WO2024008741A1 - Biosynthèse de méthane - Google Patents
Biosynthèse de méthane Download PDFInfo
- Publication number
- WO2024008741A1 WO2024008741A1 PCT/EP2023/068438 EP2023068438W WO2024008741A1 WO 2024008741 A1 WO2024008741 A1 WO 2024008741A1 EP 2023068438 W EP2023068438 W EP 2023068438W WO 2024008741 A1 WO2024008741 A1 WO 2024008741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bioreactor
- process according
- hydrogen
- reactor
- microorganisms
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 230000015572 biosynthetic process Effects 0.000 title description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 72
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000001257 hydrogen Substances 0.000 claims abstract description 42
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 38
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 36
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 35
- 244000005700 microbiome Species 0.000 claims abstract description 27
- 239000012736 aqueous medium Substances 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 238000004090 dissolution Methods 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 34
- 239000007788 liquid Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000003134 recirculating effect Effects 0.000 claims description 8
- 239000007792 gaseous phase Substances 0.000 claims description 7
- 239000007791 liquid phase Substances 0.000 claims description 7
- 239000002699 waste material Substances 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 6
- 241000203069 Archaea Species 0.000 claims description 5
- 241000894006 Bacteria Species 0.000 claims description 4
- 239000002609 medium Substances 0.000 claims description 4
- 239000012071 phase Substances 0.000 claims description 4
- 241000202974 Methanobacterium Species 0.000 claims description 3
- 241001174353 Methanocella paludicola Species 0.000 claims description 3
- 241000204641 Methanopyrus kandleri Species 0.000 claims description 3
- 241000205274 Methanosarcina mazei Species 0.000 claims description 3
- 241000205263 Methanospirillum hungatei Species 0.000 claims description 3
- 230000032258 transport Effects 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 230000000696 methanogenic effect Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 238000004177 carbon cycle Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000425347 Phyla <beetle> Species 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000003956 methylamines Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000010841 municipal wastewater Substances 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/023—Methane
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/04—Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/06—Tubular
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/14—Pressurized fluid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/18—External loop; Means for reintroduction of fermented biomass or liquid percolate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/24—Recirculation of gas
Definitions
- the present invention relates to the field of green technologies, to carbon capture and to the energy field.
- the present invention relates to the bioindustrial manufacture of methane from carbon dioxide and hydrogen.
- Methane-producing microorganisms are thought to be among the earliest cellular life forms colonizing our planet, and are major contributors to the past and present global carbon cycle.
- methanogens belong to the archaeal domain of life, and they utilize a variety of methanogenic metabolisms among a wide distribution of archaeal phyla.
- Hydrogenotrophic methanogens are archaea that can grow on hydrogen and carbon dioxide with the production of methane, an important intermediate in the global carbon cycle. They reduce carbon dioxide to methane and water by using hydrogen as an electron donor.
- the acetoclastic methanogens use acetate as an electron acceptor while the methylotropic methanogens use methanol or methylamines as an electron acceptor.
- the present invention provides a process for reacting hydrogen with carbon dioxide to form methane in an aqueous medium catalysed by microorganisms, where said reaction takes place inside a bioreactor, characterised in that the solubility of hydrogen in the aqueous medium is enhanced by pressure combined with a flow induced residence time enabling the dissolution and reaction of at least 80% of the gaseous hydrogen mixed with the aqueous medium.
- the bioreactor is a U-shaped or coaxial vertical bioreactor.
- the microorganisms are archaea, i.e. hydrogenotrophic methanogens.
- the present invention provides a bioreactor fitted for implementing the process as defined in the first aspect of the invention.
- the bioreactor is a U-shaped or coaxial vertical bioreactor.
- FIG. 1 Coaxial vertical bioreactor for reacting hydrogen with carbon dioxide to form methane using microorganisms as catalysts.
- a process for reacting hydrogen with carbon dioxide to form methane in an aqueous medium catalysed by microorganisms where said reaction takes place inside a bioreactor, characterised in that the solubility of hydrogen in the aqueous medium is enhanced by pressure combined with a flow induced residence time enabling the dissolution and reaction of at least 80% of the gaseous hydrogen mixed with the aqueous medium.
- Microorganisms used for methane synthesis according to the present invention are so-called hydrogenotropic methanogens.
- Hydrogenotropic methanogens derive metabolic energy from the reaction : Methanogens presently all belong to the archae bacteria and they are found ubiquitu- ous in nature and off course in anaerobic digesters where they often establish as mixed cultures in more or less equilibrium with the feed streams of the digester and its operating mode.
- Non-limiting examples of hydrogenotropic methanogens are Methanopyrus kandleri, Mathanococcus maripaludis, Methanobacterium thermoautotrophium, Methanosarcina mazei, Methanospirillum hungatei, and Methanocella paludicola.
- the process of the present operation is conducted using specific methanogenic bacteria as inoculum.
- the bioreactor is inoculated with methanogenic bacteria obtained from an anaerobic digester, such as the anaerobic digester producing a biogas used as a source of carbon dioxide.
- the process of the present invention is a continuous process where a microbial feed continuously is fed to the bioreactor, e.g. from an anerobic digester such as a municipal waste water treatment facility or an animal effluent processing facility.
- the fluid exit stream from the bioreactor may be discarded or it may be wholly or partly recycled to the anaerobic digester wherefrom it came in the first instance.
- the carbon dioxide can be supplied as pure carbon dioxide or as part of the exit gas from an industrial process.
- the hydrogen gas may be supplied as pure gas from e.g. electrolysis, or supplied from the exit gas of an industrial process.
- the carbon dioxide is fed to the bioreactor as part of a gas which is the biogas from an anaerobic digestion, e.g. having about 40% of carbon dioxide and 60% of methane, while the hydrogen gas is fed as a pure gas, e.g. 95-100% hydrogen.
- the hydrogen gas may be prepared on-site by e.g. electrolysis.
- the feed of hydrogen gas is regulated so as to match on a molar basis the feed of carbon dioxide in the biogas from an anerobic digestion.
- this feed ratio is about 2.5 volumes of biogas per 1.0 volume of hydrogen gas.
- the carbon dioxide and hydrogen fed to the bioreactor when supplied from two different gasses may either be mixed prior to being fed to the reactor or may be fed as separate gasses that are mixed inside the bioreactor.
- the bioreactor used for the process converting carbon dioxide and hydrogen into methane may be a U-shaped or coaxial bioreactor or it may be a pressurized continuous stirred tank reactor.
- the U-shaped or coaxial vertical bioreactor is a continuous bioreactor having the inlets for liquid substrate, microorganisms and gaseous substrates (carbon dioxide and hydrogen) in the first end of the bioreactor and the exit for spent liquid and reacted gasses at the second end of the bioreactor.
- the U-shaped or coaxial vertical bioreactor has partial recycling of the exit gas from the bioreactor.
- the amount of the exit gas being recycled may be about 25%, about 35%, about 50% or about 75%.
- the amount of the exit gas being recycled to the bioreactor is from about 25% to 75%, from about 30% to 60%, from about 40% to about 50%.
- the U-shaped or coaxial vertical bioreactor has partial recycling of the exit gas from the bioreactor, where the amount of gas being recycled is controlled in response to a measurement or estimation of the amount of carbon dioxide in the exit gas.
- the height of the U-shaped or coaxial vertical bioreactor sets a minimum pressure that will be present at the bottom of the bioreactor where the part having downwards flow turns to the part having upward flow. For every 10 meters of bioreactor level (liquid height) the pressure is additionally approx. 1 bar as compared to the top of the bioreactor.
- the U-shaped or coaxial bioreactor may also be pressurized at the inlet at the top, but if the reactor has a sufficient height it can have a sufficiently high hydrostatic pressure in the bottom part to quantitative drive the dissolution of gaseous hydrogen to dissolved hydrogen.
- the solubility of hydrogen in water is much lower than the solubility of other gasses, such as oxygen, carbon dioxide (see Table 1). For instance, the solubility of hydrogen at 293 K is only 0.16 mg per 100 g of water, which amounts to 7% of the solubility of methane, and to 0.1% of the solubility of carbon dioxide.
- solubility of gasses in water decreases with the temperature and since most hydrogenotropic methanogens are thermophiles, the solubility of hydrogen is very low and consequently the mass transfer of gaseous hydrogen to soluble hydrogen becomes the rate limiting step.
- the U-shaped or coaxial vertical bioreactor may have any suitable shape as long as the unidirectional flow of the liquid and the gaseous phase are maintained.
- the U-shaped or coaxial vertical bioreactor has a coaxial design, i.e. one vertical tubular structure placed inside a larger vertical structure having fluid and gaseous connection only in the bottom of the bioreactor.
- the U-shaped or coaxial vertical bioreactor has the dimension of a pipe starting from the inlet end at the top, going vertically down to the buttom and turning up towards the exit also at the top, i.e. a U-shape.
- the cross sectional area of the downward part of the bioreactor is the same as the cross sectional area of the upward part of the bioreactor.
- the cross sectional area of the downward part of the bioreactor is smaller than the cross sectional area of the upward part of the bioreactor.
- the bioreactor for implementing the process for reacting hydrogen with carbon dioxide to form methane may also be a continuous stirred tank reactor (CSTR) or a counterflow bioreactor which is pressurized.
- CSTR continuous stirred tank reactor
- counterflow bioreactor which is pressurized.
- the counterflow bioreactor or CSTR is operated at a pressure of at least 2 bar, at least 3 bar, at least 6 bar or at least 10 bar.
- the bioreactor is a counterflow bioreactor wherein the gaseous phase moves upwards and the aqueous phase moves downwards.
- the bioreactor is a CSTR.
- the CSTR reactor has a recirculation loop which recycles a part of the exit gas to the bioreactor.
- the amount of the exit gas being recycled to the bioreactor is from about 25% to 75%, from about 30% to 60%, from about 40% to about 50%. In a further embodiment the amount of the exit gas being recycled is about 25%, about 35%, about 50% or about 75%.
- the mean residence time of the liquid phase in the bioreactor is at least 10 seconds, at least 30 seconds, at least 1 minute, at least 5 minutes, at least 20 minutes, or at least 60 minutes.
- the bioreactor according to item 14 wherein the inlet of aqueous medium comprising microorganisms and the inlet for hydrogen and carbon dioxide are both at the upper part of the bioreactor, whereby a downward flow mixes and transports the fluid and gas phases down past the buttom of the bioreactor and subsequently upward towards the outlet end of said bioreactor which is also at the upper part of the bioreactor.
- said reactor is a continuously stirred tank reactor having a recirculating loop for recirculating at least part of the gaseous phase.
- a U-shaped vertical bioreactor in the form of a tubular reactor having an inlet for liquid digestate obtained from a waste treatment facility containing hydrogenotropic methanogens, c.f. Figure 1 . Also at the inlet end of the bioreactor two separate gasses are fed into the digestate, the first gas supplying the hydrogen and the second gas supplying the carbon dioxide.
- a counterflow bioreactor produces methane from a feed gas being made by mixing hydrogen with biogas from a waste treatment facility ( Figure 2).
- the mixed inlet gas containing hydrogen and carbon dioxide is blown into a sparger ring at the buttom of the bioreactor and moving upwards through the liquid phase.
- the liquid phase contains hydrogenotropic methanogens which catalyse the reaction forming methane.
- the liquid phase moves downward against the flow of the gas phase, and at the bottom of the bioreactor the liquid phase is recirculated back to the top of the bioreactor.
- the counterflow bioreactor is pressurized to enhance the rate of dissolution of the hydrogen gas into the aqueous phase.
- the exit gas from the top of the bioreactor is a methane enriched biogas having a much lower carbon dioxide contents relative to the 40% CO2 in the biogas fed to the bioreactor. Also, the exit gas contains traces of remnant hydrogen.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Clinical Laboratory Science (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
La présente invention propose un procédé et un bioréacteur pour faire réagir l'hydrogène avec le dioxyde de carbone pour constituer du méthane dans un milieu aqueux catalysé par des micro-organismes, où ladite réaction a lieu à l'intérieur d'un bioréacteur, caractérisé en ce que la solubilité de l'hydrogène dans le milieu aqueux est renforcée par la pression combinée à un temps de séjour induit par le débit permettant la dissolution et la réaction d'au moins 80 % de l'hydrogène gazeux mélangé avec le milieu aqueux.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA202270358 | 2022-07-04 | ||
DKPA202270358 | 2022-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024008741A1 true WO2024008741A1 (fr) | 2024-01-11 |
Family
ID=87158020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/068438 WO2024008741A1 (fr) | 2022-07-04 | 2023-07-04 | Biosynthèse de méthane |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024008741A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014060740A1 (fr) * | 2012-10-15 | 2014-04-24 | Perlemax Limited | Génération de bulles pour éliminer des constituants d'un liquide |
WO2018052295A1 (fr) * | 2016-09-15 | 2018-03-22 | Kwr Water B.V. | Bioréacteur servant à la fermentation aérobie hydrogénotrophe |
US20190352592A1 (en) * | 2017-01-10 | 2019-11-21 | Calysta, Inc. | Gas-fed fermentation reactors, systems and processes utilizing a vertical flow zone |
US20210087523A1 (en) * | 2015-11-09 | 2021-03-25 | Unibio A/S | Fermentation tank with an inlet for injecting carbon dioxide |
-
2023
- 2023-07-04 WO PCT/EP2023/068438 patent/WO2024008741A1/fr unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014060740A1 (fr) * | 2012-10-15 | 2014-04-24 | Perlemax Limited | Génération de bulles pour éliminer des constituants d'un liquide |
US20210087523A1 (en) * | 2015-11-09 | 2021-03-25 | Unibio A/S | Fermentation tank with an inlet for injecting carbon dioxide |
WO2018052295A1 (fr) * | 2016-09-15 | 2018-03-22 | Kwr Water B.V. | Bioréacteur servant à la fermentation aérobie hydrogénotrophe |
US20190352592A1 (en) * | 2017-01-10 | 2019-11-21 | Calysta, Inc. | Gas-fed fermentation reactors, systems and processes utilizing a vertical flow zone |
Non-Patent Citations (2)
Title |
---|
DAVIS RUSMANIS ET AL: "Biological hydrogen methanation systems - an overview of design and efficiency", BIOENGINEERED, vol. 10, no. 1, 1 January 2019 (2019-01-01), US, pages 604 - 634, XP055701670, ISSN: 2165-5979, DOI: 10.1080/21655979.2019.1684607 * |
MATTHEW R. MARTIN ET AL: "A Single-Culture Bioprocess of Methanothermobacter thermautotrophicus to Upgrade Digester Biogas by CO2-to-CH4 Conversion with H2", ARCHAEA, vol. 74, no. 5, 1 January 2013 (2013-01-01), CA, pages 450 - 11, XP055264723, ISSN: 1472-3646, DOI: 10.1155/2013/157529 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210115477A1 (en) | System for the production of methane from co2 | |
Kleerebezem et al. | Anaerobic digestion without biogas? | |
Díaz et al. | A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes | |
Khan et al. | Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors | |
Cavinato et al. | Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation | |
Díaz et al. | Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge | |
Wu et al. | Effect of pH on ethanol-type acidogenic fermentation of fruit and vegetable waste | |
EP2032709B1 (fr) | Système de production de méthane à partir de co2 | |
Zhu et al. | Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities | |
CA2860965C (fr) | Procede anaerobie | |
Zhu et al. | Swine manure fermentation for hydrogen production | |
CN101805689A (zh) | 用于产生沼气的分室状厌氧消化器 | |
CN113966387B (zh) | 用于产生甲烷的方法和装置 | |
Yellezuome et al. | Integration of two-stage anaerobic digestion process with in situ biogas upgrading | |
Kamyab et al. | Investigating the efficiency of biogas production using modelling anaerobic digestion of baker's yeast wastewater on two-stage mixed-UASB reactor | |
Pokorna et al. | Adaptation of anaerobic culture to bioconversion of carbon dioxide with hydrogen to biomethane | |
CN105623761B (zh) | 一种焦炉煤气生物合成天然气的方法 | |
US20100248344A1 (en) | Methanogenic reactor | |
WO2024008741A1 (fr) | Biosynthèse de méthane | |
CN100526469C (zh) | 用产甲烷菌特异性抑制剂在污泥厌氧发酵中定向产乙酸的方法 | |
EP3473724A1 (fr) | Procédé pour obtenir du biogaz enrichi en méthane et installation pour appliquer ledit procédé | |
KR102093895B1 (ko) | 생물학적 바이오가스 고질화 방법 및 그 시스템 | |
JP2018126090A (ja) | プロセスガスの改質方法およびプロセスガスの改質装置 | |
CN105645581A (zh) | 一种同步实现有机废弃物处理及合成气提质的系统装置及方法 | |
US20230312381A1 (en) | Bioelectrochemical bioreactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23738702 Country of ref document: EP Kind code of ref document: A1 |