WO2024007782A1 - 一种水电气共生发电系统 - Google Patents

一种水电气共生发电系统 Download PDF

Info

Publication number
WO2024007782A1
WO2024007782A1 PCT/CN2023/098017 CN2023098017W WO2024007782A1 WO 2024007782 A1 WO2024007782 A1 WO 2024007782A1 CN 2023098017 W CN2023098017 W CN 2023098017W WO 2024007782 A1 WO2024007782 A1 WO 2024007782A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
pressure air
energy storage
pneumatic
power generation
Prior art date
Application number
PCT/CN2023/098017
Other languages
English (en)
French (fr)
Inventor
余汉华
鲁国文
陈乐�
范毅
朱磊
Original Assignee
上海能源建设工程设计研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海能源建设工程设计研究有限公司 filed Critical 上海能源建设工程设计研究有限公司
Publication of WO2024007782A1 publication Critical patent/WO2024007782A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/006Systems for storing electric energy in the form of pneumatic energy, e.g. compressed air energy storage [CAES]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the field of new energy technology, and in particular to a hydroelectric symbiotic power generation system.
  • green energy power generation mainly includes wind energy, photovoltaic, tidal energy, and geothermal energy.
  • Energy storage mainly includes water energy storage, electrochemical energy storage, and flywheel energy storage.
  • all energy storage technologies are based on the participation of heat engines or chemical substances.
  • the participation of electrogeneration technology will undoubtedly be accompanied by a reduction in energy efficiency.
  • hydroelectric symbiotic power generation system that uses inexhaustible wave energy as kinetic energy to realize pneumatic energy power generation and static and dynamic high-pressure air storage in direct or indirect forms. It can realize energy compensation for peak cutting and valley filling, and effectively realize virtual capacity increase of local distribution network system.
  • the technical problem to be solved by the present invention is how to use wave energy as kinetic energy to directly or indirectly realize aerodynamic energy power generation and static and dynamic high-pressure air energy storage to achieve peak-cutting and valley-filling energy compensation. And effectively realize the virtual capacity expansion of the local area distribution network system.
  • the present invention provides a hydroelectric symbiotic power generation system, which includes a wave energy generator, a high-pressure air energy storage device, a shore-based local off-grid device, and a pneumatic energy generator.
  • the high-pressure air energy storage device includes Static high-pressure air energy storage device, dynamic high-pressure air balance energy storage device; the wave energy generator is configured to use wave energy to directly generate electricity, transport electrical energy to the shore-based local off-grid equipment, and use electro-generated mechanical energy to pass through all
  • the dynamic high-pressure air balance energy storage device performs high-pressure air energy storage; the dynamic high-pressure air balance energy storage device is configured to deliver aerodynamic energy to the aerodynamic energy generator; the static high-pressure air energy storage device is configured to utilize ocean waves. It can directly store high-pressure air energy and transport aerodynamic energy to the aerodynamic energy generator; the aerodynamic energy generator uses aerodynamic energy to generate electricity and transport electric energy to the shore-based local off-grid equipment.
  • the weak electric motor device is driven by the pneumatic energy delivered by the static high-pressure air energy storage device, and the weak electric motor device includes at least one of a pneumatic fan and a pneumatic door.
  • each of the static high-pressure air energy storage device and the dynamic high-pressure air balance energy storage device includes a plurality of bidirectional air-pumping single-flow pressure cylinder tanks, a plurality of buffer tanks, a deep drying device, an air compression device and a high-pressure Air energy storage tank, the plurality of bidirectional air-pumping single-flow pressure cylinder tanks and the plurality of buffer tanks adopt a cascade structure, and are connected to the deep drying device through a transportation pipeline, and the deep drying device is connected through a transportation pipeline To the high-pressure air energy storage tank, the high-pressure air energy storage tank is configured to deliver pneumatic energy to the pneumatic energy generator.
  • the number of the plurality of bidirectional air-pumping single-flow pressure cylinder tanks is one more than the number of the plurality of buffer tanks, and two consecutively adjacent two of the plurality of bi-directional air-pumping and single-flow pressure cylinder tanks are They are connected through one of the plurality of buffer tanks, and each buffer tank is connected to the deep drying device through a transportation pipeline.
  • the high-pressure air energy storage tank includes a plurality of tank elements connected in parallel.
  • the wave energy generator is configured to utilize electrical pneumatic energy to transport aerodynamic energy to the deep drying device of the dynamic high-pressure air balance energy storage device.
  • each of the plurality of bidirectional inflatable and single-flow pressure cylinder tanks includes an outer cylinder wall, a suction and suction pipe, a mechanical pull rod, a sealing device and a floating body.
  • the outer cylinder wall forms an inner cavity
  • the suction and suction tubes form an inner cavity.
  • the sealing device is provided In the inner cavity, it is slidably connected to the outer cylinder wall, and the inner cavity is divided into two parts that are not connected.
  • the floating body is arranged outside the outer cylinder wall and is connected to the outer cylinder wall through the mechanical pull rod.
  • the sealing device, the mechanical connecting rod and the outer cylinder wall are slidably connected, and the floating body is configured to drive the mechanical pull rod to reciprocate.
  • air inlet linkage valve and the corresponding exhaust port linkage valve are set to state interlock.
  • two consecutively adjacent ones of the plurality of two-way inflated and air-exhausted single-flow pressure cylinder tanks are connected to one of the plurality of buffer tanks through the suction and air suction pipe and a delivery pipe.
  • the floating body is configured to use wave energy to drive the mechanical pull rod to reciprocate, or to receive the wave energy generator to use electro-mechanical energy to drive the mechanical pull rod to reciprocate.
  • the beneficial effect of the present invention is to greatly reduce the energy flow loss of heat engine conversion during the endogenous cycle process and to achieve endogenous balance of peak and valley electricity consumption.
  • Under the control of the optimization strategy of the smart energy management system relying on clean wave energy can basically realize the shore-based local off-grid system to use local materials.
  • Figure 1 is a schematic system structure diagram of a preferred embodiment of the present invention.
  • Figure 2 is a schematic system structure diagram of a high-pressure air energy storage device according to a preferred embodiment of the present invention
  • Figure 3 is a schematic structural diagram of a two-way inflated and pumped single-flow pressure cylinder tank according to a preferred embodiment of the present invention.
  • This embodiment relates to a comprehensive multi-energy complementary power generation system in the field of new energy, specifically referring to wave high-pressure air energy storage and peak-shaving and valley-filling and virtual capacity-increasing power generation of pneumatic power generation devices. Relying on the smart energy management system, green energy can be realized Efficient conversion without loss.
  • this embodiment provides a hydroelectric symbiotic power generation system, including a wave energy generator 12, a high-pressure air energy storage device, a shore-based local off-grid device 15, an aerodynamic energy generator 16, and a weak current generation motor.
  • a wave energy generator 12 a high-pressure air energy storage device
  • a shore-based local off-grid device a shore-based local off-grid device
  • an aerodynamic energy generator 16 a weak current generation motor.
  • the high-pressure air energy storage equipment includes a static high-pressure air energy storage device 13 and a dynamic high-pressure air balance energy storage device 14 .
  • the static high-pressure air energy storage device 13 drives the pneumatic energy generator 16 to generate electricity, or provides pneumatic energy to the weak electric motor device 17.
  • the electric energy generated by the pneumatic energy generator 16 also comes from the dynamic high-pressure air balance energy storage device 14.
  • the static high-pressure air energy storage device 13 provides aerodynamic energy to shore-based local off-grid users to drive weak electric motor devices 17, such as pneumatic fans, pneumatic doors and other mechanical equipment, which can reduce mechanical energy loss.
  • the high-pressure air energy storage equipment consists of a bidirectional air-pumping single-flow pressure cylinder tank 2, a buffer tank 3, a deep drying device 51, an air compression device 52, a high-pressure air energy storage tank 53, and a transportation pipeline 4.
  • the two-way pneumatic and exhaust single-flow pressure cylinder tank 2 is composed of an outer cylinder wall 22, an inner cavity 25, a linkage valve 23, a suction and exhaust pipe 24, a mechanical tie rod 27, a sealing device 21 and a floating body 26 (as shown in Figure 3).
  • the input air of the deep drying device 51 is introduced by the electric energy of the wave energy generator 12 and the buffer tank 3.
  • the gas in the high-pressure air energy storage tank 53 is used by the pneumatic kinetic energy generator 16, and is driven by cascade conversion of the high-pressure air energy storage tank 53. Weak current generating motor device 17.
  • the static high-pressure air energy storage device 13 When in use, as shown in Figures 1, 2 and 3, the static high-pressure air energy storage device 13 directly pushes the mechanical pull rod 27 for high-pressure air energy storage for the wave energy 11, and the wave energy 11 drives the two-way inflatable air pumping single flow to the primary pressure cylinder.
  • the mechanical pull rod 27 in the tank 2, the two-way pneumatic and air-exhausting single-flow pressure cylinder tank 2 and the buffer tank 3 are in a cascade structure, and the air inlet and air-exhaust port linkage valve 23 of the two-way pneumatic and air-exhausting single-flow pressure cylinder tank 2 are interlocked.
  • the dynamic high-pressure air balance energy storage device 14 performs high-pressure air balance energy storage for the electro-mechanical energy generated by the excess electric energy of the wave energy generator 12, and its charging and pumping principles are the same as the static high-pressure air energy storage device 13.
  • the optimization strategy control of the smart energy management system of the hydroelectric symbiotic power generation system is to directly generate electricity from the wave energy generator 12 during peak energy consumption periods to supply power to the shore-based local off-grid equipment 15, and to generate dynamic high voltage through electro-generated mechanical energy.
  • Air balance energy storage is used to achieve the balance of the power grid system.
  • the static high-pressure air energy storage device 13 stores gas, and during the peak energy consumption period, the pneumatic energy generator 16 performs smooth peak shaving.
  • the hydroelectric symbiotic power generation system uses the floating body 26 cluster to drive the mechanical pull rod 27 to convert the wave energy output, wave peaks and valleys, and frequency prediction, and relies on the prediction results to link energy storage and wave power generation threshold adjustment to achieve active power balance and reactive power management. , and optimize production scheduling for real-time step adjustment of flexible loads and rigid loads.
  • the spatiotemporal domain artificial intelligence analysis of the smart energy management system of the hydroelectric symbiotic power generation system uses the particle swarm optimization (Particle Swarm Optimization, PSO) algorithm to achieve short-term prediction, and iterative optimization of autonomous learning in real-time and historical databases, Meet shore-based local off-grid economic dispatch and energy use decision-making.
  • particle Swarm Optimization PSO
  • the hydroelectric symbiotic power generation system integrates multi-energy complementary multi-objective prediction, conducts data mining in a multi-dimensional historical database, and uses a self-learning algorithm to achieve load trend prediction, in which short-term prediction of online electric load and cooling and heating load are real-time.
  • the source-grid-load-storage collaborative optimization control should be implemented while taking into account the fluctuations in cooling, heating and power loads and coordinating the output of the fleet to achieve source-load balance and system stability.
  • the invention is based on wave energy and combines static high-pressure air energy storage and dynamic high-pressure air balance energy storage, wave energy generators, and aerodynamic energy generators to achieve internal circulation of energy for shore-based local off-grid users.
  • shore-based local off-grid economic dispatch and energy consumption decisions are realized.
  • Through the direct and indirect comprehensive utilization of wave energy the perfect coordination of peak and valley power consumption for shore-based local off-grid users is achieved, and the multi-energy complementation of weak current-generating motor devices and electricity consumption is realized, which can basically realize shore-based local off-grid users.
  • Network users can operate off-grid or be connected to the grid to use virtual capacity to meet the needs of zero-carbon or even negative-carbon internal cycle energy use.
  • the advantage of the solution of the present invention is that it greatly reduces the energy flow loss of heat engine conversion during the endogenous cycle process, and realizes system power control, peak and frequency scheduling, and user-side demand response under the control of the optimization strategy of the smart energy management system.
  • the invention has broad application prospects and is suitable for shore-based local off-grid users. It provides a new green energy power solution for reducing carbon emissions and achieving carbon neutrality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本发明公开了一种水电气共生发电系统,包括海浪能发电机、高压空气储能设备、岸基局域离网设备以及气动能发电机,高压空气储能设备包括静态高压空气储能装置、动态高压空气平衡储能装置;海浪能发电机利用海浪能直接发电,输送电能至岸基局域离网设备,并利用电生机械能通过动态高压空气平衡储能装置进行高压空气储能;动态高压空气平衡储能装置输送气动能至气动能发电机;静态高压空气储能装置利用海浪能直接进行高压空气储能,并输送气动能至气动能发电机;气动能发电机利用气动能发电,并输送电能至岸基局域离网设备。本发明以海浪能为动能源,以直接或间接形式实现气动能发电以及静态、动态高压空气储能实现削峰填谷能源补偿。

Description

一种水电气共生发电系统 技术领域
本发明涉及新能源技术领域,尤其涉及一种水电气共生发电系统。
背景技术
开展多样化绿能发电技术开发是力争2030年前实现碳达峰、2060年前实现碳中和目标的主要途径。目前绿能发电主要是风能、光伏、潮汐能以及地热能等,储能主要是水蓄能、电化学储能以及飞轮储能等。尤其是储能领域都是基于热机或化学物质参与的储能技术,除均化能源成本(levelized cost of energy, LCOE)居高不下外,更在于电生技术的参与无疑伴随能效的折减。
因此,本领域的技术人员致力于开发一种水电气共生发电系统,以取之不尽用之不竭的海浪能为动能源,以直接或间接形式实现气动能发电以及静态、动态高压空气储能实现削峰填谷能源补偿,并有效实现局域配网系统的虚拟增容。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是如何以海浪能为动能源,以直接或间接形式实现气动能发电以及静态、动态高压空气储能实现削峰填谷能源补偿,并有效实现局域配网系统的虚拟增容。
为实现上述目的,本发明提供了一种水电气共生发电系统,包括海浪能发电机、高压空气储能设备、岸基局域离网设备以及气动能发电机,所述高压空气储能设备包括静态高压空气储能装置、动态高压空气平衡储能装置;所述海浪能发电机被配置为利用海浪能直接发电,输送电能至所述岸基局域离网设备,并利用电生机械能通过所述动态高压空气平衡储能装置进行高压空气储能;所述动态高压空气平衡储能装置被配置为输送气动能至所述气动能发电机;所述静态高压空气储能装置被配置为利用海浪能直接进行高压空气储能,并输送气动能至所述气动能发电机;所述气动能发电机利用气动能发电,并输送电能至所述岸基局域离网设备。
进一步地,所述弱电生马达装置由所述静态高压空气储能装置输送的气动能驱动,所述弱电生马达装置包括气动风扇和气动门中的至少一种。
进一步地,所述静态高压空气储能装置和动态高压空气平衡储能装置中的每一个包括多个双向充气抽气单流向压力筒罐、多个缓冲罐、深度干燥装置、空气压缩装置以及高压空气储能储罐,所述多个双向充气抽气单流向压力筒罐和多个缓冲罐采用级联构造,并通过输送管道连接至所述深度干燥装置,所述深度干燥装置通过输送管道连接至所述高压空气储能储罐,所述高压空气储能储罐被配置为输送气动能至所述气动能发电机。
进一步地,所述多个双向充气抽气单流向压力筒罐的数量比所述多个缓冲罐的数量多一个,所述多个双向充气抽气单流向压力筒罐中的依次相邻的两个之间通过所述多个缓冲罐中的一个相连接,每个缓冲罐之间通过输送管道汇接至所述深度干燥装置。
进一步地,所述高压空气储能储罐包括多个并联连接的储罐元件。
进一步地,所述海浪能发电机被配置为利用电生气能输送气动能至所述动态高压空气平衡储能装置的所述深度干燥装置。
进一步地,所述多个双向充气抽气单流向压力筒罐中的每一个包括外筒壁、吸抽气管、机械拉杆、密封装置以及浮体,所述外筒壁形成内腔,所述吸抽气管数量为两根,设置在所述外筒壁里,每根吸抽气管的两端分别通过进气口联动阀和抽气口联动阀与所述内腔的两端相通,所述密封装置设置在所述内腔中,与所述外筒壁可滑动连接,将所述内腔划分为不相连通的两部分,所述浮体设置在所述外筒壁外侧,通过所述机械拉杆连接至所述密封装置,所述机械连杆与所述外筒壁可滑动连接,所述浮体被配置为驱动所述机械拉杆往复运动。
进一步地,所述进气口联动阀和相对应的抽气口联动阀设置为状态互锁。
进一步地,所述多个双向充气抽气单流向压力筒罐中的依次相邻的两个之间与所述多个缓冲罐中的一个通过所述吸抽气管经输送管道相连接。
进一步地,所述浮体被配置为利用海浪能驱动所述机械拉杆往复运动,或者接受所述海浪能发电机利用电生机械能驱动所述机械拉杆往复运动。
本发明的有益效果是在内生循环过程中极大减少了热机转换的能量流损失并实现了峰谷用电的内生平衡。在智慧能源管理系统的优化策略控制下,依托于洁净的海浪能基本可以实现岸基局域离网系统实现用能就地取材。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1 是本发明的一个较佳实施例的系统结构示意图;
图2 是本发明的一个较佳实施例的高压空气储能设备的系统结构示意图;
图3 是本发明的一个较佳实施例的双向充气抽气单流向压力筒罐的结构示意图。
其中,2-双向充气抽气单流向压力筒罐,3-缓冲罐,4-输送管道,11-海浪能,12-海浪能发电机,13-静态高压空气储能装置,14-动态高压空气平衡储能装置,15-岸基局域离网设备,16-气动能发电机,17-弱电生马达装置,21-密封装置,22-外筒壁,23-联动阀,24-吸抽气管,25-内腔,26-浮体,27-机械拉杆,51-深度干燥装置,52-空气压缩装置,53-高压空气储能储罐。
实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
本实施例涉及新能源领域的一种综合多能互补发电系统,特别是指波浪高压空气储能以及气动发电装置的削峰填谷、虚拟增容发电,依托于智慧能源管理系统,实现绿能无折损高效转换。
如图1所示,本实施例提供了一种水电气共生发电系统,包括海浪能发电机12、高压空气储能设备、岸基局域离网设备15、气动能发电机16、弱电生马达装置17。
高压空气储能设备包括静态高压空气储能装置13、动态高压空气平衡储能装置14。
静态高压空气储能装置13推动气动能发电机16发电,或为弱电生马达装置17进行气动供能,气动能发电机16发电动能还来源于动态高压空气平衡储能装置14。
静态高压空气储能装置13为岸基局域离网用户提供气动能,以驱动弱电生马达装置17,如气动风扇、气动门等机械设备,可以减少机械能损耗环节。
如图2所示,高压空气储能设备由双向充气抽气单流向压力筒罐2、缓冲罐3、深度干燥装置51、空气压缩装置52、高压空气储能储罐53以及输送管道4组成,其中,双向充气抽气单流向压力筒罐2由外筒壁22、内腔25、联动阀23、吸抽气管24、机械拉杆27、密封装置21以及浮体26组成(如图3所示)。深度干燥装置51输入空气由海浪能发电机12电生气能和缓冲罐3引来,高压空气储能储罐53气体供气动能发电机16使用,由高压空气储能储罐53级联变换驱动弱电生马达装置17。
使用时,如图1、图2和图3所示,静态高压空气储能装置13为海浪能11直接推动机械拉杆27进行高压空气储能,海浪能11推动双向充气抽气单流向初级压力筒罐2内的机械拉杆27,双向充气抽气单流向压力筒罐2与缓冲罐3级联构造,双向充气抽气单流向压力筒罐2的进气口与抽气口联动阀23为互锁连接,动态高压空气平衡储能装置14为过剩的海浪能发电机12电能的电生机械能进行高压空气平衡储能,其充、抽原理同静态高压空气储能装置13。
在一些实施例中,水电气共生发电系统智慧能源管理系统的优化策略控制为用能高峰期直接海浪能发电机12发电为岸基局域离网设备15供电,并通过电生机械能进行动态高压空气平衡储能以实现电网系统平衡,用能低谷期由静态高压空气储能装置13进行储气,待用能高峰期通过气动能发电机16进行平滑调峰。
在一些实施例中,水电气共生发电系统由浮体26集群驱动机械拉杆27转换的海浪能出力及波浪峰谷、频率预测,依托预测结果联动储能与海浪发电阈值调节实现有功平衡和无功治理,并针对柔性负荷实时梯次调节和刚性负荷优化排产。
在一些实施例中,水电气共生发电系统智慧能源管理系统的时空域人工智能分析,由粒子群优化(Particle Swarm Optimization, PSO)算法实现短期预测,并在实时和历史数据库的自主学习迭代优化,满足岸基局域离网经济调度和用能决策。
在一些实施例中,水电气共生发电系统综合多能互补多目标预测,在多维度历史数据库进行数据挖掘,以自学习算法实现负荷趋势预测,其中实时在线电负荷的短期预测和冷热负荷的长期预测,在兼顾冷热电负荷波动以及统筹机群出力实施源网荷储协同优化控制,实现源荷平衡与系统稳定。
本发明以海浪能为基础,结合静态高压空气储能和动态高压空气平衡储能、海浪能发电机、气动能发电机实现岸基局域离网用户用能内循环。在智能源荷预测基础上,实现岸基局域离网经济调度和用能决策。通过对海浪能直接和间接综合利用,实现了岸基局域离网用户的峰谷用电完美协调,并实现了弱电生马达装置与用电的多能互补,基本可以实现岸基局域离网用户脱网运行或者并网增量用能的虚拟增容,满足零碳,甚至负碳内循环用能。
本发明方案优越性在于内生循环过程中极大减少了热机转换的能量流损失,并在智慧能源管理系统的优化策略控制下,实现了系统功率控制与峰、频调度以及用户侧需求响应。
本发明应用前景广泛,适宜用于岸基局域离网用户,为减碳减排,实现碳中和提供了一种新型绿能电力解决方案。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种水电气共生发电系统,其特征在于,包括海浪能发电机、高压空气储能设备、岸基局域离网设备以及气动能发电机,所述高压空气储能设备包括静态高压空气储能装置、动态高压空气平衡储能装置;所述海浪能发电机被配置为利用海浪能直接发电,输送电能至所述岸基局域离网设备,并利用电生机械能通过所述动态高压空气平衡储能装置进行高压空气储能;所述动态高压空气平衡储能装置被配置为输送气动能至所述气动能发电机;所述静态高压空气储能装置被配置为利用海浪能直接进行高压空气储能,并输送气动能至所述气动能发电机;所述气动能发电机利用气动能发电,并输送电能至所述岸基局域离网设备。
  2. 如权利要求1所述的水电气共生发电系统,其特征在于,还包括弱电生马达装置,所述弱电生马达装置由所述静态高压空气储能装置输送的气动能驱动,所述弱电生马达装置包括气动风扇和气动门中的至少一种。
  3. 如权利要求1所述的水电气共生发电系统,其特征在于,所述静态高压空气储能装置和动态高压空气平衡储能装置中的每一个包括多个双向充气抽气单流向压力筒罐、多个缓冲罐、深度干燥装置、空气压缩装置以及高压空气储能储罐,所述多个双向充气抽气单流向压力筒罐和多个缓冲罐采用级联构造,并通过输送管道连接至所述深度干燥装置,所述深度干燥装置通过输送管道连接至所述高压空气储能储罐,所述高压空气储能储罐被配置为输送气动能至所述气动能发电机。
  4. 如权利要求3所述的水电气共生发电系统,其特征在于,所述多个双向充气抽气单流向压力筒罐的数量比所述多个缓冲罐的数量多一个,所述多个双向充气抽气单流向压力筒罐中的依次相邻的两个之间通过所述多个缓冲罐中的一个相连接,每个缓冲罐之间通过输送管道汇接至所述深度干燥装置。
  5. 如权利要求3所述的水电气共生发电系统,其特征在于,所述高压空气储能储罐包括多个并联连接的储罐元件。
  6. 如权利要求3所述的水电气共生发电系统,其特征在于,所述海浪能发电机被配置为利用电生气能输送气动能至所述动态高压空气平衡储能装置的所述深度干燥装置。
  7. 如权利要求3所述的水电气共生发电系统,其特征在于,所述多个双向充气抽气单流向压力筒罐中的每一个包括外筒壁、吸抽气管、机械拉杆、密封装置以及浮体,所述外筒壁形成内腔,所述吸抽气管数量为两根,设置在所述外筒壁里,每根吸抽气管的两端分别通过进气口联动阀和抽气口联动阀与所述内腔的两端相通,所述密封装置设置在所述内腔中,与所述外筒壁可滑动连接,将所述内腔划分为不相连通的两部分,所述浮体设置在所述外筒壁外侧,通过所述机械拉杆连接至所述密封装置,所述机械连杆与所述外筒壁可滑动连接,所述浮体被配置为驱动所述机械拉杆往复运动。
  8. 如权利要求7所述的水电气共生发电系统,其特征在于,所述进气口联动阀和相对应的抽气口联动阀设置为状态互锁。
  9. 如权利要求7所述的水电气共生发电系统,其特征在于,所述多个双向充气抽气单流向压力筒罐中的依次相邻的两个之间与所述多个缓冲罐中的一个通过所述吸抽气管经输送管道相连接。
  10. 如权利要求7所述的水电气共生发电系统,其特征在于,所述浮体被配置为利用海浪能驱动所述机械拉杆往复运动,或者接受所述海浪能发电机利用电生机械能驱动所述机械拉杆往复运动。
PCT/CN2023/098017 2022-07-04 2023-06-02 一种水电气共生发电系统 WO2024007782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210786403.8 2022-07-04
CN202210786403.8A CN115111108A (zh) 2022-07-04 2022-07-04 一种水电气共生发电系统

Publications (1)

Publication Number Publication Date
WO2024007782A1 true WO2024007782A1 (zh) 2024-01-11

Family

ID=83331276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098017 WO2024007782A1 (zh) 2022-07-04 2023-06-02 一种水电气共生发电系统

Country Status (2)

Country Link
CN (1) CN115111108A (zh)
WO (1) WO2024007782A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111108A (zh) * 2022-07-04 2022-09-27 上海燃气工程设计研究有限公司 一种水电气共生发电系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996359A (zh) * 2011-09-14 2013-03-27 周登荣 自然能源蓄能发电方法及其发电系统
CN104564497A (zh) * 2013-10-15 2015-04-29 邵波 一种波力发电法及波力发电装置
US20160032886A1 (en) * 2014-07-30 2016-02-04 Hui-Hsiung YANG Wave power electricity generation device
CN106438178A (zh) * 2016-11-10 2017-02-22 曲阜师范大学 多能混合波浪能发电系统
CN111561416A (zh) * 2020-04-29 2020-08-21 国网山东省电力公司电力科学研究院 一种电网友好型波浪能发电汇集系统及其运行控制方法
US20210355925A1 (en) * 2020-05-14 2021-11-18 Ghazi Khan Wave-powered generator
CN114087110A (zh) * 2021-10-18 2022-02-25 浙江海洋大学 一种高效的波浪能发电系统及其发电方法
CN115111108A (zh) * 2022-07-04 2022-09-27 上海燃气工程设计研究有限公司 一种水电气共生发电系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996359A (zh) * 2011-09-14 2013-03-27 周登荣 自然能源蓄能发电方法及其发电系统
CN104564497A (zh) * 2013-10-15 2015-04-29 邵波 一种波力发电法及波力发电装置
US20160032886A1 (en) * 2014-07-30 2016-02-04 Hui-Hsiung YANG Wave power electricity generation device
CN106438178A (zh) * 2016-11-10 2017-02-22 曲阜师范大学 多能混合波浪能发电系统
CN111561416A (zh) * 2020-04-29 2020-08-21 国网山东省电力公司电力科学研究院 一种电网友好型波浪能发电汇集系统及其运行控制方法
US20210355925A1 (en) * 2020-05-14 2021-11-18 Ghazi Khan Wave-powered generator
CN114087110A (zh) * 2021-10-18 2022-02-25 浙江海洋大学 一种高效的波浪能发电系统及其发电方法
CN115111108A (zh) * 2022-07-04 2022-09-27 上海燃气工程设计研究有限公司 一种水电气共生发电系统

Also Published As

Publication number Publication date
CN115111108A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN112283068B (zh) 一种压缩空气储能供能装置
CN106444562B (zh) 基于风光-电热气转换模块的多储能装置协调系统及方法
CN108625988B (zh) 一种含压缩空气储能的cchp微网结构及其运行方法
WO2024007782A1 (zh) 一种水电气共生发电系统
CN110685890B (zh) 一种发电系统
CN111022139A (zh) 一种燃煤发电机组耦合液化空气储能发电系统
CN113159407B (zh) 基于区域综合能源系统的多能储存模块容量优化配置方法
CN110348606A (zh) 一种考虑系统不确定性的微能源网随机区间协同调度方法
CN103715686A (zh) 一种适用于直流配电网线路的能效分析方法
CN110543157A (zh) 一种多能互补智慧供应热电氢的系统及方法
CN114413503B (zh) 可再生能源驱动的零碳高效的分布式供能系统及运行方法
CN107725274B (zh) 基于风力动能的空气储能发电系统
CN210199571U (zh) 一种多能互补智慧供应热电氢的系统
CN104359004B (zh) 一种天然气管网和电网联合调峰的方法与装置
CN216530583U (zh) 结合储能与可再生能源技术的火电厂综合能源供电系统
CN113074095B (zh) 太阳能和热声发电联合制氢系统
CN115013220A (zh) 基于中深层干热岩的紧凑型地热能压缩空气储能系统、方法
CN210977618U (zh) 一种燃煤发电机组耦合液化空气储能发电系统
CN209593000U (zh) 一种多能互补分布式能源与资源综合供能系统
Xin et al. Research on energy hub configuration optimization problem based on analytic hierarchy and grey correlation analysis
Chen et al. Research on optimal collaborative method for microgrid environmental and economic dispatch in grid-connected mode
CN106169902B (zh) 具有实时控制系统的移动式多能源耦合热电复合型能源站
Du et al. Optimal Configuration of Integrated Energy Systems Based on Mixed Integer Linear Programming
CN111932028B (zh) 基于碳自然循环消纳的清洁能源系统容量优化方法及系统
CN114294165B (zh) 一种风光互补抽水蓄能发电系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834556

Country of ref document: EP

Kind code of ref document: A1