WO2024005233A1 - Hybrid photoelectrode and photoelectric device comprising same - Google Patents

Hybrid photoelectrode and photoelectric device comprising same Download PDF

Info

Publication number
WO2024005233A1
WO2024005233A1 PCT/KR2022/009410 KR2022009410W WO2024005233A1 WO 2024005233 A1 WO2024005233 A1 WO 2024005233A1 KR 2022009410 W KR2022009410 W KR 2022009410W WO 2024005233 A1 WO2024005233 A1 WO 2024005233A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photosystem
photoelectrode
hybrid
clause
Prior art date
Application number
PCT/KR2022/009410
Other languages
French (fr)
Korean (ko)
Inventor
남윤성
조녕빈
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to PCT/KR2022/009410 priority Critical patent/WO2024005233A1/en
Publication of WO2024005233A1 publication Critical patent/WO2024005233A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • Photosystem 1 is one of the electron transport systems composed of several protein complexes that perform the main photochemical reactions of photosynthesis, and is characterized by a high transfer efficiency of photoelectrons generated by sunlight, up to 97%.
  • Photosystem 1 can be extracted from plants or algae, and is attracting attention as a next-generation material for solar energy conversion due to its easy accessibility and high internal quantum efficiency.
  • photosystem 1 As a photoelectrode material by fixing it on an electrode.
  • a separate chemical functional group is introduced or a bonding material is used, but this has limitations in practicality due to the complicated manufacturing method, and photosystem 1 is damaged or deformed during the manufacturing process, deteriorating electrode performance. There is a problem of deterioration.
  • photoelectrodes made from photosystem 1 have limitations in terms of low stability due to damage to photosystem 1 from the effects of reactive oxygen species or aerobic electrolytes that may occur during the reaction.
  • the purpose of the present invention is to provide a hybrid photoelectrode that can realize excellent stability while securing the excellent quantum efficiency characteristics of photosystem 1 and a photoelectric device containing the same.
  • the thickness of the third layer may be 5 to 50 nm.
  • the metal oxide thin film may include one or two or more selected from aluminum oxide, silicon oxide, titanium oxide, and zinc oxide.
  • the transition metal oxide may be selected from titanium dioxide (TiO 2 ), zinc oxide (ZnO), and tin dioxide (SnO 2 ).
  • one aspect of the present invention is the hybrid photoelectrode; A counter electrode of the photoelectrode; and an electrolyte.
  • the photoelectric device may have a value according to Equation 1 below of 0.3 or more.
  • the photoelectric device may have a value according to Equation 2 below of 0.1 or more.
  • I 8000 is the photocurrent density when measurement was continued for 8000 seconds through chronoamperometry analysis.
  • one aspect of the present invention provides a biosensor including the hybrid photoelectrode.
  • one aspect of the present invention provides a solar cell including the hybrid photoelectrode.
  • a method of manufacturing a hybrid photoelectrode includes (a) forming a first layer including a transition metal oxide on one surface of a transparent electrode; (b) forming a second layer containing photosystem 1 by applying a photosystem 1 dispersion solution on the first layer and drying it; and (c) forming a third layer by depositing a metal oxide thin film on the second layer by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the photosystem 1 dispersion solution includes the steps of extracting juice from plant leaves; Removing impurities from the juice, centrifuging to remove the supernatant, and obtaining precipitated solids; dispersing the solid in a buffer solution, centrifuging, and sonicating the solid redispersion solution to obtain a chloroplast dispersion buffer solution; And heat-treating the solution of the chloroplast dispersion buffer and the surfactant solution and then centrifuging the mixture to remove precipitates and obtain a solution in which photosystem 1 is dispersed.
  • the atomic layer deposition method of step (c) may be performed using a metal precursor represented by the following formula (1).
  • M is one of the group 4 to group 14 metal elements
  • a and B are each independently -R 1 , -OR 2 , -N(R 3 )(R 4 ), a halogen element or ego;
  • R 1 to R 6 are each independently (C1-C7)alkyl
  • a+b is the ionic value of M, and a and b are each integers from 0 to the ionic value of M.
  • the hybrid photoelectrode according to one aspect can maintain the excellent quantum efficiency characteristics of photosystem 1 and simultaneously satisfy the performance and stability of the electrode by effectively fixing photosystem 1 to the electrode and protecting it from external conditions.
  • the hybrid photoelectrode according to one aspect can be manufactured through a simple process, which may be advantageous for commercialization.
  • Figure 1 shows the average photocurrent density of photoelectrodes manufactured in Examples and Comparative Examples.
  • Figure 2 shows the results of measuring the photocurrent density of the photoelectrodes manufactured in Examples and Comparative Examples for 600 seconds through chronoamperometry analysis.
  • Figure 3 shows the results of measuring the photocurrent density of the photoelectrodes manufactured in Examples and Comparative Examples for 8000 seconds through chronoamperometry analysis.
  • Figure 4 shows the results of surface XPS analysis of (a) TiO 2 and the photoelectrode prepared in Comparative Example 1 (b) before use and (c) after use.
  • Figure 5 shows the results of surface XPS analysis before and after use of the photoelectrodes prepared in Examples 1 to 3.
  • Figure 6 shows the results of XPS analysis before and after use of the photoelectrode prepared in Comparative Example 1.
  • Figure 7 shows the results of surface XPS analysis before and after use of the photoelectrodes prepared in Examples 1 to 3.
  • the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified herein, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
  • photosystem 1 in the present name refers to the functional and structural unit of protein complexes related to photosynthesis that together perform the main photochemical reactions of photosynthesis.
  • photoelectrons are collected from sunlight in the light collection complex. and causes an electron transfer reaction along the path of a complex of pigments and other cofactors with an elaborate arrangement.
  • Photosystem 1 is attracting attention as a next-generation material for solar energy conversion due to its easy accessibility and high internal quantum efficiency, but the manufacturing method is complicated to stably fix photosystem 1 to the electrode surface, which limits its practicality. There is a problem that photosystem 1 is damaged or deformed in the process, deteriorating electrode performance.
  • photoelectrodes made from photosystem 1 have limitations in terms of low stability due to damage to photosystem 1 from the effects of reactive oxygen species or aerobic electrolytes that may occur during the reaction.
  • One aspect of the present invention is intended to solve the above problems, and provides a hybrid photoelectrode that can secure long-term stability of the photoelectrode while maintaining the excellent quantum efficiency characteristics of photosystem 1.
  • the hybrid photoelectrode according to one aspect of the present invention includes a transparent electrode; a first layer including a transition metal oxide formed on the transparent electrode; a second layer including photosystem 1 formed on the first layer; and a third layer including a metal oxide thin film formed on the second layer.
  • the hybrid photoelectrode according to one aspect has the structural combination described above, and thus can simultaneously secure the performance and stability of the electrode.
  • the metal oxide thin film (third layer) can effectively fix photosystem 1 on the transparent electrode without deteriorating the excellent quantum efficiency characteristics of photosystem 1 and protect it from external stimuli, thereby improving the stability of the electrode. You can. Additionally, the photoelectric efficiency of the hybrid photoelectrode according to one aspect can be further improved.
  • the chlorophyll Electrode performance may be significantly reduced by completely blocking contact for charge transfer with the electrolyte.
  • the transparent electrode is not particularly limited as long as it is a material having conductivity and transparency, but non-limiting examples include indium tin oxide (ITO: Indium Tin Oxide); Indium Zinc Oxide (IZO); Fluorine-doped Tin Oxide (FTO); Silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), gold (Au), platinum (Pt), tungsten (W), molybdenum (Mo), titanium (Ti), nickel (Ni), or It may be selected from the group consisting of alloys containing these.
  • ITO Indium tin oxide
  • IZO Indium Zinc Oxide
  • FTO Fluorine-doped Tin Oxide
  • Silver Ag), copper (Cu), aluminum (Al), magnesium (Mg), gold (Au), platinum (Pt), tungsten (W), molybdenum (Mo), titanium (Ti), nickel (Ni), or It may be selected from the group consisting of alloys containing these.
  • the first layer formed on the transparent electrode may be a porous transition metal oxide layer.
  • the transition metal oxide may be selected from titanium dioxide (TiO 2 ), zinc oxide (ZnO), and tin dioxide (SnO 2 ). It is not limited to this.
  • the metal oxide thin film of the third layer may be an atomic layer thin film formed by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the thickness of the third layer may vary depending on the number of depositions according to the atomic layer deposition method and is not greatly limited, but may be, for example, 5 to 50 nm, specifically 5 to 30 nm, and more specifically 5 to 20 nm. It may be nm.
  • the first layer of the photosystem can be stably protected and at the same time, the photoelectric efficiency of the hybrid photoelectrode according to one embodiment can be further improved.
  • the metal oxide thin film may include one or two or more selected from aluminum oxide, silicon oxide, titanium oxide, and zinc oxide, and may specifically be titanium oxide, and more specifically, titanium dioxide (TiO 2 ). .
  • the photocurrent density (Jsc) of the hybrid photoelectrode according to one aspect may be 10 ⁇ A/cm 2 to 30 ⁇ A/cm 2 based on the thickness of the metal oxide thin film layer of 5 to 20 nm, and specifically 10 ⁇ A. /cm 2 to 25 ⁇ A/cm 2 .
  • the hybrid photoelectrode according to one aspect may have a value according to Equation 1 below of 0.3 or more, or 0.4 or more, or 0.5 or more, or 0.6 or more.
  • I 0 is the initial photocurrent density
  • I 600 is the photocurrent density when measurement was continued for 600 seconds through chronoamperometry analysis.
  • the hybrid photoelectrode according to one aspect may have a value according to Equation 2 below of 0.05 or more, or 0.15 or more, or 0.20 or more.
  • I 0 is the initial photocurrent density
  • I 8000 is the photocurrent density when measurement was continued for 8000 seconds through chronoamperometry analysis.
  • the hybrid photoelectrode according to one aspect can have excellent photocurrent density and long-term stability.
  • the photoelectric device may include a hybrid photoelectrode according to one aspect; A counter electrode of the hybrid photoelectrode; and an electrolyte.
  • the photoelectric device may be applied to, for example, solar cells, biosensors, etc.
  • a method of manufacturing a hybrid photoelectrode according to one aspect is
  • step (a) may involve forming a first layer by applying a dispersion solution containing a transition metal and heat treating it.
  • the application method includes, for example, spin coating, dip coating, roll coating, screen coating, spray coating, and spin casting. ), flow coating, screen printing, ink jet, or drop casting may be used, but are not limited thereto.
  • step (a) may be performed at 100 °C to 200 °C for 30 minutes to 2 hours, or at 200 °C to 300 °C for 1 hour to 2 hours, or at 400 °C to 600 °C for 1 hour to 3 hours.
  • Stepwise heat treatment may be performed using one or a combination of two or more temperature conditions selected from these.
  • the photosystem 1 dispersion solution in step (b) includes the steps of extracting juice from the leaves of the plant; Removing impurities from the juice, centrifuging to remove the supernatant, and obtaining precipitated solids; After dispersing the solid in a buffer solution and centrifuging, sonicating the redispersion solution of the solid to obtain a chloroplast dispersion buffer solution: heat-treating and centrifuging a mixture of the chloroplast dispersion buffer solution and the surfactant solution. It may be prepared including the step of removing the precipitate and obtaining a solution in which photosystem 1 is dispersed.
  • the type of plant is not greatly limited, but for example, spinach can be used among fruits and vegetables.
  • the concentration of the photosystem 1 dispersion solution may be 400 ⁇ g chlorophyll/mL to 600 ⁇ g chlorophyll/mL, and the application method may be, for example, spin coating or dip coating. , roll coating, screen coating, spray coating, spin casting, flow coating, screen printing, ink jet or drop. Casting (drop casting), etc. may be used, but are not limited to this.
  • step (b) drying may be performed at normal temperature, and reduced pressure conditions may be used if necessary.
  • room temperature may be the temperature without artificial temperature control.
  • the room temperature may be 20°C to 40°C, or 20°C to 30°C, or 23 to 26°C.
  • step (c) the atomic layer deposition method may be performed using a metal precursor represented by the following formula (1).
  • M is one of the group 4 to group 14 metal elements
  • a and B are each independently -R 1 , -OR 2 , -N(R 3 )(R 4 ), a halogen element or ego;
  • R 1 to R 6 are each independently (C1-C7)alkyl
  • a+b is the ionic value of M, and a and b are each integers from 0 to the ionic value of M.
  • M may be titanium (Ti), tin (Sn), zinc (Zn), aluminum (Al), silicon (Si), indium (In), or tantalum (Ta), but is not limited thereto.
  • M may be titanium
  • a and B may be the same as each other and -N(R 3 )(R 4 )
  • R 3 and R 4 may be the same as each other and may be (C1-C3)alkyl.
  • step (c) includes introducing the electrode obtained in step (b) into the reaction chamber; Supplying raw material gas containing a metal precursor represented by Formula 1 to a reaction chamber; purging the reaction chamber using an inert gas; Supplying a reaction gas to the reaction chamber; And the unit process including the step of purging the reaction chamber using an inert gas may be repeated one or more times.
  • the inert gas may be used without particular limitation as long as it is commonly known, but may be, for example, argon (Ar), nitrogen (N 2 ), or helium (He).
  • the reaction gas may be any one selected from water vapor (H 2 O), air, oxygen (O 2 ), and ozone (O 3 ), and may specifically be water vapor, but is not limited thereto.
  • Photosystem 1 which has photoactivity, was extracted from spinach (Spinacia oleracea) after separation into protein structures through mechanical grinding and chemical grinding using a surfactant. Specifically, the stems and leaves of thoroughly washed spinach (300 g) were separated, and only the leaves were obtained and squeezed through a juicer. Large pieces of crushed juice were removed using gauze, divided into 30 mL portions, and centrifuged (10,000 xg, 4°C, 5 minutes) to remove additional impurities.
  • the solution was dialyzed against a buffer solution (Tris buffered saline, pH 7.6) for 12 hours using a 50 kDa MWCO (Molecular weight cut off) membrane to obtain a dispersion in which photosystem 1 was dispersed. did.
  • a buffer solution Tris buffered saline, pH 7.6
  • FTO a transparent electrode
  • a solvent in the following order: acetone-ethanol-non-ionized water, then dried, and the surface was modified by pretreatment using a UV ozone cleaner.
  • After masking the pretreated FTO to 1cm The obtained TiO 2 paste film was heat treated at 100°C for 1 hour and 500°C for 2 hours to remove the solvent in the paste and prepare an electrode with a TiO 2 film formed thereon.
  • a TiO 2 primary layer thin film was formed on the photosystem 1 layer using atomic layer deposition (ALD). Specifically, a P type Si(100) wafer with a diameter of 100 mm was used for TiO 2 thin film deposition at low temperature. Traveling type ALD equipment was used for thin film deposition. Tetrakis(dimethylamino)titanium (IV) (TDMAT) was used as a precursor for thin film formation, H 2 O was used as a reaction gas for oxidation, and Ar was used as a purging gas.
  • ALD atomic layer deposition
  • the same procedure as Example 1 was performed, except that the TiO 2 thin film layer was formed to a thickness of 10 nm.
  • the same procedure as Example 1 was performed, except that the TiO 2 thin film layer was formed to a thickness of 20 nm.
  • a photoelectrode having a “TiO 2 /photosystem 1” structure was manufactured in the same manner as in Example 1, except that the third layer forming step was not performed.
  • the hybrid photoelectrode manufactured in the above examples and comparative examples was used as a working electrode, a platinum wire (Pt wire) was used as a counter electrode, and Ag/AgCl (NaCl saturated) was used as a reference electrode, and 0.1 M potassium phosphate buffer solution (potassium phosphate) was used as a reference electrode.
  • buffer, pH 7 1 mM K 3 Fe(CN) 6 and 1 mM K 4 Fe(CN) 6 electrolyte, and +0.3 V bias under conditions of solar simulator (Solar simulator, Xenon lamp, HAL 320, Asahi Spectra) , Tokyo, Japan, AM 1.5G, 1 Sun output) was used as a light source to evaluate the photoelectrochemical properties.
  • solar simulator Solar simulator, Xenon lamp, HAL 320, Asahi Spectra
  • Figure 1 shows the photocurrent density value obtained by calculating the average of the increased current density values for each region under repetitive illumination conditions.
  • the hybrid photoelectrode of the example has a photocurrent density value that increases as a TiO 2 thin film is deposited on the photosystem first layer. It can be seen that there is a marked improvement.
  • the photocurrent density value increased, and the photocurrent density of Example 3, where the TiO 2 thin film was 20 nm thick, was more than twice that of Comparative Example 1.
  • Table 1 Figures 2 and 3 below show the photocurrent and maintenance ratio generated when light irradiation is repeatedly continued and the measurement time is increased to 600 seconds and 8000 seconds or more through chronoamperometric analysis.
  • the hybrid photoelectrode according to one aspect of the present invention not only has excellent photocurrent density but also has excellent stability, enabling excellent reproducibility and reliability.
  • Example 1 Example 2 Example 3 Comparative Example 1 I 0 24.94 22.33 26.81 15.00 I 600 12.06 14.91 16.68 5.56 I 8000 4.34 5.82 6.08 1.23 I 0 : Initial photocurrent density I 600 : Photocurrent density when measurement was continued for 600 seconds through chronoamperometry analysis I 8000 : Photocurrent density when measurement was continued for 8000 seconds through chronoamperometry analysis
  • FIG. 4 shows the results of analyzing the Ti2p signal due to TiO 2 on the surface of the hybrid photoelectrode manufactured in Comparative Example 1. Referring to this, it was confirmed that the Ti2p signal, which was not visible before use, reappeared after use. That is, it can be seen that in the hybrid photoelectrode of Comparative Example 1, photosystem 1 is not stably fixed and thus falls off photosystem 1 after use.
  • Figure 5 shows the results of analyzing the Ti2p signal caused by TiO 2 on the surface of the hybrid photoelectrode manufactured in Examples 1 to 3. It can be confirmed that surface TiO 2 remains even after use, effectively protecting photosystem 1.
  • Figure 6 shows the results of analyzing the C1s signal caused by photosystem 1 protein on the surface of the hybrid photoelectrode prepared in Comparative Example 1. After use, the intensity of the C-C bond peak decreased to 1/10 level, causing photosystem 1 to fall off the electrode. You can see that it happens.
  • photosystem 1 is stably attached to the hybrid photoelectrodes manufactured in Examples 1 to 3 even after use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

An aspect of the present invention relates to a hybrid photoelectrode comprising photosystem 1. Specifically, the present invention relates to a hybrid photoelectrode and a photoelectric device comprising same, the hybrid photoelectrode comprising: a transparent electrode; a first layer comprising a transition metal oxide formed on the transparent electrode; a second layer comprising photosystem 1 formed on the first layer; and a third layer comprising a metal oxide thin film formed on the second layer, wherein excellent stability can be realized while at the same time securing the excellent quantum efficiency characteristics of photosystem 1.

Description

하이브리드 광전극 및 이를 포함하는 광전 소자Hybrid photoelectrode and photoelectric device containing the same
본 발명은 광계 1을 포함하는 하이브리드 광전극 및 이를 포함하는 광전소자에 관한 것이다.The present invention relates to a hybrid photoelectrode including photosystem 1 and an optoelectronic device including the same.
광계 1(photosystem 1)은 광합성의 주요 광화학 반응들을 수행하는 여러 개의 단백질 복합체들로 구성된 전자 전달계 중 하나로, 태양광에 의해 발생하는 광전자의 전달효율이 97%에 이를 정도로 높다는 특징을 가진다. 또한, 광계 1은 식물 또는 조류에서 추출할 수 있어 쉬운 접근성, 높은 내부 양자효율 특성 등으로 인하여 태양광 에너지 전환을 위한 차세대 재료로 각광받고 있다. Photosystem 1 is one of the electron transport systems composed of several protein complexes that perform the main photochemical reactions of photosynthesis, and is characterized by a high transfer efficiency of photoelectrons generated by sunlight, up to 97%. In addition, Photosystem 1 can be extracted from plants or algae, and is attracting attention as a next-generation material for solar energy conversion due to its easy accessibility and high internal quantum efficiency.
특히 광계 1을 전극 위에 고정하여 광전극 소재로 활용하고 하는 기술들이 발전되고 있다. 그러나, 광계 1을 전극 표면에 안정적으로 고정하기 위해서는 별도의 화학적 작용기를 도입하거나 접합 소재를 사용하는데, 이는 제조 방식이 복잡하여 실용성에 한계가 있으며 제조 과정에서 광계 1이 손상되거나 변형되어 전극 성능이 저하되는 문제가 있다. 또한, 광계 1로부터 제조된 광전극은 반응 중에 발생할 수 있는 활성 산소종 또는 호기성 전해질의 영향으로부터 광계 1이 손상되어 안정성이 낮은 한계가 있다.In particular, technologies are being developed to use photosystem 1 as a photoelectrode material by fixing it on an electrode. However, in order to stably fix photosystem 1 to the electrode surface, a separate chemical functional group is introduced or a bonding material is used, but this has limitations in practicality due to the complicated manufacturing method, and photosystem 1 is damaged or deformed during the manufacturing process, deteriorating electrode performance. There is a problem of deterioration. In addition, photoelectrodes made from photosystem 1 have limitations in terms of low stability due to damage to photosystem 1 from the effects of reactive oxygen species or aerobic electrolytes that may occur during the reaction.
즉, 광계 1의 우수한 양자효율 특성을 유지함과 동시에, 전극과 효과적으로 고정시키고 외부 조건으로부터 보호하여 전극의 성능과 안정성을 동시에 만족시킬 수 있는 새로운 기술의 개발이 필요하다.In other words, it is necessary to develop a new technology that can maintain the excellent quantum efficiency characteristics of photosystem 1 and simultaneously satisfy the performance and stability of the electrode by effectively fixing it to the electrode and protecting it from external conditions.
본 발명은 광계 1의 우수한 양자효율 특성을 확보하면서 우수한 안정성을 구현할 수 있는 하이브리드 광전극 및 이를 포함하는 광전 소자를 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a hybrid photoelectrode that can realize excellent stability while securing the excellent quantum efficiency characteristics of photosystem 1 and a photoelectric device containing the same.
상술된 목적을 위해, 본 발명의 일 양태는 투명 전극; 상기 투명 전극 상에 형성된 전이금속 산화물을 포함하는 제 1층; 상기 제 1층 상에 형성된 광계 1(photosystem 1)을 포함하는 제 2층; 및 상기 제 2층 상에 형성된 금속 산화물 박막을 포함하는 제 3층;을 포함하는, 하이브리드 광전극을 제공한다.For the above-described purposes, one aspect of the present invention includes a transparent electrode; a first layer including a transition metal oxide formed on the transparent electrode; a second layer including photosystem 1 formed on the first layer; and a third layer including a metal oxide thin film formed on the second layer.
상기 제 3층의 두께는 5 내지 50 nm일 수 있다.The thickness of the third layer may be 5 to 50 nm.
상기 금속 산화물 박막은 원자층 증착법(ALD)에 의해 형성되는 원자층 박막일 수 있다.The metal oxide thin film may be an atomic layer thin film formed by atomic layer deposition (ALD).
상기 금속 산화물 박막은 알루미늄 산화물, 규소 산화물, 티탄 산화물 및 아연 산화물에서 선택되는 하나 또는 둘 이상을 포함하는 것일 수 있다.The metal oxide thin film may include one or two or more selected from aluminum oxide, silicon oxide, titanium oxide, and zinc oxide.
상기 전이금속 산화물은 이산화티타늄(TiO2), 산화아연(ZnO) 및 이산화주석(SnO2)에서 선택되는 것일 수 있다.The transition metal oxide may be selected from titanium dioxide (TiO 2 ), zinc oxide (ZnO), and tin dioxide (SnO 2 ).
또한, 본 발명의 일 양태는 상기 하이브리드 광전극; 상기 광전극의 대전극; 및 전해질을 포함하는 광전 소자를 제공한다.In addition, one aspect of the present invention is the hybrid photoelectrode; A counter electrode of the photoelectrode; and an electrolyte.
일 양태에 따른 상기 광전 소자의 광전류밀도(Jsc)는 10 μA/cm2 내지 30 μA/cm2일 수 있다.The photocurrent density (Jsc) of the photoelectric device according to one aspect may be 10 μA/cm 2 to 30 μA/cm 2 .
일 양태에 따른 상기 광전 소자는 하기 식 1에 따른 값이 0.3 이상일 수 있다.The photoelectric device according to one aspect may have a value according to Equation 1 below of 0.3 or more.
[식 1][Equation 1]
I600 /I0 I 600 /I 0
(I0는 초기 광전류밀도이고,(I 0 is the initial photocurrent density,
I600은 시간대전류법 분석을 통해 600초 동안 측정을 지속하였을 때의 광전류밀도이다.)I 600 is the photocurrent density when measurement was continued for 600 seconds through chronoamperometry analysis.)
일 양태에 따른 상기 광전 소자는 하기 식 2에 따른 값이 0.1 이상일 수 있다.The photoelectric device according to one aspect may have a value according to Equation 2 below of 0.1 or more.
[식 2][Equation 2]
I8000 /I0 I 8000 /I 0
(I0는 초기 광전류밀도이고,(I 0 is the initial photocurrent density,
I8000은 시간대전류법 분석을 통해 8000초 동안 측정을 지속하였을 때의 광전류밀도이다.)I 8000 is the photocurrent density when measurement was continued for 8000 seconds through chronoamperometry analysis.)
또한, 본 발명의 일 양태는 상기 하이브리드 광전극을 포함하는, 바이오 센서를 제공한다.Additionally, one aspect of the present invention provides a biosensor including the hybrid photoelectrode.
또한, 본 발명의 일 양태는 상기 하이브리드 광전극을 포함하는, 태양 전지를 제공한다.Additionally, one aspect of the present invention provides a solar cell including the hybrid photoelectrode.
일 양태에 따른 하이브리드 광전극의 제조방법은 (a) 투명 전극의 일면에 전이금속 산화물을 포함하는 제 1층을 형성하는 단계; (b) 상기 제 1층 상에 광계 1 분산 용액을 도포하고 건조하여 광계 1을 포함하는 제 2층을 형성하는 단계; 및 (c) 상기 제 2층 상에 원자층 증착법(ALD)으로 금속 산화물 박막을 증착하여 제 3층을 형성하는 단계;를 포함할 수 있다.A method of manufacturing a hybrid photoelectrode according to one aspect includes (a) forming a first layer including a transition metal oxide on one surface of a transparent electrode; (b) forming a second layer containing photosystem 1 by applying a photosystem 1 dispersion solution on the first layer and drying it; and (c) forming a third layer by depositing a metal oxide thin film on the second layer by atomic layer deposition (ALD).
상기 광계 1 분산 용액은 식물의 잎을 착즙하여 착즙액을 수득하는 단계; 상기 착즙액으로부터 불순물을 제거한 뒤, 원심분리하여 상등액을 제거하고 침전된 고형분을 수득하는 단계; 상기 고형분을 완충용액에 분산시키고 원심분리 한 뒤, 고형분의 재분산 용액을 초음파 처리하여 엽록체 분산 완충용액을 수득하는 단계; 및 상기 엽록체 분산 완충용액과 계면활성제 용액을 혼합한 용액을 열처리 후 원심분리하여 침전물을 제거하고 광계 1이 분산된 용액을 수득하는 단계;를 포함하여 제조되는 것일 수 있다.The photosystem 1 dispersion solution includes the steps of extracting juice from plant leaves; Removing impurities from the juice, centrifuging to remove the supernatant, and obtaining precipitated solids; dispersing the solid in a buffer solution, centrifuging, and sonicating the solid redispersion solution to obtain a chloroplast dispersion buffer solution; And heat-treating the solution of the chloroplast dispersion buffer and the surfactant solution and then centrifuging the mixture to remove precipitates and obtain a solution in which photosystem 1 is dispersed.
상기 (c) 단계의 원자층 증착법은 하기 화학식 1로 표시되는 금속 전구체를 사용하여 수행될 수 있다.The atomic layer deposition method of step (c) may be performed using a metal precursor represented by the following formula (1).
[화학식 1][Formula 1]
M(A)a(B)b M(A) a (B) b
(상기 화학식 1에서,(In Formula 1 above,
M은 4족 내지 14족 금속원소 중 하나이고;M is one of the group 4 to group 14 metal elements;
A 및 B는 각각 독립적으로 -R1 , -OR2 , -N(R3)(R4), 할로겐원소 또는
Figure PCTKR2022009410-appb-img-000001
이고;
A and B are each independently -R 1 , -OR 2 , -N(R 3 )(R 4 ), a halogen element or
Figure PCTKR2022009410-appb-img-000001
ego;
상기 R1 내지 R6는 각각 독립적으로 (C1-C7)알킬이고;R 1 to R 6 are each independently (C1-C7)alkyl;
a+b는 M의 이온가로, a 및 b는 각각 0 내지 M의 이온가 이하의 정수이다.)a+b is the ionic value of M, and a and b are each integers from 0 to the ionic value of M.)
일 양태에 따른 하이브리드 광전극은 광계 1의 우수한 양자효율 특성을 유지함과 동시에, 광계 1을 전극과 효과적으로 고정시키고 외부 조건으로부터 보호하여 전극의 성능과 안정성을 동시에 만족시킬 수 있다.The hybrid photoelectrode according to one aspect can maintain the excellent quantum efficiency characteristics of photosystem 1 and simultaneously satisfy the performance and stability of the electrode by effectively fixing photosystem 1 to the electrode and protecting it from external conditions.
또한, 일 양태에 따른 하이브리드 광전극은 간단한 공정으로 제조될 수 있어 상업화에 유리할 수 있다.Additionally, the hybrid photoelectrode according to one aspect can be manufactured through a simple process, which may be advantageous for commercialization.
도 1은 실시예 및 비교예에서 제조된 광전극의 평균 광전류밀도를 도시한 것이다.Figure 1 shows the average photocurrent density of photoelectrodes manufactured in Examples and Comparative Examples.
도 2는 시간대전류법 분석을 통해 실시예 및 비교예에서 제조된 광전극의 광전류밀도를 600초간 측정한 결과를 도시한 것이다.Figure 2 shows the results of measuring the photocurrent density of the photoelectrodes manufactured in Examples and Comparative Examples for 600 seconds through chronoamperometry analysis.
도 3은 시간대전류법 분석을 통해 실시예 및 비교예에서 제조된 광전극의 광전류밀도를 8000초간 측정한 결과를 도시한 것이다.Figure 3 shows the results of measuring the photocurrent density of the photoelectrodes manufactured in Examples and Comparative Examples for 8000 seconds through chronoamperometry analysis.
도 4는 (a) TiO2 및 비교예 1에서 제조된 광전극의 (b) 사용 전, (c) 사용 후의 표면 XPS 분석 결과를 도시한 것이다.Figure 4 shows the results of surface XPS analysis of (a) TiO 2 and the photoelectrode prepared in Comparative Example 1 (b) before use and (c) after use.
도 5는 실시예 1 내지 3에서 제조된 광전극의 사용 전 및 사용 후의 표면 XPS 분석 결과를 도시한 것이다.Figure 5 shows the results of surface XPS analysis before and after use of the photoelectrodes prepared in Examples 1 to 3.
도 6은 비교예 1에서 제조된 광전극의 사용 전 및 사용 후의 XPS 분석 결과를 도시한 것이다.Figure 6 shows the results of XPS analysis before and after use of the photoelectrode prepared in Comparative Example 1.
도 7은 실시예 1 내지 3에서 제조된 광전극의 사용 전 및 사용 후의 표면 XPS 분석 결과를 도시한 것이다.Figure 7 shows the results of surface XPS analysis before and after use of the photoelectrodes prepared in Examples 1 to 3.
본 명세서에서 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 명세서에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.Unless otherwise defined herein, all technical and scientific terms have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. The terminology used in the description herein is merely to effectively describe particular embodiments and is not intended to limit the invention.
본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly dictates otherwise.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.In addition, the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified herein, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
본 명세서의 용어, “포함한다”는 “구비한다”, “함유한다”, “가진다” 또는 “특징으로 한다” 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.The term “comprises” in this specification is an open description with the same meaning as expressions such as “comprises,” “contains,” “has,” or “features,” and includes elements that are not additionally listed; Does not exclude materials or processes.
본 명에서의 용어, "광계 1(photosystem 1)"은 광합성의 주요 광화학 반응들을 함께 수행하는 광합성과 관련된 단백질 복합체들의 기능적, 구조적 단위를 의미하는 것으로, 광합성 과정 중 광수집 복합체에서 태양광으로부터 광전자를 생성하고 정교한 배열을 가지는 색소 및 기타 보조 인자들의 복합체의 경로를 따라 전자 전달 반응을 일으킨다.The term "photosystem 1" in the present name refers to the functional and structural unit of protein complexes related to photosynthesis that together perform the main photochemical reactions of photosynthesis. During the photosynthetic process, photoelectrons are collected from sunlight in the light collection complex. and causes an electron transfer reaction along the path of a complex of pigments and other cofactors with an elaborate arrangement.
본 발명의 일 양태는 광계 1을 포함하는 하이브리드 광전극에 관한 것이다. 광계 1은 쉬운 접근성, 높은 내부 양자효율 특성 등으로 인하여 태양광 에너지 전환을 위한 차세대 재료로 각광받고 있으나, 광계 1을 전극 표면에 안정적으로 고정하기 위해서는 제조 방식이 복잡하여 실용성에 한계가 있으며, 제조 과정에서 광계 1이 손상되거나 변형되어 전극 성능이 저하되는 문제가 있다. 또한, 광계 1로부터 제조된 광전극은 반응 중에 발생할 수 있는 활성 산소종 또는 호기성 전해질의 영향으로부터 광계 1이 손상되어 안정성이 낮은 한계가 있다.One aspect of the present invention relates to a hybrid photoelectrode comprising photosystem 1. Photosystem 1 is attracting attention as a next-generation material for solar energy conversion due to its easy accessibility and high internal quantum efficiency, but the manufacturing method is complicated to stably fix photosystem 1 to the electrode surface, which limits its practicality. There is a problem that photosystem 1 is damaged or deformed in the process, deteriorating electrode performance. In addition, photoelectrodes made from photosystem 1 have limitations in terms of low stability due to damage to photosystem 1 from the effects of reactive oxygen species or aerobic electrolytes that may occur during the reaction.
본 발명의 일 양태는 상기 과제를 해결하기 위한 것으로, 광계 1의 우수한 양자효율 특성을 유지하면서 광전극의 장기 안정성을 확보할 수 있는 하이브리드 광전극을 제공한다.One aspect of the present invention is intended to solve the above problems, and provides a hybrid photoelectrode that can secure long-term stability of the photoelectrode while maintaining the excellent quantum efficiency characteristics of photosystem 1.
구체적으로, 본 발명의 일 양태에 따른 하이브리드 광전극은 투명 전극; 상기 투명 전극 상에 형성된 전이금속 산화물을 포함하는 제 1층; 상기 제 1층 상에 형성된 광계 1(photosystem 1)을 포함하는 제 2층; 및 상기 제 2층 상에 형성된 금속 산화물 박막을 포함하는 제 3층;을 포함하는 것일 수 있다.Specifically, the hybrid photoelectrode according to one aspect of the present invention includes a transparent electrode; a first layer including a transition metal oxide formed on the transparent electrode; a second layer including photosystem 1 formed on the first layer; and a third layer including a metal oxide thin film formed on the second layer.
일 양태에 따른 하이브리드 광전극은 상술한 바와 같은 구성적 조합을 가짐에 따라, 전극의 성능 및 안정성을 동시에 확보할 수 있다. 일 예로, 상기 금속 산화물 박막(제 3층)은 광계 1의 우수한 양자효율 특성을 저하시키지 않으면서도 광계 1을 투명 전극 상에 효과적으로 고정시킴과 동시에 외부 자극으로부터 보호할 수 있어 전극의 안정성을 향상시킬 수 있다. 또한, 일 양태에 따른 하이브리드 광전극의 광전 효율을 더욱 우수하게 할 수 있다.The hybrid photoelectrode according to one aspect has the structural combination described above, and thus can simultaneously secure the performance and stability of the electrode. As an example, the metal oxide thin film (third layer) can effectively fix photosystem 1 on the transparent electrode without deteriorating the excellent quantum efficiency characteristics of photosystem 1 and protect it from external stimuli, thereby improving the stability of the electrode. You can. Additionally, the photoelectric efficiency of the hybrid photoelectrode according to one aspect can be further improved.
그러나, 상기 제 2층 재료로 광계 1 대신에 엽록소(chlorophyll)와 같은 화합물을 활용할 경우 광계 1이 가지는 높은 내부 전자 효율을 적용할 수 없을 뿐만 아니라, 제 3층인 금속 산화물 박막층이 증착될 경우 엽록소의 전해질과의 전하 전달을 위한 접촉을 완전히 차단하여 전극 성능이 현저히 저하될 수 있다.However, if a compound such as chlorophyll is used instead of photosystem 1 as the second layer material, not only cannot the high internal electronic efficiency of photosystem 1 be applied, but also when the third layer, a metal oxide thin film layer, is deposited, the chlorophyll Electrode performance may be significantly reduced by completely blocking contact for charge transfer with the electrolyte.
상기 투명 전극은 전도성과 투과성을 가지는 재료라면 특별히 제한되지 않으나, 비한정적인 일 예로 인듐-주석-산화막(ITO: Indium Tin Oxide); 인듐-아연-산화막(IZO: Indium Zinc Oxide); 불소 도핑 산화주석(FTO: Fluorine-doped Tin Oxide); 은(Ag), 구리(Cu), 알루미늄(Al), 마그네슘(Mg), 금(Au), 백금(Pt), 텅스텐(W), 몰리브덴(Mo), 티탄(Ti), 니켈(Ni) 또는 이들을 포함하는 합금들로 이루어진 군에서 선택될 수 있다.The transparent electrode is not particularly limited as long as it is a material having conductivity and transparency, but non-limiting examples include indium tin oxide (ITO: Indium Tin Oxide); Indium Zinc Oxide (IZO); Fluorine-doped Tin Oxide (FTO); Silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), gold (Au), platinum (Pt), tungsten (W), molybdenum (Mo), titanium (Ti), nickel (Ni), or It may be selected from the group consisting of alloys containing these.
상기 투명 전극 상에 형성된 제 1층은 다공성 전이금속 산화물 층일 수있으며, 구체적으로 상기 전이금속 산화물은 이산화티타늄(TiO2), 산화아연(ZnO) 및 이산화주석(SnO2)에서 선택되는 것일 수 있으나 이에 한정되는 것은 아니다.The first layer formed on the transparent electrode may be a porous transition metal oxide layer. Specifically, the transition metal oxide may be selected from titanium dioxide (TiO 2 ), zinc oxide (ZnO), and tin dioxide (SnO 2 ). It is not limited to this.
또한, 상기 제 3층의 금속 산화물 박막은 원자층 증착법(ALD)에 의해 형성되는 원자층 박막일 수 있다.Additionally, the metal oxide thin film of the third layer may be an atomic layer thin film formed by atomic layer deposition (ALD).
상기 제 3층의 두께는 원자층 증착법에 따른 증착 횟수에 따라 달라질 수 있으며 크게 한정되는 것은 아니나, 예를 들어, 5 내지 50 nm일 수 있고, 구체적으로 5 내지 30 nm, 더욱 구체적으로 5 내지 20 nm일 수 있다.The thickness of the third layer may vary depending on the number of depositions according to the atomic layer deposition method and is not greatly limited, but may be, for example, 5 to 50 nm, specifically 5 to 30 nm, and more specifically 5 to 20 nm. It may be nm.
상기 두께범위를 만족하는 경우 광계 1층을 안정적으로 보호할 수 있음과 동시에 일 양태에 따른 하이브리드 광전극의 광전 효율을 더욱 향상시킬 수 있다.When the above thickness range is satisfied, the first layer of the photosystem can be stably protected and at the same time, the photoelectric efficiency of the hybrid photoelectrode according to one embodiment can be further improved.
상기 금속 산화물 박막은 알루미늄 산화물, 규소 산화물, 티탄 산화물 및 아연 산화물에서 선택되는 하나 또는 둘 이상을 포함하는 것일 수 있으며, 구체적으로 티탄 산화물일 수 있고, 더욱 구체적으로 이산화티타늄(TiO2)일 수 있다.The metal oxide thin film may include one or two or more selected from aluminum oxide, silicon oxide, titanium oxide, and zinc oxide, and may specifically be titanium oxide, and more specifically, titanium dioxide (TiO 2 ). .
일 예로, 일 양태에 따른 하이브리드 광전극의 광전류밀도(Jsc)는 상기 금속 산화물 박막층의 두께가 5 내지 20 nm를 기준으로 10 μA/cm2 내지 30 μA/cm2일 수 있으며, 구체적으로 10 μA/cm2 내지 25 μA/cm2 일 수 있다.For example, the photocurrent density (Jsc) of the hybrid photoelectrode according to one aspect may be 10 μA/cm 2 to 30 μA/cm 2 based on the thickness of the metal oxide thin film layer of 5 to 20 nm, and specifically 10 μA. /cm 2 to 25 μA/cm 2 .
동시에, 일 양태에 따른 하이브리드 광전극은 하기 식 1에 따른 값이 0.3 이상, 또는 0.4 이상, 또는 0.5 이상, 또는 0.6 이상일 수 있다.At the same time, the hybrid photoelectrode according to one aspect may have a value according to Equation 1 below of 0.3 or more, or 0.4 or more, or 0.5 or more, or 0.6 or more.
[식 1][Equation 1]
I600 /I0 I 600 /I 0
(I0는 초기 광전류밀도이고, I600은 시간대전류법 분석을 통해 600초 동안 측정을 지속하였을 때의 광전류밀도이다.)(I 0 is the initial photocurrent density, and I 600 is the photocurrent density when measurement was continued for 600 seconds through chronoamperometry analysis.)
동시에, 일 양태에 따른 하이브리드 광전극은 하기 식 2에 따른 값이 0.05 이상, 또는 0.15 이상, 또는 0.20 이상일 수 있다.At the same time, the hybrid photoelectrode according to one aspect may have a value according to Equation 2 below of 0.05 or more, or 0.15 or more, or 0.20 or more.
[식 2][Equation 2]
I8000 /I0 I 8000 /I 0
(I0는 초기 광전류밀도이고, I8000은 시간대전류법 분석을 통해 8000초 동안 측정을 지속하였을 때의 광전류밀도이다.)(I 0 is the initial photocurrent density, and I 8000 is the photocurrent density when measurement was continued for 8000 seconds through chronoamperometry analysis.)
즉, 일 양태에 따른 하이브리드 광전극은 우수한 광전류밀도 및 장기 안정성을 가질 수 있다.That is, the hybrid photoelectrode according to one aspect can have excellent photocurrent density and long-term stability.
또한, 본 발명의 일 양태는 상기 하이브리드 광전극을 포함하는 광전 소자를 제공한다. 예를 들어 상기 광전소자는 일 양태에 따른 하이브리드 광전극; 상기 하이브리드 광전극의 대전극; 및 전해질을 포함하는 것일 수 있다.Additionally, one aspect of the present invention provides an optoelectronic device including the hybrid photoelectrode. For example, the photoelectric device may include a hybrid photoelectrode according to one aspect; A counter electrode of the hybrid photoelectrode; and an electrolyte.
상기 광전 소자는 예를 들어, 태양 전지, 바이오 센서 등에 적용될 수 있다.The photoelectric device may be applied to, for example, solar cells, biosensors, etc.
이하, 일 양태에 따른 하이브리드 광전극의 제조방법에 대해 설명한다.Hereinafter, a method for manufacturing a hybrid photoelectrode according to one aspect will be described.
일 양태에 따른 하이브리드 광전극의 제조방법은A method of manufacturing a hybrid photoelectrode according to one aspect is
(a) 투명 전극의 일면에 전이금속 산화물을 포함하는 제 1층을 형성하는 단계;(a) forming a first layer containing a transition metal oxide on one surface of a transparent electrode;
(b) 상기 제 1층 상에 광계 1 분산 용액을 도포하고 건조하여 광계 1을 포함하는 제 2층을 형성하는 단계; 및(b) forming a second layer containing photosystem 1 by applying a photosystem 1 dispersion solution on the first layer and drying it; and
(c) 상기 제 2층 상에 원자층 증착법(ALD)으로 금속 산화물 박막을 증착하여 제 3층을 형성하는 단계;를 포함할 수 있다.(c) forming a third layer by depositing a metal oxide thin film on the second layer using atomic layer deposition (ALD).
상기 투명 전극, 전이금속 산화물, 금속 산화물 박막에 대한 구체적인 설명은 상술한 바와 같으므로 생략한다.Detailed descriptions of the transparent electrode, transition metal oxide, and metal oxide thin film are the same as described above and are therefore omitted.
구체적으로, 상기 (a) 단계는 전이금속을 포함하는 분산 용액을 도포하고 열처리하여 제 1층을 형성하는 것일 수 있다. 상기 도포의 방법으로는 예를 들어, 스핀코팅(spin coating), 딥코팅 (dip coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무코팅(spray coating), 스핀 캐스팅 (spin casting), 흐름코팅(flow coating), 스크린 인쇄(screen printing), 잉크젯(ink jet) 또는 드롭 캐스팅 (drop casting) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.Specifically, step (a) may involve forming a first layer by applying a dispersion solution containing a transition metal and heat treating it. The application method includes, for example, spin coating, dip coating, roll coating, screen coating, spray coating, and spin casting. ), flow coating, screen printing, ink jet, or drop casting may be used, but are not limited thereto.
또한, 상기 (a) 단계의 열처리는 100 ℃ 내지 200 ℃ 에서 30 분 내지 2시간, 또는 200 ℃ 내지 300 ℃에서 1 시간 내지 2시간, 또는 400 ℃ 내지 600 ℃에서 1 시간 내지 3시간 동안 수행될 수 있으며, 이들에서 선택되는 하나 또는 둘 이상의 온도 조건의 조합으로 단계적인 열처리가 수행될 수 있다.In addition, the heat treatment in step (a) may be performed at 100 ℃ to 200 ℃ for 30 minutes to 2 hours, or at 200 ℃ to 300 ℃ for 1 hour to 2 hours, or at 400 ℃ to 600 ℃ for 1 hour to 3 hours. Stepwise heat treatment may be performed using one or a combination of two or more temperature conditions selected from these.
상기 (b) 단계의 상기 광계 1 분산 용액은, 식물의 잎을 착즙하여 착즙액을 수득하는 단계; 상기 착즙액으로부터 불순물을 제거한 뒤, 원심분리하여 상등액을 제거하고 침전된 고형분을 수득하는 단계; 상기 고형분을 완충용액에 분산시키고 원심분리 한 뒤, 고형분의 재분산 용액을 초음파 처리하여 엽록체 분산 완충용액을 수득하는 단계: 상기 엽록체 분산 완충용액과 계면활성제 용액을 혼합한 용액을 열처리 후 원심분리하여 침전물을 제거하고 광계 1이 분산된 용액을 수득하는 단계;를 포함하여 제조될 수 있다.The photosystem 1 dispersion solution in step (b) includes the steps of extracting juice from the leaves of the plant; Removing impurities from the juice, centrifuging to remove the supernatant, and obtaining precipitated solids; After dispersing the solid in a buffer solution and centrifuging, sonicating the redispersion solution of the solid to obtain a chloroplast dispersion buffer solution: heat-treating and centrifuging a mixture of the chloroplast dispersion buffer solution and the surfactant solution. It may be prepared including the step of removing the precipitate and obtaining a solution in which photosystem 1 is dispersed.
상기 식물의 종류는 크게 한정되지 않으나, 예를 들어, 과채류 중 시금치를 사용할 수 있다.The type of plant is not greatly limited, but for example, spinach can be used among fruits and vegetables.
또한, 상기 (b) 단계에서 광계 1 분산 용액의 농도는 400 μg chlorophyll/mL 내지 600 μg chlorophyll/mL 일 수 있으며, 도포 방법은 예를 들어, 스핀코팅(spin coating), 딥코팅 (dip coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무코팅(spray coating), 스핀 캐스팅 (spin casting), 흐름코팅(flow coating), 스크린 인쇄(screen printing), 잉크젯(ink jet) 또는 드롭 캐스팅 (drop casting) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.Additionally, in step (b), the concentration of the photosystem 1 dispersion solution may be 400 μg chlorophyll/mL to 600 μg chlorophyll/mL, and the application method may be, for example, spin coating or dip coating. , roll coating, screen coating, spray coating, spin casting, flow coating, screen printing, ink jet or drop. Casting (drop casting), etc. may be used, but are not limited to this.
또한, 상기 (b) 단계에서 건조는 상온(normal temperature)에서 수행될 수 있으며, 필요에 따라 감압 조건을 사용할 수 있다. 여기서 상온은 인위적으로 온도 조절을 하지 않은 상태의 온도일 수 있다. 예를 들어, 상기 상온은 20℃ 내지 40℃, 또는 20℃ 내지 30℃, 또는 23 내지 26℃일 수 있다.Additionally, in step (b), drying may be performed at normal temperature, and reduced pressure conditions may be used if necessary. Here, room temperature may be the temperature without artificial temperature control. For example, the room temperature may be 20°C to 40°C, or 20°C to 30°C, or 23 to 26°C.
상기 (c) 단계에서 원자층 증착법은 하기 화학식 1로 표시되는 금속 전구체를 사용하여 수행될 수 있다.In step (c), the atomic layer deposition method may be performed using a metal precursor represented by the following formula (1).
[화학식 1][Formula 1]
M(A)a(B)b M(A) a (B) b
(상기 화학식 1에서,(In Formula 1 above,
M은 4족 내지 14족 금속원소 중 하나이고;M is one of the group 4 to group 14 metal elements;
A 및 B는 각각 독립적으로 -R1 , -OR2 , -N(R3)(R4), 할로겐원소 또는
Figure PCTKR2022009410-appb-img-000002
이고;
A and B are each independently -R 1 , -OR 2 , -N(R 3 )(R 4 ), a halogen element or
Figure PCTKR2022009410-appb-img-000002
ego;
상기 R1 내지 R6는 각각 독립적으로 (C1-C7)알킬이고;R 1 to R 6 are each independently (C1-C7)alkyl;
a+b는 M의 이온가로, a 및 b는 각각 0 내지 M의 이온가 이하의 정수이다.)a+b is the ionic value of M, and a and b are each integers from 0 to the ionic value of M.)
일 예로, 상기 M은 티타늄(Ti), 주석(Sn), 아연(Zn), 알루미늄(Al), 규소(Si), 인듐(In) 또는 탄탈륨(Ta)일 수 있으나, 이에 한정되는 것은 아니다.For example, M may be titanium (Ti), tin (Sn), zinc (Zn), aluminum (Al), silicon (Si), indium (In), or tantalum (Ta), but is not limited thereto.
구체적으로 상기 M은 티타늄일 수 있으며, 상기 A 및 B는 서로 동일하며 -N(R3)(R4)일 수 있고, R3 및 R4는 서로 동일하며 (C1-C3)알킬일 수 있다.Specifically, M may be titanium, A and B may be the same as each other and -N(R 3 )(R 4 ), and R 3 and R 4 may be the same as each other and may be (C1-C3)alkyl. .
구체적으로, 상기 단계 (c)는, 상기 단계 (b)에서 수득한 전극을 반응챔버에 투입하는 단계; 상기 화학식 1로 표시되는 금속 전구체를 포함하는 원료가스를 반응 챔버에 공급하는 단계; 비활성기체를 사용하여 반응 챔버를 퍼징하는 단계; 반응가스를 반응 챔버에 공급하는 단계; 및 비활성기체를 사용하여 반응 챔버를 퍼징하는 단계를 포함하는 단위공정을 1회 이상 반복 수행하는 것일 수 있다.Specifically, step (c) includes introducing the electrode obtained in step (b) into the reaction chamber; Supplying raw material gas containing a metal precursor represented by Formula 1 to a reaction chamber; purging the reaction chamber using an inert gas; Supplying a reaction gas to the reaction chamber; And the unit process including the step of purging the reaction chamber using an inert gas may be repeated one or more times.
상기 비활성기체는 통상적으로 알려진 것이라면 특별이 한정하지 않고 사용될 수 있으나, 예를 들어, 아르곤(Ar), 질소(N2) 또는 헬륨(He)일 수 있다.The inert gas may be used without particular limitation as long as it is commonly known, but may be, for example, argon (Ar), nitrogen (N 2 ), or helium (He).
상기 반응가스는 수증기(H2O), 공기, 산소(O2) 및 오존(O3)등에서 선택되는 어느 하나일 수 있고, 구체적으로 수증기일 수 있으나 이에 한정되는 것은 아니다.The reaction gas may be any one selected from water vapor (H 2 O), air, oxygen (O 2 ), and ozone (O 3 ), and may specifically be water vapor, but is not limited thereto.
이하, 실시예를 통하여 상술한 구현예를 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 권리범위를 제한하는 것은 아니다. Hereinafter, the above-described implementation example will be described in more detail through examples. However, the following examples are for illustrative purposes only and do not limit the scope of rights.
[제조예 1][Production Example 1] 광계 1 분산 용액 제조 Photosystem 1 dispersion solution preparation
시금치(Spinacia oleracea)로부터 기계적 분쇄와 계면활성제를 사용한 화학적 분쇄를 통해 단백질 구조들로 분리 후 광활성을 가지는 광계 1을 추출하였다. 구체적으로, 깨끗하게 세척한 시금치(300 g)의 줄기와 잎을 분리 후 잎만 얻어 착즙기를 통해 착즙하였다. 착즙액에서 큰 분쇄조각들은 거즈를 사용하여 제거 후 30 mL씩 나눠담은 후, 원심분리(10,000 xg, 4℃, 5분간)하여 추가 불순물을 제거하였다. 원심분리 상등액을 제거한 후 30 mL 중성 완충 용액(50 mM sodium phosphate buffer & 10 mM NaCl, pH 7.0)에 분산시키고 추가 원심분리에 의해 부서진 엽록체 조각들을 얻고 1분 간 초음파를 인가 하였다. 부서진 엽록체 분산 완충 용액과 계면활성제 용액 (50 mM Tris-HCl & 3 % Triton X-100, pH 8.8)을 1 : 2 부피비로 섞어주고 45℃에서 30 분간 열처리를 수행하고 원심분리로 침전물을 제거하였다. 알려진 바와 같이, 광계 2는 열에 쉽게 변성된다. 이에, 45℃의 열처리후 원심분리에 의해 침전물을 제거함으로써 광계 2를 제거할 수 있다. 원심분리에 의해 얻은 용액 내에 존재하는 계면활성제를 제거하기 위해 50 kDa MWCO(Molecular weight cut off) 멤브레인을 이용해 완충 용액(Tris buffered saline, pH 7.6)에 12 시간 투석하여 광계 1이 분산된 분산액을 수득하였다. Photosystem 1, which has photoactivity, was extracted from spinach (Spinacia oleracea) after separation into protein structures through mechanical grinding and chemical grinding using a surfactant. Specifically, the stems and leaves of thoroughly washed spinach (300 g) were separated, and only the leaves were obtained and squeezed through a juicer. Large pieces of crushed juice were removed using gauze, divided into 30 mL portions, and centrifuged (10,000 xg, 4°C, 5 minutes) to remove additional impurities. After centrifugation supernatant was removed, it was dispersed in 30 mL neutral buffer solution (50 mM sodium phosphate buffer & 10 mM NaCl, pH 7.0), and broken chloroplast pieces were obtained by additional centrifugation, and ultrasound was applied for 1 minute. Broken chloroplast dispersion buffer solution and surfactant solution (50 mM Tris-HCl & 3% Triton . As is known, photosystem 2 is easily denatured by heat. Accordingly, photosystem 2 can be removed by removing the precipitate by centrifugation after heat treatment at 45°C. To remove the surfactant present in the solution obtained by centrifugation, the solution was dialyzed against a buffer solution (Tris buffered saline, pH 7.6) for 12 hours using a 50 kDa MWCO (Molecular weight cut off) membrane to obtain a dispersion in which photosystem 1 was dispersed. did.
[실시예 1] 하이브리드 광전극의 제조[Example 1] Manufacturing of hybrid photoelectrode
제 1층 형성First layer formation
투명 전극인 FTO를 아세톤-에탄올-비이온수 순서로 용매 속에서 초음파 분쇄를 이용하여 불순물을 세척한 후 건조하였으며, 자외선 세정기(UV ozone cleaner)를 이용한 전처리로 표면을 개질하였다. 전처리한 FTO를 1cm X 1mm 로 masking 후 닥터 플레이즈 방식으로 입경 50 nm의 TiO2 페이스트를 도포하였다. 얻어진 TiO2 페이스트 필름을 100 ℃에서 1시간, 500 ℃에서 2시간 열처리하여 페이스트 내 용매를 제거하고 TiO2 필름이 형성된 전극을 제조하였다.FTO, a transparent electrode, was cleaned of impurities using ultrasonic pulverization in a solvent in the following order: acetone-ethanol-non-ionized water, then dried, and the surface was modified by pretreatment using a UV ozone cleaner. After masking the pretreated FTO to 1cm The obtained TiO 2 paste film was heat treated at 100°C for 1 hour and 500°C for 2 hours to remove the solvent in the paste and prepare an electrode with a TiO 2 film formed thereon.
제 2층 형성Second layer formation
상기에서 수득한 TiO2 필름이 형성된 전극을 자외선 세정기(UV ozone cleaner)로 전처리 후, TiO2 필름 상에 470 μg chlorophyll/mL 농도의 광계 1 분산 용액 50 μL을 드롭 캐스팅(drop casting) 방식으로 도포하였다. 이후, 상온 감압 건조를 통해 광계 1 분산 용액의 용매를 제거하고 광계 1만이 증착된 "TiO2/광계 1" 구조의 전극을 제조하였다.After pre-treating the electrode on which the TiO 2 film obtained above was formed with a UV ozone cleaner, 50 μL of the photosystem 1 dispersion solution with a concentration of 470 μg chlorophyll/mL was applied on the TiO 2 film by drop casting. did. Afterwards, the solvent of the photosystem 1 dispersion solution was removed through vacuum drying at room temperature, and an electrode with a “TiO 2 /photosystem 1” structure on which only photosystem 1 was deposited was manufactured.
제 3층 형성Third layer formation
이후 광계 1 층 위에 원자층 증착 방식(atomic layer doposition, ALD)을 이용하여 TiO2 원차증 박막을 형성하였다. 구체적으로, 저온에서 TiO2 박막 증착을 위해 100 mm 지름의 P type Si(100) wafer를 사용하였다. 박막 증착을 위하여 Travelling 타입의 ALD 장비를 이용하였다. 박막 형성을 위한 전구체는 Tetrakis(dimethylamino)titanium (IV) (TDMAT), 산화를 위한 반응기체로 H2O, 퍼징 가스(purging gas)로는 Ar를 사용하였다. 200 ℃ 기판 온도 조건에서 증착 110 cycle을 반복하여 5 nm 두께의 TiO2 박막층이 형성된, "TiO2/광계 1/TiO2 박막" 구조의 하이브리드 광전극을 제조하였다.Afterwards, a TiO 2 primary layer thin film was formed on the photosystem 1 layer using atomic layer deposition (ALD). Specifically, a P type Si(100) wafer with a diameter of 100 mm was used for TiO 2 thin film deposition at low temperature. Traveling type ALD equipment was used for thin film deposition. Tetrakis(dimethylamino)titanium (IV) (TDMAT) was used as a precursor for thin film formation, H 2 O was used as a reaction gas for oxidation, and Ar was used as a purging gas. A hybrid photoelectrode with a “TiO 2 /photosystem 1/TiO 2 thin film” structure in which a 5 nm thick TiO 2 thin film layer was formed by repeating 110 cycles of deposition at a substrate temperature of 200°C was manufactured.
[실시예 2][Example 2]
상기 제 3층 형성 단계에서 TiO2 박막층을 10 nm 두께로 형성한 것으로 제외하고는 상기 실시예 1과 동일하게 실시하였다.In the third layer forming step, the same procedure as Example 1 was performed, except that the TiO 2 thin film layer was formed to a thickness of 10 nm.
[실시예 3][Example 3]
상기 제 3층 형성 단계에서 TiO2 박막층을 20 nm 두께로 형성한 것으로 제외하고는 상기 실시예 1과 동일하게 실시하였다.In the third layer forming step, the same procedure as Example 1 was performed, except that the TiO 2 thin film layer was formed to a thickness of 20 nm.
[비교예 1][Comparative Example 1]
상기 실시예 1에서, 제 3층 형성 단계를 수행하지 않은 것을 제외하고는 동일하게 실시하여 "TiO2/광계 1"구조의 광전극을 제조하였다.A photoelectrode having a “TiO 2 /photosystem 1” structure was manufactured in the same manner as in Example 1, except that the third layer forming step was not performed.
<평가예> <Evaluation example>
평가 1. 광전기화학적 특성 평가 Evaluation 1. Evaluation of photoelectrochemical properties
상기 실시예 및 비교예에서 제조된 하이브리드 광전극을 작동전극으로, 백금 와이어(Pt wire)를 상대전극으로, Ag/AgCl (NaCl saturated)를 기준전극으로 하여, 0.1 M 인산 칼륨 완충용액(potassium phosphate buffer, pH 7), 1 mM K3Fe(CN)6 와 1 mM K4Fe(CN)6 전해질 및 +0.3 V 바이어스(bias) 조건 하에서 솔라 시뮬레이터(Solar simulator, Xenon lamp, HAL 320, Asahi Spectra, Tokyo, Japan, AM 1.5G, 1 Sun 출력)를 광원으로 하여 광전기화학적 특성을 평가하였다. 그 결과는 하기 표 1, 도 1 및 도 2에 도시하였다.The hybrid photoelectrode manufactured in the above examples and comparative examples was used as a working electrode, a platinum wire (Pt wire) was used as a counter electrode, and Ag/AgCl (NaCl saturated) was used as a reference electrode, and 0.1 M potassium phosphate buffer solution (potassium phosphate) was used as a reference electrode. buffer, pH 7), 1 mM K 3 Fe(CN) 6 and 1 mM K 4 Fe(CN) 6 electrolyte, and +0.3 V bias under conditions of solar simulator (Solar simulator, Xenon lamp, HAL 320, Asahi Spectra) , Tokyo, Japan, AM 1.5G, 1 Sun output) was used as a light source to evaluate the photoelectrochemical properties. The results are shown in Table 1 and Figures 1 and 2 below.
도 1은 반복적인 조광 조건에서 구역별 증가한 전류밀도 값의 평균을 계산하여 얻은 광전류밀도 값을 도시한 것으로, 실시예의 하이브리드 광전극은 광계 1층 상에 TiO2 박막을 증착 함에 따라 광전류밀도 값이 현저히 향상되는 것을 알 수 있다. 또한, TiO2 박막의 두께가 증가할수록 광전류밀도 값이 증가하였으며, TiO2 박막의 두께가 20 nm인 실시예 3의 광전류밀도는 비교예 1에 비하여 두 배 이상 증가하였다.Figure 1 shows the photocurrent density value obtained by calculating the average of the increased current density values for each region under repetitive illumination conditions. The hybrid photoelectrode of the example has a photocurrent density value that increases as a TiO 2 thin film is deposited on the photosystem first layer. It can be seen that there is a marked improvement. In addition, as the thickness of the TiO 2 thin film increased, the photocurrent density value increased, and the photocurrent density of Example 3, where the TiO 2 thin film was 20 nm thick, was more than twice that of Comparative Example 1.
하기 표 1, 도 2 및 도 3은 시간대전류법 분석을 통해 광조사를 반복적으로 지속하여 측정시간을 600 초와 8000초 이상으로 증가시켰을 경우, 생성되는 광전류와 유지 비율을 도시한 것이다.Table 1, Figures 2 and 3 below show the photocurrent and maintenance ratio generated when light irradiation is repeatedly continued and the measurement time is increased to 600 seconds and 8000 seconds or more through chronoamperometric analysis.
도 1 내지 3을 참조하면, 본 발명의 일 양태에 따른 하이브리드 광전극은 우수한 광전류밀도를 가질 뿐만 아니라 안정성이 우수하여 탁월한 재현성 및 신뢰성을 구현할 수 있음을 알 수 있다.Referring to Figures 1 to 3, it can be seen that the hybrid photoelectrode according to one aspect of the present invention not only has excellent photocurrent density but also has excellent stability, enabling excellent reproducibility and reliability.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1
I0 I 0 24.9424.94 22.3322.33 26.8126.81 15.0015.00
I600 I 600 12.0612.06 14.9114.91 16.6816.68 5.565.56
I8000 I 8000 4.344.34 5.825.82 6.086.08 1.231.23
I0: 초기 광전류 밀도
I600: 시간대전류법 분석을 통해 600초 동안 측정을 지속하였을 때의 광전류밀도
I8000: 시간대전류법 분석을 통해 8000초 동안 측정을 지속하였을 때의 광전류밀도
I 0 : Initial photocurrent density
I 600 : Photocurrent density when measurement was continued for 600 seconds through chronoamperometry analysis
I 8000 : Photocurrent density when measurement was continued for 8000 seconds through chronoamperometry analysis
평가 2. 안정성 평가 Evaluation 2. Stability evaluation
X-선 광전자분광법(XPS; X-ray photoelectron Spectroscopy)를 이용하여 상기 실시예 및 비교예에서 제조된 하이브리드 광전극의 사용 전과 사용 후의 전극 표면 원소와 구성 결합을 분석하였으며, 이를 비교하여 전극의 안정성을 평가하였다. 그 결과는 도 4 내지 도 6에 도시하였다.Using X-ray photoelectron spectroscopy (XPS; was evaluated. The results are shown in Figures 4 to 6.
도 4 는 비교예 1에서 제조된 하이브리드 광전극 표면에서의 TiO2에 기인한 Ti2p 시그널을 분석한 결과이다. 이를 참조하면, 사용 전에는 보이지 않던 Ti2p 시그널이 사용 후에 다시 나타나는 것을 확인하였다. 즉, 비교예 1의 하이브리드 광전극은 광계 1이 안정적으로 고정되지 않아 사용 후에는 광계 1에 탈락되는 것을 알 수 있다.Figure 4 shows the results of analyzing the Ti2p signal due to TiO 2 on the surface of the hybrid photoelectrode manufactured in Comparative Example 1. Referring to this, it was confirmed that the Ti2p signal, which was not visible before use, reappeared after use. That is, it can be seen that in the hybrid photoelectrode of Comparative Example 1, photosystem 1 is not stably fixed and thus falls off photosystem 1 after use.
도 5는 실시예 1 내지 3에서 제조된 하이브리드 광전극 표면에서의 TiO2에 기인한 Ti2p시그널을 분석한 결과로, 사용 후에도 표면 TiO2가 잔여하여 광계 1을 효과적으로 보호하고 있음을 확인할 수 있다.Figure 5 shows the results of analyzing the Ti2p signal caused by TiO 2 on the surface of the hybrid photoelectrode manufactured in Examples 1 to 3. It can be confirmed that surface TiO 2 remains even after use, effectively protecting photosystem 1.
또한, 도 6은 비교예 1에서 제조된 하이브리드 광전극 표면에서 광계 1 단백질에 의한 C1s시그널을 분석한 결과로, 사용 후에 C-C 결합 피크의 세기가 1/10 수준으로 감소하여 광계 1이 전극에서 탈락되는 것을 알 수 있다.In addition, Figure 6 shows the results of analyzing the C1s signal caused by photosystem 1 protein on the surface of the hybrid photoelectrode prepared in Comparative Example 1. After use, the intensity of the C-C bond peak decreased to 1/10 level, causing photosystem 1 to fall off the electrode. You can see that it happens.
반면, 도 7을 참조하면 실시예 1 내지 3에서 제조된 하이브리드 광전극은 사용 후에도 광계 1이 안정적으로 부착되어 있는 것을 확인할 수 있다.On the other hand, referring to FIG. 7, it can be seen that photosystem 1 is stably attached to the hybrid photoelectrodes manufactured in Examples 1 to 3 even after use.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific details and limited embodiments, but these are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the field to which the present invention belongs is not limited to the above embodiments. Those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .

Claims (14)

  1. 투명 전극; 상기 투명 전극 상에 형성된 전이금속 산화물을 포함하는 제 1층; 상기 제 1층 상에 형성된 광계 1(photosystem 1)을 포함하는 제 2층; 및 상기 제 2층 상에 형성된 금속 산화물 박막을 포함하는 제 3층;을 포함하는, 하이브리드 광전극.transparent electrode; a first layer including a transition metal oxide formed on the transparent electrode; a second layer including photosystem 1 formed on the first layer; and a third layer comprising a metal oxide thin film formed on the second layer.
  2. 제 1항에 있어서,According to clause 1,
    상기 제 3층의 두께는 5 내지 50 nm인, 하이브리드 광전극.A hybrid photoelectrode wherein the third layer has a thickness of 5 to 50 nm.
  3. 제 2항에 있어서,According to clause 2,
    상기 금속 산화물 박막은 원자층 증착법(ALD)에 의해 형성되는 원자층 박막인, 하이브리드 광전극.The metal oxide thin film is an atomic layer thin film formed by atomic layer deposition (ALD), a hybrid photoelectrode.
  4. 제 3항에 있어서,According to clause 3,
    상기 금속 산화물 박막은 알루미늄 산화물, 규소 산화물, 티탄 산화물 및 아연 산화물에서 선택되는 하나 또는 둘 이상을 포함하는 것인, 하이브리드 광전극.A hybrid photoelectrode wherein the metal oxide thin film includes one or two or more selected from aluminum oxide, silicon oxide, titanium oxide, and zinc oxide.
  5. 제 1항에 있어서,According to clause 1,
    상기 전이금속 산화물은 이산화티타늄(TiO2), 산화아연(ZnO) 및 이산화주석(SnO2)에서 선택되는 것인, 하이브리드 광전극.The transition metal oxide is a hybrid photoelectrode selected from titanium dioxide (TiO 2 ), zinc oxide (ZnO), and tin dioxide (SnO 2 ).
  6. 제 1항 내지 제 5항에서 선택되는 어느 한 항에 따른 하이브리드 광전극; 상기 광전극의 대전극; 및 전해질을 포함하는 광전 소자.A hybrid photoelectrode according to any one selected from claims 1 to 5; A counter electrode of the photoelectrode; and an electrolyte.
  7. 제 6항에 있어서,According to clause 6,
    상기 광전 소자의 광전류밀도(Jsc)는 10 μA/cm2 내지 30 μA/cm2인, 광전 소자.The photoelectric device has a photocurrent density (Jsc) of 10 μA/cm 2 to 30 μA/cm 2 .
  8. 제 7항에 있어서,According to clause 7,
    상기 광전 소자는 하기 식 1에 따른 값이 0.3 이상인, 광전 소자.The photoelectric device has a value of 0.3 or more according to Equation 1 below.
    [식 1][Equation 1]
    I600 /I0 I 600 /I 0
    I0는 초기 광전류밀도이고,I 0 is the initial photocurrent density,
    I600은 시간대전류법 분석을 통해 600초 동안 측정을 지속하였을 때의 광전류밀도이다.I 600 is the photocurrent density when measurement was continued for 600 seconds through chronoamperometry analysis.
  9. 제 8항에 있어서,According to clause 8,
    상기 광전 소자는 하기 식 2에 따른 값이 0.1 이상인, 광전 소자.The photoelectric device is a photoelectric device having a value of 0.1 or more according to Equation 2 below.
    [식 2][Equation 2]
    I8000 /I0 I 8000 /I 0
    I0는 초기 광전류밀도이고,I 0 is the initial photocurrent density,
    I8000은 시간대전류법 분석을 통해 8000초 동안 측정을 지속하였을 때의 광전류밀도이다.I 8000 is the photocurrent density when measurement was continued for 8000 seconds through chronoamperometry analysis.
  10. 제 1항 내지 제 5항에서 선택되는 어느 한 항에 따른 하이브리드 광전극을 포함하는, 바이오 센서.A biosensor comprising a hybrid photoelectrode according to any one of claims 1 to 5.
  11. 제 1항 내지 제 5항에서 선택되는 어느 한 항에 따른 하이브리드 광전극을 포함하는, 태양 전지.A solar cell comprising a hybrid photoelectrode according to any one of claims 1 to 5.
  12. (a) 투명 전극의 일면에 전이금속 산화물을 포함하는 제 1층을 형성하는 단계;(a) forming a first layer containing a transition metal oxide on one surface of a transparent electrode;
    (b) 상기 제 1층 상에 광계 1 분산 용액을 도포하고 건조하여 광계 1을 포함하는 제 2층을 형성하는 단계; 및(b) forming a second layer containing photosystem 1 by applying a photosystem 1 dispersion solution on the first layer and drying it; and
    (c) 상기 제 2층 상에 원자층 증착법(ALD)으로 금속 산화물 박막을 증착하여 제 3층을 형성하는 단계;를 포함하는, 하이브리드 광전극의 제조방법.(c) forming a third layer by depositing a metal oxide thin film on the second layer by atomic layer deposition (ALD).
  13. 제 12항에 있어서,According to clause 12,
    상기 광계 1 분산 용액은,The photosystem 1 dispersion solution is,
    식물의 잎을 착즙하여 착즙액을 수득하는 단계;Obtaining juice by squeezing the leaves of the plant;
    상기 착즙액으로부터 불순물을 제거한 뒤, 원심분리하여 상등액을 제거하고 침전된 고형분을 수득하는 단계;Removing impurities from the juice, centrifuging to remove the supernatant, and obtaining precipitated solids;
    상기 고형분을 완충용액에 분산시키고 원심분리 한 뒤, 고형분의 재분산 용액을 초음파 처리하여 엽록체 분산 완충용액을 수득하는 단계; 및dispersing the solid in a buffer solution, centrifuging, and sonicating the solid redispersion solution to obtain a chloroplast dispersion buffer solution; and
    상기 엽록체 분산 완충용액과 계면활성제 용액을 혼합한 용액을 열처리 후 원심분리하여 침전물을 제거하고 광계 1이 분산된 용액을 수득하는 단계;를 포함하여 제조되는 것인, 하이브리드 광전극의 제조방법.A method of manufacturing a hybrid photoelectrode, which is prepared including the step of heat-treating the mixed solution of the chloroplast dispersion buffer solution and the surfactant solution and then centrifuging it to remove the precipitate and obtain a solution in which photosystem 1 is dispersed.
  14. 제 12항에 있어서,According to clause 12,
    상기 (c) 단계의 원자층 증착법은 하기 화학식 1로 표시되는 금속 전구체를 사용하는 것인, 하이브리드 광전극의 제조방법.The atomic layer deposition method of step (c) is a method of manufacturing a hybrid photoelectrode using a metal precursor represented by the following formula (1).
    [화학식 1][Formula 1]
    M(A)a(B)b M(A) a (B) b
    상기 화학식 1에서,In Formula 1,
    M은 4족 내지 14족 금속원소 중 하나이고;M is one of the group 4 to group 14 metal elements;
    A 및 B는 각각 독립적으로 -R1 , -OR2 , -N(R3)(R4), 할로겐원소 또는
    Figure PCTKR2022009410-appb-img-000003
    이고;
    A and B are each independently -R 1 , -OR 2 , -N(R 3 )(R 4 ), a halogen element or
    Figure PCTKR2022009410-appb-img-000003
    ego;
    상기 R1 내지 R6는 각각 독립적으로 (C1-C7)알킬이고;R 1 to R 6 are each independently (C1-C7)alkyl;
    a+b는 M의 이온가로, a 및 b는 각각 0 내지 M의 이온가 이하의 정수이다.a+b is the ionic value of M, and a and b are each integers from 0 to the ionic value of M.
PCT/KR2022/009410 2022-06-30 2022-06-30 Hybrid photoelectrode and photoelectric device comprising same WO2024005233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/009410 WO2024005233A1 (en) 2022-06-30 2022-06-30 Hybrid photoelectrode and photoelectric device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/009410 WO2024005233A1 (en) 2022-06-30 2022-06-30 Hybrid photoelectrode and photoelectric device comprising same

Publications (1)

Publication Number Publication Date
WO2024005233A1 true WO2024005233A1 (en) 2024-01-04

Family

ID=89382563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009410 WO2024005233A1 (en) 2022-06-30 2022-06-30 Hybrid photoelectrode and photoelectric device comprising same

Country Status (1)

Country Link
WO (1) WO2024005233A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095470A (en) * 2005-09-28 2007-04-12 Ebara Corp Anode for bioelectrogenesis, its manufacturing method and power generation device
US20140042407A1 (en) * 2012-08-08 2014-02-13 Vanderbilt University Biohybrid photoelectrochemical energy conversion device
KR20150137590A (en) * 2014-05-30 2015-12-09 서강대학교산학협력단 Photoelectrode for dye-sensitized solar cell, and preparing method of the same
KR20160054691A (en) * 2014-11-06 2016-05-17 건국대학교 산학협력단 Electrode unit comprising bio material and photoelectric connersion device comprising the same
US20220181090A1 (en) * 2019-04-21 2022-06-09 University Of Tennessee Research Foundation Amphiphilic co-polymer lipid particles, methods of making same, and photo-electrical energy generating devices incorporating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095470A (en) * 2005-09-28 2007-04-12 Ebara Corp Anode for bioelectrogenesis, its manufacturing method and power generation device
US20140042407A1 (en) * 2012-08-08 2014-02-13 Vanderbilt University Biohybrid photoelectrochemical energy conversion device
KR20150137590A (en) * 2014-05-30 2015-12-09 서강대학교산학협력단 Photoelectrode for dye-sensitized solar cell, and preparing method of the same
KR20160054691A (en) * 2014-11-06 2016-05-17 건국대학교 산학협력단 Electrode unit comprising bio material and photoelectric connersion device comprising the same
US20220181090A1 (en) * 2019-04-21 2022-06-09 University Of Tennessee Research Foundation Amphiphilic co-polymer lipid particles, methods of making same, and photo-electrical energy generating devices incorporating same

Similar Documents

Publication Publication Date Title
Murugadoss et al. An efficient electron transport material of tin oxide for planar structure perovskite solar cells
KR100256135B1 (en) Process for making ohmic contacts and photovoltaic cell with ohmic contact
Zhang et al. High reproducibility of perovskite solar cells via a complete spin-coating sequential solution deposition process
US4192720A (en) Electrodeposition process for forming amorphous silicon
WO2014003294A1 (en) Technique for producing perovskite-based mesoporous thin film solar cell
WO2015130054A1 (en) Solid-type thin-film solar battery using perovskite-based dye and method for manufacturing same
WO2018088797A1 (en) Spirobifluorene compound and perovskite solar cell comprising same
WO2024005233A1 (en) Hybrid photoelectrode and photoelectric device comprising same
CN109119540B (en) Doping SnO in F2In-situ preparation of SnO on transparent conductive film substrate2Method of electron transport layer
WO2021107184A1 (en) Monolithic tandem solar cell and method for producing same
Lei et al. Effect of morphology control of light absorbing layer on CH3NH3PbI3 perovskite solar cells
CN102312190B (en) Sputtering is used for the method based on the RTB film of the photovoltaic device of cadmium telluride
KR20160139986A (en) Perovskite solar cell and preparation method thereof
CN110061137B (en) Perovskite battery for preparing tin oxide electron transport layer based on room-temperature film formation and preparation method thereof
KR20200088733A (en) Preparation method of perovskite solar cells via vapor-casting processing
KR20240003138A (en) Hybrid photoelectode and photoelectronic devices comprising the same
WO2013089305A1 (en) Method for enhancing conductivity of molybdenum thin film by using electron beam irradiation
Duong et al. Enhancement of solar cell efficiency using perovskite dyes deposited via a two-step process
WO2023008643A1 (en) High-efficiency photoelectrochemical electrode as hydrogen generator composed of three-dimensional carbon fabric-based metal oxide and transition metal dichalcogenide bond, and manufacturing method therefor
WO2011145797A1 (en) Carbon nanotube-invaded metal oxide composite film, manufacturing method thereof, and organic solar cell with improved photoelectric conversion efficiency and improved duration using same
WO2011065601A1 (en) Dye-sensitized solar cell including absorber layer in which plurality of nano tubes or nano rod type metal oxides are arrayed in one direction, and manufacturing method thereof
WO2016013878A1 (en) Solar cell
WO2021133085A2 (en) Preparation method for organic halide for preparation of perovskite, perovskite prepared thereby, and solar cell
WO2022114330A1 (en) Method for planarizing cis-based thin film, cis-based thin film manufactured by using same, and solar cell comprising the cis-based thin film
WO2021177800A2 (en) Method for manufacturing hole transport layer of perovskite solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949526

Country of ref document: EP

Kind code of ref document: A1