WO2024007123A1 - 侧行数据的重传方法、harq进程的选择方法以及装置 - Google Patents

侧行数据的重传方法、harq进程的选择方法以及装置 Download PDF

Info

Publication number
WO2024007123A1
WO2024007123A1 PCT/CN2022/103690 CN2022103690W WO2024007123A1 WO 2024007123 A1 WO2024007123 A1 WO 2024007123A1 CN 2022103690 W CN2022103690 W CN 2022103690W WO 2024007123 A1 WO2024007123 A1 WO 2024007123A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
time domain
sidelink
domain unit
Prior art date
Application number
PCT/CN2022/103690
Other languages
English (en)
French (fr)
Inventor
卢前溪
冷冰雪
张博源
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/103690 priority Critical patent/WO2024007123A1/zh
Publication of WO2024007123A1 publication Critical patent/WO2024007123A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the present application relates to the field of sideline communications, and in particular to a sideline data retransmission method, a hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ) process selection method and device.
  • a sideline data retransmission method a sideline data retransmission method
  • HARQ Hybrid Automatic Repeat Request
  • Device to Device (Device to Device, D2D) communication is a side link (SideLink, SL) transmission technology.
  • SL Side Link
  • V2X Vehicle to everything
  • sidelink data when sidelink data is transmitted based on configured grant (Configured Grant, CG) resources, sidelink data can be retransmitted based on the CG retransmission timer.
  • configured grant Configured Grant, CG
  • Embodiments of the present application provide a method for retransmitting sideline data, a HARQ process selection method and a device, and provide a retransmission for sideline data that does not rely on a configured authorization (Configured Grant, CG) retransmission timer. plan.
  • CG Configured Grant
  • a method for retransmitting sideline data is provided.
  • the method is executed by a terminal, and the method includes:
  • the sideline data is retransmitted based on retransmission conditions.
  • the retransmission conditions include at least one of the following conditions:
  • the first interval between the first transmission and the second transmission is greater than or equal to the first threshold
  • the second interval between the third transmission and the second transmission is less than or equal to the second threshold
  • the total number of transmissions between the third transmission and the second transmission is less than or equal to a third threshold
  • the ACK and the NACK are not received
  • the first transmission is a transmission related to the side row data
  • the third transmission is a transmission related to the first transmission of the side row data
  • the second transmission is a transmission related to the side row data.
  • the transmission is related to the next transmission of data
  • the ACK is the confirmation feedback of the sideline data.
  • a method for selecting a HARQ process is provided.
  • the method is executed by a terminal.
  • the method includes:
  • the selection criteria include at least one of the following criteria:
  • HARQ processes that contain data take precedence over HARQ processes that do not contain data
  • the HARQ process with higher logical channel priority takes precedence over the HARQ process with lower logical channel priority
  • HARQ processes containing retransmitted data take precedence over HARQ processes containing initially transmitted data.
  • a device for retransmitting sideline data includes:
  • a retransmission module configured to retransmit the sideline data based on retransmission conditions during the process of transmitting sideline data using CG resources.
  • a device for selecting a HARQ process includes:
  • the selection module is used to select the HARQ process according to the selection criteria.
  • a terminal includes: a processor and a memory. At least one program is stored in the memory. The at least one program is loaded and executed by the terminal to implement the above. The above-mentioned retransmission method of side row data, and/or the selection method of HARQ process.
  • a computer-readable storage medium stores at least one program, and the at least one program is loaded and executed by a communication device to implement the side running as described above. Data retransmission method, and/or, HARQ process selection method.
  • a chip is provided.
  • the chip includes a programmable logic circuit and/or program instructions.
  • a computer device equipped with the chip is used to implement the sideline data retransmission method as described above. , and/or, HARQ process selection method.
  • a computer program product is provided.
  • the communication device When the computer program product is run on (the processor of) a communication device, the communication device performs the retransmission method of sideline data as described above, and/or , HARQ process selection method.
  • the sidelink data is retransmitted based on retransmission conditions, without relying on the CG retransmission timer for retransmission of sidelink data.
  • This application can realize retransmission of sideline data, even retransmission across CG cycles, without being limited by the CG cycle or the CG retransmission timer.
  • Figure 1 is a structural block diagram of a communication system provided by an exemplary embodiment of the present application.
  • Figure 2 is a schematic diagram of the frame structure of a sidelink provided by an exemplary embodiment of the present application
  • Figure 3 is a schematic diagram of the scheduling of CG transmission on the sidelink provided by an exemplary embodiment of the present application
  • Figure 4 is a schematic diagram of the scheduling of CG retransmission of the sidelink provided by an exemplary embodiment of the present application
  • Figure 5 is a flow chart of a sideline data retransmission method provided by an exemplary embodiment of the present application.
  • Figure 6 is a flow chart of a sideline data retransmission method provided by an exemplary embodiment of the present application.
  • Figure 7 is a flow chart of a HARQ process selection method provided by an exemplary embodiment of the present application.
  • Figure 8 is a structural block diagram of a device for retransmitting sideline data provided by an exemplary embodiment of the present application.
  • Figure 9 is a structural block diagram of a HARQ process selection device provided by an exemplary embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • V2X is a key technology for future intelligent transportation systems. It mainly studies vehicle data transmission solutions based on the 3rd Generation Partnership Project (3GPP) communication protocol.
  • V2X communication includes vehicle to vehicle (Vehicle to Vehicle, V2V) communication, vehicle to roadside infrastructure (Vehicle to Infrastructure, V2I) communication, vehicle to pedestrian (Vehicle to People, V2P) communication, etc.
  • V2X applications will improve driving safety, reduce congestion and vehicle energy consumption, and improve traffic efficiency.
  • V2X belongs to a category of D2D communication methods.
  • the D2D communication method is a method that allows direct communication between different terminals.
  • Sidelink communication is a communication method introduced in the device-to-device (D2D) application scenario and expanded and enhanced in the V2X system.
  • Sidelink is a new link type introduced to support direct communication between devices. It has high spectrum efficiency and low transmission delay. Compared with Uu interface communication, sidelink communication has the characteristics of short delay and low overhead, and is very suitable for direct communication between in-vehicle equipment and other peripheral devices that are geographically close.
  • the sidelink communication mentioned in this application supports all scenarios applicable to sidelink communication, such as at least one of D2D and V2X.
  • 5G New Radio NR
  • 5G V2X can provide higher communication rates, shorter communication delays, and more reliable communication quality.
  • FIG. 1 shows a schematic diagram of a side-link transmission system provided by an exemplary embodiment of the present application.
  • the sidelink transmission system may include: core network 11, access network 12 and terminal 13.
  • the core network 11 includes several core network devices.
  • the functions of core network equipment are mainly to provide user connections, manage users, and carry services.
  • As a bearer network it provides an interface to external networks.
  • the core network of the fifth generation mobile communication technology (5th Generation, 5G) NR system can include Access and Mobility Management Function (AMF) entities and User Plane Function (UPF) Entity and session management function (Session Management Function, SMF) entities and other equipment.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • the access network 12 includes a number of access network devices 14.
  • the access network in the 5G NR system can be called a new generation radio access network (New Generation-Radio Access Network, NG-RAN).
  • the access network device 14 is a device deployed in the access network 12 to provide wireless communication functions for the terminal 13 .
  • the access network equipment 14 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with access network equipment functions may be different.
  • 5G base stations Next Generation Node B, gNodeB or gNB.
  • Next Generation Node B Next Generation Node B
  • gNodeB Next Generation Node B
  • the name "access network equipment” may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal 13 are collectively referred to as access network equipment.
  • the number of terminals 13 is usually multiple, and one or more terminals 13 can be distributed in the cell managed by each access network device 14 .
  • the terminal 13 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS), etc. wait. For convenience of description, the devices mentioned above are collectively called terminals.
  • the access network equipment 14 and the core network equipment communicate with each other through some air technology, such as the NG interface in the 5G NR system.
  • the access network device 14 and the terminal 13 communicate with each other through some air technology, such as the Uu interface.
  • Terminal 13 and terminal 13 can communicate with each other through a direct communication interface (such as PC5 interface), correspondingly
  • a direct communication interface such as PC5 interface
  • the communication link established based on the direct communication interface may be called a direct link or a sidelink (Sidelink, SL).
  • Side-link communication refers to the direct transmission of communication data between terminals through side-links. Unlike traditional cellular systems, in which communication data is received or sent through access network equipment, side-link communication has the advantages of short delay and low overhead.
  • SL technology can be applied to scenarios in which various terminals communicate directly.
  • the terminal in this application refers to any device that communicates using SL technology.
  • the "5G NR system" in the embodiments of this application may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solution described in the embodiments of this application can be applied to the 5G NR system, and can also be applied to the subsequent evolution system of the 5G NR system.
  • user equipment User Equipment
  • terminal express the same meaning, and the two can be replaced with each other.
  • the network side in the embodiment of this application can be understood as at least one of an access network, a core network, an access network device, and a core network device.
  • 3GPP defines two sideline transmission modes: first mode and second mode.
  • the first mode (also called mode A or mode 1 or mode 3 or base station scheduling mode): the transmission resources of the terminal are allocated by the access network equipment (such as the base station), and the terminal travels on the side according to the transmission resources allocated by the access network equipment. Communication data is transmitted on the link.
  • the access network equipment can allocate transmission resources for a single transmission to the terminal, also known as dynamically allocated side-link transmission resources.
  • the access network equipment can also allocate semi-static transmission resources to the terminal. Transmission resources, also called semi-statically allocated sidelink transmission resources.
  • the second mode also called mode B or mode 2 or mode 4 or UE autonomous resource selection mode: the terminal selects transmission resources by itself from a preconfigured or network-side configured resource pool for transmission of communication data. Specifically, the terminal may select transmission resources from the resource pool by listening, or select transmission resources from the resource pool by random selection.
  • Figure 2 shows a time slot structure that does not include PSFCH in the time slot;
  • Figure 2 (b) shows a time slot structure that includes PSFCH in the time slot.
  • the Physical Sidelink Control Channel (PSCCH) in NR-V2X starts from the second sidelink symbol of a time slot in the time domain and occupies 2 or 3 Orthogonal Frequency Multiplexing (Orthogonal Frequency) -Division Multiplexing (OFDM) symbols can occupy ⁇ 10,12 15,20,25 ⁇ physical resource blocks (Physical Resource Block, PRB) in the frequency domain.
  • OFDM Orthogonal Frequency Multiplexing
  • PRB Physical Resource Block
  • PSSCH physical sidelink shared channel
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs in a sub-channel in the resource pool.
  • PSSCH also starts from the second sidelink symbol of the time slot in the time domain. The last symbol in the time slot is the Guard Period (GP) symbol, and the remaining symbols are mapped to PSSCH.
  • the first siderow symbol in this time slot is a repetition of the second siderow symbol.
  • the receiving terminal uses the first siderow symbol as an automatic gain control (Automatic Gain Control, AGC) symbol.
  • AGC automatic Gain Control
  • the data is generally not used for data demodulation.
  • PSSCH occupies K sub-channels in the frequency domain, and each sub-channel includes N consecutive PRBs. This is shown in (a) of Figure 2 below.
  • the second to last and third to last symbols in the time slot are used for PSFCH transmission, and the symbol before the PSFCH is used as the GP symbol, as shown in (b) of Figure 2 below.
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is usually considered a shared spectrum, that is, communication equipment in different communication systems can use the spectrum as long as it meets the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum authorization from the government.
  • NR-V2X supports periodic services and aperiodic services. Therefore, the NR-V2X system also supports network equipment to allocate semi-static transmission resources to terminals.
  • an uplink authorization-free scheduling mechanism is introduced, namely Uplink Configured Grant (ULCG) resource allocation
  • ULCG Uplink Configured Grant
  • SL CG is introduced based on the uplink configuration authorization mechanism. If the terminal is configured with sidelink configuration authorized transmission resources, when sidelink data arrives, the terminal can use the sidelink configuration authorized transmission resources to transmit the sidelink data without applying for transmission resources from the network device. Therefore, sidelink configuration authorized transmission resources can reduce the sidelink transmission delay.
  • the side row configuration authorization transmission resources are periodic transmission resources. Therefore, it can be applied to the transmission of periodic side-line data, and of course it can also be used to transmit aperiodic side-line data.
  • Type-1 side-link configuration authorization (Type-1 SLCG) and Type-2 side-link configuration authorization (Type-2 SLCG).
  • Type-1 SL CG Similar to Type-1 UL CG, that is, the network device configures sideline configuration authorized transmission resources and transmission parameters for the terminal through Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • Type-2 SLCG Similar to Type-2 ULCG, that is, the network device configures sidelink configuration authorization transmission resources for the terminal through RRC+downlink control information (DCI). The network device configures some transmission parameters for the terminal through RRC signaling, activates the sidelink configuration authorization through DCI signaling, and the DCI is used to configure sideline transmission resources and remaining transmission parameters. If the network device wants the terminal to report sidelink feedback information, the DCI is also used to configure PUCCH transmission resources. Network equipment can release Type-2 SL CG transmission resources through DCI.
  • DCI downlink control information
  • Type-1 SLCG when the terminal receives the RRC signaling of the network device configuring side-link configuration authorization transmission resources, it can use the side-link transmission resources corresponding to the side-link configuration authorization for side-link transmission; for Type-2 SLCG, After receiving the RRC signaling that configures the sidelink configuration authorized transmission resources, the terminal cannot use the SLCG for sidelink transmission. It needs to wait until the DCI of the Type-2SLCG is activated before it can use the sidelink transmission resources of the Type-2SLCG for sidelink transmission. transmission.
  • the network device configures the transmission resources within a side-link configuration authorization period through the above RRC parameters. Combined with the cycle of SLCG, the periodic side-link configuration authorization transmission resources can be determined. In each cycle, Configure up to 3 sidelink transmission resources.
  • the network device configures some parameters through RRC signaling, such as the above-mentioned configuration authorization index, cycle, number of HARQ processes, HARQ process offset, the maximum number of times a TB can use sideline configuration authorized transmission resources for transmission, etc.
  • the sideline configuration authorization is then activated through DCI format 3-0, and the transmission resources of the sideline configuration authorization are configured through DCI format 3-0.
  • the information field indicating sidelink transmission resources in DCI format 3-0 is the same as the way in which sidelink transmission resources are dynamically allocated in DCI format 3-0.
  • up to 3 sidelink transmission resources can be configured in one cycle.
  • Each PSSCH transmission resource has a corresponding PSFCH transmission resource, and the PUCCH transmission resource is located after the PSFCH transmission resource corresponding to PSSCH3.
  • Type-1 and Type-2 SLCG For Type-1 and Type-2 SLCG, a maximum of 3 side-link transmission resources can be configured within a side-link configuration authorization period, and a side-link data can be transmitted up to 32 times. If a side-link data uses a side-link configuration authorization period, The transmission resources are transmitted, but the receiving end (RXUE) does not detect successfully. At this time, the terminal can be allocated retransmission resources through dynamic scheduling to retransmit the sidelink data. As shown in Figure 4, the network device is configured with Type-2 SLCG.
  • the DCI format 3-0 carried in PDCCH1 activates the sidelink configuration authorization, and configures a sidelink transmission resource and PUCCH resource in each cycle.
  • the sender uses sidelink configuration to authorize PSSCH1 for the first transmission of sidelink data. If the receiving end fails to detect, NACK is fed back to the transmitting end through PSFCH1. The transmitting end reports sideline feedback information NACK to the network device on PUCCH1. gNB passes PDCCH2 The carried DCI format 3-0 allocates retransmission resources and PUCCH resources to the sender. The sender retransmits the data on the retransmission resource PSSCH2. If the receiver correctly receives the data, ACK is fed back to the sender through PSFCH2, and the sender Report the ACK to the network device through PUCCH2.
  • the network device When the network device receives the sidelink NACK reported by the sending end, it needs to schedule retransmission resources for the terminal through DCI.
  • the HARQ process number carried in the DCI is used to indicate which sidelink the retransmission resources scheduled by the DCI are used for. Retransmission of data.
  • the network device can determine the sidelink HARQ process number based on receiving the PUCCH resource carrying sidelink feedback information. For example, in Figure 4, gNB receives the NACK reported by the sender on the PUCCH1 resource, and configures the authorization parameter PSFCH and PUCCH time interval (sl-PSFCH-ToPUCCH-CG-Typel) according to the sidelink configuration, which is B in the figure.
  • the corresponding relationship between the time domain position of the PSSCH transmission resources and the HARQ process number is specified by the protocol.
  • the corresponding HARQ can be determined based on the transmission resources of PSSCH1.
  • Process number (for example, the HARQ process number is k). Therefore, when the network device sets the HARQ process number to k in the DCI format 3-0 of the scheduled retransmission resource, it means that the DCI is a retransmission schedule for the sideline data of the HARQ process number k.
  • the HARQ process number configured by the network device for the sidelink transmission resource configuration may be different from the sidelink HARQ process number indicated in the SCI when the terminal uses the sidelink transmission resource for sidelink transmission.
  • NR Unlicensed, NR-U In the unlicensed spectrum (NR Unlicensed, NR-U) communication of the new air interface system, the interference at the receiving end is generally more serious than that of the licensed spectrum. Coupled with the influence of Listen Before Talk (LBT), in some cases the base station cannot Schedule the UE to retransmit in time before the CG timer (configuredGrantTimer) expires.
  • LBT Listen Before Talk
  • the base station cannot Schedule the UE to retransmit in time before the CG timer (configuredGrantTimer) expires.
  • the retransmission of sidelink data based on CG resources in related technologies has the following shortcomings:
  • The retransmission of sideline data is limited to the resources within one CG cycle. If it exceeds one cycle, only the new transmission of the next code block (Transport Block, TB) can be done;
  • the current CG transmission solution lacks a solution for data retransmission across CG cycles, such as how to control the number of retransmissions, how to control the selection of transmitted data, etc.
  • the embodiment of the present application provides a retransmission mechanism that does not rely on the CG retransmission timer.
  • Figure 5 shows a flow chart of a sideline data retransmission method provided by an exemplary embodiment of the present application.
  • the method is exemplified by being executed by the first terminal.
  • the method includes:
  • Step 202 In the process of transmitting sideline data using CG resources, retransmit the sideline data based on retransmission conditions.
  • the sidelink data is retransmitted based on retransmission conditions; in some embodiments, during transmission using CG resources on unlicensed spectrum During the process of retransmitting sideline data, the sideline data is retransmitted based on the retransmission conditions.
  • the retransmission condition is a condition for the first terminal to determine whether retransmission is required.
  • the retransmission condition is at least one.
  • the retransmission condition is a condition that does not depend on the CG retransmission timer; or the retransmission condition is a condition that is independent of whether the CG retransmission timer expires; or the retransmission condition is not limited to a single CG cycle conditions.
  • sideline data is transmitted using code blocks (Transport Block, TB) as units.
  • TB Transport Block
  • the sideline data in this article can be understood as the sideline data carried by one TB.
  • the retransmission conditions include at least one of the following three types of conditions:
  • a certain amount of time should be reserved between two adjacent transmissions of the same sidelink data. That is, the first interval between two adjacent transmissions of the same side row data is greater than or equal to the first threshold. Assume that the most recent transmission is the i-th transmission, and the next transmission is the i+1-th transmission, then the i-th transmission and the i+1-th transmission are two adjacent transmissions of the same side row data. transmission.
  • the maximum retransmission interval or the maximum number of retransmissions For example, when the second interval between the first transmission and the next transmission (retransmission) of the same sideline data reaches or exceeds the maximum retransmission interval, the next transmission is not performed; and/or the same sideline data When the number of transmissions or retransmissions reaches or exceeds the maximum number, the next transmission will not be performed.
  • the sidelink data needs to be retransmitted; when the sidelink data is received, In the case of ACK, there is no need to retransmit the sideline data.
  • the first terminal retransmits the sidelink data; if the retransmission condition is not met, the first terminal does not retransmit the sidelink data. If all retransmission conditions are met, the first terminal retransmits the sidelink data; if any retransmission condition is not met, the first terminal does not retransmit the sidelink data.
  • each retransmission condition is not limited. Multiple retransmission conditions can be judged at the same time, or the i-th condition can be judged first, and then the i+1-th condition can be judged.
  • the method provided by this embodiment retransmits the sidelink data based on retransmission conditions during the process of transmitting sidelink data using CG resources on the unlicensed spectrum without relying on CG retransmission.
  • the transmission timer performs retransmission of sideline data. This application can realize the retransmission of sideline data without being limited by the CG cycle or the CG retransmission timer.
  • the retransmission condition includes at least one of the following four conditions:
  • Condition 1 The first interval between the first transmission and the second transmission is greater than or equal to the first threshold
  • Condition 2 The second interval between the third transmission and the second transmission is less than or equal to the second threshold
  • Condition 3 The total number of transmissions between the third transmission and the second transmission is less than or equal to the third threshold
  • condition 1 belongs to the above-mentioned first category of conditions, interval requirements; condition 2 and condition 3 belong to the above-mentioned second category of conditions, that is, the maximum number of transmissions/interval; condition 4 belongs to the above-mentioned third category of requirements, that is, HARQ feedback conditions.
  • transmission shall be understood as: sending and/or receiving.
  • the retransmission condition includes: the first interval between the first transmission and the second transmission is greater than or equal to the first threshold. in:
  • the first transmission is a transmission related to side row data.
  • the first transfer is the transfer of sideline data that has occurred.
  • the first transmission is the latest transmission of sidelink data, or the latest transmission of a designated channel of sidelink data.
  • the first transmission is the transmission of at least one of the following channels related to sidelink data:
  • PDCCH is used to carry scheduling information corresponding to sidelink data.
  • PDCCH is sent by the base station to the terminal.
  • the PDCCH is used to carry scheduling information corresponding to the latest transmission of sidelink data.
  • the PDCCH is used to carry the scheduling information used for the initial transmission of sidelink data, such as the scheduling information of time-frequency resources that carry the initial transmission.
  • the PDCCH is used to carry the scheduling information used for the i-th retransmission of sidelink data, such as carrying the i-th retransmission. Scheduling information of time-frequency resources.
  • PSCCH is used to carry sidelink control information (Sidelink Control Information, SCI) corresponding to sidelink data.
  • SCI Sidelink Control Information
  • the first terminal sends sideline data to the second terminal, and the transmission information related to the sideline data is used to be carried in the PSCCH.
  • the PSCCH is used to carry the SCI of the latest transmission of sidelink data.
  • PSSCH is used to carry sidelink data.
  • the PSSCH is used to carry the sidelink data.
  • PSFCH is used to carry HARQ feedback information corresponding to sidelink data on the sidelink, that is, ACK/NACK information. For example, after the first terminal sends sideline data to the second terminal, the second terminal sends ACK/NACK to the first terminal through the PSFCH. For example, when the first transmission is the latest PSFCH of sidelink data, the PSFCH is used to carry the ACK/NACK of the latest transmission of sidelink data.
  • PUCCH is used to carry HARQ feedback information corresponding to sidelink data on the uplink, that is, ACK/NACK information. For example, after the first terminal sends sidelink data to the second terminal, the second terminal sends ACK/NACK to the first terminal through PSFCH, and then the first terminal sends ACK/NACK to the base station through PUCCH. For example, when the first transmission is the latest PUFCH of sidelink data, the PUCCH is used to carry the ACK/NACK of the latest transmission of sidelink data.
  • the second transmission is a transmission related to the next transmission of side row data.
  • the second transmission is a transmission that has not yet occurred.
  • the second transmission is a transmission to be performed in preparation for the subsequent side row data.
  • the second transmission is the transmission of at least one of the following channels related to sidelink data:
  • PDCCH is used to carry scheduling information corresponding to sidelink data.
  • PDCCH is sent by the base station to the terminal.
  • the PDCCH is used to carry scheduling information corresponding to the next transmission of sideline data.
  • the PDCCH is used to carry the scheduling information used for the i-th retransmission of sidelink data, such as the time-frequency resource that carries the i-th retransmission.
  • Scheduling information, i is a positive integer.
  • PSCCH is used to carry sidelink control information (Sidelink Control Information, SCI) corresponding to sidelink data.
  • SCI Sidelink Control Information
  • the first terminal sends sideline data to the second terminal, and the transmission information related to the sideline data is used to be carried in the PSCCH.
  • the PSCCH is used to carry the SCI of the next transmission of sidelink data.
  • PSSCH is used to carry sidelink data.
  • the PSSCH is used to carry the sidelink data.
  • PSFCH is used to carry HARQ feedback information corresponding to sidelink data on the sidelink, that is, ACK/NACK information. For example, after the first terminal sends sideline data to the second terminal, the second terminal sends ACK/NACK to the first terminal through the PSFCH. For example, when the second transmission is the next PSFCH of sidelink data, the PSFCH is used to carry ACK/NACK of the sidelink data of the next transmission.
  • PUCCH is used to carry HARQ feedback information corresponding to sidelink data on the uplink, that is, ACK/NACK information. For example, after the first terminal sends sidelink data to the second terminal, the second terminal sends ACK/NACK to the first terminal through PSFCH, and then the first terminal sends ACK/NACK to the base station through PUCCH. For example, when the second transmission is the next PUFCH of sidelink data, the PUCCH is used to carry ACK/NACK of the sidelink data of the next transmission.
  • At least a first interval is required between the first transmission and the second transmission. It is assumed that the first transmission is related to the i-th transmission of sideline data that has already occurred, and the second transmission is related to the i+1th transmission of sideline data that has not yet occurred.
  • the first interval includes but is not limited to at least one of the following:
  • the time interval between the PDCCH corresponding to the i-th transmission of side-link data and the PDCCH corresponding to the i+1-th transmission of side-link data; the PDCCH corresponding to the i-th transmission of side-link data and the i+1-th transmission of side-link data The time interval between the PSCCH of the ith transmission; the time interval between the PDCCH corresponding to the i-th transmission of sidelink data and the PSSCH corresponding to the i+1th transmission of sidelink data; the time interval corresponding to the i-th transmission of sidelink data
  • the time interval between the PSCCH corresponding to the i-th transmission of side-link data and the PDCCH corresponding to the i+1-th transmission of side-link data; the PSCCH corresponding to the i-th transmission of side-link data and the i+1-th transmission of side-link data The time interval between the PSCCH of the ith transmission; the time interval between the PSCCH corresponding to the i-th transmission of sidelink data and the PSSCH corresponding to the i+1th transmission of sidelink data; the time interval corresponding to the i-th transmission of sidelink data
  • the time interval between the PSSCH corresponding to the i-th transmission of side-link data and the PDCCH corresponding to the i+1-th transmission of side-link data; the PSSCH corresponding to the i-th transmission of side-link data and the i+1-th transmission of side-link data The time interval between the PSCCH of the ith transmission; the time interval between the PSSCH corresponding to the i-th transmission of sidelink data and the PSSCH corresponding to the i+1th transmission of sidelink data; the time interval corresponding to the i-th transmission of sidelink data
  • the time interval between the PSFCH corresponding to the i-th transmission of side-link data and the PDCCH corresponding to the i+1-th transmission of side-link data; the PSFCH corresponding to the i-th transmission of side-link data and the i+1-th transmission of side-link data The time interval between the PSCCH of the ith transmission; the time interval between the PSFCH corresponding to the i-th transmission of sidelink data and the PSSCH corresponding to the i+1th transmission of sidelink data; the time interval corresponding to the i-th transmission of sidelink data
  • the time interval between the PUCCH corresponding to the i-th transmission of side-link data and the PDCCH corresponding to the i+1-th transmission of side-link data; the PUCCH corresponding to the i-th transmission of side-link data and the i+1-th transmission of side-link data The time interval between the PSCCH of the ith transmission; the time interval between the PUCCH corresponding to the i-th transmission of sidelink data and the PSSCH corresponding to the i+1th transmission of sidelink data; the time interval corresponding to the i-th transmission of sidelink data
  • Condition 1 is that the first interval between the first transmission and the second transmission is greater than or equal to the first threshold.
  • the first thresholds corresponding to different first intervals may be the same, or may be different, or may not be exactly the same. For example, there are three first intervals, two of the first intervals correspond to the same first threshold, and the other first interval corresponds to a different first threshold.
  • the starting point of the first interval is determined based on the first time domain unit or the middle time domain unit or any time domain unit or the last time domain unit in the first transmission; or, the starting point of the first interval is determined based on The last time domain unit or the last x1 time domain unit before the first transmission is determined; or, the starting point of the first interval is determined based on the first time domain unit or the x2th time domain unit after the first transmission.
  • the end point of the first interval is based on the first time domain unit or the middle time domain unit or any one time domain unit or the last time domain unit in the second transmission;
  • the time domain unit includes at least one of a symbol, a symbol group, a time slot, a time slot group, a sub-frame, and a radio frame (frame), and x1 and x2 are preset values. , or, the value of the network device configuration.
  • the above starting point is determined based on the start time of the time domain unit, or based on the end time of the time domain unit.
  • the above end point is determined based on the start time of the time domain unit, or based on the end time of the time domain unit.
  • the above-mentioned first threshold is predefined by the communication protocol, or preconfigured, or configured by the network device.
  • the above-mentioned first threshold is related to the processing capability of the terminal and/or the processing capability of the base station.
  • the retransmission condition includes: the second interval between the third transmission and the second transmission is less than or equal to the second threshold (maximum retransmission interval). In some embodiments, the retransmission condition includes: the total number of transmissions between the third transmission and the second transmission is less than or equal to a third threshold (maximum number of retransmissions). In some embodiments, the retransmission condition includes: the second interval between the third transmission and the second transmission is less than or equal to the second threshold, and the total number of transmissions between the third transmission and the second transmission is less than or Less than or equal to the third threshold. In some embodiments, the second transmission counts as one of the total number of transmissions, or the second transmission does not count as one of the total number of transmissions.
  • the third transmission is the transmission related to the first transmission (initial transmission or first transmission) of the side row data.
  • the third transmission is the transmission related to the first transmission of side row data.
  • the third transmission is a transmission that has already occurred.
  • the third transmission is the transmission of at least one of the following channels related to sidelink data:
  • PDCCH is used to carry scheduling information corresponding to sidelink data.
  • PDCCH is sent by the base station to the terminal.
  • the PDCCH is used to carry scheduling information corresponding to the first transmission of sidelink data.
  • PSCCH is used to carry sidelink control information (Sidelink Control Information, SCI) corresponding to sidelink data.
  • SCI Sidelink Control Information
  • the first terminal sends sideline data to the second terminal, and the transmission information related to the sideline data is used to be carried in the PSCCH.
  • the PSCCH is used to carry the SCI of the first transmission of the sidelink transmission.
  • PSSCH is used to carry sidelink data.
  • the PSSCH is used to carry the initial transmission or the sidelink data of the first transmission.
  • PSFCH is used to carry HARQ feedback information corresponding to sidelink data on the sidelink, that is, ACK/NACK information. For example, after the first terminal sends sideline data to the second terminal, the second terminal sends ACK/NACK to the first terminal through PSFCH. For example, when the third transmission is the first PSFCH of sidelink data, the PSFCH is used to carry the ACK/NACK of the first transmission of sidelink data.
  • PUCCH is used to carry HARQ feedback information corresponding to sidelink data on the uplink, that is, ACK/NACK information. For example, after the first terminal sends sidelink data to the second terminal, the second terminal sends ACK/NACK to the first terminal through PSFCH, and then the first terminal sends ACK/NACK to the base station through PUCCH. For example, when the third transmission is the first PUFCH of sidelink data, the PUCCH is used to carry the ACK/NACK of the sidelink data of the first transmission.
  • Condition 2 is that the second interval between the third transmission and the second transmission is less than or equal to the second threshold.
  • the second thresholds corresponding to different second intervals may be the same, or may be different, or may not be exactly the same. For example, there are three second intervals, two of the second intervals correspond to the same second threshold, and the other second interval corresponds to a different second threshold.
  • the starting point of the second interval is determined based on the first time domain unit or the middle time domain unit or any time domain unit or the last time domain unit in the third transmission; or, the starting point of the second interval is determined based on The last time domain unit or the last x3 time domain unit before the third transmission is determined; or, the starting point of the second interval is determined based on the first time domain unit or the x4th time domain unit after the third transmission.
  • the end point of the second interval is based on the first time domain unit or the middle time domain unit or any one time domain unit or the last time domain unit in the second transmission;
  • the time domain unit includes at least one of a symbol, a symbol group, a slot, a slot group, a sub-frame, and a wireless frame, and x3 and x4 are preset values. , or, the value of the network device configuration.
  • the above starting point is determined based on the start time of the time domain unit, or based on the end time of the time domain unit.
  • the above end point is determined based on the start time of the time domain unit, or based on the end time of the time domain unit.
  • the above-mentioned second threshold is predefined or preconfigured by the communication protocol, dynamically configured by the network device, or determined by the terminal.
  • the above third threshold is predefined by the communication protocol, or preconfigured, or dynamically configured by the network device, or determined by the terminal.
  • the above-mentioned second threshold is related to at least one of the following factors: data priority of sidelink data; channel priority of the second transmission, channel quality, channel speed, and synchronization source type.
  • the third threshold is related to at least one of the following factors: data priority of side-link data; channel priority of the second transmission, channel quality, channel speed, and synchronization source type.
  • the higher the data priority of the side row data the larger the second threshold and/or the third threshold; the lower the data priority of the side row data, the smaller the second threshold and/or the third threshold.
  • the higher the channel priority of the second transmission the larger the second threshold and/or the third threshold; the lower the channel priority of the second transmission, the smaller the second threshold and/or the third threshold.
  • the priority is represented by a numerical value.
  • the value "0,1,2,3,4,5,6,7” is used to represent the priority.
  • the value "0” has the highest priority, and the value "7" has the lowest priority.
  • the better the channel quality the smaller the second threshold and/or the third threshold; the worse the channel quality, the larger the second threshold and/or the third threshold.
  • the faster the channel speed the smaller the second threshold and/or the third threshold; the slower the channel speed, the larger the second threshold and/or the third threshold.
  • a synchronization source is a device that can provide synchronization information, and the sender and receiver may be in different coverage areas. Therefore, the sideline communication system supports the introduction of multiple types of synchronization sources to meet the synchronization needs in different scenarios.
  • the synchronization source type includes: any one of the evolved base station (eNodeB, eNB), 5G base station (gNB), Global Navigation Satellite System (Global Navigation Satellite System, GNSS), UE, and terminal internal clock.
  • eNodeB, eNB evolved base station
  • gNB 5G base station
  • GNSS Global Navigation Satellite System
  • UE User Equipment
  • the retransmission condition includes: no ACK received.
  • no ACK of side-link data is received; or, NACK of side-link data is received; or, HARQ feedback information (ACK and NACK) of side-link data is not received; or, no HARQ feedback information (ACK and NACK) of side-link data is received.
  • the above solution supports the terminal to decide on its own whether to retransmit sideline data.
  • the network side fails to schedule the retransmission of sidelink data in time due to LBT failure, and the terminal performs retransmission of sidelink data on its own when the retransmission conditions are met.
  • the network side issues a retransmission schedule, but the terminal does not perform retransmission of sidelink data if the retransmission conditions are not met.
  • the HARQ process used when retransmitting sidelink data is calculated according to a predefined formula.
  • embodiments of the present application provide a solution in which the terminal selects the HARQ process on its own.
  • the above methods also include:
  • the terminal accurately selects the HARQ process used for retransmission of sideline data according to the selection.
  • the selection criteria include at least one of the following criteria:
  • the HARQ process containing data has priority over the HARQ process that does not contain data. That is, the terminal preferentially selects the HARQ process containing data among the candidate HARQ processes.
  • the HARQ process containing data refers to the HARQ process that contains sideline data to be sent
  • the HARQ process that does not contain data refers to the HARQ process that does not contain sideline data to be sent, or an idle HARQ process.
  • the HARQ process with higher logical channel priority takes precedence over the HARQ process with lower logical channel priority
  • the HARQ process with higher logical channel priority takes precedence over the HARQ process with lower logical channel priority. That is, the terminal preferentially selects the HARQ process with a higher logical channel priority among multiple HARQ processes containing data.
  • the HARQ process containing retransmitted data takes precedence over the HARQ process containing initially transmitted data.
  • the HARQ process containing the retransmitted data has priority over the HARQ process containing the initially transmitted data. That is, the terminal preferentially selects the HARQ process containing retransmitted data.
  • Figure 7 is a flow chart of a HARQ process selection method provided by an exemplary embodiment of the present application. This method is executed by the terminal and includes:
  • Step 302 Select a HARQ process according to the selection criteria.
  • a HARQ process is selected according to the selection criteria; the HARQ process is used for initial transmission or retransmission of sidelink data.
  • the selection criteria include at least one of the following criteria:
  • the HARQ process containing data has priority over the HARQ process that does not contain data. That is, the terminal preferentially selects the HARQ process containing data among the candidate HARQ processes.
  • the HARQ process containing data refers to the HARQ process that contains sideline data to be sent
  • the HARQ process that does not contain data refers to the HARQ process that does not contain sideline data to be sent, or an idle HARQ process.
  • the HARQ process with higher logical channel priority takes precedence over the HARQ process with lower logical channel priority
  • the HARQ process with higher logical channel priority takes precedence over the HARQ process with lower logical channel priority. That is, the terminal preferentially selects the HARQ process with a higher logical channel priority among multiple HARQ processes containing data.
  • the HARQ process containing retransmitted data takes precedence over the HARQ process containing initially transmitted data.
  • the HARQ process containing the retransmitted data has priority over the HARQ process containing the initially transmitted data. That is, the terminal preferentially selects the HARQ process containing retransmitted data.
  • Figure 8 is a block diagram of a device for retransmitting sideline data provided by an exemplary embodiment of the present application.
  • the device includes:
  • the retransmission module 402 is configured to retransmit the sidelink data based on retransmission conditions during the process of transmitting sidelink data using CG resources on the unlicensed spectrum.
  • the retransmission module 402 is configured to retransmit the sideline data based on retransmission conditions during the process of transmitting sideline data using CG resources on the licensed spectrum; the retransmission module 402 is configured to In the process of transmitting sidelink data using CG resources on the unlicensed spectrum, the sidelink data is retransmitted based on retransmission conditions.
  • the retransmission conditions include at least one of the following conditions:
  • the first interval between the first transmission and the second transmission is greater than or equal to the first threshold
  • the first transmission is a transmission related to the side row data
  • the third transmission is a transmission related to the first transmission of the side row data
  • the second transmission is a transmission related to the side row data.
  • the transmission is related to the next transmission of data
  • the ACK is the confirmation feedback of the sideline data.
  • the first transmission is a transmission of at least one of the following channels related to the sidelink data: PDCCH; PSCCH; PSSCH; PSFCH; PUCCH.
  • the second transmission is a transmission of at least one of the following channels related to the next transmission of the sidelink data: PDCCH; PSCCH; PSSCH; PSFCH; PUCCH.
  • the third transmission is a transmission of at least one of the following channels related to the first transmission of sidelink data: PDCCH; PSCCH; PSSCH; PSFCH; PUCCH.
  • the PSCCH is used to carry SCI related to the sidelink data
  • the PSSCH is used to carry the sidelink data
  • the PSFCH is used to carry ACK/NACK corresponding to the sidelink data on the sidelink link;
  • the PUCCH is used to carry ACK/NACK corresponding to the sidelink data on the uplink;
  • the PDCCH is used to carry scheduling information corresponding to the sidelink data.
  • the first interval is at least one.
  • the starting point of the first interval is determined based on the first time domain unit or the middle time domain unit or any time domain unit or the last time domain unit in the first transmission; or, the The starting point of the first interval is determined based on the last time domain unit or the last x1 time domain units before the first transmission; or, the starting point of the first interval is based on the first time domain unit after the first transmission. Or the x2th time domain unit is determined;
  • the end point of the first interval is determined based on the first time domain unit or the intermediate time domain unit or any time domain unit or the last time domain unit in the second transmission;
  • the time domain unit includes at least one of a symbol, a symbol group, a time slot, a time slot group, a subframe, and a wireless frame
  • the x1 and x2 are preset values or values configured by the network device.
  • the starting point of the second interval is determined based on the first time domain unit or the middle time domain unit or any time domain unit or the last time domain unit in the third transmission; or, the The starting point of the second interval is determined based on the last time domain unit or the last x3 time domain units before the third transmission; or, the starting point of the second interval is based on the first time domain unit after the third transmission. Or the x4th time domain unit is determined;
  • the end point of the second interval is determined based on the first time domain unit or the intermediate time domain unit or any time domain unit or the last time domain unit in the second transmission;
  • the time domain unit includes at least one of a symbol, a symbol group, a time slot, a time slot group, a subframe, and a wireless frame
  • the x3 and x4 are preset values or values configured by the network device.
  • the first threshold is predefined, preconfigured, dynamically configured, or determined by the terminal;
  • the second threshold is predefined, preconfigured, or dynamic configured, or determined by the terminal;
  • the third threshold is predefined, or preconfigured, or dynamically configured, or determined by the terminal.
  • the second threshold is related to at least one of the following factors: data priority of the sidelink data; channel priority of the second transmission; channel quality; channel speed; synchronization source type .
  • the third threshold is related to at least one of the following factors: data priority of the sidelink data; channel priority of the second transmission; channel quality; channel speed; synchronization source type .
  • the retransmissions are across CG cycles.
  • the device further includes:
  • the selection module 404 is configured to select the HARQ process used for the retransmission according to the selection criteria.
  • the selection criteria include at least one of the following criteria:
  • the HARQ process with higher logical channel priority takes precedence over the HARQ process with lower logical channel priority
  • the HARQ process containing retransmitted data takes precedence over the HARQ process containing initially transmitted data.
  • Figure 9 is a block diagram of a HARQ process selection device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the selection module 502 is used to select the HARQ process according to the selection criteria.
  • the selection module 502 is configured to select a HARQ process according to the selection criteria in the process of transmitting sidelink data on the unlicensed spectrum.
  • the device further includes a transmission module 504, configured to use the HARQ process selected by the selection module to perform initial transmission or retransmission of sideline data.
  • the selection criteria include at least one of the following criteria:
  • HARQ processes that contain data take precedence over HARQ processes that do not contain data
  • the HARQ process with higher logical channel priority takes precedence over the HARQ process with lower logical channel priority
  • HARQ processes containing retransmitted data take precedence over HARQ processes containing initially transmitted data.
  • Figure 10 shows a schematic structural diagram of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1001, a receiver 1002, a transmitter 1003, a memory 1004 and a bus 1005.
  • the processor 1001 includes one or more processing cores.
  • the processor 1001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1002 and the transmitter 1003 can be implemented as a communication component, which can be a communication chip, and the communication component can be called a transceiver.
  • the memory 1004 is connected to the processor 1001 through a bus 1005.
  • the memory 1004 can be used to store at least one instruction, and the processor 1001 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 1004 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory
  • the processor and transceiver in the sideline data retransmission device involved in the embodiment of the present application can perform the steps performed by the terminal or network device in the methods shown in the above embodiments, which will not be described again here.
  • a computer-readable storage medium in which at least one instruction, at least a program, a code set or an instruction set is stored, and the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the sideline data retransmission method provided by each of the above method embodiments, and/or the HARQ process selection method.
  • a chip is also provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is run on a computer device, it is used to implement the execution by a terminal as described in the above aspect.
  • the sideline data retransmission method, and/or the HARQ process selection method is also provided.
  • a computer program product is also provided.
  • the computer program product When the computer program product is run on a processor of a computer device, the computer device performs the sideline data retransmission method performed by a terminal as described in the above aspect. , and/or, HARQ process selection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种侧行数据的重传方法、HARQ进程的选择方法、装置、设备及存储介质,涉及侧行通信领域。所述方法包括:在使用CG资源传输侧行数据的过程中,基于重传条件对侧行数据进行重传。

Description

侧行数据的重传方法、HARQ进程的选择方法以及装置 技术领域
本申请涉及侧行通信领域,特别涉及一种侧行数据的重传方法、混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程的选择方法以及装置。
背景技术
设备到设备(Device to Device,D2D)通信是一种侧行链路(SideLink,SL)的传输技术。典型的,车联网(Vehicle to everything,V2X)使用SL来传输侧行数据。
相关技术中,在基于配置授权(Configured Grant,CG)资源传输侧行数据时,可以基于CG重传定时器执行侧行数据的重传。
发明内容
本申请实施例提供了一种侧行数据的重传方法、HARQ进程的选择方法以及装置,为侧行数据提供了一种不依赖于配置授权(Configured Grant,CG)重传定时器的重传方案。所述技术方案如下:
根据本申请的一个方面,提供了一种侧行数据的重传方法,所述方法由终端执行,所述方法包括:
在使用CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传。
可选地,所述重传条件包括如下条件中的至少一个:
第一传输到第二传输之间的第一间隔大于或大于等于第一阈值;
第三传输到所述第二传输之间的第二间隔小于或小于等于第二阈值;
所述第三传输到所述第二传输之间的总的传输次数小于或小于等于第三阈值;
未收到确认反馈ACK;
接收到否认反馈NACK;
未收到所述ACK和所述NACK;
其中,所述第一传输是与所述侧行数据相关的传输,所述第三传输是与所述侧行数据的第一次传输相关的传输,所述第二传输是与所述侧行数据的下一次传输相关的传输,所述ACK是所述侧行数据的确认反馈。
根据本申请的一个方面,提供了一种HARQ进程的选择方法,所述方法由终端执行,所述方法包括:
根据选择准则选择HARQ进程。
可选地,所述选择准则包括如下准则中的至少一种:
包含数据的HARQ进程优先于未包含数据的HARQ进程;
在包含数据的至少两个HARQ进程中,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程;
包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。
根据本申请的一个方面,提供了一种侧行数据的重传装置,所述装置包括:
重传模块,用于在使用CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传。
根据本申请的一个方面,提供了一种HARQ进程的选择装置,所述装置包括:
选择模块,用于根据选择准则选择HARQ进程。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器和存储器,所述存储器中存储有至少一段程序,所述至少一段程序由所述终端加载并执行,以实现如上所述的侧行数据的重传方法,和/或,HARQ进程的选择方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一段程序,所述至少一段程序由通信设备加载并执行以实现如上所述的侧行数据的重传方法,和/或,HARQ进程的选择方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,安装有该芯片的计算机设备用于实现如上所述的侧行数据的重传方法,和/或,HARQ进程的选择方法。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品在通信设备(的处理器)上运行时,使得通信设备执行如上所述的侧行数据的重传方法,和/或,HARQ进程的选择方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过在使用CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传,而无需依赖于CG重传定时器进行侧行数据的重传。本申请可以在不受限于CG周期或CG重传定时器的情况下,实现侧行数据的重传,甚至跨CG周期的重传。
附图说明
图1是本申请一个示例性实施例提供的通信系统的结构框图;
图2是本申请一个示例性实施例提供的侧行链路的帧结构的示意图;
图3是本申请一个示例性实施例提供的侧行链路的CG传输的调度示意图;
图4是本申请一个示例性实施例提供的侧行链路的CG重传的调度示意图;
图5是本申请一个示例性实施例提供的侧行数据的重传方法的流程图;
图6是本申请一个示例性实施例提供的侧行数据的重传方法的流程图;
图7是本申请一个示例性实施例提供的HARQ进程的选择方法的流程图;
图8是本申请一个示例性实施例提供的侧行数据的重传装置的结构框图;
图9是本申请一个示例性实施例提供的HARQ进程的选择装置的结构框图;
图10是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
V2X是未来智能交通运输系统的关键技术,主要研究基于第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)通信协议的车辆数据传输方案。V2X通信包括车与车(Vehicle to Vehicle,V2V)通信、车与路侧基础设施(Vehicle to Infrastructure,V2I)通信以及车与行人(Vehicle to People,V2P)通信等。V2X应用将改善驾驶安全性、减少拥堵和车辆能耗、提高交通效率等。V2X属于D2D通信方式的一类。D2D通信方式是一种允许不同终端之间直接进行通信的方式。
侧行链路通信是在设备到设备(DevicetoDevice,D2D)应用场景下引入,在V2X体系中进行了扩充和增强的通信方式。侧行链路是为了支持设备间直接通信而引入的新链路类型,具有较高的频谱效率和较低的传输时延。与Uu接口通信相比,侧行链路通信具有时延短,开销小等特点,非常适合用于车载设备和地理位置接近的其他周边设备进行直接通信。本申请提及的侧行链路通信,支持所有适用于侧行链路通信的场景,比如D2D和V2X中的至少一种。
随着5G移动通信技术的发展,在3GPP的R16中提出了利用5G新空口(New Radio,NR)技术来实现对新的车联网通信的服务和场景的支持,例如支持车队管理(Vehicles Platooning),感知扩展(Extended Sensors),先进驾驶(Advanced Driving),和远程驾驶(Remote Driving)等。总体来说,5G V2X能够提供更高的通信速率,更短的通信延时,更可靠的通信质量。
侧行传输系统
图1示出了本申请一个示例性实施例提供的侧行传输系统的示意图。该侧行传输系统可以包括:核心网11、接入网12和终端13。
核心网11中包括若干核心网设备。核心网设备的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,第五代移动通信技术(5th Generation,5G)NR系统的核心网中可以包括接入和移动性管理功能(Access and Mobility Management Function,AMF)实体、用户平面功能(User Plane Function,UPF)实体和会话管理功能(Session Management Function,SMF)实体等设备。
接入网12中包括若干接入网设备14。5G NR系统中的接入网可以称为新一代无线接入网(New Generation-Radio Access Network,NG-RAN)。接入网设备14是一种部署在接入网12中用以为终端13提供无线通信功能的装置。接入网设备14可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为5G基站(Next Generation Node B,gNodeB或gNB)。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端13提供无线通信功能的装置统称为接入网设备。
终端13的数量通常为多个,每一个接入网设备14所管理的小区内可以分布一个或多个终端13。终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备、移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为终端。接入网设备14与核心网设备之间通过某种空中技术相互通信,例如5G NR系统中的NG接口。接入网设备14与终端13之间通过某种空中技术互相通信,例如Uu接口。
终端13和终端13(例如车载设备与其它设备(如其它车载设备、手机、路侧单元(Road Side Unit,RSU)等))之间可以通过直连通信接口(如PC5接口)互相通信,相应地,该基于直连通信接口建立的通信链路可以称为直连链路或侧行链路(Sidelink,SL)。侧行通信即为终端与终端之间通过侧行链路直接进行通信数据传输,不同于传统的蜂窝系统中通信数据通过接入网设备接收或者发送,侧行通信具有时延短、开销小等特点,适合用于地理位置接近的两个终端(如车载设备和地理位置接近的其它周边设备)之间的通信。需要说明的是,在图1中,仅以V2X场景下的车对车通信为示例,SL技术可以应用于各种终端之间直接进行通信的场景。或者说,本申请中的终端是指任意一种利用SL技术通信的设备。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
本申请实施例中的用户设备(User Equipment,UE)与终端表达同一含义,两者可以相互替换。本申请实施例中的网络侧可以理解为接入网、核心网、接入网设备、核心网设备中的至少一种。
侧行传输模式
关于侧行通信,3GPP定义了两种侧行传输模式:第一模式和第二模式。
第一模式(又称模式A或模式1或模式3或基站调度模式):终端的传输资源是由接入网设备(如基站)分配的,终端根据接入网设备分配的传输资源在侧行链路上进行通信数据的传输,其中,接入网设备既可以为终端分配单次传输的传输资源,也称动态分配的侧行传输资源;接入网设备也可以为终端分配半静态传输的传输资源,也称半静态分配的侧行传输资源。
第二模式(又称模式B或模式2或模式4或UE自主选择资源模式):终端自行在预配置的或网络侧配置的资源池中选取传输资源进行通信数据的传输。具体地,终端可以通过侦听的方式在资源池中选取传输资源,或者通过随机选取的方式在资源池中选取传输资源。
在NR-V2X中,一个时隙的帧结构如下图2所示。图2的(a)中示出了时隙中不包括PSFCH的时隙结构;图2的(b)中示出了时隙中包括PSFCH的时隙结构。
NR-V2X中的物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)在时域上从一个时隙的第二个侧行符号开始,占用2个或3个正交频分复用(Orthogonal Frequency-Division Multiplexing,OFDM)符号,在频域上可以占用{10,12 15,20,25}个物理资源块(Physical Resource Block,PRB)。为了降低终端对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH的符号个数和PRB个数。另外,因为子信道(Sub-channel)为NR-V2X中物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个符号为保护间隔(Guard Period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作自动增益控制(Automatic Gain Control,AGC)符号,该符号上的数据通常不用于数据解调。PSSCH在频域上占据K个子信道,每个子信道包括N个连续的PRB。如下图2的(a)所示。
当时隙中包含PSFCH时,该时隙中倒数第二个和倒数第三个符号用作PSFCH传输,在PSFCH之前的一个符号用作GP符号,如下图2的(b)所示。
非授权频谱
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
侧行链路配置授权(Sidelink CG,SL CG)
NR-V2X中支持周期性业务和非周期性业务,因此,在NR-V2X系统中也支持网络设备为终端分配半静态传输资源。在R15 NR Uu系统中,为了支持超高可靠低时延通信(ultra-Reliable and Low-Latency Communication,uRLLC),引入了上行免授权调度机制,即上行配置授权(Uplink Configured Grant,ULCG)资源分配方式,在R16NR-V2X中,借鉴上行配置授权机制,引入了SL CG。如果终端被配置了侧行链路配置授权传输资源,当有侧行数据到达时,终端可以使用该侧行配置授权传输资源来传输该侧行数据,而不需要向网络设备申请传输资源。因此,侧行配置授权传输资源可以降低侧行传输的时延。侧行配置授权传输资源是周期性的传输资源。因此可以适用于周期性的侧行数据的传输,当然也可以用于传输非周期性的侧行数据。
侧行配置授权分为类型1侧行配置授权(Type-1 SLCG)和类型2侧行配置授权(Type-2 SLCG)。
(1)Type-1 SL CG。类似于Type-1 UL CG,即网络设备通过无线资源控制(Radio Resource Control,RRC)信令为终端配置侧行配置授权传输资源和传输参数。
(2)Type-2 SLCG。类似于Type-2 ULCG,即网络设备通过RRC+下行控制信息(Downlink ControlInformation,DCI)的方式为终端配置侧行配置授权传输资源。网络设备通过RRC信令为终端配置部分传输参数,通过DCI信令激活该侧行配置授权,并且该DCI用于配置侧行传输资源以及剩余传输参数。如果网络设备希望终端上报侧行反馈信息,该DCI还用于配置PUCCH传输资源。网络设备可以通过DCI释放Type-2 SL CG传输资源。
对于Type-1 SLCG,当终端接收到网络设备配置侧行配置授权传输资源的RRC信令后,即可使用该侧行配置授权对应的侧行传输资源进行侧行传输;对于Type-2 SLCG,终端接收到配置侧行配置授权传输资源的RRC信令后还不能使用该SLCG进行侧行传输,需要等到激活该Type-2SLCG的DCI后才可以使用该Type-2SLCG的侧行传输资源进行侧行传输。
对于Type-1 SL CG,网络设备通过上述RRC参数配置一个侧行配置授权周期内的传输资 源,结合SLCG的周期,即可确定周期性的侧行配置授权的传输资源,在每个周期内,最多配置3个侧行传输资源。
对于Type-2 SLCG,网络设备通过RRC信令配置部分参数,如上述配置授权索引、周期、HARQ进程数、HARQ进程偏移、一个TB能够使用侧行配置授权传输资源进行传输的最大次数等,然后通过DCI格式3-0激活该侧行配置授权,并且通过DCI格式3-0配置该侧行配置授权的传输资源。DCI格式3-0中指示侧行传输资源的信息域与DCI格式3-0动态分配侧行传输资源的方式相同。对于Type-2 SL CG,一个周期内最多配置3个侧行传输资源。
如图3所示,网络设备配置Type-2 SL CG,通过RRC信令配置周期P=100ms,通过DCI格式3-0激活该侧行配置授权,并在DCI中指示了3个侧行传输资源(PSSCH1、PSSCH2和PSSCH3),并且指示了PUCCH的传输资源。每个PSSCH传输资源有与其对应的PSFCH传输资源,PUCCH传输资源位于与PSSCH3对应的PSFCH传输资源之后。
针对侧行配置授权的重传调度
对于Type-1和Type-2 SLCG,一个侧行配置授权周期内最多配置3个侧行传输资源,而一个侧行数据最多可以传输32次,如果一个侧行数据使用一个侧行配置授权周期内的传输资源进行传输,接收端(RXUE)并没有检测成功,此时可以通过动态调度的方式为该终端分配重传资源用于重传该侧行数据。如图4所示,网络设备配置Type-2 SLCG,在PDCCH1中承载的DCI格式3-0激活该侧行配置授权,并且在每个周期内配置一个侧行传输资源及PUCCH资源,发送端(TXUE)使用侧行配置授权PSSCH1进行侧行数据的首次传输,如果接收端检测失败,则通过PSFCH1向发送端反馈NACK,发送端在PUCCH1上向网络设备上报侧行反馈信息NACK,gNB通过PDCCH2中携带的DCI格式3-0向发送端分配重传资源及PUCCH资源,发送端在重传资源PSSCH2上进行数据重传,如果接收端正确接收该数据,则通过PSFCH2向发送端反馈ACK,发送端将该ACK通过PUCCH2向网络设备上报。
当网络设备接收到发送端上报的侧行NACK时,需要通过DCI为该终端调度重传资源,在该DCI中携带的HARQ进程号用于指示该DCI调度的重传资源是用于哪个侧行数据的重传。通常,网络设备可以根据接收到携带侧行反馈信息的PUCCH资源确定侧行HARQ进程号。例如,在图4中,gNB在PUCCH1资源上接收到发送端上报的NACK,根据侧行配置授权参数PSFCH与PUCCH时间间隔(sl-PSFCH-ToPUCCH-CG-Typel),即图中B,即可确定PSFCH1的传输资源,并且确定与该PSFCH1对应的PSSCH1的传输资源,PSSCH传输资源的时域位置与HARQ进程号之间的对应关系是协议规定的,根据PSSCH1的传输资源可以确定其对应的HARQ进程号(例如该HARQ进程号为k)。因此,当网络设备在调度重传资源的DCI格式3-0中HARQ进程号设置为k时,即表示该DCI是针对HARQ进程号k的侧行数据的重传调度。需要说明的是,网络设备为侧行配置授权传输资源配置的HARQ进程号与终端使用该侧行传输资源进行侧行传输时的SCI中指示的侧行HARQ进程号可以是不同的。
在新空口系统的非授权频谱(NR Unlicensed,NR-U)通信中,接收端的干扰普遍比授权频谱严重,加之先听后说(Listen Before Talk,LBT)的影响,在某些情况下基站无法在CG定时器(configuredGrantTimer)过期前及时调度UE重传。但相关技术中针对基于CG资源的侧行数据的重传存在如下缺点:
·侧行数据的重传受限于一个CG周期内的资源,超过一个周期,只能做下一个码块(Transport Block,TB)的新传;
·一个CG周期内,可以通过配置一个小于CG资源个数的sl-CG-MaxTransNumList参数,来控制最大重传次数(即使收端一直反馈NACK);
但是,目前的CG传输方案缺少一个针对跨CG周期进行数据重传的方案,例如如何控制重传次数,如何控制传输数据的选择等。
本申请实施例提供了一种支持不依赖于CG重传定时器的重传机制。
图5示出了本申请一个示例性实施例提供的侧行数据的重传方法的流程图。该方法由第一终端执行来举例说明。该方法包括:
步骤202:在使用CG资源传输侧行数据的过程中,基于重传条件对侧行数据进行重传。
在一些实施例中,在使用授权频谱上的CG资源传输侧行数据的过程中,基于重传条件对侧行数据进行重传;在一些实施例中,在使用非授权频谱上的CG资源传输侧行数据的过程中,基于重传条件对侧行数据进行重传。
重传条件是第一终端自行判断是否需要重传的条件。重传条件为至少一个。
在一些实施例中,重传条件是不依赖于CG重传定时器的条件;或者,重传条件是与CG重传定时器是否超时无关的条件;或者,重传条件是不局限于单个CG周期的条件。
在一些实施例中,侧行数据采用码块(Transport Block,TB)作为单位来传输。本文中的侧行数据可以理解为一个TB携带的侧行数据。
在一些实施例中,结合参考图7,重传条件包括如下三类条件中的至少一类条件:
·与侧行数据的相邻两次传输之间的间隔有关的条件,也即间隔要求;
为保证UE和/或基站有足够的时间进行编解码等操作,同一个侧行数据的相邻两次传输之间应当预留一定时长。也即同一个侧行数据的相邻两次传输之间的第一间隔大于或大于等于第一阈值。假设最近一次已发生的传输为第i次传输,下一次要进行的传输为第i+1次传输,则第i次传输和第i+1次传输为同一个侧行数据的相邻两次传输。
·与侧行数据的首次传输和下一次传输之间的间隔和/或次数有关的条件,也即最大重传间隔或最大重传次数;
为防止同一个侧行数据进行无限次的重传,可设置最大重传间隔或最大重传次数。示例性的,同一个侧行数据的首次传输和下一次传输(重传)之间的第二间隔达到或超过最大重传间隔时,不进行下一次传输;和/或,同一个侧行数据的传输或重传次数达到或超过最大次数时,不进行下一次传输。
·与侧行数据的HARQ反馈有关的条件,也即表示未成功接收侧行数据的HARQ反馈;
在未收到侧行数据的ACK,或接收到侧行数据的NACK,或未接收到侧行数据的ACK和NACK的情况下,需要对侧行数据进行重传;在收到侧行数据的ACK的情况下,不需要对侧行数据进行重传。
在一些实施例中,第一终端在满足重传条件的情况下,对侧行数据进行重传;在不满足重传条件的情况下,不对侧行数据进行重传。第一终端在满足全部重传条件的情况下,对侧行数据进行重传;在不满足任意一个重传条件的情况下,不对侧行数据进行重传。
在重传条件为两个或三个的情况下,每条重传条件的判断时序不加以限定。多个重传条件可以同时判断,或先判断第i个条件,再判断第i+1个条件。
综上所述,本实施例提供的方法,通过在使用非授权频谱上的CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传,而无需依赖于CG重传定时器进行侧行数据的重传。本申请可以在不受限于CG周期或CG重传定时器的情况下,实现侧行数据的重传。
在一些实施例中,重传条件包括如下四个条件中的至少一个:
条件1:第一传输到第二传输之间的第一间隔大于或大于等于第一阈值;
条件2:第三传输到第二传输之间的第二间隔小于或小于等于第二阈值;
条件3:第三传输到第二传输之间的总的传输次数小于或小于等于第三阈值;
条件4:未收到ACK,或收到NACK,或未收到ACK和NACK;
其中,条件1属于上述第一类条件,间隔要求;条件2和条件3属于上述第二类条件,即最大传输次数/间隔;条件4属于上述第三类要求,即HARQ反馈类条件。在本文中,“传输”一词应当理解为:发送和/或接收。
针对条件1:
在一些实施例中,重传条件包括:第一传输到第二传输之间的第一间隔大于或大于等于第一阈值。其中:
第一传输是与侧行数据相关的传输。第一传输是侧行数据已经发生的传输。可选地,第一传输是侧行数据的最近一次传输,或者,侧行数据的指定信道的最近一次传输。
示例性的,第一传输是与侧行数据相关的如下至少一个信道的传输:
·PDCCH;
PDCCH用于携带与侧行数据对应的调度信息。PDCCH是由基站发送给终端的。示例性的,在第一传输是侧行数据的最近一次PDCCH的情况下,该PDCCH用于携带侧行数据的最近一次传输对应的调度信息。在最近一次传输是侧行数据的初传传输时,该PDCCH用于携带侧行数据的初传传输所使用的调度信息,比如承载初传传输的时频资源的调度信息。可选的,在最近一次传输是侧行数据的第i次重传传输时,该PDCCH用于携带侧行数据的第i次重传传输所使用的调度信息,比如承载第i次重传传输的时频资源的调度信息。
·PSCCH;
PSCCH用于携带与侧行数据对应的侧行控制信息(Sidelink Control Information,SCI)。比如,第一终端向第二终端发送侧行数据,将该侧行数据有关的传输信息用于携带在PSCCH中。示例性的,在第一传输是侧行数据的最近一次PSCCH的情况下,该PSCCH用于携带侧行传输的最近一次传输的SCI。
·PSSCH;
PSSCH用于携带侧行数据。示例性的,在第一传输是侧行数据的最近一次PSSCH的情况下,PSSCH用于携带侧行数据。
·PSFCH;
PSFCH用于携带在侧行链路上用于携带与侧行数据对应的HARQ反馈信息,也即ACK/NACK信息。比如第一终端向第二终端发送侧行数据后,第二终端通过PSFCH向第一终端发送ACK/NACK。示例性的,在第一传输是侧行数据的最近一次PSFCH的情况下,该PSFCH用于携带最近一次传输的侧行数据的ACK/NACK。
·PUCCH。
PUCCH用于携带在上行链路上用于携带与侧行数据对应的HARQ反馈信息,也即ACK/NACK信息。比如第一终端向第二终端发送侧行数据后,第二终端通过PSFCH向第一终端发送ACK/NACK,进而第一终端通过PUCCH向基站发送ACK/NACK。示例性的,在第一传输是侧行数据的最近一次PUFCH的情况下,该PUCCH用于携带最近一次传输的侧行数据的ACK/NACK。
第二传输是与侧行数据下一次传输相关的传输。可选地,第二传输是尚未发生的传输。第二传输是为侧行数据后续准备要进行的传输。
示例性的,第二传输是与侧行数据相关的如下至少一个信道的传输:
·PDCCH;
PDCCH用于携带与侧行数据对应的调度信息。PDCCH是由基站发送给终端的。示例性的,在第二传输是侧行数据的下一次PDCCH的情况下,该PDCCH用于携带侧行数据的下一次传输对应的调度信息。在下一次传输是侧行数据的第i次重传传输时,该PDCCH用于携带侧行数据的第i次重传传输所使用的调度信息,比如承载第i次重传传输的时频资源的调度信息,i为正整数。
·PSCCH;
PSCCH用于携带与侧行数据对应的侧行控制信息(Sidelink Control Information,SCI)。比如,第一终端向第二终端发送侧行数据,将该侧行数据有关的传输信息用于携带在PSCCH中。示例性的,在第二传输是侧行数据的下一次PSCCH的情况下,该PSCCH用于携带侧行 传输的下一次传输的SCI。
·PSSCH;
PSSCH用于携带侧行数据。示例性的,在第二传输是侧行数据的下一次PSSCH的情况下,PSSCH用于携带侧行数据。
·PSFCH;
PSFCH用于携带在侧行链路上用于携带与侧行数据对应的HARQ反馈信息,也即ACK/NACK信息。比如第一终端向第二终端发送侧行数据后,第二终端通过PSFCH向第一终端发送ACK/NACK。示例性的,在第二传输是侧行数据的下一次PSFCH的情况下,该PSFCH用于携带下一次传输的侧行数据的ACK/NACK。
·PUCCH。
PUCCH用于携带在上行链路上用于携带与侧行数据对应的HARQ反馈信息,也即ACK/NACK信息。比如第一终端向第二终端发送侧行数据后,第二终端通过PSFCH向第一终端发送ACK/NACK,进而第一终端通过PUCCH向基站发送ACK/NACK。示例性的,在第二传输是侧行数据的下一次PUFCH的情况下,该PUCCH用于携带下一次传输的侧行数据的ACK/NACK。
在一些示例中,第一传输和第二传输之间的需要满足至少一个第一间隔。假设第一传输与已经发生的侧行数据的第i次传输有关,第二传输与尚未发生的侧行数据的第i+1次传输有关。该第一间隔包括但不限于如下至少之一:
侧行数据的第i次传输对应的PDCCH与侧行数据的第i+1次传输的PDCCH之间的时间间隔;侧行数据的第i次传输对应的PDCCH与侧行数据的第i+1次传输的PSCCH之间的时间间隔;侧行数据的第i次传输对应的PDCCH与侧行数据的第i+1次传输的PSSCH之间的时间间隔;侧行数据的第i次传输对应的PDCCH与侧行数据的第i+1次传输的PSFCH之间的时间间隔;侧行数据的第i次传输对应的PDCCH与侧行数据的第i+1次传输的PUCCH之间的时间间隔;
侧行数据的第i次传输对应的PSCCH与侧行数据的第i+1次传输的PDCCH之间的时间间隔;侧行数据的第i次传输对应的PSCCH与侧行数据的第i+1次传输的PSCCH之间的时间间隔;侧行数据的第i次传输对应的PSCCH与侧行数据的第i+1次传输的PSSCH之间的时间间隔;侧行数据的第i次传输对应的PSCCH与侧行数据的第i+1次传输的PSFCH之间的时间间隔;侧行数据的第i次传输对应的PSCCH与侧行数据的第i+1次传输的PUCCH之间的时间间隔;
侧行数据的第i次传输对应的PSSCH与侧行数据的第i+1次传输的PDCCH之间的时间间隔;侧行数据的第i次传输对应的PSSCH与侧行数据的第i+1次传输的PSCCH之间的时间间隔;侧行数据的第i次传输对应的PSSCH与侧行数据的第i+1次传输的PSSCH之间的时间间隔;侧行数据的第i次传输对应的PSSCH与侧行数据的第i+1次传输的PSFCH之间的时间间隔;侧行数据的第i次传输对应的PSSCH与侧行数据的第i+1次传输的PUCCH之间的时间间隔;
侧行数据的第i次传输对应的PSFCH与侧行数据的第i+1次传输的PDCCH之间的时间间隔;侧行数据的第i次传输对应的PSFCH与侧行数据的第i+1次传输的PSCCH之间的时间间隔;侧行数据的第i次传输对应的PSFCH与侧行数据的第i+1次传输的PSSCH之间的时间间隔;侧行数据的第i次传输对应的PSFCH与侧行数据的第i+1次传输的PSFCH之间的时间间隔;侧行数据的第i次传输对应的PSFCH与侧行数据的第i+1次传输的PUCCH之间的时间间隔;
侧行数据的第i次传输对应的PUCCH与侧行数据的第i+1次传输的PDCCH之间的时间间隔;侧行数据的第i次传输对应的PUCCH与侧行数据的第i+1次传输的PSCCH之间的时间间隔;侧行数据的第i次传输对应的PUCCH与侧行数据的第i+1次传输的PSSCH之间的 时间间隔;侧行数据的第i次传输对应的PUCCH与侧行数据的第i+1次传输的PSFCH之间的时间间隔;侧行数据的第i次传输对应的PUCCH与侧行数据的第i+1次传输的PUCCH之间的时间间隔。
条件1为第一传输到第二传输之间的第一间隔大于或大于等于第一阈值。在第一间隔为至少两个的情况下,不同第一间隔对应的第一阈值可以相同,或可以不同,或可以不完全相同。比如第一间隔为三个,其中两个第一间隔对应的第一阈值相同,另外一个第一间隔对应的第一阈值不同。
在一些实施例中,第一间隔的起点基于第一传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;或,第一间隔的起点基于第一传输前的最后一个时域单元或最后x1个时域单元确定;或,第一间隔的起点基于第一传输后的第一个时域单元或第x2个时域单元确定。
在一些实施例中,第一间隔的终点基于第二传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元;
其中,时域单元包括符号(symbol)、符号组、时隙(slot)、时隙组、子帧(sub-frame)、无线帧(frame)中的至少一种,x1和x2是预设值,或,网络设备配置的值。
在一些实施例中,上述起点基于时域单元的开始时刻确定,或,基于时域单元的结束时刻确定。上述终点基于时域单元的开始时刻确定,或,基于时域单元的结束时刻。
在一些实施例中,上述第一阈值是通信协议预定义的,或者预配置的,或者网络设备配置的。
在一些实施例中,上述第一阈值与终端的处理能力,和/或基站的处理能力有关。
针对条件2和条件3:
在一些实施例中,重传条件包括:第三传输到第二传输之间的第二间隔小于或小于等于第二阈值(最大重传间隔)。在一些实施例中,重传条件包括:第三传输到第二传输之间的总的传输次数小于或小于等于第三阈值(最大重传次数)。在一些实施例中,重传条件包括:第三传输到第二传输之间的第二间隔小于或小于等于第二阈值,和,第三传输到第二传输之间的总的传输次数小于或小于等于第三阈值。在一些实施例中,第二传输算入总的传输次数中的一次,或者,第二传输不算入总的传输次数中的一次。
第三传输是与侧行数据的第一次传输(初传或首次传输)相关的传输。第三传输是与侧行数据第一次传输相关的传输。可选地,第三传输是已经发生的传输。
示例性的,第三传输是与侧行数据相关的如下至少一个信道的传输:
·PDCCH;
PDCCH用于携带与侧行数据对应的调度信息。PDCCH是由基站发送给终端的。示例性的,在第三传输是侧行数据的第一次PDCCH的情况下,该PDCCH用于携带侧行数据的第一次传输对应的调度信息。
·PSCCH;
PSCCH用于携带与侧行数据对应的侧行控制信息(Sidelink Control Information,SCI)。比如,第一终端向第二终端发送侧行数据,将该侧行数据有关的传输信息用于携带在PSCCH中。示例性的,在第三传输是侧行数据的第一次PSCCH的情况下,该PSCCH用于携带侧行传输的第一次传输的SCI。
·PSSCH;
PSSCH用于携带侧行数据。示例性的,在第三传输是侧行数据的第一次PSSCH的情况下,PSSCH用于携带初传或首次传输的侧行数据。
·PSFCH;
PSFCH用于携带在侧行链路上用于携带与侧行数据对应的HARQ反馈信息,也即ACK/NACK信息。比如第一终端向第二终端发送侧行数据后,第二终端通过PSFCH向第一 终端发送ACK/NACK。示例性的,在第三传输是侧行数据的第一次PSFCH的情况下,该PSFCH用于携带第一次传输的侧行数据的ACK/NACK。
·PUCCH。
PUCCH用于携带在上行链路上用于携带与侧行数据对应的HARQ反馈信息,也即ACK/NACK信息。比如第一终端向第二终端发送侧行数据后,第二终端通过PSFCH向第一终端发送ACK/NACK,进而第一终端通过PUCCH向基站发送ACK/NACK。示例性的,在第三传输是侧行数据的第一次PUFCH的情况下,该PUCCH用于携带第一次传输的侧行数据的ACK/NACK。
条件2为第三传输到第二传输之间的第二间隔小于或大于等于第二阈值。在第二间隔为至少两个的情况下,不同第二间隔对应的第二阈值可以相同,或可以不同,或可以不完全相同。比如第二间隔为三个,其中两个第二间隔对应的第二阈值相同,另外一个第二间隔对应的第二阈值不同。
在一些实施例中,第二间隔的起点基于第三传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;或,第二间隔的起点基于第三传输前的最后一个时域单元或最后x3个时域单元确定;或,第二间隔的起点基于第三传输后的第一个时域单元或第x4个时域单元确定。
在一些实施例中,第二间隔的终点基于第二传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元;
其中,时域单元包括符号(symbol)、符号组、时隙(slot)、时隙组、子帧(sub-frame)、无线帧(frame)中的至少一种,x3和x4是预设值,或,网络设备配置的值。
在一些实施例中,上述起点基于时域单元的开始时刻确定,或,基于时域单元的结束时刻确定。上述终点基于时域单元的开始时刻确定,或,基于时域单元的结束时刻。
在一些实施例中,上述第二阈值是通信协议预定义的,或者预配置的,或者网络设备动态配置的,或者终端确定的。上述第三阈值是通信协议预定义的,或者预配置的,或者网络设备动态配置的,或者终端确定的。
在一些实施例中,上述第二阈值与如下因素中的至少一种有关:侧行数据的数据优先级;第二传输的信道优先级,信道质量,信道速度,同步源类型。第三阈值与如下因素中的至少一种有关:侧行数据的数据优先级;第二传输的信道优先级,信道质量,信道速度,同步源类型。
示例性的,侧行数据的数据优先级越高,第二阈值和/或第三阈值越大;侧行数据的数据优先级越低,第二阈值和/或第三阈值越小。
示例性的,第二传输的信道优先级越高,第二阈值和/或第三阈值越大;第二传输的信道优先级越低,第二阈值和/或第三阈值越小。
在一些实施例中,优先级采用数值表示,数值越小,优先级越高;数值越大,优先级越低。比如,采用数值“0,1,2,3,4,5,6,7”来表示优先级,数值“0”的优先级最高,数值“7”的优先级最低。
示例性的,信道质量越好,第二阈值和/或第三阈值越小;信道质量越差,第二阈值和/或第三阈值越大。
示例性的,信道速度越快,第二阈值和/或第三阈值越小;信道速度越慢,第二阈值和/或第三阈值越大。
同步源是能够提供同步信息的设备,而发送端与接收端可能处于不同的覆盖范围内,因此侧行通信系统中支持引入多种类型的同步源以满足不同场景下的同步需求。示例性的,同步源类型包括:演进式基站(eNodeB,eNB)、5G基站(gNB)、全球导航卫星系统(Global Navigation SatelliteSystem,GNSS)、UE、终端内部时钟中的任意一种。不同同步源类型可以对应相同或不同的第二阈值,和/或,不同同步源类型可以对应相同或不同的第三阈值。
针对条件4:
在一些实施例中,重传条件包括:未接收到ACK。示例性的,未接收到侧行数据的ACK;或,收到侧行数据的NACK;或,未收到侧行数据的HARQ反馈信息(ACK和NACK);或,未接收到侧行数据的最近一次传输的ACK;或,收到侧行数据的最近一次传输的NACK;或,未收到侧行数据的最近一次传输的HARQ反馈信息(ACK和NACK)。
需要说明的是,上述方案支持终端自行决策是否进行侧行数据的重传。比如,网络侧因LBT失败未能及时调度侧行数据的重传,终端自行在满足重传条件时执行侧行数据的重传。又比如,网络侧下发了重传调度,但终端在不满足重传条件的情况下,不执行侧行数据的重传。
在相关技术中,侧行数据在重传时所使用的HARQ进程是按照预定义的公式计算得到的。但是为了提升重传成功率,本申请实施例提供了一种由终端自行选择HARQ进程的方案。上述方法还包括:
终端根据选择准确选择侧行数据的重传所使用的HARQ进程。示例性的,该选择准则包括如下准则中的至少一种:
·包含数据的HARQ进程优先于未包含数据的HARQ进程;
在候选HARQ进程为多个的情况下,包含数据的HARQ进程优先于未包含数据的HARQ进程。也即,终端优先选择候选HARQ进程中包含数据的HARQ进程。
其中,含数据的HARQ进程是指包含待发送的侧行数据的HARQ进程,未包含数据的HARQ进程是指未包含待发送的侧行数据的HARQ进程或者说空闲的HARQ进程。
·在包含数据的至少两个HARQ进程中,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程;
在候选HARQ进程中包含数据的HARQ进程为多个情况下,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程。也即,终端优先选择多个含数据的HARQ进程中,逻辑信道优先级高的HARQ进程。
·包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。
在候选HARQ进程中包含数据的HARQ进程为多个情况下,包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。也即,终端优先选择包含重传数据的HARQ进程。
图7是本申请一个示例性实施例提供的HARQ进程的选择方法的流程图。该方法由终端执行,该方法包括:
步骤302:根据选择准则选择HARQ进程。
在一些实施例中,在使用非授权频谱上传输侧行数据的过程中,根据选择准则选择HARQ进程;使用HARQ进程进行侧行数据的初传或重传。
在一些实施例中,该选择准则包括如下准则中的至少一种:
·包含数据的HARQ进程优先于未包含数据的HARQ进程;
在候选HARQ进程为多个的情况下,包含数据的HARQ进程优先于未包含数据的HARQ进程。也即,终端优先选择候选HARQ进程中包含数据的HARQ进程。
其中,含数据的HARQ进程是指包含待发送的侧行数据的HARQ进程,未包含数据的HARQ进程是指未包含待发送的侧行数据的HARQ进程或者说空闲的HARQ进程。
·在包含数据的至少两个HARQ进程中,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程;
在候选HARQ进程中包含数据的HARQ进程为多个情况下,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程。也即,终端优先选择多个含数据的HARQ进程中,逻辑信道优先级高的HARQ进程。
·包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。
在候选HARQ进程中包含数据的HARQ进程为多个情况下,包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。也即,终端优先选择包含重传数据的HARQ进程。
图8是本申请一个示例性实施例提供的侧行数据的重传装置的框图。该装置包括:
重传模块402,用于在使用非授权频谱上的CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传。
在一些实施例中,重传模块402,用于在使用授权频谱上的CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传;重传模块402,用于在使用非授权频谱上的CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传。
在一些实施例中,所述重传条件包括如下条件中的至少一个:
·第一传输到第二传输之间的第一间隔大于或大于等于第一阈值;
·第三传输到所述第二传输之间的第二间隔小于或小于等于第二阈值;
·所述第三传输到所述第二传输之间的总的传输次数小于或小于等于第三阈值;
·未收到ACK;
其中,所述第一传输是与所述侧行数据相关的传输,所述第三传输是与所述侧行数据的第一次传输相关的传输,所述第二传输是与所述侧行数据的下一次传输相关的传输,所述ACK是所述侧行数据的确认反馈。
在一些实施例中,所述第一传输是与所述侧行数据相关的如下至少一个信道的传输:PDCCH;PSCCH;PSSCH;PSFCH;PUCCH。
在一些实施例中,所述第二传输是与所述侧行数据的下一次传输相关的如下至少一个信道的传输:PDCCH;PSCCH;PSSCH;PSFCH;PUCCH。
在一些实施例中,所述第三传输是与所述侧行数据的第一次传输相关的如下至少一个信道的传输:PDCCH;PSCCH;PSSCH;PSFCH;PUCCH。
在一些实施例中,所述PSCCH,用于携带与所述侧行数据相关的SCI;
所述PSSCH,用于携带所述侧行数据;
所述PSFCH,用于在侧行链路上携带与所述侧行数据对应的ACK/NACK;
所述PUCCH,用于在上行链路上携带与所述侧行数据对应的ACK/NACK;
所述PDCCH,用于携带与所述侧行数据对应的调度信息。
在一些实施例中,所述第一间隔为至少一个。
在一些实施例中,所述第一间隔的起点基于所述第一传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;或,所述第一间隔的起点基于所述第一传输前的最后一个时域单元或最后x1个时域单元确定;或,所述第一间隔的起点基于所述第一传输后的第一个时域单元或第x2个时域单元确定;
所述第一间隔的终点基于所述第二传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;
其中,所述时域单元包括符号、符号组、时隙、时隙组、子帧、无线帧中的至少一种,所述x1和x2是预设值或网络设备配置的值。
在一些实施例中,所述第二间隔的起点基于所述第三传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;或,所述第二间隔的起点基于所述第三传输前的最后一个时域单元或最后x3个时域单元确定;或,所述第二间隔的起点基于所述第三传输后的第一个时域单元或第x4个时域单元确定;
所述第二间隔的终点基于所述第二传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;
其中,所述时域单元包括符号、符号组、时隙、时隙组、子帧、无线帧中的至少一种,所述x3和x4是预设值或网络设备配置的值。
在一些实施例中,所述第一阈值是预定义的,或预配置的,或动态配置的,或所述终端确定的;所述第二阈值是预定义的,或预配置的,或动态配置的,或所述终端确定的;所述第三阈值是预定义的,或预配置的,或动态配置的,或所述终端确定的。
在一些实施例中,所述第二阈值与如下因素中的至少一种有关:所述侧行数据的数据优先级;所述第二传输的信道优先级;信道质量;信道速度;同步源类型。
在一些实施例中,所述第三阈值与如下因素中的至少一种有关:所述侧行数据的数据优先级;所述第二传输的信道优先级;信道质量;信道速度;同步源类型。
在一些实施例中,所述重传是跨CG周期的。
在一些实施例中,所述装置还包括:
选择模块404,用于根据选择准则选择所述重传使用的HARQ进程。
在一些实施例中,所述选择准则包括如下准则中的至少一种:
·包含数据的HARQ进程优先于未包含数据的HARQ进程;
·在包含数据的至少两个HARQ进程中,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程;
·包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。
图9是本申请一个示例性实施例提供的HARQ进程的选择装置的框图。该装置包括:
选择模块502,用于根据选择准则选择HARQ进程。
在一些实施例中,选择模块502,用于在使用非授权频谱上传输侧行数据的过程中,根据选择准则选择HARQ进程。在一些实施例中,所述装置还包括传输模块504,用于使用所述选择模块选择的HARQ进程进行侧行数据的初传或重传。
在一些实施例中,所述选择准则包括如下准则中的至少一种:
包含数据的HARQ进程优先于未包含数据的HARQ进程;
在包含数据的至少两个HARQ进程中,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程;
包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。
需要说明的是,本实施例与上述方法实施例对应一致,对于本实施例未详细描述的内容,可以参考上述方法实施例中的细节,不再赘述。
图10示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个通信组件,该通信组件可以是一块通信芯片,该通信组件可以称为收发器。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储至少一个指令,处理器1001用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,本申请实施例涉及的侧行数据的重传设备中的处理器和收发器,可以执行上述各个实施例所示的方法中,由终端或网络设备执行的步骤,此处不再赘述。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存 储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的侧行数据的重传方法,和/或,HARQ进程的选择方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的由终端执行的侧行数据的重传方法,和/或,HARQ进程的选择方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的由终端执行的侧行数据的重传方法,和/或,HARQ进程的选择方法。

Claims (24)

  1. 一种侧行数据的重传方法,其特征在于,所述方法包括:
    在使用配置授权CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传。
  2. 根据权利要求1所述的方法,其特征在于,所述在使用配置授权CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传,包括:
    在使用非授权频谱中的CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传。
  3. 根据权利要求1所述的方法,其特征在于,所述重传条件包括如下条件中的至少一个:
    第一传输到第二传输之间的第一间隔大于或大于等于第一阈值;
    第三传输到所述第二传输之间的第二间隔小于或小于等于第二阈值;
    所述第三传输到所述第二传输之间的总的传输次数小于或小于等于第三阈值;
    未收到确认反馈ACK;
    接收到否认反馈NACK;
    未收到所述ACK和所述NACK;
    其中,所述第一传输是与所述侧行数据相关的传输,所述第三传输是与所述侧行数据的第一次传输相关的传输,所述第二传输是与所述侧行数据的下一次传输相关的传输,所述ACK是所述侧行数据的确认反馈。
  4. 根据权利要求3所述的方法,其特征在于,所述第一传输是与所述侧行数据相关的如下至少一个信道的传输:
    PDCCH;
    PSCCH;
    PSSCH;
    PSFCH;
    PUCCH。
  5. 根据权利要求3所述的方法,其特征在于,所述第二传输是与所述侧行数据的下一次传输相关的如下至少一个信道的传输:
    PDCCH;
    PSCCH;
    PSSCH;
    PSFCH;
    PUCCH。
  6. 根据权利要求3所述的方法,其特征在于,所述第三传输是与所述侧行数据的第一次传输相关的如下至少一个信道的传输:
    PDCCH;
    PSCCH;
    PSSCH;
    PSFCH;
    PUCCH。
  7. 根据权利要求4至6任一所述的方法,其特征在于,
    所述PSCCH,用于携带与所述侧行数据相关的SCI;
    所述PSSCH,用于携带所述侧行数据;
    所述PSFCH,用于在侧行链路上携带与所述侧行数据对应的ACK/NACK;
    所述PUCCH,用于在上行链路上携带与所述侧行数据对应的ACK/NACK;
    所述PDCCH,用于携带与所述侧行数据对应的调度信息。
  8. 根据权利要求3所述的方法,其特征在于,所述第一间隔为至少一个。
  9. 根据权利要求3所述的方法,其特征在于,
    所述第一间隔的起点基于所述第一传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;或,所述第一间隔的起点基于所述第一传输前的最后一个时域单元或最后x1个时域单元确定;或,所述第一间隔的起点基于所述第一传输后的第一个时域单元或第x2个时域单元确定;
    所述第一间隔的终点基于所述第二传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;
    其中,所述时域单元包括符号、符号组、时隙、时隙组、子帧、无线帧中的至少一种,所述x1和x2是预设值或网络设备配置的值。
  10. 根据权利要求3所述的方法,其特征在于,
    所述第二间隔的起点基于所述第三传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;或,所述第二间隔的起点基于所述第三传输前的最后一个时域单元或最后x3个时域单元确定;或,所述第二间隔的起点基于所述第三传输后的第一个时域单元或第x4个时域单元确定;
    所述第二间隔的终点基于所述第二传输中的第一个时域单元或中间时域单元或任意一个时域单元或最后一个时域单元确定;
    其中,所述时域单元包括符号、符号组、时隙、时隙组、子帧、无线帧中的至少一种,所述x3和x4是预设值或网络设备配置的值。
  11. 根据权利要求3所述的方法,其特征在于,
    所述第一阈值是预定义的,或预配置的,或动态配置的,或所述终端确定的;
    所述第二阈值是预定义的,或预配置的,或动态配置的,或所述终端确定的;
    所述第三阈值是预定义的,或预配置的,或动态配置的,或所述终端确定的。
  12. 根据权利要求3所述的方法,其特征在于,所述第二阈值与如下因素中的至少一种有关:
    所述侧行数据的数据优先级;
    所述第二传输的信道优先级;
    信道质量;
    信道速度;
    同步源类型。
  13. 根据权利要求3所述的方法,其特征在于,所述第三阈值与如下因素中的至少一种有关:
    所述侧行数据的数据优先级;
    所述第二传输的信道优先级;
    信道质量;
    信道速度;
    同步源类型。
  14. 根据权利要求1至13任一所述的方法,其特征在于,所述重传是跨CG周期的。
  15. 根据权利要求1至13任一所述的方法,其特征在于,所述方法还包括:
    根据选择准则选择所述重传使用的HARQ进程。
  16. 根据权利要求15所述的方法,其特征在于,所述选择准则包括如下准则中的至少一种:
    包含数据的HARQ进程优先于未包含数据的HARQ进程;
    在包含数据的至少两个HARQ进程中,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程;
    包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。
  17. 一种HARQ进程的选择方法,其特征在于,所述方法包括:
    根据选择准则选择HARQ进程。
  18. 根据权利要求17所述的方法,其特征在于,所述选择准则包括如下准则中的至少一种:
    包含数据的HARQ进程优先于未包含数据的HARQ进程;
    在包含数据的至少两个HARQ进程中,逻辑信道优先级高的HARQ进程优先于逻辑信道优先级低的HARQ进程;
    包含重传数据的HARQ进程优先于包含初传数据的HARQ进程。
  19. 一种侧行数据的重传装置,其特征在于,所述装置包括:
    重传模块,用于在使用配置授权CG资源传输侧行数据的过程中,基于重传条件对所述侧行数据进行重传。
  20. 一种HARQ进程的选择装置,其特征在于,所述装置包括:
    选择模块,用于根据选择准则选择HARQ进程。
  21. 一种终端,其特征在于,所述终端包括:处理器和存储器,所述存储器中存储有至少一段程序,所述至少一段程序由所述终端加载并执行,以实现如权利要求1至16任一所述的侧行数据的重传方法,或,权利要求17或18所述的HARQ进程的选择方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一段程序,所述至少一段程序由计算机设备加载并执行以实现如权利要求1至16任一所述的侧行数据的重传方法,或,权利要求17或18所述的HARQ进程的选择方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有至少一段程序,所述至少一段程序由计算机设备加载并执行以实现如权利要求1至16任一所述的侧行数据的重传方法,或,权利要求17或18所述的HARQ进程的选择方法。
  24. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,安装有所述芯片的设备用于实现如权利要求1至16任一所述的侧行数据的重传方法,或,权利要求17或18所述 的HARQ进程的选择方法。
PCT/CN2022/103690 2022-07-04 2022-07-04 侧行数据的重传方法、harq进程的选择方法以及装置 WO2024007123A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103690 WO2024007123A1 (zh) 2022-07-04 2022-07-04 侧行数据的重传方法、harq进程的选择方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103690 WO2024007123A1 (zh) 2022-07-04 2022-07-04 侧行数据的重传方法、harq进程的选择方法以及装置

Publications (1)

Publication Number Publication Date
WO2024007123A1 true WO2024007123A1 (zh) 2024-01-11

Family

ID=89454706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103690 WO2024007123A1 (zh) 2022-07-04 2022-07-04 侧行数据的重传方法、harq进程的选择方法以及装置

Country Status (1)

Country Link
WO (1) WO2024007123A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092923A1 (zh) * 2019-11-15 2021-05-20 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2021168659A1 (zh) * 2020-02-25 2021-09-02 Oppo广东移动通信有限公司 信息发送方法、信息接收方法、装置、设备及存储介质
CN113517960A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 通信方法及装置
US20220078881A1 (en) * 2020-09-09 2022-03-10 FG Innovation Company Limited Method and user equipment for hybrid automatic repeat request process operation in non-terrestrial network
CN114467348A (zh) * 2019-10-03 2022-05-10 鸿颖创新有限公司 用于处理在配置上行链路授权资源上的重传的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467348A (zh) * 2019-10-03 2022-05-10 鸿颖创新有限公司 用于处理在配置上行链路授权资源上的重传的方法和装置
WO2021092923A1 (zh) * 2019-11-15 2021-05-20 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2021168659A1 (zh) * 2020-02-25 2021-09-02 Oppo广东移动通信有限公司 信息发送方法、信息接收方法、装置、设备及存储介质
CN113517960A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 通信方法及装置
US20220078881A1 (en) * 2020-09-09 2022-03-10 FG Innovation Company Limited Method and user equipment for hybrid automatic repeat request process operation in non-terrestrial network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on multiple configured grants", 3GPP DRAFT; R2-2000202, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200224 - 20200228, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051848855 *

Similar Documents

Publication Publication Date Title
US20230189330A1 (en) Method for indicating the allocated resources for a harq message in a random access procedure for a low-complexity, narrowband terminal
WO2020029279A1 (zh) 车联网设备之间的反馈信息传输方法、装置及系统
WO2020029278A1 (zh) 车联网设备之间的反馈信息传输方法、装置及系统
US20240040552A1 (en) Terminal and communication method
WO2017128757A1 (zh) 一种通信方法及通信装置
CN111511027B (zh) 业务传输的方法和装置
WO2018133839A1 (zh) 一种上行信道的功率分配方法及装置
WO2021062602A1 (en) Method and apparatus for sharing channel occupancy time on unlicensed spectrum
WO2017036342A1 (zh) 一种发送数据包的方法及装置
CN110168982B (zh) 用于自适应多harq实体设计的系统和方法
WO2021204218A1 (zh) 一种harq信息传输方法及装置
CN115699988A (zh) 支持无线通信系统中的侧链路的不连续接收的方法和设备
CN111147202A (zh) 一种车联网的数据传输方法、发送终端和网络侧设备
CN109392137B (zh) 一种数据发送、接收方法及装置
WO2024007123A1 (zh) 侧行数据的重传方法、harq进程的选择方法以及装置
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
CN113517960B (zh) 通信方法及装置
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2022205365A1 (zh) 激活时间的确定方法、装置、设备及存储介质
CN113630891B (zh) Mac层优先级排序方法及装置、存储介质、用户设备
WO2023010579A1 (zh) 一种harq-ack码本的反馈方法及装置、通信设备
WO2023092592A1 (en) Methods and apparatuses of resource allocation for sidelink communication
WO2021008421A1 (zh) 一种通信方法和装置
US20240039680A1 (en) Feedback Procedures for SL Power Saving UEs
WO2021146968A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949714

Country of ref document: EP

Kind code of ref document: A1