WO2024007209A1 - Optical module moving mechanism and terminal device - Google Patents

Optical module moving mechanism and terminal device Download PDF

Info

Publication number
WO2024007209A1
WO2024007209A1 PCT/CN2022/104201 CN2022104201W WO2024007209A1 WO 2024007209 A1 WO2024007209 A1 WO 2024007209A1 CN 2022104201 W CN2022104201 W CN 2022104201W WO 2024007209 A1 WO2024007209 A1 WO 2024007209A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
guide shaft
supporting plate
lead screw
moving mechanism
Prior art date
Application number
PCT/CN2022/104201
Other languages
French (fr)
Inventor
Fujio Kanai
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to PCT/CN2022/104201 priority Critical patent/WO2024007209A1/en
Publication of WO2024007209A1 publication Critical patent/WO2024007209A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/04Bodies collapsible, foldable or extensible, e.g. book type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • Embodiments described herein relate generally to an optical module moving mechanism and a terminal device.
  • the mainstream of terminal devices such as a smartphone or a tablet terminal is a terminal device that includes an optical module including a plurality of lenses and an imaging device including an image sensor.
  • This optical module is disposed on a sensor surface side of the image sensor, and forms an image of light incident from the outside on the sensor surface.
  • a predetermined distance is required between a lens surface of the optical module on which light is incident and the sensor surface of the image sensor to provide a focal distance for appropriately forming an image of light as described above.
  • the image sensor tends to be upsized for expanding resolution, and the distance described above is required to be further prolonged when the image sensor is upsized.
  • there is a demand for reducing a thickness of terminal devices such as a smartphone recently, so that providing the predetermined distance between the lens surface of the optical module and the sensor surface of the image sensor for implementing appropriate imaging as described above is contrary to the demand.
  • an aspect of the present invention provides an optical module moving mechanism configured to reciprocate an optical module along an optical axis.
  • the optical module moving mechanism includes a supporting plate configured to support the optical module; a motor configured to drive a rotor shaft; a first gear assembly part comprising a plurality of gears, wherein the first gear assembly part is configured to transmit a rotational force of the rotor shaft; a first lead screw disposed so that an axis direction is parallel with the optical axis direction, wherein the first lead screw is configured to rotated about an axis by the rotational force transmitted by the first gear assembly part; a first nut screwed onto the first lead screw and fixed to the supporting plate, wherein the first nut is configured to reciprocate the supporting plate by rotation of the first lead screw; a first sleeve fixed to the supporting plate as a member having a cylindrical shape, wherein a hole is opened on the cylindrical shape; a first guide shaft having an axis direction parallel with the optical
  • self-locking can be prevented from being caused, and a thickness of a terminal device can be prevented from being increased.
  • FIG. 1 is a diagram illustrating an example of a configuration of a conventional optical module moving mechanism.
  • FIG. 2 is a diagram for explaining self-locking.
  • FIG. 3 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a first embodiment.
  • FIG. 4 is a diagram illustrating an example of a configuration of an imaging unit according to the first embodiment.
  • FIG. 5 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a second embodiment.
  • FIG. 7 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a third embodiment.
  • FIG. 9 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a fifth embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a conventional optical module moving mechanism.
  • FIG. 2 is a diagram for explaining self-locking. The following describes a configuration of a conventional optical module moving mechanism 100 and problems thereabout with reference to FIG. 1 and FIG. 2.
  • the optical module moving mechanism 100 illustrated in FIG. 1 is a moving mechanism for performing a pop-up operation and a retracting operation of an optical module 10 in an optical axis direction.
  • the optical module moving mechanism 100 includes a supporting plate 11, a supporting plate 12, a coupling plate 13, a motor 20, a gear assembly part 21, a lead screw 22, a nut 23, a guide shaft 24, a sleeve 25, a guide shaft 26, a sleeve 27, and a spring 41.
  • the supporting plate 11 is a plate for supporting the optical module 10 from an image sensor side (not illustrated) . That is, the image sensor is disposed on a negative direction side of the Z-axis in FIG. 1 with respect to the optical module 10.
  • the optical module 10 is a module including an optical system constituted of a plurality of lenses inside, the module for converging light incident from an outer field to form an image on the image sensor.
  • the supporting plate 11 includes a projecting part 14 projecting in a direction toward an outer side of the optical module 10 (a positive direction of the Y-axis in FIG. 1 (a) ) .
  • the supporting plate 12 is a plate that is disposed between a surface on the image sensor side of the optical module 10 and the supporting plate 11, and fixed to the supporting plate 11 with a screw and the like.
  • the supporting plate 12 includes a projecting part 12a projecting in a direction toward the outer side of the optical module 10 (the positive direction of the Y-axis in FIG. 1 (a) ) .
  • the coupling plate 13 is a plate fixed to the supporting plate 12 by engaging with the projecting part 12a via an engagement part 13a. As illustrated in FIG. 1 (b) , the coupling plate 13 is fixed to the nut 23 that moves in the optical axis direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22, and moves in the optical axis direction in conjunction with movement of the nut 23.
  • the motor 20 is a stepping motor or the like that rotationally drives a rotor shaft 20a by converting electric energy into mechanical energy.
  • the gear assembly part 21 is a gear group that rotates the lead screw 22 by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22.
  • the gear assembly part 21 is constituted of a motor gear 211, an idle gear 212, and a lead screw gear 213.
  • the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that a center axis of the rotor shaft 20a agrees with a rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a.
  • the idle gear 212 is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the lead screw gear 213.
  • the lead screw gear 213 is a gear that meshes with the idle gear 212, and is rotated by a rotational force of the idle gear 212.
  • the lead screw gear 213 is fixed to the lead screw 22 so that an axis of the lead screw 22 agrees with a rotation axis of the lead screw gear 213.
  • the lead screw 22 is a screw member to which the lead screw gear 213 is fixed so that the axis of the lead screw 22 agrees with the rotation axis of the lead screw gear 213, the screw member being disposed so that an axis direction is parallel with the optical axis direction of the optical module 10.
  • the nut 23 is screwed onto the lead screw 22, and the lead screw 22 is rotated about an axis by a rotational force of the lead screw gear 213 to reciprocate the nut 23 in the axis direction (that is, the optical axis direction) .
  • the nut 23 is a member that is screwed onto the lead screw 22, and is fixed to the coupling plate 13 as illustrated in FIG. 1.
  • the nut 23 reciprocates the coupling plate 13 in the optical axis direction accordingly.
  • the guide shaft 24 is a shaft member that is disposed so that the axis direction is parallel with the optical axis direction of the optical module 10, and inserted into a hole of the sleeve 25 supported by the projecting part 14 of the supporting plate 11.
  • the guide shaft 24 guides the optical module 10 via the sleeve 25 so that the optical module 10 supported by the supporting plate 11 is accurately reciprocated in the optical axis direction by rotational driving by the motor 20.
  • the sleeve 25 is a member having a substantially cylindrical shape on which a hole is opened, and an outer peripheral surface of the cylindrical shape is joined with and fixed to a hole formed on the projecting part 14 as illustrated in FIG. 1.
  • the guide shaft 24 is inserted into the sleeve 25, and the sleeve 25 slides along an axis direction of the guide shaft 24 along with movement in the optical axis direction of the supporting plate 11 integrated with the projecting part 14.
  • the guide shaft 26 is a shaft member that is disposed so that the axis direction is parallel with the optical axis direction of the optical module 10, and inserted into a hole of the sleeve 27 supported by the coupling plate 13.
  • the guide shaft 26 guides the optical module 10 via the sleeve 27 so that the optical module 10 supported by the supporting plate 11 is accurately reciprocated in the optical axis direction by rotational driving by the motor 20.
  • the sleeve 27 is a member having a substantially cylindrical shape on which a hole is opened, and an outer peripheral surface of the cylindrical shape is joined with and fixed to a hole formed on the coupling plate 13 as illustrated in FIG. 1.
  • the sleeve 27 is positioned between the lead screw gear 213 of the gear assembly part 21 and the sleeve 25 in the X-axis direction.
  • the guide shaft 26 is inserted into the sleeve 27, and the sleeve 27 slides along an axis direction of the guide shaft 26 along with movement in the optical axis direction of the supporting plate 11 to which the supporting plate 12 engaging with the coupling plate 13 is fixed.
  • the spring 41 is an elastic member into which the guide shaft 24 is inserted in an expanding/contracting direction thereof, the elastic member causing an energizing force F1 to act on the projecting part 14 in the positive direction of the Z-axis, that is, a direction of separating the optical module 10 from the image sensor as illustrated in FIG. 1 (b) . That is, the spring 41 assists movement in the optical axis direction of the supporting plate 11 by the energizing force F1.
  • the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction via the coupling plate 13 and the supporting plate 12. In this case, the reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 26. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41 assists movement in the optical axis direction of the supporting plate 11.
  • the optical module moving mechanism 100 described above and illustrated in FIG. 1 has the following problems.
  • the spring 41 causes the energizing force F1 in the positive direction of the Z-axis to act on the projecting part 14 for assisting movement in the optical axis direction (specifically, the positive direction of the Z-axis) of the supporting plate 11 (projecting part 14) .
  • the sleeve 27 slides along the axis direction of the guide shaft 26 along with movement in the optical axis direction of the supporting plate 11, a predetermined clearance is present between an inner peripheral surface of the sleeve 27 and an outer peripheral surface of the guide shaft 26.
  • the energizing force F1 of the spring 41 acting on the projecting part 14 works as moment of rotation about a position of the sleeve 27 as a rotation axis, the projecting part 14 is pushed up due to working of the energizing force F1, and an axis in a hole direction of the sleeve 27 is inclined with respect to an axis of the guide shaft 26. Due to this, self-locking is easily caused such that a peripheral part of an opening of the sleeve 27 digs into a side surface of the guide shaft 26, and the sleeve 27 cannot move or hardly moves in the axis direction of the guide shaft 26.
  • the sleeve 27 may be expanded in the hole direction. Due to this, inclination of the axis in the hole direction of the sleeve 27 with respect to the axis of the guide shaft 26 can be suppressed to be small, so that the self-locking can be prevented from being caused.
  • the sleeve 27 is expanded in the hole direction, the size is increased in the optical axis direction of the optical module moving mechanism 100, so that a problem is caused such that a thickness of a terminal device such as a smartphone including the optical module moving mechanism 100 is increased.
  • the terminal device including the optical module moving mechanism is, for example, a smartphone, a tablet terminal, a compact camera module, a vehicle-mounted imaging device, and the like.
  • FIG. 3 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to a first embodiment. The following describes a configuration of an optical module moving mechanism 1 according to the present embodiment with reference to FIG. 3.
  • the optical module moving mechanism 1 illustrated in FIG. 3 is a moving mechanism for performing a pop-up operation and a retracting operation of the optical module 10 in the optical axis direction.
  • the optical module moving mechanism 1 includes the supporting plate 11, the supporting plate 12, the coupling plate 13, the motor 20, the gear assembly part 21, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, and a spring 42.
  • Configurations other than the spring 42 are the same as those of the optical module moving mechanism 100 illustrated in FIG. 1.
  • the supporting plate 11, the supporting plate 12, and the coupling plate 13 have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate” .
  • the spring 42 is an elastic member into which the guide shaft 26 is inserted in the expanding/contracting direction thereof, the elastic member causing an energizing force F2 to act on the coupling plate 13 in the positive direction of the Z-axis, that is, a direction of separating the optical module 10 from the image sensor as illustrated in FIG. 3 (b) . That is, the spring 42 assists movement in the optical axis direction of the supporting plate 11 by the energizing force F2.
  • the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 preferably satisfies F1 > F2.
  • the gear assembly part 21, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 26, the spring 42, and the sleeve 27 respectively correspond to a "first gear assembly part” , a "first lead screw” , a "first nut” , a “first sleeve” , a "first guide shaft” , a "first elastic body” , a “second guide shaft” , a “second elastic body” , and a "second sleeve” .
  • the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction via the coupling plate 13 and the supporting plate 12. In this case, the reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 26. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 assist movement in the optical axis direction of the supporting plate 11.
  • the energizing force F2 of the spring 42 acts in the positive direction of the Z-axis on a portion of the coupling plate 13 to which the sleeve 27 is fixed, so that moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled.
  • FIG. 4 is a diagram illustrating an example of a configuration of an imaging unit according to the first embodiment. The following describes an outline of a configuration and an operation of an imaging unit 50 according to the present embodiment with reference to FIG. 4.
  • the imaging unit 50 includes the optical module 10, a housing 51, a spring 52a, a spring 52b, an IR cut filter 53, a substrate 54, an image sensor 55, and the optical module moving mechanism 1.
  • the configurations and the functions of the optical module 10 and the optical module moving mechanism 1 are described above.
  • the housing 51 is a housing that houses the optical module 10 and supports the optical module 10.
  • the spring 52a is an elastic member that connects a peripheral part of an upper surface (a surface on which light is incident) of the optical module 10 to an inner wall surface of the housing 51, and supports the optical module 10 in the housing 51.
  • the spring 52b is an elastic member that connects a peripheral part of a lower surface (a surface from which light is emitted) of the optical module 10 to the inner wall surface of the housing 51, and supports the optical module 10 in the housing 51.
  • the IR cut filter 53 is a filter that removes infrared components from light incident on the optical module 10. As illustrated in FIG. 4, the IR cut filter 53 is disposed on the lower surface (surface from which light is emitted) side of the optical module 10. Due to such a function of the IR cut filter 53, light incident on the optical module 10 is incident on the image sensor 55 after infrared rays as noise are removed therefrom.
  • the substrate 54 is a substrate on which the image sensor 55 is mounted, and the housing 51 is mounted.
  • the image sensor 55 is a sensor that converts incident light into an electric signal to generate an image.
  • the image sensor 55 is, for example, a solid state image sensor such as a Charge-Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS) .
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20 of the optical module moving mechanism 1, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction. Due to this, as illustrated in FIG. 4 (a) , in a case of performing an imaging operation by the imaging unit 50, the pop-up operation can be performed to secure a focal distance by increasing what is called a flange back as a distance between the IR cut filter 53 and the image sensor 55. As illustrated in FIG.
  • the retracting operation can be performed to store the optical module 10 in the terminal device by reducing the flange back.
  • the flange back cannot be sufficiently reduced due to its structure in a case of performing the retracting operation, and as a result, the thickness of the terminal device including the imaging unit 50 may be increased.
  • self-locking can be prevented from being caused due to working of the energizing force F2 of the spring 42 with the optical module moving mechanism 1 according to the present embodiment, so that the sleeve 27 is not required to be expanded in the hole direction.
  • FIG. 5 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the first embodiment. The following describes an effect exhibited by the optical module moving mechanism 1 according to the present embodiment with reference to FIG. 5.
  • the energizing force F2 of the spring 42 in the positive direction of the Z-axis acts on the coupling plate 13 in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11. Due to working of the energizing force F2, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled, so that the axis in the hole direction of the sleeve 27 is prevented from being inclined with respect to the axis of the guide shaft 26.
  • the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24 and the guide shaft 26 in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55.
  • the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55.
  • the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1 can be prevented from being increased.
  • the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1 can be prevented from being increased.
  • the following describes an optical module moving mechanism according to a second embodiment focusing on differences from the optical module moving mechanism 1 according to the first embodiment.
  • the present embodiment specifically describes a configuration in which a distance between the sleeve 25 and the sleeve 27 is reduced.
  • FIG. 6 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the second embodiment. The following describes a configuration of an optical module moving mechanism 1a according to the present embodiment with reference to FIG. 6.
  • the optical module moving mechanism 1a includes the supporting plate 11, a coupling plate 13b, the motor 20, a gear assembly part 21a, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, and the spring 42.
  • the coupling plate 13b is a plate that is fixed to the nut 23 that moves in the optical axis direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22, and moves in the optical axis direction in conjunction with movement of the nut 23.
  • the coupling plate 13b is joined with the projecting part 14 of the supporting plate 11 at an end part on a positive direction side of the X-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis direction in conjunction with reciprocation of the coupling plate 13b in conjunction with movement of the nut 23. In the configuration illustrated in FIG.
  • the coupling plate 13b is joined with the supporting plate 11 (projecting part 14) at the end part on the positive direction side of the X-axis, but the embodiment is not limited thereto.
  • the coupling plate 13b may be joined with the supporting plate 11 at a part other than the end part.
  • the supporting plate 11 and the coupling plate 13b have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate” .
  • the gear assembly part 21a is a gear group that rotates the lead screw 22 by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22.
  • the gear assembly part 21a is constituted of the motor gear 211, the idle gear 212, an idle gear 214, and the lead screw gear 213.
  • the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that a center axis of the rotor shaft 20a agrees with a rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a.
  • the idle gear 212 is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214.
  • the idle gear 214 is a gear that meshes with the idle gear 212, and transmits a rotational force of the idle gear 212 to the lead screw gear 213.
  • the lead screw gear 213 is a gear that meshes with the idle gear 214, and is rotated by a rotational force of the idle gear 214. As illustrated in FIG. 6 (a) , the lead screw gear 213 is fixed to the lead screw 22 so that an axis of the lead screw 22 agrees with a rotation axis of the lead screw gear 213.
  • the length in the X-axis direction of the gear assembly part 21a of the optical module moving mechanism 1a is longer than the length in the X-axis direction of the gear assembly part 21 of the optical module moving mechanism 1 according to the first embodiment described above by a length corresponding to the idle gear 214 incorporated therein. Due to this, the lead screw 22 and the guide shaft 26 are configured to be closer to the guide shaft 24 as compared with the optical module moving mechanism 1 according to the first embodiment. That is, the sleeve 27 disposed on a side opposite to the motor 20 side of a gear column of the gear assembly part 21a is brought closer to the sleeve 25 because the gear column of the gear assembly part 21a is extended.
  • optical module moving mechanism 1a Other configurations of the optical module moving mechanism 1a are the same as those in the optical module moving mechanism 1 according to the first embodiment described above.
  • the gear assembly part 21a, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 26, the spring 42, and the sleeve 27 respectively correspond to a "first gear assembly part” , a "first lead screw” , a "first nut” , a “first sleeve” , a "first guide shaft” , a "first elastic body” , a “second guide shaft” , a “second elastic body” , and a "second sleeve” .
  • the lead screw 22 is rotated via the gear assembly part 21a by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction via the coupling plate 13b. In this case, the reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 26. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis direction, and the pop-up operation and the retracting operation are implemented.
  • the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 assist movement in the optical axis direction of the supporting plate 11.
  • the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 preferably satisfies F1 > F2.
  • FIG. 7 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the second embodiment. The following describes an effect exhibited by the optical module moving mechanism 1a according to the present embodiment with reference to FIG. 7.
  • the energizing force F2 of the spring 42 in the positive direction of the Z-axis acts on the coupling plate 13b in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11. Due to working of the energizing force F2, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled, so that the axis in the hole direction of the sleeve 27 is prevented from being inclined with respect to the axis of the guide shaft 26.
  • the length in the X-axis direction of the gear assembly part 21a of the optical module moving mechanism 1a is longer than the length in the X-axis direction of the gear assembly part 21 of the optical module moving mechanism 1 according to the first embodiment described above by a length corresponding to the idle gear 214 incorporated therein. Due to this, the guide shaft 26 is configured to be closer to the guide shaft 24 as compared with the optical module moving mechanism 1 according to the first embodiment. Thus, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 is reduced as compared with that in the first embodiment, so that an effect of canceling the moment of rotation by the energizing force F2 is enhanced.
  • the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24 and the guide shaft 26 in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55.
  • the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55.
  • the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1a can be prevented from being increased.
  • the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1a can be prevented from being increased.
  • the following describes an optical module moving mechanism according to a third embodiment focusing on differences from the optical module moving mechanism 1 according to the first embodiment.
  • the present embodiment describes a configuration in which another guide shaft is disposed at a position point-symmetrical to the guide shaft 24 with respect to a straight line parallel with the optical axis passing through the center of gravity of the optical module 10.
  • FIG. 8 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the third embodiment. The following describes a configuration of an optical module moving mechanism 1b according to the present embodiment with reference to FIG. 8.
  • the optical module moving mechanism 1b includes the supporting plate 11, the coupling plate 13, the motor 20, the gear assembly part 21, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, a guide shaft 28, and a spring 43.
  • the supporting plate 11 is a plate for supporting the optical module 10 from the image sensor side (not illustrated) . That is, the image sensor is disposed on the negative direction side of the Z-axis in FIG. 8 with respect to the optical module 10. As illustrated in FIG. 8 (a) , the supporting plate 11 includes the projecting part 14 projecting in the direction toward the outer side of the optical module 10 (positive direction of the Y-axis in FIG. 1 (a) ) . As described above in the first embodiment, the outer peripheral surface of the sleeve 25 is joined with and fixed to the hole formed on the projecting part 14.
  • a hole 11a is formed at a position point-symmetrical to the sleeve 25 with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10.
  • the sleeve 25 and the hole 11a may be present at positions point-symmetrical to each other with respect to the optical axis A.
  • the guide shaft 28 is a shaft member that is disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10, and inserted into the hole 11a. That is, the guide shaft 24 inserted into the sleeve 25 and the guide shaft 28 inserted into the hole 11a have a point-symmetrical positional relation with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10. In a case in which the sleeve 25 and the hole 11a are present at positions point-symmetrical to each other with respect to the optical axis A, the guide shaft 24 and the guide shaft 28 have a point-symmetrical positional relation with respect to the optical axis A.
  • the spring 43 is an elastic member into which the guide shaft 28 is inserted in the expanding/contracting direction thereof, the elastic member causing the energizing force F2 to act on the supporting plate 11 in the positive direction of the Z-axis, that is, a direction of separating the optical module 10 from the image sensor as illustrated in FIG. 8 (b) .
  • the spring 43 assists movement in the optical axis A direction of the supporting plate 11 by the energizing force F2. That is, in the optical module moving mechanism 1b according to the present embodiment, the spring 43 is disposed on the guide shaft 28 in place of the spring 42 disposed on the guide shaft 26 of the optical module moving mechanism 1 according to the first embodiment.
  • a magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 satisfies F1 > F2.
  • abutments 56 are respectively disposed at positions corresponding to four apexes of the rectangular supporting plate 11. Due to this, when the optical module 10 is popped up by the optical module moving mechanism 1b, movement thereof in the positive direction of the Z-axis is restricted.
  • optical module moving mechanism 1b are the same as those in the optical module moving mechanism 1 according to the first embodiment described above.
  • the gear assembly part 21, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 28, the spring 43, the sleeve 27, and the guide shaft 26 respectively correspond to a "first gear assembly part” , a "first lead screw” , a "first nut” , a “first sleeve” , a "first guide shaft” , a "first elastic body” , a “second guide shaft” , a “second elastic body” , a “second sleeve” , and a "third guide shaft” .
  • the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis A direction.
  • the supporting plate 11 is reciprocated in the optical axis A direction via the coupling plate 13 and the supporting plate 12.
  • the reciprocation of the supporting plate 11 is guided by the guide shaft 24, the guide shaft 26, and the guide shaft 28. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis A direction, and the pop-up operation and the retracting operation are implemented.
  • the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 assist movement in the optical axis A direction of the supporting plate 11.
  • the energizing force F2 of the spring 43 in the positive direction of the Z-axis acts on a portion of the hole 11a of the supporting plate 11 in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11.
  • the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24, the guide shaft 26, and the guide shaft 28 in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55.
  • the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55.
  • the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1b can be prevented from being increased.
  • the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1b can be prevented from being increased.
  • the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 is assumed to be F1 > F2, so that the energizing force F1 can take a lead in assisting movement in the optical axis A direction of the supporting plate 11, and the self-locking of the sleeve 25 with respect to the guide shaft 24 can be prevented from being caused.
  • the following describes an optical module moving mechanism according to a fourth embodiment focusing on differences from the optical module moving mechanism 1a according to the second embodiment.
  • the present embodiment describes a configuration in which a driving mechanism such as the gear assembly part 21, the lead screw 22, and the nut 23 for reciprocating the supporting plate 11 is also disposed on the opposite side.
  • FIG. 9 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the fourth embodiment. The following describes a configuration of an optical module moving mechanism 1c according to the present embodiment with reference to FIG. 9.
  • the optical module moving mechanism 1c includes the supporting plate 11, the coupling plate 13b, the motor 20, the gear assembly part 21a, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, the spring 42, a coupling plate 13c, a gear assembly part 21b, a lead screw 22b, the guide shaft 28, a guide shaft 26b, a sleeve 27b, the spring 43, and a spring 42b.
  • the gear assembly part 21b is a gear group that rotates the lead screw 22b by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22b.
  • the gear assembly part 21a described above is a gear group arranged in the X-axis direction illustrated in FIG. 9.
  • the gear assembly part 21b is a gear group arranged in the Y-axis direction, that is, in a direction orthogonal to the arrangement direction of the gear group of the gear assembly part 21a.
  • the gear assembly part 21b is constituted of the motor gear 211, an idle gear 212b, an idle gear 214b, and a lead screw gear 213b.
  • the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that the center axis of the rotor shaft 20a agrees with the rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a.
  • the idle gear 212b is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214b.
  • the idle gear 214b is a gear that meshes with the idle gear 212b, and transmits a rotational force of the idle gear 212b to the lead screw gear 213b.
  • the lead screw gear 213b is a gear that meshes with the idle gear 214b, and is rotated by a rotational force of the idle gear 214b. As illustrated in FIG. 9, the lead screw gear 213b is fixed to the lead screw 22b so that an axis of the lead screw 22b agrees with a rotation axis of the lead screw gear 213b.
  • the lead screw 22b is a screw member to which the lead screw gear 213b is fixed so that the axis of the lead screw 22b agrees with the rotation axis of the lead screw gear 213b, the screw member being disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10.
  • a nut 23b is screwed onto the lead screw 22b, and the lead screw 22b is rotated about the axis by a rotational force of the lead screw gear 213b to reciprocate the nut 23b in the axis direction (that is, the optical axis A direction) .
  • the nut 23b is a member that is screwed onto the lead screw 22b, and is fixed to the coupling plate 13c as illustrated in FIG. 9.
  • the nut 23b reciprocates the coupling plate 13c in the optical axis A direction accordingly.
  • the supporting plate 11 is a plate for supporting the optical module 10 from the image sensor side (not illustrated) . That is, the image sensor is disposed on the negative direction side of the Z-axis in FIG. 9 with respect to the optical module 10.
  • the hole 11a is formed at a position point-symmetrical to the sleeve 25 with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10.
  • the sleeve 25 and the hole 11a may be present at positions point-symmetrical to each other with respect to the optical axis A.
  • the guide shaft 28 is a shaft member that is disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10, and inserted into the hole 11a. That is, the guide shaft 24 inserted into the sleeve 25 and the guide shaft 28 inserted into the hole 11a have a point-symmetrical positional relation with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10. In a case in which the sleeve 25 and the hole 11a are present at positions point-symmetrical to each other with respect to the optical axis A, the guide shaft 24 and the guide shaft 28 have a point-symmetrical positional relation with respect to the optical axis A.
  • the spring 43 is an elastic member into which the guide shaft 28 is inserted in the expanding/contracting direction thereof, the elastic member causing the energizing force F2 to act on the supporting plate 11 in the positive direction of the Z-axis, that is, the direction of separating the optical module 10 from the image sensor as illustrated in FIG. 9.
  • the spring 43 assists movement in the optical axis A direction of the supporting plate 11 by the energizing force F2.
  • the coupling plate 13c is a plate that is fixed to the nut 23b that moves in the optical axis A direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22b, and moves in the optical axis A direction in conjunction with movement of the nut 23b.
  • the coupling plate 13c is joined with a peripheral part of the hole 11a of the supporting plate 11 at an end part on a negative direction side of the Y-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis A direction in conjunction with reciprocation of the coupling plate 13c in conjunction with movement of the nut 23b.
  • FIG. 9 the configuration illustrated in FIG.
  • the coupling plate 13c is joined with the supporting plate 11 at the end part on the negative direction side of the Y-axis, but the embodiment is not limited thereto.
  • the coupling plate 13c may be joined with the supporting plate 11 at a part other than the end part.
  • the supporting plate 11, the coupling plate 13b, and the coupling plate 13c have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate” .
  • the guide shaft 26b guides the optical module 10 via the sleeve 27b so that the optical module 10 supported by the supporting plate 11 is accurately reciprocated in the optical axis A direction by rotational driving by the motor 20.
  • the sleeve 27b is a member having a substantially cylindrical shape on which a hole is opened, and an outer peripheral surface of the cylindrical shape is joined with and fixed to the hole formed on the coupling plate 13c as illustrated in FIG. 9.
  • the sleeve 27b is positioned between the lead screw gear 213b of the gear assembly part 21b and the hole 11a in the X-axis direction.
  • the guide shaft 26b is inserted into the sleeve 27b, and the sleeve 27b slides along the axis direction of the guide shaft 26b along with movement in the optical axis A direction of the supporting plate 11 to which the coupling plate 13b is fixed.
  • the spring 42b is an elastic member into which the guide shaft 26b is inserted in the expanding/contracting direction thereof, the elastic member causing the energizing force F2 to act on the coupling plate 13c in the positive direction of the Z-axis, that is, the direction of separating the optical module 10 from the image sensor as illustrated in FIG. 9. That is, the spring 42b assists movement in the optical axis A direction of the supporting plate 11 by the energizing force F2.
  • the abutments 56 are respectively disposed at the positions corresponding to the four apexes of the rectangular supporting plate 11. Due to this, when the optical module 10 is popped up by the optical module moving mechanism 1c, movement thereof in the positive direction of the Z-axis is restricted.
  • optical module moving mechanism 1c are the same as those in the optical module moving mechanism 1a according to the second embodiment described above.
  • the gear assembly part 21a, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 26, the spring 42, and the sleeve 27 respectively correspond to a "first gear assembly part” , a "first lead screw” , a "first nut” , a “first sleeve” , a "first guide shaft” , a "first elastic body” , a “second guide shaft” , a “second elastic body” , and a "second sleeve” .
  • the gear assembly part 21b, the lead screw 22b, the nut 23b, the guide shaft 28, the spring 43, the sleeve 27b, the guide shaft 26b, and the spring 42b respectively correspond to a "second gear assembly part” , a "second lead screw” , a “second nut” , a “third guide shaft” , a “third elastic body” , a “third sleeve” , a "fourth guide shaft” , and a "fourth elastic body” .
  • the lead screw 22 is rotated via the gear assembly part 21a and the nut 23 is reciprocated in the optical axis A direction
  • the lead screw 22b is rotated via the gear assembly part 21b and the nut 23b is reciprocated in the optical axis A direction
  • the supporting plate 11 is reciprocated in the optical axis A direction.
  • reciprocation of the supporting plate 11 is guided by the guide shaft 24, the guide shaft 26, the guide shaft 28, and the guide shaft 26b.
  • the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis A direction, and the pop-up operation and the retracting operation are implemented.
  • the energizing force F1 of the spring 41, and the energizing forces F2 of the spring 42, the spring 43, and the spring 42b assist movement in the optical axis A direction of the supporting plate 11.
  • the energizing force F2 of the spring 43 acts on the supporting plate 11
  • the energizing force F2 of the spring 42 acts on the coupling plate 13b
  • the energizing force F2 of the spring 42b acts on the coupling plate 13c in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11.
  • the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24, the guide shaft 26, the guide shaft 28, and the guide shaft 26b in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55.
  • the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55.
  • the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1c can be prevented from being increased.
  • the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1c can be prevented from being increased.
  • the energizing forces F2 of the spring 42, the spring 43, and the spring 42b are applied in addition to the energizing force F1 of the spring 41, so that the energizing force in the positive direction of the Z-axis can be increased as compared with the optical module moving mechanism 1b according to the third embodiment described above.
  • the magnitude relation between the energizing force F1 of the spring 41, and the energizing forces F2 of the spring 42, the spring 43, and the spring 42b is assumed to be F1 ⁇ F2, so that the energizing force F1 can take a lead in assisting movement in the optical axis A direction of the supporting plate 11, and the self-locking of the sleeve 25 with respect to the guide shaft 24 can be prevented from being caused.
  • F1 ⁇ F2 is satisfied, the supporting plate 11 can be securely caused to abut on the abutment 56.
  • the following describes an optical module moving mechanism according to a fifth embodiment focusing on differences from the optical module moving mechanism 1c according to the fourth embodiment.
  • the present embodiment describes a configuration in which an idle gear is further added to the gear assembly part.
  • FIG. 10 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the fifth embodiment. The following describes a configuration of an optical module moving mechanism 1d according to the present embodiment with reference to FIG. 10.
  • the optical module moving mechanism 1d includes the supporting plate 11, a coupling plate 13d, the motor 20, a gear assembly part 21d, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the spring 41, a coupling plate 13e, a gear assembly part 21e, a lead screw 22e, the guide shaft 28, and the spring 43.
  • the supporting plate 11 is a plate for supporting the optical module 10 from the image sensor side (not illustrated) . That is, the image sensor is disposed on the negative direction side of the Z-axis in FIG. 10 with respect to the optical module 10.
  • the hole 11a is formed at a position point-symmetrical to the sleeve 25 with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10.
  • the sleeve 25 and the hole 11a may be present at positions point-symmetrical to each other with respect to the optical axis A.
  • the coupling plate 13d is a plate that is fixed to the nut 23 that moves in the optical axis A direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22, and moves in the optical axis A direction in conjunction with movement of the nut 23.
  • the coupling plate 13d is joined with the projecting part 14 of the supporting plate 11 at an end part on the positive direction side of the X-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis A direction in conjunction with reciprocation of the coupling plate 13d in conjunction with movement of the nut 23.
  • FIG. 10 In the configuration illustrated in FIG.
  • the coupling plate 13d is joined with the supporting plate 11 (projecting part 14) at the end part on the positive direction side of the X-axis, but the embodiment is not limited thereto.
  • the coupling plate 13d may be joined with the supporting plate 11 at a part other than the end part.
  • the gear assembly part 21d is a gear group that rotates the lead screw 22 by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22.
  • the gear assembly part 21d is constituted of the motor gear 211, the idle gear 212, the idle gear 214, an idle gear 215, and the lead screw gear 213.
  • the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that the center axis of the rotor shaft 20a agrees with the rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a.
  • the idle gear 212 is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214.
  • the idle gear 214 is a gear that meshes with the idle gear 212, and transmits a rotational force of the idle gear 212 to the idle gear 215.
  • the idle gear 215 is a gear that meshes with the idle gear 214, and transmits a rotational force of the idle gear 214 to the lead screw gear 213.
  • the lead screw gear 213 is a gear that meshes with the idle gear 215, and is rotated by a rotational force of the idle gear 215. As illustrated in FIG. 10, the lead screw gear 213 is fixed to the lead screw 22 so that the axis of the lead screw 22 agrees with the rotation axis of the lead screw gear 213.
  • the length in the X-axis direction of the gear assembly part 21d of the optical module moving mechanism 1d is longer than the length in the X-axis direction of the gear assembly part 21a of the optical module moving mechanism 1c according to the fourth embodiment described above by a length corresponding to the idle gear 215 incorporated therein. Due to this, the lead screw 22 is configured to be closer to the guide shaft 24 as compared with the optical module moving mechanism 1c according to the fourth embodiment. Unlike the optical module moving mechanism 1c described above, the guide shaft 26 and the sleeve 27 are not disposed in the optical module moving mechanism 1d.
  • the lead screw 22 is a screw member to which the lead screw gear 213 is fixed so that the axis of the lead screw 22 agrees with the rotation axis of the lead screw gear 213, the screw member being disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10.
  • the nut 23 is screwed onto the lead screw 22, and the lead screw 22 is rotated about the axis by a rotational force of the lead screw gear 213 to reciprocate the nut 23 in the axis direction (that is, the optical axis A direction) .
  • the nut 23 is a member that is screwed onto the lead screw 22, and is fixed to the coupling plate 13d as illustrated in FIG. 10. Thus, when being reciprocated in the optical axis A direction (Z-axis direction) by rotation of the lead screw 22, the nut 23 reciprocates the coupling plate 13d in the optical axis A direction accordingly.
  • the coupling plate 13e is a plate that is fixed to a nut 23e that moves in the optical axis A direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22e, and moves in the optical axis A direction in conjunction with movement of the nut 23e.
  • the coupling plate 13e is joined with a peripheral part of the hole 11a of the supporting plate 11 at an end part on a negative direction side of the Y-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis A direction in conjunction with reciprocation of the coupling plate 13e in conjunction with movement of the nut 23e.
  • FIG. 10 In the configuration illustrated in FIG.
  • the coupling plate 13e is joined with the supporting plate 11 at the end part on the negative direction side of the Y-axis, but the embodiment is not limited thereto.
  • the coupling plate 13e may be joined with the supporting plate 11 at a part other than the end part.
  • the supporting plate 11, the coupling plate 13d, and the coupling plate 13e have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate” .
  • the gear assembly part 21e is a gear group that rotates the lead screw 22e by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22e.
  • the gear assembly part 21d described above is a gear group arranged in the X-axis direction illustrated in FIG. 10.
  • the gear assembly part 21e is a gear group arranged in the Y-axis direction, that is, in a direction orthogonal to the arrangement direction of the gear group of the gear assembly part 21d.
  • the gear assembly part 21e is constituted of the motor gear 211, an idle gear 212e, an idle gear 214e, an idle gear 215e, and a lead screw gear 213e.
  • the motor gear 211 is described above.
  • the idle gear 212e is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214e.
  • the idle gear 214e is a gear that meshes with the idle gear 212e, and transmits a rotational force of the idle gear 212e to the idle gear 215e.
  • the idle gear 215e is a gear that meshes with the idle gear 214e, and transmits a rotational force of the idle gear 214e to the lead screw gear 213e.
  • the lead screw gear 213e is a gear that meshes with the idle gear 215e, and is rotated by a rotational force of the idle gear 215e. As illustrated in FIG. 10, the lead screw gear 213e is fixed to the lead screw 22e so that an axis of the lead screw 22e agrees with a rotation axis of the lead screw gear 213e.
  • the lead screw 22e is a screw member to which the lead screw gear 213e is fixed so that the axis of the lead screw 22e agrees with the rotation axis of the lead screw gear 213e, the screw member being disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10.
  • the nut 23e is screwed onto the lead screw 22e, and the lead screw 22e is rotated about the axis by a rotational force of the lead screw gear 213e to reciprocate the nut 23e in the axis direction (that is, the optical axis A direction) .
  • the nut 23e is a member that is screwed onto the lead screw 22e, and is fixed to the coupling plate 13e as illustrated in FIG. 10.
  • the nut 23e reciprocates the coupling plate 13e in the optical axis A direction accordingly.
  • the abutments 56 are respectively disposed at the positions corresponding to the four apexes of the rectangular supporting plate 11. Due to this, when the optical module 10 is popped up by the optical module moving mechanism 1d, movement thereof in the positive direction of the Z-axis is restricted.
  • optical module moving mechanism 1d are the same as those in the optical module moving mechanism 1c according to the fourth embodiment described above.
  • the gear assembly part 21d, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 28, and the spring 43 respectively correspond to a "first gear assembly part” , a "first lead screw” , a “first nut” , a “first sleeve” , a "first guide shaft” , a “first elastic body” , a “second guide shaft” , and a “second elastic body” .
  • the gear assembly part 21e, the lead screw 22e, and the nut 23e respectively correspond to a "second gear assembly part” , a "second lead screw” , and a "second nut” .
  • the lead screw 22 is rotated via the gear assembly part 21d and the nut 23 is reciprocated in the optical axis A direction
  • the lead screw 22e is rotated via the gear assembly part 21e and the nut 23e is reciprocated in the optical axis A direction
  • the supporting plate 11 is reciprocated in the optical axis A direction. In this case, reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 28.
  • the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis A direction, and the pop-up operation and the retracting operation are implemented.
  • the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 assist movement in the optical axis A direction of the supporting plate 11.
  • the energizing force F2 of the spring 43 acts on the supporting plate 11 in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11.
  • the lengths of the gear assembly part 21d and the gear assembly part 21e are prolonged by adding the idle gear 215 and the idle gear 215e, so that the number of guide shafts, which may cause self-locking, is reduced from four to two, and the sleeve 27 is not provided. Due to this, self-locking is prevented from being caused, and the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24 and the guide shaft 28 in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55.
  • an imaging operation can be performed in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55 due to working of the energizing force F2, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55.
  • the sleeve 27 is not provided, so that the thickness of the terminal device including the optical module moving mechanism 1d can be prevented from being increased.
  • the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1d can be prevented from being increased.
  • the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 is assumed to be F1 ⁇ F2, so that the energizing force F1 can take a lead in assisting movement in the optical axis A direction of the supporting plate 11, and the self-locking of the sleeve 25 with respect to the guide shaft 24 can be prevented from being caused.
  • F1 ⁇ F2 the supporting plate 11 can be securely caused to abut on the abutment 56.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

It is provided an optical module moving mechanism configured to reciprocate an optical module along an optical axis. The optical module moving mechanism includes: a supporting plate configured to support the optical module; a motor configured to drive a rotor shaft; a first gear assembly part comprising a plurality of gears, wherein the first gear assembly part is configured to transmit a rotational force of the rotor shaft; a first lead screw disposed so that an axis direction is parallel with the optical axis direction, wherein the first lead screw is configured to rotate about an axis by the rotational force transmitted by the first gear assembly part; a first nut screwed onto the first lead screw and fixed to the supporting plate, wherein the first nut is configured to reciprocate the supporting plate by rotation of the first lead screw; a first sleeve fixed to the supporting plate as a member having a cylindrical shape, wherein a hole is opened on the cylindrical shape; a first guide shaft having an axis direction parallel with the optical axis direction, wherein the first guide shaft is inserted into the hole of the first sleeve; a first elastic body into which the first guide shaft is inserted in an expanding/contracting direction, wherein the first elastic body is configured to cause a first energizing force to act in a direction of being separated from an image sensor on which an image is formed with light by the optical module; a second guide shaft having an axis direction parallel with the optical axis direction, wherein the second guide shaft is inserted into a hole of the supporting plate; and a second elastic body into which the second guide shaft is inserted in an expanding/contracting direction, wherein the second elastic body is configured to cause a second energizing force to act in a direction of being separated from the image sensor.

Description

OPTICAL MODULE MOVING MECHANISM AND TERMINAL DEVICE TECHNICAL FIELD
Embodiments described herein relate generally to an optical module moving mechanism and a terminal device.
BACKGROUND
In recent years, the mainstream of terminal devices such as a smartphone or a tablet terminal is a terminal device that includes an optical module including a plurality of lenses and an imaging device including an image sensor. This optical module is disposed on a sensor surface side of the image sensor, and forms an image of light incident from the outside on the sensor surface. A predetermined distance is required between a lens surface of the optical module on which light is incident and the sensor surface of the image sensor to provide a focal distance for appropriately forming an image of light as described above. Furthermore, recently, the image sensor tends to be upsized for expanding resolution, and the distance described above is required to be further prolonged when the image sensor is upsized. However, there is a demand for reducing a thickness of terminal devices such as a smartphone recently, so that providing the predetermined distance between the lens surface of the optical module and the sensor surface of the image sensor for implementing appropriate imaging as described above is contrary to the demand.
SUMMARY
Solution to Problem
To solve the above-mentioned problems and achieve the object, an aspect of the present invention provides an optical module moving mechanism configured to reciprocate an optical module along an optical axis. The optical module moving mechanism includes a supporting plate configured to support the optical module; a motor configured to drive a rotor shaft; a first gear assembly part comprising a plurality of gears, wherein the first gear assembly part is configured to transmit a rotational force of the rotor shaft; a first lead screw disposed so that an axis direction is parallel with the optical axis direction, wherein the first lead screw is configured to rotated about an axis by the rotational force transmitted by the first gear assembly part; a first nut screwed onto the first lead screw and fixed to the supporting plate, wherein the first nut is configured to reciprocate the supporting plate by rotation of the first lead screw; a first sleeve fixed to the supporting plate as a member having a cylindrical shape, wherein a hole is opened on the cylindrical shape; a first guide shaft having an axis direction parallel with the optical axis direction, wherein the first guide shaft is inserted into the hole of the first sleeve; a first elastic body into which the first guide shaft is inserted in an expanding/contracting direction, wherein the first elastic body is configured to cause a first energizing force to act in a direction of being separated from an image sensor on which an image is formed with light by the optical module; a second guide shaft having an axis direction parallel with the optical axis direction, wherein the second guide shaft is inserted into a hole of the supporting plate; and a second elastic body into which the second guide shaft is inserted in an expanding/contracting direction, wherein the second elastic body is configured to cause a second energizing force to act in a direction of being separated from the image sensor.
Advantageous Effects of Invention
According to the present invention, self-locking can be prevented from being caused, and a thickness of a terminal device can be prevented from being increased.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a configuration of a conventional optical module moving mechanism.
FIG. 2 is a diagram for explaining self-locking.
FIG. 3 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a first embodiment.
FIG. 4 is a diagram illustrating an example of a configuration of an imaging unit according to the first embodiment.
FIG. 5 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the first embodiment.
FIG. 6 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a second embodiment.
FIG. 7 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the second embodiment.
FIG. 8 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a third embodiment.
FIG. 9 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a fourth embodiment.
FIG. 10 is a diagram illustrating an example of a configuration of an optical module moving mechanism according to a fifth embodiment.
DETAILED DESCRIPTION
The following describes embodiments of an optical module moving mechanism and a terminal device according to the present invention in detail with reference to the drawings. The present invention is not limited to the following embodiments, and constituent elements in the following embodiments include a constituent element that is easily conceivable by those skilled in the art, substantially the same constituent element, and what is called an equivalent. In addition, the constituent elements can be variously omitted, replaced, modified, and combined with each other without departing from the gist of the following embodiments.
[First Embodiment]
(Configuration of conventional optical module moving mechanism)
FIG. 1 is a diagram illustrating an example of a configuration of a conventional optical module moving mechanism. FIG. 2 is a diagram for explaining self-locking. The following describes a configuration of a conventional optical module moving mechanism 100 and problems thereabout with reference to FIG. 1 and FIG. 2.
The optical module moving mechanism 100 illustrated in FIG. 1 is a moving mechanism for performing a pop-up operation and a retracting operation of an optical module 10 in an optical axis direction. As illustrated in FIG. 1 (a) and FIG. 1 (b) , the optical module moving mechanism 100 includes a supporting plate 11, a supporting plate 12, a coupling plate 13, a motor 20, a gear assembly part 21, a lead screw 22, a nut 23, a guide shaft 24, a sleeve 25, a guide shaft 26, a sleeve 27, and a spring 41.
The supporting plate 11 is a plate for supporting the optical module 10 from an image sensor side (not illustrated) . That is, the image sensor is disposed on a negative direction side of the Z-axis in FIG. 1 with respect to the optical module 10. The optical module 10 is a module including an optical system constituted of a plurality of lenses inside, the module for converging light incident from an outer field to form an image on the image sensor. As illustrated in FIG. 1 (a) , the supporting plate 11 includes a projecting part 14 projecting in a direction toward an outer side of the optical module 10 (a positive direction of the Y-axis in FIG. 1 (a) ) .
The supporting plate 12 is a plate that is disposed between a surface on the image sensor side of the optical module 10 and the supporting plate 11, and fixed to the supporting plate 11 with a screw and the like.
As illustrated in FIG. 1 (a) , the supporting plate 12 includes a projecting part 12a projecting in a direction toward the outer side of the optical module 10 (the positive direction of the Y-axis in FIG. 1 (a) ) .
As illustrated in FIG. 1 (a) , the coupling plate 13 is a plate fixed to the supporting plate 12 by engaging with the projecting part 12a via an engagement part 13a. As illustrated in FIG. 1 (b) , the coupling plate 13 is fixed to the nut 23 that moves in the optical axis direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22, and moves in the optical axis direction in conjunction with movement of the nut 23.
The motor 20 is a stepping motor or the like that rotationally drives a rotor shaft 20a by converting electric energy into mechanical energy.
The gear assembly part 21 is a gear group that rotates the lead screw 22 by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22. Specifically, as illustrated in FIG. 1 (a) , the gear assembly part 21 is constituted of a motor gear 211, an idle gear 212, and a lead screw gear 213.
As illustrated in FIG. 1 (a) , the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that a center axis of the rotor shaft 20a agrees with a rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a. The idle gear 212 is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the lead screw gear 213. The lead screw gear 213 is a gear that meshes with the idle gear 212, and is rotated by a rotational force of the idle gear 212. As illustrated in FIG. 1 (a) , the lead screw gear 213 is fixed to the lead screw 22 so that an axis of the lead screw 22 agrees with a rotation axis of the lead screw gear 213.
The lead screw 22 is a screw member to which the lead screw gear 213 is fixed so that the axis of the lead screw 22 agrees with the rotation axis of the lead screw gear 213, the screw member being disposed so that an axis direction is parallel with the optical axis direction of the optical module 10. As illustrated in FIG. 1 (b) , the nut 23 is screwed onto the lead screw 22, and the lead screw 22 is rotated about an axis by a rotational force of the lead screw gear 213 to reciprocate the nut 23 in the axis direction (that is, the optical axis direction) .
The nut 23 is a member that is screwed onto the lead screw 22, and is fixed to the coupling plate 13 as illustrated in FIG. 1. Thus, when being reciprocated in the optical axis direction (Z-axis direction) by rotation of the lead screw 22, the nut 23 reciprocates the coupling plate 13 in the optical axis direction accordingly.
The guide shaft 24 is a shaft member that is disposed so that the axis direction is parallel with the optical axis direction of the optical module 10, and inserted into a hole of the sleeve 25 supported by the projecting part 14 of the supporting plate 11. The guide shaft 24 guides the optical module 10 via the sleeve 25 so that the optical module 10 supported by the supporting plate 11 is accurately reciprocated in the optical axis direction by rotational driving by the motor 20.
The sleeve 25 is a member having a substantially cylindrical shape on which a hole is opened, and an outer peripheral surface of the cylindrical shape is joined with and fixed to a hole formed on the projecting part 14 as illustrated in FIG. 1. The guide shaft 24 is inserted into the sleeve 25, and the sleeve 25 slides along an axis direction of the guide shaft 24 along with movement in the optical axis direction of the supporting plate 11 integrated with the projecting part 14.
The guide shaft 26 is a shaft member that is disposed so that the axis direction is parallel with the optical axis direction of the optical module 10, and inserted into a hole of the sleeve 27 supported by the coupling plate 13. The guide shaft 26 guides the optical module 10 via the sleeve 27 so that the optical module 10 supported by the supporting plate 11 is accurately reciprocated in the optical axis direction by rotational driving by the motor 20.
The sleeve 27 is a member having a substantially cylindrical shape on which a hole is opened, and an outer peripheral surface of the cylindrical shape is joined with and fixed to a hole formed on the coupling plate 13 as illustrated in FIG. 1. The sleeve 27 is positioned between the lead screw gear 213 of the gear assembly part 21 and the sleeve 25 in the X-axis direction. The guide shaft 26 is inserted into the sleeve 27, and the sleeve 27 slides along an axis direction of  the guide shaft 26 along with movement in the optical axis direction of the supporting plate 11 to which the supporting plate 12 engaging with the coupling plate 13 is fixed.
The spring 41 is an elastic member into which the guide shaft 24 is inserted in an expanding/contracting direction thereof, the elastic member causing an energizing force F1 to act on the projecting part 14 in the positive direction of the Z-axis, that is, a direction of separating the optical module 10 from the image sensor as illustrated in FIG. 1 (b) . That is, the spring 41 assists movement in the optical axis direction of the supporting plate 11 by the energizing force F1.
In the configuration of the optical module moving mechanism 100 as described above, the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction via the coupling plate 13 and the supporting plate 12. In this case, the reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 26. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41 assists movement in the optical axis direction of the supporting plate 11.
However, the optical module moving mechanism 100 described above and illustrated in FIG. 1 has the following problems. As described above, the spring 41 causes the energizing force F1 in the positive direction of the Z-axis to act on the projecting part 14 for assisting movement in the optical axis direction (specifically, the positive direction of the Z-axis) of the supporting plate 11 (projecting part 14) . As described above, although the sleeve 27 slides along the axis direction of the guide shaft 26 along with movement in the optical axis direction of the supporting plate 11, a predetermined clearance is present between an inner peripheral surface of the sleeve 27 and an outer peripheral surface of the guide shaft 26. Thus, as illustrated in FIG. 2, the energizing force F1 of the spring 41 acting on the projecting part 14 works as moment of rotation about a position of the sleeve 27 as a rotation axis, the projecting part 14 is pushed up due to working of the energizing force F1, and an axis in a hole direction of the sleeve 27 is inclined with respect to an axis of the guide shaft 26. Due to this, self-locking is easily caused such that a peripheral part of an opening of the sleeve 27 digs into a side surface of the guide shaft 26, and the sleeve 27 cannot move or hardly moves in the axis direction of the guide shaft 26.
As a measure for preventing the self-locking described above from being caused, the sleeve 27 may be expanded in the hole direction. Due to this, inclination of the axis in the hole direction of the sleeve 27 with respect to the axis of the guide shaft 26 can be suppressed to be small, so that the self-locking can be prevented from being caused. However, if the sleeve 27 is expanded in the hole direction, the size is increased in the optical axis direction of the optical module moving mechanism 100, so that a problem is caused such that a thickness of a terminal device such as a smartphone including the optical module moving mechanism 100 is increased.
The following describes an optical module moving mechanism according to the present embodiment that can prevent the self-locking from being caused and prevent the thickness of the terminal device from being increased. Herein, the terminal device including the optical module moving mechanism is, for example, a smartphone, a tablet terminal, a compact camera module, a vehicle-mounted imaging device, and the like.
Configuration of optical module moving mechanism
FIG. 3 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to a first embodiment. The following describes a configuration of an optical module moving mechanism 1 according to the present embodiment with reference to FIG. 3.
The optical module moving mechanism 1 illustrated in FIG. 3 is a moving mechanism for performing a pop-up operation and a retracting operation of the optical module 10 in the optical axis direction. As illustrated in FIG. 3 (a) , the optical module moving mechanism 1 includes the supporting plate 11, the supporting plate 12, the coupling plate 13, the motor 20, the gear assembly part 21, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, and a spring 42. Configurations other than the spring 42 are the same as those of the optical module moving mechanism 100 illustrated in FIG. 1.
The supporting plate 11, the supporting plate 12, and the coupling plate 13 have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate" .
The spring 42 is an elastic member into which the guide shaft 26 is inserted in the expanding/contracting direction thereof, the elastic member causing an energizing force F2 to act on the coupling plate 13 in the positive direction of the Z-axis, that is, a direction of separating the optical module 10 from the image sensor as illustrated in FIG. 3 (b) . That is, the spring 42 assists movement in the optical axis direction of the supporting plate 11 by the energizing force F2. Note that the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 preferably satisfies F1 > F2.
The gear assembly part 21, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 26, the spring 42, and the sleeve 27 respectively correspond to a "first gear assembly part" , a "first lead screw" , a "first nut" , a "first sleeve" , a "first guide shaft" , a "first elastic body" , a "second guide shaft" , a "second elastic body" , and a "second sleeve" .
In the configuration of the optical module moving mechanism 1 as described above, the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction via the coupling plate 13 and the supporting plate 12. In this case, the reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 26. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 assist movement in the optical axis direction of the supporting plate 11.
Unlike the optical module moving mechanism 100 described above and illustrated in FIG. 1, the energizing force F2 of the spring 42 acts in the positive direction of the Z-axis on a portion of the coupling plate 13 to which the sleeve 27 is fixed, so that moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled.
(Outline of configuration and operation of imaging unit)
FIG. 4 is a diagram illustrating an example of a configuration of an imaging unit according to the first embodiment. The following describes an outline of a configuration and an operation of an imaging unit 50 according to the present embodiment with reference to FIG. 4.
As illustrated in FIG. 4, the imaging unit 50 according to the present embodiment includes the optical module 10, a housing 51, a spring 52a, a spring 52b, an IR cut filter 53, a substrate 54, an image sensor 55, and the optical module moving mechanism 1. The configurations and the functions of the optical module 10 and the optical module moving mechanism 1 are described above.
The housing 51 is a housing that houses the optical module 10 and supports the optical module 10. The spring 52a is an elastic member that connects a peripheral part of an upper surface (a surface on which light is incident) of the optical module 10 to an inner wall surface of the housing 51, and supports the optical module 10 in the housing 51. The spring 52b is an elastic member that connects a peripheral part of a lower surface (a surface from which light is  emitted) of the optical module 10 to the inner wall surface of the housing 51, and supports the optical module 10 in the housing 51.
The IR cut filter 53 is a filter that removes infrared components from light incident on the optical module 10. As illustrated in FIG. 4, the IR cut filter 53 is disposed on the lower surface (surface from which light is emitted) side of the optical module 10. Due to such a function of the IR cut filter 53, light incident on the optical module 10 is incident on the image sensor 55 after infrared rays as noise are removed therefrom.
The substrate 54 is a substrate on which the image sensor 55 is mounted, and the housing 51 is mounted.
The image sensor 55 is a sensor that converts incident light into an electric signal to generate an image. The image sensor 55 is, for example, a solid state image sensor such as a Charge-Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS) .
In the imaging unit 50 having the configuration as described above, the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20 of the optical module moving mechanism 1, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction. Due to this, as illustrated in FIG. 4 (a) , in a case of performing an imaging operation by the imaging unit 50, the pop-up operation can be performed to secure a focal distance by increasing what is called a flange back as a distance between the IR cut filter 53 and the image sensor 55. As illustrated in FIG. 4 (b) , in a case of not performing the imaging operation by the imaging unit 50, the retracting operation can be performed to store the optical module 10 in the terminal device by reducing the flange back. At this point, in a case of preventing self-locking from being caused by expanding the sleeve 27 in the hole direction, the flange back cannot be sufficiently reduced due to its structure in a case of performing the retracting operation, and as a result, the thickness of the terminal device including the imaging unit 50 may be increased. However, self-locking can be prevented from being caused due to working of the energizing force F2 of the spring 42 with the optical module moving mechanism 1 according to the present embodiment, so that the sleeve 27 is not required to be expanded in the hole direction.
(Effect of first embodiment)
FIG. 5 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the first embodiment. The following describes an effect exhibited by the optical module moving mechanism 1 according to the present embodiment with reference to FIG. 5.
Unlike the optical module moving mechanism 100 described above and illustrated in FIG. 1, as illustrated in FIG. 5, the energizing force F2 of the spring 42 in the positive direction of the Z-axis acts on the coupling plate 13 in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11. Due to working of the energizing force F2, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled, so that the axis in the hole direction of the sleeve 27 is prevented from being inclined with respect to the axis of the guide shaft 26.
As a result, self-locking of the sleeve 27 with respect to the guide shaft 26 is prevented from being caused, and the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24 and the guide shaft 26 in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55. In this case, even in a pop-up state, the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55.  Additionally, the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1 can be prevented from being increased.
Accordingly, the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1 can be prevented from being increased.
[Second embodiment]
The following describes an optical module moving mechanism according to a second embodiment focusing on differences from the optical module moving mechanism 1 according to the first embodiment. The present embodiment specifically describes a configuration in which a distance between the sleeve 25 and the sleeve 27 is reduced.
(Configuration of optical module moving mechanism)
FIG. 6 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the second embodiment. The following describes a configuration of an optical module moving mechanism 1a according to the present embodiment with reference to FIG. 6.
As illustrated in FIG. 6, the optical module moving mechanism 1a includes the supporting plate 11, a coupling plate 13b, the motor 20, a gear assembly part 21a, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, and the spring 42.
As illustrated in FIG. 6 (b) , the coupling plate 13b is a plate that is fixed to the nut 23 that moves in the optical axis direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22, and moves in the optical axis direction in conjunction with movement of the nut 23. As illustrated in FIG. 6 (a) , the coupling plate 13b is joined with the projecting part 14 of the supporting plate 11 at an end part on a positive direction side of the X-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis direction in conjunction with reciprocation of the coupling plate 13b in conjunction with movement of the nut 23. In the configuration illustrated in FIG. 6, the coupling plate 13b is joined with the supporting plate 11 (projecting part 14) at the end part on the positive direction side of the X-axis, but the embodiment is not limited thereto. The coupling plate 13b may be joined with the supporting plate 11 at a part other than the end part.
The supporting plate 11 and the coupling plate 13b have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate" .
The gear assembly part 21a is a gear group that rotates the lead screw 22 by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22. Specifically, as illustrated in FIG. 6 (a) , the gear assembly part 21a is constituted of the motor gear 211, the idle gear 212, an idle gear 214, and the lead screw gear 213.
As illustrated in FIG. 6 (a) , the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that a center axis of the rotor shaft 20a agrees with a rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a. The idle gear 212 is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214. The idle gear 214 is a gear that meshes with the idle gear 212, and transmits a rotational force of the idle gear 212 to the lead screw gear 213. The lead screw gear 213 is a gear that meshes with the idle gear 214, and is rotated by a rotational force of the idle gear 214. As illustrated in FIG. 6 (a) , the lead screw gear 213 is fixed to the lead screw 22 so that an axis of the lead screw 22 agrees with a rotation axis of the lead screw gear 213.
That is, the length in the X-axis direction of the gear assembly part 21a of the optical module moving mechanism 1a is longer than the length in the X-axis direction of the gear assembly part 21 of the optical module moving mechanism 1 according to the first embodiment described above by a length corresponding to the idle gear 214 incorporated therein. Due to this, the lead screw 22 and the guide shaft 26 are configured to be closer to the guide shaft 24 as  compared with the optical module moving mechanism 1 according to the first embodiment. That is, the sleeve 27 disposed on a side opposite to the motor 20 side of a gear column of the gear assembly part 21a is brought closer to the sleeve 25 because the gear column of the gear assembly part 21a is extended.
Other configurations of the optical module moving mechanism 1a are the same as those in the optical module moving mechanism 1 according to the first embodiment described above.
The gear assembly part 21a, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 26, the spring 42, and the sleeve 27 respectively correspond to a "first gear assembly part" , a "first lead screw" , a "first nut" , a "first sleeve" , a "first guide shaft" , a "first elastic body" , a "second guide shaft" , a "second elastic body" , and a "second sleeve" .
In the configuration of the optical module moving mechanism 1a as described above, the lead screw 22 is rotated via the gear assembly part 21a by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis direction via the coupling plate 13b. In this case, the reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 26. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 assist movement in the optical axis direction of the supporting plate 11. Note that the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 42 preferably satisfies F1 > F2.
(Effect of second embodiment)
FIG. 7 is a diagram for explaining that self-locking is prevented from being caused due to the configuration of the optical module moving mechanism according to the second embodiment. The following describes an effect exhibited by the optical module moving mechanism 1a according to the present embodiment with reference to FIG. 7.
Unlike the optical module moving mechanism 100 described above and illustrated in FIG. 1, as illustrated in FIG. 7, the energizing force F2 of the spring 42 in the positive direction of the Z-axis acts on the coupling plate 13b in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11. Due to working of the energizing force F2, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled, so that the axis in the hole direction of the sleeve 27 is prevented from being inclined with respect to the axis of the guide shaft 26. Additionally, as described above, the length in the X-axis direction of the gear assembly part 21a of the optical module moving mechanism 1a is longer than the length in the X-axis direction of the gear assembly part 21 of the optical module moving mechanism 1 according to the first embodiment described above by a length corresponding to the idle gear 214 incorporated therein. Due to this, the guide shaft 26 is configured to be closer to the guide shaft 24 as compared with the optical module moving mechanism 1 according to the first embodiment. Thus, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 is reduced as compared with that in the first embodiment, so that an effect of canceling the moment of rotation by the energizing force F2 is enhanced.
As a result, self-locking of the sleeve 27 with respect to the guide shaft 26 is prevented from being caused, and the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24 and the guide shaft 26 in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55. In this case, even in a pop-up state, the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side  blurred state can be prevented from being caused in an image taken by the image sensor 55. Additionally, the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1a can be prevented from being increased.
Accordingly, the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1a can be prevented from being increased.
[Third embodiment]
The following describes an optical module moving mechanism according to a third embodiment focusing on differences from the optical module moving mechanism 1 according to the first embodiment. The present embodiment describes a configuration in which another guide shaft is disposed at a position point-symmetrical to the guide shaft 24 with respect to a straight line parallel with the optical axis passing through the center of gravity of the optical module 10.
(Configuration of optical module moving mechanism)
FIG. 8 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the third embodiment. The following describes a configuration of an optical module moving mechanism 1b according to the present embodiment with reference to FIG. 8.
As illustrated in FIG. 8, the optical module moving mechanism 1b includes the supporting plate 11, the coupling plate 13, the motor 20, the gear assembly part 21, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, a guide shaft 28, and a spring 43.
The supporting plate 11 is a plate for supporting the optical module 10 from the image sensor side (not illustrated) . That is, the image sensor is disposed on the negative direction side of the Z-axis in FIG. 8 with respect to the optical module 10. As illustrated in FIG. 8 (a) , the supporting plate 11 includes the projecting part 14 projecting in the direction toward the outer side of the optical module 10 (positive direction of the Y-axis in FIG. 1 (a) ) . As described above in the first embodiment, the outer peripheral surface of the sleeve 25 is joined with and fixed to the hole formed on the projecting part 14. On the supporting plate 11, a hole 11a is formed at a position point-symmetrical to the sleeve 25 with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10. The sleeve 25 and the hole 11a may be present at positions point-symmetrical to each other with respect to the optical axis A.
The guide shaft 28 is a shaft member that is disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10, and inserted into the hole 11a. That is, the guide shaft 24 inserted into the sleeve 25 and the guide shaft 28 inserted into the hole 11a have a point-symmetrical positional relation with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10. In a case in which the sleeve 25 and the hole 11a are present at positions point-symmetrical to each other with respect to the optical axis A, the guide shaft 24 and the guide shaft 28 have a point-symmetrical positional relation with respect to the optical axis A.
The spring 43 is an elastic member into which the guide shaft 28 is inserted in the expanding/contracting direction thereof, the elastic member causing the energizing force F2 to act on the supporting plate 11 in the positive direction of the Z-axis, that is, a direction of separating the optical module 10 from the image sensor as illustrated in FIG. 8 (b) . The spring 43 assists movement in the optical axis A direction of the supporting plate 11 by the energizing force F2. That is, in the optical module moving mechanism 1b according to the present embodiment, the spring 43 is disposed on the guide shaft 28 in place of the spring 42 disposed on the guide shaft 26 of the optical module moving mechanism 1 according to the first embodiment. A magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 satisfies F1 > F2.
On the housing of the terminal device including the optical module moving mechanism 1, as illustrated in FIG. 8 (a) , abutments 56 are respectively disposed at positions corresponding to four apexes of the rectangular supporting plate 11. Due to this, when the optical module 10 is popped up by the optical module moving mechanism 1b, movement thereof in the positive direction of the Z-axis is restricted.
Other configurations of the optical module moving mechanism 1b are the same as those in the optical module moving mechanism 1 according to the first embodiment described above.
The gear assembly part 21, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 28, the spring 43, the sleeve 27, and the guide shaft 26 respectively correspond to a "first gear assembly part" , a "first lead screw" , a "first nut" , a "first sleeve" , a "first guide shaft" , a "first elastic body" , a "second guide shaft" , a "second elastic body" , a "second sleeve" , and a "third guide shaft" .
In the configuration of the optical module moving mechanism 1 as described above, the lead screw 22 is rotated via the gear assembly part 21 by rotational driving of the rotor shaft 20a by the motor 20, and the nut 23 is reciprocated in the optical axis A direction. Due to the reciprocation of the nut 23, the supporting plate 11 is reciprocated in the optical axis A direction via the coupling plate 13 and the supporting plate 12. In this case, the reciprocation of the supporting plate 11 is guided by the guide shaft 24, the guide shaft 26, and the guide shaft 28. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis A direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 assist movement in the optical axis A direction of the supporting plate 11.
As described above, with the configuration of the optical module moving mechanism 1b according to the present embodiment, as illustrated in FIG. 8, the energizing force F2 of the spring 43 in the positive direction of the Z-axis acts on a portion of the hole 11a of the supporting plate 11 in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11. Due to working of the energizing force F2, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled, so that the axis in the hole direction of the sleeve 27 is prevented from being inclined with respect to the axis of the guide shaft 26.
As a result, self-locking of the sleeve 27 with respect to the guide shaft 26 is prevented from being caused, and the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24, the guide shaft 26, and the guide shaft 28 in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55. In this case, even in a pop-up state, the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55. Additionally, the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1b can be prevented from being increased.
Accordingly, the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1b can be prevented from being increased.
Furthermore, the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 is assumed to be F1 > F2, so that the energizing force F1 can take a lead in assisting movement in the optical axis A direction of the supporting plate 11, and the self-locking of the sleeve 25 with respect to the guide shaft 24 can be prevented from being caused.
[Fourth embodiment]
The following describes an optical module moving mechanism according to a fourth embodiment focusing on differences from the optical module moving mechanism 1a according to the second embodiment. The present embodiment describes a configuration in which a driving mechanism such as the gear assembly part 21, the lead screw 22, and the nut 23 for reciprocating the supporting plate 11 is also disposed on the opposite side.
(Configuration of optical module moving mechanism)
FIG. 9 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the fourth embodiment. The following describes a configuration of an optical module moving mechanism 1c according to the present embodiment with reference to FIG. 9.
As illustrated in FIG. 9, the optical module moving mechanism 1c includes the supporting plate 11, the coupling plate 13b, the motor 20, the gear assembly part 21a, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the guide shaft 26, the sleeve 27, the spring 41, the spring 42, a coupling plate 13c, a gear assembly part 21b, a lead screw 22b, the guide shaft 28, a guide shaft 26b, a sleeve 27b, the spring 43, and a spring 42b.
The gear assembly part 21b is a gear group that rotates the lead screw 22b by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22b. The gear assembly part 21a described above is a gear group arranged in the X-axis direction illustrated in FIG. 9. On the other hand, the gear assembly part 21b is a gear group arranged in the Y-axis direction, that is, in a direction orthogonal to the arrangement direction of the gear group of the gear assembly part 21a. Specifically, as illustrated in FIG. 9, the gear assembly part 21b is constituted of the motor gear 211, an idle gear 212b, an idle gear 214b, and a lead screw gear 213b.
As illustrated in FIG. 9, the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that the center axis of the rotor shaft 20a agrees with the rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a. The idle gear 212b is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214b. The idle gear 214b is a gear that meshes with the idle gear 212b, and transmits a rotational force of the idle gear 212b to the lead screw gear 213b. The lead screw gear 213b is a gear that meshes with the idle gear 214b, and is rotated by a rotational force of the idle gear 214b. As illustrated in FIG. 9, the lead screw gear 213b is fixed to the lead screw 22b so that an axis of the lead screw 22b agrees with a rotation axis of the lead screw gear 213b.
The lead screw 22b is a screw member to which the lead screw gear 213b is fixed so that the axis of the lead screw 22b agrees with the rotation axis of the lead screw gear 213b, the screw member being disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10. As illustrated in FIG. 9, a nut 23b is screwed onto the lead screw 22b, and the lead screw 22b is rotated about the axis by a rotational force of the lead screw gear 213b to reciprocate the nut 23b in the axis direction (that is, the optical axis A direction) .
The nut 23b is a member that is screwed onto the lead screw 22b, and is fixed to the coupling plate 13c as illustrated in FIG. 9. Thus, when being reciprocated in the optical axis A direction (Z-axis direction) by rotation of the lead screw 22b, the nut 23b reciprocates the coupling plate 13c in the optical axis A direction accordingly.
The supporting plate 11 is a plate for supporting the optical module 10 from the image sensor side (not illustrated) . That is, the image sensor is disposed on the negative direction side of the Z-axis in FIG. 9 with respect to the optical module 10. On the supporting plate 11, the hole 11a is formed at a position point-symmetrical to the sleeve 25 with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10. The sleeve 25 and the hole 11a may be present at positions point-symmetrical to each other with respect to the optical axis A.
The guide shaft 28 is a shaft member that is disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10, and inserted into the hole 11a. That is, the guide shaft 24 inserted into the sleeve 25 and the guide shaft 28 inserted into the hole 11a have a point-symmetrical positional relation with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10. In a case in which the sleeve 25 and the hole 11a are present at positions point-symmetrical to each other with respect to the optical axis A, the guide shaft 24 and the guide shaft 28 have a point-symmetrical positional relation with respect to the optical axis A.
The spring 43 is an elastic member into which the guide shaft 28 is inserted in the expanding/contracting direction thereof, the elastic member causing the energizing force F2 to act on the supporting plate 11 in the positive direction of the Z-axis, that is, the direction of separating the optical module 10 from the image sensor as illustrated in FIG. 9. The spring 43 assists movement in the optical axis A direction of the supporting plate 11 by the energizing force F2.
As illustrated in FIG. 9, the coupling plate 13c is a plate that is fixed to the nut 23b that moves in the optical axis A direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22b, and moves in the optical axis A direction in conjunction with movement of the nut 23b. As illustrated in FIG. 9, the coupling plate 13c is joined with a peripheral part of the hole 11a of the supporting plate 11 at an end part on a negative direction side of the Y-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis A direction in conjunction with reciprocation of the coupling plate 13c in conjunction with movement of the nut 23b. In the configuration illustrated in FIG. 9, the coupling plate 13c is joined with the supporting plate 11 at the end part on the negative direction side of the Y-axis, but the embodiment is not limited thereto. The coupling plate 13c may be joined with the supporting plate 11 at a part other than the end part.
The supporting plate 11, the coupling plate 13b, and the coupling plate 13c have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate" .
The guide shaft 26b guides the optical module 10 via the sleeve 27b so that the optical module 10 supported by the supporting plate 11 is accurately reciprocated in the optical axis A direction by rotational driving by the motor 20.
The sleeve 27b is a member having a substantially cylindrical shape on which a hole is opened, and an outer peripheral surface of the cylindrical shape is joined with and fixed to the hole formed on the coupling plate 13c as illustrated in FIG. 9. The sleeve 27b is positioned between the lead screw gear 213b of the gear assembly part 21b and the hole 11a in the X-axis direction. The guide shaft 26b is inserted into the sleeve 27b, and the sleeve 27b slides along the axis direction of the guide shaft 26b along with movement in the optical axis A direction of the supporting plate 11 to which the coupling plate 13b is fixed.
The spring 42b is an elastic member into which the guide shaft 26b is inserted in the expanding/contracting direction thereof, the elastic member causing the energizing force F2 to act on the coupling plate 13c in the positive direction of the Z-axis, that is, the direction of separating the optical module 10 from the image sensor as illustrated in FIG. 9. That is, the spring 42b assists movement in the optical axis A direction of the supporting plate 11 by the energizing force F2.
The magnitude relation between the energizing force F1 of the spring 41 and energizing forces F2 of the spring 42, the spring 43, and the spring 42b satisfies F1 ≥ F2.
On the housing of the terminal device including the optical module moving mechanism 1c, as illustrated in FIG. 9, the abutments 56 are respectively disposed at the positions corresponding to the four apexes of the rectangular supporting plate 11. Due to this, when the optical module 10 is popped up by the optical module moving mechanism 1c, movement thereof in the positive direction of the Z-axis is restricted.
Other configurations of the optical module moving mechanism 1c are the same as those in the optical module moving mechanism 1a according to the second embodiment described above.
The gear assembly part 21a, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 26, the spring 42, and the sleeve 27 respectively correspond to a "first gear assembly part" , a "first lead screw" , a "first nut" , a "first sleeve" , a "first guide shaft" , a "first elastic body" , a "second guide shaft" , a "second elastic body" , and a "second sleeve" . The gear assembly part 21b, the lead screw 22b, the nut 23b, the guide shaft 28, the spring 43, the sleeve 27b, the guide shaft 26b, and the spring 42b respectively correspond to a "second gear assembly part" , a "second lead screw" , a "second nut" , a "third guide shaft" , a "third elastic body" , a "third sleeve" , a "fourth guide shaft" , and a "fourth elastic body" .
In the configuration of the optical module moving mechanism 1c as described above, by rotational driving of the rotor shaft 20a by the motor 20, the lead screw 22 is rotated via the gear assembly part 21a and the nut 23 is reciprocated in the optical axis A direction, and the lead screw 22b is rotated via the gear assembly part 21b and the nut 23b is reciprocated in the optical axis A direction. Due to the reciprocation of the nut 23 and the nut 23b, the supporting plate 11 is reciprocated in the optical axis A direction. In this case, reciprocation of the supporting plate 11 is guided by the guide shaft 24, the guide shaft 26, the guide shaft 28, and the guide shaft 26b. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis A direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41, and the energizing forces F2 of the spring 42, the spring 43, and the spring 42b assist movement in the optical axis A direction of the supporting plate 11.
As described above, with the configuration of the optical module moving mechanism 1c according to the present embodiment, as illustrated in FIG. 9, the energizing force F2 of the spring 43 acts on the supporting plate 11, the energizing force F2 of the spring 42 acts on the coupling plate 13b, and the energizing force F2 of the spring 42b acts on the coupling plate 13c in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11. Due to working of the energizing forces F2, the moment of rotation about the position of the sleeve 27, as a rotation axis, based on the energizing force F1 of the spring 41 acting on the projecting part 14 is canceled, so that the axis in the hole direction of the sleeve 27 is prevented from being inclined with respect to the axis of the guide shaft 26.
As a result, self-locking of the sleeve 27 with respect to the guide shaft 26 is prevented from being caused, and the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24, the guide shaft 26, the guide shaft 28, and the guide shaft 26b in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55. In this case, even in a pop-up state, the axis in the hole direction of the sleeve 27 can be prevented from being inclined with respect to the axis of the guide shaft 26 due to working of the energizing force F2, and an imaging operation can be performed in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55. Additionally, the sleeve 27 is not required to be expanded in the hole direction to prevent the self-locking from being caused, and the thickness of the terminal device including the optical module moving mechanism 1c can be prevented from being increased.
Accordingly, the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1c can be prevented from being increased.
Additionally, the energizing forces F2 of the spring 42, the spring 43, and the spring 42b are applied in addition to the energizing force F1 of the spring 41, so that the energizing force in the  positive direction of the Z-axis can be increased as compared with the optical module moving mechanism 1b according to the third embodiment described above.
Furthermore, the magnitude relation between the energizing force F1 of the spring 41, and the energizing forces F2 of the spring 42, the spring 43, and the spring 42b is assumed to be F1 ≥F2, so that the energizing force F1 can take a lead in assisting movement in the optical axis A direction of the supporting plate 11, and the self-locking of the sleeve 25 with respect to the guide shaft 24 can be prevented from being caused. When F1 ≥ F2 is satisfied, the supporting plate 11 can be securely caused to abut on the abutment 56.
[Fifth embodiment]
The following describes an optical module moving mechanism according to a fifth embodiment focusing on differences from the optical module moving mechanism 1c according to the fourth embodiment. The present embodiment describes a configuration in which an idle gear is further added to the gear assembly part.
(Configuration of optical module moving mechanism)
FIG. 10 is a diagram illustrating an example of the configuration of the optical module moving mechanism according to the fifth embodiment. The following describes a configuration of an optical module moving mechanism 1d according to the present embodiment with reference to FIG. 10.
As illustrated in FIG. 10, the optical module moving mechanism 1d includes the supporting plate 11, a coupling plate 13d, the motor 20, a gear assembly part 21d, the lead screw 22, the nut 23, the guide shaft 24, the sleeve 25, the spring 41, a coupling plate 13e, a gear assembly part 21e, a lead screw 22e, the guide shaft 28, and the spring 43.
The supporting plate 11 is a plate for supporting the optical module 10 from the image sensor side (not illustrated) . That is, the image sensor is disposed on the negative direction side of the Z-axis in FIG. 10 with respect to the optical module 10. On the supporting plate 11, the hole 11a is formed at a position point-symmetrical to the sleeve 25 with respect to the straight line parallel with the optical axis A passing through the center of gravity of the optical module 10. The sleeve 25 and the hole 11a may be present at positions point-symmetrical to each other with respect to the optical axis A.
As illustrated in FIG. 10, the coupling plate 13d is a plate that is fixed to the nut 23 that moves in the optical axis A direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22, and moves in the optical axis A direction in conjunction with movement of the nut 23. As illustrated in FIG. 10, the coupling plate 13d is joined with the projecting part 14 of the supporting plate 11 at an end part on the positive direction side of the X-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis A direction in conjunction with reciprocation of the coupling plate 13d in conjunction with movement of the nut 23. In the configuration illustrated in FIG. 10, the coupling plate 13d is joined with the supporting plate 11 (projecting part 14) at the end part on the positive direction side of the X-axis, but the embodiment is not limited thereto. The coupling plate 13d may be joined with the supporting plate 11 at a part other than the end part.
The gear assembly part 21d is a gear group that rotates the lead screw 22 by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22. Specifically, as illustrated in FIG. 10, the gear assembly part 21d is constituted of the motor gear 211, the idle gear 212, the idle gear 214, an idle gear 215, and the lead screw gear 213.
As illustrated in FIG. 10, the motor gear 211 is a gear that is fixed to the rotor shaft 20a so that the center axis of the rotor shaft 20a agrees with the rotation axis of the motor gear 211, and rotates in conjunction with rotation of the rotor shaft 20a. The idle gear 212 is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214. The idle gear 214 is a gear that meshes with the idle gear 212, and transmits a rotational force of the idle gear 212 to the idle gear 215. The idle gear 215 is a gear that meshes with the idle gear 214, and transmits a rotational force of the idle gear 214 to the lead screw gear  213. The lead screw gear 213 is a gear that meshes with the idle gear 215, and is rotated by a rotational force of the idle gear 215. As illustrated in FIG. 10, the lead screw gear 213 is fixed to the lead screw 22 so that the axis of the lead screw 22 agrees with the rotation axis of the lead screw gear 213.
That is, the length in the X-axis direction of the gear assembly part 21d of the optical module moving mechanism 1d is longer than the length in the X-axis direction of the gear assembly part 21a of the optical module moving mechanism 1c according to the fourth embodiment described above by a length corresponding to the idle gear 215 incorporated therein. Due to this, the lead screw 22 is configured to be closer to the guide shaft 24 as compared with the optical module moving mechanism 1c according to the fourth embodiment. Unlike the optical module moving mechanism 1c described above, the guide shaft 26 and the sleeve 27 are not disposed in the optical module moving mechanism 1d.
The lead screw 22 is a screw member to which the lead screw gear 213 is fixed so that the axis of the lead screw 22 agrees with the rotation axis of the lead screw gear 213, the screw member being disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10. As illustrated in FIG. 10, the nut 23 is screwed onto the lead screw 22, and the lead screw 22 is rotated about the axis by a rotational force of the lead screw gear 213 to reciprocate the nut 23 in the axis direction (that is, the optical axis A direction) .
The nut 23 is a member that is screwed onto the lead screw 22, and is fixed to the coupling plate 13d as illustrated in FIG. 10. Thus, when being reciprocated in the optical axis A direction (Z-axis direction) by rotation of the lead screw 22, the nut 23 reciprocates the coupling plate 13d in the optical axis A direction accordingly.
As illustrated in FIG. 10, the coupling plate 13e is a plate that is fixed to a nut 23e that moves in the optical axis A direction of the optical module 10 (Z-axis direction) due to rotation of the lead screw 22e, and moves in the optical axis A direction in conjunction with movement of the nut 23e. As illustrated in FIG. 10, the coupling plate 13e is joined with a peripheral part of the hole 11a of the supporting plate 11 at an end part on a negative direction side of the Y-axis. Due to this, the supporting plate 11 is reciprocated in the optical axis A direction in conjunction with reciprocation of the coupling plate 13e in conjunction with movement of the nut 23e. In the configuration illustrated in FIG. 10, the coupling plate 13e is joined with the supporting plate 11 at the end part on the negative direction side of the Y-axis, but the embodiment is not limited thereto. The coupling plate 13e may be joined with the supporting plate 11 at a part other than the end part.
The supporting plate 11, the coupling plate 13d, and the coupling plate 13e have functions of supporting the optical module 10 integrally with each other, so that each of them corresponds to a "supporting plate" .
The gear assembly part 21e is a gear group that rotates the lead screw 22e by transmitting a rotational force of the rotor shaft 20a generated by the motor 20 to the lead screw 22e. The gear assembly part 21d described above is a gear group arranged in the X-axis direction illustrated in FIG. 10. On the other hand, the gear assembly part 21e is a gear group arranged in the Y-axis direction, that is, in a direction orthogonal to the arrangement direction of the gear group of the gear assembly part 21d. Specifically, as illustrated in FIG. 10, the gear assembly part 21e is constituted of the motor gear 211, an idle gear 212e, an idle gear 214e, an idle gear 215e, and a lead screw gear 213e. The motor gear 211 is described above.
The idle gear 212e is a gear that meshes with the motor gear 211, and transmits a rotational force of the motor gear 211 to the idle gear 214e. The idle gear 214e is a gear that meshes with the idle gear 212e, and transmits a rotational force of the idle gear 212e to the idle gear 215e. The idle gear 215e is a gear that meshes with the idle gear 214e, and transmits a rotational force of the idle gear 214e to the lead screw gear 213e. The lead screw gear 213e is a gear that meshes with the idle gear 215e, and is rotated by a rotational force of the idle gear 215e. As illustrated in  FIG. 10, the lead screw gear 213e is fixed to the lead screw 22e so that an axis of the lead screw 22e agrees with a rotation axis of the lead screw gear 213e.
The lead screw 22e is a screw member to which the lead screw gear 213e is fixed so that the axis of the lead screw 22e agrees with the rotation axis of the lead screw gear 213e, the screw member being disposed so that the axis direction is parallel with the optical axis A direction of the optical module 10. As illustrated in FIG. 10, the nut 23e is screwed onto the lead screw 22e, and the lead screw 22e is rotated about the axis by a rotational force of the lead screw gear 213e to reciprocate the nut 23e in the axis direction (that is, the optical axis A direction) .
The nut 23e is a member that is screwed onto the lead screw 22e, and is fixed to the coupling plate 13e as illustrated in FIG. 10. Thus, when being reciprocated in the optical axis A direction (Z-axis direction) by rotation of the lead screw 22e, the nut 23e reciprocates the coupling plate 13e in the optical axis A direction accordingly.
On the housing of the terminal device including the optical module moving mechanism 1d, as illustrated in FIG. 10, the abutments 56 are respectively disposed at the positions corresponding to the four apexes of the rectangular supporting plate 11. Due to this, when the optical module 10 is popped up by the optical module moving mechanism 1d, movement thereof in the positive direction of the Z-axis is restricted.
Other configurations of the optical module moving mechanism 1d are the same as those in the optical module moving mechanism 1c according to the fourth embodiment described above.
The gear assembly part 21d, the lead screw 22, the nut 23, the sleeve 25, the guide shaft 24, the spring 41, the guide shaft 28, and the spring 43 respectively correspond to a "first gear assembly part" , a "first lead screw" , a "first nut" , a "first sleeve" , a "first guide shaft" , a "first elastic body" , a "second guide shaft" , and a "second elastic body" . The gear assembly part 21e, the lead screw 22e, and the nut 23e respectively correspond to a "second gear assembly part" , a "second lead screw" , and a "second nut" .
The magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 satisfies F1 ≥ F2.
In the configuration of the optical module moving mechanism 1d as described above, by rotational driving of the rotor shaft 20a by the motor 20, the lead screw 22 is rotated via the gear assembly part 21d and the nut 23 is reciprocated in the optical axis A direction, and the lead screw 22e is rotated via the gear assembly part 21e and the nut 23e is reciprocated in the optical axis A direction. Due to the reciprocation of the nut 23 and the nut 23e, the supporting plate 11 is reciprocated in the optical axis A direction. In this case, reciprocation of the supporting plate 11 is guided by the guide shaft 24 and the guide shaft 28. Due to this, the optical module 10 supported by the supporting plate 11 can be reciprocated along the optical axis A direction, and the pop-up operation and the retracting operation are implemented. In this case, the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 assist movement in the optical axis A direction of the supporting plate 11.
As described above, with the configuration of the optical module moving mechanism 1d according to the present embodiment, as illustrated in FIG. 10, the energizing force F2 of the spring 43 acts on the supporting plate 11 in addition to the energizing force F1 of the spring 41 in the positive direction of the Z-axis acting on the projecting part 14 of the supporting plate 11.
Unlike the optical module moving mechanism 1c according to the fourth embodiment, the lengths of the gear assembly part 21d and the gear assembly part 21e are prolonged by adding the idle gear 215 and the idle gear 215e, so that the number of guide shafts, which may cause self-locking, is reduced from four to two, and the sleeve 27 is not provided. Due to this, self-locking is prevented from being caused, and the supporting plate 11 can be reciprocated in the Z-axis direction along the guide shaft 24 and the guide shaft 28 in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor 55. In this case, even in a pop-up state, an imaging operation can be performed in a state in which the optical axis A of the optical module 10 is perpendicular to the sensor surface of the image sensor  55 due to working of the energizing force F2, so that what is called a one side blurred state can be prevented from being caused in an image taken by the image sensor 55. Additionally, the sleeve 27 is not provided, so that the thickness of the terminal device including the optical module moving mechanism 1d can be prevented from being increased.
Accordingly, the self-locking can be prevented from being caused, and the thickness of the terminal device including the optical module moving mechanism 1d can be prevented from being increased.
Furthermore, the magnitude relation between the energizing force F1 of the spring 41 and the energizing force F2 of the spring 43 is assumed to be F1 ≥ F2, so that the energizing force F1 can take a lead in assisting movement in the optical axis A direction of the supporting plate 11, and the self-locking of the sleeve 25 with respect to the guide shaft 24 can be prevented from being caused. When F1 ≥ F2 is satisfied, the supporting plate 11 can be securely caused to abut on the abutment 56.
Reference Signs List
1, 1a to 1d optical module moving mechanism
10 optical module
11 supporting plate
11a hole
12 supporting plate
12a projecting part
13 coupling plate
13a engagement part
13b to 13e coupling plate
14 projecting part
20 motor
20a rotor shaft
21, 21a, 21b, 21d, 21e gear assembly part
22, 22b, 22e lead screw
23, 23b, 23e nut
24 guide shaft
25 sleeve
26, 26b guide shaft
27, 27b sleeve
28 guide shaft
41, 42, 42b, 43 spring
50 imaging unit
52a, 52b spring
53 IR cut filter
54 substrate
55 image sensor
56 abutment
100 optical module moving mechanism
211 motor gear
212, 212b, 212e idle gear
213, 213b, 213e lead screw gear
214, 214b, 214e idle gear
215, 215e idle gear
A optical axis
F1, F2 energizing force

Claims (9)

  1. An optical module moving mechanism configured to reciprocate an optical module along an optical axis, the optical module moving mechanism comprising:
    a supporting plate configured to support the optical module;
    a motor configured to drive a rotor shaft;
    a first gear assembly part comprising a plurality of gears, wherein the first gear assembly part is configured to transmit a rotational force of the rotor shaft;
    a first lead screw disposed so that an axis direction is parallel with the optical axis direction, wherein the first lead screw is configured to rotate about an axis by the rotational force transmitted by the first gear assembly part;
    a first nut screwed onto the first lead screw, and fixed to the supporting plate, wherein the first nut is configured to reciprocate the supporting plate by rotation of the first lead screw;
    a first sleeve fixed to the supporting plate as a member having a cylindrical shape, wherein a hole is opened on the cylindrical shape;
    a first guide shaft having an axis direction parallel with the optical axis direction, wherein the first guide shaft is inserted into the hole of the first sleeve;
    a first elastic body into which the first guide shaft is inserted in an expanding/contracting direction, wherein the first elastic body is configured to cause a first energizing force to act in a direction of being separated from an image sensor on which an image is formed with light by the optical module;
    a second guide shaft having an axis direction parallel with the optical axis direction, wherein the second guide shaft is inserted into a hole of the supporting plate; and
    a second elastic body into which the second guide shaft is inserted in an expanding/contracting direction, wherein the second elastic body is configured to cause a second energizing force to act in a direction of being separated from the image sensor.
  2. The optical module moving mechanism according to claim 1, further comprising:
    a second sleeve fixed to the supporting plate as a member having a cylindrical shape, wherein a hole is opened on the cylindrical shape, wherein
    the second guide shaft is inserted into the hole of the second sleeve.
  3. The optical module moving mechanism according to claim 2, wherein
    the second sleeve is
    disposed on an end opposite to the motor side of a gear column of the first gear assembly part, and
    brought closer to the first sleeve by extending the gear column of the first gear assembly part.
  4. The optical module moving mechanism according to claim 1, further comprising:
    a second sleeve fixed to the supporting plate as a member having a cylindrical shape, wherein a hole is opened on the cylindrical shape; and
    a third guide shaft having an axis direction parallel with the optical axis direction, wherein the third guide shaft is inserted into the hole of the second sleeve, wherein
    the second guide shaft is disposed at a position point-symmetrical to a position of the first guide shaft with respect to the optical axis.
  5. The optical module moving mechanism according to claim 2 or 3, further comprising:
    a second gear assembly part comprising a plurality of gears, wherein the plurality of gears are arranged in a direction orthogonal to an arrangement direction of a gear group of the first gear assembly part, and the second gear assembly part is configured to transmit a rotational force of the rotor shaft;
    a second lead screw disposed so that an axis direction is parallel with the optical axis direction, wherein the second lead screw is configured to rotate about an axis by the rotational force transmitted by the second gear assembly part;
    a second nut screwed onto the second lead screw and fixed to the supporting plate, wherein the second nut is configured to reciprocate the supporting plate by rotation of the second lead screw;
    a third guide shaft having an axis direction parallel with the optical axis direction, wherein the third guide shaft is inserted into a hole of the supporting plate, and the third guide shaft is disposed at a position point-symmetrical to a position of the first guide shaft with respect to the optical axis;
    a third elastic body into which the third guide shaft is inserted in an expanding/contracting direction, wherein the third elastic body is configured to cause the second energizing force to act in a direction of being separated from the image sensor;
    a third sleeve as a member having a cylindrical shape, wherein a hole is opened on the cylindrical shape, the third sleeve is fixed at a position of the supporting plate on an opposite side of the motor side of a gear column of the second gear assembly part;
    a fourth guide shaft having an axis direction parallel with the optical axis direction, wherein the fourth guide shaft is inserted into the hole of the third sleeve; and
    a fourth elastic body into which the fourth guide shaft is inserted in an expanding/contracting direction, wherein the fourth elastic body is configured to cause the second energizing force to act in a direction of being separated from the image sensor.
  6. The optical module moving mechanism according to claim 1, further comprising:
    a second gear assembly part comprising a plurality of gears, wherein the plurality of gears are arranged in a direction orthogonal to an arrangement direction of a gear group of the first gear assembly part, and the second gear assembly part is configured to transmit a rotational force of the rotor shaft;
    a second lead screw disposed so that an axis direction is parallel with the optical axis direction, wherein the second lead screw is configured to rotate about an axis by the rotational force transmitted by the second gear assembly part; and
    a second nut screwed onto the second lead screw and fixed to the supporting plate, wherein the second nut is configured to reciprocate the supporting plate by rotation of the second lead screw, wherein
    the second guide shaft is disposed at a position point-symmetrical to a position of the first guide shaft with respect to the optical axis.
  7. The optical module moving mechanism according to any one of claims 2 to 4, wherein the first energizing force is larger than the second energizing force.
  8. The optical module moving mechanism according to claim 5 or 6, wherein the first energizing force is equal to or larger than the second energizing force.
  9. A terminal device comprising:
    the optical module;
    the image sensor on which an image is formed with light by the optical module; and
    the optical module moving mechanism according to any one of claims 1 to 6, wherein the optical module moving mechanism is configured to perform a pop-up operation for moving the optical module in a direction away from the image sensor to secure a predetermined distance between the optical module and the image sensor in a case of performing imaging, and perform a retracting operation for moving the optical module in a direction approaching the image sensor in a case of not performing imaging.
PCT/CN2022/104201 2022-07-06 2022-07-06 Optical module moving mechanism and terminal device WO2024007209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104201 WO2024007209A1 (en) 2022-07-06 2022-07-06 Optical module moving mechanism and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104201 WO2024007209A1 (en) 2022-07-06 2022-07-06 Optical module moving mechanism and terminal device

Publications (1)

Publication Number Publication Date
WO2024007209A1 true WO2024007209A1 (en) 2024-01-11

Family

ID=89454774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104201 WO2024007209A1 (en) 2022-07-06 2022-07-06 Optical module moving mechanism and terminal device

Country Status (1)

Country Link
WO (1) WO2024007209A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072292A (en) * 2000-08-23 2002-03-12 Canon Inc Camera equipped with diopter adjusting mechanism
US20080074766A1 (en) * 2006-09-22 2008-03-27 Tamron Co., Ltd. Lens Driving Device and Imaging Device using the same
US20120182633A1 (en) * 2011-01-13 2012-07-19 Sony Corporation Lens drive mechanism, lens barrel, and imaging apparatus
US20140185152A1 (en) * 2012-12-27 2014-07-03 Canon Kabushiki Kaisha Lens barrel capable of suppressing variation of attitude of optical element and image pickup apparatus using the same
US20220100051A1 (en) * 2020-09-29 2022-03-31 Aac Optics Solutions Pte. Ltd. Optical assembly driving apparatus, imaging apparatus and portable electronic device
CN114615404A (en) * 2022-02-22 2022-06-10 常州市瑞泰光电有限公司 Scalable camera module and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072292A (en) * 2000-08-23 2002-03-12 Canon Inc Camera equipped with diopter adjusting mechanism
US20080074766A1 (en) * 2006-09-22 2008-03-27 Tamron Co., Ltd. Lens Driving Device and Imaging Device using the same
US20120182633A1 (en) * 2011-01-13 2012-07-19 Sony Corporation Lens drive mechanism, lens barrel, and imaging apparatus
US20140185152A1 (en) * 2012-12-27 2014-07-03 Canon Kabushiki Kaisha Lens barrel capable of suppressing variation of attitude of optical element and image pickup apparatus using the same
US20220100051A1 (en) * 2020-09-29 2022-03-31 Aac Optics Solutions Pte. Ltd. Optical assembly driving apparatus, imaging apparatus and portable electronic device
CN114615404A (en) * 2022-02-22 2022-06-10 常州市瑞泰光电有限公司 Scalable camera module and electronic equipment

Similar Documents

Publication Publication Date Title
CN100468116C (en) Digital-code camera model group
CN100468117C (en) Digital camera model group
US8734032B2 (en) Lens barrel having shutter flexible circuit board and image pickup apparatus having the same
US20080094730A1 (en) Optical device and imaging apparatus
US7903356B1 (en) Image pickup apparatus having lens barrel
JP2011039090A (en) Lens barrel and optical apparatus including the same
US8462451B2 (en) Lens barrel and image pickup apparatus
WO2024007209A1 (en) Optical module moving mechanism and terminal device
JP3995444B2 (en) Lens drive device
JP2019144319A (en) Lens barrel and image capturing device
US8840326B2 (en) Lens barrel assembly and photographing apparatus including the same
JP2010197577A (en) Lens unit and image sensing apparatus incorporated with the same
JP6597204B2 (en) Lens unit and imaging device
US11385523B2 (en) Optical assembly driving apparatus, imaging apparatus and portable electronic device
KR20050067093A (en) Camera module and portable terminal equipped with the camera module
US9195024B2 (en) Drive device, lens barrel, and imaging apparatus
US11307379B2 (en) Lens barrel and optical apparatus
JP2012203179A (en) Lens barrel and imaging apparatus
JP4627998B2 (en) Lens barrel unit and image input device
JP2006337884A (en) Lens driving device
JP2004294947A (en) Lens holding device, lens barrel and imaging apparatus
EP1903366A2 (en) Collapsible Lens Barrel
JP2018077381A (en) Lens barrel and imaging apparatus
JP4679083B2 (en) Lens drive device
JP2006301295A (en) Lens barrel holding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949795

Country of ref document: EP

Kind code of ref document: A1