WO2024009450A1 - Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor - Google Patents

Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor Download PDF

Info

Publication number
WO2024009450A1
WO2024009450A1 PCT/JP2022/026944 JP2022026944W WO2024009450A1 WO 2024009450 A1 WO2024009450 A1 WO 2024009450A1 JP 2022026944 W JP2022026944 W JP 2022026944W WO 2024009450 A1 WO2024009450 A1 WO 2024009450A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
insertion hole
shaft
end surface
Prior art date
Application number
PCT/JP2022/026944
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 下川
隆徳 渡邉
洋樹 麻生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/026944 priority Critical patent/WO2024009450A1/en
Publication of WO2024009450A1 publication Critical patent/WO2024009450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present disclosure relates to a rotor, an electric motor, a blower, an air conditioner, and a method for manufacturing a rotor.
  • a rotor of an electric motor includes a shaft, a rotor core attached to the shaft, a permanent magnet attached to the rotor core, and a resin part that holds the shaft and the rotor core (see, for example, Patent Document 1).
  • a magnetic material is inserted into the magnet insertion hole of the rotor core, and the rotor core and shaft are integrally molded with resin. After that, the magnetic material is magnetized to form a permanent magnet.
  • the present disclosure has been made to solve the above problems, and aims to improve the magnetization rate of permanent magnets.
  • the rotor of the present disclosure includes a shaft, a rotor core that surrounds the shaft from the outside in the radial direction and has a magnet insertion hole, and a first resin part located between the shaft and the rotor core, and holds the shaft and the rotor core. It has a resin part.
  • the rotor core has a first end surface and a second end surface in the axial direction of the shaft.
  • the magnet insertion hole extends from the first end surface to the second end surface.
  • the magnet insertion hole is not covered with the resin part in at least one of the first end face and the second end face.
  • a method for manufacturing a rotor according to the present disclosure includes a step of magnetizing a magnetic material to form a permanent magnet, a step of integrally molding a rotor core and a shaft having a magnet insertion hole with resin, and a step of molding a permanent magnet into a magnet insertion hole of the rotor core. and a step of inserting.
  • a magnet insertion hole is exposed in at least one of the first end surface and the second end surface of the rotor core in the axial direction of the shaft.
  • the magnet insertion hole of the rotor core is not covered with the resin part, a singly magnetized permanent magnet can be inserted into the magnet insertion hole of the rotor core that is integrally molded with the shaft. Therefore, the magnetization rate of the permanent magnet can be improved.
  • FIG. 1 is a longitudinal sectional view showing the electric motor of Embodiment 1.
  • FIG. 1 is a cross-sectional view showing the electric motor of Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a rotor of Embodiment 1.
  • FIG. 1 is a longitudinal sectional view showing a rotor of Embodiment 1.
  • FIG. 2 is a diagram (A) of the rotor of Embodiment 1 viewed from the load side and a diagram (B) of the rotor viewed from the anti-load side.
  • FIGS. 3A and 3B are diagrams illustrating an example of a method for fixing a nonmagnetic material according to Embodiment 1.
  • FIGS. 1 is a longitudinal sectional view showing the electric motor of Embodiment 1.
  • FIG. 1 is a cross-sectional view showing the electric motor of Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a rotor of Embodiment 1.
  • FIG. 3 is a flowchart showing the manufacturing process of the rotor of Embodiment 1.
  • FIG. 3 is a longitudinal cross-sectional view showing a mold used in the manufacturing process of the rotor of Embodiment 1.
  • FIG. 3 is a diagram for explaining a permanent magnet insertion process according to the first embodiment. It is a longitudinal cross-sectional view which shows the rotor of a modification.
  • FIG. 3 is a cross-sectional view showing a rotor according to a second embodiment.
  • FIG. 3 is a diagram of the rotor of Embodiment 2 viewed from the anti-load side.
  • FIG. 3 is a vertical cross-sectional view showing a rotor according to a second embodiment.
  • FIG. 7A and 7B are diagrams illustrating an example of a method for fixing a rotor according to a second embodiment
  • FIG. 7 is a diagram illustrating another example of the method of fixing a nonmagnetic material according to the second embodiment.
  • FIG. They are a diagram (A) showing an air conditioner to which the electric motor of each embodiment and modification can be applied, and a diagram (B) showing an outdoor unit thereof.
  • FIG. 1 is a longitudinal cross-sectional view showing an electric motor 1 according to the first embodiment.
  • the electric motor 1 is a synchronous motor, and is used, for example, in a blower of an air conditioner 500 (FIG. 16(A)).
  • the electric motor 1 includes a rotor 2 having a shaft 10, a stator 5 surrounding the rotor 2, a circuit board 70, a molded resin part 60 covering the stator 5 and the circuit board 70, and bearings 11 and 12 supporting the shaft 10. Be prepared.
  • the central axis Ax of the shaft 10 defines the rotation center of the rotor 2.
  • Stator 5 and molded resin portion 60 constitute molded stator 6 .
  • the direction of the central axis Ax will be referred to as the "axial direction.”
  • the radial direction centered on the central axis Ax is defined as the “radial direction.”
  • the circumferential direction centered on the central axis Ax is defined as the “circumferential direction.”
  • a cross-sectional view taken in a plane perpendicular to the central axis Ax is referred to as a "transverse cross-sectional view”
  • a cross-sectional view taken in a plane parallel to the central axis Ax is referred to as a "longitudinal cross-sectional view”.
  • the shaft 10 protrudes from the molded stator 6 to one side in the axial direction.
  • an impeller 511 (FIG. 16(A)) of a blower is attached to the protrusion of the shaft 10. Therefore, the side from which the shaft 10 protrudes is called the "load side”, and the opposite side is called the "counter-load side”.
  • the molded stator 6 includes the stator 5 and the molded resin part 60.
  • the mold resin part 60 is made of a thermosetting resin such as unsaturated polyester resin or epoxy resin.
  • the unsaturated polyester resin is, for example, bulk molding compound (BMC).
  • the molded resin part 60 is an outer shell member and covers the radially outer side and the anti-load side of the stator 5.
  • the molded resin part 60 has an opening 61 on the load side and a bottom 62 on the anti-load side.
  • the rotor 2 is inserted into the stator 5 through the opening 61.
  • a metal bracket 13 that supports the bearing 11 on the load side is attached to the opening 61 of the molded resin part 60.
  • the bracket 13 is an annular member centered on the central axis Ax, and holds the bearing 11 at its radially central portion.
  • the bottom portion 62 of the molded resin portion 60 is formed to cover the anti-load side of the stator 5.
  • a recess 63 is formed in the bottom 62 to accommodate the bearing 12.
  • a circuit board 70 is arranged on the anti-load side of the stator 5.
  • the circuit board 70 has an annular shape and is held by the molded resin part 60.
  • Elements 71 such as drive circuits are mounted on the circuit board 70, and lead wires 72 are wired.
  • the lead wire 72 is drawn out from a drawing part 73 provided on the outer periphery of the molded resin part 60.
  • the outer shell member that covers the stator 5 and the circuit board 70 is not limited to the molded resin part 60, and may be, for example, a metal shell.
  • the shell is, for example, a cylindrical member whose main component is Fe (iron), and the stator 5 is fixed inside thereof by shrink fitting or the like.
  • FIG. 2 is a cross-sectional view showing the rotor 2 and stator 5 of the electric motor 1.
  • the mold resin part 60 is omitted.
  • Stator 5 includes a stator core 50 and a coil 55 wound around stator core 50.
  • the stator core 50 has a laminated body in which a plurality of magnetic laminated elements are laminated in the axial direction.
  • the laminated element is a thin plate containing Fe as a main component, and more specifically, an electromagnetic steel plate.
  • the thickness of the laminated element is, for example, 0.2 mm to 0.5 mm.
  • a processed lump containing Fe as a main component may be used.
  • the stator core 50 has an annular yoke 51 and a plurality of teeth 52 extending radially inward from the yoke 51.
  • the number of teeth 52 is 12 here, but is not limited to this.
  • a tip portion 52 a facing the rotor 2 is formed at the tip of the tooth 52 .
  • a slot 53 is formed between teeth 52 adjacent to each other in the circumferential direction.
  • the coil 55 is wound around the teeth 52 via the insulating portion 54 and accommodated in the slot 53.
  • the insulating section 54 is made of an insulating resin such as PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), liquid crystal polymer (LCP), and PET (polyethylene terephthalate). Further, an insulating film may be provided to cover the inner surface of the slot 53.
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • PET polyethylene terephthalate
  • an insulating film may be provided to cover the inner surface of the slot 53.
  • the coil 55 is wound around the teeth 52 and accommodated in the slot 53.
  • the coil 55 is made of, for example, a magnet wire.
  • the coil 55 may be wound by either concentrated winding or distributed winding.
  • FIG. 3 is a cross-sectional view showing the rotor 2.
  • the rotor 2 includes a rotor core 20 fixed to the shaft 10 and a plurality of permanent magnets 25 embedded in the rotor core 20.
  • the rotor core 20 is an annular member centered on the central axis Ax, and has an outer circumference 20c and an inner circumference 20d.
  • the rotor core 20 has a laminated body in which a plurality of magnetic laminated elements are laminated in the axial direction.
  • the laminated element is a thin plate containing Fe as a main component, and more specifically, an electromagnetic steel plate.
  • the thickness of the laminated element is, for example, 0.2 mm to 0.5 mm.
  • the rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction.
  • the magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at equal distances from the central axis Ax.
  • a permanent magnet 25 is inserted into each magnet insertion hole 21 .
  • the permanent magnet 25 has a flat plate shape and has a rectangular cross section in a plane perpendicular to the axial direction.
  • One permanent magnet 25 corresponds to one magnetic pole. Therefore, the number of poles of the rotor 2 is ten. However, the number of poles of the rotor 2 is not limited to ten, but may be two or more.
  • the circumferential center of each magnetic pole is a pole center P.
  • a straight line in the radial direction passing through the pole center P is referred to as a magnetic pole center line.
  • a pole-to-pole portion M is defined between adjacent permanent magnets 25 .
  • the permanent magnet 25 here is a rare earth magnet containing Nd (neodymium), Fe (iron), and B (boron).
  • a rare earth magnet containing Sm (samarium) and Co (cobalt) may be used.
  • a ferrite magnet may be used instead of a rare earth magnet.
  • a thin portion is formed between the flux barrier 22 and the outer periphery 20c of the rotor core 20. In order to reduce leakage magnetic flux between adjacent magnetic poles, it is desirable that the thickness of the thin portion be the same as the thickness of the laminated element.
  • the outer periphery 20c of the rotor core 20 has a flower round shape.
  • the outer circumference 20c of the rotor core 20 extends such that its outer diameter is maximum at the pole center P and minimum at the interpole portion M.
  • the outer periphery 20c of the rotor core 20 is not limited to the round shape, but may have a circular shape, for example.
  • the inner circumference 20d of the rotor core 20 has a circular shape.
  • the shaft 10 is made of metal such as mechanical structural carbon steel (S45C), for example.
  • a first resin portion 31 is provided between the shaft 10 and the inner circumference 20d of the rotor core 20.
  • the first resin portion 31 is made of non-magnetic resin. More specifically, the first resin portion 31 is made of thermoplastic resin such as PBT, PPS, LCP, and PET.
  • FIG. 4 is a longitudinal cross-sectional view showing the rotor 2.
  • the rotor core 20 has both end faces in the axial direction, that is, an end face 20a on the load side and an end face 20b on the anti-load side.
  • the magnet insertion hole 21 extends in the axial direction from the end surface 20a to the end surface 20b.
  • the end surface 20a is also referred to as a first end surface
  • the end surface 20b is also referred to as a second end surface.
  • the shaft 10 protrudes from the rotor core 20 on both sides in the axial direction.
  • a portion of the shaft 10 that protrudes from the end surface 20a of the rotor core 20 is referred to as a long shaft portion 10a.
  • a portion of the shaft 10 that protrudes from the end surface 20b of the rotor core 20 is referred to as a short shaft portion 10b.
  • the length of the long shaft portion 10a is longer than the length of the short shaft portion 10b.
  • the long shaft portion 10a of the shaft 10 is located on the load side and the short shaft portion 10b is located on the anti-load side.
  • the long shaft portion 10a is located on the anti-load side and the short shaft portion 10b It may be located on the load side.
  • the first resin portion 31 is provided between the shaft 10 and the inner circumference 20d of the rotor core 20. More specifically, the first resin portion 31 is filled between the shaft 10 and the inner circumference 20d of the rotor core 20.
  • a second resin portion 32 is provided on the end surface 20a of the rotor core 20.
  • the second resin part 32 is formed integrally with the first resin part 31.
  • a third resin portion 33 is provided on the end surface 20b of the rotor core 20.
  • the third resin part 33 is formed integrally with the first resin part 31.
  • the first resin part 31, the second resin part 32, and the third resin part 33 constitute the resin part 30.
  • the resin portion 30 has a function of holding the shaft 10 and the rotor core 20 together.
  • a non-magnetic material 34 is arranged on the end surface 20b of the rotor core 20 so as to cover at least a portion of the magnet insertion hole 21.
  • the non-magnetic material 34 is located on the radially outer side of the third resin portion 33.
  • the non-magnetic material 34 is made of non-magnetic resin.
  • the material of the non-magnetic body 34 may be the same as the material of the first resin part 31, or may be different.
  • the non-magnetic material 34 is provided separately from the resin part 30. That is, the non-magnetic material 34 is arranged on the rotor core 20 in a step subsequent to the step in which the resin portion 30 is formed (described later).
  • FIG. 5(A) is a diagram of the rotor 2 viewed from the load side.
  • the load-side end surface 20a of the rotor 2 is covered with the second resin portion 32.
  • the second resin portion 32 has an annular shape centered on the central axis Ax, and has an outer periphery 32a and an inner periphery 32b.
  • the shaft 10 is fixed to the inner circumference 32b of the second resin portion 32.
  • the outer periphery 32 a of the second resin portion 32 is located radially outward from the radially inner end of the magnet insertion hole 21 .
  • the second resin portion 32 covers at least a portion of the magnet insertion hole 21 .
  • FIG. 5(B) is a diagram of the rotor 2 viewed from the anti-load side.
  • the third resin portion 33 has an annular shape centered on the central axis Ax, and has an outer periphery 33a and an inner periphery 33b.
  • the shaft 10 is fixed to the inner circumference 33b of the third resin portion 33.
  • the outer periphery 33a of the third resin portion 33 is located radially inside the magnet insertion hole 21. In other words, the third resin part 33 does not cover the magnet insertion hole 21.
  • the non-magnetic material 34 is arranged radially outward from the third resin part 33.
  • the non-magnetic body 34 has an annular shape centered on the central axis Ax, and has an outer periphery 34a and an inner periphery 34b.
  • the inner periphery 34b of the non-magnetic material 34 is located on the outer side in the radial direction than the outer periphery 33a of the third resin portion 33. That is, the nonmagnetic material 34 is provided apart from the third resin part 33.
  • the outer periphery 34a of the non-magnetic material 34 is located radially outward from the radially inner end of the magnet insertion hole 21. That is, the nonmagnetic material 34 covers at least a portion of the magnet insertion hole 21 on the end surface 20b of the rotor core 20.
  • the non-magnetic material 34 functions as a lid that prevents the permanent magnet 25 from falling out of the magnet insertion hole 21.
  • the nonmagnetic material 34 covers the part of the magnet insertion hole 21 other than the flux barrier 22, but it may cover the entire magnet insertion hole 21 including the flux barrier 22. good.
  • nonmagnetic material 34 is formed in an annular shape here, it may have another shape as long as it can cover at least a portion of the magnet insertion hole 21. Further, a plurality of non-magnetic bodies 34 may be provided so as to cover each magnet insertion hole 21.
  • FIG. 6(A) is a plan view showing an example of a method of fixing the non-magnetic material 34.
  • the nonmagnetic material 34 and the third resin part 33 are fixed by welding.
  • at least one rib 34c is provided on the inner periphery 34b of the non-magnetic material 34, and this rib 34c and the third resin part 33 are fixed by welding.
  • the number of ribs 34c is the same as the number of poles of the rotor 2, and the position of each rib 34c is made to coincide with the position of the pole center P.
  • the number and arrangement of the ribs 34c are not limited to this example, and may be sufficient as long as the non-magnetic material 34 and the third resin part 33 can be fixed to each other.
  • FIG. 6(B) is a plan view showing another example of the method of fixing the non-magnetic material 34.
  • the non-magnetic material 34 is provided with an engaging portion 34d that engages with a part of the magnet insertion hole 21 (FIG. 5(B)) of the rotor core 20.
  • an engaging portion 34d that enters the flux barrier 22 of the magnet insertion hole 21 in the axial direction is provided on the outer periphery 34a of the non-magnetic material 34.
  • the engaging portion 34d When the engaging portion 34d engages with the flux barrier 22, the non-magnetic material 34 is fixed to the rotor core 20.
  • the engaging portion 34d has a shape that fits inside the flux barrier 22, and has an axial length sufficient to fix the non-magnetic material 34 to the rotor core 20.
  • the non-magnetic material 34 has the same number of engaging parts 34d as the flux barriers 22 of the rotor core 20, and the arrangement of each engaging part 34d matches the arrangement of the flux barriers 22.
  • the present invention is not limited to such an example, and it is sufficient that at least one engaging portion 34d of the non-magnetic body 34 and the magnet insertion hole 21 engage with each other.
  • the non-magnetic material 34 may be fixed to the rotor core 20 or the third resin part 33 by other methods than the fixing method shown in FIGS. 6(A) and 6(B).
  • FIG. 7 is a flowchart showing a method for manufacturing the rotor 2 according to the first embodiment.
  • a plurality of laminated elements are laminated in the axial direction and fixed by caulking or the like to form the rotor core 20 (step S11).
  • step S12 the rotor core 20 and shaft 10 are placed in a mold and integrally molded with resin.
  • FIG. 8 is a cross-sectional view showing a mold 80 used in the molding process (step S12).
  • the mold 80 has a fixed mold 81 and a movable mold 82.
  • the fixed mold 81 is the lower mold
  • the movable mold 82 is the upper mold.
  • the fixed mold 81 and the movable mold 82 have mold matching surfaces 81h and 82h that face each other.
  • the movable mold 82 can move toward and away from the fixed mold 81, here in the vertical direction.
  • the mold mating surfaces 81h and 82h of the fixed mold 81 and the movable mold 82 are in contact with each other, and a cavity C, which is a molding space, is formed between the fixed mold 81 and the movable mold 82. It is formed.
  • the fixed mold 81 has a shaft hole 81a into which the long axis portion 10a of the shaft 10 is inserted, a cavity 81b into which the rotor core 20 is inserted, and a cavity 81c for forming the second resin part 32. .
  • the outer diameter of the cavity 81c is smaller than the outer diameter of the cavity 81b.
  • the rotor core 20 can be supported from below by a portion of the fixed mold 81 outside the cavity 81b.
  • the movable mold 82 has a shaft hole 82a into which the short shaft portion 10b of the shaft 10 is inserted, and a cavity portion 82b for forming the third resin portion 33.
  • the cavities 81b and 81c of the fixed mold 81 and the cavity 82b of the movable mold 82 form one continuous cavity C.
  • the movable mold 82 is formed with a sprue 82c, which is a passage through which the molten resin injected from the injection molding machine flows, and a runner 82d, which is a passage for the molten resin from the sprue 82c to the cavity C.
  • the movable mold 82 has a pin 82e that enters the magnet insertion hole 21 of the rotor core 20 arranged in the cavity 81b of the fixed mold 81.
  • the pin 82e is provided to prevent resin from entering the magnet insertion hole 21 during molding.
  • the number of pins 82e is the same as the number of magnet insertion holes 21. Further, it is desirable that the pin 82e has the same cross-sectional shape as the magnet insertion hole 21.
  • the movable mold 82 has a contact surface 82f that comes into contact with the periphery of the magnet insertion hole 21 on the end surface 20b of the rotor core 20.
  • the pin 82e and the contact surface 82f are for preventing resin from entering the magnet insertion hole 21.
  • the movable mold 82 is raised to open the cavity C.
  • the shaft 10 is inserted into the shaft hole 81a of the fixed mold 81, and the rotor core 20 is installed in the cavity 81b of the fixed mold 81.
  • the movable mold 82 is lowered to bring the mold matching surfaces 81h and 82h into contact.
  • the end surface 20a of the rotor core 20 faces the cavity 81c of the fixed mold 81
  • the end surface 20b of the rotor core 20 faces the cavity 82b.
  • the mold 80 is heated, and a molten resin such as PBT is injected from the sprue 82c and runner 82d.
  • the resin fills the space inside the rotor core 20 within the cavity 81b. Further, the inside of the cavity 81c and the inside of the cavity 82b are also filled with the resin.
  • the contact surface 82f of the movable mold 82 is in contact with the end surface 20b of the rotor core 20, and the pin 82e of the movable mold 82 is engaged with the magnet insertion hole 21. Therefore, the resin does not flow into the magnet insertion hole 21.
  • the mold 80 is cooled. As a result, the resin within the cavity C is cured, and the resin portion 30 is formed. More specifically, the first resin part 31 is formed inside the rotor core 20 in the cavity 81b, the second resin part 32 is formed in the cavity 81c, and the third resin part 32 is formed in the cavity 82b. 33 is formed. As a result, the shaft 10 and the rotor core 20 are held integrally by the resin portion 30.
  • the movable mold 82 is raised to open the cavity C, and the rotor core 20 integrally molded with the shaft 10 is taken out from the fixed mold 81.
  • the magnetic material is magnetized (step S13).
  • the magnetic body is magnetized, for example, by a magnetizing device, and becomes a permanent magnet 25. Since the magnetic body is individually magnetized before being incorporated into the rotor 2, the magnetic body can be uniformly and sufficiently magnetized, and the magnetization rate of the permanent magnets 25 can be improved.
  • the magnetized permanent magnet 25 is attached to the rotor core 20 that is integrally formed with the shaft 10 (step S14).
  • FIG. 9 is a schematic diagram for explaining the process of inserting the permanent magnet 25 into the rotor core 20.
  • the magnet insertion hole 21 is not covered with the resin portion 30 and is exposed on the end surface 20b of the rotor core 20. Furthermore, no resin enters the inside of the magnet insertion hole 21. Therefore, the permanent magnet 25 can be inserted into the magnet insertion hole 21 of the rotor core 20.
  • the second resin portion 32 functions as an axial stopper for the permanent magnet 25 inserted into the magnet insertion hole 21.
  • the non-magnetic material 34 is attached so as to cover at least a portion of the magnet insertion hole 21 of the rotor core 20 (step S15).
  • the method of fixing the non-magnetic material 34 is as described with reference to FIGS. 6(A) and 6(B). This completes the rotor 2.
  • the electric motor 1 is assembled. That is, the stator core 50 is formed by laminating a plurality of laminated elements in the axial direction and fixing them by caulking or the like. Further, the stator 5 is obtained by attaching the insulating part 54 to the stator core 50 and winding the coil 55.
  • the stator 5 and the circuit board 70 are placed in a mold for a molded stator, and a resin (mold resin) such as BMC is injected and heated to form the molded resin part 60. This completes the molded stator 6.
  • the bearings 11 and 12 are attached to the shaft 10 of the rotor 2, and these are inserted into the hollow part of the molded stator 6 through the opening 61.
  • the bracket 13 is attached to the opening 61 of the molded stator 6.
  • a cap 14 is attached to the shaft 10 so as to cover the bracket 13. As a result, the electric motor 1 is completed.
  • ⁇ Effect> In a typical manufacturing method for the rotor 2, first, a magnetic material is inserted into the magnet insertion hole 21 of the rotor core 20, and the shaft 10 and the rotor core 20 are integrally molded with resin. Thereafter, the shaft 10 and rotor core 20 are mounted on a magnetizing device, and the magnetic material is magnetized to form a permanent magnet 25. Such a magnetization method is called built-in magnetization.
  • the magnetization rate of the permanent magnet 25 tends to be low.
  • the magnetization rate of the permanent magnet 25 tends to be low, making it difficult to obtain high magnetic force.
  • a magnetic body is magnetized singly to form a permanent magnet 25, and this permanent magnet 25 is incorporated into the rotor core 20 that is integrally formed with the shaft 10. Therefore, the entire magnetic body can be uniformly and sufficiently magnetized, and the magnetization rate of the permanent magnet 25 can be improved. Furthermore, since no heat is applied to the permanent magnet 25, demagnetization does not occur.
  • the permanent magnet 25 is inserted into the magnet insertion hole 21 of the rotor core 20 after the molding process. can do.
  • the contact surface 82g of the movable mold 82 comes into contact with the periphery of the magnet insertion hole 21 on the end surface 20b of the rotor core 20, so that the magnet insertion hole 21 cannot be exposed on the end surface 20b. can.
  • the pin 82e suppresses the resin from flowing into the magnet insertion hole 21 of the rotor core 20, the inside of the magnet insertion hole 21 can be kept hollow. Therefore, as described above, the permanent magnets 25 can be inserted into the magnet insertion holes 21 of the rotor core 20 after the molding process.
  • the permanent magnet 25 is inserted into the magnet insertion hole 21 from the end surface 20b side of the rotor core 20, that is, from the short shaft portion 10b side of the shaft 10.
  • the shaft 10 is made of a magnetic material such as carbon steel, and a magnetic attraction force acts between it and the permanent magnet 25.
  • the short shaft portion 10b of the shaft 10 is shorter than the long shaft portion 10a, The influence of magnetic attraction force upon insertion of the permanent magnet 25 can be suppressed. This allows stable insertion of the permanent magnet 25.
  • the rotor 2 of the first embodiment includes the shaft 10, the rotor core 20 that surrounds the shaft 10 from the outside in the radial direction and has the magnet insertion hole 21, and the resin part 30 that holds the shaft 10 and the rotor core 20. and has.
  • the rotor core 20 has axial end faces 20a and 20b.
  • the magnet insertion hole 21 extends from the end surface 20a to the end surface 20b. On the end surface 20b of the rotor core 20, the magnet insertion hole 21 is not covered with the resin part 30.
  • a singly magnetized permanent magnet 25 can be inserted into the magnet insertion hole 21 of the rotor core 20 formed integrally with the shaft 10. Since the permanent magnet 25 is magnetized singly, the magnetization rate of the permanent magnet 25 can be improved.
  • the rotor 2 further includes a second resin portion 32 that covers the end surface 20a of the rotor core 20, and the second resin portion 32 covers at least a portion of the magnet insertion hole 21 on the end surface 20a of the rotor core 20. Therefore, when the permanent magnet 25 is inserted into the magnet insertion hole 21 of the rotor core 20, the second resin portion 32 functions as a stopper for the permanent magnet 25. Therefore, the work of inserting the permanent magnet 25 can be simplified.
  • the shaft 10 has a long shaft portion 10a and a short shaft portion 10b, and the permanent magnet 25 is inserted into the magnet insertion hole 21 from the short shaft portion 10b side. Therefore, the influence of the magnetic attractive force between the permanent magnet 25 and the shaft 10 is suppressed, and stable insertion of the permanent magnet 25 becomes possible.
  • the shaft 10 and the rotor core 20 can be held more firmly and integrally.
  • the end surface 20b of the rotor core 20 further includes a non-magnetic material 34 that closes at least a portion of the magnet insertion hole 21, it is possible to reliably prevent the permanent magnet 25 from falling out of the magnet insertion hole 21.
  • the pin 81e suppresses the resin from flowing into the magnet insertion hole 21 during the molding process, the inside of the magnet insertion hole 21 remains hollow even after the molding process, and therefore the permanent magnet 25 cannot be inserted into the magnet insertion hole 21. be able to. Note that in the finished product of the rotor 2, there is no resin around the permanent magnets 25 in the magnet insertion holes 21.
  • FIG. 10 is a longitudinal sectional view showing a rotor 2A of a modified example.
  • the non-magnetic material 34 (FIG. 4) is not provided on the end surface 20b of the rotor core 20, and the third resin portion 33 (FIG. 4) is also not provided.
  • the permanent magnet 25 can be fixed by fitting into the magnet insertion hole 21. Therefore, even if at least a portion of the magnet insertion hole 21 is not covered with the non-magnetic material 34, the fit can be adjusted so that the permanent magnet 25 does not fall out of the magnet insertion hole 21.
  • the shaft 10 and the rotor core 20 can be integrally held by the first resin part 31 and the second resin part 32. .
  • the rotor 2A of the modified example is configured similarly to the rotor 2 of the first embodiment. Note that although an example has been described here in which neither the nonmagnetic material 34 nor the third resin part 33 are provided on the end surface 20b of the rotor core 20, either one may be provided.
  • a singly magnetized permanent magnet 25 can be incorporated into the rotor core 20, so that the magnetization rate of the permanent magnet 25 can be improved. Furthermore, compared to Embodiment 1, the configuration of the rotor 2A can be simplified and manufacturing costs can be reduced.
  • FIG. 11 is a sectional view showing the rotor 2B of the second embodiment.
  • the rotor 2B of the second embodiment is a consequent pole rotor in which magnetic poles and virtual magnetic poles are alternately arranged in the circumferential direction.
  • the rotor 2B has a plurality of magnet insertion holes 21 along the outer periphery 20c of the rotor core 20.
  • the number of magnet insertion holes 21 is half the number of magnet insertion holes 21 (FIG. 3) in the first embodiment.
  • the magnet insertion holes 21 are arranged at equal intervals in the circumferential direction.
  • a flux barrier 22 for suppressing leakage magnetic flux is formed at both ends of each magnet insertion hole 21 in the circumferential direction.
  • a permanent magnet 25 is arranged in each magnet insertion hole 21.
  • the permanent magnets 25 have magnetic pole faces of the same polarity (for example, N poles) facing the outer circumferential side. Therefore, a portion where magnetic flux flows in the radial direction occurs between adjacent permanent magnets 25 in the rotor core 20.
  • the pole center of the magnet magnetic pole is indicated by the symbol P1
  • the pole center of the virtual magnetic pole is indicated by the symbol P2.
  • the magnet magnetic pole is the north pole and the virtual magnetic pole is the south pole, but the magnet magnetic pole may be the south pole and the virtual magnetic pole is the north pole.
  • the consequent pole type rotor 2B has half the number of permanent magnets 25 compared to the non-consequent pole type rotor 2 with the same number of poles (Fig. 3), so manufacturing costs can be significantly reduced. .
  • FIG. 12 is a diagram of the rotor 2B of Embodiment 2 viewed from the anti-load side.
  • the rotor 2B includes a non-magnetic material 36 and a third resin portion 35 on the end surface 20b of the rotor core 20.
  • each non-magnetic body 36 in the circumferential direction is longer than the length of the magnet insertion hole 21 in the circumferential direction.
  • Each non-magnetic material 36 extends in the circumferential direction along the outer periphery 20c of the rotor core 20 so as to cover at least a portion of the magnet insertion hole 21.
  • the nonmagnetic material 36 exposes the inner peripheral side of the circumferential center of the magnet insertion hole 21 and the flux barrier 22, but it may cover the entire magnet insertion hole 21. That is, the non-magnetic material 36 only needs to cover at least a portion of the magnet insertion hole 21 so that the permanent magnet 25 inside the magnet insertion hole 21 does not fall out.
  • the third resin portion 35 has an outer periphery 35a and an inner periphery 35d.
  • the shaft 10 is fixed to the inner circumference 35d of the third resin portion 35.
  • the outer periphery 35a of the third resin portion 35 extends so that the distance from the central axis Ax changes in the circumferential direction.
  • the distance from the center axis Ax to the outer periphery 35a reaches a maximum value L1 at the first portion 35b corresponding to the pole center P2 (FIG. 11) of the virtual magnetic pole
  • the distance from the center axis Ax to the outer circumference 35a reaches the maximum value L1 at the first portion 35b corresponding to the pole center P2 (FIG. 11) of the virtual magnetic pole.
  • the corresponding second portion 35c has the minimum value L2.
  • FIG. 13 is a longitudinal cross-sectional view showing the rotor 2B of the second embodiment.
  • a first resin portion 31 is provided between the rotor core 20 and the shaft 10
  • a second resin portion 32 is provided on the end surface 20a of the rotor core 20.
  • the third resin part 35 is formed integrally with the first resin part 31 and the second resin part 32.
  • FIGS. 14(A) and 14(B) are diagrams for explaining an example of a method of fixing the non-magnetic material 36.
  • the non-magnetic material 36 has an extending portion 36a that extends in the circumferential direction along the outer periphery of the rotor core 20 (FIG. 12), and a non-magnetic material 36 that extends from both ends of the extending portion 36a to the rotor core 20. It has a pair of leg portions 36b extending in the axial direction toward the rotor core 20, and a claw portion 36c protruding from the lower end of the leg portion 36b in parallel with the end surface 20b of the rotor core 20.
  • the third resin portion 35 has a pair of convex portions 35e at positions that sandwich the non-magnetic material 36 from both sides in the longitudinal direction. As shown in FIG. 14(B), an engagement hole 35f that engages with the claw portion 36c of the non-magnetic material 36 is formed in the convex portion 35e.
  • FIG. 15 is a diagram for explaining another example of the method of fixing the non-magnetic material 36.
  • the non-magnetic material 36 includes an extending portion 36a that extends in the circumferential direction along the outer periphery of the rotor core 20 (FIG. 12), and an axial direction toward the rotor core 20 from both ends of the extending portion 36a.
  • the rotor core 20 has a pair of leg portions 36b extending in the direction, and a pedestal portion 36d extending parallel to the end surface 20b of the rotor core 20 from the lower end of the leg portion 36b.
  • a hole 36f is formed in the pedestal portion 36d, passing through the pedestal portion 36d in the axial direction.
  • the third resin part 35 has a post 35g that projects in the axial direction at a position corresponding to the hole 36f of the pedestal part 36d of the non-magnetic body 36.
  • the pedestal part 36d of the non-magnetic material 36 is placed on the third resin part 35, and the post 35g is engaged with the hole part 36f. Thereafter, the end of the post 35g protruding from the hole 36f is welded to form an engaging portion 35h. By forming the engaging portion 35h at the end of the post 35g, the pedestal portion 36d is prevented from coming off the post 35g. Thereby, the non-magnetic material 36 is fixed to the third resin part 35.
  • the extending portion 36a of the non-magnetic material 36 is axially away from the end surface 20b of the rotor core 20.
  • the axial distance from the end surface 20a of the rotor core 20 to the extension portion 36a may be any distance that can prevent the permanent magnet 25 from protruding from the magnet insertion hole 21 (for example, less than the axial length of the permanent magnet 25).
  • the permanent magnet 25 protrudes from the magnet insertion hole 21 in the axial direction, the magnetic flux emitted from the protruding portion of the permanent magnet 25 becomes a leakage magnetic flux and does not contribute to the generation of the driving force, so it is desirable that the amount of protrusion is small. Therefore, it is desirable that the axial distance from the end surface 20b of the rotor core 20 to the extending portion 36a of the non-magnetic material 36 be as small as possible.
  • the method of fixing the non-magnetic material 36 to the third resin part 35 is not limited to the fixing methods shown in FIGS. 14(A), (B) and FIG. 15, but other fixing methods may be used.
  • the rotor 2B of the second embodiment is configured similarly to the rotor 2 of the first embodiment.
  • the third resin portion 35 can be formed close to the outer periphery of the rotor core 20 at the position corresponding to the virtual magnetic pole. Therefore, the engaging portion between the third resin portion 35 and the non-magnetic material 36 can be formed at a position close to the non-magnetic material 36, and the non-magnetic material 36 can be firmly fixed. Moreover, since the non-magnetic material 36 can be fixed to the third resin part 35 at both ends in its extending direction, the non-magnetic material 36 can be fixed more firmly.
  • FIG. 16(A) is a diagram showing the configuration of an air conditioner 500 to which the electric motor 1 of Embodiment 1 is applied.
  • the air conditioner 500 includes an outdoor unit 501 and an indoor unit 502.
  • the outdoor unit 501 and the indoor unit 502 are connected by a refrigerant pipe 503.
  • the outdoor unit 501 includes a compressor 504, a condenser 505, and an outdoor blower 510.
  • Outdoor blower 510 is, for example, a propeller fan.
  • the outdoor blower 510 includes an impeller 511 and an electric motor 1A that drives the impeller.
  • the indoor unit 502 includes an evaporator 506 and an indoor blower 520.
  • Indoor blower 520 is, for example, a cross flow fan.
  • the indoor blower 520 includes an impeller 521 and an electric motor 1B that drives the impeller.
  • FIG. 16(B) is a cross-sectional view of the outdoor unit 501.
  • the electric motor 1A is supported by a frame 509 disposed within a housing 508 of the outdoor unit 501.
  • An impeller 511 is attached to the shaft 10 of the electric motor 1 via a hub 512.
  • the impeller 511 is rotated by the electric motor 1A to blow air outdoors.
  • the heat released when the refrigerant compressed by the compressor 504 is condensed in the condenser 505 is released outdoors by air blowing from the outdoor blower 510.
  • the impeller 521 is rotated by the electric motor 1B to blow air into the room.
  • the air from which heat has been removed when the refrigerant evaporates in the evaporator 506 is blown into the room by the indoor blower 520.
  • the electric motors 1A and 1B are configured with the electric motor 1 of Embodiment 1, they have high electric motor efficiency due to the high magnetic force of the permanent magnet 25. Therefore, the operating efficiency of the outdoor blower 510 and the indoor blower 520 can be improved, and thereby the operating efficiency of the air conditioner 500 can be improved.
  • the electric motors 1A and 1B are not limited to the electric motor 1 of the first embodiment, but may be a modified example or the electric motor of the second embodiment. Moreover, although the electric motor of each embodiment and modification example is used for both the outdoor blower 510 and the indoor blower 520 here, it may be used for only either one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This rotor has: a shaft; a rotor core that surrounds the shaft from the outside in the radial direction thereof and has a magnet insertion hole; and a resin portion that includes a first resin portion positioned between the shaft and the rotor core and holds the shaft and the rotor core. The rotor core has a first end surface and a second end surface in the axial direction of the shaft. The magnet insertion hole extends from the first end surface to the second end surface. At least either in the first end surface or in the second end surface, the magnet insertion hole is not covered with the resin portion.

Description

ロータ、電動機、送風機、空気調和装置およびロータの製造方法Rotor, electric motor, blower, air conditioner, and rotor manufacturing method
 本開示は、ロータ、電動機、送風機、空気調和装置およびロータの製造方法に関する。 The present disclosure relates to a rotor, an electric motor, a blower, an air conditioner, and a method for manufacturing a rotor.
 電動機のロータは、シャフトと、シャフトに取り付けられたロータコアと、ロータコアに取り付けられた永久磁石と、シャフトとロータコアとを保持する樹脂部とを有する(例えば、特許文献1参照)。 A rotor of an electric motor includes a shaft, a rotor core attached to the shaft, a permanent magnet attached to the rotor core, and a resin part that holds the shaft and the rotor core (see, for example, Patent Document 1).
 ロータの製造時には、ロータコアの磁石挿入孔に磁性体を挿入し、ロータコアとシャフトとを樹脂で一体に成形する。その後、磁性体を着磁して永久磁石とする。 When manufacturing the rotor, a magnetic material is inserted into the magnet insertion hole of the rotor core, and the rotor core and shaft are integrally molded with resin. After that, the magnetic material is magnetized to form a permanent magnet.
国際公開WO2021/117176号(要約参照)International Publication WO2021/117176 (see abstract)
 しかしながら、従来のロータでは、磁性体をロータに組み込んだ状態で着磁するため、磁性体を均一且つ十分に着磁することが難しく、永久磁石の着磁率の向上が難しいという問題がある。 However, in conventional rotors, since the magnetic bodies are magnetized while being incorporated into the rotor, it is difficult to uniformly and sufficiently magnetize the magnetic bodies, and there is a problem that it is difficult to improve the magnetization rate of the permanent magnets.
 本開示は、上記の課題を解決するためになされたものであり、永久磁石の着磁率の向上を目的とする。 The present disclosure has been made to solve the above problems, and aims to improve the magnetization rate of permanent magnets.
 本開示のロータは、シャフトと、シャフトをその径方向の外側から囲み、磁石挿入孔を有するロータコアと、シャフトとロータコアとの間に位置する第1の樹脂部を含み、シャフトとロータコアとを保持する樹脂部とを有する。ロータコアは、シャフトの軸方向において第1の端面と第2の端面とを有する。磁石挿入孔は、第1の端面から第2の端面まで延在する。第1の端面および第2の端面の少なくとも一方において、磁石挿入孔が樹脂部に覆われていない。 The rotor of the present disclosure includes a shaft, a rotor core that surrounds the shaft from the outside in the radial direction and has a magnet insertion hole, and a first resin part located between the shaft and the rotor core, and holds the shaft and the rotor core. It has a resin part. The rotor core has a first end surface and a second end surface in the axial direction of the shaft. The magnet insertion hole extends from the first end surface to the second end surface. The magnet insertion hole is not covered with the resin part in at least one of the first end face and the second end face.
 本開示のロータの製造方法は、磁性体を着磁して永久磁石とする工程と、磁石挿入孔を有するロータコアとシャフトとを樹脂で一体に成形する工程と、ロータコアの磁石挿入孔に永久磁石を挿入する工程とを有する。ロータコアとシャフトとを樹脂で一体に成形する工程では、シャフトの軸方向におけるロータコアの第1の端面と第2の端面の少なくとも一方において、磁石挿入孔を露出させる。 A method for manufacturing a rotor according to the present disclosure includes a step of magnetizing a magnetic material to form a permanent magnet, a step of integrally molding a rotor core and a shaft having a magnet insertion hole with resin, and a step of molding a permanent magnet into a magnet insertion hole of the rotor core. and a step of inserting. In the step of integrally molding the rotor core and the shaft with resin, a magnet insertion hole is exposed in at least one of the first end surface and the second end surface of the rotor core in the axial direction of the shaft.
 本開示によれば、ロータコアの磁石挿入孔が樹脂部に覆われていないため、単体で着磁した永久磁石を、シャフトと一体に成形されたロータコアの磁石挿入孔に挿入することができる。そのため、永久磁石の着磁率を向上することができる。 According to the present disclosure, since the magnet insertion hole of the rotor core is not covered with the resin part, a singly magnetized permanent magnet can be inserted into the magnet insertion hole of the rotor core that is integrally molded with the shaft. Therefore, the magnetization rate of the permanent magnet can be improved.
実施の形態1の電動機を示す縦断面図である。1 is a longitudinal sectional view showing the electric motor of Embodiment 1. FIG. 実施の形態1の電動機を示す横断面図である。1 is a cross-sectional view showing the electric motor of Embodiment 1. FIG. 実施の形態1のロータを示す横断面図である。1 is a cross-sectional view showing a rotor of Embodiment 1. FIG. 実施の形態1のロータを示す縦断面図である。1 is a longitudinal sectional view showing a rotor of Embodiment 1. FIG. 実施の形態1のロータを負荷側から見た図(A)および反負荷側から見た図(B)である。FIG. 2 is a diagram (A) of the rotor of Embodiment 1 viewed from the load side and a diagram (B) of the rotor viewed from the anti-load side. 実施の形態1の非磁性体の固定方法の例を示す図(A),(B)である。FIGS. 3A and 3B are diagrams illustrating an example of a method for fixing a nonmagnetic material according to Embodiment 1. FIGS. 実施の形態1のロータの製造工程を示すフローチャートである。3 is a flowchart showing the manufacturing process of the rotor of Embodiment 1. FIG. 実施の形態1のロータの製造工程で用いられる金型を示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view showing a mold used in the manufacturing process of the rotor of Embodiment 1. 実施の形態1の永久磁石の挿入工程を説明するための図である。FIG. 3 is a diagram for explaining a permanent magnet insertion process according to the first embodiment. 変形例のロータを示す縦断面図である。It is a longitudinal cross-sectional view which shows the rotor of a modification. 実施の形態2のロータを示す横断面図である。FIG. 3 is a cross-sectional view showing a rotor according to a second embodiment. 実施の形態2のロータを反負荷側から見た図である。FIG. 3 is a diagram of the rotor of Embodiment 2 viewed from the anti-load side. 実施の形態2のロータを示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a rotor according to a second embodiment. 実施の形態2のロータの固定方法の一例を示す図(A),(B)である。7A and 7B are diagrams illustrating an example of a method for fixing a rotor according to a second embodiment; FIG. 実施の形態2の非磁性体の固定方法の他の例を示す図である。7 is a diagram illustrating another example of the method of fixing a nonmagnetic material according to the second embodiment. FIG. 各実施の形態および変形例の電動機が適用可能な空気調和装置示す図(A)およびその室外機を示す図(B)である。They are a diagram (A) showing an air conditioner to which the electric motor of each embodiment and modification can be applied, and a diagram (B) showing an outdoor unit thereof.
実施の形態1.
<電動機1の全体構成>
 実施の形態1の電動機について説明する。図1は、実施の形態1の電動機1を示す縦断面図である。電動機1は同期電動機であり、例えば、空気調和装置500(図16(A))の送風機に用いられる。
Embodiment 1.
<Overall configuration of electric motor 1>
The electric motor of Embodiment 1 will be explained. FIG. 1 is a longitudinal cross-sectional view showing an electric motor 1 according to the first embodiment. The electric motor 1 is a synchronous motor, and is used, for example, in a blower of an air conditioner 500 (FIG. 16(A)).
 電動機1は、シャフト10を有するロータ2と、ロータ2を囲むステータ5と、回路基板70と、ステータ5および回路基板70を覆うモールド樹脂部60と、シャフト10を支持するベアリング11,12とを備える。シャフト10の中心軸Axは、ロータ2の回転中心を規定する。ステータ5およびモールド樹脂部60は、モールドステータ6を構成する。 The electric motor 1 includes a rotor 2 having a shaft 10, a stator 5 surrounding the rotor 2, a circuit board 70, a molded resin part 60 covering the stator 5 and the circuit board 70, and bearings 11 and 12 supporting the shaft 10. Be prepared. The central axis Ax of the shaft 10 defines the rotation center of the rotor 2. Stator 5 and molded resin portion 60 constitute molded stator 6 .
 以下では、中心軸Axの方向を「軸方向」とする。中心軸Axを中心とする径方向を「径方向」とする。中心軸Axを中心とする周方向を「周方向」とする。また、中心軸Axに直交する面における断面図を「横断面図」とし、中心軸Axと平行な面における断面図を「縦断面図」とする。 Hereinafter, the direction of the central axis Ax will be referred to as the "axial direction." The radial direction centered on the central axis Ax is defined as the "radial direction." The circumferential direction centered on the central axis Ax is defined as the "circumferential direction." Further, a cross-sectional view taken in a plane perpendicular to the central axis Ax is referred to as a "transverse cross-sectional view", and a cross-sectional view taken in a plane parallel to the central axis Ax is referred to as a "longitudinal cross-sectional view".
 シャフト10は、モールドステータ6から軸方向の一方の側に突出している。シャフト10の突出部には、例えば送風機の羽根車511(図16(A))が取り付けられる。そのため、シャフト10が突出する側を「負荷側」と称し、その反対側を「反負荷側」と称する。 The shaft 10 protrudes from the molded stator 6 to one side in the axial direction. For example, an impeller 511 (FIG. 16(A)) of a blower is attached to the protrusion of the shaft 10. Therefore, the side from which the shaft 10 protrudes is called the "load side", and the opposite side is called the "counter-load side".
<モールドステータ6の構成>
 モールドステータ6は、上記の通り、ステータ5とモールド樹脂部60とを有する。モールド樹脂部60は、不飽和ポリエステル樹脂、エポキシ樹脂等の熱硬化性樹脂で形成される。不飽和ポリエステル樹脂は、例えばバルクモールディングコンパウンド(BMC)である。
<Configuration of mold stator 6>
As described above, the molded stator 6 includes the stator 5 and the molded resin part 60. The mold resin part 60 is made of a thermosetting resin such as unsaturated polyester resin or epoxy resin. The unsaturated polyester resin is, for example, bulk molding compound (BMC).
 モールド樹脂部60は外郭部材であり、ステータ5の径方向外側および反負荷側を覆っている。モールド樹脂部60は、負荷側に開口部61を有し、反負荷側に底部62を有する。ロータ2は、開口部61からステータ5の内側に挿入される。 The molded resin part 60 is an outer shell member and covers the radially outer side and the anti-load side of the stator 5. The molded resin part 60 has an opening 61 on the load side and a bottom 62 on the anti-load side. The rotor 2 is inserted into the stator 5 through the opening 61.
 モールド樹脂部60の開口部61には、負荷側のベアリング11を支持する金属製のブラケット13が取り付けられている。ブラケット13は、中心軸Axを中心とする環状の部材であり、その径方向中央部でベアリング11を保持する。 A metal bracket 13 that supports the bearing 11 on the load side is attached to the opening 61 of the molded resin part 60. The bracket 13 is an annular member centered on the central axis Ax, and holds the bearing 11 at its radially central portion.
 モールド樹脂部60の底部62は、ステータ5の反負荷側を覆うように形成されている。底部62には、ベアリング12を収容する凹部63が形成されている。 The bottom portion 62 of the molded resin portion 60 is formed to cover the anti-load side of the stator 5. A recess 63 is formed in the bottom 62 to accommodate the bearing 12.
 ステータ5の反負荷側には、回路基板70が配置されている。回路基板70は環状であり、モールド樹脂部60に保持されている。回路基板70には、駆動回路等の素子71が実装され、リード線72が配線されている。リード線72は、モールド樹脂部60の外周に設けられた引き出し部73から外部に引き出されている。 A circuit board 70 is arranged on the anti-load side of the stator 5. The circuit board 70 has an annular shape and is held by the molded resin part 60. Elements 71 such as drive circuits are mounted on the circuit board 70, and lead wires 72 are wired. The lead wire 72 is drawn out from a drawing part 73 provided on the outer periphery of the molded resin part 60.
 なお、ステータ5および回路基板70を覆う外郭部材は、モールド樹脂部60に限らず、例えば金属製のシェルであってもよい。シェルは、例えば、Fe(鉄)を主成分とする円筒状の部材であり、その内側にステータ5が焼き嵌め等によって固定される。 Note that the outer shell member that covers the stator 5 and the circuit board 70 is not limited to the molded resin part 60, and may be, for example, a metal shell. The shell is, for example, a cylindrical member whose main component is Fe (iron), and the stator 5 is fixed inside thereof by shrink fitting or the like.
 図2は、電動機1のロータ2とステータ5とを示す横断面図である。図2では、モールド樹脂部60を省略している。ステータ5は、ステータコア50と、ステータコア50に巻き付けられたコイル55とを有する。 FIG. 2 is a cross-sectional view showing the rotor 2 and stator 5 of the electric motor 1. In FIG. 2, the mold resin part 60 is omitted. Stator 5 includes a stator core 50 and a coil 55 wound around stator core 50.
 ステータコア50は、磁性を有する複数の積層要素を軸方向に積層した積層体を有する。積層要素は、Feを主成分とする薄板であり、より具体的には電磁鋼板である。積層要素の板厚は、例えば、0.2mm~0.5mmである。積層要素の積層体の代わりに、Feを主成分とする塊を加工したものを用いてもよい。 The stator core 50 has a laminated body in which a plurality of magnetic laminated elements are laminated in the axial direction. The laminated element is a thin plate containing Fe as a main component, and more specifically, an electromagnetic steel plate. The thickness of the laminated element is, for example, 0.2 mm to 0.5 mm. Instead of a laminate of laminated elements, a processed lump containing Fe as a main component may be used.
 ステータコア50は、環状のヨーク51と、ヨーク51から径方向内側に延在する複数のティース52とを有する。ティース52の数は、ここでは12であるが、これに限定されるものではない。ティース52の先端部には、ロータ2に対向する歯先部52aが形成されている。 The stator core 50 has an annular yoke 51 and a plurality of teeth 52 extending radially inward from the yoke 51. The number of teeth 52 is 12 here, but is not limited to this. A tip portion 52 a facing the rotor 2 is formed at the tip of the tooth 52 .
 周方向に隣り合うティース52の間には、スロット53が形成される。コイル55は、絶縁部54を介してティース52に巻き付けられ、スロット53に収容される。 A slot 53 is formed between teeth 52 adjacent to each other in the circumferential direction. The coil 55 is wound around the teeth 52 via the insulating portion 54 and accommodated in the slot 53.
 絶縁部54は、PBT(ポチブチレンテレフタレート)、PPS(ポリフェニレンサルファイド)、液晶ポリマー(LCP)、PET(ポリエチレンテレフタレート)等の絶縁性の樹脂で構成される。また、スロット53の内面を覆うように絶縁フィルムを設けてもよい。 The insulating section 54 is made of an insulating resin such as PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), liquid crystal polymer (LCP), and PET (polyethylene terephthalate). Further, an insulating film may be provided to cover the inner surface of the slot 53.
 コイル55は、ティース52に巻き付けられ、スロット53に収容されている。コイル55は、例えばマグネットワイヤで構成される。コイル55の巻き付け方法は、集中巻きおよび分布巻きのいずれであってもよい。 The coil 55 is wound around the teeth 52 and accommodated in the slot 53. The coil 55 is made of, for example, a magnet wire. The coil 55 may be wound by either concentrated winding or distributed winding.
<ロータ2の構成>
 図3は、ロータ2を示す横断面図である。図3に示すように、ロータ2は、シャフト10に固定されたロータコア20と、ロータコア20に埋め込まれた複数の永久磁石25とを有する。
<Configuration of rotor 2>
FIG. 3 is a cross-sectional view showing the rotor 2. As shown in FIG. As shown in FIG. 3, the rotor 2 includes a rotor core 20 fixed to the shaft 10 and a plurality of permanent magnets 25 embedded in the rotor core 20.
 ロータコア20は、中心軸Axを中心とする環状の部材であり、外周20cと内周20dとを有する。ロータコア20は、磁性を有する複数の積層要素を軸方向に積層した積層体を有する。積層要素は、Feを主成分とする薄板であり、より具体的には電磁鋼板である。積層要素の板厚は、例えば、0.2mm~0.5mmである。 The rotor core 20 is an annular member centered on the central axis Ax, and has an outer circumference 20c and an inner circumference 20d. The rotor core 20 has a laminated body in which a plurality of magnetic laminated elements are laminated in the axial direction. The laminated element is a thin plate containing Fe as a main component, and more specifically, an electromagnetic steel plate. The thickness of the laminated element is, for example, 0.2 mm to 0.5 mm.
 ロータコア20は、周方向に複数の磁石挿入孔21を有する。磁石挿入孔21は、周方向に等間隔で、且つ中心軸Axから等距離に配置されている。各磁石挿入孔21には、永久磁石25が挿入されている。永久磁石25は平板状であり、軸方向に直交する面において矩形状の断面を有する。 The rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction. The magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at equal distances from the central axis Ax. A permanent magnet 25 is inserted into each magnet insertion hole 21 . The permanent magnet 25 has a flat plate shape and has a rectangular cross section in a plane perpendicular to the axial direction.
 1つの永久磁石25は、1磁極に相当する。そのため、ロータ2の極数は10である。但し、ロータ2の極数は10に限らず、2以上であればよい。各磁極の周方向中心は、極中心Pである。極中心Pを通る径方向の直線を、磁極中心線と称する。隣り合う永久磁石25の間に、極間部Mが規定される。 One permanent magnet 25 corresponds to one magnetic pole. Therefore, the number of poles of the rotor 2 is ten. However, the number of poles of the rotor 2 is not limited to ten, but may be two or more. The circumferential center of each magnetic pole is a pole center P. A straight line in the radial direction passing through the pole center P is referred to as a magnetic pole center line. A pole-to-pole portion M is defined between adjacent permanent magnets 25 .
 永久磁石25は、ここではNd(ネオジム)、Fe(鉄)およびB(ホウ素)を含む希土類磁石である。また、Sm(サマリウム)およびCo(コバルト)を含む希土類磁石を用いてもよい。また、希土類磁石の代わりにフェライト磁石を用いてもよい。 The permanent magnet 25 here is a rare earth magnet containing Nd (neodymium), Fe (iron), and B (boron). Alternatively, a rare earth magnet containing Sm (samarium) and Co (cobalt) may be used. Further, a ferrite magnet may be used instead of a rare earth magnet.
 磁石挿入孔21の周方向両端には、空隙であるフラックスバリア22が形成されている。フラックスバリア22とロータコア20の外周20cとの間には、薄肉部が形成される。隣り合う磁極間の漏れ磁束を低減するため、薄肉部の厚さは、積層要素の厚さと同じであることが望ましい。 A flux barrier 22, which is a gap, is formed at both circumferential ends of the magnet insertion hole 21. A thin portion is formed between the flux barrier 22 and the outer periphery 20c of the rotor core 20. In order to reduce leakage magnetic flux between adjacent magnetic poles, it is desirable that the thickness of the thin portion be the same as the thickness of the laminated element.
 ロータコア20の外周20cは、花丸形状を有する。言い換えると、ロータコア20の外周20cは、その外径が極中心Pで最大となり、極間部Mで最小となるように延在している。但し、ロータコア20の外周20cは花丸形状に限らず、例えば円形状を有していてもよい。ロータコア20の内周20dは、円形状を有する。 The outer periphery 20c of the rotor core 20 has a flower round shape. In other words, the outer circumference 20c of the rotor core 20 extends such that its outer diameter is maximum at the pole center P and minimum at the interpole portion M. However, the outer periphery 20c of the rotor core 20 is not limited to the round shape, but may have a circular shape, for example. The inner circumference 20d of the rotor core 20 has a circular shape.
 シャフト10は、例えば、機械構造用炭素鋼(S45C)等の金属で構成される。 The shaft 10 is made of metal such as mechanical structural carbon steel (S45C), for example.
 シャフト10とロータコア20の内周20dとの間には、第1の樹脂部31が設けられている。第1の樹脂部31は、非磁性の樹脂で構成される。より具体的には、第1の樹脂部31は、PBT、PPS、LCP、PET等の熱可塑性樹脂で構成される。 A first resin portion 31 is provided between the shaft 10 and the inner circumference 20d of the rotor core 20. The first resin portion 31 is made of non-magnetic resin. More specifically, the first resin portion 31 is made of thermoplastic resin such as PBT, PPS, LCP, and PET.
 図4は、ロータ2を示す縦断面図である。ロータコア20は、軸方向の両端面、すなわち負荷側の端面20aと反負荷側の端面20bとを有する。磁石挿入孔21は、端面20aから端面20bまで軸方向に延在している。端面20aは第1の端面とも称し、端面20bは第2の端面とも称する。 FIG. 4 is a longitudinal cross-sectional view showing the rotor 2. The rotor core 20 has both end faces in the axial direction, that is, an end face 20a on the load side and an end face 20b on the anti-load side. The magnet insertion hole 21 extends in the axial direction from the end surface 20a to the end surface 20b. The end surface 20a is also referred to as a first end surface, and the end surface 20b is also referred to as a second end surface.
 シャフト10は、ロータコア20から軸方向両側に突出している。シャフト10のロータコア20の端面20aから突出した部分を、長軸部10aと称する。シャフト10のロータコア20の端面20bから突出した部分を、短軸部10bと称する。長軸部10aの長さは、短軸部10bの長さよりも長い。 The shaft 10 protrudes from the rotor core 20 on both sides in the axial direction. A portion of the shaft 10 that protrudes from the end surface 20a of the rotor core 20 is referred to as a long shaft portion 10a. A portion of the shaft 10 that protrudes from the end surface 20b of the rotor core 20 is referred to as a short shaft portion 10b. The length of the long shaft portion 10a is longer than the length of the short shaft portion 10b.
 ここではシャフト10の長軸部10aが負荷側に位置し、短軸部10bが反負荷側に位置する場合について説明するが、長軸部10aが反負荷側に位置し、短軸部10bが負荷側に位置していてもよい。 Here, a case will be described in which the long shaft portion 10a of the shaft 10 is located on the load side and the short shaft portion 10b is located on the anti-load side. However, the long shaft portion 10a is located on the anti-load side and the short shaft portion 10b It may be located on the load side.
 第1の樹脂部31は、シャフト10とロータコア20の内周20dとの間に設けられている。より具体的には、第1の樹脂部31は、シャフト10とロータコア20の内周20dとの間に充填されている。 The first resin portion 31 is provided between the shaft 10 and the inner circumference 20d of the rotor core 20. More specifically, the first resin portion 31 is filled between the shaft 10 and the inner circumference 20d of the rotor core 20.
 ロータコア20の端面20aには、第2の樹脂部32が設けられている。第2の樹脂部32は、第1の樹脂部31と一体に形成されている。 A second resin portion 32 is provided on the end surface 20a of the rotor core 20. The second resin part 32 is formed integrally with the first resin part 31.
 また、ロータコア20の端面20bには、第3の樹脂部33が設けられている。第3の樹脂部33は、第1の樹脂部31と一体に形成されている。 Furthermore, a third resin portion 33 is provided on the end surface 20b of the rotor core 20. The third resin part 33 is formed integrally with the first resin part 31.
 第1の樹脂部31、第2の樹脂部32および第3の樹脂部33は、樹脂部30を構成する。樹脂部30は、シャフト10とロータコア20とを一体的に保持する機能を有する。 The first resin part 31, the second resin part 32, and the third resin part 33 constitute the resin part 30. The resin portion 30 has a function of holding the shaft 10 and the rotor core 20 together.
 ロータコア20の端面20bには、磁石挿入孔21の少なくとも一部を覆うように、非磁性体34が配置されている。非磁性体34は、第3の樹脂部33の径方向外側に位置している。 A non-magnetic material 34 is arranged on the end surface 20b of the rotor core 20 so as to cover at least a portion of the magnet insertion hole 21. The non-magnetic material 34 is located on the radially outer side of the third resin portion 33.
 非磁性体34は、非磁性の樹脂で構成されることが望ましい。非磁性体34の材質は、第1の樹脂部31の材質と同じでも良く、異なっていても良い。非磁性体34は、樹脂部30とは別に設けられる。すなわち、非磁性体34は、樹脂部30が形成される工程(後述)よりも後の工程で、ロータコア20に配置される。 It is desirable that the non-magnetic material 34 is made of non-magnetic resin. The material of the non-magnetic body 34 may be the same as the material of the first resin part 31, or may be different. The non-magnetic material 34 is provided separately from the resin part 30. That is, the non-magnetic material 34 is arranged on the rotor core 20 in a step subsequent to the step in which the resin portion 30 is formed (described later).
 図5(A)は、ロータ2を負荷側から見た図である。上記の通り、ロータ2の負荷側の端面20aは、第2の樹脂部32で覆われている。第2の樹脂部32は、中心軸Axを中心とする環状であり、外周32aと内周32bとを有する。第2の樹脂部32の内周32bには、シャフト10が固定されている。第2の樹脂部32の外周32aは、磁石挿入孔21の径方向内側の端部より径方向外側に位置する。言い換えると、第2の樹脂部32は、磁石挿入孔21の少なくとも一部を覆っている。 FIG. 5(A) is a diagram of the rotor 2 viewed from the load side. As described above, the load-side end surface 20a of the rotor 2 is covered with the second resin portion 32. The second resin portion 32 has an annular shape centered on the central axis Ax, and has an outer periphery 32a and an inner periphery 32b. The shaft 10 is fixed to the inner circumference 32b of the second resin portion 32. The outer periphery 32 a of the second resin portion 32 is located radially outward from the radially inner end of the magnet insertion hole 21 . In other words, the second resin portion 32 covers at least a portion of the magnet insertion hole 21 .
 図5(B)は、ロータ2を反負荷側から見た図である。上記の通り、ロータ2の反負荷側の端面20bは、第3の樹脂部33で覆われている。第3の樹脂部33は、中心軸Axを中心とする環状であり、外周33aと内周33bとを有する。第3の樹脂部33の内周33bには、シャフト10が固定されている。第3の樹脂部33の外周33aは、磁石挿入孔21よりも径方向内側に位置する。言い換えると、第3の樹脂部33は、磁石挿入孔21を覆っていない。 FIG. 5(B) is a diagram of the rotor 2 viewed from the anti-load side. As described above, the end surface 20b of the rotor 2 on the opposite load side is covered with the third resin portion 33. The third resin portion 33 has an annular shape centered on the central axis Ax, and has an outer periphery 33a and an inner periphery 33b. The shaft 10 is fixed to the inner circumference 33b of the third resin portion 33. The outer periphery 33a of the third resin portion 33 is located radially inside the magnet insertion hole 21. In other words, the third resin part 33 does not cover the magnet insertion hole 21.
 非磁性体34は、第3の樹脂部33よりも径方向外側に配置されている。非磁性体34は、中心軸Axを中心とする環状であり、外周34aと内周34bとを有する。非磁性体34の内周34bは、第3の樹脂部33の外周33aよりも径方向外側に位置する。すなわち、非磁性体34は、第3の樹脂部33から離間して設けられている。 The non-magnetic material 34 is arranged radially outward from the third resin part 33. The non-magnetic body 34 has an annular shape centered on the central axis Ax, and has an outer periphery 34a and an inner periphery 34b. The inner periphery 34b of the non-magnetic material 34 is located on the outer side in the radial direction than the outer periphery 33a of the third resin portion 33. That is, the nonmagnetic material 34 is provided apart from the third resin part 33.
 非磁性体34の外周34aは、磁石挿入孔21の径方向内側の端部より径方向外側に位置する。すなわち、非磁性体34は、ロータコア20の端面20bにおいて、磁石挿入孔21の少なくとも一部を覆っている。非磁性体34は、磁石挿入孔21からの永久磁石25の脱落を防止する蓋として機能する。 The outer periphery 34a of the non-magnetic material 34 is located radially outward from the radially inner end of the magnet insertion hole 21. That is, the nonmagnetic material 34 covers at least a portion of the magnet insertion hole 21 on the end surface 20b of the rotor core 20. The non-magnetic material 34 functions as a lid that prevents the permanent magnet 25 from falling out of the magnet insertion hole 21.
 図5(B)に示した例では、非磁性体34は、磁石挿入孔21のフラックスバリア22以外の部分を覆っているが、フラックスバリア22を含む磁石挿入孔21の全体を覆っていても良い。 In the example shown in FIG. 5(B), the nonmagnetic material 34 covers the part of the magnet insertion hole 21 other than the flux barrier 22, but it may cover the entire magnet insertion hole 21 including the flux barrier 22. good.
 ここでは非磁性体34が環状に形成されているが、磁石挿入孔21の少なくとも一部を覆うことができれば、他の形状を有していてもよい。また、それぞれ1つの磁石挿入孔21を覆うように複数の非磁性体34を設けてもよい。 Although the nonmagnetic material 34 is formed in an annular shape here, it may have another shape as long as it can cover at least a portion of the magnet insertion hole 21. Further, a plurality of non-magnetic bodies 34 may be provided so as to cover each magnet insertion hole 21.
 図6(A)は、非磁性体34の固定方法の一例を示す平面図である。図6(A)に示した例では、非磁性体34と第3の樹脂部33とが溶接により固定されている。具体的には、非磁性体34の内周34bに少なくとも1つのリブ34cを設け、このリブ34cと第3の樹脂部33とを溶接により固定する。 FIG. 6(A) is a plan view showing an example of a method of fixing the non-magnetic material 34. In the example shown in FIG. 6(A), the nonmagnetic material 34 and the third resin part 33 are fixed by welding. Specifically, at least one rib 34c is provided on the inner periphery 34b of the non-magnetic material 34, and this rib 34c and the third resin part 33 are fixed by welding.
 図6(A)では、リブ34cの数をロータ2の極数と同じにし、各リブ34cの位置を極中心Pの位置と一致させている。但し、リブ34cの数および配置は、このような例に限らず、非磁性体34と第3の樹脂部33とを互いに固定できればよい。 In FIG. 6(A), the number of ribs 34c is the same as the number of poles of the rotor 2, and the position of each rib 34c is made to coincide with the position of the pole center P. However, the number and arrangement of the ribs 34c are not limited to this example, and may be sufficient as long as the non-magnetic material 34 and the third resin part 33 can be fixed to each other.
 図6(B)は、非磁性体34の固定方法の他の例を示す平面図である。図6(B)に示した例では、非磁性体34に、ロータコア20の磁石挿入孔21(図5(B))の一部に係合する係合部34dを設けている。具体的には、非磁性体34の外周34aに、磁石挿入孔21のフラックスバリア22に軸方向に入り込む係合部34dを設けている。 FIG. 6(B) is a plan view showing another example of the method of fixing the non-magnetic material 34. In the example shown in FIG. 6(B), the non-magnetic material 34 is provided with an engaging portion 34d that engages with a part of the magnet insertion hole 21 (FIG. 5(B)) of the rotor core 20. Specifically, an engaging portion 34d that enters the flux barrier 22 of the magnet insertion hole 21 in the axial direction is provided on the outer periphery 34a of the non-magnetic material 34.
 係合部34dがフラックスバリア22に係合することにより、非磁性体34がロータコア20に固定される。係合部34dは、フラックスバリア22の内側に嵌合する形状を有し、非磁性体34をロータコア20に固定できる程度の軸方向長さを有していればよい。 When the engaging portion 34d engages with the flux barrier 22, the non-magnetic material 34 is fixed to the rotor core 20. The engaging portion 34d has a shape that fits inside the flux barrier 22, and has an axial length sufficient to fix the non-magnetic material 34 to the rotor core 20.
 図6(B)では、非磁性体34がロータコア20のフラックスバリア22と同数の係合部34dを有しており、各係合部34dの配置はフラックスバリア22の配置と一致している。但し、このような例に限らず、非磁性体34の少なくとも1つの係合部34dと磁石挿入孔21とが係合すればよい。 In FIG. 6(B), the non-magnetic material 34 has the same number of engaging parts 34d as the flux barriers 22 of the rotor core 20, and the arrangement of each engaging part 34d matches the arrangement of the flux barriers 22. However, the present invention is not limited to such an example, and it is sufficient that at least one engaging portion 34d of the non-magnetic body 34 and the magnet insertion hole 21 engage with each other.
 非磁性体34は、図6(A),(B)に示した固定方法に限らず、他の方法でロータコア20あるいは第3の樹脂部33に固定してもよい。 The non-magnetic material 34 may be fixed to the rotor core 20 or the third resin part 33 by other methods than the fixing method shown in FIGS. 6(A) and 6(B).
<ロータ2の製造方法>
 次に、実施の形態1のロータ2の製造方法について説明する。図7は、実施の形態1のロータ2の製造方法を示すフローチャートである。ロータ2の製造工程では、まず、複数の積層要素を軸方向に積層し、カシメ等で固定することにより、ロータコア20を形成する(ステップS11)。
<Method for manufacturing rotor 2>
Next, a method for manufacturing the rotor 2 according to the first embodiment will be described. FIG. 7 is a flowchart showing a method for manufacturing the rotor 2 according to the first embodiment. In the manufacturing process of the rotor 2, first, a plurality of laminated elements are laminated in the axial direction and fixed by caulking or the like to form the rotor core 20 (step S11).
 次に、ロータコア20とシャフト10とを金型に設置し、これらを樹脂で一体に成形する(ステップS12)。 Next, the rotor core 20 and shaft 10 are placed in a mold and integrally molded with resin (step S12).
 図8は、成形工程(ステップS12)で用いる金型80を示す断面図である。金型80は、固定金型81と可動金型82とを有する。ここでは固定金型81が下型であり、可動金型82が上型である。固定金型81と可動金型82とは、互いに対向する型合わせ面81h,82hを有する。 FIG. 8 is a cross-sectional view showing a mold 80 used in the molding process (step S12). The mold 80 has a fixed mold 81 and a movable mold 82. Here, the fixed mold 81 is the lower mold, and the movable mold 82 is the upper mold. The fixed mold 81 and the movable mold 82 have mold matching surfaces 81h and 82h that face each other.
 可動金型82は、固定金型81に対して接近および離間する方向、ここでは上下方向に移動可能である。図8に示した状態では、固定金型81および可動金型82の型合わせ面81h,82hが当接しており、固定金型81と可動金型82との間に成形空間であるキャビティCが形成される。 The movable mold 82 can move toward and away from the fixed mold 81, here in the vertical direction. In the state shown in FIG. 8, the mold mating surfaces 81h and 82h of the fixed mold 81 and the movable mold 82 are in contact with each other, and a cavity C, which is a molding space, is formed between the fixed mold 81 and the movable mold 82. It is formed.
 固定金型81は、シャフト10の長軸部10aが挿入されるシャフト孔81aと、ロータコア20が挿入される空洞部81bと、第2の樹脂部32を形成するための空洞部81cとを有する。 The fixed mold 81 has a shaft hole 81a into which the long axis portion 10a of the shaft 10 is inserted, a cavity 81b into which the rotor core 20 is inserted, and a cavity 81c for forming the second resin part 32. .
 空洞部81cの外径は、空洞部81bの外径よりも小さいことが望ましい。この場合、固定金型81の空洞部81bよりも外側の部分で、ロータコア20を下方から支持することができる。 It is desirable that the outer diameter of the cavity 81c is smaller than the outer diameter of the cavity 81b. In this case, the rotor core 20 can be supported from below by a portion of the fixed mold 81 outside the cavity 81b.
 可動金型82は、シャフト10の短軸部10bが挿入されるシャフト孔82aと、第3の樹脂部33を形成するための空洞部82bとを有する。固定金型81の空洞部81b,81cと可動金型82の空洞部82bとは、連続した1つのキャビティCを形成する。 The movable mold 82 has a shaft hole 82a into which the short shaft portion 10b of the shaft 10 is inserted, and a cavity portion 82b for forming the third resin portion 33. The cavities 81b and 81c of the fixed mold 81 and the cavity 82b of the movable mold 82 form one continuous cavity C.
 また、可動金型82には、射出成形機から注入された溶融樹脂が流れ込む通路であるスプルー82cと、スプルー82cからキャビティCまでの溶融樹脂の通路であるランナ82dとが形成されている。 Furthermore, the movable mold 82 is formed with a sprue 82c, which is a passage through which the molten resin injected from the injection molding machine flows, and a runner 82d, which is a passage for the molten resin from the sprue 82c to the cavity C.
 また、可動金型82は、固定金型81の空洞部81bに配置されたロータコア20の磁石挿入孔21に入り込むピン82eを有する。ピン82eは、成形時に樹脂が磁石挿入孔21に侵入しないようにするためのものである。ピン82eの数は、磁石挿入孔21と同数である。また、ピン82eは、磁石挿入孔21の断面形状と同じ断面形状を有することが望ましい。 Furthermore, the movable mold 82 has a pin 82e that enters the magnet insertion hole 21 of the rotor core 20 arranged in the cavity 81b of the fixed mold 81. The pin 82e is provided to prevent resin from entering the magnet insertion hole 21 during molding. The number of pins 82e is the same as the number of magnet insertion holes 21. Further, it is desirable that the pin 82e has the same cross-sectional shape as the magnet insertion hole 21.
 また、可動金型82は、ロータコア20の端面20bにおける磁石挿入孔21の周囲に当接する当接面82fを有する。ピン82eおよび当接面82fは、樹脂が磁石挿入孔21に入り込まないようにするためのものである。 Furthermore, the movable mold 82 has a contact surface 82f that comes into contact with the periphery of the magnet insertion hole 21 on the end surface 20b of the rotor core 20. The pin 82e and the contact surface 82f are for preventing resin from entering the magnet insertion hole 21.
 成形工程では、まず、可動金型82を上昇させてキャビティCを開放する。次に、シャフト10を固定金型81のシャフト孔81aに挿入し、ロータコア20を固定金型81の空洞部81bに設置する。 In the molding process, first, the movable mold 82 is raised to open the cavity C. Next, the shaft 10 is inserted into the shaft hole 81a of the fixed mold 81, and the rotor core 20 is installed in the cavity 81b of the fixed mold 81.
 その後、可動金型82を下降させて、型合わせ面81h,82hを当接させる。この状態で、ロータコア20の端面20aは固定金型81の空洞部81cに面し、ロータコア20の端面20bは空洞部82bに面する。 Thereafter, the movable mold 82 is lowered to bring the mold matching surfaces 81h and 82h into contact. In this state, the end surface 20a of the rotor core 20 faces the cavity 81c of the fixed mold 81, and the end surface 20b of the rotor core 20 faces the cavity 82b.
 その後、金型80を加熱し、スプルー82cおよびランナ82dからPBT等の溶融状態の樹脂を注入する。樹脂は、空洞部81b内のロータコア20の内側の空間に充填される。また、樹脂は、空洞部81cの内側および空洞部82bの内側にも充填される。 Thereafter, the mold 80 is heated, and a molten resin such as PBT is injected from the sprue 82c and runner 82d. The resin fills the space inside the rotor core 20 within the cavity 81b. Further, the inside of the cavity 81c and the inside of the cavity 82b are also filled with the resin.
 このとき、ロータコア20の端面20bには可動金型82の当接面82fが当接しており、磁石挿入孔21には可動金型82のピン82eが係合している。そのため、樹脂は、磁石挿入孔21には流入しない。 At this time, the contact surface 82f of the movable mold 82 is in contact with the end surface 20b of the rotor core 20, and the pin 82e of the movable mold 82 is engaged with the magnet insertion hole 21. Therefore, the resin does not flow into the magnet insertion hole 21.
 その後、金型80を冷却する。これにより、キャビティC内の樹脂が硬化して、樹脂部30が形成される。より具体的には、空洞部81bのロータコア20の内側で第1の樹脂部31が形成され、空洞部81c内で第2の樹脂部32が形成され、空洞部82b内で第3の樹脂部33が形成される。その結果、シャフト10およびロータコア20が、樹脂部30によって一体的に保持された状態となる。 After that, the mold 80 is cooled. As a result, the resin within the cavity C is cured, and the resin portion 30 is formed. More specifically, the first resin part 31 is formed inside the rotor core 20 in the cavity 81b, the second resin part 32 is formed in the cavity 81c, and the third resin part 32 is formed in the cavity 82b. 33 is formed. As a result, the shaft 10 and the rotor core 20 are held integrally by the resin portion 30.
 その後、可動金型82を上昇させてキャビティCを開放し、固定金型81からシャフト10と一体に成形されたロータコア20を取り出す。 Thereafter, the movable mold 82 is raised to open the cavity C, and the rotor core 20 integrally molded with the shaft 10 is taken out from the fixed mold 81.
 このステップS11~S12と平行して、磁性体の着磁を行う(ステップS13)。磁性体は、例えば着磁装置によって着磁され、永久磁石25となる。磁性体をロータ2に組み込む前に単体で着磁が行われるため、磁性体を均一且つ十分に着磁することができ、永久磁石25の着磁率を向上することができる。 In parallel with steps S11 and S12, the magnetic material is magnetized (step S13). The magnetic body is magnetized, for example, by a magnetizing device, and becomes a permanent magnet 25. Since the magnetic body is individually magnetized before being incorporated into the rotor 2, the magnetic body can be uniformly and sufficiently magnetized, and the magnetization rate of the permanent magnets 25 can be improved.
 その後、シャフト10と一体に成形されたロータコア20に、着磁済みの永久磁石25を取り付ける(ステップS14)。 Thereafter, the magnetized permanent magnet 25 is attached to the rotor core 20 that is integrally formed with the shaft 10 (step S14).
 図9は、永久磁石25のロータコア20への挿入工程を説明するための模式図である。上記の通り、ロータコア20の端面20bでは、磁石挿入孔21が樹脂部30に覆われておらず、露出している。また、磁石挿入孔21の内部には樹脂が入り込んでいない。そのため、ロータコア20の磁石挿入孔21に永久磁石25を挿入することができる。 FIG. 9 is a schematic diagram for explaining the process of inserting the permanent magnet 25 into the rotor core 20. As described above, the magnet insertion hole 21 is not covered with the resin portion 30 and is exposed on the end surface 20b of the rotor core 20. Furthermore, no resin enters the inside of the magnet insertion hole 21. Therefore, the permanent magnet 25 can be inserted into the magnet insertion hole 21 of the rotor core 20.
 また、ロータコア20の端面20aでは、磁石挿入孔21の少なくとも一部が第2の樹脂部32で覆われている。そのため、第2の樹脂部32が、磁石挿入孔21に挿入された永久磁石25の軸方向のストッパとして機能する。 Furthermore, on the end surface 20a of the rotor core 20, at least a portion of the magnet insertion hole 21 is covered with a second resin portion 32. Therefore, the second resin portion 32 functions as an axial stopper for the permanent magnet 25 inserted into the magnet insertion hole 21.
 その後、ロータコア20の磁石挿入孔21の少なくとも一部を覆うように、非磁性体34を取り付ける(ステップS15)。非磁性体34の固定方法は、図6(A),(B)を参照して説明した通りである。これによりロータ2が完成する。 After that, the non-magnetic material 34 is attached so as to cover at least a portion of the magnet insertion hole 21 of the rotor core 20 (step S15). The method of fixing the non-magnetic material 34 is as described with reference to FIGS. 6(A) and 6(B). This completes the rotor 2.
 ロータ2の完成後、電動機1を組み立てる。すなわち、複数の積層要素を軸方向に積層し、カシメ等で固定することにより、ステータコア50を形成する。また、ステータコア50に絶縁部54を取り付け、コイル55を巻き付けることにより、ステータ5を得る。ステータ5と回路基板70とをモールドステータ用の金型に設置し、BMC等の樹脂(モールド樹脂)を注入して加熱することにより、モールド樹脂部60を形成する。これによりモールドステータ6が完成する。 After the rotor 2 is completed, the electric motor 1 is assembled. That is, the stator core 50 is formed by laminating a plurality of laminated elements in the axial direction and fixing them by caulking or the like. Further, the stator 5 is obtained by attaching the insulating part 54 to the stator core 50 and winding the coil 55. The stator 5 and the circuit board 70 are placed in a mold for a molded stator, and a resin (mold resin) such as BMC is injected and heated to form the molded resin part 60. This completes the molded stator 6.
 その後、ロータ2のシャフト10にベアリング11,12を取り付け、これをモールドステータ6の開口部61から中空部分に挿入する。次に、ブラケット13をモールドステータ6の開口部61に取り付ける。さらに、ブラケット13を覆うようにシャフト10にキャップ14を取り付ける。これにより電動機1が完成する。 After that, the bearings 11 and 12 are attached to the shaft 10 of the rotor 2, and these are inserted into the hollow part of the molded stator 6 through the opening 61. Next, the bracket 13 is attached to the opening 61 of the molded stator 6. Furthermore, a cap 14 is attached to the shaft 10 so as to cover the bracket 13. As a result, the electric motor 1 is completed.
<作用>
 ロータ2の一般的な製造方法では、まず、ロータコア20の磁石挿入孔21に磁性体を挿入し、シャフト10とロータコア20とを樹脂で一体に成形する。その後、シャフト10とロータコア20とを着磁装置に装着し、磁性体を着磁して永久磁石25とする。このような着磁方法を組み込み着磁と称する。
<Effect>
In a typical manufacturing method for the rotor 2, first, a magnetic material is inserted into the magnet insertion hole 21 of the rotor core 20, and the shaft 10 and the rotor core 20 are integrally molded with resin. Thereafter, the shaft 10 and rotor core 20 are mounted on a magnetizing device, and the magnetic material is magnetized to form a permanent magnet 25. Such a magnetization method is called built-in magnetization.
 しかしながら、磁性体をロータ2に組み込んだ状態で着磁する場合、磁性体の全体を均一且つ十分に着磁することが難しく、永久磁石25の着磁率が低くなる傾向がある。特に、磁石挿入孔21に挿入された磁性体のうち、極間部に近い部分の着磁が不十分になる傾向がある。そのため、永久磁石25の着磁率が低くなり易く、高い磁力を得ることが難しい。 However, when magnetizing the magnetic body while it is incorporated in the rotor 2, it is difficult to uniformly and sufficiently magnetize the entire magnetic body, and the magnetization rate of the permanent magnet 25 tends to be low. Particularly, of the magnetic material inserted into the magnet insertion hole 21, a portion close to the interpolar portion tends to be insufficiently magnetized. Therefore, the magnetization rate of the permanent magnet 25 tends to be low, making it difficult to obtain high magnetic force.
 また、予め着磁した永久磁石25をロータコア20の磁石挿入孔21に挿入し、その後にロータコア20とシャフト10とを樹脂で一体に成形することも考えられる。しかしながら、成形温度は100~300℃に達するため、永久磁石25が高温で減磁する可能性がある。 It is also conceivable to insert a pre-magnetized permanent magnet 25 into the magnet insertion hole 21 of the rotor core 20, and then integrally mold the rotor core 20 and the shaft 10 with resin. However, since the molding temperature reaches 100 to 300° C., there is a possibility that the permanent magnet 25 will be demagnetized at high temperatures.
 これに対し、実施の形態1では、磁性体を単体で着磁して永久磁石25とし、この永久磁石25を、シャフト10と一体に成形されたロータコア20に組み込む。そのため、磁性体の全体を均一且つ十分に着磁することができ、永久磁石25の着磁率を向上することができる。また、永久磁石25に熱が加わらないため、減磁が生じることもない。 On the other hand, in the first embodiment, a magnetic body is magnetized singly to form a permanent magnet 25, and this permanent magnet 25 is incorporated into the rotor core 20 that is integrally formed with the shaft 10. Therefore, the entire magnetic body can be uniformly and sufficiently magnetized, and the magnetization rate of the permanent magnet 25 can be improved. Furthermore, since no heat is applied to the permanent magnet 25, demagnetization does not occur.
 特に、ロータコア20の端面20bにおいて磁石挿入孔21が露出しており、磁石挿入孔21の内部に樹脂が流入していないため、成形工程後のロータコア20の磁石挿入孔21に永久磁石25を挿入することができる。 In particular, since the magnet insertion hole 21 is exposed at the end surface 20b of the rotor core 20 and the resin does not flow into the magnet insertion hole 21, the permanent magnet 25 is inserted into the magnet insertion hole 21 of the rotor core 20 after the molding process. can do.
 より具体的には、成形工程において、ロータコア20の端面20bの磁石挿入孔21の周囲に可動金型82の当接面82gが当接するため、当該端面20bにおいて磁石挿入孔21を露出させることができる。また、ロータコア20の磁石挿入孔21への樹脂の流入をピン82eで抑制しているため、磁石挿入孔21内を空洞に保つことができる。そのため、上記の通り、成形工程後のロータコア20の磁石挿入孔21に永久磁石25を挿入することができる。 More specifically, in the molding process, the contact surface 82g of the movable mold 82 comes into contact with the periphery of the magnet insertion hole 21 on the end surface 20b of the rotor core 20, so that the magnet insertion hole 21 cannot be exposed on the end surface 20b. can. Further, since the pin 82e suppresses the resin from flowing into the magnet insertion hole 21 of the rotor core 20, the inside of the magnet insertion hole 21 can be kept hollow. Therefore, as described above, the permanent magnets 25 can be inserted into the magnet insertion holes 21 of the rotor core 20 after the molding process.
 また、永久磁石25は、ロータコア20の端面20b側、すなわちシャフト10の短軸部10b側から磁石挿入孔21に挿入される。シャフト10は炭素鋼等の磁性体で形成されており、永久磁石25との間で磁気吸引力が作用するが、シャフト10の短軸部10bの長さは長軸部10aよりも短いため、永久磁石25の挿入時の磁気吸引力の影響を抑えることができる。これにより安定した永久磁石25の挿入が可能になる。 Further, the permanent magnet 25 is inserted into the magnet insertion hole 21 from the end surface 20b side of the rotor core 20, that is, from the short shaft portion 10b side of the shaft 10. The shaft 10 is made of a magnetic material such as carbon steel, and a magnetic attraction force acts between it and the permanent magnet 25. However, since the short shaft portion 10b of the shaft 10 is shorter than the long shaft portion 10a, The influence of magnetic attraction force upon insertion of the permanent magnet 25 can be suppressed. This allows stable insertion of the permanent magnet 25.
<実施の形態の効果>
 以上説明したように、実施の形態1のロータ2は、シャフト10と、シャフト10を径方向外側から囲み、磁石挿入孔21を有するロータコア20と、シャフト10とロータコア20とを保持する樹脂部30とを有する。ロータコア20は、軸方向の端面20a,20bを有する。磁石挿入孔21は、端面20aから端面20bまで延在する。ロータコア20の端面20bでは、磁石挿入孔21が樹脂部30に覆われていない。
<Effects of the embodiment>
As described above, the rotor 2 of the first embodiment includes the shaft 10, the rotor core 20 that surrounds the shaft 10 from the outside in the radial direction and has the magnet insertion hole 21, and the resin part 30 that holds the shaft 10 and the rotor core 20. and has. The rotor core 20 has axial end faces 20a and 20b. The magnet insertion hole 21 extends from the end surface 20a to the end surface 20b. On the end surface 20b of the rotor core 20, the magnet insertion hole 21 is not covered with the resin part 30.
 そのため、単体で着磁した永久磁石25を、シャフト10と一体に成形されたロータコア20の磁石挿入孔21に挿入することができる。永久磁石25が単体で着磁されるため、永久磁石25の着磁率を向上することができる。 Therefore, a singly magnetized permanent magnet 25 can be inserted into the magnet insertion hole 21 of the rotor core 20 formed integrally with the shaft 10. Since the permanent magnet 25 is magnetized singly, the magnetization rate of the permanent magnet 25 can be improved.
 また、ロータ2は、ロータコア20の端面20aを覆う第2の樹脂部32をさらに有し、第2の樹脂部32がロータコア20の端面20aにおいて磁石挿入孔21の少なくとも一部を覆っている。そのため、ロータコア20の磁石挿入孔21に永久磁石25を挿入する際、第2の樹脂部32が永久磁石25のストッパとして機能する。そのため、永久磁石25の挿入作業を簡単にすることができる。 The rotor 2 further includes a second resin portion 32 that covers the end surface 20a of the rotor core 20, and the second resin portion 32 covers at least a portion of the magnet insertion hole 21 on the end surface 20a of the rotor core 20. Therefore, when the permanent magnet 25 is inserted into the magnet insertion hole 21 of the rotor core 20, the second resin portion 32 functions as a stopper for the permanent magnet 25. Therefore, the work of inserting the permanent magnet 25 can be simplified.
 また、シャフト10は長軸部10aと短軸部10bとを有し、永久磁石25は短軸部10b側から磁石挿入孔21に挿入される。そのため、永久磁石25とシャフト10との間の磁気吸引力の影響が抑制され、安定した永久磁石25の挿入が可能になる。 Further, the shaft 10 has a long shaft portion 10a and a short shaft portion 10b, and the permanent magnet 25 is inserted into the magnet insertion hole 21 from the short shaft portion 10b side. Therefore, the influence of the magnetic attractive force between the permanent magnet 25 and the shaft 10 is suppressed, and stable insertion of the permanent magnet 25 becomes possible.
 また、ロータコア20の端面20bを覆う第3の樹脂部33が設けられているため、シャフト10とロータコア20とをより強固に一体的に保持することができる。 Furthermore, since the third resin portion 33 is provided to cover the end surface 20b of the rotor core 20, the shaft 10 and the rotor core 20 can be held more firmly and integrally.
 また、ロータコア20の端面20bにおいて、磁石挿入孔21の少なくとも一部を塞ぐ非磁性体34をさらに有するため、磁石挿入孔21からの永久磁石25の脱落を確実に防止することができる。 Furthermore, since the end surface 20b of the rotor core 20 further includes a non-magnetic material 34 that closes at least a portion of the magnet insertion hole 21, it is possible to reliably prevent the permanent magnet 25 from falling out of the magnet insertion hole 21.
 また、成形工程において磁石挿入孔21への樹脂の流入をピン81eによって抑制しているため、成形工程後も磁石挿入孔21内が空洞であり、従って磁石挿入孔21に永久磁石25を挿入することができる。なお、ロータ2の完成品においては、磁石挿入孔21内の永久磁石25の周囲に樹脂が存在しない状態となっている。 In addition, since the pin 81e suppresses the resin from flowing into the magnet insertion hole 21 during the molding process, the inside of the magnet insertion hole 21 remains hollow even after the molding process, and therefore the permanent magnet 25 cannot be inserted into the magnet insertion hole 21. be able to. Note that in the finished product of the rotor 2, there is no resin around the permanent magnets 25 in the magnet insertion holes 21.
変形例.
 次に、実施の形態1の変形例について説明する。図10は、変形例のロータ2Aを示す縦断面図である。変形例のロータ2Aは、ロータコア20の端面20bに非磁性体34(図4)が設けられておらず、第3の樹脂部33(図4)も設けられていない。
Variation example.
Next, a modification of the first embodiment will be described. FIG. 10 is a longitudinal sectional view showing a rotor 2A of a modified example. In the rotor 2A of the modified example, the non-magnetic material 34 (FIG. 4) is not provided on the end surface 20b of the rotor core 20, and the third resin portion 33 (FIG. 4) is also not provided.
 永久磁石25は、磁石挿入孔21に嵌め合いによって固定することができる。そのため、磁石挿入孔21の少なくとも一部が非磁性体34で覆われていなくても、永久磁石25が磁石挿入孔21から脱落しないように嵌め合いを調整することができる。 The permanent magnet 25 can be fixed by fitting into the magnet insertion hole 21. Therefore, even if at least a portion of the magnet insertion hole 21 is not covered with the non-magnetic material 34, the fit can be adjusted so that the permanent magnet 25 does not fall out of the magnet insertion hole 21.
 また、永久磁石25が磁石挿入孔21に挿入された状態では、永久磁石25とロータコア20との間に磁気吸引力が作用する。この磁気吸引力は永久磁石25が磁石挿入孔21から軸方向に飛び出すことを防ぐ方向に作用する。そのため、磁石挿入孔21が非磁性体34で覆われていなくても永久磁石25が磁石挿入孔21からは容易には脱落しない。 Furthermore, when the permanent magnet 25 is inserted into the magnet insertion hole 21, a magnetic attraction force acts between the permanent magnet 25 and the rotor core 20. This magnetic attraction force acts in a direction to prevent the permanent magnet 25 from jumping out of the magnet insertion hole 21 in the axial direction. Therefore, even if the magnet insertion hole 21 is not covered with the non-magnetic material 34, the permanent magnet 25 does not easily fall out from the magnet insertion hole 21.
 また、第3の樹脂部33(図4)が設けられていなくても、第1の樹脂部31および第2の樹脂部32により、シャフト10とロータコア20とを一体的に保持することができる。 Further, even if the third resin part 33 (FIG. 4) is not provided, the shaft 10 and the rotor core 20 can be integrally held by the first resin part 31 and the second resin part 32. .
 以上の点を除き、変形例のロータ2Aは、実施の形態1のロータ2と同様に構成されている。なお、ここでは、ロータコア20の端面20bに非磁性体34および第3の樹脂部33が共に設けられていない例について説明したが、いずれか一方を設けてもよい。 Except for the above points, the rotor 2A of the modified example is configured similarly to the rotor 2 of the first embodiment. Note that although an example has been described here in which neither the nonmagnetic material 34 nor the third resin part 33 are provided on the end surface 20b of the rotor core 20, either one may be provided.
 この変形例においても、実施の形態1と同様、単体で着磁した永久磁石25をロータコア20に組み込むことができるため、永久磁石25の着磁率を向上することができる。また、実施の形態1と比較して、ロータ2Aの構成を簡単にすることができ、製造コストを低減することができる。 Also in this modification, as in the first embodiment, a singly magnetized permanent magnet 25 can be incorporated into the rotor core 20, so that the magnetization rate of the permanent magnet 25 can be improved. Furthermore, compared to Embodiment 1, the configuration of the rotor 2A can be simplified and manufacturing costs can be reduced.
実施の形態2.
 次に、実施の形態2について説明する。図11は、実施の形態2のロータ2Bを示す断面図である。実施の形態2のロータ2Bは、磁石磁極と仮想磁極とが周方向に交互に配置されたコンシクエントポール型のロータである。
Embodiment 2.
Next, a second embodiment will be described. FIG. 11 is a sectional view showing the rotor 2B of the second embodiment. The rotor 2B of the second embodiment is a consequent pole rotor in which magnetic poles and virtual magnetic poles are alternately arranged in the circumferential direction.
 ロータ2Bは、ロータコア20の外周20cに沿って複数の磁石挿入孔21を有する。磁石挿入孔21の数は、実施の形態1の磁石挿入孔21(図3)の数の半数である。磁石挿入孔21は、周方向に等間隔に配置されている。各磁石挿入孔21の周方向の両端には、漏れ磁束を抑制するためのフラックスバリア22が形成されている。 The rotor 2B has a plurality of magnet insertion holes 21 along the outer periphery 20c of the rotor core 20. The number of magnet insertion holes 21 is half the number of magnet insertion holes 21 (FIG. 3) in the first embodiment. The magnet insertion holes 21 are arranged at equal intervals in the circumferential direction. A flux barrier 22 for suppressing leakage magnetic flux is formed at both ends of each magnet insertion hole 21 in the circumferential direction.
 各磁石挿入孔21には、永久磁石25が配置されている。永久磁石25は、同じ極性の磁極面(例えばN極)を外周側に向けている。そのため、ロータコア20において隣り合う永久磁石25の間には、径方向に磁束が流れる部分が生じる。 A permanent magnet 25 is arranged in each magnet insertion hole 21. The permanent magnets 25 have magnetic pole faces of the same polarity (for example, N poles) facing the outer circumferential side. Therefore, a portion where magnetic flux flows in the radial direction occurs between adjacent permanent magnets 25 in the rotor core 20.
 すなわち、ロータ2Bでは、永久磁石25によって形成される磁石磁極と、ロータコア20の一部によって形成される仮想磁極とが、周方向に交互に配置される。このような構成を、コンシクエントポール型と称する。 That is, in the rotor 2B, magnetic poles formed by the permanent magnets 25 and virtual magnetic poles formed by a part of the rotor core 20 are arranged alternately in the circumferential direction. Such a configuration is called a consequent pole type.
 図11では、磁石磁極の極中心を符号P1で示し、仮想磁極の極中心を符号P2で示している。ここでは磁石磁極がN極で仮想磁極がS極であるが、磁石磁極がS極で仮想磁極がN極であってもよい。 In FIG. 11, the pole center of the magnet magnetic pole is indicated by the symbol P1, and the pole center of the virtual magnetic pole is indicated by the symbol P2. Here, the magnet magnetic pole is the north pole and the virtual magnetic pole is the south pole, but the magnet magnetic pole may be the south pole and the virtual magnetic pole is the north pole.
 コンシクエントポール型のロータ2Bは、非コンシクエントポール型で同じ極数のロータ2(図3)と比較して永久磁石25の数が半分となるため、製造コストを大幅に低減することができる。 The consequent pole type rotor 2B has half the number of permanent magnets 25 compared to the non-consequent pole type rotor 2 with the same number of poles (Fig. 3), so manufacturing costs can be significantly reduced. .
 図12は、実施の形態2のロータ2Bを反負荷側から見た図である。ロータ2Bは、ロータコア20の端面20b上に、非磁性体36と第3の樹脂部35とを有する。 FIG. 12 is a diagram of the rotor 2B of Embodiment 2 viewed from the anti-load side. The rotor 2B includes a non-magnetic material 36 and a third resin portion 35 on the end surface 20b of the rotor core 20.
 非磁性体36は、磁石挿入孔21と同じ数だけ設けられている。各非磁性体36の周方向の長さは、磁石挿入孔21の周方向の長さよりも長い。各非磁性体36は、磁石挿入孔21の少なくとも一部を覆うように、ロータコア20の外周20cに沿って周方向に延在している。 The same number of nonmagnetic bodies 36 as the magnet insertion holes 21 are provided. The length of each non-magnetic body 36 in the circumferential direction is longer than the length of the magnet insertion hole 21 in the circumferential direction. Each non-magnetic material 36 extends in the circumferential direction along the outer periphery 20c of the rotor core 20 so as to cover at least a portion of the magnet insertion hole 21.
 図12に示した例は、非磁性体36が、磁石挿入孔21の周方向中心の内周側およびフラックスバリア22を露出させているが、磁石挿入孔21の全体を覆っていてもよい。すなわち、非磁性体36は、磁石挿入孔21内の永久磁石25が脱落しないよう、磁石挿入孔21の少なくとも一部を覆っていればよい。 In the example shown in FIG. 12, the nonmagnetic material 36 exposes the inner peripheral side of the circumferential center of the magnet insertion hole 21 and the flux barrier 22, but it may cover the entire magnet insertion hole 21. That is, the non-magnetic material 36 only needs to cover at least a portion of the magnet insertion hole 21 so that the permanent magnet 25 inside the magnet insertion hole 21 does not fall out.
 第3の樹脂部35は、外周35aおよび内周35dを有する。第3の樹脂部35の内周35dには、シャフト10が固定されている。第3の樹脂部35の外周35aは、中心軸Axからの距離が周方向に変化するように延在している。 The third resin portion 35 has an outer periphery 35a and an inner periphery 35d. The shaft 10 is fixed to the inner circumference 35d of the third resin portion 35. The outer periphery 35a of the third resin portion 35 extends so that the distance from the central axis Ax changes in the circumferential direction.
 具体的には、中心軸Axから外周35aまでの距離は、仮想磁極の極中心P2(図11)に対応する第1部分35bで最大値L1となり、磁石磁極の極中心P1(図11)に対応する第2部分35cで最小値L2となる。 Specifically, the distance from the center axis Ax to the outer periphery 35a reaches a maximum value L1 at the first portion 35b corresponding to the pole center P2 (FIG. 11) of the virtual magnetic pole, and the distance from the center axis Ax to the outer circumference 35a reaches the maximum value L1 at the first portion 35b corresponding to the pole center P2 (FIG. 11) of the virtual magnetic pole. The corresponding second portion 35c has the minimum value L2.
 コンシクエントポール型のロータ2Aでは、仮想磁極に永久磁石25が存在しないため、第3の樹脂部35をロータコア20の外周の近くまで形成しても、磁石挿入孔21への永久磁石25の挿入の妨げにならない。 In the consequent pole rotor 2A, since the permanent magnets 25 are not present in the virtual magnetic poles, even if the third resin part 35 is formed close to the outer periphery of the rotor core 20, the permanent magnets 25 cannot be inserted into the magnet insertion holes 21. does not interfere with
 図13は、実施の形態2のロータ2Bを示す縦断面図である。実施の形態1と同様、ロータコア20とシャフト10との間には第1の樹脂部31が設けられ、ロータコア20の端面20aには第2の樹脂部32が設けられている。第3の樹脂部35は、第1の樹脂部31および第2の樹脂部32と一体に形成されている。 FIG. 13 is a longitudinal cross-sectional view showing the rotor 2B of the second embodiment. As in the first embodiment, a first resin portion 31 is provided between the rotor core 20 and the shaft 10, and a second resin portion 32 is provided on the end surface 20a of the rotor core 20. The third resin part 35 is formed integrally with the first resin part 31 and the second resin part 32.
 図14(A),(B)は、非磁性体36の固定方法の一例を説明するための図である。図14(A)に示すように、非磁性体36は、ロータコア20(図12)の外周に沿って周方向に延在する延在部36aと、延在部36aの両端部からロータコア20に向かって軸方向に延在する一対の脚部36bと、脚部36bの下端からロータコア20の端面20bと平行に突出する爪部36cとを有する。 FIGS. 14(A) and 14(B) are diagrams for explaining an example of a method of fixing the non-magnetic material 36. As shown in FIG. 14(A), the non-magnetic material 36 has an extending portion 36a that extends in the circumferential direction along the outer periphery of the rotor core 20 (FIG. 12), and a non-magnetic material 36 that extends from both ends of the extending portion 36a to the rotor core 20. It has a pair of leg portions 36b extending in the axial direction toward the rotor core 20, and a claw portion 36c protruding from the lower end of the leg portion 36b in parallel with the end surface 20b of the rotor core 20.
 第3の樹脂部35は、非磁性体36をその長手方向の両側から挟み込む位置に、一対の凸部35eを有する。図14(B)に示すように、凸部35eには、非磁性体36の爪部36cに係合する係合穴35fが形成されている。 The third resin portion 35 has a pair of convex portions 35e at positions that sandwich the non-magnetic material 36 from both sides in the longitudinal direction. As shown in FIG. 14(B), an engagement hole 35f that engages with the claw portion 36c of the non-magnetic material 36 is formed in the convex portion 35e.
 非磁性体36を第3の樹脂部35に取り付ける際には、図14(A)に矢印Fで示すように、非磁性体36を第3の樹脂部35の一対の凸部35eの間に押し込む。非磁性体36の各爪部36cが凸部35eに当接し、一対の脚部36bが互いに接近するように弾性変形する。爪部36cが係合穴35fに係合すると、脚部36bが弾性変形前の状態に戻り、爪部36cが係合穴35fから抜けない状態となる。これにより、非磁性体36が第3の樹脂部35に固定される。 When attaching the non-magnetic material 36 to the third resin part 35, as shown by arrow F in FIG. Push it in. Each claw portion 36c of the non-magnetic body 36 comes into contact with the convex portion 35e, and the pair of leg portions 36b are elastically deformed so as to approach each other. When the claw portion 36c engages with the engagement hole 35f, the leg portion 36b returns to the state before elastic deformation, and the claw portion 36c becomes unable to come out from the engagement hole 35f. Thereby, the non-magnetic material 36 is fixed to the third resin part 35.
 図15は、非磁性体36の固定方法の他の例を説明するための図である。図15に示すように、非磁性体36は、ロータコア20(図12)の外周に沿って周方向に延在する延在部36aと、延在部36aの両端部からロータコア20に向かって軸方向に延在する一対の脚部36bと、脚部36bの下端からロータコア20の端面20bと平行に延びる台座部36dとを有する。台座部36dには、これを軸方向に貫通する穴部36fが形成されている。 FIG. 15 is a diagram for explaining another example of the method of fixing the non-magnetic material 36. As shown in FIG. 15, the non-magnetic material 36 includes an extending portion 36a that extends in the circumferential direction along the outer periphery of the rotor core 20 (FIG. 12), and an axial direction toward the rotor core 20 from both ends of the extending portion 36a. The rotor core 20 has a pair of leg portions 36b extending in the direction, and a pedestal portion 36d extending parallel to the end surface 20b of the rotor core 20 from the lower end of the leg portion 36b. A hole 36f is formed in the pedestal portion 36d, passing through the pedestal portion 36d in the axial direction.
 第3の樹脂部35は、非磁性体36の台座部36dの穴部36fに対応する位置に、軸方向に突出するポスト35gを有する。 The third resin part 35 has a post 35g that projects in the axial direction at a position corresponding to the hole 36f of the pedestal part 36d of the non-magnetic body 36.
 非磁性体36を第3の樹脂部35に取り付ける際には、非磁性体36の台座部36dを第3の樹脂部35上に載せ、穴部36fにポスト35gを係合させる。その後、穴部36fから突出するポスト35gの端部を溶接し、係合部35hを形成する。ポスト35gの端部に係合部35hを形成することにより、台座部36dがポスト35gから抜けない状態となる。これにより、非磁性体36が第3の樹脂部35に固定される。 When attaching the non-magnetic material 36 to the third resin part 35, the pedestal part 36d of the non-magnetic material 36 is placed on the third resin part 35, and the post 35g is engaged with the hole part 36f. Thereafter, the end of the post 35g protruding from the hole 36f is welded to form an engaging portion 35h. By forming the engaging portion 35h at the end of the post 35g, the pedestal portion 36d is prevented from coming off the post 35g. Thereby, the non-magnetic material 36 is fixed to the third resin part 35.
 なお、図14(A),(B)および図15では非磁性体36の延在部36aがロータコア20の端面20bから軸方向に離れている。ロータコア20の端面20aから延在部36aまでの軸方向距離は、磁石挿入孔21からの永久磁石25の飛び出しを防止できる距離(例えば、永久磁石25の軸方向長さ未満)であればよい。 Note that in FIGS. 14A, 14B and 15, the extending portion 36a of the non-magnetic material 36 is axially away from the end surface 20b of the rotor core 20. The axial distance from the end surface 20a of the rotor core 20 to the extension portion 36a may be any distance that can prevent the permanent magnet 25 from protruding from the magnet insertion hole 21 (for example, less than the axial length of the permanent magnet 25).
 但し、永久磁石25が磁石挿入孔21から軸方向に突出すると、永久磁石25の突出部分から出た磁束が漏れ磁束となり駆動力の発生に寄与しないため、突出量は少ないことが望ましい。そのため、ロータコア20の端面20bから非磁性体36の延在部36aまでの軸方向距離は、できるだけ小さいことが望ましい。 However, if the permanent magnet 25 protrudes from the magnet insertion hole 21 in the axial direction, the magnetic flux emitted from the protruding portion of the permanent magnet 25 becomes a leakage magnetic flux and does not contribute to the generation of the driving force, so it is desirable that the amount of protrusion is small. Therefore, it is desirable that the axial distance from the end surface 20b of the rotor core 20 to the extending portion 36a of the non-magnetic material 36 be as small as possible.
 また、非磁性体36の第3の樹脂部35への固定方法は、図14(A),(B)および図15に示した固定方法に限らず、他の固定方法を用いてもよい。 Further, the method of fixing the non-magnetic material 36 to the third resin part 35 is not limited to the fixing methods shown in FIGS. 14(A), (B) and FIG. 15, but other fixing methods may be used.
 以上の点を除き、実施の形態2のロータ2Bは、実施の形態1のロータ2と同様に構成されている。 Except for the above points, the rotor 2B of the second embodiment is configured similarly to the rotor 2 of the first embodiment.
 実施の形態2のロータ2Bは、コンシクエントポール型であるため、仮想磁極に相当する位置では第3の樹脂部35をロータコア20の外周の近くまで形成することができる。そのため、第3の樹脂部35と非磁性体36との係合部を、非磁性体36に近い位置に形成することができ、非磁性体36を強固に固定することができる。また、非磁性体36をその延在方向の両端で第3の樹脂部35に固定することができるため、非磁性体36をより強固に固定することができる。 Since the rotor 2B of the second embodiment is of the consequent pole type, the third resin portion 35 can be formed close to the outer periphery of the rotor core 20 at the position corresponding to the virtual magnetic pole. Therefore, the engaging portion between the third resin portion 35 and the non-magnetic material 36 can be formed at a position close to the non-magnetic material 36, and the non-magnetic material 36 can be firmly fixed. Moreover, since the non-magnetic material 36 can be fixed to the third resin part 35 at both ends in its extending direction, the non-magnetic material 36 can be fixed more firmly.
<空気調和装置>
 次に、上述した各実施の形態および各変形例の電動機1が適用可能な空気調和装置について説明する。図16(A)は、実施の形態1の電動機1を適用した空気調和装置500の構成を示す図である。空気調和装置500は、室外機501と室内機502とを備える。室外機501と室内機502とは、冷媒配管503で接続されている。
<Air conditioner>
Next, an air conditioner to which the electric motor 1 of each of the embodiments and modifications described above can be applied will be described. FIG. 16(A) is a diagram showing the configuration of an air conditioner 500 to which the electric motor 1 of Embodiment 1 is applied. The air conditioner 500 includes an outdoor unit 501 and an indoor unit 502. The outdoor unit 501 and the indoor unit 502 are connected by a refrigerant pipe 503.
 室外機501は、圧縮機504と、凝縮器505と、室外送風機510とを備える。室外送風機510は、例えばプロペラファンである。室外送風機510は、羽根車(インペラ)511と、これを駆動する電動機1Aとを有する。 The outdoor unit 501 includes a compressor 504, a condenser 505, and an outdoor blower 510. Outdoor blower 510 is, for example, a propeller fan. The outdoor blower 510 includes an impeller 511 and an electric motor 1A that drives the impeller.
 室内機502は、蒸発器506と、室内送風機520とを備える。室内送風機520は、例えばクロスフローファンである。室内送風機520は、羽根車(インペラ)521と、これを駆動する電動機1Bとを有する。 The indoor unit 502 includes an evaporator 506 and an indoor blower 520. Indoor blower 520 is, for example, a cross flow fan. The indoor blower 520 includes an impeller 521 and an electric motor 1B that drives the impeller.
 図16(B)は、室外機501の断面図である。電動機1Aは、室外機501のハウジング508内に配置されたフレーム509によって支持されている。電動機1のシャフト10には、ハブ512を介して羽根車511が取り付けられている。 FIG. 16(B) is a cross-sectional view of the outdoor unit 501. The electric motor 1A is supported by a frame 509 disposed within a housing 508 of the outdoor unit 501. An impeller 511 is attached to the shaft 10 of the electric motor 1 via a hub 512.
 室外送風機510では、電動機1Aによって羽根車511が回転し、室外に送風する。空気調和装置500の冷房運転時には、圧縮機504で圧縮された冷媒が凝縮器505で凝縮する際に放出された熱を、室外送風機510の送風によって室外に放出する。 In the outdoor blower 510, the impeller 511 is rotated by the electric motor 1A to blow air outdoors. During the cooling operation of the air conditioner 500, the heat released when the refrigerant compressed by the compressor 504 is condensed in the condenser 505 is released outdoors by air blowing from the outdoor blower 510.
 室内送風機520(図16(A))では、電動機1Bによって羽根車521が回転し、室内に送風する。空気調和装置500の冷房運転時には、冷媒が蒸発器506で蒸発する際に熱が奪われた空気を、室内送風機520の送風によって室内に送風する。 In the indoor blower 520 (FIG. 16(A)), the impeller 521 is rotated by the electric motor 1B to blow air into the room. During cooling operation of the air conditioner 500, the air from which heat has been removed when the refrigerant evaporates in the evaporator 506 is blown into the room by the indoor blower 520.
 電動機1A,1Bは、実施の形態1の電動機1で構成されているため、永久磁石25の高い磁力により、高い電動機効率を有する。そのため、室外送風機510および室内送風機520の運転効率を向上し、これにより空気調和装置500の運転効率を向上することができる。 Since the electric motors 1A and 1B are configured with the electric motor 1 of Embodiment 1, they have high electric motor efficiency due to the high magnetic force of the permanent magnet 25. Therefore, the operating efficiency of the outdoor blower 510 and the indoor blower 520 can be improved, and thereby the operating efficiency of the air conditioner 500 can be improved.
 電動機1A,1Bには、実施の形態1の電動機1に限らず、変形例または実施の形態2の電動機を用いてもよい。また、各実施の形態および変形例の電動機は、ここでは室外送風機510および室内送風機520の両方に用いているが、いずれか一方のみに用いてもよい。 The electric motors 1A and 1B are not limited to the electric motor 1 of the first embodiment, but may be a modified example or the electric motor of the second embodiment. Moreover, although the electric motor of each embodiment and modification example is used for both the outdoor blower 510 and the indoor blower 520 here, it may be used for only either one.
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。 Although the preferred embodiments have been specifically described above, the present disclosure is not limited to the above embodiments, and various improvements and modifications can be made.
 1,1A,1B 電動機、 2,2A,2B ロータ、 5 ステータ、 6 モールドステータ、 10 シャフト、 10a 長軸部、 10b 短軸部、 20 ロータコア、 20a 端面(第1の端面)、 20b 端面(第2の端面)、 21 磁石挿入孔、 22 フラックスバリア、 25 永久磁石、 31 第1の樹脂部、 32 第2の樹脂部、 33 第3の樹脂部、 33 非磁性体、 33c 係合部、 34 突出部、 35 第3の樹脂部、 35h 係合部、 36 非磁性体、 50 ステータコア、 51 ヨーク、 52 ティース、 53 スロット、 55 コイル、 60 モールド樹脂部、 80 金型、 81 固定金型、 82 可動金型、 500 空気調和装置、 501 室外機、 502 室内機、 510 室外送風機(送風機)、 511 羽根車、 520 室内送風機(送風機)、 521 羽根車。 1, 1A, 1B electric motor, 2, 2A, 2B rotor, 5 stator, 6 molded stator, 10 shaft, 10a long shaft part, 10b short shaft part, 20 rotor core, 20a end face (first end face), 20b End face (No. 2 end face), 21 magnet insertion hole, 22 flux barrier, 25 permanent magnet, 31 first resin part, 32 second resin part, 33 third resin part, 33 non-magnetic material, 33c engaging part, 34 Projection part, 35 third resin part, 35h engaging part, 36 non-magnetic material, 50 stator core, 51 yoke, 52 teeth, 53 slot, 55 coil, 60 mold resin part, 80 mold, 81 Fixed mold, 82 Movable mold, 500 Air conditioner, 501 Outdoor unit, 502 Indoor unit, 510 Outdoor blower, 511 Impeller, 520 Indoor blower, 521 Impeller.

Claims (17)

  1.  シャフトと、
     前記シャフトをその径方向の外側から囲み、磁石挿入孔を有するロータコアと、
     前記磁石挿入孔に配置された永久磁石と、
     前記シャフトと前記ロータコアとの間に位置する第1の樹脂部を含み、前記シャフトと前記ロータコアとを保持する樹脂部と
     を有し、
     前記ロータコアは、前記シャフトの軸方向において第1の端面と第2の端面とを有し、
     前記磁石挿入孔は、前記第1の端面から前記第2の端面まで延在し、
     前記第1の端面および前記第2の端面の少なくとも一方では、前記磁石挿入孔が前記樹脂部に覆われていない
     ロータ。
    shaft and
    a rotor core surrounding the shaft from the outside in the radial direction and having a magnet insertion hole;
    a permanent magnet placed in the magnet insertion hole;
    a resin part including a first resin part located between the shaft and the rotor core, and a resin part holding the shaft and the rotor core;
    The rotor core has a first end surface and a second end surface in the axial direction of the shaft,
    The magnet insertion hole extends from the first end surface to the second end surface,
    The rotor wherein the magnet insertion hole is not covered by the resin portion on at least one of the first end surface and the second end surface.
  2.  前記ロータコアの前記第1の端面に第2の樹脂部を有し、
     前記第2の樹脂部は、前記第1の端面において前記磁石挿入孔の少なくとも一部を覆っている
     請求項1に記載のロータ。
    a second resin portion on the first end surface of the rotor core;
    The rotor according to claim 1, wherein the second resin portion covers at least a portion of the magnet insertion hole on the first end surface.
  3.  前記シャフトは、前記ロータコアの前記第1の端面から前記軸方向に突出する長軸部と、前記ロータコアの前記第2の端面から前記軸方向に突出する短軸部とを有し、
     前記長軸部の長さは、前記短軸部の長さよりも長い
     請求項1または2に記載のロータ。
    The shaft has a long shaft portion that projects in the axial direction from the first end surface of the rotor core, and a short shaft portion that projects in the axial direction from the second end surface of the rotor core,
    The rotor according to claim 1 or 2, wherein the length of the long shaft portion is longer than the length of the short shaft portion.
  4.  前記磁石挿入孔の内部において、前記永久磁石の周囲には、樹脂が設けられていない
     請求項1から3までのいずれか1項に記載のロータ。
    The rotor according to any one of claims 1 to 3, wherein no resin is provided around the permanent magnet inside the magnet insertion hole.
  5.  前記ロータコアの前記第2の端面において、前記磁石挿入孔の少なくとも一部を塞ぐ非磁性体をさらに有する
     請求項1から4までのいずれか1項に記載のロータ。
    The rotor according to any one of claims 1 to 4, further comprising a non-magnetic material that closes at least a portion of the magnet insertion hole on the second end surface of the rotor core.
  6.  前記非磁性体は、溶接により前記第1の樹脂部に固定されている
     請求項5に記載のロータ。
    The rotor according to claim 5, wherein the non-magnetic material is fixed to the first resin part by welding.
  7.  前記非磁性体は、前記磁石挿入孔の一部に係合する係合部を有する
     請求項5または6に記載のロータ。
    The rotor according to claim 5 or 6, wherein the non-magnetic material has an engaging portion that engages with a part of the magnet insertion hole.
  8.  前記ロータコアの前記第2の端面に第3の樹脂部を有する
     請求項1から7までのいずれか1項に記載のロータ。
    The rotor according to any one of claims 1 to 7, further comprising a third resin portion on the second end surface of the rotor core.
  9.  前記永久磁石は磁石磁極を構成し、前記ロータコアの一部は仮想磁極を構成する
     請求項8に記載のロータ。
    The rotor according to claim 8, wherein the permanent magnet constitutes a magnetic pole, and a portion of the rotor core constitutes a virtual magnetic pole.
  10.  前記シャフトの中心から前記第3の樹脂部の外周までの距離は、前記仮想磁極の極中心ではL1であり、前記磁石磁極の極中心ではL2であり、L1>L2が成り立つ
     請求項9に記載のロータ。
    The distance from the center of the shaft to the outer periphery of the third resin portion is L1 at the pole center of the virtual magnetic pole, and L2 at the pole center of the magnet magnetic pole, and L1>L2 holds true. rotor.
  11.  前記ロータコアの前記第2の端面において、前記磁石挿入孔の少なくとも一部を塞ぐ非磁性体をさらに有し、
     前記非磁性体は、前記第3の樹脂部に係合する係合部を有する
     請求項9または10に記載のロータ。
    The second end surface of the rotor core further includes a non-magnetic material that blocks at least a portion of the magnet insertion hole,
    The rotor according to claim 9 or 10, wherein the non-magnetic material has an engaging part that engages with the third resin part.
  12.  前記非磁性体は、前記ロータコアの外周に沿って延在し、
     前記非磁性体の延在方向の両端に、前記係合部が設けられている
     請求項11に記載のロータ。
    The non-magnetic material extends along the outer periphery of the rotor core,
    The rotor according to claim 11, wherein the engaging portions are provided at both ends of the non-magnetic material in the extending direction.
  13.  請求項1から12までのいずれか1項に記載のロータと、
     前記ロータを囲む環状のステータと
     を有する電動機。
    A rotor according to any one of claims 1 to 12,
    and an annular stator surrounding the rotor.
  14.  請求項13に記載の電動機と、
     前記電動機の前記シャフトに取り付けられた羽根車と
     を備えた送風機。
    The electric motor according to claim 13;
    an impeller attached to the shaft of the electric motor.
  15.  室外機と室内機とを備え、
     前記室外機と前記室内機の少なくとも一方は、請求項14に記載の送風機を有する
     空気調和装置。
    Equipped with an outdoor unit and an indoor unit,
    At least one of the outdoor unit and the indoor unit includes the blower according to claim 14. An air conditioner.
  16.  磁性体を着磁して永久磁石とする工程と、
     磁石挿入孔を有するロータコアとシャフトとを樹脂で一体に成形する工程と、
     前記ロータコアの前記磁石挿入孔に前記永久磁石を挿入する工程と
     を有し、
     前記ロータコアと前記シャフトとを樹脂で一体に成形する前記工程では、前記シャフトの軸方向における前記ロータコアの第1の端面と第2の端面の少なくとも一方において、前記磁石挿入孔を露出させる
     ロータの製造方法。
    A process of magnetizing a magnetic material to make it a permanent magnet,
    a step of integrally molding a rotor core having a magnet insertion hole and a shaft with resin;
    inserting the permanent magnet into the magnet insertion hole of the rotor core,
    In the step of integrally molding the rotor core and the shaft with resin, the magnet insertion hole is exposed on at least one of the first end surface and the second end surface of the rotor core in the axial direction of the shaft. Manufacture of a rotor Method.
  17.  前記永久磁石を挿入する工程の後に、
     前記ロータコアに、前記磁石挿入孔の少なくとも一部を覆う非磁性体を取り付ける工程
     を有する
     請求項16に記載のロータの製造方法。
    After the step of inserting the permanent magnet,
    The method for manufacturing a rotor according to claim 16, further comprising the step of attaching a non-magnetic material to the rotor core to cover at least a portion of the magnet insertion hole.
PCT/JP2022/026944 2022-07-07 2022-07-07 Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor WO2024009450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026944 WO2024009450A1 (en) 2022-07-07 2022-07-07 Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026944 WO2024009450A1 (en) 2022-07-07 2022-07-07 Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor

Publications (1)

Publication Number Publication Date
WO2024009450A1 true WO2024009450A1 (en) 2024-01-11

Family

ID=89453084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026944 WO2024009450A1 (en) 2022-07-07 2022-07-07 Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor

Country Status (1)

Country Link
WO (1) WO2024009450A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205429A (en) * 2011-03-25 2012-10-22 Asmo Co Ltd Rotor and motor
JP2012235652A (en) * 2011-05-09 2012-11-29 Daikin Ind Ltd Rotor and rotating electric machine
JP2015204734A (en) * 2014-04-16 2015-11-16 アスモ株式会社 Rotor and liquid pump
WO2018011979A1 (en) * 2016-07-15 2018-01-18 三菱電機株式会社 Consequent pole rotor, electric motor, air conditioner, and consequent pole rotor manufacturing method
WO2021024338A1 (en) * 2019-08-05 2021-02-11 三菱電機株式会社 Motor, and air conditioner in which same is used
JP2021083221A (en) * 2019-11-19 2021-05-27 株式会社ミツバ IPM rotor manufacturing method
JP2021151090A (en) * 2020-03-19 2021-09-27 株式会社明電舎 Rotor and rotary machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205429A (en) * 2011-03-25 2012-10-22 Asmo Co Ltd Rotor and motor
JP2012235652A (en) * 2011-05-09 2012-11-29 Daikin Ind Ltd Rotor and rotating electric machine
JP2015204734A (en) * 2014-04-16 2015-11-16 アスモ株式会社 Rotor and liquid pump
WO2018011979A1 (en) * 2016-07-15 2018-01-18 三菱電機株式会社 Consequent pole rotor, electric motor, air conditioner, and consequent pole rotor manufacturing method
WO2021024338A1 (en) * 2019-08-05 2021-02-11 三菱電機株式会社 Motor, and air conditioner in which same is used
JP2021083221A (en) * 2019-11-19 2021-05-27 株式会社ミツバ IPM rotor manufacturing method
JP2021151090A (en) * 2020-03-19 2021-09-27 株式会社明電舎 Rotor and rotary machine

Similar Documents

Publication Publication Date Title
WO2018011979A1 (en) Consequent pole rotor, electric motor, air conditioner, and consequent pole rotor manufacturing method
US11101708B2 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
JPWO2019026273A1 (en) Rotor, electric motor, blower, air conditioner, and method of manufacturing rotor
JP6692494B2 (en) Rotor, electric motor and air conditioner
JP7109658B2 (en) Stator, motor, blower, air conditioner, and stator manufacturing method
CN105745822B (en) Motor and air conditioner
WO2024009450A1 (en) Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor
JP6545383B2 (en) Rotor, motor, air conditioner, and method of manufacturing rotor
JP7386965B2 (en) Electric motors, blowers and air conditioners
WO2021171435A1 (en) Stator, electric motor, blower, air conditioner, and stator manufacturing method
JP7012878B2 (en) How to manufacture rotors, motors, blowers, air conditioners and rotors
WO2023148953A1 (en) Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor
US11811265B2 (en) Motor, fan, air conditioner, and manufacturing method of motor
CN113169598B (en) Rotor, motor, blower, air conditioner, and method for manufacturing rotor
WO2021234822A1 (en) Rotor, electric motor, fan, and air conditioner
WO2021019592A1 (en) Electric motor, fan, air conditioning device, and method for manufacturing electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950244

Country of ref document: EP

Kind code of ref document: A1