WO2024005275A1 - Method for evaluating antibiotic susceptibility in human body using strem-1 - Google Patents

Method for evaluating antibiotic susceptibility in human body using strem-1 Download PDF

Info

Publication number
WO2024005275A1
WO2024005275A1 PCT/KR2022/017165 KR2022017165W WO2024005275A1 WO 2024005275 A1 WO2024005275 A1 WO 2024005275A1 KR 2022017165 W KR2022017165 W KR 2022017165W WO 2024005275 A1 WO2024005275 A1 WO 2024005275A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibiotic
blood
strem
over time
human body
Prior art date
Application number
PCT/KR2022/017165
Other languages
French (fr)
Korean (ko)
Inventor
이재혁
Original Assignee
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220130020A external-priority patent/KR20240002659A/en
Application filed by 서울대학교병원 filed Critical 서울대학교병원
Publication of WO2024005275A1 publication Critical patent/WO2024005275A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/535Production of labelled immunochemicals with enzyme label or co-enzymes, co-factors, enzyme inhibitors or enzyme substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method for evaluating antibiotic susceptibility in the human body, and more specifically, to a method for evaluating antibiotic susceptibility in the human body using sTREM-1.
  • Sepsis is a fatal infectious disease in which a local infection caused by bacteria at a wound or inflamed area progresses into a systemic inflammatory response. Sepsis is a disease with a very high mortality and morbidity rate if it is not recognized quickly and treated appropriately, and is the most important cause of death in intensive care units.
  • antibiotics are mostly selected empirically and administered to patients based on the patient's demographic characteristics, underlying disease, and infection site. The appropriateness of the empirically selected antibiotic can be confirmed from changes in the patient's condition over the next few days, or can be confirmed by performing in vitro antibiotic sensitivity testing when the pathogen is identified through culture testing.
  • the identification ability or yield rate for the causative bacteria of infectious diseases is very low, about 20-40%, and it takes 3 to 5 days, up to a week or more, to obtain test results, so it is used in emergency diseases such as sepsis. Adjusting or changing antibiotics through culture tests is clinically very difficult.
  • the inventor of the present application developed a biomarker that can evaluate antibiotic susceptibility through reactions in the human body and completed the present invention.
  • the problem to be solved by the present invention is to provide a method for evaluating antibiotic susceptibility in the human body using sTREM-1.
  • the method for assessing antibiotic susceptibility according to an embodiment of the present invention to achieve the above problem is to measure antibiotic susceptibility in the human body (in Includes methods for evaluating in vivo antibiotic susceptibility.
  • the infectious disease may be sepsis.
  • the blood concentration of sTREM-1 in the blood collected from the human body is measured to be 30 - 320 ng/mL and 390 - 1580 ng/mL, it is classified as a susceptible antibiotic and a resistant antibiotic, respectively. can be judged.
  • the antibiotic is judged to be susceptible and resistant, respectively. You can.
  • the antibiotic is judged to be susceptible and resistant, respectively. You can.
  • the method for evaluating antibiotic susceptibility in the human body according to the present invention has the following excellent effects.
  • sTREM-1 soluble Triggering Receptor Expressed on Myeloid cells-1
  • sTREM-1 is previously known as an inflammatory marker and its expression level is known to increase in the serum of patients with inflammatory diseases.
  • sTREM-1 is not used as an inflammatory marker, but rather as an evaluation tool for in vivo antibiotic susceptibility.
  • sTREM-1 used in the antibiotic susceptibility evaluation of the present invention has a short half-life of about 2 hours and responds characteristically to bacterial infection, it was confirmed that the blood concentration of sTREM-1 varies significantly within a short period of time depending on the appropriateness of the antibiotic. It has been done. For example, by measuring the blood concentration of sTREM-1 within 2 to 5 hours after administering any antibiotic to a patient with an infectious disease, it is possible to evaluate whether the antibiotic is susceptible or resistant to the antibiotic. Therefore, the method for evaluating antibiotic susceptibility in the human body according to the present invention can evaluate antibiotic suitability in a shorter time compared to antibiotic susceptibility testing through existing culture.
  • the present invention provides a method for evaluating antibiotic susceptibility in vivo. For example, according to the present invention, after administering any antibiotic to a patient with an infectious disease, the blood concentration of sTREM-1 is measured in blood collected from the patient and the appropriateness of the antibiotic is judged based on the concentration, so the appropriateness of the antibiotic can be checked. can be judged accurately.
  • antibiotics are empirically administered to patients with infectious diseases, but according to the present invention, the appropriateness of the antibiotic can be quickly evaluated and the antibiotics preemptively adjusted according to the results, thereby improving the patient's prognosis.
  • many clinicians have always felt burdened about the appropriateness of empirically prescribed antibiotics, but the method for evaluating antibiotic susceptibility in the human body according to the present invention can relieve this psychological burden.
  • the appropriateness of antibiotics can be confirmed within a few hours, preventing the abuse of a wide range of antibiotics and creating a safer society by reducing the occurrence of resistant bacteria.
  • Figure 1 is a diagram showing an experimental method of a porcine bacteremia model according to an embodiment of the present invention.
  • Figures 2A to 2F are graphs measuring hemodynamic changes over time.
  • Figures 3A to 3E are graphs measuring changes in fluid administration and vasopressor usage over time.
  • Figures 4a to 4f are graphs measuring changes in blood cell count over time.
  • Figures 5A to 5F are graphs measuring relevant values to evaluate organ failure by the porcine bacteremia model of the present invention.
  • Figures 6a to 6f are graphs comparing trends in SOFA scores in the porcine bacteremia model of the present invention.
  • Figure 7 is a diagram showing blood culture test results over time.
  • Figures 8A to 8K are graphs measuring blood concentrations of various biomarkers over time.
  • the method for assessing antibiotic susceptibility is to measure the blood concentration of sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells-1) in blood collected from a human body administered antibiotics for infectious diseases. You can determine your antibiotic susceptibility (in vivo antibiotic susceptibility).
  • the infectious disease may be bacteremia or sepsis.
  • the blood concentration of sTREM-1 in blood collected from the human body is measured to be 30 to 320 ng/mL, it can be judged to be a susceptible antibiotic, and 390 to 1580 ng/mL. If measured in mL, it can be judged to be a resistant antibiotic.
  • the blood concentration of sTREM-1 in blood collected from the human body is measured to be 80 - 260 ng/mL, it can be judged to be a susceptible antibiotic, and 390 - 970 ng/mL. If measured as , it can be judged as a resistant antibiotic.
  • the blood concentration of sTREM-1 in blood collected from the human body is measured to be 30 - 320 ng/mL, it can be judged to be a susceptible antibiotic, and 510 - 1580 ng/mL. If measured as , it can be judged as a resistant antibiotic.
  • a preclinical ⁇ porcine bacteremia model> induced by intravenous administration of ESBL-producing E. coli was used.
  • the pig bacteremia model consists of a ⁇ susceptible antibiotic treatment group> administered a susceptible antibiotic (ertapenem) against ESBL-producing E. coli, and a ⁇ resistant antibiotic treatment group> administered a resistant antibiotic (ceftriaxone) against ESBL-producing E. coli. > was assigned.
  • a 6-Fr arterial catheter (Merit Medical, South Jordan, UT, USA) was inserted into the femoral artery using ultrasound.
  • a Swan-Ganz catheter (Model 131HF, 7 Fr; Edwards Lifesciences, Irvine, CA, USA) was inserted into the right jugular vein to monitor cardiac output and pulmonary capillary wedge pressure (PCWP). ) was inserted into.
  • a central venous catheter (ARROW CVC; Teleflex, Morrisville, NC, USA) was inserted into the left jugular vein for intravenous administration of fluids and vasopressors. Suprapubic cystostomy was performed, and a Foley catheter was inserted to monitor urine output. After the above aseptic procedure, blood samples containing cultures were obtained from the arterial catheter.
  • FIG 1 is a diagram showing an experimental method of a porcine bacteremia model according to an embodiment of the present invention.
  • ESBL extended-spectrum ⁇ -lactamase
  • Escherichia coli 5.0 ⁇ 10 9 CFU, strain: BAA-196, ATCC, Manassas, VA, USA
  • It was diluted in 1000 mL of normal saline and injected intravenously into the subject for 1 hour (the starting point of bacterial injection corresponds to “Pre” in Figure 1).
  • Pigs were monitored for up to 7 hours after completion of bacterial infusion, with the primary goal being to maintain mean arterial pressure (MAP) above 65 mmHg.
  • Balanced crystalloid solution (Plasma Solution A, HK inno. N, Seoul, Korea) was administered when mean arterial pressure (MAP) was less than 65 mmHg.
  • Vasopressors were administered sequentially.
  • Hemodynamic parameters such as arterial blood pressure, heart rate (HR), lead II electrocardiographic variables, pulse oximetry variables, pulmonary arterial pressure, and central venous pressure. Variables were continuously acquired and recorded hourly. Cardiac output was measured every hour using the thermodilution technique and the median value was calculated. Using blood samples obtained via femoral artery catheter, P/F ratio (ratio of partial pressure of oxygen to fraction of inspired oxygen), electrolyte and lactate variables (Nova CCX; Nova, Waltham, MA, USA), and complete blood count.
  • P/F ratio ratio of partial pressure of oxygen to fraction of inspired oxygen
  • electrolyte and lactate variables Nova CCX; Nova, Waltham, MA, USA
  • Arterial blood gas analysis including (Hemavet 950FS; Drew Scientific Inc, Miami Lakes, FL, USA) and chemistry panel tests (albumin, creatinine, and bilirubin; VetScan; Abaxis, Union City, CA, USA) were performed at baseline. , performed at 1 hour, 3 hours, 5 hours, and 7 hours. Based on hemodynamic and laboratory variables, the sequential organ failure assessment score (SOFA score) was calculated to evaluate organ failure and prognosis.
  • SOFA score sequential organ failure assessment score
  • Blood samples (20 mL) for culture were collected at baseline, 0 hours, 1 hour, 3 hours, 5 hours, and 7 hours and cultured in paired aerobic and anaerobic blood culture bottles (BD BACTEC; Becton Dickinson, Franklin Lakes, NJ; USA) was injected. A pair of blood culture bottles were then transferred without delay to the microbiology laboratory's blood culture system (BD BACTEC FX; Becton Dickinson, Franklin Lakes, NJ, USA). Final blood culture reports were obtained from the Department of Laboratory Medicine microbiology laboratory.
  • cytokine analysis additional blood samples (10 ml) were collected in EDTA tubes (BD Vacutainer Systems; Becton Dickinson, Franklin Lakes, NJ. USA) at baseline, 1 hour, 3 hours, 5 hours, and 7 hours. did. The collected blood samples were centrifuged at 3000 rpm for 15 minutes, and the upper layer of plasma was separated and stored in a deep freezer at -70°C until analysis.
  • EDTA tubes BD Vacutainer Systems; Becton Dickinson, Franklin Lakes, NJ. USA
  • cytokines TNF- ⁇ , IL-1 ⁇ , IL-6, IL-8, IL-10
  • CRP C-reactive protein
  • procalcitonin presepsin, heparan sulfate, syndecan, and sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells-1) levels were measured.
  • Variables are described as median and interquartile range. Two-way RM ANOVA was performed to compare variable trends between the two treatment groups. P values less than 0.05 were considered significant. Statistical analysis and graph generation were performed using Prism 9.2 (GraphPad Software Inc., San Diego, CA, USA).
  • pigs administered antibiotics were classified as ⁇ susceptible antibiotic treatment group>, and six pigs administered antibiotics (ceftriaxone) were classified as ⁇ resistant antibiotic treatment group>.
  • Figures 2A to 2F are graphs measuring hemodynamic changes over time. Specifically, Figure 2a is a graph measuring mean arterial pressure (MAP) over time. Figure 2b is a graph measuring heart rate (HR) over time. Figure 2c is a graph measuring cardiac output over time. Figure 2d is a graph measuring stroke volume over time. Figure 2e is a graph measuring systemic vascular resistance (SVR) over time. Figure 2f is a graph measuring PCWP (pulmonary capillary wedge pressure) over time.
  • MAP mean arterial pressure
  • HR heart rate
  • Figure 2c is a graph measuring cardiac output over time.
  • Figure 2d is a graph measuring stroke volume over time.
  • Figure 2e is a graph measuring systemic vascular resistance (SVR) over time.
  • Figure 2f is a graph measuring PCWP (pulmonary capillary wedge pressure) over time.
  • SVR systemic vascular resistance
  • Figures 3A to 3E are graphs measuring changes in fluid administration and vasopressor usage over time. Specifically, Figure 3a is a graph showing the amount of fluid per hour required to maintain average arterial pressure above 65 mmHg over time. Figure 3b is a graph showing the cumulative amount of fluid required to maintain average arterial pressure above 65 mmHg over time. Figure 3c is a graph showing the dose of norepinephrine vasopressor required to maintain average arterial pressure above 65 mmHg over time. Figure 3d is a graph showing the dosage of vasopressin vasopressor required to maintain average arterial pressure above 65 mmHg over time. Figure 3e is a graph showing the dosage of epinephrine vasopressor required to maintain average arterial pressure above 65 mmHg over time.
  • Figures 4a to 4f are graphs measuring changes in blood cell count over time. Specifically, Figure 4a is a graph measuring hemoglobin (Hb) levels over time. Figure 4b is a graph measuring total white blood cell (WBC) count over time. Figure 4c is a graph measuring the number of neutrophils over time. Figure 4d is a graph measuring the number of lymphocytes over time. Figure 4e is a graph measuring the number of monocytes over time. Figure 4f is a graph measuring the number of platelets over time.
  • Hb hemoglobin
  • WBC white blood cell
  • Figures 5A to 5F are graphs measuring relevant values to evaluate organ failure by the porcine bacteremia model of the present invention. Specifically, Figure 5a is a graph measuring lactate over time. Figure 5b is a graph measuring creatinine over time. Figure 5c is a graph measuring bilirubin over time. Figure 5d is a graph measuring urine output over time. Figure 5e is a graph measuring the P/F ratio over time. Figure 5f is a graph measuring albumin over time.
  • Figures 6a to 6f are graphs comparing trends in SOFA scores in the porcine bacteremia model of the present invention. Specifically, Figure 6a is a graph showing the total SOFA score over time. Figure 6b is a graph showing the SOFA score for the respiratory system over time. Figure 6c is a graph showing SOFA scores for coagulation over time. Figure 6d is a graph showing the SOFA score for the liver over time. Figure 6e is a graph showing the SOFA score for cardiovascular (cardiovascular) over time. Figure 6f is a graph showing SOFA scores for renal over time.
  • FIG. 7 is a diagram showing blood culture test results over time.
  • E. coli was identified in all samples at the time of completion of E. coli injection (0h) and up to 1 hour after completion of injection (1h).
  • One hour after antibiotic administration i.e., 2 hours after E. coli injection
  • blood culture tests showed that all groups treated with susceptible antibiotics (ertapenem) were negative, and all groups treated with resistant antibiotics (ceftriaxone) were confirmed positive. .
  • Figures 8A to 8K are graphs measuring blood concentrations of various biomarkers over time. Specifically, Figure 8a is a graph measuring the blood concentration of TNF- ⁇ over time. Figure 8b is a graph measuring the blood concentration of IL-1 ⁇ over time. Figure 8c is a graph measuring the blood concentration of IL-6 over time. Figure 8d is a graph measuring the blood concentration of IL-8 over time. Figure 8e is a graph measuring the blood concentration of IL-10 over time. Figure 8f is a graph measuring the blood concentration of CRP (C-reactive protein) over time. Figure 8g is a graph measuring the blood concentration of procalcitonin over time.
  • CRP C-reactive protein
  • Figure 8h is a graph measuring the blood concentration of presepsin over time.
  • Figure 8i is a graph measuring the blood concentration of heparan sulfate over time.
  • Figure 8j is a graph measuring the blood concentration of syndecan over time.
  • Figure 8k is a graph measuring the blood concentration of sTREM-1 over time.
  • the blood concentration of sTREM-1 2 hours after antibiotic administration i.e., 3 hours after E. coli administration
  • the treatment group it was measured at 390-970 ng/mL.
  • the blood concentration of sTREM-1 4 hours after antibiotic administration i.e., 5 hours after E. coli administration
  • the blood concentration of sTREM-1 was confirmed to have a significant difference within a short period of time after antibiotic treatment between the susceptible antibiotic treatment group and the resistant antibiotic treatment group.
  • sTREM-1 is an amplifier of the innate immune response whose membrane-bound form (TREM-1) is expressed in neutrophils, mature monocytes, and macrophages. Lipopolysaccharide stimulation induces upregulation of TREM-1 in monocytes and neutrophils, which then releases the soluble form of TREM-1 in the blood through cleavage of the membrane-bound receptor. Activation of TREM-1 creates neutrophil extracellular trap (NET) structures, and inhibition of TREM-1 reduces NET release, resulting in endothelial cell activation and vascular dysfunction.
  • NET neutrophil extracellular trap

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A method for evaluating antibiotic susceptibility in a human body using sTREM-1 is provided. The evaluation method can determine in vivo antibiotic susceptibility by measuring a blood concentration of soluble Triggering Receptor Expressed on Myeloid cells-1 (sTREM-1) in blood collected from a human body administered with antibiotics for infectious diseases.

Description

STREM-1을 이용한 인체내 항생제 감수성의 평가 방법Method for evaluating antibiotic susceptibility in the human body using STREM-1
본 발명은 인체내 항생제의 감수성을 평가하는 방법에 관한 것으로서, 더욱 상세하게는 sTREM-1을 이용한 인체내 항생제 감수성의 평가 방법에 관한 것이다.The present invention relates to a method for evaluating antibiotic susceptibility in the human body, and more specifically, to a method for evaluating antibiotic susceptibility in the human body using sTREM-1.
패혈증(sepsis)은 상처나 염증 부위에서 세균에 의한 국소 감염이 전신에 걸친 염증 반응으로 진행하는 치명적인 감염질환을 말한다. 패혈증은 초기에 빠르게 인지하고 적절한 처치를 시행하지 않으면 사망률 및 유병률이 매우 높은 질환이며, 중환자실 사망의 가장 중요한 원인이다. Sepsis is a fatal infectious disease in which a local infection caused by bacteria at a wound or inflamed area progresses into a systemic inflammatory response. Sepsis is a disease with a very high mortality and morbidity rate if it is not recognized quickly and treated appropriately, and is the most important cause of death in intensive care units.
세균 감염으로 인한 패혈증의 경우, 1시간 이내에 빠르게 항생제를 투여하는 것이 권고되고 있다. 항생제 투여 시간이 1시간 지체될 때마다 약 7.5%의 사망률이 증가하는 것으로 알려져 있기 때문에, 항생제의 빠른 투여는 패혈증 환자의 사망률을 낮추는 가장 효과적인 방안이다.In the case of sepsis caused by bacterial infection, it is recommended to quickly administer antibiotics within 1 hour. Since it is known that the mortality rate increases by approximately 7.5% for each hour of delay in antibiotic administration, rapid administration of antibiotics is the most effective way to reduce the mortality rate of sepsis patients.
한편 많은 논문들에 따르면 초기에 부적절한 항생제의 투여는 환자의 상태를 오히려 악화시킬 수 있다고 보고되기 때문에, 적절한 항생제의 선택도 환자의 치료에 있어서 중요한 부분이다. 원인병원균을 타겟으로 한 적절한 항생제가 투여되는 것이 바람직하지만, 환자의 인구학적 특징, 기저질환, 감염병소 등을 기준으로 대부분 경험적으로 항생제가 선택되어 환자에게 투여되고 있는 실정이다. 이처럼 경험적으로 선택된 항생제의 적절성은 향후 수 일에 걸쳐 환자 상태 변화로부터 확인될 수 있거나, 배양검사를 통해 병원균이 동정되면 체외에서 항생제 감수성 검사(antibiotic sensitivity testing)를 시행하여 확인될 수 있다.Meanwhile, according to many papers, the initial administration of inappropriate antibiotics can actually worsen the patient's condition, so selection of appropriate antibiotics is also an important part of patient treatment. Although it is desirable to administer appropriate antibiotics targeting the causative pathogen, antibiotics are mostly selected empirically and administered to patients based on the patient's demographic characteristics, underlying disease, and infection site. The appropriateness of the empirically selected antibiotic can be confirmed from changes in the patient's condition over the next few days, or can be confirmed by performing in vitro antibiotic sensitivity testing when the pathogen is identified through culture testing.
여기서 기존 배양검사의 경우, 감염질환의 원인균에 대한 동정능력 또는 수득률이 20-40% 정도로 매우 낮고 검사 결과를 얻기까지 3 내지 5일, 길게는 1주일 이상 소요되기 때문에, 패혈증과 같은 응급질환에서 배양검사를 통해 항생제를 조절하거나 변경하는 것은 임상적으로 매우 어려운 일이다.Here, in the case of existing culture tests, the identification ability or yield rate for the causative bacteria of infectious diseases is very low, about 20-40%, and it takes 3 to 5 days, up to a week or more, to obtain test results, so it is used in emergency diseases such as sepsis. Adjusting or changing antibiotics through culture tests is clinically very difficult.
이에 본 출원의 발명자는 오랜 연구와 노력을 기울인 끝에 인체내 반응을 통해 항생제의 감수성을 평가할 수 있는 바이오마커를 개발하여 본 발명을 완성하게 되었다.Accordingly, after extensive research and effort, the inventor of the present application developed a biomarker that can evaluate antibiotic susceptibility through reactions in the human body and completed the present invention.
본 발명이 해결하고자 하는 과제는, sTREM-1을 이용한 인체내 항생제 감수성의 평가 방법을 제공하고자 하는 것이다.The problem to be solved by the present invention is to provide a method for evaluating antibiotic susceptibility in the human body using sTREM-1.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below. will be.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 항생제 감수성의 평가 방법은, 감염성 질환에 대한 항생제가 투여된 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도를 측정하여 인체내 항생제 감수성(in vivo antibiotic susceptibility)을 평가하는 방법을 포함한다.The method for assessing antibiotic susceptibility according to an embodiment of the present invention to achieve the above problem is to measure antibiotic susceptibility in the human body (in Includes methods for evaluating in vivo antibiotic susceptibility.
상기 감염성 질환은 패혈증일 수 있다.The infectious disease may be sepsis.
상기 항생제 투여 후 2 - 4시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 30 - 320 ng/mL 및 390 - 1580 ng/mL로 측정되는 경우에 각각 감수성 항생제 및 내성 항생제로 판단될 수 있다.2 - 4 hours after administration of the antibiotic, if the blood concentration of sTREM-1 in the blood collected from the human body is measured to be 30 - 320 ng/mL and 390 - 1580 ng/mL, it is classified as a susceptible antibiotic and a resistant antibiotic, respectively. can be judged.
상기 항생제 투여 후 2시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 80 - 260 ng/mL 및 390 - 970 ng/mL로 측정되는 경우에 각각 감수성 항생제 및 내성 항생제로 판단될 수 있다.2 hours after administration of the antibiotic, if the blood concentration of sTREM-1 in the blood collected from the human body is measured to be 80 - 260 ng/mL and 390 - 970 ng/mL, the antibiotic is judged to be susceptible and resistant, respectively. You can.
상기 항생제 투여 후 4시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 30 - 320 ng/mL 및 510 - 1580 ng/mL로 측정되는 경우에 각각 감수성 항생제 및 내성 항생제로 판단될 수 있다.Four hours after administration of the antibiotic, if the blood concentration of sTREM-1 in the blood collected from the human body is measured to be 30 - 320 ng/mL and 510 - 1580 ng/mL, the antibiotic is judged to be susceptible and resistant, respectively. You can.
기타 실시예들의 구체적인 사항들은 구체적인 내용 및 도면들에 포함되어 있다.Details of other embodiments are included in the detailed description and drawings.
상술한 바와 같이 본 발명에 따른 인체내 항생제 감수성의 평가 방법에 의하면 다음과 같은 우수한 효과가 있다.As described above, the method for evaluating antibiotic susceptibility in the human body according to the present invention has the following excellent effects.
sTREM-1(soluble Triggering Receptor Expressed on Myeloid cells-1)은 기존에 염증 표지자로 알려져 있으며 염증성 질환 환자의 혈청에서 그 발현량이 증가하는 것으로 알려져 있다. 이에 반해, 본 발명에서는 sTREM-1을 염증 표지자로 사용하는 것이 아니라 인체내 항생제 감수성(in vivo antibiotic susceptibility)의 평가 도구로 사용한다. sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells-1) is previously known as an inflammatory marker and its expression level is known to increase in the serum of patients with inflammatory diseases. In contrast, in the present invention, sTREM-1 is not used as an inflammatory marker, but rather as an evaluation tool for in vivo antibiotic susceptibility.
본 발명의 항생제 감수성 평가에 사용된 sTREM-1은 반감기가 2시간 정도로 짧고 세균 감염에 특징적으로 반응하기 때문에, 항생제의 적절성에 따라 sTREM-1의 혈중 농도가 빠른 시간 내에 유의한 차이를 가지는 것으로 확인되었다. 예를 들어, 감염성 질환 환자에게 임의의 항생제를 투여한 후 2 내지 5시간 내에 sTREM-1의 혈중 농도를 측정함으로써 감수성 항생제인지 또는 내성 항생제인지를 평가할 수 있다. 따라서 본 발명에 따른 인체내 항생제 감수성 평가 방법은 기존 배양을 통한 항생제 감수성 검사와 비교하여 빠른 시간 내에 항생제 적절성을 평가할 수 있다.Since sTREM-1 used in the antibiotic susceptibility evaluation of the present invention has a short half-life of about 2 hours and responds characteristically to bacterial infection, it was confirmed that the blood concentration of sTREM-1 varies significantly within a short period of time depending on the appropriateness of the antibiotic. It has been done. For example, by measuring the blood concentration of sTREM-1 within 2 to 5 hours after administering any antibiotic to a patient with an infectious disease, it is possible to evaluate whether the antibiotic is susceptible or resistant to the antibiotic. Therefore, the method for evaluating antibiotic susceptibility in the human body according to the present invention can evaluate antibiotic suitability in a shorter time compared to antibiotic susceptibility testing through existing culture.
종래 항생제 감수성 검사는 보통 의학 연구실에서 세균을 배양한 후 항생제에 노출시킴으로써 체외(in vitro)에서 시행되지만, 본 발명은 인체내(in vivo) 항생제 감수성의 평가 방법을 제공한다. 예를 들어, 본 발명에 따르면 감염성 질환 환자에게 임의의 항생제를 투여한 후 환자로부터 채취된 혈액에서 sTREM-1의 혈중 농도를 측정하고 그 농도에 따라 항생제의 적절성을 판단하기 때문에, 항생제 적절성을 보다 정확하게 판단할 수 있다.Conventional antibiotic susceptibility testing is usually performed in vitro by culturing bacteria in a medical laboratory and exposing them to antibiotics, but the present invention provides a method for evaluating antibiotic susceptibility in vivo. For example, according to the present invention, after administering any antibiotic to a patient with an infectious disease, the blood concentration of sTREM-1 is measured in blood collected from the patient and the appropriateness of the antibiotic is judged based on the concentration, so the appropriateness of the antibiotic can be checked. can be judged accurately.
초기에는 감염성 질환 환자에게 경험적으로 항생제가 투여되지만, 본 발명에 따라 해당 항생제의 적절성을 빠른 시간 내에 평가하고 그 결과에 따라 항생제를 선제적으로 조정함으로써 환자의 예후를 향상시킬 수 있다. 또한 종래 많은 임상의사들이 경험적으로 처방된 항생제의 적절성에 대해 항상 부담감을 가지고 있으나, 본 발명에 따른 인체내 항생제 감수성의 평가 방법은 이러한 심리적 부담감을 해소시킬 수 있다. 또한 본 발명의 따르면 수 시간 내에 항생제의 적절성을 확인할 수 있으므로, 광범위한 항생제의 남용을 막을 수 있고 사회적으로도 내성균의 발생을 줄임으로써 더 안전한 사회를 만들 수 있다.Initially, antibiotics are empirically administered to patients with infectious diseases, but according to the present invention, the appropriateness of the antibiotic can be quickly evaluated and the antibiotics preemptively adjusted according to the results, thereby improving the patient's prognosis. In addition, many clinicians have always felt burdened about the appropriateness of empirically prescribed antibiotics, but the method for evaluating antibiotic susceptibility in the human body according to the present invention can relieve this psychological burden. In addition, according to the present invention, the appropriateness of antibiotics can be confirmed within a few hours, preventing the abuse of a wide range of antibiotics and creating a safer society by reducing the occurrence of resistant bacteria.
도 1은 본 발명의 일 실시예에 따른 돼지 균혈증 모델의 실험방법을 나타낸 그림이다.Figure 1 is a diagram showing an experimental method of a porcine bacteremia model according to an embodiment of the present invention.
도 2a 내지 도 2f는 시간 경과에 따른 혈류역학적 변화를 측정한 그래프이다.Figures 2A to 2F are graphs measuring hemodynamic changes over time.
도 3a 내지 도 3e는 시간 경과에 따른 수액 투여 및 혈압상승제 사용량의 변화를 측정한 그래프이다.Figures 3A to 3E are graphs measuring changes in fluid administration and vasopressor usage over time.
도 4a 내지 도 4f는 시간 경과에 따른 혈구세포수의 변화를 측정한 그래프이다.Figures 4a to 4f are graphs measuring changes in blood cell count over time.
도 5a 내지 도 5f는 본 발명의 돼지 균혈증 모델에 의한 장기 부전을 평가하기 위해 관련 값을 측정한 그래프이다.Figures 5A to 5F are graphs measuring relevant values to evaluate organ failure by the porcine bacteremia model of the present invention.
도 6a 내지 도 6f는 본 발명의 돼지 균혈증 모델에서 SOFA 점수의 경향을 비교한 그래프이다.Figures 6a to 6f are graphs comparing trends in SOFA scores in the porcine bacteremia model of the present invention.
도 7은 시간 경과에 따른 혈액 배양 검사 결과를 나타낸 그림이다.Figure 7 is a diagram showing blood culture test results over time.
도 8a 내지 도 8k는 시간 경과에 따른 다양한 바이오마커의 혈중 농도를 측정한 그래프이다.Figures 8A to 8K are graphs measuring blood concentrations of various biomarkers over time.
본 발명을 실시예 및 실험예에 의거하여 보다 구체적으로 설명한다. 그러나 이들 실시예 및 실험예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.The present invention will be described in more detail based on examples and experimental examples. However, these examples and experimental examples are only intended to aid understanding of the present invention, and the scope of the present invention is not limited by these examples.
본 발명의 일 실시예에 따른 항생제 감수성의 평가 방법은, 감염성 질환에 대한 항생제가 투여된 인체로부터 채취된 혈액에서 sTREM-1(soluble Triggering Receptor Expressed on Myeloid cells-1)의 혈중 농도를 측정함으로써 인체내 항생제 감수성(in vivo antibiotic susceptibility)을 판단할 수 있다. 여기서 감염성 질환은 균혈증 또는 패혈증일 수 있다. The method for assessing antibiotic susceptibility according to an embodiment of the present invention is to measure the blood concentration of sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells-1) in blood collected from a human body administered antibiotics for infectious diseases. You can determine your antibiotic susceptibility (in vivo antibiotic susceptibility). Here, the infectious disease may be bacteremia or sepsis.
구체적으로, 항생제 투여 후 2 - 4시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 30 - 320 ng/mL로 측정되는 경우 감수성 항생제로 판단될 수 있고, 390 - 1580 ng/mL로 측정되는 경우 내성 항생제로 판단될 수 있다. Specifically, 2 to 4 hours after antibiotic administration, if the blood concentration of sTREM-1 in blood collected from the human body is measured to be 30 to 320 ng/mL, it can be judged to be a susceptible antibiotic, and 390 to 1580 ng/mL. If measured in mL, it can be judged to be a resistant antibiotic.
더욱 구체적으로, 항생제 투여 후 2시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 80 - 260 ng/mL로 측정되는 경우 감수성 항생제로 판단될 수 있고, 390 - 970 ng/mL로 측정되는 경우 내성 항생제로 판단될 수 있다.More specifically, 2 hours after antibiotic administration, if the blood concentration of sTREM-1 in blood collected from the human body is measured to be 80 - 260 ng/mL, it can be judged to be a susceptible antibiotic, and 390 - 970 ng/mL. If measured as , it can be judged as a resistant antibiotic.
더욱 구체적으로, 항생제 투여 후 4시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 30 - 320 ng/mL로 측정되는 경우 감수성 항생제로 판단될 수 있고, 510 - 1580 ng/mL로 측정되는 경우 내성 항생제로 판단될 수 있다.More specifically, 4 hours after antibiotic administration, if the blood concentration of sTREM-1 in blood collected from the human body is measured to be 30 - 320 ng/mL, it can be judged to be a susceptible antibiotic, and 510 - 1580 ng/mL. If measured as , it can be judged as a resistant antibiotic.
실시예 1. 돼지 균혈증 모델Example 1. Porcine bacteremia model
본 실시예에서는 그람 음성 패혈증(gram-negative sepsis)에서 항생제 감수성에 따른 혈류역학적 변화 및 바이오마커의 변화를 확인하기 위해, ESBL-producing E. coli의 정맥 투여로 유도된 전임상 <돼지 균혈증 모델>을 사용하였다. 돼지 균혈증 모델은, ESBL-producing E. coli에 대해 감수성 항생제(ertapenem)를 투여한 <감수성 항생제 처리군>과, ESBL-producing E. coli에 대해 내성 항생제(ceftriaxone)를 투여한 <내성 항생제 처리군>으로 할당되었다.In this example, to confirm hemodynamic changes and biomarker changes according to antibiotic sensitivity in gram-negative sepsis, a preclinical <porcine bacteremia model> induced by intravenous administration of ESBL-producing E. coli was used. used. The pig bacteremia model consists of a <susceptible antibiotic treatment group> administered a susceptible antibiotic (ertapenem) against ESBL-producing E. coli, and a <resistant antibiotic treatment group> administered a resistant antibiotic (ceftriaxone) against ESBL-producing E. coli. > was assigned.
<1-1> 실험 설정<1-1> Experiment settings
본 실험은 분당서울대학교병원의 동물실험윤리위원회(IACUC, Institutional Animal Care and Use Committee)의 승인을 받았으며(프로토콜 번호: BA-2104-317-029-03), 모든 동물은 국립보건원(National Institutes of Health)의 '실험동물의 관리와 사용에 관한 지침(Guide for the Care and Use of Laboratory Animals)'에 따라 관리를 받았다.This experiment was approved by the Institutional Animal Care and Use Committee (IACUC) of Seoul National University Bundang Hospital (protocol number: BA-2104-317-029-03), and all animals were used by the National Institutes of Health. They were managed in accordance with Health's 'Guide for the Care and Use of Laboratory Animals'.
<1-2> 동물 준비<1-2> Animal preparation
11 마리의 국내 수컷 돼지(44 ± 3.5 kg)가 본 연구에 사용되었다(Cronex, Seoul, Korea). zolazepam/tiletamine(Zoletil, 5mg/kg; Virbac, Carros, France)과 xylazine(Rompun, 5mg/kg; Elanco, Greenfield, IN)의 혼합물을 돼지 근육 내 투여하여 마취를 유도했다. 돼지는 3-리드 심전도 모니터(3-lead electrocardiography monitor), 맥박 산소 측정기(pulse oximeter) 및 직장 온도 프로브(rectal temperature probe)(IntelliVue, Patient Monitor MP20, Philips, Amsterdam, Netherlands)로 모니터링되었다.Eleven domestic male pigs (44 ± 3.5 kg) were used in this study (Cronex, Seoul, Korea). Anesthesia was induced in pigs by intramuscular administration of a mixture of zolazepam/tiletamine (Zoletil, 5 mg/kg; Virbac, Carros, France) and xylazine (Rompun, 5 mg/kg; Elanco, Greenfield, IN). Pigs were monitored with a 3-lead electrocardiography monitor, pulse oximeter, and rectal temperature probe (IntelliVue, Patient Monitor MP20, Philips, Amsterdam, Netherlands).
적절한 농도(2-3%)의 흡입 마취(Sevoflurane; Baxter Inc., Deerfield, IL, USA)와 함께 기계식 인공호흡기(mechanical ventilator)(Drager Fabius GS, Lubeck, Germany)에 적용된 7-Fr 기관내 튜브로 삽관을 수행하였다. 인공호흡은, 1회 호흡량 6mL/kg, 흡기 산소 분율(fraction of inspired oxygen) 0.21, 호기말양압(positive end-expiratory pressure) 5cmH2O, 및 호흡수(respiratory rate) 12-15/분으로 볼륨 제어 모드로 설정되었다. 동맥혈산소분압 PaO2를 65mmHg 이상으로 유지하고 동맥혈이산화탄소분압 PaCO2를 40-45mmHg로 유지하기 위해, 기계식 인공호흡이 추가로 조정되었다.A 7-Fr endotracheal tube applied to a mechanical ventilator (Drager Fabius GS, Lubeck, Germany) with an appropriate concentration (2-3%) of inhalational anesthesia (Sevoflurane; Baxter Inc., Deerfield, IL, USA). Intubation was performed. Artificial respiration was performed with a tidal volume of 6 mL/kg, fraction of inspired oxygen of 0.21, positive end-expiratory pressure of 5 cmH 2 O, and respiratory rate of 12-15/min. It was set to control mode. To maintain the arterial blood oxygen partial pressure PaO 2 above 65 mmHg and the arterial blood carbon dioxide partial pressure PaCO 2 at 40-45 mm Hg, mechanical ventilation was additionally adjusted.
침습적 혈압 모니터링 및 반복적 혈액 샘플링을 위해, 초음파를 사용하여 6-Fr 동맥 카테터(Merit Medical, South Jordan, UT, USA)를 대퇴 동맥에 삽입하였다. Swan-Ganz 카테터(Model 131HF, 7 Fr; Edwards Lifesciences, Irvine, CA, USA)는 심박출량(cardiac output)과 폐 모세혈관 쐐기압(pulmonary capillary wedge pressure, PCWP)을 모니터링하기 위해 오른쪽 경정맥(jugular vein)에 삽입되었다. 추가로 중심 정맥 카테터(central venous catheter)(ARROW CVC; Teleflex, Morrisville, NC, USA)는 수액(fluid) 및 승압제(vasopressors)의 정맥내 투여를 위해 왼쪽 경정맥에 삽입되었다. 방광루설치술(Suprapubic cystostomy)을 시행하고, 폴리 카테터(Foley catheter)를 삽입하여 소변량을 모니터링했다. 위의 무균 절차 후, 동맥 카테터에서 배양물을 포함한 혈액 샘플을 채취했다.For invasive blood pressure monitoring and repetitive blood sampling, a 6-Fr arterial catheter (Merit Medical, South Jordan, UT, USA) was inserted into the femoral artery using ultrasound. A Swan-Ganz catheter (Model 131HF, 7 Fr; Edwards Lifesciences, Irvine, CA, USA) was inserted into the right jugular vein to monitor cardiac output and pulmonary capillary wedge pressure (PCWP). ) was inserted into. Additionally, a central venous catheter (ARROW CVC; Teleflex, Morrisville, NC, USA) was inserted into the left jugular vein for intravenous administration of fluids and vasopressors. Suprapubic cystostomy was performed, and a Foley catheter was inserted to monitor urine output. After the above aseptic procedure, blood samples containing cultures were obtained from the arterial catheter.
<1-3> 돼지 균혈증 모델의 유도<1-3> Induction of porcine bacteremia model
도 1은 본 발명의 일 실시예에 따른 돼지 균혈증 모델의 실험방법을 나타낸 그림이다. 도 1에 도시된 바와 같이, 돼지 균혈증 모델을 유도하기 위해 ESBL(extended-spectrum β-lactamase)-producing Escherichia coli(5.0×109 CFU, 균주: BAA-196, ATCC, Manassas, VA, USA)를 생리식염수(normal saline) 1000mL에 희석하고, 1 시간 동안 대상체에게 정맥 주사하였다(세균 주입 시작점은 도 1의 "Pre"에 해당함). 세균을 완전히 주입한 후(도 1의 "0h"에 해당함), 6마리 돼지에는 항생제 세프트리악손(ceftriaxone)(2g, Cerixone, Chong Kun Dang, Seoul, Korea)을 할당하였고, 5마리 돼지에는 항생제 어타페넘(ertapenem)(2g, Invanz, MSD, Whitehouse Station, NJ, USA)을 할당하였다. 세균 주입 및 혈액 샘플의 수집이 완료된 후 1시간 경과 시, 앞서 할당된 대로 대상체에게 항생제를 투여하였다(도 1의 "1h"에 해당함).Figure 1 is a diagram showing an experimental method of a porcine bacteremia model according to an embodiment of the present invention. As shown in Figure 1, to induce the porcine bacteremia model, ESBL (extended-spectrum β-lactamase)-producing Escherichia coli (5.0 × 10 9 CFU, strain: BAA-196, ATCC, Manassas, VA, USA) was used. It was diluted in 1000 mL of normal saline and injected intravenously into the subject for 1 hour (the starting point of bacterial injection corresponds to “Pre” in Figure 1). After complete injection of bacteria (corresponding to “0h” in Figure 1), six pigs were assigned the antibiotic ceftriaxone (2 g, Cerixone, Chong Kun Dang, Seoul, Korea), and five pigs were assigned the antibiotic Ertapenem (2 g, Invanz, MSD, Whitehouse Station, NJ, USA) was assigned. One hour after bacterial injection and collection of blood samples were completed, antibiotics were administered to subjects as previously assigned (corresponding to “1h” in Figure 1).
돼지는 세균 주입 완료 후 최대 7시간까지 모니터링되었으며, 주요 목표는 65mmHg 이상의 평균 동맥압(mean arterial pressure, MAP)을 유지하는 것이었다. 평균 동맥압(MAP)이 65mmHg 미만일 때 Balanced crystalloid solution(Plasma Solution A, HK inno. N, Seoul, Korea)을 투여하였다. 누적 체액(cumulative fluid)이 30mL/kg을 초과하거나 볼루스 수액(bolus fluid)으로 목표 평균 동맥압(MAP)이 도달되지 않을 때 노르에피네프린(norepinephrine), 바소프레신(vasopressin), 및 에피네프린(epinephrine)으로 이루어진 승압제를 순차적으로 투여하였다. Pigs were monitored for up to 7 hours after completion of bacterial infusion, with the primary goal being to maintain mean arterial pressure (MAP) above 65 mmHg. Balanced crystalloid solution (Plasma Solution A, HK inno. N, Seoul, Korea) was administered when mean arterial pressure (MAP) was less than 65 mmHg. Consisting of norepinephrine, vasopressin, and epinephrine when cumulative fluid exceeds 30 mL/kg or the target mean arterial pressure (MAP) is not reached with bolus fluid. Vasopressors were administered sequentially.
<1-4> 측정 및 계산<1-4> Measurement and calculation
동맥혈압(arterial blood pressure), 심박수(HR), lead II 심전도 변수(electrocardiographic variables), 맥박 산소 측정 변수(pulse oximetry variables), 폐동맥압(pulmonary arterial pressure) 및 중심 정맥압(central venous pressure)과 같은 혈류역학적 변수를 지속적으로 획득하여 매시간 기록하였다. 열희석법(thermodilution technique)을 이용하여 심박출량(cardiac output)을 매시간 측정하여 중앙값(median value)을 산출하였다. 대퇴 동맥 카테터를 통해 얻은 혈액 샘플을 사용하여, P/F 비율(흡기된 산소의 분율에 대한 산소 부분압의 비율), 전해질 및 젖산 변수(Nova CCX; Nova, Waltham, MA, USA), 전체 혈구 수(Hemavet 950FS; Drew Scientific Inc, Miami Lakes, FL, USA) 및 화학 패널 테스트(albumin, creatinine 및 bilirubin; VetScan; Abaxis, Union City, CA, USA)를 포함한 동맥혈 가스 분석(Arterial blood gas analysis)을 기준점, 1시간, 3시간, 5시간 및 7시간에 수행하였다. 혈류역학 및 실험실 변수를 기반으로, 장기부전 및 예후 평가를 위한 SOFA 점수(sequential organ failure assessment score, SOFA score)를 계산하였다. Hemodynamic parameters such as arterial blood pressure, heart rate (HR), lead II electrocardiographic variables, pulse oximetry variables, pulmonary arterial pressure, and central venous pressure. Variables were continuously acquired and recorded hourly. Cardiac output was measured every hour using the thermodilution technique and the median value was calculated. Using blood samples obtained via femoral artery catheter, P/F ratio (ratio of partial pressure of oxygen to fraction of inspired oxygen), electrolyte and lactate variables (Nova CCX; Nova, Waltham, MA, USA), and complete blood count. Arterial blood gas analysis including (Hemavet 950FS; Drew Scientific Inc, Miami Lakes, FL, USA) and chemistry panel tests (albumin, creatinine, and bilirubin; VetScan; Abaxis, Union City, CA, USA) were performed at baseline. , performed at 1 hour, 3 hours, 5 hours, and 7 hours. Based on hemodynamic and laboratory variables, the sequential organ failure assessment score (SOFA score) was calculated to evaluate organ failure and prognosis.
배양을 위한 혈액 샘플(20mL)을 기준점, 0시간, 1시간, 3시간, 5시간 및 7시간에 채취하여, 한 쌍의 호기성 및 혐기성 혈액배양병(BD BACTEC; Becton Dickinson, Franklin Lakes, NJ, USA)에 주입하였다. 이어서 한 쌍의 혈액배양병을 미생물 실험실의 혈액 배양 시스템(BD BACTEC FX; Becton Dickinson, Franklin Lakes, NJ, USA)으로 지체 없이 이송하였다. 최종 혈액 배양 보고서는 검사의학과(Department of Laboratory Medicine) 미생물 연구실로부터 획득하였다. Blood samples (20 mL) for culture were collected at baseline, 0 hours, 1 hour, 3 hours, 5 hours, and 7 hours and cultured in paired aerobic and anaerobic blood culture bottles (BD BACTEC; Becton Dickinson, Franklin Lakes, NJ; USA) was injected. A pair of blood culture bottles were then transferred without delay to the microbiology laboratory's blood culture system (BD BACTEC FX; Becton Dickinson, Franklin Lakes, NJ, USA). Final blood culture reports were obtained from the Department of Laboratory Medicine microbiology laboratory.
사이토카인 분석(cytokine analysis)을 위해, 추가 혈액 샘플(10ml)을 기준점, 1시간, 3시간, 5시간 및 7시간에 EDTA 튜브(BD Vacutainer Systems; Becton Dickinson, Franklin Lakes, NJ. USA)에 수집하였다. 수집된 혈액 샘플을 3000rpm에서 15분간 원심분리하였고, 혈장의 상부층을 분리하여 분석할 때까지 -70℃의 급속 냉동고에 보관하였다. ELISA(enzyme-linked immunosorbent assay) 키트를 사용하여, 사이토카인(TNF-α, IL-1β, IL-6, IL-8, IL-10), CRP(C-reactive protein), 프로칼시토닌(procalcitonin), 프레셉신(presepsin), 헤파란황산염(heparan sulfate), 신데칸(syndecan) 및 sTREM-1(soluble Triggering Receptor Expressed on Myeloid cells-1)의 수준을 측정하였다.For cytokine analysis, additional blood samples (10 ml) were collected in EDTA tubes (BD Vacutainer Systems; Becton Dickinson, Franklin Lakes, NJ. USA) at baseline, 1 hour, 3 hours, 5 hours, and 7 hours. did. The collected blood samples were centrifuged at 3000 rpm for 15 minutes, and the upper layer of plasma was separated and stored in a deep freezer at -70°C until analysis. Using an ELISA (enzyme-linked immunosorbent assay) kit, cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10), CRP (C-reactive protein), and procalcitonin , presepsin, heparan sulfate, syndecan, and sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells-1) levels were measured.
<1-5> 통계적 분석<1-5> Statistical analysis
변수는 중앙값 및 사분위수 범위로 기술된다. 두 처리군 간의 변수 경향을 비교하기 위해 two-way RM ANOVA를 수행하였다. 0.05 미만의 P 값은 유의미한 것으로 간주되었다. 통계 분석 및 그래프 생성은 Prism 9.2(GraphPad Software Inc., San Diego, CA, USA)를 사용하여 수행되었다.Variables are described as median and interquartile range. Two-way RM ANOVA was performed to compare variable trends between the two treatment groups. P values less than 0.05 were considered significant. Statistical analysis and graph generation were performed using Prism 9.2 (GraphPad Software Inc., San Diego, CA, USA).
실시예 2. 실험 결과Example 2. Experimental results
돼지에 ESBL-producing E. coli를 투여한 후 7시간까지 돼지의 상태를 모니터링하였다. 항생제(ertapenem)를 투여한 5마리 돼지는 <감수성 항생제 처리군>으로 분류하였고, 항생제(ceftriaxone)를 투여한 6마리 돼지는 <내성 항생제 처리군>으로 분류하였다.After administering ESBL-producing E. coli to the pigs, the pig's condition was monitored for up to 7 hours. Five pigs administered antibiotics (ertapenem) were classified as <susceptible antibiotic treatment group>, and six pigs administered antibiotics (ceftriaxone) were classified as <resistant antibiotic treatment group>.
<2-1> 혈류역학적 변화<2-1> Hemodynamic changes
도 2a 내지 도 2f는 시간 경과에 따른 혈류역학적 변화를 측정한 그래프이다. 구체적으로, 도 2a는 시간 경과에 따른 평균 동맥압(mean arterial pressure, MAP)을 측정한 그래프이다. 도 2b는 시간 경과에 따른 심박수(heart rate, HR)를 측정한 그래프이다. 도 2c는 시간 경과에 따른 심박출량(cardiac output)을 측정한 그래프이다. 도 2d는 시간 경과에 따른 박출량(stroke volume)을 측정한 그래프이다. 도 2e는 시간 경과에 따른 SVR(systemic vascular resistance)을 측정한 그래프이다. 도 2f는 시간 경과에 따른 PCWP(pulmonary capillary wedge pressure)를 측정한 그래프이다.Figures 2A to 2F are graphs measuring hemodynamic changes over time. Specifically, Figure 2a is a graph measuring mean arterial pressure (MAP) over time. Figure 2b is a graph measuring heart rate (HR) over time. Figure 2c is a graph measuring cardiac output over time. Figure 2d is a graph measuring stroke volume over time. Figure 2e is a graph measuring systemic vascular resistance (SVR) over time. Figure 2f is a graph measuring PCWP (pulmonary capillary wedge pressure) over time.
감수성 항생제 처리군과 내성 항생제 처리군은 항생제 투여 후 초기 7시간 동안 혈류역학적 변수에 유의미한 차이를 나타내지 않았다.There was no significant difference in hemodynamic variables between the susceptible and resistant antibiotic treated groups during the first 7 hours after antibiotic administration.
<2-2> 수액 투여 및 혈압상승제 사용량의 변화<2-2> Changes in fluid administration and vasopressor usage
도 3a 내지 도 3e는 시간 경과에 따른 수액 투여 및 혈압상승제 사용량의 변화를 측정한 그래프이다. 구체적으로 도 3a는 시간 경과에 따라 65mmHg 이상 평균 동맥압의 유지에 필요한 시간당 수액량을 나타낸 그래프이다. 도 3b는 시간 경과에 따라 65mmHg 이상 평균 동맥압의 유지에 필요한 누적 수액량을 나타낸 그래프이다. 도 3c는 시간 경과에 따라 65mmHg 이상 평균 동맥압의 유지에 필요한 norepinephrine 승압제의 투여량을 나타낸 그래프이다. 도 3d는 시간 경과에 따라 65mmHg 이상 평균 동맥압의 유지에 필요한 vasopressin 승압제의 투여량을 나타낸 그래프이다. 도 3e는 시간 경과에 따라 65mmHg 이상 평균 동맥압의 유지에 필요한 epinephrine 승압제의 투여량을 나타낸 그래프이다.Figures 3A to 3E are graphs measuring changes in fluid administration and vasopressor usage over time. Specifically, Figure 3a is a graph showing the amount of fluid per hour required to maintain average arterial pressure above 65 mmHg over time. Figure 3b is a graph showing the cumulative amount of fluid required to maintain average arterial pressure above 65 mmHg over time. Figure 3c is a graph showing the dose of norepinephrine vasopressor required to maintain average arterial pressure above 65 mmHg over time. Figure 3d is a graph showing the dosage of vasopressin vasopressor required to maintain average arterial pressure above 65 mmHg over time. Figure 3e is a graph showing the dosage of epinephrine vasopressor required to maintain average arterial pressure above 65 mmHg over time.
평균 동맥압을 65mmHg 이상으로 유지하는 데 필요한 수액의 양(도 3a 및 도 3b)과 승압제의 투여량(도 3c, 도 3d 및 도 3e)의 경우, 시간 경과에 따라 두 처리군 간에 유의미한 차이는 없었다. For the amount of fluid (Figures 3a and 3b) and the dose of vasopressors (Figures 3c, 3d and 3e) required to maintain mean arterial pressure above 65 mmHg, there were no significant differences between the two treatment groups over time. There wasn't.
<2-3> 혈구세포수의 변화<2-3> Changes in blood cell count
도 4a 내지 도 4f는 시간 경과에 따른 혈구세포수의 변화를 측정한 그래프이다. 구체적으로, 도 4a는 시간 경과에 따른 헤모글로빈(Hb) 수치를 측정한 그래프이다. 도 4b는 시간 경과에 따른 총 백혈구(WBC) 수를 측정한 그래프이다. 도 4c는 시간 경과에 따른 호중구(neutrophil) 수를 측정한 그래프이다. 도 4d는 시간 경과에 따른 림프구(lymphocyte) 수를 측정한 그래프이다. 도 4e는 시간 경과에 따른 단핵구(monocyte) 수를 측정한 그래프이다. 도 4f는 시간 경과에 따른 혈소판(platelet) 수를 측정한 그래프이다.Figures 4a to 4f are graphs measuring changes in blood cell count over time. Specifically, Figure 4a is a graph measuring hemoglobin (Hb) levels over time. Figure 4b is a graph measuring total white blood cell (WBC) count over time. Figure 4c is a graph measuring the number of neutrophils over time. Figure 4d is a graph measuring the number of lymphocytes over time. Figure 4e is a graph measuring the number of monocytes over time. Figure 4f is a graph measuring the number of platelets over time.
헤모글로빈 수치(도 4a)의 경우 시간 경과에 따라 두 처리군 간에 유의미한 차이는 없었다. 호중구 수(도 4c), 림프구 수(도 4d), 단핵구 수(도 4e) 및 이들을 포함하는 총 백혈구 수(도 4b)의 경우 시간 경과에 따라 두 처리군 간에 유의미한 차이는 없었다. 두 처리군의 혈소판 수는 시간 경과에 따라 유의미한 차이 없이 패혈증 진행의 결과로 감소하였다(도 4f).For hemoglobin levels (Figure 4a), there were no significant differences between the two treatment groups over time. There were no significant differences between the two treatment groups over time for neutrophil count (Figure 4c), lymphocyte count (Figure 4d), monocyte count (Figure 4e), and total white blood cell count (Figure 4b). Platelet counts in both treatment groups decreased as a result of sepsis progression with no significant difference over time (Figure 4F).
<2-4> 혈액 화학검사의 변화<2-4> Changes in blood chemistry tests
도 5a 내지 도 5f는 본 발명의 돼지 균혈증 모델에 의한 장기 부전을 평가하기 위해 관련 값을 측정한 그래프이다. 구체적으로, 도 5a는 시간 경과에 따른 젖산(lactate)을 측정한 그래프이다. 도 5b는 시간 경과에 따른 크레아티닌(creatinine)을 측정한 그래프이다. 도 5c는 시간 경과에 따른 빌리루빈(bilirubin)을 측정한 그래프이다. 도 5d는 시간 경과에 따른 소변량(urine output)을 측정한 그래프이다. 도 5e는 시간 경과에 따른 P/F 비율을 측정한 그래프이다. 도 5f는 시간 경과에 따른 알부민(albumin)을 측정한 그래프이다.Figures 5A to 5F are graphs measuring relevant values to evaluate organ failure by the porcine bacteremia model of the present invention. Specifically, Figure 5a is a graph measuring lactate over time. Figure 5b is a graph measuring creatinine over time. Figure 5c is a graph measuring bilirubin over time. Figure 5d is a graph measuring urine output over time. Figure 5e is a graph measuring the P/F ratio over time. Figure 5f is a graph measuring albumin over time.
세균 주입으로 인해 패혈증이 진행됨에 따라 젖산(도 5a), 크레아티닌(도 5b) 및 빌리루빈(도 5c)이 증가하는 반면, 소변량(도 5d), P/F 비율(도 5e) 및 알부민(도 5f)는 감소했다. 다만 젖산, 크레아티닌, 빌리루빈, 소변량, P/F 비율 및 알부민의 경우, 두 처리군 간에 유의미한 차이는 없었다.As sepsis progresses due to bacterial infusion, lactate (Figure 5a), creatinine (Figure 5b), and bilirubin (Figure 5c) increase, while urine output (Figure 5d), P/F ratio (Figure 5e), and albumin (Figure 5f) ) decreased. However, there were no significant differences between the two treatment groups in lactic acid, creatinine, bilirubin, urine volume, P/F ratio, and albumin.
<2-5> SOFA 점수의 비교<2-5> Comparison of SOFA scores
혈류역학 및 실험실 데이터를 기반으로, 객관적인 반응을 반영하기 위해 중추 신경계(central nervous system, CNS)가 없는 SOFA 점수를 평가하였다. 도 6a 내지 도 6f는 본 발명의 돼지 균혈증 모델에서 SOFA 점수의 경향을 비교한 그래프이다. 구체적으로 도 6a는 시간 경과에 따른 총 SOFA 점수를 나타낸 그래프이다. 도 6b는 시간 경과에 따른 호흡기(respiratory)에 대한 SOFA 점수를 나타낸 그래프이다. 도 6c는 시간 경과에 따른 응고(coagulation)에 대한 SOFA 점수를 나타낸 그래프이다. 도 6d는 시간 경과에 따른 간(liver)에 대한 SOFA 점수를 나타낸 그래프이다. 도 6e는 시간 경과에 따른 심혈관(cardiovascular)에 대한 SOFA 점수를 나타낸 그래프이다. 도 6f는 시간 경과에 따른 신장(renal)에 대한 SOFA 점수를 나타낸 그래프이다.Based on hemodynamic and laboratory data, central nervous system (CNS)-free SOFA scores were assessed to reflect objective response. Figures 6a to 6f are graphs comparing trends in SOFA scores in the porcine bacteremia model of the present invention. Specifically, Figure 6a is a graph showing the total SOFA score over time. Figure 6b is a graph showing the SOFA score for the respiratory system over time. Figure 6c is a graph showing SOFA scores for coagulation over time. Figure 6d is a graph showing the SOFA score for the liver over time. Figure 6e is a graph showing the SOFA score for cardiovascular (cardiovascular) over time. Figure 6f is a graph showing SOFA scores for renal over time.
도 6a에 도시된 바와 같이 총 SOFA 점수는 세균 투여 후 증가하였다. 2시간 경과 후, 호흡 SOFA 점수로 인해 내성 항생제 처리군(ceftriaxone)의 총 SOFA 점수가 감수성 항생제 처리군(ertapenem)의 총 SOFA 점수보다 높은 것으로 확인되었으나 통계적 유의성은 없었다. 따라서 총 SOFA 점수와 각 영역의 SOFA 점수의 추이의 경우, 두 처리군 간에 유의미한 차이는 없었다.As shown in Figure 6A, total SOFA scores increased after bacterial administration. After 2 hours, it was confirmed that the total SOFA score of the resistant antibiotic treatment group (ceftriaxone) was higher than that of the susceptible antibiotic treatment group (ertapenem) due to the respiratory SOFA score, but there was no statistical significance. Therefore, there was no significant difference between the two treatment groups in the trends of the total SOFA score and the SOFA score of each area.
<2-6> 혈액 배양 검사<2-6> Blood culture test
혈액 샘플을 기준점(Pre: E. coli 주입 시작), 0시간(E. coli 주입 완료), 1시간, 3시간, 5시간 및 7시간에 채취하여 혈액 배양 검사를 시행하였다. 도 7은 시간 경과에 따른 혈액 배양 검사 결과를 나타낸 그림이다. Blood samples were collected at baseline (Pre: E. coli infusion started), 0 hours (E. coli infusion completed), 1 hour, 3 hours, 5 hours, and 7 hours, and blood culture tests were performed. Figure 7 is a diagram showing blood culture test results over time.
도 7에 도시된 바와 같이, E. coli 주입 전에는(Pre) 혈액 배양 검사에서 두 처리군 모두에 세균이 확인되지 않았다. E. coli 주입 완료 시점(0h) 및 주입 완료 후 1시간까지(1h), 모든 검체에서 E. coli가 동정되었다. 항생제 투여 후 1시간 경과 시(즉, E. coli 주입 후 2시간 경과 시), 혈액 배양 검사에서 감수성 항생제 처리군(ertapenem)은 모두 음성으로, 내성 항생제 처리군(ceftriaxone)은 모두 양성으로 확인되었다.As shown in Figure 7, no bacteria were identified in both treatment groups in blood culture tests prior to E. coli injection. E. coli was identified in all samples at the time of completion of E. coli injection (0h) and up to 1 hour after completion of injection (1h). One hour after antibiotic administration (i.e., 2 hours after E. coli injection), blood culture tests showed that all groups treated with susceptible antibiotics (ertapenem) were negative, and all groups treated with resistant antibiotics (ceftriaxone) were confirmed positive. .
<2-7> 다양한 바이오마커의 변화<2-7> Changes in various biomarkers
추가 혈액 샘플을 기준점(Pre), 1시간, 3시간, 5시간 및 7시간에 채취하여 다양한 바이오마커의 수준을 측정하였다. 도 8a 내지 도 8k는 시간 경과에 따른 다양한 바이오마커의 혈중 농도를 측정한 그래프이다. 구체적으로 도 8a는 시간 경과에 따른 TNF-α의 혈중 농도를 측정한 그래프이다. 도 8b는 시간 경과에 따른 IL-1β의 혈중 농도를 측정한 그래프이다. 도 8c는 시간 경과에 따른 IL-6의 혈중 농도를 측정한 그래프이다. 도 8d는 시간 경과에 따른 IL-8의 혈중 농도를 측정한 그래프이다. 도 8e는 시간 경과에 따른 IL-10의 혈중 농도를 측정한 그래프이다. 도 8f는 시간 경과에 따른 CRP(C-reactive protein)의 혈중 농도를 측정한 그래프이다. 도 8g는 시간 경과에 따른 프로칼시토닌(procalcitonin)의 혈중 농도를 측정한 그래프이다. 도 8h는 시간 경과에 따른 프레셉신(presepsin)의 혈중 농도를 측정한 그래프이다. 도 8i는 시간 경과에 따른 헤파란황산염(heparan sulfate)의 혈중 농도를 측정한 그래프이다. 도 8j는 시간 경과에 따른 신데칸(syndecan)의 혈중 농도를 측정한 그래프이다. 도 8k는 시간 경과에 따른 sTREM-1의 혈중 농도를 측정한 그래프이다.Additional blood samples were taken at baseline (Pre), 1 hour, 3 hours, 5 hours, and 7 hours to measure levels of various biomarkers. Figures 8A to 8K are graphs measuring blood concentrations of various biomarkers over time. Specifically, Figure 8a is a graph measuring the blood concentration of TNF-α over time. Figure 8b is a graph measuring the blood concentration of IL-1β over time. Figure 8c is a graph measuring the blood concentration of IL-6 over time. Figure 8d is a graph measuring the blood concentration of IL-8 over time. Figure 8e is a graph measuring the blood concentration of IL-10 over time. Figure 8f is a graph measuring the blood concentration of CRP (C-reactive protein) over time. Figure 8g is a graph measuring the blood concentration of procalcitonin over time. Figure 8h is a graph measuring the blood concentration of presepsin over time. Figure 8i is a graph measuring the blood concentration of heparan sulfate over time. Figure 8j is a graph measuring the blood concentration of syndecan over time. Figure 8k is a graph measuring the blood concentration of sTREM-1 over time.
TNF-α(도 8a), IL-1β(도 8b), IL-6(도 8c), IL-8(도 8d) 및 IL-10(도 8e)을 포함한 염증성 사이토카인의 경우, 두 처리군 간에 유의미한 차이가 확인되지 않았다. For inflammatory cytokines, including TNF-α (Figure 8A), IL-1β (Figure 8B), IL-6 (Figure 8C), IL-8 (Figure 8D), and IL-10 (Figure 8E), both treatment groups. No significant differences were identified between the two.
CRP(도 8f), 프로칼시토닌(도 8g) 및 프레셉신(도 8h)과 같은 임상 바이오마커의 경우, 두 처리군 간에 유의미한 차이가 확인되지 않았다. For clinical biomarkers such as CRP (Figure 8f), procalcitonin (Figure 8g) and presepsin (Figure 8h), no significant differences were identified between the two treatment groups.
내피 당질층(endothelial glycocalyx layer)을 구성하는 헤파란황산염(도 8i) 및 신데칸(도 8j)의 경우, 두 처리군 간에 유의미한 차이가 확인되지 않았다.In the case of heparan sulfate (Figure 8i) and syndecan (Figure 8j), which constitute the endothelial glycocalyx layer, no significant differences were identified between the two treatment groups.
도 8k에 도시된 sTREM-1의 경우, 세균 주입 완료 후 1시간부터 혈중 농도가 증가하였고, 시간 경과에 따라 두 처리군 간에 유의미한 차이가 확인되었다(P < 0.0001 between times, P = 0.0036 between groups, P = 0.0001 between times × groups). 특히 항생제 투여 후 2시간(즉, 세균 주입 3시간) 후에 두 처리군 간에 유의한 차이가 관찰되었다(P = 0.0239, Sidak's multiple comparisons).In the case of sTREM-1 shown in Figure 8k, the blood concentration increased from 1 hour after completion of bacterial injection, and a significant difference was confirmed between the two treatment groups over time (P < 0.0001 between times, P = 0.0036 between groups, P = 0.0001 between times × groups). In particular, a significant difference was observed between the two treatment groups 2 hours after antibiotic administration (i.e., 3 hours after bacterial injection) (P = 0.0239, Sidak's multiple comparisons).
구체적으로, 항생제 투여 후 2시간 경과 시(즉, 대장균 투여 후 3시간 경과 시) sTREM-1의 혈중 농도를 측정한 결과, 감수성 항생제 처리군의 경우 80 - 260 ng/mL로 측정되었고, 내성 항생제 처리군의 경우 390-970 ng/mL로 측정되었다.Specifically, as a result of measuring the blood concentration of sTREM-1 2 hours after antibiotic administration (i.e., 3 hours after E. coli administration), it was measured to be 80 - 260 ng/mL in the susceptible antibiotic-treated group, and in the resistant antibiotic-treated group. For the treatment group, it was measured at 390-970 ng/mL.
또한 항생제 투여 후 4시간 경과 시(즉, 대장균 투여 후 5시간 경과 시) sTREM-1의 혈중 농도를 측정한 결과, 감수성 항생제 처리군의 경우 30 - 320 ng/mL로 측정되었고, 내성 항생제 처리군의 경우 510-1580 ng/mL로 측정되었다.Additionally, as a result of measuring the blood concentration of sTREM-1 4 hours after antibiotic administration (i.e., 5 hours after E. coli administration), it was measured to be 30 - 320 ng/mL in the susceptible antibiotic-treated group, and in the resistant antibiotic-treated group. In the case of , it was measured at 510-1580 ng/mL.
이와 같이 본 발명의 대장균-유도 균혈증 돼지 모델에 따르면, sTREM-1의 혈중 농도는 감수성 항생제 처리군과 및 내성 항생제 처리군에 대해 항생제 치료 후 빠른 시간 내에 유의한 차이를 가지는 것으로 확인되었다.According to the E. coli-induced bacteremia pig model of the present invention, the blood concentration of sTREM-1 was confirmed to have a significant difference within a short period of time after antibiotic treatment between the susceptible antibiotic treatment group and the resistant antibiotic treatment group.
sTREM-1은 막 결합 형태(TREM-1)가 호중구(neutrophil), 성숙한 단핵구(mature monocyte) 및 대식세포(macrophage)에서 발현되는 선천 면역 반응의 증폭기이다. 지질다당류 자극(lipopolysaccharide stimulation)은 단핵구와 호중구에서 TREM-1의 상향조절을 유도한 후, 막 결합 수용체의 절단을 통해 혈액에서 가용성 형태의 TREM-1을 방출한다. TREM-1의 활성화는 호중구 세포외 트랩(neutrophil extracellular trap, NET) 구조를 생성하고, TREM-1의 억제는 NET 방출을 감소시켜 결과적으로 내피 세포 활성화(endothelial cell activation) 및 혈관 기능 장애(vascular dysfunction)의 감소를 초래한다. 본 발명에서는 sTREM-1의 짧은 반감기(약 2시간)에 기초하여, 균혈증에 대한 감수성 항생제 치료가 sTREM-1의 추가 방출을 방지하여 항생제 치료 후 sTREM-1의 수준을 낮출 수 있었다.sTREM-1 is an amplifier of the innate immune response whose membrane-bound form (TREM-1) is expressed in neutrophils, mature monocytes, and macrophages. Lipopolysaccharide stimulation induces upregulation of TREM-1 in monocytes and neutrophils, which then releases the soluble form of TREM-1 in the blood through cleavage of the membrane-bound receptor. Activation of TREM-1 creates neutrophil extracellular trap (NET) structures, and inhibition of TREM-1 reduces NET release, resulting in endothelial cell activation and vascular dysfunction. ) leads to a decrease in In the present invention, based on the short half-life of sTREM-1 (about 2 hours), antibiotic treatment of susceptibility to bacteremia could prevent further release of sTREM-1, thereby lowering the level of sTREM-1 after antibiotic treatment.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the attached drawings, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical idea or essential features. You will be able to understand it. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Claims (5)

  1. 감염성 질환에 대한 항생제가 투여된 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도를 측정하여 인체내 항생제 감수성(in vivo antibiotic susceptibility)을 평가하는 방법.A method of evaluating in vivo antibiotic susceptibility by measuring the blood concentration of sTREM-1 in blood collected from a human body administered antibiotics for infectious diseases.
  2. 제1항에 있어서,According to paragraph 1,
    상기 감염성 질환은 패혈증인 것을 특징으로 하는 인체내 항생제 감수성을 평가하는 방법.A method for evaluating antibiotic susceptibility in the human body, wherein the infectious disease is sepsis.
  3. 제1항에 있어서,According to paragraph 1,
    상기 항생제 투여 후 2 - 4시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 30 - 320 ng/mL 및 390 - 1580 ng/mL로 측정되는 경우에 각각 감수성 항생제 및 내성 항생제로 판단되는 것을 특징으로 하는 인체내 항생제 감수성을 평가하는 방법.2 - 4 hours after administration of the antibiotic, if the blood concentration of sTREM-1 in the blood collected from the human body is measured to be 30 - 320 ng/mL and 390 - 1580 ng/mL, it is classified as a susceptible antibiotic and a resistant antibiotic, respectively. A method for evaluating antibiotic susceptibility in the human body, characterized in that it is determined.
  4. 제1항에 있어서,According to paragraph 1,
    상기 항생제 투여 후 2시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 80 - 260 ng/mL 및 390 - 970 ng/mL로 측정되는 경우에 각각 감수성 항생제 및 내성 항생제로 판단되는 것을 특징으로 하는 인체내 항생제 감수성을 평가하는 방법.2 hours after administration of the antibiotic, if the blood concentration of sTREM-1 in the blood collected from the human body is measured to be 80 - 260 ng/mL and 390 - 970 ng/mL, the antibiotic is judged to be susceptible and resistant, respectively. A method for evaluating antibiotic susceptibility in the human body, characterized in that.
  5. 제1항에 있어서,According to paragraph 1,
    상기 항생제 투여 후 4시간 경과 시, 상기 인체로부터 채취된 혈액에서 sTREM-1의 혈중 농도가 30 - 320 ng/mL 및 510 - 1580 ng/mL로 측정되는 경우에 각각 감수성 항생제 및 내성 항생제로 판단되는 것을 특징으로 하는 인체내 항생제 감수성을 평가하는 방법.Four hours after administration of the antibiotic, if the blood concentration of sTREM-1 in the blood collected from the human body is measured to be 30 - 320 ng/mL and 510 - 1580 ng/mL, the antibiotic is judged to be susceptible and resistant, respectively. A method for evaluating antibiotic susceptibility in the human body, characterized in that.
PCT/KR2022/017165 2022-06-29 2022-11-03 Method for evaluating antibiotic susceptibility in human body using strem-1 WO2024005275A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220079979 2022-06-29
KR10-2022-0079979 2022-06-29
KR10-2022-0130020 2022-10-11
KR1020220130020A KR20240002659A (en) 2022-06-29 2022-10-11 Method for evaluating in vivo antibiotic susceptibility using sTREM-1

Publications (1)

Publication Number Publication Date
WO2024005275A1 true WO2024005275A1 (en) 2024-01-04

Family

ID=89380827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017165 WO2024005275A1 (en) 2022-06-29 2022-11-03 Method for evaluating antibiotic susceptibility in human body using strem-1

Country Status (1)

Country Link
WO (1) WO2024005275A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130087342A (en) * 2012-01-27 2013-08-06 연세대학교 산학협력단 A method of providing the information of diagnosing bowel disease using strem-1
WO2020065044A1 (en) * 2018-09-28 2020-04-02 Inotrem Use of soluble trem-1 levels for identifying subjects susceptible to respond to an anti-inflammatory therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130087342A (en) * 2012-01-27 2013-08-06 연세대학교 산학협력단 A method of providing the information of diagnosing bowel disease using strem-1
WO2020065044A1 (en) * 2018-09-28 2020-04-02 Inotrem Use of soluble trem-1 levels for identifying subjects susceptible to respond to an anti-inflammatory therapy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADLY AMIRA A.M., ISMAIL EMAN A., ANDRAWES NEVINE G., EL-SAADANY MARWA A.: "Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis", CYTOKINE, ACADEMIC PRESS LTD, PHILADELPHIA, PA, US, vol. 65, no. 2, 1 February 2014 (2014-02-01), US , pages 184 - 191, XP093124262, ISSN: 1043-4666, DOI: 10.1016/j.cyto.2013.11.004 *
EL-KHIER NOHATHARWATABOU, NASSAR DALIAKAMAL, ABDELAAL SANAAMOHEIEL-DIN, ABDEL-HADY HESHAMEL-SAYED: "SOLUBLE TRIGGERING RECEPTOR EXPRESSED ON MYELOID CELLS -1 (sTREM-1) AS aDIAGNOSTIC AND PROGNOSTIC MARKER FOR LATE-ONSET SEPSIS IN PRETERM NEONATES.", INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (INDORE), INDIA, vol. 4, no. 8, India , pages 123 - 131, XP093124260, ISSN: 2320-5407, DOI: 10.21474/IJAR01/1193 *
PARK INWON, KIM DONGSUNG, LEE JAE HYUK, PARK SUNG JIN, JEONG HWAIN, BAEK SUMIN, KIM SEONGHYE, KIM SERIN, HWANG JI EUN, KWON HYUKSO: "Changes in Biomarkers and Hemodynamics According to Antibiotic Susceptibility in a Model of Bacteremia", MICROBIOLOGY SPECTRUM, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 10, no. 4, 31 August 2022 (2022-08-31), US , XP093124264, ISSN: 2165-0497, DOI: 10.1128/spectrum.00864-22 *

Similar Documents

Publication Publication Date Title
Chalkias et al. Baseline Values and Kinetics of IL‐6, Procalcitonin, and TNF‐α in Landrace‐Large White Swine Anesthetized with Propofol‐Based Total Intravenous Anesthesia
WO2024005275A1 (en) Method for evaluating antibiotic susceptibility in human body using strem-1
Mohsenifar et al. Lack of sensitivity of measurements of VD/VT at rest and during exercise in detection of hemodynamically significant pulmonary vascular abnormalities in collagen vascular disease
Khan et al. Effect of general anaesthesia and surgery on neutrophil function
KR20240002659A (en) Method for evaluating in vivo antibiotic susceptibility using sTREM-1
Glynn et al. Biochemical changes associated with intractable pain.
Ono et al. Minocycline-induced acute eosinophilic pneumonia: controversial results of lymphocyte stimulation test and re-challenge test
Parry et al. The intravenous adenosine test: a new test for the identification of bradycardia pacing indications? A pilot study in subjects with bradycardia pacing indications, vasovagal syncope and controls
Kühl et al. Endogenous formation of prostanoids in neonates with persistent pulmonary hypertension.
Harlasgunawan et al. Cross-Reactivity of Guillain-Barre Syndrome and Thrombotic Thrombocytopenic Purpura with Complications Respiratory Failure: Case Report
Ni’Ja Bradford The effects of esmolol on the control of coronary blood flow and myocardial oxygen supply-demand balance in sepsis
Rey et al. Validation of the ADHERE model for risk stratification in patients with acute heart failure admitted to the critical care unit
Lamblet et al. Peripherally inserted central catheter in critically ill patients
CHRONIC Oral Sessions Haemodynamic optimization: 0822–0826
Albuquerque et al. Intensive care medicine teaching in a Brazilian medical school: the student's perspective
Sampaio et al. The use of the SOFA score to analyze the profile and severity of organ dysfunction in patients with cardiovascular disorders
Filho et al. Assessment of the general knowledge of emergency physicians from hospitals of the city of Salvador (Brazil) on the care of cardiac arrest patients
Shiramizo et al. Nasoenteral feeding tube placement: indications and nurse skills
Gomes et al. Results of an intensive insulin infusion protocol in diabetic and nondiabetic critically ill patients
Padilha et al. Elderly patients and nursing workload in intensive care units
Cavalcanti et al. A computer-guided insulin protocol causes less hypoglycemia than a strict glycemic control protocol: a randomized controlled trial
Duailibe et al. Profile of patients admitted to the intensive care unit after exogenous intoxication at a university hospital
Silva et al. Procalcitonin in a semi-quantitative test and C-reactive protein in the evaluation of postoperative patients admitted to a critical care unit
Fields et al. Neuromuscular Disorders
Toledo et al. Influence of bi-level non-invasive ventilation in exercise tolerance and respiratory muscle strength in chronic obstructive pulmonary disease patients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949566

Country of ref document: EP

Kind code of ref document: A1