRPs of a single DCI.
  • the fourth embodiment relates to TCI status/QCL of a channel in single DCI-based multi-TRP.
  • a uniform TCI state may be set for the UE.
  • the UE may be configured with RRC parameters for setting unified TCI state.
  • the RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
  • the configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state.
  • the configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
  • Channel/signal transmission/reception using single DCI multi-TRP may be configured for the UE.
  • Corresponding to at least one TCI code point with multiple (eg, two) TCI states may mean that channel/signal transmission/reception using multiple TRPs of a single DCI is configured.
  • this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter).
  • the particular threshold may be determined based on UE capability information reported by the UE.
  • the UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method.
  • the particular DL channel/signal may be, for example, A-CSI-RS.
  • the particular method may be based on a TCI state corresponding to a particular TCI code point or a unified TCI state corresponding to an index regarding a particular transmission/reception point (TRP).
  • the specific method may be, for example, the method described in at least one of Embodiments 4-1 to 4-3 below.
  • the UE may apply QCL assumptions/TCI states corresponding to specific TCI code points to specific DL channels/signals (eg, A-CSI-RS).
  • QCL assumptions/TCI states corresponding to specific TCI code points to specific DL channels/signals (eg, A-CSI-RS).
  • the particular TCI code point is a predetermined (e.g., lowest) TCI code point corresponding to multiple (e.g., two) different TCI states for the PDSCH (in the active BWP in the scheduled CC). It may be a TCI code point.
  • the TCI codepoint may be associated with one or more (eg, two) UL TCI states.
  • the TCI codepoint may be associated with one or more (eg, two) UL TCI states apart from multiple joint/DL TCI states.
  • the "TCI state indicated”/"TCI state set” is applied to the CORESET, the "TCI state indicated”/"TCI state set” is a specific DL channel/signal (e.g. , (triggered) A-CSI-RS).
  • the UE assigns any one TCI state (for example, the selected first TCI state) among the multiple TCI states to a specific DL channel. / signals (eg, (triggered) A-CSI-RS).
  • the UE applies one of a plurality of "indicated TCI states (joint TCI state/DL (separate) TCI state)" to a specific DL channel/signal (for example, A-CSI-RS). Good too.
  • the UE selects the first "indicated TCI state (joint TCI state/DL (separate) TCI state)" of the plural “indicated TCI states (joint TCI state/DL (separate) TCI state)".
  • a particular DL channel/signal eg, A-CSI-RS.
  • the UE determines the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the index for the TRP of the first (or second) value (e.g., 0 (or 1)).
  • the first (or second) value e.g., 0 (or 1)
  • a specific DL channel/signal e.g, A-CSI-RS
  • the specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state.”
  • the UE may decide to apply the above embodiment 4-2.
  • the UE may decide to apply the above embodiment 4-1.
  • the UE may also transmit the A-CSI-RS from any or all (both) serving cells and/or the A-CSI-RS from non-serving cells at the same time (time domain (e.g., slot/symbol )).
  • time domain e.g., slot/symbol
  • Embodiment 4-2 when Embodiment 4-2 is applied in inter-cell, the UE may switch to intra-cell operation.
  • the base station may instruct the UE regarding the switching.
  • the instruction may be given by RRC/MAC CE/DCI.
  • At least one of the above embodiments 4-1 to 4-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
  • the specific RRC parameters/settings may be, for example, a parameter that enables two default TCI states (e.g., "enableTwoDefaultTCI-States"), or a Rel. It may be a specific parameter defined after 18.
  • TCI state/QCL assumptions can be appropriately applied to DL channels/signals (for example, A-CSI-RS) that utilize multiple TRPs of a single DCI.
  • one TCI code point may correspond to one or more (eg, two) TCI states.
  • the lowest TCI code point determined by the UE is the lowest TCI code point among the TCI code points to which multiple (e.g., two) TCI states correspond. Good too.
  • FIG. 11A is a diagram illustrating an example of a method for selecting a TCI code point when a joint TCI state is specified. As shown in FIG. 11A, the correspondence between TCI code points and joint TCI states (first/second joint TCI states) is set in the UE.
  • the UE selects the TCI state (i.e., the TCI state of the lowest TCI code point (TCI code point "000" in FIG. TCI state #0 is used as the first joint TCI state, and TCI state #8) is used as the second joint TCI state.
  • TCI state i.e., the TCI state of the lowest TCI code point (TCI code point "000" in FIG. TCI state #0 is used as the first joint TCI state, and TCI state #8) is used as the second joint TCI state.
  • one TCI code point may correspond to zero or more DL TCI states and zero or more UL TCI states.
  • the lowest TCI code point determined by the UE is the lowest TCI code point among the TCI code points to which multiple (for example, two) DL TCI states correspond. You can.
  • FIG. 11B is a diagram illustrating an example of a method for selecting a TCI code point when a DL TCI state is specified. As shown in FIG. 11B, the correspondence between TCI code points and TCI states (first/second UL/DL TCI states) is set in the UE.
  • the UE selects the TCI state (i.e., the TCI state of the lowest TCI code point (TCI code point "100" in FIG. 11B) in which two DL TCI states correspond to one TCI code point).
  • TCI state #4 is used as the first DL TCI state
  • TCI state #6 is used as the second DL TCI state.
  • a plurality of (for example, two) TCI states may correspond to the other DL signal.
  • the other DL signal may be, for example, a multi-TRP PDSCH with multiple active joint/DL TCI states, or a multi-TRP PDSCH with multiple active joint/DL TCI states, or a multi-TRP PDSCH with multiple active joint/DL TCI states. It may be an SFN PDSCH with multiple joint/DL TCI states.
  • the UE may apply any one of multiple TCI states corresponding to the other DL signal to the A-CSI-RS.
  • the UE may select/determine one of the multiple TCI states corresponding to the other DL signal based on a specific method.
  • the specific method may be a method described in at least one of options 5-1-1 to 5-1-3 described below.
  • the UE may select/determine one of multiple TCI states (joint/DL TCI state) corresponding to the other DL signal based on the DCI that triggers the A-CSI-RS (triggering DCI). good.
  • the UE determines to apply the QCL assumption of the DL signal corresponding to the TRP-related index (e.g., TRP index/CORESET pool index) of the triggering DCI (CORESET associated with the triggering DCI) to the A-CSI-RS. You may.
  • TRP-related index e.g., TRP index/CORESET pool index
  • FIG. 12 is a diagram illustrating an example of application of the TCI status according to option 5-1-1.
  • the UE is triggered to A-CSI-RS by DCI.
  • Other DL signals exist in the same symbol as the A-CSI-RS. Note that the period from DCI to A-CSI-RS is smaller than a specific threshold.
  • the UE is instructed to have TCI state #3 as the first indicated joint/DL TCI state and TCI state #5 as the second indicated joint/DL TCI state. Ru. Also, in the example shown in FIG. 12, the DCI (CORESET) is set/defined to follow the first indicated joint/DL TCI state, and the other DL signals are set to follow both of the two indicated TCI states. / stipulated.
  • the UE applies the first indicated TCI state (TCI state #3), which is the TCI state corresponding to DCI, to the reception of the A-CSI-RS.
  • TCI state #3 is the TCI state corresponding to DCI
  • the UE applies the first TCI state of the two TCI states corresponding to other DL signals.
  • a plurality of (for example, two) "TCI states to be set" may correspond to other DL signals.
  • the other DL signal may be a PDSCH.
  • the PDSCH may correspond to a common search space (CSS) scheduling CORESET.
  • the CSS may be a CSS other than a specific type (for example, type 3) of CSS.
  • An RRC parameter for example, "followUnifiedTCIstate" indicating that the unified TCI state is followed does not need to be set for the scheduling CORESET.
  • the UE may apply a specific (eg, first) "TCI state to be set” among the plurality of "TCI states to be set” to the A-CSI-RS.
  • the UE may select/determine one of a plurality of TCI states (joint/DL TCI states) corresponding to the other DL signal according to a specific rule.
  • the UE may decide to apply the first (or second) TCI state among the plurality of TCI states corresponding to the other DL signal to the A-CSI-RS.
  • the UE may select/determine one of a plurality of TCI states (joint/DL TCI state) corresponding to the other DL signal based on the RRC settings.
  • the UE may use the RRC configuration to determine which TCI state's QCL assumption to apply to the A-CSI-RS among a plurality of TCI states corresponding to the other DL signal. .
  • One TCI state may correspond to the other DL signal.
  • the other DL signal may be, for example, a single TRP PDSCH with one active joint/DL TCI state, or an aperiodic (A-TRP PDSCH with one active joint/DL TCI state).
  • A-TRP PDSCH with one active joint/DL TCI state
  • SP sub-persistent
  • P- periodic
  • the UE may apply one TCI state corresponding to the other DL signal to the A-CSI-RS.
  • the UE may be indicated with multiple (eg, two) "indicated TCI states.”
  • the UE selects/determines one TCI state from the "indicated TCI states" based on the index related to the TRP related to the triggering DCI (for example, TRP index/CORESET pool index), and - May be applied to RS (option 5-2-2-1).
  • the UE may select/determine one TCI state among the "indicated TCI states" based on a specific rule and apply it to the A-CSI-RS (option 5-2-2- 2).
  • the specific rule may be that the UE selects/determines the first indicated TCI state among a plurality of "indicated TCI states".
  • the UE may select/determine one TCI state from the "indicated TCI states" based on the RRC signaling and apply it to the A-CSI-RS (option 5-2-2-3). ).
  • the other DL signal in the fifth embodiment may be a DL signal (PDSCH/A-CSI-RS) that satisfies that the scheduling (triggering) offset is greater than or equal to a specific threshold value.
  • the A-CSI-RS is appropriately The TCI state/QCL to apply can be determined.
  • a case is shown in which a single TRP is set in BWP #1 in CC #1, and a multi-TRP of multi-DCI is set in BWP #1 in CC #2.
  • the UE may receive configurations related to specific types.
  • the specific type may be any one of a single TRP, a multi-DCI multi-TRP, and a single-DCI multi-TRP.
  • the UE may not assume/expect to receive different types of configurations in one (same) band.
  • the UE does not have to assume/expect that a single TRP is configured in BWP #1 in CC #1 and that multi-DCI multi-TRP is configured in BWP #1 in CC #2.
  • the settings for multi-TRP for single DCI and the settings for multi-TRP for multi-DCI are the default QCL settings (enabler) for multi-TRP for single DCI, and the settings for multi-DCI for multi-TRP, respectively. It may be a default QCL setting (enabler) in a multi-TRP.
  • the UE may assume to apply the QCL assumption (default QCL) of the specific BWP/CC ID in that band.
  • the specific BWP/CC ID may be, for example, the lowest (minimum) BWP/CC ID within the band.
  • another DL signal may exist in the same symbol as the symbol of the A-CSI-RS.
  • the other DL signal may be a PDSCH with multiple (two) TCI states.
  • the UE may apply the first TCI state among the plurality of TCI states of the PDSCH to reception of the A-CSI-RS.
  • ⁇ Supplement> At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - Specific processing/operation/control/information regarding at least one of the above embodiments (e.g., unified TCI state, application of default QCL/TCI state, application of default QCL/TCI state in unified TCI state, and HST/TCI state) applying default QCL/TCI conditions in the SFN;
  • - Specific processing/operation/control/information regarding at least one of the above embodiments e.g., unified TCI state, application of default QCL/TCI state, application of default QCL/TCI state in unified TCI state, and HST/TCI state
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • SCS subcarrier spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the specific information may include information indicating that the default TCI state is enabled, information indicating that the default TCI state is enabled for a unified TCI state, and information indicating that the default TCI state is enabled for a unified TCI state, or an optional information for a specific release (e.g., Rel. 18). It may also be the RRC parameters of .
  • the UE does not support at least one of the above specific UE capabilities or is not configured with the above specific information, for example, Rel. 15/16 operations may be applied.
  • Appendix A-1 a plurality of receivers configured to receive configuration parameters related to a unified transmission configuration indication (TCI) state, and receive instructions regarding the unified TCI state and downlink control information (DCI) for scheduling or triggering a downlink (DL) signal; If a controlled resource set (CORESET) pool index with a value of A terminal comprising: a control unit that determines a TCI state or QCL assumption to be applied to the specific DL signal based on a corresponding TCI state or pseudo-colocation (QCL assumption).
  • TCI transmission configuration indication
  • DCI downlink control information
  • CORESET controlled resource set
  • Appendix A-2 The terminal according to Appendix A-1, wherein the control unit applies a QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot to the DL signal.
  • the controller applies a plurality of unified TCI states corresponding to each of the plurality of values of the CORESET pool index to the PDSCH, and when the DL signal If it is an aperiodic channel state information reference signal (A-CSI-RS), the control unit assigns one unified TCI state corresponding to one of the plurality of values of the CORESET pool index to the A-CSI-RS.
  • A-CSI-RS aperiodic channel state information reference signal
  • the controller assigns at least one unified TCI state corresponding to the multi-valued CORESET pool index to the DL signal. and the unified TCI state based on the indication is associated with a physical cell ID different from the physical cell ID of the serving cell, the control unit corresponds to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot.
  • the terminal according to any one of appendices A-1 to A-3, which applies QCL assumptions to the DL signal.
  • Appendix B Regarding one embodiment of the present disclosure, the following invention will be added.
  • Appendix B-1 a receiver for receiving configuration parameters regarding a unified transmission configuration indication (TCI) state, and receiving an instruction regarding the unified TCI state and downlink control information (DCI) for scheduling or triggering a downlink (DL) signal; If one TCI code point corresponds to multiple TCI states, and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the TCI corresponding to the specific TCI code point
  • a control unit that determines a TCI state or QCL assumption to be applied to the specific DL signal based on a unified TCI state corresponding to a state or an index regarding a specific transmission/reception point (TRP).
  • TRP transmission/reception point
  • Appendix B-2 The terminal according to Appendix B-1, wherein the control unit applies a TCI state of the lowest TCI code point corresponding to a plurality of different TCI states to the DL signal.
  • the control unit applies a plurality of unified TCI states corresponding to each of the indexes regarding the TRP of a plurality of values to the PDSCH, and when the DL signal In the case of an aperiodic channel state information reference signal (A-CSI-RS), the control unit sets one unified TCI state corresponding to one of the indices regarding the TRP of the plurality of values to the A-CSI-RS.
  • A-CSI-RS aperiodic channel state information reference signal
  • the controller assigns at least one unified TCI state corresponding to an index regarding the TRP of a plurality of values to the DL signal. If the unified TCI state based on the instruction is associated with a physical cell ID different from the physical cell ID of the serving cell, the control unit sets the TCI state of the lowest TCI code point corresponding to a plurality of different TCI states as the A terminal according to any one of Appendix B-1 to Appendix B-3, which is applied to DL signals.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management
  • UDM Unified Data Management.
  • AF ApplicationFunction
  • DN Location Management Network Functions
  • NF Location Management Network Functions
  • LMF Location Management Network Functions
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 transmits configuration parameters of a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction regarding the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be transmitted. If a control resource set (CORESET) pool index of multiple values is set and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the control unit 110 specifies The TCI state or QCL assumption to be applied to the specific DL signal may be indicated based on the TCI state or pseudo-colocation (QCL assumption) corresponding to the CORESET pool index of (first/second embodiment) .
  • TCI transmission configuration instruction
  • CORESET control resource set
  • QCL assumption pseudo-colocation
  • the transmitting/receiving unit 120 receives configuration parameters related to a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction related to the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be transmitted. If at least one TCI code point corresponds to a plurality of TCI states and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the control unit 110 controls The TCI state or QCL assumption to be applied to the specific DL signal may be indicated based on the TCI state corresponding to the code point or the unified TCI state corresponding to the index regarding the specific transmit/receive point (TRP). 3/Fourth embodiment).
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 receives configuration parameters related to a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction related to the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be received.
  • TCI transmission configuration instruction
  • DCI downlink control information
  • CORESET control resource set pool indexes
  • the control unit 210 may apply the QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot to the DL signal (first/second embodiment).
  • the control unit 210 may apply a plurality of unified TCI states corresponding to each of the plurality of values of the CORESET pool index to the PDSCH (the first Embodiment 1).
  • the control unit 210 assigns one unified TCI state corresponding to one of the plurality of values of the CORESET pool index to the A-CSI-RS.
  • A-CSI-RS aperiodic channel state information reference signal
  • the control unit 210 assigns at least one unified TCI state corresponding to the plurality of values of the CORESET pool index to the DL signal. May be applied. If the unified TCI state based on the instruction is associated with a physical cell ID different from the physical cell ID of the serving cell, the control unit 210 sets a QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot. It may be applied to the DL signal (third/fourth embodiment).
  • the transmitting/receiving unit 220 receives configuration parameters related to a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction related to the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be received.
  • TCI transmission configuration instruction
  • DCI downlink control information
  • the control unit 210 controls The TCI state or QCL assumption to be applied to the specific DL signal may be determined based on the TCI state corresponding to the code point or the unified TCI state corresponding to the index regarding the specific transmit/receive point (TRP). 3/Fourth embodiment).
  • the control unit 210 may apply the TCI state of the lowest TCI code point corresponding to a plurality of different TCI states to the DL signal (third/fourth embodiment).
  • the control unit 210 may apply to the PDSCH a plurality of unified TCI states corresponding to each of the indexes regarding the TRP of a plurality of values.
  • Embodiment 3 When the DL signal is an aperiodic channel state information reference signal (A-CSI-RS), the control unit 210 sets one unified TCI state corresponding to one of the indices regarding the TRP of the plurality of values to the It may also be applied to A-CSI-RS (fourth embodiment).
  • A-CSI-RS aperiodic channel state information reference signal
  • the control unit 210 assigns at least one unified TCI state corresponding to the index regarding the TRP of a plurality of values to the DL signal. May be applied.
  • the control unit 210 assigns the TCI state of the lowest TCI code point corresponding to the plurality of different TCI states to the DL signal. It may also be applied (third/fourth embodiment).
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 18 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60.
  • current sensor 50 including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service section 59 including a communication module 60.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signal of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of the present disclosure comprises: a reception unit that receives a configuration parameter related to a unified Transmission Configuration Indication (TCI) state, and that also receives an indication related to the unified TCI state as well as downlink control information (DCI) for scheduling or triggering a downlink (DL) signal; and a control unit that, if control resource set (CORESET) pool indexes of a plurality of values are set and the value of a period from reception of the DCI to reception of the DL signal is smaller than a threshold value, determines a TCI state or a Quasi-Co-Location (QCL) assumption that is applied to the particular DL signal, on the basis of a TCI state or a QCL assumption associated with a particular one of the CORESET pool indexes. According to an aspect of the present disclosure, application of a TCI state can be appropriately performed.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delays, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することが検討されている。 In future wireless communication systems (e.g. NR), user terminals (terminals, user terminals, User Equipment (UE)) will receive information about quasi-co-location (QCL) (QCL assumption/Transmission Configuration Indication). Controlling transmission and reception processing based on TCI (state/spatial relationship) is being considered.
 設定/アクティベート/指示されたTCI状態を複数種類の信号(チャネル/RS)に適用することが検討されている。しかしながら、TCI状態の指示方法が明らかでないケースがある。TCI状態の指示方法が明らかでなければ、通信品質の低下、スループットの低下など、を招くおそれがある。 Application of set/activated/instructed TCI states to multiple types of signals (channels/RSs) is being considered. However, there are cases where it is not clear how to indicate the TCI status. If the method of indicating the TCI status is not clear, there is a risk of deterioration in communication quality, throughput, etc.
 そこで、本開示は、TCI状態の適用を適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately apply TCI states.
 本開示の一態様に係る端末は、統一送信設定指示(TCI)状態に関する設定パラメータを受信し、前記統一TCI状態に関する指示、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を受信する受信部と、複数の値の制御リソースセット(CORESET)プールインデックスが設定される場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定の前記CORESETプールインデックスに対応するTCI状態又は疑似コロケーション(QCL想定)に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を判断する制御部と、を有する。 A terminal according to an aspect of the present disclosure receives configuration parameters related to a unified transmission configuration indication (TCI) state, and includes instructions regarding the unified TCI state and downlink control information (DL) for scheduling or triggering a downlink (DL) signal. DCI) and a control resource set (CORESET) pool index of multiple values is set, and the value of the period from reception of the DCI to reception of the DL signal is less than the threshold value. and a control unit that determines a TCI state or QCL assumption to be applied to the specific DL signal, based on a TCI state or pseudo-colocation (QCL assumption) corresponding to the specific CORESET pool index.
 本開示の一態様によれば、TCI状態の適用を適切に行うことができる。 According to one aspect of the present disclosure, it is possible to appropriately apply the TCI state.
図1Aから図1Cは、SFNに関するスキーム0から2の一例を示す図である。1A to 1C are diagrams illustrating examples of schemes 0 to 2 regarding SFN. 図2は、複数CCに跨る同時ビーム更新の一例を示す図である。FIG. 2 is a diagram illustrating an example of simultaneous beam updating across multiple CCs. 図3A及び図3Bは、共通ビームの一例を示す図である。3A and 3B are diagrams illustrating an example of a common beam. 図4A及び図4Bは、それぞれシングルDCIベースのマルチTRP送信及びマルチDCIベースのマルチTRP送信の一例を示す図である。FIGS. 4A and 4B are diagrams illustrating examples of single DCI-based multi-TRP transmission and multi-DCI-based multi-TRP transmission, respectively. 図5A及び図5Bは、DCI内のTCIフィールドの一例を示す図である。5A and 5B are diagrams illustrating an example of the TCI field within the DCI. 図6A及び図6Bは、シングルDCIベースのマルチTRPにおけるジョイントTCI状態の設定/指示の一例を示す図である。6A and 6B are diagrams illustrating an example of setting/instructing a joint TCI state in a single DCI-based multi-TRP. 図7A及び図7Bは、シングルDCIベースのマルチTRPにおけるセパレートTCI状態の設定/指示の一例を示す図である。FIGS. 7A and 7B are diagrams illustrating an example of setting/instructing a separate TCI state in a single DCI-based multi-TRP. 図8A及び図8Bは、マルチDCIベースのマルチTRPにおける、第1の値のCORESETプールインデックスに対応するジョイントTCI状態の設定/指示の一例を示す図である。FIGS. 8A and 8B are diagrams illustrating an example of setting/instructing a joint TCI state corresponding to a first value of the CORESET pool index in a multi-DCI-based multi-TRP. 図9A及び図9Bは、マルチDCIベースのマルチTRPにおける、第2の値のCORESETプールインデックスに対応するジョイントTCI状態の設定/指示の一例を示す図である。9A and 9B are diagrams illustrating an example of setting/instructing a joint TCI state corresponding to a second value of the CORESET pool index in a multi-DCI-based multi-TRP. 図10は、第1-第5の実施形態に係るUE動作の概要を示す図である。FIG. 10 is a diagram showing an overview of UE operations according to the first to fifth embodiments. 図11A及び図11Bは、ジョイント/DL TCI状態が指示される場合のTCIコードポイントの選択方法の一例を示す図である。FIGS. 11A and 11B are diagrams illustrating an example of a method for selecting a TCI code point when a joint/DL TCI state is indicated. 図12は、オプション5-1-1に係るTCI状態の適用の一例を示す図である。FIG. 12 is a diagram illustrating an example of application of TCI status according to option 5-1-1. 図13は、第6の実施形態に係る設定の一例を示す図である。FIG. 13 is a diagram illustrating an example of settings according to the sixth embodiment. 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図15は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図18は、一実施形態に係る車両の一例を示す図である。FIG. 18 is a diagram illustrating an example of a vehicle according to an embodiment.
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relations, QCL)
In NR, the UE performs reception processing (e.g. reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 The TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc. The TCI state may be set in the UE on a per-channel or per-signal basis.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL. QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
A plurality of types (QCL types) may be defined for QCL. For example, four QCL types A-D may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below:
・QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread,
・QCL type B (QCL-B): Doppler shift and Doppler spread,
・QCL type C (QCL-C): Doppler shift and average delay,
- QCL type D (QCL-D): Spatial reception parameters.
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 For the UE to assume that one Control Resource Set (CORESET), channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 The UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). . The TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 The physical layer signaling may be, for example, downlink control information (DCI).
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 Channels for which TCI states or spatial relationships are set (specified) are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Uplink Shared Channel (Physical Uplink Shared Channel). The channel may be at least one of a physical uplink control channel (PUCCH) and a physical uplink control channel (PUCCH).
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。 In addition, the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding The signal may be at least one of a tracking reference signal (SRS), a tracking CSI-RS (also referred to as a tracking reference signal (TRS)), and a QCL detection reference signal (also referred to as a QRS).
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 The SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH). SSB may be called SS/PBCH block.
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。 An RS of QCL type X in a TCI state may mean an RS that has a QCL type You can.
 PDCCH及びPDSCHに対してQCLタイプA RSは必ず設定され、QCLタイプD RSは追加で設定されてもよい。DMRSのワンショットの受信によってドップラーシフト、遅延などを推定することが難しいため、チャネル推定精度の向上にQCLタイプA RSが使用される。QCLタイプD RSは、DMRS受信時の受信ビーム決定に使用される。 QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving one shot of DMRS, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receiving beam determination during DMRS reception.
 例えば、TRS1-1、1-2、1-3、1-4が送信され、PDSCHのTCI状態によってQCLタイプC/D RSとしてTRS1-1が通知される。TCI状態が通知されることによって、UEは、過去の周期的なTRS1-1の受信/測定の結果から得た情報を、PDSCH用DMRSの受信/チャネル推定に利用できる。この場合、PDSCHのQCLソースはTRS1-1であり、QCLターゲットはPDSCH用DMRSである。 For example, TRS1-1, 1-2, 1-3, and 1-4 are transmitted, and TRS1-1 is notified as a QCL type C/D RS depending on the TCI state of the PDSCH. By being notified of the TCI state, the UE can use information obtained from past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation. In this case, the QCL source for PDSCH is TRS1-1, and the QCL target is DMRS for PDSCH.
(デフォルトTCI状態/デフォルト空間関係/デフォルトPL-RS)
 Rel.16において、PDSCHは、TCIフィールドを有するDCIでスケジュールされてもよい。PDSCHのためのTCI状態は、TCIフィールドによって指示される。DCIフォーマット1_1のTCIフィールドは3ビットであり、DCIフォーマット1_2のTCIフィールドは最大3ビットである。
(Default TCI state/default spatial relationship/default PL-RS)
Rel. At 16, the PDSCH may be scheduled with a DCI having a TCI field. The TCI state for PDSCH is indicated by the TCI field. The TCI field of DCI format 1_1 is 3 bits, and the TCI field of DCI format 1_2 is 3 bits at maximum.
 RRC接続モードにおいて、もしPDSCHをスケジュールするCORESETに対して、第1のDCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI)が「有効(enabled)」とセットされる場合、UEは、当該CORESETにおいて送信されるPDCCHのDCIフォーマット1_1内に、TCIフィールドが存在すると想定する。 In RRC connected mode, if the first intra-DCI TCI information element (upper layer parameter tci-PresentInDCI) is set to "enabled" for a CORESET that schedules a PDSCH, the UE shall It is assumed that a TCI field exists in the DCI format 1_1 of the transmitted PDCCH.
 また、もしPDSCHをスケジュールするCORESETに対する第2のDCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI-1-2)がUEに設定される場合、UEは、当該CORESETにおいて送信されるPDSCHのDCIフォーマット1_2内に、第2のDCI内TCI情報要素で指示されるDCIフィールドサイズをもつTCIフィールドが存在すると想定する。 Additionally, if the second in-DCI TCI information element (upper layer parameter tci-PresentInDCI-1-2) for a CORESET that schedules a PDSCH is set in the UE, the UE can determine the DCI format of the PDSCH transmitted in the CORESET. Assume that there is a TCI field in DCI 1_2 with the DCI field size indicated by the second intra-DCI TCI information element.
 また、Rel.16において、PDSCHは、TCIフィールドを有さないDCIでスケジュールされてもよい。当該DCIのDCIフォーマットは、DCIフォーマット1_0、又は、DCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI又はtci-PresentInDCI-1-2)が設定(有効に)されないケースにおけるDCIフォーマット1_1/1_2であってもよい。PDSCHがTCIフィールドを有さないDCIでスケジュールされ、もしDL DCI(PDSCHをスケジュールするDCI(スケジューリングDCI))の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)以上である場合、UEは、PDSCHのためのTCI状態又はQCL想定が、CORESET(例えば、スケジューリングDCI)のTCI状態又はQCL想定(デフォルトTCI状態)と同じであると想定する。 Also, Rel. At 16, the PDSCH may be scheduled with a DCI without a TCI field. The DCI format of the DCI is DCI format 1_0, or DCI format 1_1/1_2 in the case where the intra-DCI TCI information element (upper layer parameter tci-PresentInDCI or tci-PresentInDCI-1-2) is not set (enabled). You can. If a PDSCH is scheduled with a DCI that does not have a TCI field, and if the DL is greater than or equal to a threshold (timeDurationForQCL), the UE assumes that the TCI state or QCL assumption for the PDSCH is the same as the TCI state or QCL assumption (default TCI state) of the CORESET (e.g., scheduling DCI). .
 RRC接続モードにおいて、DCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI及びtci-PresentInDCI-1-2)が「有効(enabled)」とセットされる場合と、DCI内TCI情報要素が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)より小さい場合(適用条件、第1条件)、もし非クロスキャリアスケジューリングの場合、PDSCHのTCI状態(デフォルトTCI状態)は、その(特定UL信号の)CCのアクティブDL BWP内の最新のスロット内の最低のCORESET IDのTCI状態であってもよい。そうでない場合、PDSCHのTCI状態(デフォルトTCI状態)は、スケジュールされるCCのアクティブDL BWP内のPDSCHの最低のTCI状態IDのTCI状態であってもよい。 In RRC connection mode, there are cases where the intra-DCI TCI information element (upper layer parameters tci-PresentInDCI and tci-PresentInDCI-1-2) is set to "enabled" and cases where the intra-DCI TCI information element is not set. , if the time offset between the reception of the DL DCI (the DCI that schedules the PDSCH) and the corresponding PDSCH (the PDSCH that is scheduled by the DCI) is smaller than the threshold (timeDurationForQCL) (applicable condition, 1st condition), if non-cross-carrier scheduling, the TCI state (default TCI state) of the PDSCH is the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of that CC (of a specific UL signal). It may be. Otherwise, the TCI state of the PDSCH (default TCI state) may be the TCI state of the lowest TCI state ID of the PDSCH in the active DL BWP of the scheduled CC.
 Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。 Rel. In 15, individual MAC CEs are required: a MAC CE for activation/deactivation related to PUCCH space and a MAC CE for activation/deactivation related to SRS space. PUSCH spatial relationships follow SRS spatial relationships.
 Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。 Rel. In No. 16, at least one of the MAC CE for activation/deactivation related to PUCCH space and the MAC CE for activation/deactivation related to SRS space may not be used.
 もしFR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。もしFR2において、SRS(SRSに対するSRSリソース、又はPUSCHをスケジュールするDCIフォーマット0_1内のSRIに対応するSRSリソース)に対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。 If both the spatial relationship and PL-RS for PUCCH are not configured in FR2 (applicable condition, second condition), default assumption of spatial relationship and PL-RS for PUCCH (default spatial relationship and default PL-RS) applies. If in FR2, both the spatial relationship for SRS (SRS resource for SRS, or SRS resource corresponding to SRI in DCI format 0_1 that schedules PUSCH) and PL-RS are not configured (applicable condition, second condition), Default assumptions of spatial relationship and PL-RS (default spatial relationship and default PL-RS) apply for PUSCH and SRS scheduled by DCI format 0_1.
 もしそのCC上のアクティブDL BWP内にCORESETが設定される場合(適用条件)、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。もしそのCC上のアクティブDL BWP内にCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。 If a CORESET is set in the active DL BWP on that CC (applicable condition), the default spatial relationship and default PL-RS are based on the TCI state or QCL assumption of the CORESET with the lowest CORESET ID in the active DL BWP. There may be. If no CORESET is configured in the active DL BWP on that CC, the default spatial relationship and default PL-RS may be the active TCI state with the lowest ID of the PDSCH in the active DL BWP.
 Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。 Rel. In 15, the spatial relationship of PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource with the lowest PUCCH resource ID among the active spatial relationships of PUCCH on the same CC. The network needs to update the PUCCH spatial relationships on all SCells even if no PUCCH is transmitted on the SCell.
 Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのためのPUCCH設定は必要とされない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、そのCC内のアクティブUL BWP上に、アクティブPUCCH空間関係がない、又はPUCCHリソースがない場合(適用条件、第2条件)、当該PUSCHにデフォルト空間関係及びデフォルトPL-RSが適用される。 Rel. In 16, no PUCCH configuration is required for PUSCH scheduled by DCI format 0_0. For a PUSCH scheduled by DCI format 0_0, if there is no active PUCCH spatial relationship or no PUCCH resource on the active UL BWP in that CC (applicable condition, second condition), the default spatial relationship and Default PL-RS is applied.
 SRS用デフォルト空間関係/デフォルトPL-RSの適用条件は、SRS用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForSRS)が有効にセットされることを含んでもよい。PUCCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、PUCCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUCCH)が有効にセットされることを含んでもよい。DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUSCH0_0)が有効にセットされることを含んでもよい。 The application conditions for the default spatial relationship/default PL-RS for SRS may include that the default beam path loss enable information element for SRS (upper layer parameter enableDefaultBeamPlForSRS) is set to valid. The application condition of the default spatial relationship/default PL-RS for PUCCH may include that the default beam path loss enable information element for PUCCH (upper layer parameter enableDefaultBeamPlForPUCCH) is set to valid. The application condition for the default spatial relationship/default PL-RS for PUSCH scheduled by DCI format 0_0 is that the default beam path loss enable information element for PUSCH scheduled by DCI format 0_0 (upper layer parameter enableDefaultBeamPlForPUSCH0_0) is set to valid. It may also include.
 Rel.16において、UEに対し、RRCパラメータ(PUCCHのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForPUCCH)、PUSCHのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForPUSCH0_0)、又は、SRSのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForSRS))が設定され、空間関係又はPL-RSが設定されない場合、UEは、デフォルト空間関係/PL-RSを適用する。 Rel. 16, the RRC parameter (parameter for enabling default beam PL for PUCCH (enableDefaultBeamPL-ForPUCCH), parameter for enabling default beam PL for PUSCH (enableDefaultBeamPL-ForPUSCH0_0)), or SRS If the parameter (enableDefaultBeamPL-ForSRS) is configured and no spatial relationship or PL-RS is configured, the UE applies the default spatial relationship/PL-RS.
 上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、「beamSwitchTiming」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。上記閾値は、(サブキャリア間隔毎の)UE能力として、UEによって報告されてもよい。 The above thresholds are: time duration for QCL, "timeDurationForQCL", "Threshold", "Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", "Threshold- "Sched-Offset", " beamSwitchTiming, schedule offset threshold, scheduling offset threshold, etc. The threshold may be reported by the UE as the UE capability (per subcarrier interval).
 DL DCIの受信と、それに対応するPDSCHと、の間のオフセット(スケジューリングオフセット)が閾値timeDurationForQCLより小さく、且つスケジュールされたPDSCHのサービングセルに対して設定された少なくとも1つのTCI状態が「QCLタイプD」を含み、且つUEが2デフォルトTCI有効化情報要素(enableTwoDefaultTCIStates-r16)を設定され、且つ少なくとも1つのTCIコードポイント(DL DCI内のTCIフィールドのコードポイント)が2つのTCI状態を示す場合、UEは、サービングセルのPDSCH又はPDSCH送信オケージョンのDMRSポートが、2つの異なるTCI状態を含むTCIコードポイントのうちの最低コードポイントに対応する2つのTCI状態に関連付けられたQCLパラメータに関するRSとQCLされる(quasi co-located)と想定する(2デフォルトQCL想定決定ルール)。2デフォルトTCI有効化情報要素は、少なくとも1つのTCIコードポイントが2つのTCI状態にマップされる場合のPDSCH用の2つのデフォルトTCI状態のRel.16動作が有効化されることを示す。 The offset (scheduling offset) between the reception of DL DCI and the corresponding PDSCH is smaller than the threshold timeDurationForQCL, and at least one TCI state configured for the serving cell of the scheduled PDSCH is "QCL type D" and the UE is configured with two default TCI enable information elements (enableTwoDefaultTCIStates-r16) and at least one TCI code point (code point of the TCI field in the DL DCI) indicates two TCI states. The DMRS port of the serving cell's PDSCH or PDSCH transmission occasion is QCLed with the RS with respect to the QCL parameters associated with the two TCI states corresponding to the lowest code point of the TCI code points containing the two different TCI states ( quasi co-located) (2 default QCL assumption decision rule). 2 Default TCI Enablement Information Element indicates the Rel. 16 operation is enabled.
 Rel.15/16におけるPDSCHのデフォルトTCI状態として、シングルTRP向けのデフォルトTCI状態、マルチDCIに基づくマルチTRP向けのデフォルトTCI状態、シングルDCIに基づくマルチTRP向けのデフォルトTCI状態、が仕様化されている。 Rel. As the default TCI state of PDSCH in 15/16, a default TCI state for single TRP, a default TCI state for multi-TRP based on multi-DCI, and a default TCI state for multi-TRP based on single DCI are specified.
 Rel.15/16における非周期的CSI-RS(A(aperiodic)-CSI-RS)のデフォルトTCI状態として、シングルTRP向けのデフォルトTCI状態、マルチDCIに基づくマルチTRP向けのデフォルトTCI状態、シングルDCIに基づくマルチTRP向けのデフォルトTCI状態、が仕様化されている。 Rel. The default TCI state of aperiodic CSI-RS (A (periodic)-CSI-RS) in 15/16 is the default TCI state for single TRP, the default TCI state for multi-TRP based on multi-DCI, and the default TCI state for multi-TRP based on single DCI. A default TCI state for multi-TRP is specified.
 Rel.15/16において、PUSCH/PUCCH/SRSのそれぞれについての、デフォルト空間関係及びデフォルトPL-RSが仕様化されている。 Rel. In 15/16, the default spatial relationship and default PL-RS for each of PUSCH/PUCCH/SRS are specified.
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
(Multi TRP)
In NR, one or more Transmission/Reception Points (TRPs) (multi TRPs (MTRPs)) communicate with the UE using one or more panels (multi-panels). DL transmission is being considered. Further, it is being considered that the UE performs UL transmission using one or more panels for one or more TRPs.
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。 Note that multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs. The cell ID may be a physical cell ID or a virtual cell ID.
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。 Multi-TRPs (for example, TRP #1, #2) may be connected by an ideal/non-ideal backhaul, and information, data, etc. may be exchanged. Each TRP of the multi-TRP may transmit a different code word (CW) and a different layer. Non-Coherent Joint Transmission (NCJT) may be used as a form of multi-TRP transmission.
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。 In NCJT, for example, TRP #1 modulates and layer-maps a first codeword to a first number of layers (e.g., 2 layers) to transmit a first PDSCH using a first precoding. do. Additionally, TRP #2 modulates and maps the second codeword, performs layer mapping, and transmits the second PDSCH using a second number of layers (eg, 2 layers) using a second precoding.
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。 Note that multiple PDSCHs to be NCJTed (multiple PDSCHs) may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap in at least one of time and frequency resources.
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。 These first PDSCH and second PDSCH may be assumed not to be in a quasi-co-location (QCL) relationship. Reception of multiple PDSCHs may also be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。 Multiple PDSCHs from multiple TRPs (may be referred to as multiple PDSCH) may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI). Multi-TRP (single-DCI based multi-TRP). Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH), respectively (multi-master mode, multi-DCI based multi-DCI). TRP)).
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。 In URLLC for multiple TRPs, support for PDSCH (transport block (TB) or codeword (CW)) repetition across multiple TRPs is being considered. It is being considered that repetition schemes (URLLC schemes, e.g. Schemes 1, 2a, 2b, 3, 4) spanning multiple TRPs in the frequency domain or layer (spatial) domain or time domain will be supported. In Scheme 1, multiple PDSCHs from multiple TRPs are space division multiplexed (SDM). In schemes 2a, 2b, PDSCHs from multiple TRPs are frequency division multiplexed (FDM). In scheme 2a, the redundancy version (RV) is the same for multiple TRPs. In scheme 2b, the RVs may be the same or different for multiple TRPs. In schemes 3 and 4, multiple PDSCHs from multiple TRPs are time division multiplexed (TDM). In Scheme 3, multiple PDSCHs from multiple TRPs are transmitted within one slot. In Scheme 4, multiple PDSCHs from multiple TRPs are transmitted in different slots.
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。 According to such a multi-TRP scenario, more flexible transmission control using channels with good quality is possible.
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。 PDCCH and PDSCH with multiple TRPs to support intra-cell (with the same cell ID) and inter-cell (with different cell IDs) multi-TRP transmission based on multiple PDCCHs. In the RRC configuration information for linking multiple pairs, one control resource set (CORESET) in the PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
 次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
 1のCORESETプールインデックスが設定される。
[条件2]
 CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
If at least one of the following conditions 1 and 2 is satisfied, the UE may determine that the multi-TRP is based on multi-DCI. In this case, TRP may be replaced with CORESET pool index.
[Condition 1]
A CORESET pool index of 1 is set.
[Condition 2]
Two different values (eg, 0 and 1) of the CORESET pool index are set.
 次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
 DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
If the following conditions are met, the UE may determine multi-TRP based on single DCI. In this case, the two TRPs may be translated into two TCI states indicated by the MAC CE/DCI.
[conditions]
To indicate one or two TCI states for one code point of the TCI field in the DCI, the "Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE (Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE) is used.
 共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。 The DCI for common beam indication may be a UE-specific DCI format (for example, DL DCI format (for example, 1_1, 1_2), UL DCI format (for example, 0_1, 0_2)), or a UE-group common (UE-group Common) DCI format may be used.
(マルチTRP PDCCH)
 非single frequency network(SFN)に基づくマルチTRP PDCCHの信頼性のために、以下の検討1から3が検討されている。
[検討1]符号化/レートマッチングが1つの繰り返し(repetition)に基づき、他の繰り返しにおいて同じ符号化ビットが繰り返される。
[検討2]各繰り返しは、同じcontrol channel element(CCE)数と、同じ符号化ビットと、を有し、同じDCIペイロードに対応する。
[検討3]2つ以上のPDCCH候補が明示的に互いにリンクされる。UEが復号前にそのリンクを知る。
(Multi-TRP PDCCH)
For the reliability of multi-TRP PDCCH based on non-single frequency network (SFN), the following considerations 1 to 3 are considered.
[Study 1] Encoding/rate matching is based on one repetition, and the same coded bits are repeated in other repetitions.
[Consideration 2] Each repetition has the same number of control channel elements (CCEs), the same coded bits, and corresponds to the same DCI payload.
[Consideration 3] Two or more PDCCH candidates are explicitly linked to each other. The UE knows the link before decoding.
 PDCCH繰り返しのための次の選択肢1-2、1-3、2、3が検討されている。 The following options 1-2, 1-3, 2, and 3 for PDCCH repetition are being considered.
[選択肢1-2]
 (与えられたサーチスペース(SS)セット内の)PDCCH候補の2つのセットがCORESETの2つのTCI状態にそれぞれ関連付けられる。ここでは、同じCORESET、同じSSセット、異なるモニタリングオケージョンにおけるPDCCH繰り返し、が用いられる。
[Option 1-2]
Two sets of PDCCH candidates (within a given search space (SS) set) are respectively associated with two TCI states of the CORESET. Here, the same CORESET, the same SS set, and PDCCH repetition in different monitoring occasions are used.
[選択肢1-3]
 PDCCH候補の2つのセットが2つのSSセットにそれぞれ関連付けられる。両方のSSセットはCORESETに関連付けられ、各SSセットはそのCORESETの1つのみのTCI状態に関連付けられる。ここでは、同じCORESET、2つのSSセット、が用いられる。
[Option 1-3]
Two sets of PDCCH candidates are associated with two SS sets, respectively. Both SS sets are associated with a CORESET, and each SS set is associated with only one TCI state of that CORESET. Here, the same CORESET, two SS sets, is used.
[選択肢2]
 1つのSSセットが2つの異なるCORESETに関連付けられる。
[Option 2]
One SS set is associated with two different CORESETs.
[選択肢3]
 2つのSSセットが2つのCORESETにそれぞれ関連付けられる。
[Option 3]
Two SS sets are associated with two CORESETs, respectively.
 このように、PDCCH繰り返しのための2つのSSセット内の2つのPDCCH候補がサポートされ、2つのSSセットが明示的にリンクされることが検討されている。 Thus, two PDCCH candidates in two SS sets for PDCCH repetition are supported, and it is considered that the two SS sets are explicitly linked.
(SFN PDCCH)
 Rel.15で規定されるPDCCH/CORESETについて、CORESETプールインデックス(CORESETPoolIndex)(TRP情報(TRP Info)と呼ばれてもよい)なしの1つのTCI状態が、1つのCORESETに設定される。
(SFN PDCCH)
Rel. For a PDCCH/CORESET defined in 15, one TCI state without a CORESET pool index (CORESETPoolIndex) (which may be referred to as TRP information (TRP Info)) is set for one CORESET.
 Rel.16で規定されるPDCCH/CORESETのエンハンスメントについて、マルチDCIに基づくマルチTRPでは、各CORESETに対して、CORESETプールインデックスが設定される。 Rel. Regarding the PDCCH/CORESET enhancement defined in 16, in multi-TRP based on multi-DCI, a CORESET pool index is set for each CORESET.
 Rel.17以降では、PDCCH/CORESETに関する以下のエンハンスメント1及び2が検討されている。 Rel. From 17 onwards, the following enhancements 1 and 2 regarding PDCCH/CORESET are being considered.
 同じセルIDを有する複数のアンテナ(スモールアンテナ、送受信ポイント)がsingle frequency network(SFN)を形成するケースにおいて、1つのCORESETに対し、上位レイヤシグナリング(RRCシグナリング/MAC CE)で最大2つのTCI状態が設定/アクティベートされうる(エンハンスメント1)。SFNは、HST(high speed train)の運用及び信頼性向上の少なくとも一方に寄与する。 In the case where multiple antennas (small antennas, transmission/reception points) with the same cell ID form a single frequency network (SFN), up to two TCI states can be used in upper layer signaling (RRC signaling/MAC CE) for one CORESET. may be set/activated (enhancement 1). SFN contributes to at least one of the operation and reliability improvement of HST (high speed train).
 また、PDCCHの繰り返し送信(単に、「repetition」と呼ばれてもよい)において、2つのサーチスペースセットにおける2つのPDCCH候補がリンクし、各サーチスペースセットが、対応するCORESETに関連付く(エンハンスメント2)。2つのサーチスペースセットは、同じ又は異なるCORESETに関連付いてもよい。1つのCORESETに対し、上位レイヤシグナリング(RRCシグナリング/MAC CE)で1つ(最大1つ)のTCI状態が設定/アクティベートされうる。 In addition, in repeated transmission of PDCCH (which may also be simply called "repetition"), two PDCCH candidates in two search space sets are linked, and each search space set is associated with a corresponding CORESET (enhancement 2 ). The two search space sets may be associated with the same or different CORESETs. One (maximum one) TCI state can be set/activated for one CORESET using upper layer signaling (RRC signaling/MAC CE).
 もし2つのサーチスペースセットが、異なるTCI状態を有する異なるCORESETに関連付けられる場合、マルチTRPの繰り返し送信であることを意味してもよい。もし2つのサーチスペースセットが、同じCORESET(同じTCI状態のCORESET)に関連付けられる場合、シングルTRPの繰り返し送信であることを意味してもよい。 If two search space sets are associated with different CORESETs with different TCI states, it may mean repeated transmission of multiple TRPs. If two search space sets are associated with the same CORESET (CORESET with the same TCI state), it may mean repeated transmission of a single TRP.
(HST)
 LTEにおいて、HST(high speed train)のトンネルにおける配置が難しい。ラージアンテナはトンネル外/内への送信を行う。例えば、ラージアンテナの送信電力は1から5W程度である。ハンドオーバのために、UEがトンネルに入る前にトンネル外に送信することが重要である。例えば、スモールアンテナの送信電力は250mW程度である。同じセルIDを有し300mの距離を有する複数のスモールアンテナ(送受信ポイント)はsingle frequency network(SFN)を形成する。SFN内の全てのスモールアンテナは、同じPRB上の同じ時間において同じ信号を送信する。端末は1つの基地局に対して送受信すると想定する。実際は複数の送受信ポイントが同一のDL信号を送信する。高速移動時には、数kmの単位の送受信ポイントが1つのセルを形成する。セルを跨ぐ場合にハンドオーバが行われる。これによって、ハンドオーバ頻度を低減することができる。
(HST)
In LTE, it is difficult to arrange HST (high speed train) in tunnels. The large antenna transmits outside/inside the tunnel. For example, the transmission power of a large antenna is about 1 to 5W. For handover, it is important that the UE transmits out of the tunnel before entering it. For example, the transmission power of a small antenna is about 250 mW. Multiple small antennas (transmission/reception points) with the same cell ID and a distance of 300 m form a single frequency network (SFN). All small antennas within an SFN transmit the same signal at the same time on the same PRB. It is assumed that a terminal transmits and receives data to and from one base station. In reality, multiple transmitting and receiving points transmit the same DL signal. During high-speed movement, transmission and reception points in units of several kilometers form one cell. Handover is performed when crossing cells. This allows the frequency of handovers to be reduced.
 NRでは、高速に移動する電車等の移動体(HST(high speed train))に含まれる端末(以下、UEとも記す)との通信を行うために、送信ポイント(例えば、RRH)から送信されるビームを利用することが想定される。既存システム(例えば、Rel.15)では、RRHから一方向のビームを送信して移動体との通信を行うことがサポートされている。 In NR, data is transmitted from a transmission point (e.g., RRH) in order to communicate with a terminal (hereinafter also referred to as UE) included in a mobile object such as a high-speed train (HST) that moves at high speed. It is assumed that beams will be used. Existing systems (eg, Rel. 15) support communication with mobile bodies by transmitting a unidirectional beam from the RRH.
 一方向のビームを形成するRRHは、ユニディレクショナルRRH(uni-directional RRH)と呼ばれてもよい。移動体(UE)の進行方向と逆方向にビームが形成される場合、移動体は各RRHからマイナスのドップラーシフト(-f)を受ける。 An RRH that forms a beam in one direction may be called a uni-directional RRH. When the beam is formed in a direction opposite to the direction of travel of the mobile unit (UE), the mobile unit experiences a negative Doppler shift (−f D ) from each RRH.
 Rel.16以降では、RRHから複数(例えば、2以上)のビームが送信されることも想定される。例えば、移動体の進行方向と、その逆方向と、の両方に対してビームを形成することが想定される。 Rel. From No. 16 onwards, it is also assumed that a plurality of beams (for example, two or more) are transmitted from the RRH. For example, it is assumed that beams are formed both in the traveling direction of the moving body and in the opposite direction.
 複数方向(例えば、2方向)のビームを形成するRRHは、バイディレクショナルRRH(bi-directional RRH)と呼ばれてもよい。 An RRH that forms beams in multiple directions (for example, two directions) may be referred to as a bi-directional RRH.
 このHSTにおいて、UEは、シングルTRPと同様に、通信を行う。基地局実装においては、複数のTRP(同じセルID)から送信することができる。 In this HST, the UE communicates in the same way as in single TRP. In a base station implementation, it is possible to transmit from multiple TRPs (same cell ID).
 2つのRRHがSFNを用いる場合、移動体が2つのRRHの中間において、マイナスのドップラーシフトを受けた信号から、電力が高くなるプラスのドップラーシフトを受けた信号に切り替わる。この場合、補正が必要となる最大のドップラーシフトの変化幅は、-fから+fへの変化となり、ユニディレクショナルRRHの場合と比較して2倍となる。 When two RRHs use SFN, the mobile switches between the two RRHs from a negative Doppler-shifted signal to a positive Doppler-shifted signal with higher power. In this case, the maximum Doppler shift change that requires correction is from -f D to +f D , which is twice as much as in the case of unidirectional RRH.
 なお、本開示において、プラスのドップラーシフトは、プラスのドップラーシフトに関する情報、プラス(正)方向のドップラーシフト、プラス(正)方向のドップラー情報と読み替えられてもよい。また、マイナスのドップラーシフトは、マイナスのドップラーシフトに関する情報、マイナス(負)方向のドップラーシフト、マイナス(負)方向のドップラー情報と読み替えられてもよい。 Note that in the present disclosure, a positive Doppler shift may be read as information regarding a positive Doppler shift, a Doppler shift in a positive (positive) direction, and Doppler information in a positive (positive) direction. Further, the negative Doppler shift may be read as information regarding a negative Doppler shift, a negative Doppler shift, or Doppler information in a negative direction.
 ここで、HST用スキームとして、以下のスキーム0からスキーム2(HSTスキーム0からHSTスキーム2)を比較する。 Here, the following schemes 0 to 2 (HST scheme 0 to HST scheme 2) will be compared as HST schemes.
 図1Aのスキーム0においては、tracking reference signal(TRS)とDMRSとPDSCHとが2つのTRP(RRH)に共通に(同じ時間及び同じ周波数のリソースを用いて)送信される(通常のSFN、透過的(transparent)SFN、HST-SFN)。 In scheme 0 of Figure 1A, the tracking reference signal (TRS), DMRS, and PDSCH are commonly transmitted (using the same time and frequency resources) to the two TRPs (RRHs) (regular SFN, transparent transparent SFN, HST-SFN).
 スキーム0において、UEがシングルTRP相当でDLチャネル/信号を受信することから、PDSCHのTCI状態は1つである。 In scheme 0, since the UE receives the DL channel/signal corresponding to a single TRP, there is one TCI state for the PDSCH.
 なお、Rel.16において、シングルTRPを利用する送信と、SFNを利用する送信とを区別するためのRRCパラメータが規定されている。UEは、対応するUE能力情報を報告した場合、当該RRCパラメータに基づいて、シングルTRPのDLチャネル/信号の受信と、SFNを想定するPDSCHの受信と、を区別してもよい。一方で、UEは、シングルTRPを想定して、SFNを利用する送受信を行ってもよい。 In addition, Rel. In No. 16, RRC parameters for distinguishing between transmission using single TRP and transmission using SFN are defined. If the UE reports the corresponding UE capability information, it may differentiate between receiving a single TRP DL channel/signal and receiving a PDSCH assuming SFN based on the RRC parameters. On the other hand, the UE may assume a single TRP and perform transmission and reception using SFN.
 図1Bのスキーム1においては、TRSがTRP固有に(TRPによって異なる時間/周波数のリソースを用いて)送信される。この例では、TRP#1からTRS1が送信され、TRP#2からTRS2が送信される。 In scheme 1 of FIG. 1B, the TRS is transmitted TRP-specifically (using different time/frequency resources depending on the TRP). In this example, TRS1 is transmitted from TRP#1, and TRS2 is transmitted from TRP#2.
 スキーム1において、UEがそれぞれのTRPからのTRSを用いてそれぞれのTRPからのDLチャネル/信号を受信することから、PDSCHのTCI状態は2つである。 In scheme 1, there are two TCI states for the PDSCH since the UE receives the DL channel/signal from each TRP using the TRS from each TRP.
 図1Cのスキーム2においては、TRSとDMRSとがTRP固有に送信される。この例では、TRP#1からTRS1及びDMRS1が送信され、TRP#2からTRS2及びDMRS2が送信される。スキーム1及び2は、スキーム0に比べて、ドップラーシフトの急変を抑え、ドップラーシフトを適切に推定/補償することができる。スキーム2のDMRSはスキーム1のDMRSよりも増加することから、スキーム2の最大スループットはスキーム1より低下する。 In Scheme 2 of FIG. 1C, TRS and DMRS are transmitted TRP-specifically. In this example, TRS1 and DMRS1 are transmitted from TRP#1, and TRS2 and DMRS2 are transmitted from TRP#2. Compared to Scheme 0, Schemes 1 and 2 can suppress sudden changes in Doppler shift and appropriately estimate/compensate Doppler shift. Since the DMRS of Scheme 2 is increased more than that of Scheme 1, the maximum throughput of Scheme 2 is lower than that of Scheme 1.
 スキーム0において、UEは、上位レイヤシグナリング(RRC情報要素/MAC CE)に基づいて、シングルTRPとSFNを切り替える。 In scheme 0, the UE switches between single TRP and SFN based on upper layer signaling (RRC information element/MAC CE).
 UEは、上位レイヤシグナリング(RRC情報要素/MAC CE)に基づいて、スキーム1/スキーム2/NW pre-compensationスキームを切り替えてもよい。 The UE may switch scheme 1/scheme 2/NW pre-compensation scheme based on upper layer signaling (RRC information element/MAC CE).
 スキーム1において、HSTの進行方向とその逆方向とに対して2つのTRSリソースがそれぞれ設定される。 In Scheme 1, two TRS resources are configured for the HST proceeding direction and the opposite direction.
 Rel.17以降では、基地局が、TRPからのHSTにおけるUEに対する下りリンク(DL)信号/チャネルの送信において、ドップラー事前(予備)補償(補正)スキーム(Pre-Doppler Compensation scheme、Doppler pre-Compensation scheme、network(NW)事前補償スキーム(NW pre-compensation scheme、HST NW pre-compensation scheme)、TRP pre-compensation scheme、TRP-based pre-compensation scheme)を行うことが検討されている。TRPは、UEへDL信号/チャネルの送信を行う際に、予めドップラー補償を行うことで、UEにおけるDL信号/チャネルの受信時のドップラーシフトの影響を小さくすることが可能になる。本開示において、ドップラー事前補償スキームは、スキーム1と、基地局によるドップラーシフトの事前補償と、の組み合わせであってもよい。 Rel. 17 and later, the base station uses a Doppler pre-compensation scheme (Pre-Doppler Compensation scheme, Doppler pre-Compensation scheme, Implementation of a network (NW) pre-compensation scheme (NW pre-compensation scheme, HST NW pre-compensation scheme, TRP pre-compensation scheme, TRP-based pre-compensation scheme) is being considered. TRP performs Doppler compensation in advance when transmitting a DL signal/channel to the UE, thereby making it possible to reduce the influence of Doppler shift when the UE receives the DL signal/channel. In this disclosure, the Doppler precompensation scheme may be a combination of Scheme 1 and Doppler shift precompensation by the base station.
 ドップラー事前補償スキームにおいては、各TRPからのTRSに対しては、ドップラー事前補償を行われずに送信され、各TRPからのPDSCHに対しては、ドップラー事前補償が行われて送信されることが検討されている。 In the Doppler pre-compensation scheme, it is considered that TRS from each TRP is transmitted without Doppler pre-compensation, and PDSCH from each TRP is transmitted with Doppler pre-compensation performed. has been done.
 ドップラー事前補償スキームにおいて、移動経路の進行方向側にビームを形成するTRP及び移動経路の進行方向と逆方向側にビームを形成するTRPは、ドップラー補正を行った上でHST内のUEに対してDL信号/チャネルの送信を行う。 In the Doppler pre-compensation scheme, the TRP that forms a beam in the forward direction of the moving path and the TRP that forms the beam in the opposite direction to the forward direction of the moving path perform Doppler correction and then Transmits DL signals/channels.
 さらに、Rel.17以降では、TCIフィールド(TCI状態フィールド)を使用して、シングルTRPとSFNとを動的に切り替えることが検討されている。例えば、RRC情報要素/MAC CE(例えば、Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)/DCI(TCIフィールド)を用いて、各TCIコードポイント(TCIフィールドのコードポイント、DCIコードポイント)で、1つ又は2つのTCI状態が設定/指示される。UEは、1つのTCI状態を設定/指示されるとき、シングルTRPのPDSCHを受信すると判断してもよい。また、UEは、2つのTCI状態を設定/指示されるとき、マルチTRPを用いる、SFNのPDSCHを受信すると判断してもよい。 Furthermore, Rel. 17 and later, it is being considered to dynamically switch between single TRP and SFN using the TCI field (TCI status field). For example, each TCI code point (TCI field code point, DCI code point) using RRC information element/MAC CE (e.g. Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)/DCI (TCI field) , one or two TCI states are set/indicated. A UE may decide to receive a single TRP PDSCH when it is configured/indicated to have one TCI state. Further, when the UE is configured/instructed to set two TCI states, the UE may determine to receive an SFN PDSCH using multi-TRP.
(複数CCの同時ビーム更新)
 Rel.16において、1つのMAC CEが複数のCCのビームインデックス(TCI状態)を更新できる。
(Simultaneous beam update of multiple CCs)
Rel. At 16, one MAC CE can update the beam index (TCI state) of multiple CCs.
 UEは、2つまでの適用可能CCリスト(例えば、applicable-CC-list)をRRCによって設定されることができる。2つの適用可能CCリストが設定される場合、2つの適用可能CCリストは、FR1におけるバンド内CAと、FR2におけるバンド内CAと、にそれぞれ対応してもよい。 The UE can be configured with up to two applicable CC lists (eg, applicable-CC-list) by RRC. When two applicable CC lists are configured, the two applicable CC lists may correspond to the in-band CA in FR1 and the in-band CA in FR2, respectively.
 PDCCHのTCI状態のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上の同じCORESET IDに関連付けられたTCI状態をアクティベートする。 Activation of TCI state of PDCCH The MAC CE activates the TCI state associated with the same CORESET ID on all BWP/CCs in the applicable CC list.
 PDSCHのTCI状態のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上のTCI状態をアクティベートする。 Activation of TCI state of PDSCH MAC CE activates TCI state on all BWP/CCs in the applicable CC list.
 A-SRS/SP-SRSの空間関係のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上の同じSRSリソースIDに関連付けられた空間関係をアクティベートする。 Activation of A-SRS/SP-SRS Spatial Relationships The MAC CE activates the spatial relationships associated with the same SRS resource ID on all BWPs/CCs in the applicable CC list.
 図2の例において、UEは、CC#0、#1、#2、#3を示す適用可能CCリストと、各CCのCORESET又はPDSCHに対して64個のTCI状態を示すリストを設定される。MAC CEによってCC#0の1つのTCI状態がアクティベートされる場合、CC#1、#2、#3において、対応するTCI状態がアクティベートされる。 In the example of FIG. 2, the UE is configured with an applicable CC list indicating CCs #0, #1, #2, #3 and a list indicating 64 TCI states for each CC's CORESET or PDSCH. . When one TCI state of CC #0 is activated by MAC CE, the corresponding TCI state is activated in CC #1, #2, and #3.
 このような同時ビーム更新は、シングルTRPのケースにのみ適用可能であることが検討されている。 It is considered that such simultaneous beam updates are applicable only to the single TRP case.
 PDSCHに対し、UEは、次の手順Aに基づいてもよい。
[手順A]
 UEは、1つのCC/DL BWP内において、又はCC/BWPの1つのセット内において、DCIフィールド(TCIフィールド)のコードポイントに、8個までのTCI状態をマップするための、アクティベーションコマンドを受信する。CC/DL BWPの1つのセットに対してTCI状態IDの1つのセットがアクティベートされる場合、そこで、CCの適用可能リストが、アクティベーションコマンド内において指示されたCCによって決定され、TCI状態の同じセットが、指示されたCC内の全てのDL BWPに対して適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、TCI状態IDの1つのセットは、CC/DL BWPの1つのセットに対してアクティベートされることができる。
For PDSCH, the UE may follow procedure A below.
[Procedure A]
The UE sends an activation command to map up to eight TCI states to code points in the DCI field (TCI field) within one CC/DL BWP or within one set of CC/BWPs. Receive. When one set of TCI state IDs is activated for one set of CC/DL BWPs, then the applicable list of CCs is determined by the CCs indicated in the activation command and the same The set applies to all DL BWPs within the indicated CC. Only if the UE is not provided with different values of the CORESET pool index (CORESETPoolIndex) in the CORESET information element (ControlResourceSet) and is not provided with at least one TCI code point that is mapped to two TCI states; One set of TCI state IDs can be activated for one set of CC/DL BWPs.
 PDCCHに対し、UEは、次の手順Bに基づいてもよい。
[手順B]
 もしUEが、同時TCI更新リスト(simultaneousTCI-UpdateList-r16及びsimultaneousTCI-UpdateListSecond-r16の少なくとも1つ)による同時TCI状態アクティベーションのためのセルの2つまでのリストを、同時TCIセルリスト(simultaneousTCI-CellList)によって提供される場合、UEは、MAC CEコマンドによって提供されるサービングセルインデックスから決定される1つのリスト内の全ての設定されたセルの全ての設定されたDL BWP内の、インデックスpを有するCORESETに対して、同じアクティベートされたTCI状態ID値を有するTCI状態によって提供されるアンテナポートquasi co-location(QCL)を適用する。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、同時TCI状態アクティベーション用に、同時TCIセルリストが提供されることができる。
For PDCCH, the UE may follow procedure B below.
[Procedure B]
If the UE configures up to two lists of cells for simultaneous TCI state activation with the simultaneous TCI update list (simultaneousTCI-UpdateList-r16 and simultaneousTCI-UpdateListSecond-r16), the simultaneous TCI cell list (simultaneousTCI- CellList), the UE has index p in all configured DL BWPs of all configured cells in one list determined from the serving cell index provided by the MAC CE command. For CORESET, apply the antenna port quasi co-location (QCL) provided by the TCI state with the same activated TCI state ID value. Only if the UE is not provided with different values of the CORESET pool index (CORESETPoolIndex) in the CORESET information element (ControlResourceSet) and is not provided with at least one TCI code point that is mapped to two TCI states; A concurrent TCI cell list may be provided for concurrent TCI state activation.
 セミパーシステント(semi-persistent(SP))/非周期的(aperiodic(AP))-SRSに対し、UEは、次の手順Cに基づいてもよい。
[手順C]
 CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる場合、そこで、CCの適用可能リストが、同時空間更新リスト(上位レイヤパラメータsimultaneousSpatial-UpdateList-r16又はsimultaneousSpatial-UpdateListSecond-r16)によって指示され、指示されたCC内の全てのBWPにおいて、同じSRSリソースIDを有するSP又はAP-SRSリソースに対して、その空間関係情報が適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる。
For semi-persistent (SP)/periodic (AP)-SRS, the UE may based on the following procedure C.
[Procedure C]
For one set of CC/BWP, the spatial relationship information (spatialRelationInfo) for the SP or AP-SRS resource configured by the SRS resource information element (upper layer parameter SRS-Resource) is activated/updated by the MAC CE. If the CC's applicable list is indicated by the simultaneous spatial update list (upper layer parameter simultaneousSpatial-UpdateList-r16 or simultaneousSpatial-UpdateListSecond-r16), then the applicable list of CCs is specified by the same SRS resource in all BWPs in the indicated CC. The spatial relationship information is applied to the SP or AP-SRS resource with the ID. Only if the UE is not provided with different values of the CORESET pool index (CORESETPoolIndex) in the CORESET information element (ControlResourceSet) and is not provided with at least one TCI code point that is mapped to two TCI states; For one set of CC/BWP, the spatial relationship information (spatialRelationInfo) for the SP or AP-SRS resource configured by the SRS resource information element (upper layer parameter SRS-Resource) is activated/updated by the MAC CE. Ru.
 同時TCIセルリスト(simultaneousTCI-CellList)、同時TCI更新リスト(simultaneousTCI-UpdateList1-r16及びsimultaneousTCI-UpdateList2-r16の少なくとも1つ)は、MAC CEを用いて、TCI関係を同時に更新されることができるサービングセルのリストである。simultaneousTCI-UpdateList1-r16とsimultaneousTCI-UpdateList2-r16とは、同じサービングセルを含まない。 Simultaneous TCI cell list (simultaneousTCI-CellList), simultaneous TCI update list (at least one of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16) are serving cells whose TCI relationships can be updated simultaneously using MAC CE. This is a list of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16 do not include the same serving cell.
 同時空間更新リスト(上位レイヤパラメータsimultaneousSpatial-UpdatedList1-r16及びsimultaneousSpatial-UpdatedList2-r16の少なくとも1つ)は、MAC CEを用いて、空間関係を同時に更新されることができるサービングセルのリストである。simultaneousSpatial-UpdatedList1-r16とsimultaneousSpatial-UpdatedList2-r16とは、同じサービングセルを含まない。 The simultaneous spatial update list (at least one of the upper layer parameters simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16) is a list of serving cells whose spatial relationships can be updated simultaneously using the MAC CE. simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16 do not include the same serving cell.
 ここで、同時TCI更新リスト、同時空間更新リストは、RRCによって設定され、CORESETのCORESETプールインデックスは、RRCによって設定され、TCI状態にマップされるTCIコードポイントは、MAC CEによって指示される。 Here, the simultaneous TCI update list and the simultaneous spatial update list are set by the RRC, the CORESET pool index of the CORESET is set by the RRC, and the TCI code point mapped to the TCI state is indicated by the MAC CE.
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
(unified/common TCI framework)
According to the unified TCI framework, UL and DL channels can be controlled by a common framework. The unified TCI framework is Rel. Instead of specifying the TCI state or spatial relationship for each channel as in 15, it is possible to specify a common beam (common TCI state) and apply it to all channels of UL and DL. A common beam may be applied to all channels of UL, and a common beam for DL may be applied to all channels of DL.
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。 One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are considered.
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCIプール、ジョイント共通TCIプール、ジョイントTCI状態セット)を想定してもよい。UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCIプール、ULセパレートTCIプール及びDLセパレートTCIプール、セパレート共通TCIプール、UL共通TCIプール及びDL共通TCIプール)を想定してもよい。 The UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL. The UE assumes different TCI states (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool) for each of UL and DL. You may.
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。 The default beams of UL and DL may be aligned by beam management based on MAC CE (MAC CE level beam instruction). The default TCI state of the PDSCH may be updated to match the default UL beam (spatial relationship).
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCIプール(ジョイント共通TCIプール、ジョイントTCIプール、セット)から共通ビーム/統一TCI状態が指示されてもよい。X(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、X個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。 DCI-based beam management (DCI level beam indication) may dictate a common beam/unified TCI state from the same TCI pool (joint common TCI pool, joint TCI pool, set) for both UL and DL. X (>1) TCI states may be activated by the MAC CE. The UL/DL DCI may select one from X active TCI states. The selected TCI state may be applied to both UL and DL channels/RSs.
 TCIプール(セット)は、RRCパラメータによって設定された複数のTCI状態であってもよいし、RRCパラメータによって設定された複数のTCI状態のうち、MAC CEによってアクティベートされた複数のTCI状態(アクティブTCI状態、アクティブTCIプール、セット)であってもよい。各TCI状態は、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。 A TCI pool (set) may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by the MAC CE (active TCI state, active TCI pool, set). Each TCI state may be a QCL type A/D RS. SSB, CSI-RS, or SRS may be set as the QCL type A/D RS.
 1以上のTRPのそれぞれに対応するTCI状態の個数が規定されてもよい。例えば、ULのチャネル/RSに適用されるTCI状態(UL TCI状態)の個数N(≧1)と、DLのチャネル/RSに適用されるTCI状態(DL TCI状態)の個数M(≧1)と、が規定されてもよい。N及びMの少なくとも一方は、上位レイヤシグナリング/物理レイヤシグナリングを介して、UEに通知/設定/指示されてもよい。 The number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N (≧1) of TCI states (UL TCI states) applied to UL channels/RSs, and the number M (≧1) of TCI states (DL TCI states) applied to DL channels/RSs. may be specified. At least one of N and M may be notified/set/instructed to the UE via upper layer signaling/physical layer signaling.
 本開示において、N=M=X(Xは任意の整数)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL及びDLに共通のTCI状態(ジョイントTCI状態)が通知/設定/指示されることを意味してもよい。 In this disclosure, when described as N=M=X (X is an arbitrary integer), the UE is told that It may also mean that the TCI status) is notified/set/instructed.
 また、N=X(Xは任意の整数)、M=Y(Yは任意の整数、Y=Xであってもよい)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL TCI状態及びY個の(Y個のTRPに対応する)DL TCI状態が通知/設定/指示されることを意味してもよい。当該UL TCI状態及び当該DL TCI状態は、UL及びDLに共通のTCI状態(すなわち、ジョイントTCI状態)を意味してもよいし、UL及びDLそれぞれのTCI状態(すなわち、セパレートTCI状態)を意味してもよい。 In addition, when N=X (X is any integer) and M=Y (Y is any integer, Y=X may be used), the UE is This may mean that UL TCI states (corresponding to TRPs) and Y DL TCI states (corresponding to Y TRPs) are notified/set/instructed. The UL TCI state and the DL TCI state may mean a TCI state common to UL and DL (i.e., joint TCI state), or may mean a TCI state of each of UL and DL (i.e., separate TCI state). You may.
 例えば、N=M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(単一TRPのためのジョイントTCI状態)。 For example, when N=M=1, it may mean that the UE is notified/set/instructed of a TCI state common to one UL and DL for a single TRP ( joint TCI state for a single TRP).
 また、例えば、N=1、M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL TCI状態と、1つのDL TCI状態と、が別々に通知/設定/指示されることを意味してもよい(単一TRPのためのセパレートTCI状態)。 For example, if N=1 and M=1 are written, the UE is notified/set/instructed separately of one UL TCI state and one DL TCI state for a single TRP. (separate TCI state for a single TRP).
 また、例えば、N=M=2と記載される場合は、UEに対し、複数の(2つの)TRPに対する、複数の(2つの)のUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(複数TRPのためのジョイントTCI状態)。 For example, if N=M=2 is written, the UE is notified/set/instructed of the TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs. (joint TCI state for multiple TRPs).
 また、例えば、N=2、M=2と記載される場合は、UEに対し、複数(2つ)のTRPに対する、複数の(2つの)UL TCI状態と、複数の(2つの)DL TCI状態と、が通知/設定/指示されることを意味してもよい(複数TRPのためのセパレートTCI状態)。 For example, when N=2 and M=2 are written, the UE has multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs. It may also mean that the state is notified/set/instructed (separate TCI states for multiple TRPs).
 また、例えば、N=2、M=1と記載される場合は、UEに対し、2つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい。このときUEは、設定/指示される2つのTCI状態をUL TCI状態として用い、設定/指示される2つのTCI状態のうちの1つのTCI状態をDL TCI状態として用いてもよい。 Also, for example, when N=2 and M=1 are written, it may mean that the UE is notified/set/instructed of a TCI state common to the two UL and DL. At this time, the UE may use the two TCI states set/instructed as the UL TCI state, and may use one TCI state of the two TCI states set/instructed as the DL TCI state.
 また、例えば、N=2、M=1と記載される場合は、UEに対し、セパレートTCI状態として、2つのUL TCI状態と、1つのDL TCI状態とが通知/設定/指示されることを意味してもよい。 For example, when N=2 and M=1 are written, it means that the UE is notified/set/instructed of two UL TCI states and one DL TCI state as separate TCI states. It can also mean
 なお、上記例においては、N及びMの値が1又は2のケースを説明したが、N及びMの値は3以上であってもよいし、N及びMは異なってもよい。 Note that in the above example, the case where the values of N and M are 1 or 2 has been described, but the values of N and M may be 3 or more, or N and M may be different.
 M>1/N>1のケースは、複数TRPのためのTCI状態指示、及び、バンド間(inter band)CAのための複数のTCI状態指示、の少なくとも一方を示してもよい。 The case of M>1/N>1 may indicate at least one of TCI status indications for multiple TRPs and multiple TCI status indications for interband CA.
 図3Aの例において、RRCパラメータ(情報要素)は、DL及びULの両方用の複数のTCI状態を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の1つを指示してもよい。DCIは、UL/DL DCIであってもよい。指示されたTCI状態は、UL/DLのチャネル/RSの少なくとも1つ(又は全て)に適用されてもよい。1つのDCIがUL TCI及びDL TCIの両方を指示してもよい。 In the example of FIG. 3A, the RRC parameters (information elements) configure multiple TCI states for both DL and UL. The MAC CE may activate multiple TCI states among the configured multiple TCI states. The DCI may indicate one of multiple activated TCI states. The DCI may be a UL/DL DCI. The indicated TCI state may be applied to at least one (or all) of the UL/DL channels/RSs. One DCI may indicate both UL TCI and DL TCI.
 図3Aの例において、1つの点は、UL及びDLの両方に適用される1つのTCI状態であってもよいし、UL及びDLにそれぞれ適用される2つのTCI状態であってもよい。 In the example of FIG. 3A, one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL, respectively.
 RRCパラメータによって設定された複数のTCI状態と、MAC CEによってアクティベートされた複数のTCI状態と、の少なくとも1つは、TCIプール(共通TCIプール、ジョイントTCIプール、TCI状態プール)と呼ばれてもよい。MAC CEによってアクティベートされた複数のTCI状態は、アクティブTCIプール(アクティブ共通TCIプール)と呼ばれてもよい。 At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be referred to as a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good. The multiple TCI states activated by the MAC CE may be referred to as an active TCI pool (active common TCI pool).
 なお、本開示において、複数のTCI状態を設定する上位レイヤパラメータ(RRCパラメータ)は、複数のTCI状態を設定する設定情報、単に「設定情報」と呼ばれてもよい。また、本開示において、DCIを用いて複数のTCI状態の1つを指示されることは、DCIに含まれる複数のTCI状態の1つを指示する指示情報を受信することであってもよいし、単に「指示情報」を受信することであってもよい。 Note that in the present disclosure, upper layer parameters (RRC parameters) that configure multiple TCI states may be referred to as configuration information that configures multiple TCI states, or simply "configuration information." Furthermore, in the present disclosure, being instructed to one of a plurality of TCI states using a DCI may mean receiving instruction information that instructs one of a plurality of TCI states included in the DCI. , it may be simply receiving "instruction information".
 図3Bの例において、RRCパラメータは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCIプール)を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態(アクティブTCIプール)をアクティベートしてもよい。UL及びDLのそれぞれに対する(別々の、separate)アクティブTCIプールが、設定/アクティベートされてもよい。 In the example of FIG. 3B, the RRC parameters configure multiple TCI states (joint common TCI pool) for both DL and UL. The MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of UL and DL may be configured/activated.
 DL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のDLのチャネル/RSに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。UL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のULチャネル/RSに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。このように、異なるDCIが、UL TCI及びDL DCIを別々に指示してもよい。 The DL DCI or the new DCI format may select (instruct) one or more (for example, one) TCI state. The selected TCI state may be applied to one or more (or all) DL channels/RSs. The DL channel may be PDCCH/PDSCH/CSI-RS. The UE has Rel. 16 TCI state operations (TCI framework) may be used to determine the TCI state of each channel/RS of the DL. The UL DCI or the new DCI format may select (instruct) one or more (eg, one) TCI state. The selected TCI state may be applied to one or more (or all) UL channels/RSs. The UL channel may be PUSCH/SRS/PUCCH. In this way, different DCIs may indicate UL TCI and DL DCI separately.
 既存のDCIフォーマット1_1/1_2が、共通TCI状態の指示に用いられてもよい。 Existing DCI formats 1_1/1_2 may be used to indicate common TCI status.
 TCI状態を指示するDCIフォーマットは、特定のDCIフォーマットであってもよい。例えば、当該特定のDCIフォーマットは、(Rel.15/16/17で規定される)DCIフォーマット1_1/1_2であってもよい。 The DCI format that indicates the TCI state may be a specific DCI format. For example, the specific DCI format may be DCI format 1_1/1_2 (defined in Rel. 15/16/17).
 TCI状態を指示するDCIフォーマット(DCIフォーマット1_1/1_2)は、DLアサインメントなしのDCIフォーマットであってもよい。本開示において、DLアサインメントなしのDCIフォーマット、PDSCHをスケジュールしないDCIフォーマット(DCIフォーマット1_1/1_2)、1つ以上の特定のフィールドを含まないDCIフォーマット(DCIフォーマット1_1/1_2)、1つ以上の特定のフィールドが固定値にセットされるDCIフォーマット(DCIフォーマット1_1/1_2)、などと互いに読み替えられてもよい。 The DCI format (DCI format 1_1/1_2) that indicates the TCI state may be a DCI format without DL assignment. In this disclosure, a DCI format without DL assignment, a DCI format without scheduling PDSCH (DCI format 1_1/1_2), a DCI format without one or more specific fields (DCI format 1_1/1_2), one or more They may be interchanged with each other, such as DCI format (DCI format 1_1/1_2) in which specific fields are set to fixed values.
 DLアサインメントなしのDCIフォーマット(1つ以上の特定のフィールドを含まないDCIフォーマット)について、当該特定のフィールドは、TCIフィールド、DCIフォーマットの識別子フィールド、キャリアインディケータフィールド、帯域幅部分(BWP)インディケータフィールド、時間ドメインリソースアサインメント(Time Domain Resource Assignment(TDRA))フィールド、Downlink Assignment Index(DAI)フィールド(もし設定される場合には)、(スケジュールされるPUCCHのための)送信電力制御(Transmission Power Control(TPC))コマンドフィールド、PUCCHリソースインディケータフィールド、及び、PDSCHからHARQ-ACKフィードバックまでのタイミング指示(PDSCH-to-HARQ feedback timing indicator)フィールド(もし存在する場合)、以外のフィールドであってもよい。当該特定のフィールドは、リザーブドフィールドとしてセットされてもよいし、無視されてもよい。 For DCI formats without DL assignments (DCI formats that do not include one or more specific fields), the specific fields are the TCI field, the DCI format identifier field, the carrier indicator field, and the bandwidth portion (BWP) indicator field. , Time Domain Resource Assignment (TDRA) field, Downlink Assignment Index (DAI) field (if configured), Transmission Power Control (for scheduled PUCCH). (TPC)) command field, PUCCH resource indicator field, and PDSCH-to-HARQ feedback timing indicator field (if present). . The particular field may be set as a reserved field or may be ignored.
 DLアサインメントなしのDCIフォーマット(1つ以上の特定のフィールドが固定値にセットされるDCIフォーマット)について、当該特定のフィールドは、冗長バージョン(Redundancy Version(RV))フィールド、変調符号化方式(Modulation and Coding Scheme(MCS))フィールド、新規データインディケータ(New Data Indicator)フィールド、及び、周波数ドメインリソースアサインメント(Frequency Domain Resource Assignment(FDRA))フィールドであってもよい。 For DCI formats without DL assignments (DCI formats in which one or more specific fields are set to fixed values), the specific fields include the Redundancy Version (RV) field, the Modulation and Coding Scheme (MCS) field, New Data Indicator field, and Frequency Domain Resource Assignment (FDRA) field.
 RVフィールドは全て1にセットされてもよい。MCSフィールドは、全て1にセットされてもよい。NDIフィールドは0にセットされてもよい。タイプ0のFDRAフィールドは、全て0にセットされてもよい。タイプ1のFDRAフィールドは、全て1にセットされてもよい。ダイナミックスイッチ(上位レイヤパラメータdynamicSwitch)用のFDRAフィールドは、全て0にセットされてもよい。 The RV field may be set to all 1s. The MCS field may be set to all ones. The NDI field may be set to zero. Type 0 FDRA fields may be set to all zeros. Type 1 FDRA fields may be set to all ones. The FDRA field for the dynamic switch (upper layer parameter dynamicSwitch) may be set to all zeros.
 共通TCIフレームワークは、DL及びULに対して別々のTCI状態を有してもよい。 The common TCI framework may have separate TCI states for DL and UL.
(Rel.17におけるデフォルトQCL)
 Rel.17において、DL DCIの受信と、それに対応するPDSCHと、の間のオフセット(スケジューリングオフセット)が特定の閾値(例えば、timeDurationForQCL)より小さく、かつ、共通TCI状態(共通TCI状態の設定用パラメータ(DLorJointTCIState/UL-TCIState))が設定されない場合(以下ケースAと呼ばれてもよい)、UEは、PDSCHに適用するTCI状態(QCL)を、所定のルールに従って決定する。
(Default QCL in Rel.17)
Rel. 17, the offset (scheduling offset) between the reception of the DL DCI and the PDSCH corresponding to it is smaller than a specific threshold (e.g., timeDurationForQCL), and the common TCI state (parameter for setting the common TCI state (DLorJointTCIState /UL-TCIState)) is not set (hereinafter also referred to as case A), the UE determines the TCI state (QCL) to apply to the PDSCH according to predetermined rules.
 以下の説明は、上記ケースAの場合に適用されてもよい。 The following explanation may be applied to case A above.
[シングルTRPのPDSCH]
 UEは、コンポーネントキャリア(CC)におけるアクティブBWPの最新の(latest)モニタリングスロットにおける最小(最低)のCORESET IDに関連するTCI状態を、PDSCHに適用すると判断する。
[Single TRP PDSCH]
The UE determines to apply the TCI state associated with the lowest CORESET ID in the latest monitoring slot of the active BWP on the component carrier (CC) to the PDSCH.
[マルチDCIベースマルチTRPのPDSCH]
 上位レイヤパラメータ「enableDefaultTCI-StatePerCoresetPoolIndex」が設定される場合、UEは、CCにおけるアクティブBWPの最新の(latest)モニタリングスロットにおける同じCORESETプールインデックスの値を有する最低のCORESET IDに関連するTCI状態を、PDSCHに適用すると判断する。
[PDSCH of multi-DCI-based multi-TRP]
If the upper layer parameter "enableDefaultTCI-StatePerCoresetPoolIndex" is set, the UE shall transmit the TCI state associated with the lowest CORESET ID with the same CORESET pool index value in the latest monitoring slot of the active BWP in the CC to the PDSCH. It is determined that this applies to
[シングルDCIベースマルチTRPのPDSCH]
 上位レイヤパラメータ「enableTwoDefaultTCI-States」が設定される場合、UEは、PDSCH用の異なる2つのTCI状態が関連付くTCIコードポイントのうち、最低のTCIコードポイントのTCI状態を、PDSCHに適用すると判断する。
[Single DCI-based multi-TRP PDSCH]
If the upper layer parameter "enableTwoDefaultTCI-States" is set, the UE determines that the TCI state of the lowest TCI code point among the TCI code points to which two different TCI states for PDSCH are associated is to be applied to the PDSCH. .
[SFN PDCCHによってスケジュールされるシングルTRPのPDSCH]
 上位レイヤパラメータ「sfnSchemePdsch」が設定されず、「sfnSchemePdcch」が「sfnSchemeA」にセットされる場合であって、かつ、最新のモニタリングスロットにおける最低のCORESET IDのCORESETに対して2つのTCI状態が指示される場合、UEは、当該CORESETに対して指示された第1のTCI状態を、PDSCHに適用すると判断する。ここで、当該CORESETとは、CCにおけるアクティブBWPの最新のモニタリングスロットにおける最低のCORESET IDのCORESETである。
[Single TRP PDSCH scheduled by SFN PDCCH]
If the upper layer parameter "sfnSchemePdsch" is not set and "sfnSchemePdcch" is set to "sfnSchemeA", and two TCI states are indicated for the CORESET with the lowest CORESET ID in the latest monitoring slot. If so, the UE determines to apply the first TCI state indicated for the CORESET to the PDSCH. Here, the CORESET is the lowest CORESET ID in the latest monitoring slot of the active BWP in the CC.
[クロスキャリアスケジューリングのPDSCH]
 上位レイヤパラメータ「enableDefaultBeamForCCS」が設定される場合、UEは、スケジュールされるCC(スケジュールドCC)におけるアクティブBWPにおけるPDSCHに対する最低のTCI状態IDのTCI状態を、PDSCHに適用すると判断する。
[PDSCH for cross-carrier scheduling]
When the upper layer parameter "enableDefaultBeamForCCS" is set, the UE determines that the TCI state of the lowest TCI state ID for PDSCH in the active BWP in the scheduled CC (scheduled CC) is applied to the PDSCH.
 Rel.17において、DL DCIの受信と、それに対応するPDSCHと、の間のオフセット(スケジューリングオフセット)が特定の閾値(例えば、timeDurationForQCL)より小さく、かつ、共通TCI状態(共通TCI状態の設定用パラメータ(DLorJointTCIState/UL-TCIState))が設定される場合(以下ケースBと呼ばれてもよい)、UEは、PDSCHに適用するTCI状態(QCL)を、所定のルールに従って決定する。 Rel. 17, the offset (scheduling offset) between the reception of the DL DCI and the corresponding PDSCH is smaller than a specific threshold (e.g., timeDurationForQCL), and the common TCI state (parameter for setting the common TCI state (DLorJointTCIState /UL-TCIState)) is set (hereinafter may be referred to as case B), the UE determines the TCI state (QCL) to apply to the PDSCH according to predetermined rules.
 以下の説明は、上記ケースBの場合に適用されてもよい。 The following explanation may be applied to Case B above.
[SRPのPDSCH]
 指示されるTCI状態が、サービングセルの物理セルID(Physical Cell Identifier/Identity(PCI))と異なるPCIに関連付けられる場合、UEは、CCにおけるアクティブBWPの最新のモニタリングスロットにおける最低のCORESET IDに対応するTCI状態を、PDSCHに適用すると判断する。
[PDSCH of SRP]
If the indicated TCI state is associated with a Physical Cell Identifier/Identity (PCI) different from that of the serving cell, the UE shall correspond to the lowest CORESET ID in the most recent monitoring slot of the active BWP in the CC. It is determined that the TCI state is applied to the PDSCH.
 このとき、バンド内の複数のCCに対するスロットにおけるCORESET用のQCLタイプDの特性(property)が異なる場合、最低のCC IDにおけるCORESETのQCL(特にQCLタイプD)想定が、バンド内の複数(全て)のCCにおけるPDSCHに適用されてもよい。 At this time, if the properties of QCL type D for CORESET in the slots for multiple CCs in the band are different, the QCL (especially QCL type D) assumption for CORESET in the lowest CC ID is ) may be applied to the PDSCH in the CC.
 指示されるTCI状態が、サービングセルのPCIに関連付けられる場合、UEは、当該指示されるTCI状態を、PDSCHに適用すると判断する。 If the indicated TCI state is associated with the PCI of the serving cell, the UE determines to apply the indicated TCI state to the PDSCH.
 なお、ケースBにおけるシングルTRPのPDSCH以外のPDSCHのTCI状態の適用については検討が進んでいない。 Note that application of the TCI status of PDSCHs other than the single TRP PDSCH in case B has not been studied.
 Rel.17において、DL DCIの受信と、それに対応する非周期的(A-)CSI-RSと、の間のオフセット(スケジューリングオフセット/トリガリングオフセット)が特定の閾値(例えば、beamSwitchTiming)より小さく、かつ、共通TCI状態(共通TCI状態の設定用パラメータ(DLorJointTCIState/UL-TCIState))が設定されない場合(以下ケースCと呼ばれてもよい)、UEは、A-CSI-RSに適用するTCI状態(QCL)を、所定のルールに従って決定する。 Rel. 17, the offset (scheduling offset/triggering offset) between the reception of the DL DCI and the corresponding aperiodic (A-)CSI-RS is smaller than a certain threshold (e.g., beamSwitchTiming), and If the common TCI state (common TCI state configuration parameter (DLorJointTCIState/UL-TCIState)) is not configured (hereinafter also referred to as case C), the UE sets the TCI state (QCL) that applies to the A-CSI-RS. ) is determined according to predetermined rules.
 以下の説明は、上記ケースCの場合に適用されてもよい。 The following explanation may be applied to case C above.
[シングルTRPのA-CSI-RS]
 A-CSI-RSと同じシンボルに任意のDL信号が存在する場合、UEは、当該DL信号のQCL想定を、当該A-CSI-RSに適用すると判断する。そうでない場合(else)、UEは、CCにおけるアクティブBWPの最新のモニタリングスロットにおける最低のCORESET IDに関連するTCI状態を、当該A-CSI-RSに適用すると判断する。
[Single TRP A-CSI-RS]
If any DL signal is present in the same symbol as the A-CSI-RS, the UE determines to apply the QCL assumption of the DL signal to the A-CSI-RS. Otherwise, the UE determines to apply the TCI state associated with the lowest CORESET ID in the latest monitoring slot of the active BWP in the CC to the A-CSI-RS.
[マルチDCIベースマルチTRPのPDSCH]
 上位レイヤパラメータ「enableDefaultTCI-StatePerCoresetPoolIndex」が設定される場合であって、かつ、A-CSI-RSと同じシンボルに任意のDL信号が存在する場合、UEは、当該DL信号のQCL想定を、当該A-CSI-RSに適用すると判断する。そうでない場合(else)、UEは、CCにおけるアクティブBWPの最新のモニタリングスロットにおける同じCORESETプールインデックスの値を有する最低のCORESET IDに関連するTCI状態を、A-CSI-RSに適用すると判断する。
[PDSCH of multi-DCI-based multi-TRP]
When the upper layer parameter "enableDefaultTCI-StatePerCoresetPoolIndex" is set and there is any DL signal in the same symbol as the A-CSI-RS, the UE changes the QCL assumption of the DL signal to the A-CSI-RS. - Determined to apply to CSI-RS. Otherwise, the UE determines to apply the TCI state associated with the lowest CORESET ID with the same CORESET pool index value in the latest monitoring slot of the active BWP in the CC to the A-CSI-RS.
[シングルDCIベースマルチTRPのPDSCH]
 上位レイヤパラメータ「enableTwoDefaultTCI-States」が設定される場合であって、かつ、A-CSI-RSと同じシンボルに任意のDL信号が存在する場合、UEは、当該DL信号のQCL想定を、当該A-CSI-RSに適用すると判断する。このとき、当該DL信号が2つのTCI状態を有する場合、UEは、そのうちの第1のTCI状態をA-CSI-RSに適用する。
[Single DCI-based multi-TRP PDSCH]
When the upper layer parameter "enableTwoDefaultTCI-States" is set and there is any DL signal in the same symbol as the A-CSI-RS, the UE changes the QCL assumption of the DL signal to the A-CSI-RS. - Determined to apply to CSI-RS. At this time, if the DL signal has two TCI states, the UE applies the first TCI state to the A-CSI-RS.
 そうでない場合(else)、UEは、PDSCH用の異なる2つのTCI状態が関連付くTCIコードポイントのうち、最低のTCIコードポイントのTCI状態を、A-CSI-RSに適用すると判断する。 Otherwise, the UE determines that the TCI state of the lowest TCI code point among the TCI code points to which two different TCI states for PDSCH are associated is to be applied to the A-CSI-RS.
[SFN PDCCHによってトリガされるシングルTRPのA-CSI-RS]
 上位レイヤパラメータ「sfnSchemePdcch」が「sfnSchemeA」にセットされ、上位レイヤパラメータ「enableTwoDefaultTCI-States」が設定されず、CORESETに対し2つのTCI状態がアクティベートされる場合であって、かつ、A-CSI-RSと同じシンボルに任意のDL信号が存在する場合、UEは、当該DL信号のQCL想定を、当該A-CSI-RSに適用すると判断する。そうでない場合(else)、UEは、当該CORESETに対して指示された第1のTCI状態を、PDSCHのTCI状態(QCL)であると判断する。ここで、当該CORESETとは、CCにおけるアクティブBWPの最新のモニタリングスロットにおける最低のCORESET IDのCORESETである。
[Single TRP A-CSI-RS triggered by SFN PDCCH]
If the upper layer parameter "sfnSchemePdcch" is set to "sfnSchemeA", the upper layer parameter "enableTwoDefaultTCI-States" is not set, and two TCI states are activated for CORESET, and A-CSI-RS If any DL signal exists in the same symbol as , the UE determines to apply the QCL assumption of the DL signal to the A-CSI-RS. Otherwise, the UE determines that the first TCI state indicated for the CORESET is the PDSCH TCI state (QCL). Here, the CORESET is the lowest CORESET ID in the latest monitoring slot of the active BWP in the CC.
[クロスキャリアスケジューリングのA-CSI-RS]
 上位レイヤパラメータ「enableDefaultBeamForCCS」が設定される場合、UEは、スケジュールされるCC(スケジュールドCC)におけるアクティブBWPにおけるPDSCHに対する最低のTCI状態IDのTCI状態を、A-CSI-RSに適用すると判断する。
[A-CSI-RS for cross-carrier scheduling]
If the upper layer parameter "enableDefaultBeamForCCS" is set, the UE determines that the TCI state of the lowest TCI state ID for PDSCH in the active BWP in the scheduled CC (scheduled CC) is applied to the A-CSI-RS. .
 Rel.17において、DL DCIの受信と、それに対応するA-CSI-RSと、の間のオフセット(スケジューリングオフセット/トリガリングオフセット)が特定の閾値(例えば、beamSwitchTiming)より小さく、かつ、共通TCI状態(共通TCI状態の設定用パラメータ(DLorJointTCIState/UL-TCIState))が設定される場合(以下ケースDと呼ばれてもよい)、UEは、A-CSI-RSに適用するTCI状態(QCL)を、所定のルールに従って決定する。 Rel. 17, the offset (scheduling offset/triggering offset) between the reception of the DL DCI and the corresponding A-CSI-RS is smaller than a specific threshold (e.g., beamSwitchTiming), and the common TCI state (common When the TCI state setting parameter (DLorJointTCIState/UL-TCIState) is set (hereinafter also referred to as case D), the UE sets the TCI state (QCL) to be applied to the A-CSI-RS in a predetermined manner. Decided according to the rules.
 以下の説明は、上記ケースDの場合に適用されてもよい。 The following explanation may be applied to Case D above.
[SRPのA-CSI-RS]
 指示されるTCI状態が、サービングセルのPCIと異なるPCIに関連付けられる場合、UEは、CCにおけるアクティブBWPの最新のモニタリングスロットにおける最低のCORESET IDに対応するTCI状態を、A-CSI-RSに適用と判断する。
[A-CSI-RS of SRP]
If the indicated TCI state is associated with a PCI different from that of the serving cell, the UE shall apply the TCI state corresponding to the lowest CORESET ID in the latest monitoring slot of the active BWP in the CC to the A-CSI-RS. to decide.
 このとき、バンド内の複数のCCに対するスロットにおけるCORESET用のQCLタイプDの特性(property)が異なる場合、最低のCC IDにおけるCORESETのQCL(特にQCLタイプD)想定が、バンド内の複数(全て)のCCにおけるA-CSI-RSに適用されてもよい。 At this time, if the properties of QCL type D for CORESET in the slots for multiple CCs in the band are different, the QCL (especially QCL type D) assumption for CORESET in the lowest CC ID is ) may be applied to the A-CSI-RS in the CC.
 指示されるTCI状態が、サービングセルのPCIに関連付けられる場合、UEは、当該指示されるTCI状態を、A-CSI-RSに適用すると判断する。 If the indicated TCI state is associated with the PCI of the serving cell, the UE determines to apply the indicated TCI state to the A-CSI-RS.
 なお、ケースDにおけるシングルTRPのA-CSI-RS以外のA-CSI-RSのTCI状態の適用については検討が進んでいない。 Note that application of the TCI status of A-CSI-RS other than the A-CSI-RS of single TRP in case D has not been studied.
(分析)
 上述のように、共通TCI状態が設定される場合における、特定の条件におけるTCI状態/QCLの決定/適用方法について検討が十分でない。
(analysis)
As described above, when a common TCI state is set, the method of determining/applying the TCI state/QCL under specific conditions has not been sufficiently studied.
 また、既存の仕様(Rel.17以前)では、UEは、異なるBWP/CCにおけるDL信号をバッファするための異なるデフォルトQCLを想定することができない。このようなケースにおけるUEのQCLの想定の動作についても検討が十分でない。 Also, in the existing specifications (before Rel. 17), the UE cannot assume different default QCLs for buffering DL signals in different BWP/CCs. The assumed operation of the UE's QCL in such a case has not been sufficiently studied.
 また、Rel.17におけるHST-SFNスキームにおいて、A-CSI-RSのシンボルと同じシンボルのDL信号が、2つのTCI状態を有するPDSCHである場合のUEの動作について検討が十分でない。 Also, Rel. In the HST-SFN scheme in No. 17, the operation of the UE when the DL signal of the same symbol as the A-CSI-RS symbol is a PDSCH with two TCI states has not been sufficiently studied.
 これらの検討が十分でなければ、通信品質の低下、スループットの低下など、を招くおそれがある。 If these considerations are not sufficient, there is a risk of deterioration in communication quality and throughput.
 そこで、本発明者らは、マルチTRPを用いる信号/チャネルの送受信においてTCI状態を適切に設定/指示/適用する方法を着想した。 Therefore, the present inventors came up with a method for appropriately setting/instructing/applying TCI states in signal/channel transmission/reception using multi-TRP.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied singly or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be read interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, fields, Information Elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、ジョイントTCI状態、セパレートDL/UL TCI状態、統一TCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。本開示において、セパレートDL/UL TCI状態は、DL/UL TCI状態と読み替えられてもよい。 In this disclosure, a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described. )), spatial relationship, SRS resource indicator (SRI), control resource set (CONtrol REsource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (RS), antenna port (e.g. demodulation reference signal (DMRS) port), antenna port group (e.g. DMRS port group), groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), joint TCI state, Separate DL/UL TCI state, unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably. In the present disclosure, the separate DL/UL TCI state may be read as the DL/UL TCI state.
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。 Additionally, the spatial relationship information identifier (ID) (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably. “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
 また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。つまり、TRP IDとTRP、CORESETグループIDとCORESETグループなどは、互いに読み替えられてもよい。 Furthermore, the panel identifier (ID) and the panel may be read interchangeably. That is, TRP ID and TRP, CORESET group ID and CORESET group, etc. may be read interchangeably.
 本開示において、TRP、送信ポイント、パネル、DMRSポートグループ、CORESETプール、TCIフィールドの1つのコードポイントに関連付けられた2つのTCI状態の1つ、は互いに読み替えられてもよい。 In this disclosure, one of two TCI states associated with one code point of TRP, transmission point, panel, DMRS port group, CORESET pool, TCI field may be read interchangeably.
 本開示において、シングル(単一)TRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、は互いに読み替えられてもよい。本開示において、マルチ(複数)TRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。 In this disclosure, single (single) TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably. In this disclosure, multi-TRP, multi-TRP system, multi-TRP transmission, and multi-PDSCH may be interchanged.
 本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、特定のチャネル/CORESETに対して特定のインデックス(例えば、TRPインデックス、CORESETプールインデックス、又は、TRPに対応するインデックス)が設定されること、は互いに読み替えられてもよい。 In this disclosure, a single DCI, a single PDCCH, multiple TRPs based on a single DCI, activated two TCI states on at least one TCI code point, at least one code point of a TCI field mapped to two TCI states. and that a particular index (eg, a TRP index, a CORESET pool index, or an index corresponding to a TRP) is set for a particular channel/CORESET may be read interchangeably.
 本開示において、シングルTRP、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。 In this disclosure, a single TRP, a channel using a single TRP, a channel using one TCI state/space relationship, multiple TRPs are not enabled by RRC/DCI, and multiple TCI state/space relationships are enabled by RRC/DCI. may be interchanged: no CORESET pool index (CORESETPoolIndex) value of 1 is set for any CORESET, and no code point in the TCI field is mapped to two TCI states. .
 本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。 In this disclosure, multiple TRPs, channels using multiple TRPs, channels using multiple TCI state/spatial relationships, multiple TRPs being enabled by RRC/DCI, multiple TCI states/spatial relationships being enabled by RRC/DCI, At least one of the multi-TRP based on the single DCI and the multi-TRP based on the multi-DCI may be read interchangeably.
 本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、特定のチャネル/CORESETに対して複数の特定のインデックス(例えば、TRPインデックス、CORESETプールインデックス、又は、TRPに対応するインデックス)が設定されること、は互いに読み替えられてもよい。 In this disclosure, a CORESET pool index (CORESETPoolIndex) value of 1 is set for a multi-TRP, CORESET based on multi-DCI, and multiple specific indexes (e.g., TRP index, CORESET "Pool index" or "TRP-corresponding index) is set" may be read interchangeably.
 本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1番目のTCI状態に対応してもよい。TRP#2(第2TRP)TRP#1(第1TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの2番目のTCI状態に対応してもよい。 In this disclosure, TRP #1 (first TRP) may correspond to CORESET pool index = 0, or may correspond to the first TCI state of two TCI states corresponding to one code point of the TCI field. You may. TRP #2 (second TRP) TRP #1 (first TRP) may correspond to CORESET pool index = 1, or the second TCI of two TCI states corresponding to one code point in the TCI field. It may correspond to the state.
 本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、sDCIベースMTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。 In this disclosure, single DCI (sDCI), single PDCCH, multi-TRP system based on single DCI, sDCI-based MTRP, activated two TCI states on at least one TCI code point, may be read as each other. .
 本開示において、マルチDCI(mDCI)、マルチPDCCH、マルチDCIに基づくマルチTRPシステム、mDCIベースMTRP、2つのCORESETプールインデックス又はCORESETプールインデックス=1(又は1以上の値)が設定されること、は互いに読み替えられてもよい。 In the present disclosure, multi-DCI (mDCI), multi-PDCCH, multi-TRP system based on multi-DCI, mDCI-based MTRP, two CORESET pool indexes, or a CORESET pool index = 1 (or a value of 1 or more) is set. They may be read interchangeably.
 本開示のQCLは、QCLタイプDと互いに読み替えられてもよい。 The QCL of the present disclosure may be interchanged with QCL type D.
 本開示における「TCI状態Aが、TCI状態Bと同じQCLタイプDである」、「TCI状態Aが、TCI状態Bと同じである」、「TCI状態Aが、TCI状態BとQCLタイプDである」などは、互いに読み替えられてもよい。 In this disclosure, “TCI state A is the same QCL type D as TCI state B,” “TCI state A is the same as TCI state B,” “TCI state A is the same as TCI state B and QCL type D.” "There is" may be read interchangeably.
 本開示において、DCIフィールド‘Transmission Configuration Indication’のコードポイント、TCIコードポイント、DCIコードポイント、TCIフィールドのコードポイント、は互いに読み替えられてもよい。 In the present disclosure, the code points of the DCI field 'Transmission Configuration Indication', the TCI code points, the DCI code points, and the code points of the TCI field may be read interchangeably.
 本開示において、シングルTRP、SFN、は互いに読み替えられてもよい。本開示において、HST、HSTスキーム、高速移動用スキーム、スキームA、スキームB、スキーム1、スキーム2、NW pre-compensationスキーム、HSTスキーム1、HSTスキーム2、HST NW pre-compensationスキーム、は互いに読み替えられてもよい。 In this disclosure, single TRP and SFN may be read interchangeably. In this disclosure, HST, HST scheme, high-speed movement scheme, scheme A, scheme B, scheme 1, scheme 2, NW pre-compensation scheme, HST scheme 1, HST scheme 2, and HST NW pre-compensation scheme are interchangeable. It's okay to be hit.
 本開示において、シングルTRPを利用するPDSCH/PDCCHは、シングルTRPに基づくPDSCH/PDCCH、シングルTRP PDSCH/PDCCH、と読み替えられてもよい。また、本開示において、SFNを利用するPDSCH/PDCCHは、マルチにおけるSFNを利用するPDSCH/PDCCH、SFNに基づくPDSCH/PDCCH、SFN PDSCH/PDCCH、と読み替えられてもよい。 In the present disclosure, PDSCH/PDCCH using single TRP may be read as PDSCH/PDCCH based on single TRP, single TRP PDSCH/PDCCH. In addition, in the present disclosure, PDSCH/PDCCH using SFN may be read as PDSCH/PDCCH using SFN in multichannel, PDSCH/PDCCH based on SFN, and SFN PDSCH/PDCCH.
 本開示において、SFNを利用してDL信号(PDSCH/PDCCH)を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ(PDSCH)/制御情報(PDCCH)を、複数の送受信ポイントから受信すること、を意味してもよい。また、SFNを利用してDL信号を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ/制御情報を、複数のTCI状態/空間ドメインフィルタ/ビーム/QCLを利用して受信すること、を意味してもよい。 In the present disclosure, receiving DL signals (PDSCH/PDCCH) using SFN means transmitting the same data (PDSCH)/control information (PDCCH) to multiple It may also mean receiving from a sending/receiving point. Receiving a DL signal using SFN also means using the same time/frequency resources and/or the same data/control information using multiple TCI states/spatial domain filters/beams/QCLs. It may also mean receiving the information.
 本開示において、HST-SFNスキーム、Rel.17以降のSFNスキーム、新規SFNスキーム、新規HST-SFNスキーム、Rel.17以降のHST-SFNシナリオ、HST-SFNシナリオのためのHST-SFNスキーム、HST-SFNシナリオのためのSFNスキーム、スキーム1、スキームA、HST-SFNスキームA/B、HST-SFNタイプA/B、ドップラー事前補償スキーム、スキーム1(HSTスキーム1)及びドップラー事前補償スキームの少なくとも1つ、は互いに読み替えられてもよい。 In this disclosure, HST-SFN scheme, Rel. SFN scheme after Rel.17, new SFN scheme, new HST-SFN scheme, Rel. HST-SFN Scenario 17 and Later, HST-SFN Scheme for HST-SFN Scenario, SFN Scheme for HST-SFN Scenario, Scheme 1, Scheme A, HST-SFN Scheme A/B, HST-SFN Type A/ B. Doppler pre-compensation scheme, Scheme 1 (HST Scheme 1) and at least one of the Doppler pre-compensation schemes may be read interchangeably.
 本開示において、ドップラー事前補償スキーム、基地局事前補償スキーム、TRP事前補償スキーム、pre-Doppler compensationスキーム、Doppler pre-compensationスキーム、NW pre-compensationスキーム、HST NW pre-compensationスキーム、TRP pre-compensationスキーム、TRP-based pre-compensationスキーム、HST-SFNスキームA/B、HST-SFNタイプA/B、は互いに読み替えられてもよい。本開示において、事前補償スキーム、低減スキーム、改善スキーム、補正スキーム、は互いに読み替えられてもよい。 In this disclosure, Doppler pre-compensation scheme, base station pre-compensation scheme, TRP pre-compensation scheme, pre-Doppler compensation scheme, Doppler pre-compensation scheme, NW pre-compensation scheme, HST NW pre-compensation scheme, TRP pre-compensation scheme , TRP-based pre-compensation scheme, HST-SFN scheme A/B, and HST-SFN type A/B may be read interchangeably. In this disclosure, a pre-compensation scheme, a reduction scheme, an improvement scheme, and a correction scheme may be read interchangeably.
 本開示において、リンケージを有するPDCCH/サーチスペース(SS)/CORESET、リンクされたPDCCH/SS/CORESET、PDCCH/SS/CORESETのペア、は互いに読み替えられてもよい。本開示において、リンケージを有しないPDCCH/SS/CORESET、リンクされないPDCCH/SS/CORESET、単独のPDCCH/SS/CORESET、は互いに読み替えられてもよい。 In the present disclosure, PDCCH/search space (SS)/CORESET with linkage, linked PDCCH/SS/CORESET, and PDCCH/SS/CORESET pair may be read interchangeably. In the present disclosure, PDCCH/SS/CORESET without linkage, unlinked PDCCH/SS/CORESET, and independent PDCCH/SS/CORESET may be read interchangeably.
 本開示において、PDCCH繰り返しのための2つのリンクされたCORESET、2つのリンクされたSSセットにそれぞれ関連付けられた2つのCORESET、は互いに読み替えられてもよい。 In this disclosure, two linked CORESETs for PDCCH repetition, two CORESETs respectively associated with two linked SS sets, may be read interchangeably.
 本開示において、SFN-PDCCH繰り返し、PDCCH繰り返し、2つのリンクされたPDCCH、1つのDCIがその2つのリンクされたサーチスペース(SS)/CORESETに跨って受信されること、は互いに読み替えられてもよい。 In this disclosure, SFN-PDCCH repetition, PDCCH repetition, two linked PDCCHs, and one DCI received across the two linked search spaces (SS)/CORESETs may be read interchangeably. good.
 本開示において、PDCCH繰り返し、SFN-PDCCH繰り返し、より高い信頼性のためのPDCCH繰り返し、より高い信頼性のためのPDCCH、信頼性のためのPDCCH、2つのリンクされたPDCCH、は互いに読み替えられてもよい。 In this disclosure, PDCCH repetition, SFN-PDCCH repetition, PDCCH repetition for higher reliability, PDCCH for higher reliability, PDCCH for reliability, two linked PDCCHs are interchanged. Good too.
 本開示において、PDCCH受信方法、PDCCH繰り返し、SFN-PDCCH繰り返し、HST-SFN、HST-SFNスキーム、は互いに読み替えられてもよい。 In the present disclosure, the terms PDCCH reception method, PDCCH repetition, SFN-PDCCH repetition, HST-SFN, and HST-SFN scheme may be interchanged.
 本開示において、PDSCH受信方法、シングルDCIベースマルチTRP、HST-SFNスキーム、は互いに読み替えられてもよい。 In this disclosure, the PDSCH reception method, single DCI-based multi-TRP, and HST-SFN scheme may be interchanged.
 本開示において、シングルDCIベースマルチTRP繰り返しは、enhanced mobile broadband(eMBB)サービス(低優先度、優先度0)のNCJTであってもよいし、ultra-reliable and low latency communicationsサービスのURLLCサービス(高優先度、優先度1)の繰り返しであってもよい。 In this disclosure, single DCI-based multi-TRP repetition may be NCJT of enhanced mobile broadband (eMBB) service (low priority, priority 0), or URLLC service (high priority) of ultra-reliable and low latency communications service. Priority and priority 1) may be repeated.
 本開示の各実施形態において、シングルDCIに基づく複数TRP用のPDSCHは、(Rel.16で規定される)複数TRP用のTDM/FDM/SDMが適用されるPDSCHと互いに読み替えられてもよい。 In each embodiment of the present disclosure, a PDSCH for multiple TRPs based on a single DCI may be mutually read as a PDSCH to which TDM/FDM/SDM for multiple TRPs (defined in Rel. 16) is applied.
 本開示の各実施形態において、複数TRP用のPDSCHは、(Rel.16で規定される)シングルDCIに基づく複数TRP用のTDM/FDM/SDMが適用されるPDSCHと互いに読み替えられてもよい。 In each embodiment of the present disclosure, a PDSCH for multiple TRPs may be mutually read as a PDSCH to which TDM/FDM/SDM for multiple TRPs based on a single DCI (defined in Rel. 16) is applied.
 本開示の各実施形態において、シングルDCIに基づく複数TRP用のPUSCH/PUCCH/PDCCHは、(Rel.17以降で規定される)複数TRP用のPUSCH/PUCCH/PDCCHの繰り返し送信(repetition)と互いに読み替えられてもよい。 In each embodiment of the present disclosure, the PUSCH/PUCCH/PDCCH for multiple TRPs based on a single DCI is mutually connected to the repetition transmission (repetition) of PUSCH/PUCCH/PDCCH for multiple TRPs (defined in Rel. 17 or later). It may be read differently.
 本開示の各実施形態において、SFN PDSCH/PDCCHは、Rel.17以降に規定されるSFN PDSCH/PDCCHと互いに読み替えられてもよい。 In each embodiment of the present disclosure, the SFN PDSCH/PDCCH is Rel. SFN PDSCH/PDCCH defined in 17 and later may be read interchangeably.
 本開示の各実施形態において、マルチDCIに基づく複数TRPの利用が設定されることは、CORESETプールインデックス=1が設定されることを意味してもよい。また、マルチDCIに基づく複数TRPの利用が設定されることは、2つの異なる値(例えば、0及び1)のCORESETプールインデックスが設定されることを意味してもよい。 In each embodiment of the present disclosure, setting the use of multiple TRPs based on multi-DCI may mean setting CORESET pool index=1. Also, setting the use of multiple TRPs based on multi-DCI may mean setting two different values (for example, 0 and 1) of CORESET pool indexes.
 本開示の各実施形態において、もし統一TCI状態フレームワークにおけるジョイントTCI状態/セパレートTCI状態が、各チャネル/信号に適用可能(applicable)でない場合、当該各チャネルのTCI状態/QCL/空間関係を決定するために、前述のデフォルトTCI状態/QCL/空間関係が用いられてもよい。 In embodiments of the present disclosure, if joint TCI states/separate TCI states in the unified TCI state framework are not applicable to each channel/signal, determine the TCI state/QCL/spatial relationship for each channel. To do this, the default TCI state/QCL/spatial relationships described above may be used.
 以下本開示の各実施形態は、上述したRel.17以降で規定される統一TCI状態フレームワークの適用対象である任意のチャネル/信号の送受信に適用されてもよい。 Hereinafter, each embodiment of the present disclosure will be described in accordance with the above-mentioned Rel. It may be applied to the transmission and reception of any channel/signal that is subject to the unified TCI state framework defined in 17 et seq.
 本開示において、各チャネル/信号/リソースにTCI状態/QCL想定を適用することは、各チャネル/信号/リソースの送受信にTCI状態/QCL想定を適用することを意味してもよい。 In this disclosure, applying TCI state/QCL assumptions to each channel/signal/resource may mean applying TCI state/QCL assumptions to transmission and reception of each channel/signal/resource.
 本開示において、小さい、少ない、短い、低い、は互いに読み替えられてもよい。また、本開示において、無視(ignore)、ドロップ、キャンセル、中止、延期、は互いに読み替えられてもよい。 In the present disclosure, the terms "small," "less," "short," and "low" may be read interchangeably. In addition, in the present disclosure, the terms "ignore," "drop," "cancel," "suspend," and "postpone" may be used interchangeably.
 本開示において、繰り返し(repetition)、繰り返し送信、繰り返し受信、は互いに読み替えられてもよい。 In the present disclosure, repetition, repeated transmission, and repeated reception may be interchanged.
 本開示において、チャネル、信号、チャネル/信号、は互いに読み替えられてもよい。本開示おいて、DLチャネル、DL信号、DL信号/チャネル、DL信号/チャネルの送信/受信、DL受信、DL送信、は互いに読み替えられてもよい。本開示おいて、ULチャネル、UL信号、UL信号/チャネル、UL信号/チャネルの送信/受信、UL受信、UL送信、は互いに読み替えられてもよい。 In the present disclosure, the terms channel, signal, and channel/signal may be interchanged. In the present disclosure, the terms DL channel, DL signal, DL signal/channel, transmission/reception of DL signal/channel, DL reception, and DL transmission may be interchanged. In this disclosure, UL channel, UL signal, UL signal/channel, transmission/reception of UL signal/channel, UL reception, and UL transmission may be read interchangeably.
 本開示において、第1のTRPに第1のTCI状態が対応してもよい。本開示において、第2のTRPに第2のTCI状態が対応してもよい。本開示において、第nのTRPに第nのTCI状態が対応してもよい。 In the present disclosure, the first TCI state may correspond to the first TRP. In the present disclosure, a second TCI state may correspond to the second TRP. In the present disclosure, the n-th TCI state may correspond to the n-th TRP.
 本開示において、第1のCORESETプールインデックスの値(例えば、0)、第1のTRPインデックスの値(例えば、1)、及び、第1のTCI状態(第1のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。本開示において、第2のCORESETプールインデックスの値(例えば、1)、第2のTRPインデックスの値(例えば、2)、及び、第2のTCI状態(第2のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。 In the present disclosure, a first CORESET pool index value (e.g., 0), a first TRP index value (e.g., 1), and a first TCI state (first DL/UL (joint/separate) TCI states) may correspond to each other. In the present disclosure, a second CORESET pool index value (e.g., 1), a second TRP index value (e.g., 2), and a second TCI state (second DL/UL (joint/separate) TCI states) may correspond to each other.
 なお、下記本開示の各実施形態においては、複数TRPを利用する送受信における複数のTCI状態の適用について、2つのTRPを対象とする方法(すなわち、N及びMの少なくとも一方が2である場合)について主に説明するが、TRPの数は3以上(複数)であってもよく、TRPの数に対応するよう各実施形態が適用されてもよい。言い換えれば、N及びMの少なくとも一方は、2より大きい数であってもよい。 In addition, in each embodiment of the present disclosure described below, regarding the application of multiple TCI states in transmission and reception using multiple TRPs, a method that targets two TRPs (that is, when at least one of N and M is 2) Although the number of TRPs may be three or more (plurality), each embodiment may be applied to correspond to the number of TRPs. In other words, at least one of N and M may be a number greater than two.
(無線通信方法)
<第0の実施形態>
 シングルDCIベースのマルチTRPは、マルチTRPが理想的バックホール(ideal backhaul)を利用する場合にサポートされると想定されてもよい(図4A参照)。
(Wireless communication method)
<0th embodiment>
Single DCI-based multi-TRP may be assumed to be supported if multi-TRP utilizes an ideal backhaul (see FIG. 4A).
 このとき、1つのビーム指示DCIが、各TRPについて複数のTCI状態を指示してもよい。当該複数のTCI状態は、例えば、最大で2つのジョイントTCI状態であってもよいし、最大で4つのセパレートDL/UL TCI状態(2つのDL TCI状態と2つのUL TCI状態)であってもよい。 At this time, one beam instruction DCI may indicate multiple TCI states for each TRP. The plurality of TCI states may be, for example, a maximum of two joint TCI states, or a maximum of four separate DL/UL TCI states (two DL TCI states and two UL TCI states). good.
 本開示において、1つのTCI状態は、1つのジョイント(DL/UL)TCI状態を意味してもよいし、1つのDL(セパレート)TCI状態と1つのUL(セパレート)TCI状態との少なくとも一方を意味してもよい。 In the present disclosure, one TCI state may mean one joint (DL/UL) TCI state, or may refer to at least one of one DL (separate) TCI state and one UL (separate) TCI state. It can also mean
 マルチPDCCH(DCI)は、マルチTRP間が理想的バックホール(ideal backhaul)/非理想的バックホール(non-ideal backhaul)を利用する場合にサポートされると想定されてもよい(図4B参照)。 Multi-PDCCH (DCI) may be assumed to be supported when multiple TRPs utilize ideal backhaul/non-ideal backhaul (see Figure 4B). .
 このとき、1つのTRP(CORESETプールインデックス)に関連付く1つのDCIが、当該TRPに対応するTCI状態を指示してもよい。 At this time, one DCI associated with one TRP (CORESET pool index) may indicate the TCI state corresponding to the TRP.
 なお、理想的バックホールは、DMRSポートグループタイプ1、参照信号関連グループタイプ1、アンテナポートグループタイプ1、CORESETプールタイプ1、などと呼ばれてもよい。非理想的バックホールは、DMRSポートグループタイプ2、参照信号関連グループタイプ2、アンテナポートグループタイプ2、CORESETプールタイプ2、などと呼ばれてもよい。名前はこれらに限られない。 Note that the ideal backhaul may also be called DMRS port group type 1, reference signal related group type 1, antenna port group type 1, CORESET pool type 1, etc. Non-ideal backhaul may be referred to as DMRS port group type 2, reference signal related group type 2, antenna port group type 2, CORESET pool type 2, etc. The names are not limited to these.
 DCIに含まれるTCI状態を指示するフィールド(TCIフィールド)は、以下の選択肢0-1及び0-2の少なくとも一方に従ってもよい。 The field (TCI field) that indicates the TCI status included in the DCI may follow at least one of the following options 0-1 and 0-2.
[選択肢0-1]
 Rel.15/16までに規定されるTCIフィールドが再利用されてもよい(図5A参照)。図5Aに示すように、DCIに1つのTCIフィールドが含まれてもよい。当該TCIフィールドのビット数は、特定の数(例えば、3)であってもよい。
[Choice 0-1]
Rel. The TCI field defined up to 15/16 may be reused (see FIG. 5A). As shown in FIG. 5A, the DCI may include one TCI field. The number of bits in the TCI field may be a specific number (for example, 3).
[選択肢0-2]
 Rel.15/16までに規定されるTCIフィールドが拡張されてもよい(図5B参照)。例えば、DCIに、TCIフィールドが複数(例えば、2つ)含まれてもよい。それぞれのTCIフィールドのビット数は、特定の数(例えば、3)であってもよい。
[Choice 0-2]
Rel. The TCI field defined up to 15/16 may be expanded (see FIG. 5B). For example, the DCI may include a plurality of (for example, two) TCI fields. The number of bits in each TCI field may be a specific number (eg, 3).
 選択肢0-2において、DLアサインメントなしのDCIについて、DCIオーバヘッドが追加されることはない。一方、DLアサインメントを含むDCIについて、DCIオーバヘッドが追加される。 In option 0-2, no DCI overhead is added for DCI without DL assignment. On the other hand, DCI overhead is added for DCI including DL assignment.
 シングルDCIベースのマルチTRPについて、ジョイントTCI状態の場合、UEに対し、MAC CEを用いてDL/UL(ジョイント)TCI状態がアクティベートされてもよい。次いで、UEは、DCI(ビーム指示)を用いて、第1のDL/UL(ジョイント)TCI状態と、第2のDL/UL(ジョイント)TCI状態と、を指示されてもよい(図6A参照)。 For single DCI-based multi-TRP, in case of joint TCI state, DL/UL (joint) TCI state may be activated for the UE using MAC CE. The UE may then be instructed to a first DL/UL (joint) TCI state and a second DL/UL (joint) TCI state using DCI (beam indication) (see FIG. 6A). ).
 当該ビーム指示によって指示されるTCIコードポイントは、1つ又は複数(2つ)のTCI状態(第1のジョイントTCI状態/第2のジョイントTCI状態)と対応してもよい(図6B参照)。 The TCI code point indicated by the beam instruction may correspond to one or more (two) TCI states (first joint TCI state/second joint TCI state) (see FIG. 6B).
 図6Bに示す例では、アクティブTCI状態に対応するTCIコードポイントの全てが2つのTCI状態と対応する例を示しているが、アクティブTCI状態に対応するTCIコードポイントの少なくとも1つが2つのTCI状態に対応するような関連付けが用いられてもよい。このような関連付けを用いることで、シングルTRP及びマルチTRPを動的に切り替えることができる。 In the example shown in FIG. 6B, all of the TCI code points corresponding to an active TCI state correspond to two TCI states, but at least one of the TCI code points corresponding to an active TCI state corresponds to two TCI states. An association corresponding to the above may also be used. By using such an association, it is possible to dynamically switch between single TRP and multi-TRP.
 シングルDCIベースのマルチTRPについて、セパレートTCI状態の場合、UEに対し、MAC CEを用いてDL(セパレート)TCI状態及びUL(セパレート)TCI状態がアクティベートされてもよい。次いで、UEは、DCI(ビーム指示)を用いて、第1のDL(セパレート)TCI状態及び第1のUL(セパレート)TCI状態と、第2のDL(セパレート)TCI状態及び第2のUL(セパレート)TCI状態と、を指示されてもよい(図7A参照)。 For single DCI-based multi-TRP, in the case of separate TCI state, DL (separate) TCI state and UL (separate) TCI state may be activated for the UE using MAC CE. The UE then uses the DCI (Beam Indication) to enter a first DL (Separate) TCI state and a first UL (Separate) TCI state, a second DL (Separate) TCI state and a second UL ( separate) TCI state (see FIG. 7A).
 当該ビーム指示によって指示されるTCIコードポイントは、1つ又は複数(2つ)のTCI状態(第1のセパレート(DL/UL)TCI状態/第2のセパレート(DL/UL)TCI状態)と対応してもよい(図7B参照)。 The TCI code point indicated by the beam instruction corresponds to one or more (two) TCI states (first separate (DL/UL) TCI state/second separate (DL/UL) TCI state). (See FIG. 7B).
 図7Bに示す例では、アクティブTCI状態に対応するTCIコードポイントの全てが2つのTCI状態(第1のセパレート(DL/UL)TCI状態/第2のセパレート(DL/UL)TCI状態)と対応する例を示しているが、アクティブTCI状態に対応するTCIコードポイントの少なくとも1つが2つのTCI状態に対応するような関連付けが用いられてもよい。このような関連付けを用いることで、シングルTRP及びマルチTRPを動的に切り替えることができる。 In the example shown in FIG. 7B, all TCI code points corresponding to the active TCI state correspond to two TCI states (first separate (DL/UL) TCI state/second separate (DL/UL) TCI state). However, an association may be used in which at least one of the TCI code points corresponding to an active TCI state corresponds to two TCI states. By using such an association, it is possible to dynamically switch between single TRP and multi-TRP.
 なお、図7Aにおいて、MAC CEによってアクティベートされるTCI状態について、DL TCI状態とUL TCI状態とで別々のTCI状態がアクティベートされる例を示したが、セパレートTCI状態の場合であっても、アクティベートされるDL TCI状態とUL TCI状態とは、共通のTCI状態を含んでもよい。 In addition, in FIG. 7A, regarding the TCI state activated by the MAC CE, an example was shown in which separate TCI states are activated in the DL TCI state and the UL TCI state, but even in the case of the separate TCI state, the activated The DL TCI state and UL TCI state to be provided may include a common TCI state.
 マルチDCIベースのマルチTRPについて、CORESETプールインデックスごとにTCI状態の、RRCによる設定、MAC CEによるアクティベーション、及び、DCIによる指示、の少なくとも1つが行われてもよい。 Regarding the multi-DCI-based multi-TRP, at least one of setting of the TCI state by RRC, activation by MAC CE, and instruction by DCI may be performed for each CORESET pool index.
 マルチDCIベースのマルチTRPについて、ジョイントTCI状態の場合、第1の値(例えば、0)のCORESETプールインデックス用に、UEに対し、TCI状態の、RRCによる設定、MAC CEによるアクティベーション、及び、DCIによる指示、が行われてもよい(図8A参照)。第1の値のCORESETプールインデックスに対応する指示されたTCI状態は、第1のTCI状態と呼ばれてもよい。 For multi-DCI-based multi-TRP, for a joint TCI state, for a CORESET pool index of the first value (e.g. 0), for the UE, configuration of TCI state by RRC, activation by MAC CE; Instructions may also be given by the DCI (see FIG. 8A). The indicated TCI state corresponding to the first value of the CORESET pool index may be referred to as a first TCI state.
 当該ビーム指示によって指示されるTCIコードポイントは、1つのTCI状態(第1のジョイントTCI状態)と対応してもよい(図8B参照)。 The TCI code point indicated by the beam instruction may correspond to one TCI state (first joint TCI state) (see FIG. 8B).
 マルチDCIベースのマルチTRPについて、ジョイントTCI状態の場合、第2の値(例えば、1)のCORESETプールインデックス用に、UEに対し、TCI状態の、RRCによる設定、MAC CEによるアクティベーション、及び、DCIによる指示、が行われてもよい(図9A参照)。第2の値のCORESETプールインデックスに対応する指示されたTCI状態は、第2のTCI状態と呼ばれてもよい。 For multi-DCI-based multi-TRP, for joint TCI state, for the UE a CORESET pool index of a second value (e.g. 1), configuration of TCI state by RRC, activation by MAC CE; Instructions may also be given by the DCI (see FIG. 9A). The indicated TCI state corresponding to the second value of the CORESET pool index may be referred to as a second TCI state.
 当該ビーム指示によって指示されるTCIコードポイントは、1つのTCI状態(第2のジョイントTCI状態)と対応してもよい(図9B参照)。 The TCI code point indicated by the beam instruction may correspond to one TCI state (second joint TCI state) (see FIG. 9B).
 各CORESETプールインデックスに対応するDCIが、同じTCI状態(TCI状態ID)を指示するとき(例えば、図8B及び図9BにおけるTCIコードポイント「111」に対応するTCI状態#7が指示されるとき)、UEは、1つのTCI状態を指示されたと判断してもよい。このとき、UEは、シングルTRPを用いる動作を行ってもよい。 When the DCI corresponding to each CORESET pool index indicates the same TCI state (TCI state ID) (for example, when TCI state #7 corresponding to TCI code point "111" in FIGS. 8B and 9B is indicated) , the UE may determine that one TCI state is indicated. At this time, the UE may perform an operation using a single TRP.
 なお、上記マルチDCIベースのマルチTRPについては、ジョイントTCI状態を用いる例に説明したが、セパレートTCI状態を用いるケースにも適宜適用可能である。 Note that although the multi-DCI-based multi-TRP described above has been described as an example using a joint TCI state, it can also be appropriately applied to a case using a separate TCI state.
 本開示において、指示されるTCI状態(indicated TCI state)、Rel.17TCI状態、共通TCI状態、統一TCI状態、は互いに読み替えられてもよい。本開示において、マルチTRPを利用するチャネル/信号に適用される共通TCI状態、Rel.17TCI状態、Rel.18TCI状態、は互いに読み替えられてもよい。 In the present disclosure, indicated TCI state, Rel. 17 TCI state, common TCI state, and unified TCI state may be read interchangeably. In this disclosure, common TCI states applied to channels/signals utilizing multi-TRP, Rel. 17TCI state, Rel. 18TCI states may be read interchangeably.
 UEは、指示されたTCI状態を、特定のチャネル/信号に適用してもよい。 The UE may apply the indicated TCI state to a particular channel/signal.
 当該特定のチャネル/信号は、UE固有(dedicated)のDLチャネル/信号であってもよい。UE固有のDLチャネル/信号は、UE固有のPDCCH/PDSCH/CSI-RS(例えば、非周期(aperiodic(A-))CSI-RS)であってもよい。 The specific channel/signal may be a UE-dedicated DL channel/signal. The UE-specific DL channel/signal may be a UE-specific PDCCH/PDSCH/CSI-RS (eg, an aperiodic (A-) CSI-RS).
 当該特定のチャネル/信号は、特定のULチャネル/信号であってもよい。特定のULチャネル/信号は、DCIで指示される(動的グラントで指示される)PUSCH、コンフィギュアドグラントPUSCH、複数(全て)の固有のPUCCH(リソース)、SRS(例えば、非周期(aperiodic(A-))SRS)の少なくとも1つであってもよい。 The specific channel/signal may be a specific UL channel/signal. A specific UL channel/signal can be a DCI-indicated PUSCH (indicated by a dynamic grant), a configured grant PUSCH, multiple (all) unique PUCCHs (resources), SRS (e.g. aperiodic (A-))SRS).
 1つ又は複数(例えば、2つ)の指示されるTCI状態は、上述の第0の実施形態に記載した方法に基づいて指示されてもよい。 One or more (for example, two) indicated TCI states may be indicated based on the method described in the zeroth embodiment above.
 なお、本開示の各実施形態では、UEに対して指示されるTCI状態の数は、1つ又は2つの例を記載するが、指示されるTCI状態の数はこれに限られない。例えば、UEに対して指示されるTCI状態の数は3以上の数(例えば、4)であってもよい。 Note that in each embodiment of the present disclosure, an example will be described in which the number of TCI states instructed to the UE is one or two, but the number of TCI states instructed is not limited to this. For example, the number of TCI states instructed to the UE may be three or more (for example, four).
 以下本開示の各実施形態は、シングルTRPのPDSCHに適用されてもよい。 The following embodiments of the present disclosure may be applied to a single TRP PDSCH.
 シングルTRPのPDSCHは、特定のDCI(DCIフォーマット)でスケジュールされてもよい。当該特定のDCIフォーマットは、例えば、DCIフォーマット1_0(又は、TCIフィールドを含まないDCIフォーマット)であってもよい。当該特定のDCIフォーマットは、DCIフォーマット1_1/1-2であってもよい。当該特定のDCIフォーマットは、1つのTCI状態を指示してもよい。 A single TRP PDSCH may be scheduled with a specific DCI (DCI format). The specific DCI format may be, for example, DCI format 1_0 (or a DCI format that does not include a TCI field). The specific DCI format may be DCI format 1_1/1-2. The particular DCI format may indicate one TCI state.
 シングルTRPのPDSCHのQCL想定は、デフォルトTCI状態であってもよい。デフォルトTCI状態は(任意のDCIフォーマットにおける)1つのTCI状態であってもよい。 The QCL assumption for a single TRP PDSCH may be the default TCI state. The default TCI state may be one TCI state (in any DCI format).
 UEに対しマルチTRPの繰り返し送信が設定されなくてもよい。このとき、シングルTRPのPDSCHはシングルレイヤMIMOの(with single layer MIMO)PDSCHとしてスケジュールされてもよい。 Repeated transmission of multi-TRPs may not be configured for the UE. At this time, the single TRP PDSCH may be scheduled as a single layer MIMO (with single layer MIMO) PDSCH.
 シングルTRPのPDSCHは、UEにマルチTRP(例えば、CORESETプールインデックス)が設定されないときのPDSCHであってもよい。 The single TRP PDSCH may be the PDSCH when multiple TRPs (for example, CORESET pool index) are not configured in the UE.
 シングルTRPのPDSCHは、少なくともCSSのCORESETでスケジュールされるPDSCHであってもよい。シングルTRPのPDSCHは、CSS(又は、タイプ3のCSSを除くCSS)のみのCORESETでスケジュールされるPDSCHであってもよい。 The single TRP PDSCH may be a PDSCH scheduled at least in CSS CORESET. A single TRP PDSCH may be a PDSCH scheduled with a CORESET of only a CSS (or a CSS other than a type 3 CSS).
 以下本開示の各実施形態は、マルチTRPのPDSCHに適用されてもよい。 The following embodiments of the present disclosure may be applied to a multi-TRP PDSCH.
 シングルTRPのPDSCHは、特定のDCI(DCIフォーマット)でスケジュールされてもよい。当該特定のDCIフォーマットは、DCIフォーマット1_1/1-2であってもよい。当該特定のDCIフォーマットは、2つのTCI状態を指示してもよい。 A single TRP PDSCH may be scheduled with a specific DCI (DCI format). The specific DCI format may be DCI format 1_1/1-2. The particular DCI format may indicate two TCI states.
 マルチTRPのPDSCHのQCL想定は、デフォルトTCI状態であってもよい。デフォルトTCI状態は(任意のDCIフォーマットにおける)2つのTCI状態であってもよい。 The QCL assumption for PDSCH of multi-TRP may be the default TCI state. The default TCI state may be two TCI states (in any DCI format).
 UEに対しマルチTRPの繰り返し送信が設定されなくてもよい。このとき、マルチTRPのPDSCHは、マルチレイヤMIMOの(with multi layer MIMO)PDSCHとしてスケジュールされてもよい。 Repeated transmission of multi-TRPs may not be configured for the UE. At this time, the multi-TRP PDSCH may be scheduled as a multi-layer MIMO (with multi-layer MIMO) PDSCH.
 マルチTRPのPDSCHは、UEにマルチTRPの繰り返し送信が設定されるときのPDSCHであってもよい。このとき、マルチTRPのPDSCHは、(TDM/FDM/SDMを利用する)繰り返し送信の(with repetition)PDSCHとしてスケジュールされてもよい。 The multi-TRP PDSCH may be a PDSCH when the UE is configured to repeatedly transmit multi-TRP. At this time, the multi-TRP PDSCH may be scheduled as a PDSCH with repetition transmission (using TDM/FDM/SDM).
 マルチTRPのPDSCHは、UEにSFNスキームA/Bが設定されるときのPDSCHであってもよい。マルチTRPのPDSCHは、複数のTCI状態を有するPDSCHであってもよい。 The multi-TRP PDSCH may be a PDSCH when SFN scheme A/B is configured in the UE. A multi-TRP PDSCH may be a PDSCH with multiple TCI states.
 以下本開示の各実施形態は、シングルTRPのPDCCHに適用されてもよい。 The following embodiments of the present disclosure may be applied to a single TRP PDCCH.
 シングルTRPのPDCCHは、SFNスキームA/Bが設定されないCORESETに関連するPDCCHであってもよい。 The single TRP PDCCH may be a PDCCH related to a CORESET in which SFN scheme A/B is not configured.
 シングルTRPのPDCCHは、(2つのリンクされたSSの)繰り返し送信が設定されないCORESETに関連するPDCCHであってもよい。 The PDCCH of a single TRP may be a PDCCH related to a CORESET (of two linked SSs) in which repeated transmission is not configured.
 以下本開示の各実施形態は、マルチTRPのPDCCHに適用されてもよい。 The following embodiments of the present disclosure may be applied to a multi-TRP PDCCH.
 マルチTRPのPDCCHは、SFNスキームA/Bが設定されるCORESETに関連するPDCCHであってもよい。 The multi-TRP PDCCH may be a PDCCH related to a CORESET in which SFN scheme A/B is configured.
 以下本開示の各実施形態は、シングルTRPのPUSCH/PUCCHに適用されてもよい。 The following embodiments of the present disclosure may be applied to a single TRP PUSCH/PUCCH.
 シングルTRPのPUSCH/PUCCHは、マルチTRPの繰り返し送信が設定されないPUSCH/PUCCHであってもよい。 The single TRP PUSCH/PUCCH may be a PUSCH/PUCCH for which repeated transmission of multiple TRPs is not set.
 以下本開示の各実施形態は、マルチTRPのPUSCH/PUCCHに適用されてもよい。 The following embodiments of the present disclosure may be applied to multi-TRP PUSCH/PUCCH.
 マルチTRPのPUSCH/PUCCHは、マルチTRPの繰り返し送信が設定されるPUSCH/PUCCHであってもよい。 The multi-TRP PUSCH/PUCCH may be a PUSCH/PUCCH on which repeated transmission of the multi-TRP is configured.
 以下本開示の各実施形態は、シングル/マルチTRPのCSI-RS/SRSに適用されてもよい。 The following embodiments of the present disclosure may be applied to single/multi-TRP CSI-RS/SRS.
 以下本開示の各実施形態は、シングルDCIベースのNCJTされるPDSCH、マルチDCIベースのNCJTされるPDSCH、シングルDCIベースのSDM/TDM/FDMされるPDSCHの繰り返し送信、複数TRPを用いるPDCCH/PUCCH/PUSCHの繰り返し送信、インターセル(inter-cell)におけるマルチ TRPに関する動作、マルチTRP用のビームマネジメント、及び、HST/SFNスキームの少なくとも1つに共通TCI状態が設定される場合に適用されてもよい。 Hereinafter, each embodiment of the present disclosure describes a PDSCH that is subjected to single DCI-based NCJT, a PDSCH that is subjected to multi-DCI-based NCJT, repeated transmission of a PDSCH that is subjected to single DCI-based SDM/TDM/FDM, and PDCCH/PUCCH that uses multiple TRPs. / PUSCH repeated transmission, operations related to multi-TRP in inter-cell, beam management for multi-TRP, and when a common TCI state is set in at least one of the HST/SFN schemes. good.
 また、共通TCI状態の拡張は、セル間(inter-band)のキャリアアグリゲーションにおけるビーム指示のために用いられてもよい。セル間(inter-band)のキャリアアグリゲーションにおけるビーム指示では、1つのMAC CE/DCIを用いて、異なる複数のバンドの1つ以上のTCI状態が指示されてもよい。 Additionally, the extension of the common TCI state may be used for beam pointing in inter-band carrier aggregation. In beam designation in inter-band carrier aggregation, one or more TCI states of a plurality of different bands may be designated using one MAC CE/DCI.
 UEに対し、ビーム指示DCIによって1つ又は複数(例えば、2つ)のTCI状態が指示されてもよい。本開示において、当該TCI状態は、「指示されるTCI状態(indicated TCI State)」と呼ばれてもよい。 One or more (for example, two) TCI states may be indicated to the UE by the beam indication DCI. In this disclosure, the TCI state may be referred to as an "indicated TCI state."
 UEに対し、TCI状態のリストが設定されてもよい。当該リストは、複数のTCI状態を含んでもよい。上述のように、当該TCI状態のリストは、RRCシグナリングを用いて設定されてもよい。当該TCI状態は、「設定されるTCI状態(configured TCI State)」と呼ばれてもよい。 A list of TCI states may be configured for the UE. The list may include multiple TCI states. As mentioned above, the list of TCI states may be configured using RRC signaling. The TCI state may be referred to as a "configured TCI state."
 また、UEは、TCI状態のリストが設定され、当該リストから1つ又は複数のTCI状態がアクティベートされてもよい。上述のように、当該TCI状態は、MAC CEを用いてアクティベートされてもよい。当該TCI状態についても、「設定されるTCI状態」と呼ばれてもよい。 Additionally, the UE may be configured with a list of TCI states, and one or more TCI states may be activated from the list. As mentioned above, the TCI state may be activated using the MAC CE. The TCI state may also be referred to as a "TCI state to be set."
 UEは、「設定されるTCI状態」の少なくとも1つを各チャネル/信号に適用してもよい。このとき、UEは、当該チャネル/信号のスケジューリング/トリガリングDCI(特に、「他のDCI」)に含まれるTCIフィールドに基づいて、「設定されるTCI状態」のうちの1つ又は複数(例えば、2つ)のTCI状態を適用してもよい。 The UE may apply at least one of the "set TCI states" to each channel/signal. At this time, the UE selects one or more of the "TCI states to be set" (for example, , 2) TCI states may be applied.
 本開示において、「第1」は「第2」又は「第n(nは3以上の整数)」と読み替えられてもよい。 In the present disclosure, "first" may be read as "second" or "nth" (n is an integer of 3 or more).
 本開示において、UEが第1のTCI状態(指示されるTCI状態)又は第2のTCI状態(指示されるTCI状態)を選択/決定するケースについて、UEに対し上位レイヤシグナリング(RRC/MAC CE)を用いていずれかのTCI状態を選択/決定するかを設定されてもよい。 In this disclosure, for the case where the UE selects/determines the first TCI state (indicated TCI state) or the second TCI state (indicated TCI state), upper layer signaling (RRC/MAC CE) is provided to the UE. ) may be used to select/determine which TCI state.
 以下、図10を用いて、以下に記載する第1-第5の実施形態に係るUE動作の概要を説明する。 Hereinafter, using FIG. 10, an overview of UE operations according to the first to fifth embodiments described below will be explained.
 まず、共通TCI状態が設定されるか否かが判定されてもよい(ステップS1001)。 First, it may be determined whether a common TCI state is set (step S1001).
 ステップS1001において、共通TCI状態が設定されると判定された場合、次いで、マルチDCIのマルチTRPを用いる送信が設定されるか否かが判定されてもよい(ステップ1002)。 If it is determined in step S1001 that a common TCI state is set, then it may be determined whether transmission using multi-DCI multi-TRP is set (step 1002).
 ステップS1002において、マルチDCIのマルチTRPを用いる送信が設定されると判定された場合、第1/第2の実施形態の適用が判断されてもよい。 In step S1002, if it is determined that transmission using multi-DCI multi-TRP is set, it may be determined to apply the first/second embodiment.
 なお、ステップ1002において、マルチDCIのマルチTRP用のデフォルトTCI状態/QCLを有効化するRRCパラメータ(enabler、例えば、enableDefaultTCI-StatePerCoresetPoolIndex、又は、Rel.18で新たに規定されるパラメータ)が設定されるか否かが判定されてもよい。 Note that in step 1002, an RRC parameter (enabler, for example, enableDefaultTCI-StatePerCoresetPoolIndex or a parameter newly defined in Rel. 18) is set to enable the default TCI state/QCL for multi-DCI multi-TRP. It may be determined whether or not.
 ステップS1002において、マルチDCIのマルチTRPを用いる送信が設定されないと判定された場合、次いで、シングルDCIのマルチTRPを用いる送信が設定されるか否かが判定されてもよい(ステップS1003)。 In step S1002, if it is determined that transmission using multi-DCI multi-TRP is not set, then it may be determined whether transmission using single-DCI multi-TRP is set (step S1003).
 ステップS1003において、シングルDCIのマルチTRPを用いる送信が設定されると判定された場合、第3/第4(/第5)の実施形態の適用が判断されてもよい。 In step S1003, if it is determined that transmission using a single DCI multi-TRP is set, it may be determined to apply the third/fourth (/fifth) embodiment.
 ステップS1003において、シングルDCIのマルチTRPを用いる送信が設定されないと判定された場合、上述のRel.17におけるデフォルトQCLに関する動作が適用されてもよい。 In step S1003, if it is determined that transmission using single DCI multi-TRP is not set, the above-mentioned Rel. The operations regarding the default QCL in No. 17 may be applied.
 なお、ステップ1003において、シングルDCIのマルチTRP用のデフォルトTCI状態/QCLを有効化するRRCパラメータ(enabler、例えば、enableTwoDefaultTCI-States、又は、Rel.18で新たに規定されるパラメータ)が設定されるか否かが判定されてもよい。 Note that in step 1003, an RRC parameter (enabler, for example, enableTwoDefaultTCI-States or a parameter newly defined in Rel. 18) is set to enable the default TCI state/QCL for multiple TRPs of a single DCI. It may be determined whether or not.
 なお、上述のステップS1001からS1003の順序は、あくまで一例に過ぎない。上述のステップS1001からS1003の順序は、任意の順序であってもよいし、各ステップが独立して判定されてもよい。 Note that the order of steps S1001 to S1003 described above is only an example. The order of steps S1001 to S1003 described above may be any order, or each step may be determined independently.
<第1の実施形態>
 第1の実施形態は、マルチDCIベースのマルチTRPにおけるチャネルのTCI状態/QCLに関する。
<First embodiment>
The first embodiment relates to TCI status/QCL of a channel in multi-DCI-based multi-TRP.
 UEに対し、統一TCI状態が設定されてもよい。例えば、UEは、統一TCI状態の設定に関するRRCパラメータによって設定されてもよい。 A uniform TCI state may be set for the UE. For example, the UE may be configured with RRC parameters for setting unified TCI state.
 統一TCI状態の設定に関するRRCパラメータは、例えば、DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)、及び、UL TCI状態の設定パラメータ(UL-TCIState)の少なくとも一方であってもよい。 The RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
 当該DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)は、DL(セパレート)TCI状態/ジョイントTCI状態を示してもよい。当該UL TCI状態の設定パラメータ(例えば、UL-TCIState)は、UL TCI状態を示してもよい。 The configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state. The configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
 以下本開示の各実施形態において、統一TCI状態が設定されること、(セパレート)DL/UL/ジョイントTCI状態が設定されること、統一TCI状態の設定に関するRRCパラメータ(例えば、DLorJointTCIState/UL-TCIState)が設定されること、は互いに読み替えられてもよい。 Below, in each embodiment of the present disclosure, a unified TCI state is set, a (separate) DL/UL/Joint TCI state is set, and RRC parameters related to the setting of the unified TCI state (for example, DLorJointTCIState/UL-TCIState ) may be read interchangeably.
 UEに対し、マルチDCIのマルチTRPを用いるチャネル/信号の送受信が設定されてもよい。 Channel/signal transmission/reception using multi-DCI multi-TRP may be configured for the UE.
 以下、本実施形態では、スケジューリングオフセットが特定の閾値(例えば、timeDurationForQCL/beamSwitchTiming/特定のパラメータ)より小さい場合に適用されてもよい。当該特定の閾値は、UEによって報告されるUE能力情報に基づいて決定されてもよい。 Hereinafter, this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter). The particular threshold may be determined based on UE capability information reported by the UE.
 なお、本開示において、当該特定の閾値は、timeDurationForQCL/beamSwitchTimingが利用されてもよいし、(Rel.18以降で規定される)特定のパラメータが利用されてもよい。 Note that in the present disclosure, timeDurationForQCL/beamSwitchTiming may be used as the specific threshold value, or a specific parameter (defined in Rel. 18 or later) may be used.
 UEは、特定のDLチャネル/信号のTCI状態/QCLを、特定の方法に基づいて決定してもよい。当該特定のDLチャネル/信号は、例えば、PDSCHであってもよい。 The UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method. The particular DL channel/signal may be, for example, a PDSCH.
 当該特定の方法は、特定のCORESTプールインデックスに対応するTCI状態又はQCL想定に基づく方法であってもよい。例えば、当該特定の方法は、下記実施形態1-1から1-3の少なくとも1つに記載される方法であってもよい。 The particular method may be a method based on TCI state or QCL assumptions corresponding to a particular COREST pool index. For example, the specific method may be a method described in at least one of Embodiments 1-1 to 1-3 below.
《実施形態1-1》
 UEは、特定のCORESET IDに対応するQCL想定/TCI状態を、特定のDLチャネル/信号(例えば、PDSCH)に適用してもよい。
《Embodiment 1-1》
The UE may apply QCL assumptions/TCI states corresponding to a particular CORESET ID to a particular DL channel/signal (eg, PDSCH).
 当該特定のCORESET IDは、最新の(latest)モニタリングスロットにおける(PDSCHをスケジュールするCORESETと)同じCORESETプールインデックス有する所定の(例えば、最低の)CORESET IDであってもよい。 The particular CORESET ID may be a predetermined (eg, lowest) CORESET ID with the same CORESET pool index (as the CORESET that schedules the PDSCH) in the latest monitoring slot.
 当該最新のモニタリングスロットは、1つのCCにおけるアクティブBWPにおけるモニタリングスロットであってもよい。 The latest monitoring slot may be a monitoring slot in an active BWP in one CC.
 バンド内の複数のCCに対する1つのスロット内のCORESET用のQCL特性(例えば、QCLタイプD)が異なる場合、当該特定のCORESET IDのCORESETは、最低のCC IDを有するCCにおけるアクティブBWPにおけるCORESETであってもよい。 If the QCL characteristics (e.g. QCL type D) for a CORESET in one slot for multiple CCs in a band are different, then the CORESET for that particular CORESET ID is the CORESET in the active BWP in the CC with the lowest CC ID. There may be.
 このとき、UEは、n個(例えば、n=2)のCORESETプールインデックス用に、トータルでn個のQCL想定について判断してもよい。 At this time, the UE may determine a total of n QCL assumptions for n (eg, n=2) CORESET pool indices.
 「指示されるTCI状態」/「設定されるTCI状態」が当該CORESETに適用される場合、当該「指示されるTCI状態」/「設定されるTCI状態」は、特定のDLチャネル/信号(例えば、PDSCH)に適用されてもよい。 When the "TCI state indicated"/"TCI state set" is applied to the CORESET, the "TCI state indicated"/"TCI state set" is a specific DL channel/signal (e.g. , PDSCH).
 1つのCORESETに複数(2つ)のTCI状態が対応する場合、UEは、複数のTCI状態のうちのいずれか1つのTCI状態を特定のDLチャネル/信号(例えば、PDSCH)に適用すると判断してもよい。 When multiple (two) TCI states correspond to one CORESET, the UE determines that any one TCI state among the multiple TCI states is applied to a specific DL channel/signal (e.g., PDSCH). You can.
《実施形態1-2》
 UEは、第1の値(例えば、0)のCORESETプールインデックス用の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」と、第2の値(例えば、1)のCORESETプールインデックス用の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」とを、特定のDLチャネル/信号(例えば、PDSCH)に適用してもよい。
《Embodiment 1-2》
The UE sets the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the CORESET pool index with a first value (e.g., 0) and a CORESET with a second value (e.g., 1). The "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the pool index may be applied to a specific DL channel/signal (eg, PDSCH).
 このとき、UEは、n個(例えば、n=2)のCORESETプールインデックス用に、トータルでn個のQCL想定について判断してもよい。 At this time, the UE may determine a total of n QCL assumptions for n (eg, n=2) CORESET pool indices.
 バンド内の複数のCCに対する1つのスロット内のCORESET用のQCL特性(例えば、QCLタイプD)が異なる場合、決定/選択されるCORESETは、最低のCC IDを有するCCにおけるアクティブBWPにおけるCORESETであってもよい。 If the QCL characteristics (e.g. QCL type D) for the CORESET in one slot for multiple CCs in the band are different, the determined/selected CORESET is the one in the active BWP in the CC with the lowest CC ID. You can.
 マルチDCIベースのマルチTRPにおいて、1つのビーム指示DCIによって2つのTCI状態が指示されてもよい。この場合、UEは、PDSCHのそれぞれについて、各DCIで指示される第1の指示されるTCI状態及び第2の指示されるTCI状態を適用してもよい。 In multi-DCI-based multi-TRP, two TCI states may be indicated by one beam indicating DCI. In this case, the UE may apply the first indicated TCI state and the second indicated TCI state indicated in each DCI for each of the PDSCHs.
 例えば、DCI#1でTCI状態#1及びTCI状態#2が指示され、DCI#2でTCI状態#3及びTCI状態#4が指示される場合、UEは、DCI#1に関連するPDSCH#1にTCI状態#1及びTCI状態#2を適用し、DCI#2に関連するPDSCH#2にTCI状態#3及びTCI状態#4を適用してもよい。 For example, if DCI #1 indicates TCI state #1 and TCI state #2, and DCI #2 indicates TCI state #3 and TCI state #4, the UE TCI state #1 and TCI state #2 may be applied to DCI #2, and TCI state #3 and TCI state #4 may be applied to PDSCH #2 related to DCI #2.
《実施形態1-3》
 上記実施形態1-1及び1-2のいずれかが、特定の条件に基づいて選択/適用されてもよい。
《Embodiment 1-3》
Either of the above embodiments 1-1 and 1-2 may be selected/applied based on specific conditions.
 当該特定の条件は、例えば、「指示されるTCI状態」に関連付くPCIに基づく条件であってもよい。 The specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state."
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIに関連付けられる場合(つまり、セル内(intra-cell)の場合)、UEは、上記実施形態1-2を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with the PCI of the serving cell (i.e., intra-cell) ), the UE may decide to apply the above embodiment 1-2.
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIと異なるPCIに関連付けられる場合(つまり、セル間(inter-cell)の場合)、UEは、上記実施形態1-1を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with a PCI different from the serving cell's PCI (i.e., inter-cell ), the UE may decide to apply the above embodiment 1-1.
 intra-cellの場合、常にPDSCHのために2つの「指示されたTCI状態」を使用することは有用である。一方、「指示されたTCI状態」がサービングセルのPCIと異なるPCIに関連付く場合(すなわち、inter-cellの場合)、UEは、非UE専用(dedicated)のPDSCHを受信できないことが問題となる。本実施形態は、この問題を解決するのに有効である。 For intra-cells, it is useful to always use two "indicated TCI states" for the PDSCH. On the other hand, when the "indicated TCI state" is associated with a PCI different from the PCI of the serving cell (ie, in the case of inter-cell), a problem arises in that the UE cannot receive a PDSCH dedicated to non-UEs. This embodiment is effective in solving this problem.
 また、UEは、いずれか又は全て(両方の)サービングセルからのPDSCHと、非サービングセルからのPDSCHと、の少なくとも一方を、同じ時間(時間ドメイン(例えば、スロット/シンボル))において受信することを許容されてもよい。 The UE also allows receiving at least one of the PDSCH from any or all (both) serving cells and the PDSCH from non-serving cells at the same time (time domain (e.g., slot/symbol)). may be done.
 また、inter-cellにおいて実施形態1-2が適用される場合、UEは、intra-cellの動作に切り替えてもよい。基地局は、当該切り替えについてUEに指示してもよい。当該指示は、RRC/MAC CE/DCIによって行われてもよい。 Furthermore, when Embodiment 1-2 is applied in inter-cell, the UE may switch to intra-cell operation. The base station may instruct the UE regarding the switching. The instruction may be given by RRC/MAC CE/DCI.
 上記実施形態1-1から1-3の少なくとも1つは、特定のRRCパラメータがUEに対して設定されたときに(のみ)適用されてもよい。そうでない場合、UEは、上述のRel.17におけるデフォルトQCLに記載した方法を適用してもよい。 At least one of the above embodiments 1-1 to 1-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
 当該特定のRRCパラメータ/設定は、例えば、CORESETプールインデックスごとのデフォルトTCI状態を有効にするパラメータ(例えば、「enableDefaultTCI-StatePerCoresetPoolIndex」)、又は、Rel.18以降に規定される特定のパラメータであってもよい。 The particular RRC parameter/setting may be, for example, a parameter that enables the default TCI state per CORESET pool index (e.g., "enableDefaultTCI-StatePerCoresetPoolIndex"), or a Rel. It may be a specific parameter defined after 18.
 これによれば、UEは、DLチャネル/信号をバッファするために、複数のデフォルトQCLを想定する必要がなく、UEの処理を単純化することができる。 According to this, the UE does not need to assume multiple default QCLs in order to buffer DL channels/signals, and the UE processing can be simplified.
 以上第1の実施形態によれば、マルチDCIのマルチTRPを利用するDLチャネル/信号(例えば、PDSCH)に適切にTCI状態/QCL想定を適用することができる。 According to the first embodiment, TCI state/QCL assumptions can be appropriately applied to DL channels/signals (for example, PDSCH) that utilize multi-DCI and multi-TRP.
<第2の実施形態>
 第2の実施形態は、マルチDCIベースのマルチTRPにおけるチャネルのTCI状態/QCLに関する。
<Second embodiment>
The second embodiment relates to channel TCI status/QCL in multi-DCI-based multi-TRP.
 UEに対し、統一TCI状態が設定されてもよい。例えば、UEは、統一TCI状態の設定に関するRRCパラメータによって設定されてもよい。 A uniform TCI state may be set for the UE. For example, the UE may be configured with RRC parameters for setting unified TCI state.
 統一TCI状態の設定に関するRRCパラメータは、例えば、DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)、及び、UL TCI状態の設定パラメータ(UL-TCIState)の少なくとも一方であってもよい。 The RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
 当該DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)は、DL(セパレート)TCI状態/ジョイントTCI状態を示してもよい。当該UL TCI状態の設定パラメータ(例えば、UL-TCIState)は、UL TCI状態を示してもよい。 The configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state. The configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
 UEに対し、マルチDCIのマルチTRPを用いるチャネル/信号の送受信が設定されてもよい。 Channel/signal transmission/reception using multi-DCI multi-TRP may be configured for the UE.
 以下、本実施形態では、スケジューリングオフセットが特定の閾値(例えば、timeDurationForQCL/beamSwitchTiming/特定のパラメータ)より小さい場合に適用されてもよい。当該特定の閾値は、UEによって報告されるUE能力情報に基づいて決定されてもよい。 Hereinafter, this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter). The particular threshold may be determined based on UE capability information reported by the UE.
 UEは、特定のDLチャネル/信号のTCI状態/QCLを、特定の方法に基づいて決定してもよい。当該特定のDLチャネル/信号は、例えば、A-CSI-RSであってもよい。 The UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method. The particular DL channel/signal may be, for example, A-CSI-RS.
 当該特定のDLチャネル/信号が送信されるシンボルと同じシンボルに、他のDLチャネル/信号が存在しなくてもよい。 Other DL channels/signals may not exist in the same symbol as the symbol in which the particular DL channel/signal is transmitted.
 当該特定の方法は、特定のCORESTプールインデックスに対応するTCI状態又はQCL想定に基づく方法であってもよい。当該特定の方法は、例えば、下記実施形態2-1から2-3の少なくとも1つに記載される方法であってもよい。 The particular method may be a method based on TCI state or QCL assumptions corresponding to a particular COREST pool index. The specific method may be, for example, the method described in at least one of Embodiments 2-1 to 2-3 below.
《実施形態2-1》
 UEは、特定のCORESET IDに対応するQCL想定/TCI状態を、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用してもよい。
《Embodiment 2-1》
The UE may apply QCL assumptions/TCI states corresponding to a particular CORESET ID to a particular DL channel/signal (eg, A-CSI-RS).
 当該特定のCORESET IDは、最新の(latest)モニタリングスロットにおける(A-CSI-RSをトリガするCORESETと)同じCORESETプールインデックス有する所定の(例えば、最低の)CORESET IDであってもよい。 The particular CORESET ID may be a predetermined (eg, lowest) CORESET ID with the same CORESET pool index (as the CORESET that triggers the A-CSI-RS) in the latest monitoring slot.
 当該最新のモニタリングスロットは、1つのCCにおけるアクティブBWPにおけるモニタリングスロットであってもよい。 The latest monitoring slot may be a monitoring slot in an active BWP in one CC.
 バンド内の複数のCCに対する1つのスロット内のCORESET用のQCL特性(例えば、QCLタイプD)が異なる場合、当該特定のCORESET IDのCORESETは、最低のCC IDを有するCCにおけるアクティブBWPにおけるCORESETであってもよい。 If the QCL characteristics (e.g. QCL type D) for a CORESET in one slot for multiple CCs in a band are different, then the CORESET for that particular CORESET ID is the CORESET in the active BWP in the CC with the lowest CC ID. There may be.
 このとき、UEは、各CORESETプールインデックスについて、1つのQCL想定を判断してもよい。 At this time, the UE may determine one QCL assumption for each CORESET pool index.
 「指示されるTCI状態」/「設定されるTCI状態」が当該CORESETに適用される場合、当該「指示されるTCI状態」/「設定されるTCI状態」は、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用されてもよい。 When the "TCI state indicated"/"TCI state set" is applied to the CORESET, the "TCI state indicated"/"TCI state set" is a specific DL channel/signal (e.g. , A-CSI-RS).
 1つのCORESETに複数(2つ)のTCI状態が対応する場合、UEは、複数のTCI状態のうちのいずれか1つのTCI状態(例えば、選択される第1のTCI状態)を特定のDLチャネル/信号(例えば、A-CSI-RS)に適用すると判断してもよい。 When multiple (two) TCI states correspond to one CORESET, the UE assigns any one TCI state (for example, the selected first TCI state) among the multiple TCI states to a specific DL channel. / signal (for example, A-CSI-RS).
《実施形態2-2》
 UEは、第1の値(例えば、0)CORESETプールインデックス用の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」と、第2の値(例えば、1)のCORESETプールインデックス用の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」と、のいずれかを、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用してもよい。
《Embodiment 2-2》
The UE sets the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the CORESET pool index with a first value (e.g., 0) and a CORESET pool with a second value (e.g., 1). Either the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for indexing may be applied to a specific DL channel/signal (for example, A-CSI-RS). .
 例えば、UEは、第1(又は、第2)の値(例えば、0(又は、1))のCORESETプールインデックス用の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」を、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用してもよい。 For example, the UE determines the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the CORESET pool index of the first (or second) value (e.g., 0 (or 1)). may be applied to a specific DL channel/signal (eg, A-CSI-RS).
 バンド内の複数のCCに対する1つのスロット内のCORESET用のQCL特性(例えば、QCLタイプD)が異なる場合、決定/選択されるCORESETは、最低のCC IDを有するCCにおけるアクティブBWPにおけるCORESETであってもよい。 If the QCL characteristics (e.g. QCL type D) for the CORESET in one slot for multiple CCs in the band are different, the determined/selected CORESET is the one in the active BWP in the CC with the lowest CC ID. You can.
 マルチDCIベースのマルチTRPにおいて、1つのビーム指示DCIによって2つのTCI状態が指示されてもよい。この場合、UEは、A-CSI-RSのそれぞれについて、各DCIで指示される第1の指示されるTCI状態及び第2の指示されるTCI状態のいずれかを適用してもよい。 In multi-DCI-based multi-TRP, two TCI states may be indicated by one beam indicating DCI. In this case, the UE may apply either the first indicated TCI state or the second indicated TCI state indicated in each DCI for each of the A-CSI-RSs.
 例えば、DCI#1でTCI状態#1及びTCI状態#2が指示され、DCI#2でTCI状態#3及びTCI状態#4が指示される場合、UEは、DCI#1に関連するA-CSI-RS#1にTCI状態#1及びTCI状態#2のいずれかを適用し、DCI#2に関連するA-CSI-RS#2にTCI状態#3及びTCI状態#4のいずれかを適用してもよい。 For example, if DCI #1 indicates TCI state #1 and TCI state #2, and DCI #2 indicates TCI state #3 and TCI state #4, the UE - Apply either TCI state #1 or TCI state #2 to RS #1, and apply either TCI state #3 or TCI state #4 to A-CSI-RS #2 related to DCI #2. You can.
《実施形態2-3》
 上記実施形態2-1及び2-2のいずれかが、特定の条件に基づいて選択/適用されてもよい。
《Embodiment 2-3》
Either of the above embodiments 2-1 and 2-2 may be selected/applied based on specific conditions.
 当該特定の条件は、例えば、「指示されるTCI状態」に関連付くPCIに基づく条件であってもよい。 The specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state."
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIに関連付けられる場合(つまり、セル内(intra-cell)の場合)、UEは、上記実施形態2-2を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with the PCI of the serving cell (i.e., intra-cell) ), the UE may decide to apply the above embodiment 2-2.
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIと異なるPCIに関連付けられる場合(つまり、セル間(inter-cell)の場合)、UEは、上記実施形態2-1を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with a PCI different from the serving cell's PCI (i.e., inter-cell ), the UE may decide to apply the above embodiment 2-1.
 本実施形態に関する効果は、実施形態1-3に記載した効果と同様である。 The effects of this embodiment are similar to those described in Embodiments 1-3.
 また、UEは、いずれか又は全て(両方の)サービングセルからのA-CSI-RSと、非サービングセルからのA-CSI-RSと、の少なくとも一方を、同じ時間(時間ドメイン(例えば、スロット/シンボル))において受信することを許容されてもよい。 The UE may also transmit the A-CSI-RS from any or all (both) serving cells and/or the A-CSI-RS from non-serving cells at the same time (time domain (e.g., slot/symbol )).
 また、inter-cellにおいて実施形態2-2が適用される場合、UEは、intra-cellの動作に切り替えてもよい。基地局は、当該切り替えについてUEに指示してもよい。当該指示は、RRC/MAC CE/DCIによって行われてもよい。 Furthermore, when Embodiment 2-2 is applied in inter-cell, the UE may switch to intra-cell operation. The base station may instruct the UE regarding the switching. The instruction may be given by RRC/MAC CE/DCI.
 上記実施形態2-1から2-3の少なくとも1つは、特定のRRCパラメータがUEに対して設定されたときに(のみ)適用されてもよい。そうでない場合、UEは、上述のRel.17におけるデフォルトQCLに記載した方法を適用してもよい。 At least one of the above embodiments 2-1 to 2-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
 当該特定のRRCパラメータ/設定は、例えば、CORESETプールインデックスごとのデフォルトTCI状態を有効にするパラメータ(例えば、「enableDefaultTCI-StatePerCoresetPoolIndex」)、又は、Rel.18以降に規定される特定のパラメータであってもよい。 The particular RRC parameter/setting may be, for example, a parameter that enables the default TCI state per CORESET pool index (e.g., "enableDefaultTCI-StatePerCoresetPoolIndex"), or a Rel. It may be a specific parameter defined after 18.
 以上第2の実施形態によれば、マルチDCIのマルチTRPを利用するDLチャネル/信号(例えば、A-CSI-RS)に適切にTCI状態/QCL想定を適用することができる。 According to the second embodiment, TCI state/QCL assumptions can be appropriately applied to DL channels/signals (for example, A-CSI-RS) that utilize multi-DCI and multi-TRP.
<第3の実施形態>
 第3の実施形態は、シングルDCIベースのマルチTRPにおけるチャネルのTCI状態/QCLに関する。
<Third embodiment>
The third embodiment relates to TCI status/QCL of a channel in single DCI-based multi-TRP.
 UEに対し、統一TCI状態が設定されてもよい。例えば、UEは、統一TCI状態の設定に関するRRCパラメータによって設定されてもよい。 A uniform TCI state may be set for the UE. For example, the UE may be configured with RRC parameters for setting unified TCI state.
 統一TCI状態の設定に関するRRCパラメータは、例えば、DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)、及び、UL TCI状態の設定パラメータ(UL-TCIState)の少なくとも一方であってもよい。 The RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
 当該DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)は、DL(セパレート)TCI状態/ジョイントTCI状態を示してもよい。当該UL TCI状態の設定パラメータ(例えば、UL-TCIState)は、UL TCI状態を示してもよい。 The configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state. The configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
 UEに対し、シングルDCIのマルチTRPを用いるチャネル/信号の送受信が設定されてもよい。少なくとも1つのTCIコードポイントに複数(例えば、2つ)のTCI状態が対応することが、シングルDCIのマルチTRPを用いるチャネル/信号の送受信が設定されることを意味してもよい。 Channel/signal transmission/reception using single DCI multi-TRP may be configured for the UE. Corresponding to at least one TCI code point with multiple (eg, two) TCI states may mean that channel/signal transmission/reception using multiple TRPs of a single DCI is configured.
 以下、本実施形態では、スケジューリングオフセットが特定の閾値(例えば、timeDurationForQCL/beamSwitchTiming/特定のパラメータ)より小さい場合に適用されてもよい。当該特定の閾値は、UEによって報告されるUE能力情報に基づいて決定されてもよい。 Hereinafter, this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter). The particular threshold may be determined based on UE capability information reported by the UE.
 UEは、特定のDLチャネル/信号のTCI状態/QCLを、特定の方法に基づいて決定してもよい。当該特定のDLチャネル/信号は、例えば、PDSCHであってもよい。 The UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method. The particular DL channel/signal may be, for example, a PDSCH.
 当該特定の方法は、特定のTCIコードポイントに対応するTCI状態、又は、特定の送受信ポイント(TRP)に関するインデックスに対応する統一TCI状態に基づく方法であってもよい。当該特定の方法は、例えば、下記実施形態3-1から3-3の少なくとも1つに記載される方法であってもよい。 The particular method may be based on a TCI state corresponding to a particular TCI code point or a unified TCI state corresponding to an index regarding a particular transmission/reception point (TRP). The specific method may be, for example, the method described in at least one of Embodiments 3-1 to 3-3 below.
《実施形態3-1》
 UEは、特定のTCIコードポイントに対応するQCL想定/TCI状態を、特定のDLチャネル/信号(例えば、PDSCH)に適用してもよい。
《Embodiment 3-1》
The UE may apply QCL assumptions/TCI states corresponding to specific TCI code points to specific DL channels/signals (eg, PDSCH).
 当該特定のTCIコードポイントは、(スケジュールされるCC内のアクティブBWPにおける)PDSCH用の複数(例えば、2つ)の異なるTCI状態に対応するTCIコードポイントのうち、所定の(例えば、最低の)TCIコードポイントであってもよい。 The particular TCI code point is a predetermined (e.g., lowest) TCI code point corresponding to multiple (e.g., two) different TCI states for the PDSCH (in the active BWP in the scheduled CC). It may be a TCI code point.
 当該TCIコードポイントは、1つ又は複数(例えば、2つ)のUL TCI状態と関連してもよい。当該TCIコードポイントは、複数のジョイント/DL TCI状態とは別に、1つ又は複数(例えば、2つ)のUL TCI状態と関連してもよい。 The TCI codepoint may be associated with one or more (eg, two) UL TCI states. The TCI codepoint may be associated with one or more (eg, two) UL TCI states apart from multiple joint/DL TCI states.
 このとき、UEは、n個(例えば、n=2)のTRPに関するインデックス(例えば、TRPインデックス/CORESETプールインデックス)用に、トータルでn個のQCL想定について判断してもよい。 At this time, the UE may determine a total of n QCL assumptions for n (eg, n=2) TRP-related indices (eg, TRP index/CORESET pool index).
 「指示されるTCI状態」/「設定されるTCI状態」が当該CORESETに適用される場合、当該「指示されるTCI状態」/「設定されるTCI状態」は、特定のDLチャネル/信号(例えば、PDSCH)に適用されてもよい。 When the "TCI state indicated"/"TCI state set" is applied to the CORESET, the "TCI state indicated"/"TCI state set" is a specific DL channel/signal (e.g. , PDSCH).
 1つのCORESETに複数(2つ)のTCI状態が対応する場合、UEは、複数のTCI状態を特定のDLチャネル/信号(例えば、PDSCH)に適用すると判断してもよい。 If multiple (two) TCI states correspond to one CORESET, the UE may decide to apply the multiple TCI states to a specific DL channel/signal (for example, PDSCH).
《実施形態3-2》
 UEは、第1の値(例えば、0)のTRPに関するインデックスに対する「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」と、第2の値(例えば、1)のTRPに関するインデックスに対する「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」とを、特定のDLチャネル/信号(例えば、PDSCH)に適用してもよい。
《Embodiment 3-2》
The UE determines the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the index for the TRP with a first value (e.g., 0) and the index for the TRP with a second value (e.g., 1). The “indicated TCI state (joint TCI state/DL (separate) TCI state)” for the index may be applied to a specific DL channel/signal (eg, PDSCH).
 このとき、UEは、n個(例えば、n=2)のTRPに関するインデックスについて、トータルでn個のQCL想定を判断してもよい。 At this time, the UE may determine a total of n QCL assumptions for indexes related to n (for example, n=2) TRPs.
《実施形態3-3》
 上記実施形態3-1及び3-2のいずれかが、特定の条件に基づいて選択/適用されてもよい。
《Embodiment 3-3》
Either of the above embodiments 3-1 and 3-2 may be selected/applied based on specific conditions.
 当該特定の条件は、例えば、「指示されるTCI状態」に関連付くPCIに基づく条件であってもよい。 The specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state."
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIに関連付けられる場合(つまり、セル内(intra-cell)の場合)、UEは、上記実施形態3-2を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with the PCI of the serving cell (i.e., intra-cell) ), the UE may decide to apply the above embodiment 3-2.
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIと異なるPCIに関連付けられる場合(つまり、セル間(inter-cell)の場合)、UEは、上記実施形態3-1を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with a PCI different from the serving cell's PCI (i.e., inter-cell ), the UE may decide to apply the above embodiment 3-1.
 intra-cellの場合、常にPDSCHのために2つの「指示されたTCI状態」を使用することは有用である。一方、「指示されたTCI状態」がサービングセルのPCIと異なるPCIに関連付く場合(すなわち、inter-cellの場合)、UEは、非UE専用(dedicated)のPDSCHを受信できないことが問題となる。本実施形態は、この問題を解決するのに有効である。 For intra-cells, it is useful to always use two "indicated TCI states" for the PDSCH. On the other hand, when the "indicated TCI state" is associated with a PCI different from the PCI of the serving cell (ie, in the case of inter-cell), a problem arises in that the UE cannot receive a PDSCH dedicated to non-UEs. This embodiment is effective in solving this problem.
 また、UEは、いずれか又は全て(両方の)サービングセルからのPDSCHと、非サービングセルからのPDSCHと、の少なくとも一方を、同じ時間(時間ドメイン(例えば、スロット/シンボル))において受信することを許容されてもよい。 The UE also allows receiving at least one of the PDSCH from any or all (both) serving cells and the PDSCH from non-serving cells at the same time (time domain (e.g., slot/symbol)). may be done.
 また、inter-cellにおいて実施形態3-2が適用される場合、UEは、intra-cellの動作に切り替えてもよい。基地局は、当該切り替えについてUEに指示してもよい。当該指示は、RRC/MAC CE/DCIによって行われてもよい。 Furthermore, when Embodiment 3-2 is applied in inter-cell, the UE may switch to intra-cell operation. The base station may instruct the UE regarding the switching. The instruction may be given by RRC/MAC CE/DCI.
 上記実施形態3-1から3-3の少なくとも1つは、特定のRRCパラメータがUEに対して設定されたときに(のみ)適用されてもよい。そうでない場合、UEは、上述のRel.17におけるデフォルトQCLに記載した方法を適用してもよい。 At least one of the above embodiments 3-1 to 3-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
 当該特定のRRCパラメータ/設定は、例えば、2つのデフォルトTCI状態を有効にするパラメータ(例えば、「enableTwoDefaultTCI-States」)、又は、Rel.18以降に規定される特定のパラメータであってもよい。 The specific RRC parameters/settings may be, for example, a parameter that enables two default TCI states (e.g., "enableTwoDefaultTCI-States"), or a Rel. It may be a specific parameter defined after 18.
 これによれば、UEは、DLチャネル/信号をバッファするために、複数のデフォルトQCLを想定する必要がなく、UEの処理を単純化することができる。 According to this, the UE does not need to assume multiple default QCLs in order to buffer DL channels/signals, and the UE processing can be simplified.
 以上第3の実施形態によれば、シングルDCIのマルチTRPを利用するDLチャネル/信号(例えば、PDSCH)に適切にTCI状態/QCL想定を適用することができる。 According to the third embodiment, TCI state/QCL assumptions can be appropriately applied to a DL channel/signal (for example, PDSCH) that uses multiple TRPs of a single DCI.
<第4の実施形態>
 第4の実施形態は、シングルDCIベースのマルチTRPにおけるチャネルのTCI状態/QCLに関する。
<Fourth embodiment>
The fourth embodiment relates to TCI status/QCL of a channel in single DCI-based multi-TRP.
 UEに対し、統一TCI状態が設定されてもよい。例えば、UEは、統一TCI状態の設定に関するRRCパラメータによって設定されてもよい。 A uniform TCI state may be set for the UE. For example, the UE may be configured with RRC parameters for setting unified TCI state.
 統一TCI状態の設定に関するRRCパラメータは、例えば、DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)、及び、UL TCI状態の設定パラメータ(UL-TCIState)の少なくとも一方であってもよい。 The RRC parameter regarding the unified TCI state setting may be, for example, at least one of the DL or joint TCI state setting parameter (for example, DLorJointTCIState) and the UL TCI state setting parameter (UL-TCIState).
 当該DL又はジョイントTCI状態の設定パラメータ(例えば、DLorJointTCIState)は、DL(セパレート)TCI状態/ジョイントTCI状態を示してもよい。当該UL TCI状態の設定パラメータ(例えば、UL-TCIState)は、UL TCI状態を示してもよい。 The configuration parameter (for example, DLorJointTCIState) of the DL or joint TCI state may indicate a DL (separate) TCI state/joint TCI state. The configuration parameter (for example, UL-TCIState) of the UL TCI state may indicate the UL TCI state.
 UEに対し、シングルDCIのマルチTRPを用いるチャネル/信号の送受信が設定されてもよい。少なくとも1つのTCIコードポイントに複数(例えば、2つ)のTCI状態が対応することが、シングルDCIのマルチTRPを用いるチャネル/信号の送受信が設定されることを意味してもよい。 Channel/signal transmission/reception using single DCI multi-TRP may be configured for the UE. Corresponding to at least one TCI code point with multiple (eg, two) TCI states may mean that channel/signal transmission/reception using multiple TRPs of a single DCI is configured.
 以下、本実施形態では、スケジューリングオフセットが特定の閾値(例えば、timeDurationForQCL/beamSwitchTiming/特定のパラメータ)より小さい場合に適用されてもよい。当該特定の閾値は、UEによって報告されるUE能力情報に基づいて決定されてもよい。 Hereinafter, this embodiment may be applied when the scheduling offset is smaller than a specific threshold (for example, timeDurationForQCL/beamSwitchTiming/specific parameter). The particular threshold may be determined based on UE capability information reported by the UE.
 UEは、特定のDLチャネル/信号のTCI状態/QCLを、特定の方法に基づいて決定してもよい。当該特定のDLチャネル/信号は、例えば、A-CSI-RSであってもよい。 The UE may determine the TCI status/QCL of a specific DL channel/signal based on a specific method. The particular DL channel/signal may be, for example, A-CSI-RS.
 当該特定の方法は、特定のTCIコードポイントに対応するTCI状態、又は、特定の送受信ポイント(TRP)に関するインデックスに対応する統一TCI状態に基づく方法であってもよい。当該特定の方法は、例えば、下記実施形態4-1から4-3の少なくとも1つに記載される方法であってもよい。 The particular method may be based on a TCI state corresponding to a particular TCI code point or a unified TCI state corresponding to an index regarding a particular transmission/reception point (TRP). The specific method may be, for example, the method described in at least one of Embodiments 4-1 to 4-3 below.
《実施形態4-1》
 UEは、特定のTCIコードポイントに対応するQCL想定/TCI状態を、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用してもよい。
《Embodiment 4-1》
The UE may apply QCL assumptions/TCI states corresponding to specific TCI code points to specific DL channels/signals (eg, A-CSI-RS).
 当該特定のTCIコードポイントは、(スケジュールされるCC内のアクティブBWPにおける)PDSCH用の複数(例えば、2つ)の異なるTCI状態に対応するTCIコードポイントのうち、所定の(例えば、最低の)TCIコードポイントであってもよい。 The particular TCI code point is a predetermined (e.g., lowest) TCI code point corresponding to multiple (e.g., two) different TCI states for the PDSCH (in the active BWP in the scheduled CC). It may be a TCI code point.
 当該TCIコードポイントは、1つ又は複数(例えば、2つ)のUL TCI状態と関連してもよい。当該TCIコードポイントは、複数のジョイント/DL TCI状態とは別に、1つ又は複数(例えば、2つ)のUL TCI状態と関連してもよい。 The TCI codepoint may be associated with one or more (eg, two) UL TCI states. The TCI codepoint may be associated with one or more (eg, two) UL TCI states apart from multiple joint/DL TCI states.
 このとき、UEは、n個(例えば、n=2)のTRPに関するインデックス(例えば、TRPインデックス/CORESETプールインデックス)用に、トータルでn個のQCL想定について判断してもよい。 At this time, the UE may determine a total of n QCL assumptions for n (eg, n=2) TRP-related indices (eg, TRP index/CORESET pool index).
 「指示されるTCI状態」/「設定されるTCI状態」が当該CORESETに適用される場合、当該「指示されるTCI状態」/「設定されるTCI状態」は、特定のDLチャネル/信号(例えば、(トリガされる)A-CSI-RS)に適用されてもよい。 When the "TCI state indicated"/"TCI state set" is applied to the CORESET, the "TCI state indicated"/"TCI state set" is a specific DL channel/signal (e.g. , (triggered) A-CSI-RS).
 1つのCORESETに複数(2つ)のTCI状態が対応する場合、UEは、複数のTCI状態のうちのいずれか1つのTCI状態(例えば、選択される第1のTCI状態)を特定のDLチャネル/信号(例えば、(トリガされる)A-CSI-RS)に適用すると判断してもよい。 When multiple (two) TCI states correspond to one CORESET, the UE assigns any one TCI state (for example, the selected first TCI state) among the multiple TCI states to a specific DL channel. / signals (eg, (triggered) A-CSI-RS).
《実施形態4-2》
 UEは、複数の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」のうちのいずれかを、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用してもよい。
《Embodiment 4-2》
The UE applies one of a plurality of "indicated TCI states (joint TCI state/DL (separate) TCI state)" to a specific DL channel/signal (for example, A-CSI-RS). Good too.
 例えば、UEは、複数の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」のうちの第1の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」を、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用してもよい。 For example, the UE selects the first "indicated TCI state (joint TCI state/DL (separate) TCI state)" of the plural "indicated TCI states (joint TCI state/DL (separate) TCI state)". ” may be applied to a particular DL channel/signal (eg, A-CSI-RS).
 例えば、UEは、第1(又は、第2)の値(例えば、0(又は、1))のTRPに関するインデックス用の「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」を、特定のDLチャネル/信号(例えば、A-CSI-RS)に適用してもよい。 For example, the UE determines the "indicated TCI state (joint TCI state/DL (separate) TCI state)" for the index for the TRP of the first (or second) value (e.g., 0 (or 1)). may be applied to a specific DL channel/signal (eg, A-CSI-RS).
《実施形態4-3》
 上記実施形態4-1及び4-2のいずれかが、特定の条件に基づいて選択/適用されてもよい。
《Embodiment 4-3》
Either of the above embodiments 4-1 and 4-2 may be selected/applied based on specific conditions.
 当該特定の条件は、例えば、「指示されるTCI状態」に関連付くPCIに基づく条件であってもよい。 The specific condition may be, for example, a condition based on the PCI associated with the "indicated TCI state."
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIに関連付けられる場合(つまり、セル内(intra-cell)の場合)、UEは、上記実施形態4-2を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with the PCI of the serving cell (i.e., intra-cell) ), the UE may decide to apply the above embodiment 4-2.
 例えば、いずれか又は全て(両方の)「指示されるTCI状態(ジョイントTCI状態/DL(セパレート)TCI状態)」が、サービングセルのPCIと異なるPCIに関連付けられる場合(つまり、セル間(inter-cell)の場合)、UEは、上記実施形態4-1を適用すると判断してもよい。 For example, if any or all (both) "indicated TCI states (joint TCI state/DL (separate) TCI state)" are associated with a PCI different from the serving cell's PCI (i.e., inter-cell ), the UE may decide to apply the above embodiment 4-1.
 本実施形態に関する効果は、実施形態3-3に記載した効果と同様である。 The effects of this embodiment are similar to those described in Embodiment 3-3.
 また、UEは、いずれか又は全て(両方の)サービングセルからのA-CSI-RSと、非サービングセルからのA-CSI-RSと、の少なくとも一方を、同じ時間(時間ドメイン(例えば、スロット/シンボル))において受信することを許容されてもよい。 The UE may also transmit the A-CSI-RS from any or all (both) serving cells and/or the A-CSI-RS from non-serving cells at the same time (time domain (e.g., slot/symbol )).
 また、inter-cellにおいて実施形態4-2が適用される場合、UEは、intra-cellの動作に切り替えてもよい。基地局は、当該切り替えについてUEに指示してもよい。当該指示は、RRC/MAC CE/DCIによって行われてもよい。 Furthermore, when Embodiment 4-2 is applied in inter-cell, the UE may switch to intra-cell operation. The base station may instruct the UE regarding the switching. The instruction may be given by RRC/MAC CE/DCI.
 上記実施形態4-1から4-3の少なくとも1つは、特定のRRCパラメータがUEに対して設定されたときに(のみ)適用されてもよい。そうでない場合、UEは、上述のRel.17におけるデフォルトQCLに記載した方法を適用してもよい。 At least one of the above embodiments 4-1 to 4-3 may be applied (only) when specific RRC parameters are configured for the UE. If not, the UE uses the above-mentioned Rel. The method described in Default QCL in No. 17 may be applied.
 当該特定のRRCパラメータ/設定は、例えば、2つのデフォルトTCI状態を有効にするパラメータ(例えば、「enableTwoDefaultTCI-States」)、又は、Rel.18以降に規定される特定のパラメータであってもよい。 The specific RRC parameters/settings may be, for example, a parameter that enables two default TCI states (e.g., "enableTwoDefaultTCI-States"), or a Rel. It may be a specific parameter defined after 18.
 以上第4の実施形態によれば、シングルDCIのマルチTRPを利用するDLチャネル/信号(例えば、A-CSI-RS)に適切にTCI状態/QCL想定を適用することができる。 According to the fourth embodiment, TCI state/QCL assumptions can be appropriately applied to DL channels/signals (for example, A-CSI-RS) that utilize multiple TRPs of a single DCI.
<第3/第4の実施形態のバリエーション>
 以下では、第3/第4の実施形態(実施形態3-1/4-1)において記載した、UEが選択する最低のTCIコードポイントに対応するTCI状態について説明する。
<Variations of the third/fourth embodiment>
Below, the TCI state corresponding to the lowest TCI code point selected by the UE described in the third/fourth embodiment (Embodiment 3-1/4-1) will be described.
《ジョイントTCI状態の指示》
 ジョイントTCI状態が指示される場合、1つのTCIコードポイントは、1つ又は複数(例えば、2つ)のTCI状態と対応してもよい。
《Instruction of joint TCI status》
If joint TCI states are indicated, one TCI code point may correspond to one or more (eg, two) TCI states.
 実施形態3-1/4-1において、UEが決定する最低のTCIコードポイントは、複数(例えば、2つ)のTCI状態が対応するTCIコードポイントのうちの、最低のTCIコードポイントであってもよい。 In embodiment 3-1/4-1, the lowest TCI code point determined by the UE is the lowest TCI code point among the TCI code points to which multiple (e.g., two) TCI states correspond. Good too.
 図11Aは、ジョイントTCI状態が指示される場合のTCIコードポイントの選択方法の一例を示す図である。図11Aに示すように、TCIコードポイントと、ジョイントTCI状態(第1/第2のジョイントTCI状態)との対応関係がUEに設定される。 FIG. 11A is a diagram illustrating an example of a method for selecting a TCI code point when a joint TCI state is specified. As shown in FIG. 11A, the correspondence between TCI code points and joint TCI states (first/second joint TCI states) is set in the UE.
 UEは、当該対応関係から、1つのTCIコードポイントに対して2つのジョイントTCI状態が対応している最低のTCIコードポイント(図11Aでは、TCIコードポイント「000」)のTCI状態(すなわち、第1のジョイントTCI状態としてTCI状態#0、第2のジョイントTCI状態としてTCI状態#8)を利用する。 Based on the correspondence relationship, the UE selects the TCI state (i.e., the TCI state of the lowest TCI code point (TCI code point "000" in FIG. TCI state #0 is used as the first joint TCI state, and TCI state #8) is used as the second joint TCI state.
《セパレートTCI状態の指示》
 セパレートTCI状態が指示される場合、1つのTCIコードポイントは、0以上のDL TCI状態と、0以上のUL TCI状態と、対応してもよい。
《Instruction of separate TCI status》
If separate TCI states are indicated, one TCI code point may correspond to zero or more DL TCI states and zero or more UL TCI states.
 実施形態3-1/4-1において、UEが決定する最低のTCIコードポイントは、複数(例えば、2つ)のDL TCI状態が対応するTCIコードポイントのうちの、最低のTCIコードポイントであってもよい。 In embodiment 3-1/4-1, the lowest TCI code point determined by the UE is the lowest TCI code point among the TCI code points to which multiple (for example, two) DL TCI states correspond. You can.
 図11Bは、DL TCI状態が指示される場合のTCIコードポイントの選択方法の一例を示す図である。図11Bに示すように、TCIコードポイントと、TCI状態(第1/第2のUL/DL TCI状態)との対応関係がUEに設定される。 FIG. 11B is a diagram illustrating an example of a method for selecting a TCI code point when a DL TCI state is specified. As shown in FIG. 11B, the correspondence between TCI code points and TCI states (first/second UL/DL TCI states) is set in the UE.
 UEは、当該対応関係から、1つのTCIコードポイントに対して2つのDL TCI状態が対応している最低のTCIコードポイント(図11Bでは、TCIコードポイント「100」)のTCI状態(すなわち、第1のDL TCI状態としてTCI状態#4、第2のDL TCI状態としてTCI状態#6)を利用する。 Based on the correspondence relationship, the UE selects the TCI state (i.e., the TCI state of the lowest TCI code point (TCI code point "100" in FIG. 11B) in which two DL TCI states correspond to one TCI code point). TCI state #4 is used as the first DL TCI state, and TCI state #6 is used as the second DL TCI state.
<第5の実施形態>
 既存の仕様(Rel.15-17)において、スケジューリング(トリガリング)オフセットが閾値より小さいA-CSI-RSについて、もし当該A-CSI-RSのシンボルと同じシンボルに他のDL信号が存在する場合には、当該A-CSI-RSのQCL想定は、当該他のDL信号のQCLに基づいて導出される。
<Fifth embodiment>
In the existing specifications (Rel.15-17), for an A-CSI-RS whose scheduling (triggering) offset is smaller than a threshold, if another DL signal exists in the same symbol as the symbol of the A-CSI-RS, In this case, the QCL assumption of the A-CSI-RS is derived based on the QCL of the other DL signals.
 本実施形態においては、統一TCI状態が設定される場合において、スケジューリング(トリガリング)オフセットが閾値より小さいA-CSI-RSについて、当該A-CSI-RSのシンボルと同じシンボルに他のDL信号が存在する場合について説明する。 In this embodiment, when a unified TCI state is set, for an A-CSI-RS whose scheduling (triggering) offset is smaller than a threshold, another DL signal is present in the same symbol as the symbol of the A-CSI-RS. The case where it exists will be explained.
《実施形態5-1》
 当該他のDL信号に、複数(例えば、2つ)のTCI状態(ジョイント/DL TCI状態)が対応してもよい。
《Embodiment 5-1》
A plurality of (for example, two) TCI states (joint/DL TCI states) may correspond to the other DL signal.
 当該他のDL信号は、例えば、複数のアクティブなジョイント/DL TCI状態を有するマルチTRPのPDSCH(M-TRP PDSCH with multiple active joint/DL TCI states)であってもよいし、複数のジョイント/DL TCI状態を有するSFN PDSCH(SFN-PDSCH with multiple joint/DL TCI states)であってもよい。 The other DL signal may be, for example, a multi-TRP PDSCH with multiple active joint/DL TCI states, or a multi-TRP PDSCH with multiple active joint/DL TCI states, or a multi-TRP PDSCH with multiple active joint/DL TCI states. It may be an SFN PDSCH with multiple joint/DL TCI states.
 UEは、当該他のDL信号に対応する複数のTCI状態のいずれかを、A-CSI-RSに適用してもよい。 The UE may apply any one of multiple TCI states corresponding to the other DL signal to the A-CSI-RS.
 UEは、特定の方法に基づいて、当該他のDL信号に対応する複数のTCI状態のいずれかを選択/決定してもよい。 The UE may select/determine one of the multiple TCI states corresponding to the other DL signal based on a specific method.
 当該特定の方法は、以下に記載するオプション5-1-1から5-1-3の少なくとも1つに記載される方法であってもよい。 The specific method may be a method described in at least one of options 5-1-1 to 5-1-3 described below.
[オプション5-1-1]
 UEは、A-CSI-RSをトリガするDCI(トリガリングDCI)に基づいて、当該他のDL信号に対応する複数のTCI状態(ジョイント/DL TCI状態)のいずれかを選択/決定してもよい。
[Option 5-1-1]
The UE may select/determine one of multiple TCI states (joint/DL TCI state) corresponding to the other DL signal based on the DCI that triggers the A-CSI-RS (triggering DCI). good.
 例えば、UEは、トリガリングDCI(トリガリングDCIに関連するCORESET)のTRPに関するインデックス(例えば、TRPインデックス/CORESETプールインデックス)に対応するDL信号のQCL想定を、A-CSI-RSに適用すると判断してもよい。 For example, the UE determines to apply the QCL assumption of the DL signal corresponding to the TRP-related index (e.g., TRP index/CORESET pool index) of the triggering DCI (CORESET associated with the triggering DCI) to the A-CSI-RS. You may.
 図12は、オプション5-1-1に係るTCI状態の適用の一例を示す図である。図12に示す例において、UEは、DCIによってA-CSI-RSをトリガされる。当該A-CSI-RSと同じシンボルにおいて、他のDL信号が存在する。なお、DCIからA-CSI-RSまでの期間は、特定の閾値より小さい。 FIG. 12 is a diagram illustrating an example of application of the TCI status according to option 5-1-1. In the example shown in FIG. 12, the UE is triggered to A-CSI-RS by DCI. Other DL signals exist in the same symbol as the A-CSI-RS. Note that the period from DCI to A-CSI-RS is smaller than a specific threshold.
 図12に示す例では、UEに対し、第1の指示されるジョイント/DL TCI状態としてTCI状態#3と、第2の指示されるジョイント/DL TCI状態としてTCI状態#5と、が指示される。また、図12に示す例では、DCI(CORESET)が第1の指示されるジョイント/DL TCI状態に従うよう設定/規定され、他のDL信号が2つの指示されるTCI状態の両方に従うことが設定/規定される。 In the example shown in FIG. 12, the UE is instructed to have TCI state #3 as the first indicated joint/DL TCI state and TCI state #5 as the second indicated joint/DL TCI state. Ru. Also, in the example shown in FIG. 12, the DCI (CORESET) is set/defined to follow the first indicated joint/DL TCI state, and the other DL signals are set to follow both of the two indicated TCI states. / stipulated.
 この場合、UEは、DCIに対応するTCI状態である、第1の指示されるTCI状態(TCI状態#3)を、A-CSI-RSの受信に適用する。言い換えれば、UEは、他のDL信号に対応する2つのTCI状態のうち、第1のTCI状態を適用する。 In this case, the UE applies the first indicated TCI state (TCI state #3), which is the TCI state corresponding to DCI, to the reception of the A-CSI-RS. In other words, the UE applies the first TCI state of the two TCI states corresponding to other DL signals.
[オプション5-1-1の変形例]
 他のDL信号に複数(例えば、2つ)の「設定されるTCI状態」が対応してもよい。
[Modification of option 5-1-1]
A plurality of (for example, two) "TCI states to be set" may correspond to other DL signals.
 当該他のDL信号は、PDSCHであってもよい。 The other DL signal may be a PDSCH.
 当該PDSCHは、共通サーチスペース(CSS)のスケジューリングCORESETに対応してもよい。当該CSSは、特定のタイプ(例えば、タイプ3)のCSSを除くCSSであってもよい。当該スケジューリングCORESETに対して、統一TCI状態に従うことを示すRRCパラメータ(例えば、「followUnifiedTCIstate」)が設定されなくてもよい。 The PDSCH may correspond to a common search space (CSS) scheduling CORESET. The CSS may be a CSS other than a specific type (for example, type 3) of CSS. An RRC parameter (for example, "followUnifiedTCIstate") indicating that the unified TCI state is followed does not need to be set for the scheduling CORESET.
 UEは、当該複数の「設定されるTCI状態」のうち、特定の(例えば、第1の)「設定されるTCI状態」を、A-CSI-RSに適用してもよい。 The UE may apply a specific (eg, first) "TCI state to be set" among the plurality of "TCI states to be set" to the A-CSI-RS.
[オプション5-1-2]
 UEは、特定のルールに従って、当該他のDL信号に対応する複数のTCI状態(ジョイント/DL TCI状態)のいずれかを選択/決定してもよい。
[Option 5-1-2]
The UE may select/determine one of a plurality of TCI states (joint/DL TCI states) corresponding to the other DL signal according to a specific rule.
 例えば、UEは、当該他のDL信号に対応する複数のTCI状態のうちの第1(又は、第2)のTCI状態を、A-CSI-RSに適用すると判断してもよい。 For example, the UE may decide to apply the first (or second) TCI state among the plurality of TCI states corresponding to the other DL signal to the A-CSI-RS.
[オプション5-1-3]
 UEは、RRCの設定に基づいて、当該他のDL信号に対応する複数のTCI状態(ジョイント/DL TCI状態)のいずれかを選択/決定してもよい。
[Option 5-1-3]
The UE may select/determine one of a plurality of TCI states (joint/DL TCI state) corresponding to the other DL signal based on the RRC settings.
 例えば、UEは、RRCの設定を用いて、当該他のDL信号に対応する複数のTCI状態のうちのどのTCI状態のQCL想定を、A-CSI-RSに適用するかを判断してもよい。 For example, the UE may use the RRC configuration to determine which TCI state's QCL assumption to apply to the A-CSI-RS among a plurality of TCI states corresponding to the other DL signal. .
《実施形態5-2》
 当該他のDL信号に、1つのTCI状態(ジョイント/DL TCI状態)が対応してもよい。
《Embodiment 5-2》
One TCI state (joint/DL TCI state) may correspond to the other DL signal.
 当該他のDL信号は、例えば、1つのアクティブなジョイント/DL TCI状態を有するシングルTRPのPDSCH(S-TRP PDSCH with one active joint/DL TCI states)であってもよいし、非周期的(A-)/セミパーシステント(SP)/周期的(P-)CSI-RSであってもよい。 The other DL signal may be, for example, a single TRP PDSCH with one active joint/DL TCI state, or an aperiodic (A-TRP PDSCH with one active joint/DL TCI state). -)/semi-persistent (SP)/periodic (P-) CSI-RS.
[オプション5-2-1]
 UEは、当該他のDL信号に対応する1つのTCI状態を、A-CSI-RSに適用してもよい。
[Option 5-2-1]
The UE may apply one TCI state corresponding to the other DL signal to the A-CSI-RS.
[オプション5-2-2]
 UEは、複数(例えば、2つ)の「指示されるTCI状態」を指示されてもよい。
[Option 5-2-2]
The UE may be indicated with multiple (eg, two) "indicated TCI states."
 UEは、トリガリングDCIに関連するTRPに関するインデックス(例えば、TRPインデックス/CORESETプールインデックス)に基づいて、当該「指示されるTCI状態」のうちの1つのTCI状態を選択/決定し、A-CSI-RSに適用してもよい(オプション5-2-2-1)。 The UE selects/determines one TCI state from the "indicated TCI states" based on the index related to the TRP related to the triggering DCI (for example, TRP index/CORESET pool index), and - May be applied to RS (option 5-2-2-1).
 UEは、特定のルールに基づいて、当該「指示されるTCI状態」のうちの1つのTCI状態を選択/決定し、A-CSI-RSに適用してもよい(オプション5-2-2-2)。例えば、当該特定のルールは、UEが、複数の「指示されるTCI状態」のうち、第1の指示されるTCI状態を選択/決定することであってもよい。 The UE may select/determine one TCI state among the "indicated TCI states" based on a specific rule and apply it to the A-CSI-RS (option 5-2-2- 2). For example, the specific rule may be that the UE selects/determines the first indicated TCI state among a plurality of "indicated TCI states".
 UEは、RRCシグナリングに基づいて、当該「指示されるTCI状態」のうちの1つのTCI状態を選択/決定し、A-CSI-RSに適用してもよい(オプション5-2-2-3)。 The UE may select/determine one TCI state from the "indicated TCI states" based on the RRC signaling and apply it to the A-CSI-RS (option 5-2-2-3). ).
 なお、第5の実施形態における他のDL信号は、スケジューリング(トリガリング)オフセットが特定の閾値以上であることを満たすDL信号(PDSCH/A-CSI-RS)であってもよい。 Note that the other DL signal in the fifth embodiment may be a DL signal (PDSCH/A-CSI-RS) that satisfies that the scheduling (triggering) offset is greater than or equal to a specific threshold value.
 以上第5の実施形態によれば、スケジューリングオフセットが特定の閾値より小さいA-CSI-RSのシンボルと同じシンボルに他のDL信号が存在する場合であっても、適切にA-CSI-RSに適用するTCI状態/QCLを決定することができる。 According to the fifth embodiment, even if another DL signal exists in the same symbol as an A-CSI-RS symbol whose scheduling offset is smaller than a specific threshold, the A-CSI-RS is appropriately The TCI state/QCL to apply can be determined.
<第6の実施形態>
 既存の仕様(Rel.17以前)では、UEは、異なるBWP/CCにおけるDL信号をバッファするための異なるデフォルトQCLを想定することができない。
<Sixth embodiment>
Existing specifications (before Rel. 17) do not allow the UE to assume different default QCLs for buffering DL signals in different BWP/CCs.
 例えば、図13に示す例では、CC#1におけるBWP#1においてシングルTRPが設定され、CC#2におけるBWP#1においてマルチDCIのマルチTRPが設定されるケースが示される。 For example, in the example shown in FIG. 13, a case is shown in which a single TRP is set in BWP #1 in CC #1, and a multi-TRP of multi-DCI is set in BWP #1 in CC #2.
 このようなケースにおけるUEのQCLの想定の動作について検討が十分でない。 The expected behavior of the UE's QCL in such cases has not been sufficiently studied.
 以下本実施形態では、このようなケースに対応可能なUEの動作について説明する。 In the present embodiment, the operation of the UE that can handle such a case will be described below.
 UEは、特定のタイプに関する設定を受信してもよい。当該特定のタイプは、シングルTRP、マルチDCIのマルチTRP、及び、シングルDCIのマルチTRPのいずれかであってもよい。 The UE may receive configurations related to specific types. The specific type may be any one of a single TRP, a multi-DCI multi-TRP, and a single-DCI multi-TRP.
 UEは、1つ(同一)のバンドにおいて、異なるタイプの設定を受信することを想定/期待しなくてもよい。 The UE may not assume/expect to receive different types of configurations in one (same) band.
 例えば、UEは、CC#1におけるBWP#1においてシングルTRPが設定され、CC#2におけるBWP#1においてマルチDCIのマルチTRPが設定されることを想定/期待しなくてもよい。 For example, the UE does not have to assume/expect that a single TRP is configured in BWP #1 in CC #1 and that multi-DCI multi-TRP is configured in BWP #1 in CC #2.
 各BWP/CCにおいて、シングルDCIのマルチTRPの設定、及び、マルチDCIのマルチTRPの設定は、それぞれ、シングルDCIのマルチTRPにおけるデフォルトQCLの設定(有効化パラメータ(enabler))、及び、マルチDCIのマルチTRPにおけるデフォルトQCLの設定(有効化パラメータ(enabler))であってもよい。 In each BWP/CC, the settings for multi-TRP for single DCI and the settings for multi-TRP for multi-DCI are the default QCL settings (enabler) for multi-TRP for single DCI, and the settings for multi-DCI for multi-TRP, respectively. It may be a default QCL setting (enabler) in a multi-TRP.
 1つのバンドにおける複数(例えば、全て)のCC/BWPについて、UEは、当該バンド内の特定のBWP/CC IDのQCL想定(デフォルトQCL)を適用することを想定してもよい。 For multiple (eg, all) CC/BWPs in one band, the UE may assume to apply the QCL assumption (default QCL) of the specific BWP/CC ID in that band.
 当該特定のBWP/CC IDは、例えば、当該バンド内の最低(最小)のBWP/CC IDであってもよい。 The specific BWP/CC ID may be, for example, the lowest (minimum) BWP/CC ID within the band.
 以上第6の実施形態によれば、複数のBWP/CCを利用する場合であっても、適切にQCLの想定を行うことができる。 According to the sixth embodiment, even when using multiple BWP/CCs, it is possible to appropriately assume the QCL.
<第7の実施形態>
 Rel.17におけるHST-SFNスキームにおいて、A-CSI-RSのシンボルと同じシンボルのDL信号が、2つのTCI状態を有するPDSCHである場合のUEの動作について検討が十分でない。
<Seventh embodiment>
Rel. In the HST-SFN scheme in No. 17, the operation of the UE when the DL signal of the same symbol as the A-CSI-RS symbol is a PDSCH with two TCI states has not been sufficiently studied.
 以下本実施形態では、係る場合のUEの動作について説明する。 In this embodiment, the operation of the UE in such a case will be described below.
 スケジューリング(トリガリング)オフセットが閾値より小さいA-CSI-RSについて、当該A-CSI-RSのシンボルと同じシンボルに他のDL信号が存在してもよい。 For an A-CSI-RS whose scheduling (triggering) offset is smaller than a threshold, another DL signal may exist in the same symbol as the symbol of the A-CSI-RS.
 当該他のDL信号は、複数(例えば、2つ)のTCI状態を有するPDSCH(PDSCH with multiple (two) TCI states)であってもよい。 The other DL signal may be a PDSCH with multiple (two) TCI states.
 このとき、UEは、当該PDSCHの複数のTCI状態のうち、第1のTCI状態を、当該A-CSI-RSの受信に適用してもよい。 At this time, the UE may apply the first TCI state among the plurality of TCI states of the PDSCH to reception of the A-CSI-RS.
 以上第7の実施形態によれば、HST-SFNスキームを利用する場合であっても、適切にQCLの想定を行うことができる。 According to the seventh embodiment, even when using the HST-SFN scheme, it is possible to appropriately assume the QCL.
<補足>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
<Supplement>
At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報(例えば、統一TCI状態、デフォルトQCL/TCI状態の適用、統一TCI状態におけるデフォルトQCL/TCI状態の適用、及び、HST/SFNにおけるデフォルトQCL/TCI状態の適用、の少なくとも1つ)をサポートすること、
The particular UE capability may indicate at least one of the following:
- Specific processing/operation/control/information regarding at least one of the above embodiments (e.g., unified TCI state, application of default QCL/TCI state, application of default QCL/TCI state in unified TCI state, and HST/TCI state) applying default QCL/TCI conditions in the SFN;
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Further, the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex). The capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、デフォルトTCI状態を有効化することを示す情報、統一TCI状態向けのデフォルトTCI状態を有効化することを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。 Also, at least one of the embodiments described above may be applied when the UE is configured with specific information related to the embodiment described above by upper layer signaling. For example, the specific information may include information indicating that the default TCI state is enabled, information indicating that the default TCI state is enabled for a unified TCI state, and information indicating that the default TCI state is enabled for a unified TCI state, or an optional information for a specific release (e.g., Rel. 18). It may also be the RRC parameters of .
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the above specific UE capabilities or is not configured with the above specific information, for example, Rel. 15/16 operations may be applied.
(付記A)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記A-1]
 統一送信設定指示(TCI)状態に関する設定パラメータを受信し、前記統一TCI状態に関する指示、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を受信する受信部と、複数の値の制御リソースセット(CORESET)プールインデックスが設定される場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定の前記CORESETプールインデックスに対応するTCI状態又は疑似コロケーション(QCL想定)に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を判断する制御部と、を有する端末。
[付記A-2]
 前記制御部は、最新のモニタリングスロットにおける同一のCORESETプールインデックスの最低のCORESET IDに対応するQCL想定を前記DL信号に適用する、付記A-1に記載の端末。
[付記A-3]
 前記DL信号が物理下りリンク共有チャネル(PDSCH)である場合、前記制御部は、前記複数の値のCORESETプールインデックスのそれぞれに対応する複数の統一TCI状態を前記PDSCHに適用し、前記DL信号が非周期的チャネル状態情報参照信号(A-CSI-RS)である場合、前記制御部は、前記複数の値のCORESETプールインデックスのいずれかに対応する1つの統一TCI状態を前記A-CSI-RSに適用する、付記A-1又は付記A-2に記載の端末。
[付記A-4]
 前記指示に基づく統一TCI状態がサービングセルの物理セルIDと同じ物理セルIDに関連付けられる場合、前記制御部は、前記複数の値のCORESETプールインデックスに対応する少なくとも1つの統一TCI状態を前記DL信号に適用し、前記指示に基づく統一TCI状態が前記サービングセルの物理セルIDと異なる物理セルIDに関連付けられる場合、前記制御部は、最新のモニタリングスロットにおける同一のCORESETプールインデックスの最低のCORESET IDに対応するQCL想定を前記DL信号に適用する、付記A-1から付記A-3のいずれかに記載の端末。
(Appendix A)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Appendix A-1]
a plurality of receivers configured to receive configuration parameters related to a unified transmission configuration indication (TCI) state, and receive instructions regarding the unified TCI state and downlink control information (DCI) for scheduling or triggering a downlink (DL) signal; If a controlled resource set (CORESET) pool index with a value of A terminal comprising: a control unit that determines a TCI state or QCL assumption to be applied to the specific DL signal based on a corresponding TCI state or pseudo-colocation (QCL assumption).
[Appendix A-2]
The terminal according to Appendix A-1, wherein the control unit applies a QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot to the DL signal.
[Appendix A-3]
When the DL signal is a physical downlink shared channel (PDSCH), the controller applies a plurality of unified TCI states corresponding to each of the plurality of values of the CORESET pool index to the PDSCH, and when the DL signal If it is an aperiodic channel state information reference signal (A-CSI-RS), the control unit assigns one unified TCI state corresponding to one of the plurality of values of the CORESET pool index to the A-CSI-RS. Terminals described in Appendix A-1 or Appendix A-2 applicable to.
[Appendix A-4]
If the unified TCI state based on the instruction is associated with the same physical cell ID as the physical cell ID of the serving cell, the controller assigns at least one unified TCI state corresponding to the multi-valued CORESET pool index to the DL signal. and the unified TCI state based on the indication is associated with a physical cell ID different from the physical cell ID of the serving cell, the control unit corresponds to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot. The terminal according to any one of appendices A-1 to A-3, which applies QCL assumptions to the DL signal.
(付記B)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記B-1]
 統一送信設定指示(TCI)状態に関する設定パラメータを受信し、前記統一TCI状態に関する指示、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を受信する受信部と、少なくとも1つのTCIコードポイントが複数のTCI状態に対応する場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定のTCIコードポイントに対応するTCI状態、又は、特定の送受信ポイント(TRP)に関するインデックスに対応する統一TCI状態に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を判断する制御部と、を有する端末。
[付記B-2]
 前記制御部は、複数の異なるTCI状態に対応する最低のTCIコードポイントのTCI状態を前記DL信号に適用する、付記B-1に記載の端末。
[付記B-3]
 前記DL信号が物理下りリンク共有チャネル(PDSCH)である場合、前記制御部は、複数の値の前記TRPに関するインデックスのそれぞれに対応する複数の統一TCI状態を前記PDSCHに適用し、前記DL信号が非周期的チャネル状態情報参照信号(A-CSI-RS)である場合、前記制御部は、前記複数の値の前記TRPに関するインデックスのいずれかに対応する1つの統一TCI状態を前記A-CSI-RSに適用する、付記B-1又は付記B-2に記載の端末。
[付記B-4]
 前記指示に基づく統一TCI状態がサービングセルの物理セルIDと同じ物理セルIDに関連付けられる場合、前記制御部は、複数の値の前記TRPに関するインデックスに対応する少なくとも1つの統一TCI状態を前記DL信号に適用し、前記指示に基づく統一TCI状態が前記サービングセルの物理セルIDと異なる物理セルIDに関連付けられる場合、前記制御部は、複数の異なるTCI状態に対応する最低のTCIコードポイントのTCI状態を前記DL信号に適用する、付記B-1から付記B-3のいずれかに記載の端末。
(Appendix B)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Appendix B-1]
a receiver for receiving configuration parameters regarding a unified transmission configuration indication (TCI) state, and receiving an instruction regarding the unified TCI state and downlink control information (DCI) for scheduling or triggering a downlink (DL) signal; If one TCI code point corresponds to multiple TCI states, and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the TCI corresponding to the specific TCI code point A control unit that determines a TCI state or QCL assumption to be applied to the specific DL signal based on a unified TCI state corresponding to a state or an index regarding a specific transmission/reception point (TRP).
[Appendix B-2]
The terminal according to Appendix B-1, wherein the control unit applies a TCI state of the lowest TCI code point corresponding to a plurality of different TCI states to the DL signal.
[Appendix B-3]
When the DL signal is a physical downlink shared channel (PDSCH), the control unit applies a plurality of unified TCI states corresponding to each of the indexes regarding the TRP of a plurality of values to the PDSCH, and when the DL signal In the case of an aperiodic channel state information reference signal (A-CSI-RS), the control unit sets one unified TCI state corresponding to one of the indices regarding the TRP of the plurality of values to the A-CSI-RS. Terminals described in Appendix B-1 or B-2 applicable to RS.
[Appendix B-4]
If the unified TCI state based on the instruction is associated with the same physical cell ID as the physical cell ID of the serving cell, the controller assigns at least one unified TCI state corresponding to an index regarding the TRP of a plurality of values to the DL signal. If the unified TCI state based on the instruction is associated with a physical cell ID different from the physical cell ID of the serving cell, the control unit sets the TCI state of the lowest TCI code point corresponding to a plurality of different TCI states as the A terminal according to any one of Appendix B-1 to Appendix B-3, which is applied to DL signals.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (also simply referred to as system 1) uses Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). It may also be a system that realizes communication using
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、ApplicationFunction(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included. Note that multiple functions may be provided by one network node. Further, communication with an external network (eg, the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 1211 and an RF section 122. The reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20. User data (user plane data), control plane data, etc. may be acquired and transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 送受信部120は、統一送信設定指示(TCI)状態の設定パラメータを送信し、前記統一TCI状態に関する指示(例えば、ビーム指示DCI/MAC CE)、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を送信してもよい。制御部110は、複数の値の制御リソースセット(CORESET)プールインデックスが設定される場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定の前記CORESETプールインデックスに対応するTCI状態又は疑似コロケーション(QCL想定)に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を指示してもよい(第1/第2の実施形態)。 The transmitting/receiving unit 120 transmits configuration parameters of a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction regarding the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be transmitted. If a control resource set (CORESET) pool index of multiple values is set and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the control unit 110 specifies The TCI state or QCL assumption to be applied to the specific DL signal may be indicated based on the TCI state or pseudo-colocation (QCL assumption) corresponding to the CORESET pool index of (first/second embodiment) .
 送受信部120は、統一送信設定指示(TCI)状態に関する設定パラメータを受信し、前記統一TCI状態に関する指示(例えば、ビーム指示DCI/MAC CE)、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を送信してもよい。制御部110は、少なくとも1つのTCIコードポイントが複数のTCI状態に対応する場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定のTCIコードポイントに対応するTCI状態、又は、特定の送受信ポイント(TRP)に関するインデックスに対応する統一TCI状態に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を指示してもよい(第3/第4の実施形態)。 The transmitting/receiving unit 120 receives configuration parameters related to a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction related to the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be transmitted. If at least one TCI code point corresponds to a plurality of TCI states and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the control unit 110 controls The TCI state or QCL assumption to be applied to the specific DL signal may be indicated based on the TCI state corresponding to the code point or the unified TCI state corresponding to the index regarding the specific transmit/receive point (TRP). 3/Fourth embodiment).
(ユーザ端末)
 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 送受信部220は、統一送信設定指示(TCI)状態に関する設定パラメータを受信し、前記統一TCI状態に関する指示(例えば、ビーム指示DCI/MAC CE)、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を受信してもよい。複数の値の制御リソースセット(CORESET)プールインデックスが設定される場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定の前記CORESETプールインデックスに対応するTCI状態又は疑似コロケーション(QCL想定)に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を判断してもよい(第1/第2の実施形態)。 The transmitting/receiving unit 220 receives configuration parameters related to a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction related to the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be received. When a plurality of values of control resource set (CORESET) pool indexes are set, and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the specific CORESET pool index The TCI state or QCL assumption to be applied to the specific DL signal may be determined based on the TCI state or pseudo-colocation (QCL assumption) corresponding to the specific DL signal (first/second embodiment).
 制御部210は、最新のモニタリングスロットにおける同一のCORESETプールインデックスの最低のCORESET IDに対応するQCL想定を前記DL信号に適用してもよい(第1/第2の実施形態)。 The control unit 210 may apply the QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot to the DL signal (first/second embodiment).
 前記DL信号が物理下りリンク共有チャネル(PDSCH)である場合、制御部210は、前記複数の値のCORESETプールインデックスのそれぞれに対応する複数の統一TCI状態を前記PDSCHに適用してもよい(第1の実施形態)。前記DL信号が非周期的チャネル状態情報参照信号(A-CSI-RS)である場合、制御部210は、前記複数の値のCORESETプールインデックスのいずれかに対応する1つの統一TCI状態を前記A-CSI-RSに適用してもよい(第2の実施形態)。 When the DL signal is a physical downlink shared channel (PDSCH), the control unit 210 may apply a plurality of unified TCI states corresponding to each of the plurality of values of the CORESET pool index to the PDSCH (the first Embodiment 1). When the DL signal is an aperiodic channel state information reference signal (A-CSI-RS), the control unit 210 assigns one unified TCI state corresponding to one of the plurality of values of the CORESET pool index to the A-CSI-RS. - May be applied to CSI-RS (second embodiment).
 前記指示に基づく統一TCI状態がサービングセルの物理セルIDと同じ物理セルIDに関連付けられる場合、制御部210は、前記複数の値のCORESETプールインデックスに対応する少なくとも1つの統一TCI状態を前記DL信号に適用してもよい。前記指示に基づく統一TCI状態が前記サービングセルの物理セルIDと異なる物理セルIDに関連付けられる場合、制御部210は、最新のモニタリングスロットにおける同一のCORESETプールインデックスの最低のCORESET IDに対応するQCL想定を前記DL信号に適用してもよい(第3/第4の実施形態)。 If the unified TCI state based on the instruction is associated with the same physical cell ID as that of the serving cell, the control unit 210 assigns at least one unified TCI state corresponding to the plurality of values of the CORESET pool index to the DL signal. May be applied. If the unified TCI state based on the instruction is associated with a physical cell ID different from the physical cell ID of the serving cell, the control unit 210 sets a QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot. It may be applied to the DL signal (third/fourth embodiment).
 送受信部220は、統一送信設定指示(TCI)状態に関する設定パラメータを受信し、前記統一TCI状態に関する指示(例えば、ビーム指示DCI/MAC CE)、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を受信してもよい。制御部210は、少なくとも1つのTCIコードポイントが複数のTCI状態に対応する場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定のTCIコードポイントに対応するTCI状態、又は、特定の送受信ポイント(TRP)に関するインデックスに対応する統一TCI状態に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を判断してもよい(第3/第4の実施形態)。 The transmitting/receiving unit 220 receives configuration parameters related to a unified transmission configuration instruction (TCI) state, and schedules or triggers an instruction related to the unified TCI state (for example, beam instruction DCI/MAC CE) and a downlink (DL) signal. Downlink control information (DCI) may also be received. When at least one TCI code point corresponds to a plurality of TCI states and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the control unit 210 controls The TCI state or QCL assumption to be applied to the specific DL signal may be determined based on the TCI state corresponding to the code point or the unified TCI state corresponding to the index regarding the specific transmit/receive point (TRP). 3/Fourth embodiment).
 制御部210は、複数の異なるTCI状態に対応する最低のTCIコードポイントのTCI状態を前記DL信号に適用してもよい(第3/第4の実施形態)。 The control unit 210 may apply the TCI state of the lowest TCI code point corresponding to a plurality of different TCI states to the DL signal (third/fourth embodiment).
 前記DL信号が物理下りリンク共有チャネル(PDSCH)である場合、制御部210は、複数の値の前記TRPに関するインデックスのそれぞれに対応する複数の統一TCI状態を前記PDSCHに適用してもよい(第3の実施形態)。前記DL信号が非周期的チャネル状態情報参照信号(A-CSI-RS)である場合、制御部210は、前記複数の値の前記TRPに関するインデックスのいずれかに対応する1つの統一TCI状態を前記A-CSI-RSに適用してもよい(第4の実施形態)。 When the DL signal is a physical downlink shared channel (PDSCH), the control unit 210 may apply to the PDSCH a plurality of unified TCI states corresponding to each of the indexes regarding the TRP of a plurality of values. Embodiment 3). When the DL signal is an aperiodic channel state information reference signal (A-CSI-RS), the control unit 210 sets one unified TCI state corresponding to one of the indices regarding the TRP of the plurality of values to the It may also be applied to A-CSI-RS (fourth embodiment).
 前記指示に基づく統一TCI状態がサービングセルの物理セルIDと同じ物理セルIDに関連付けられる場合、制御部210は、複数の値の前記TRPに関するインデックスに対応する少なくとも1つの統一TCI状態を前記DL信号に適用してもよい。前記指示に基づく統一TCI状態が前記サービングセルの物理セルIDと異なる物理セルIDに関連付けられる場合、制御部210は、複数の異なるTCI状態に対応する最低のTCIコードポイントのTCI状態を前記DL信号に適用してもよい(第3/第4の実施形態)。 When the unified TCI state based on the instruction is associated with the same physical cell ID as that of the serving cell, the control unit 210 assigns at least one unified TCI state corresponding to the index regarding the TRP of a plurality of values to the DL signal. May be applied. When the unified TCI state based on the instruction is associated with a physical cell ID different from the physical cell ID of the serving cell, the control unit 210 assigns the TCI state of the lowest TCI code point corresponding to the plurality of different TCI states to the DL signal. It may also be applied (third/fourth embodiment).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In the present disclosure, a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図18は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 18 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signal of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In the present disclosure, "less than or equal to", "less than", "more than", "more than", "equal to", etc. may be read interchangeably. In addition, in this disclosure, "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. The words are not limited to the original, comparative, and superlative, and may be interpreted interchangeably. In addition, in this disclosure, words meaning "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. may be interpreted as an expression with "the i-th" (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest" can be interpreted as "the i-th highest"). may be read interchangeably).
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, "of", "for", "regarding", "related to", "associated with", etc. are used to refer to each other. It may be read differently.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention as determined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.

Claims (6)

  1.  統一送信設定指示(TCI)状態に関する設定パラメータを受信し、前記統一TCI状態に関する指示、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を受信する受信部と、
     複数の値の制御リソースセット(CORESET)プールインデックスが設定される場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定の前記CORESETプールインデックスに対応するTCI状態又は疑似コロケーション(QCL想定)に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を判断する制御部と、を有する端末。
    a receiving unit for receiving configuration parameters regarding a unified transmission configuration indication (TCI) state, and receiving an instruction regarding the unified TCI state and downlink control information (DCI) for scheduling or triggering a downlink (DL) signal;
    When a plurality of values of control resource set (CORESET) pool indexes are set, and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the specific CORESET pool index a control unit that determines a TCI state or QCL assumption to be applied to the specific DL signal based on a TCI state or pseudo-colocation (QCL assumption) corresponding to the terminal.
  2.  前記制御部は、最新のモニタリングスロットにおける同一のCORESETプールインデックスの最低のCORESET IDに対応するQCL想定を前記DL信号に適用する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit applies a QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot to the DL signal.
  3.  前記DL信号が物理下りリンク共有チャネル(PDSCH)である場合、前記制御部は、前記複数の値のCORESETプールインデックスのそれぞれに対応する複数の統一TCI状態を前記PDSCHに適用し、
     前記DL信号が非周期的チャネル状態情報参照信号(A-CSI-RS)である場合、前記制御部は、前記複数の値のCORESETプールインデックスのいずれかに対応する1つの統一TCI状態を前記A-CSI-RSに適用する、請求項1に記載の端末。
    When the DL signal is a physical downlink shared channel (PDSCH), the control unit applies a plurality of unified TCI states corresponding to each of the plurality of values of the CORESET pool index to the PDSCH;
    When the DL signal is an aperiodic channel state information reference signal (A-CSI-RS), the control unit sets one unified TCI state corresponding to any of the plurality of values of the CORESET pool index to the A-CSI-RS. - The terminal according to claim 1, which is applied to CSI-RS.
  4.  前記指示に基づく統一TCI状態がサービングセルの物理セルIDと同じ物理セルIDに関連付けられる場合、前記制御部は、前記複数の値のCORESETプールインデックスに対応する少なくとも1つの統一TCI状態を前記DL信号に適用し、
     前記指示に基づく統一TCI状態が前記サービングセルの物理セルIDと異なる物理セルIDに関連付けられる場合、前記制御部は、最新のモニタリングスロットにおける同一のCORESETプールインデックスの最低のCORESET IDに対応するQCL想定を前記DL信号に適用する、請求項1に記載の端末。
    If the unified TCI state based on the instruction is associated with the same physical cell ID as the physical cell ID of the serving cell, the controller assigns at least one unified TCI state corresponding to the multi-valued CORESET pool index to the DL signal. apply,
    If the unified TCI state based on the indication is associated with a physical cell ID different from the physical cell ID of the serving cell, the controller sets a QCL assumption corresponding to the lowest CORESET ID of the same CORESET pool index in the latest monitoring slot. The terminal according to claim 1, applied to the DL signal.
  5.  統一送信設定指示(TCI)状態の設定パラメータを受信し、前記統一TCI状態に関する指示、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を受信するステップと、
     複数の値の制御リソースセット(CORESET)プールインデックスが設定される場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定の前記CORESETプールインデックスに対応するTCI状態又は疑似コロケーション(QCL想定)に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を判断するステップと、を有する端末の無線通信方法。
    receiving configuration parameters for a unified transmission configuration indication (TCI) state, and receiving instructions regarding the unified TCI state and downlink control information (DCI) for scheduling or triggering downlink (DL) signals;
    When a plurality of values of control resource set (CORESET) pool indexes are set, and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the specific CORESET pool index A wireless communication method for a terminal, comprising: determining a TCI state or QCL assumption to be applied to the specific DL signal based on a TCI state or pseudo-colocation (QCL assumption) corresponding to the specific DL signal.
  6.  統一送信設定指示(TCI)状態の設定パラメータを送信し、前記統一TCI状態に関する指示、及び、下りリンク(DL)信号をスケジュール又はトリガする下りリンク制御情報(DCI)を送信する送信部と、
     複数の値の制御リソースセット(CORESET)プールインデックスが設定される場合であって、かつ、前記DCIの受信から前記DL信号の受信までの期間の値が閾値より小さい場合、特定の前記CORESETプールインデックスに対応するTCI状態又は疑似コロケーション(QCL想定)に基づいて、前記特定のDL信号に適用するTCI状態又はQCL想定を指示する制御部と、を有する基地局。
    a transmitting unit configured to transmit configuration parameters for a unified transmission configuration indication (TCI) state, and to transmit downlink control information (DCI) for scheduling or triggering a downlink (DL) signal and an instruction regarding the unified TCI state;
    When a plurality of values of control resource set (CORESET) pool indexes are set, and the value of the period from reception of the DCI to reception of the DL signal is smaller than a threshold, the specific CORESET pool index a control unit that instructs a TCI state or QCL assumption to be applied to the specific DL signal based on a TCI state or pseudo-colocation (QCL assumption) corresponding to the base station.
PCT/JP2022/026993 2022-07-07 2022-07-07 Terminal, wireless communication method and base station WO2024009463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026993 WO2024009463A1 (en) 2022-07-07 2022-07-07 Terminal, wireless communication method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026993 WO2024009463A1 (en) 2022-07-07 2022-07-07 Terminal, wireless communication method and base station

Publications (1)

Publication Number Publication Date
WO2024009463A1 true WO2024009463A1 (en) 2024-01-11

Family

ID=89453113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026993 WO2024009463A1 (en) 2022-07-07 2022-07-07 Terminal, wireless communication method and base station

Country Status (1)

Country Link
WO (1) WO2024009463A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "R16 maintenance of multi-TRP operation", 3GPP DRAFT; R1-2003660, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online; 20200525 - 20200529, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885435 *
SAMSUNG: "Enhancements on multi-TRP inter-cell operation", 3GPP DRAFT; R1-2111719, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 5 November 2021 (2021-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052179505 *
XIAOMI: "Maintenance on beam management for new SCSs", 3GPP DRAFT; R1-2201942, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052109881 *
ZTE: "Remaining issues on multi-beam enhancements", 3GPP DRAFT; R1-2203257, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052137653 *

Similar Documents

Publication Publication Date Title
WO2023209984A1 (en) Terminal, wireless communication method, and base station
WO2024009463A1 (en) Terminal, wireless communication method and base station
WO2024009464A1 (en) Terminal, wireless communication method, and base station
WO2023203766A1 (en) Terminal, wireless communication method, and base station
WO2023203767A1 (en) Terminal, wireless communication method, and base station
WO2023175937A1 (en) Terminal, radio communication method, and base station
WO2023175938A1 (en) Terminal, radio communication method, and base station
WO2023209985A1 (en) Terminal, radio communication method, and base station
WO2024042954A1 (en) Terminal, wireless communication method, and base station
WO2023209885A1 (en) Terminal, radio communication method, and base station
WO2023203760A1 (en) Terminal, wireless communication method, and base station
WO2024004143A1 (en) Terminal, wireless communication method, and base station
WO2024034141A1 (en) Terminal, wireless communication method, and base station
WO2024034142A1 (en) Terminal, wireless communication method, and base station
WO2023053291A1 (en) Terminal, wireless communication method, and base station
WO2024009473A1 (en) Terminal, wireless communication method, and base station
WO2024009475A1 (en) Terminal, wireless communication method, and base station
WO2024095478A1 (en) Terminal, wireless communication method, and base station
WO2024095477A1 (en) Terminal, wireless communication method, and base station
WO2024009474A1 (en) Terminal, radio communication method, and base station
WO2023037521A1 (en) Terminal, wireless communication method, and base station
WO2023203695A1 (en) Terminal, wireless communication method, and base station
WO2023203696A1 (en) Terminal, wireless communication method, and base station
WO2023037522A1 (en) Terminal, wireless communication method, and base station
WO2024069968A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950257

Country of ref document: EP

Kind code of ref document: A1