WO2024005231A1 - Photoelectrode comprising natural light harvesting system and electrochemical reaction system comprising same - Google Patents

Photoelectrode comprising natural light harvesting system and electrochemical reaction system comprising same Download PDF

Info

Publication number
WO2024005231A1
WO2024005231A1 PCT/KR2022/009401 KR2022009401W WO2024005231A1 WO 2024005231 A1 WO2024005231 A1 WO 2024005231A1 KR 2022009401 W KR2022009401 W KR 2022009401W WO 2024005231 A1 WO2024005231 A1 WO 2024005231A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectrode
polymer
hydrogel
present
paragraph
Prior art date
Application number
PCT/KR2022/009401
Other languages
French (fr)
Korean (ko)
Inventor
류정기
배상현
김민정
권태혁
김광민
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2024005231A1 publication Critical patent/WO2024005231A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/087Photocatalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a photoelectrode including a natural light harvesting system and an electrochemical reaction system including the same.
  • Photoelectrochemical (PEC) water oxidation reaction using the natural light harvesting system (Photosystem II, PSII) of green plants is receiving much attention as a research study on eco-friendly energy conversion through the use of actual natural biological materials.
  • the drop-casting method which has been mainly used as a PSII fixation method, has the advantage of being able to apply PSII to various types of electrodes without additional processing, but can be easily applied under random arrangement and photoreaction conditions of PSII. It is showing a detachment problem.
  • Some studies have attempted to increase electron transfer efficiency between electrodes and PSII using electron donors (electron mediators), but the oxygen reduction reaction by chlorophyll cannot be suppressed, so the efficiency is still low at low voltages. These results suggest that it is difficult to expect high PEC water oxidation reaction efficiency of PSII by only partially improving the problem. Therefore, an all-in-one strategy that can simultaneously control PSII orientation and suppress side reactions is needed.
  • the present invention manufactures a hydrogel for immobilizing biological materials (e.g., natural light harvesting system) through pretreatment (e.g., cross-linking) of a hydrophilic polymer material, and utilizes the hydrogel to perform a photoelectrochemical reaction. It relates to a photoelectrode with immobilized biological material (e.g., natural light harvesting system) that can improve the environment and performance.
  • biological materials e.g., natural light harvesting system
  • pretreatment e.g., cross-linking
  • the present invention relates to an electrochemical reaction system (e.g., water decomposition system) utilizing a biological material (e.g., natural light harvesting system) containing a photoelectrode according to the present invention.
  • an electrochemical reaction system e.g., water decomposition system
  • a biological material e.g., natural light harvesting system
  • a transparent electrode layer A polymer hydrogel layer having an amine group formed on the transparent electrode layer; And a PS II layer formed on the polymer hydrogel layer; It relates to a photoelectrode, wherein the hydrogel is formed of a polymer having an amine group cross-linked through glutaraldehyde.
  • the transparent electrode layer includes: a substrate; It may include a transparent semiconductor material formed on the substrate.
  • the transparent semiconductor material is BaTiO 3 , BaSnO 3 , Bi 2 O 3 , V 2 O 5 , VO 2 , Fe 2 O 3 , Fe 3 O 4 , BiVO 4 , Bi 2 WO 4 , TiO 2 , SrTiO 3 , ZnO, CuO, Cu 2 O, NiO, SnO 2 , CoO, In 2 O 3 , WO 3 , MgO, CaO, La 2 O 3 , Nd 2 O 3 , Nb 2 O 5, Y 2 O 3 , CeO 2 , PbO, ZrO 2, Co 3 O 4 and Al 2 O It may include at least one selected from the group consisting of 3 .
  • the thickness of the polymer hydrogel layer may be 10 nm to 1000 nm.
  • the thickness of the PS II layer may be 10 nm to 1000 nm.
  • the pore size of the photoelectrode may be 200 nm to 500 nm.
  • the polymer having the amine group is polyethyleneimine (PEI), polyamine, polyamideamine, polyvinylamine, polyamidoimine, Polyallylamine, Poly-L-lysine, polyacrylamide, Polyamidoamine, polyvinylpyridine, polyvinylimidazole and Chitosan ) may include at least one selected from the group consisting of
  • the molecular weight of the polymer having the amine group may be 500 (g/mol) or more.
  • the hydrogel may be crosslinked at a mass ratio of glutaraldehyde to polymer having an amine group of 1:9 to 9:1.
  • the photoelectrode may be used for a PEC water oxidation reaction.
  • a photoelectrode according to the present invention and an opposite electrode to the photoelectrode; It relates to an electrochemical reaction system including.
  • the electrochemical reaction system may be a water splitting system using a PEC water oxidation reaction.
  • the present invention is an immobilization platform that can simultaneously control the orientation and suppress side reactions of a natural light harvesting system (e.g. PS II) using a polymer hydrogel having an amine group. And a photoelectrode and electrochemical reaction system using the same can be provided. Moreover, through the hydrogel immobilization platform of the present invention, it is possible to simultaneously solve the random arrangement and side reaction problems of natural light harvesting systems (e.g. PS II), which have previously been presented as problems in the photoelectrochemical process, and increase the efficiency and productivity of the photoelectrochemical process. , photoelectric performance can be stably improved.
  • a natural light harvesting system e.g. PS II
  • the hydrogel of the present invention is a material that is simple to manufacture and has high potential for various applications in biomaterial immobilization technology.
  • it can be manufactured using various polymer materials and/or It can be immobilized, and the pore size can be easily controlled depending on the biological material.
  • Figure 1 shows an SEM photograph of a photoelectrode according to an embodiment of the present invention, (a) a SEM photograph of a bare TiO 2 (Inverse Opal, IO) electrode and (b) a hybrid photoelectrode (TiO 2 /PEI- This is an SEM photo of hydrogel/PS II).
  • FIG. 2 shows PEC Water Oxidation (Oxygen Evolution Reaction, OER) of each electrode (TiO 2 , TiO 2 /PS II, TiO 2 /PEI-hydrogel/PS II) according to an embodiment of the present invention. It is an indication of efficiency.
  • OER Oxygen Evolution Reaction
  • Figure 3 shows the luminous efficiency in (a) a low voltage region and (b) the luminous efficiency in a high voltage region of a photoelectrode, according to an embodiment of the present invention.
  • Figure 4 shows the results of a photoreaction stability test of a photoelectrode, according to an embodiment of the present invention.
  • Figure 5 shows the results of oxygen generation by a photoelectrode according to an embodiment of the present invention.
  • Figure 6 shows the photovoltage of the photoelectrode according to an embodiment of the present invention.
  • Figure 7 shows the path and side reactions (a) and (b) of the photoelectrochemical (PEC) water oxidation reaction of a water splitting system using a conventional natural light harvesting system (Photosystem II, PSII), according to an embodiment of the present invention. It is shown.
  • PEC photoelectrochemical
  • the photoelectrode may be a hybrid photoelectrode in which a biological material (eg, natural light harvesting system) is immobilized using a polymer hydrogel.
  • a biological material eg, natural light harvesting system
  • the photoelectrode includes a transparent electrode layer; A polymer hydrogel layer having an amine group formed on the transparent electrode layer; and a biomaterial layer formed on the polymer hydrogel layer.
  • the transparent electrode layer includes: a substrate; A transparent photoelectrode comprising a transparent semiconductor material formed on the substrate, wherein the semiconductor material layer is a semiconductor material capable of generating electrons and holes by receiving light, and the semiconductor material layer includes Ti, Sn, Zn, Mn, Mg, Ni, W, Co, Fe, Ba, In, Zr, Cu, Al, Bi, Pb, Ag, Cd, Y, Mo, Rh, Pd, Sb, Cs, La, V, Si, Al, elements Sr, B, O and C; and a metal oxide containing at least one of these.
  • the metal oxide is BaTiO 3 , BaSnO 3 , Bi 2 O 3 , V 2 O 5 , VO 2 , Fe 2 O 3 (or, ⁇ -Fe 2 O 3 ), Fe 3 O 4 , BiVO 4 , Bi 2 WO 4 , TiO 2 , SrTiO 3 , ZnO, CuO, Cu 2 O, NiO, SnO 2 , CoO, In 2 O 3 , WO 3 , At least one selected from the group consisting of MgO, CaO, La 2 O 3 , Nd 2 O 3 , Nb 2 O 5, Y 2 O 3 , CeO 2 , PbO, ZrO 2, Co 3 O 4 and Al 2 O 3 It can be included.
  • the substrate is a transparent substrate, for example, glass, sapphire, or a transparent polymer substrate
  • the transparent polymer substrate is polystyrene, polycarbonate, or polymethylmethane.
  • Poly methyl methacrylate, polyethylene terephthalate, poly(ethylenenaphthalate), polyphthalate carbonate, polyurethane, poly(ether sulfone) and polyethylene It may include one or more types selected from the group consisting of polyimide.
  • the substrate may be a conductive substrate such as FTO or ITO.
  • the semiconductor material layer includes particles having a size of several nm to hundreds of ⁇ m, for example, 1 nm or more; 1 nm to 900 ⁇ m; Alternatively, it may have a size of 1 nm to 300 ⁇ m.
  • the size may mean diameter, length, etc., depending on the shape of the particle. If it is within the above size range, it provides an efficient electron movement path, and can be used in the integration of biological materials (e.g., natural light harvesting system) stacked on the semiconductor material layer and in the photoelectrochemical process (e.g., photoelectrochemical water splitting process). Interaction can be increased.
  • the semiconductor material layer may have a thickness of several nm to hundreds of ⁇ m, for example, 1 nm or more; 1 nm to less than 1000 ⁇ m; 10 nm to 900 ⁇ m; Or it may be 30 nm to 500 ⁇ m thick. If the thickness is within the above range, an efficient electron movement path can be provided to allow a photoelectrochemical process (e.g., photoelectrochemical water decomposition process) to proceed smoothly.
  • a photoelectrochemical process e.g., photoelectrochemical water decomposition process
  • the polymer hydrogel layer is formed on the transparent electrode layer and can be used to immobilize biological materials.
  • the biological material may be an enzyme, protein, cell, extract of biological tissue, etc.
  • the polymer hydrogel can be used for immobilization of biological materials on a substrate, which can be used to form electrodes (e.g. photoelectrodes, transparent electrodes, etc.), films, sheets, fibers, beads, nanotubes, particles (e.g. : porous particles), etc., but is not limited thereto.
  • the polymer hydrogel can be used to immobilize a natural light harvesting system (e.g. PS II) on a photoelectrode (e.g. transparent electrode), which improves the process efficiency of the photoelectrochemical process. You can do it. For example, it can improve photoreaction stability and photovoltage and increase the generation of products by photoelectrochemistry (e.g., oxygen generation by water oxidation).
  • this hydrogel which is a cross-linked polymer with an amine group, easily absorbs moisture and exhibits high anaerobicity on the electrode surface.
  • the side reaction shown in (b) of Figure 7 can be suppressed, that is, the stromal side (PSII) in the photoelectrochemical system utilizing a natural light harvesting system due to the characteristics of the hydrogel having a (+) charge (amine group) in the solution phase.
  • the electron transfer efficiency between photoelectrode/PS II was able to be increased through photoelectrode orientation.
  • side reactions oxygen reduction reaction, H 2 O 2 production
  • H 2 O 2 production are suppressed by limiting oxygen gas access using the highly anaerobic properties of the hydrogel, and damage to PS II caused by H 2 O 2 can be reduced.
  • the thickness of the hydrogel layer is 10 nm or more; 30 nm or more; 50 nm or more; 100 nm or more; 10 nm to 1000 nm; 10 nm to 900 nm; 10 nm to 800 nm; 10 nm to 600 nm; 10 nm to 400 nm; Or it may be 50 nm to 300 nm. In some instances it may preferably be between 10 nm and 800 nm. If it is within the above range, the electron transfer efficiency and side reactions between transparent electrode/PS II (e.g., oxygen reduction reaction, H 2 O 2 production) can be improved, and damage to PS II caused by H 2 O 2 can be reduced.
  • transparent electrode/PS II e.g., oxygen reduction reaction, H 2 O 2 production
  • the polymer having the amine group may be a polymer having one or more amine groups in the molecule or an amine in the ring.
  • the polymer having the amine group is polyethyleneimine (PEI) (e.g., b-PEI (branched-poly(ethylene imine)), l-PEI (linear-poly(ethylene imine)), polyamine (Polyamine) , Polyamideamine, Polyvinylamine, Polyamidoimine, Polyallylamine, Poly-L-lysine, polyacrylamide, polyamidoamine ( It may include at least one selected from the group consisting of polyamidoamine, polyvinylpyridine, polyvinylimidazole, and chitosan.
  • PEI polyethyleneimine
  • b-PEI branched-poly(ethylene imine)
  • l-PEI linear-poly(ethylene imine)
  • polyamine Polyamine
  • Polyamideamine Polyvinylamine
  • Polyamidoimine Polyallylamine
  • the polymer having an amine group is preferably polyethyleneimine (PEI), branched-poly(ethylene imine) (b-PEI), linear-poly(ethylene imine) (l-PEI), polyamine, and It can be selected from polyamideamine.
  • PEI polyethyleneimine
  • b-PEI branched-poly(ethylene imine)
  • l-PEI linear-poly(ethylene imine)
  • polyamine and It can be selected from polyamideamine.
  • the molecular weight of the polymer having the amine group is 500 or more (g/mol); 1,000 (g/mol) or more; 5,000 (g/mol) or more; 10,000 (g/mol) or more; Or 500 (g/mol) to 10,000 (g/mol).
  • the molecular weight may be a weight average molecular weight or a number average molecular weight. If it is within the above molecular weight range, it is advantageous for immobilizing biomaterials and can help increase the interaction between biomaterials (e.g. PS II) and the transparent electrode layer.
  • the polymer hydrogel may be a hydrogel obtained by crosslinking a polymer having an amine group with a crosslinking agent (eg, chemical crosslinking).
  • a crosslinking agent eg, chemical crosslinking
  • the cross-linking agent is at least one selected from the group consisting of glutaraldehyde (GA), formaldehyde, dextrinaldehyde, MBAAm (N,N'-methylenebisacrylamide), and PEGDA (poly(ethylene glycol) diacrylate). It can be included. In some instances it may preferably be glutaraldehyde .
  • the polymer hydrogel includes the steps of preparing a polymer solution having an amine group, preparing a crosslinker solution; and mixing the polymer solution and the cross-linking agent solution to prepare a reaction mixture, at room temperature (rt) or higher; Room temperature (rt) to 200°C; Room temperature to 150°C; Room temperature to 100°C; It may include a crosslinking reaction at a temperature from room temperature to 50°C.
  • the crosslinking reaction may take at least 30 seconds; More than 1 minute; 1 minute to 1 hour; 1 to 30 minutes; 1 to 10 minutes; or 1 to 5 minutes; It can take place over a period of time.
  • the mass ratio of the crosslinker to the polymer having amine groups in the reaction mixture is 1:9 to 9:1; 2:8 to 8:2; Or it may be 3:7 to 7:3.
  • the above mass ratio range is applied, it is possible to provide a hydrogel that can immobilize biological materials (eg, PS II) in a photoelectrode and improve the performance of the photoelectrode.
  • the polymer hydrogel includes the steps of preparing a polymer solution having an amine group; Preparing a cross-linking agent solution; and forming a film by coating the polymer solution on a transparent electrode. It may include the step of coating the cross-linking agent solution on the membrane and performing a cross-linking reaction.
  • the crosslinking reaction is performed at room temperature (rt, °C) or higher; Room temperature (rt) to 200°C; Room temperature to 150°C; Room temperature to 100°C; Alternatively, the crosslinking reaction may proceed at a temperature between room temperature and 50°C.
  • the crosslinking reaction may take at least 30 seconds; More than 1 minute; 1 minute to 1 hour; 1 to 30 minutes; 1 to 10 minutes; Alternatively, it may last from 1 minute to 5 minutes.
  • the mass ratio of the crosslinking agent to the polymer having an amine group is 1:9 to 9:1; 2:8 to 8:2; 3:7 to 7:3; Or it may be 4:6 to 6:4.
  • a hydrogel capable of immobilizing biological materials (eg, PS II) in a photoelectrode and improving the performance of the photoelectrode.
  • the biological material is an electrochemically active enzyme, for example, it may be PS II enzyme (photosystem II, water-plastoquinone oxidoreductase), which is a natural light harvesting system.
  • PS II enzyme photosystem II, water-plastoquinone oxidoreductase
  • This can form a PS II electrode, a natural light harvesting system for photoelectrochemical reactions (e.g. PEC water oxidation reaction).
  • PEC water oxidation reaction a natural light harvesting system for photoelectrochemical reactions
  • the PS II electrode can induce high photovoltage and provide stable photoelectric performance by being immobilized with the hydrogel according to the present invention.
  • the thickness of the biomaterial layer (e.g., natural light harvesting system) (e.g., PS II) layer is 10 nm or more; 30 nm or more; 50 nm or more; 100 nm or more; 10 nm to 1000 nm; 10 nm to 900 nm; 10 nm to 800 nm; 10 nm to 600 nm; 10 nm to 400 nm; or 50 nm to 300 nm. In some instances, preferably 10 nm to 800 nm. nm. If it is within the above range, the interaction with the transparent electrode layer increases, thereby inducing a high photovoltage and providing stable photoelectric performance.
  • the biomaterial layer e.g., natural light harvesting system
  • PS II e.g., PS II
  • the pore size of the photoelectrode is 200 nm to 500 nm; 200 nm to 450 nm; Or it may be 300 nm to 400 nm. In some instances it may preferably be between 200 nm and 450 nm.
  • the pore size is measured on the surface of the biological material layer, and may be, for example, the pore size of the biological material layer. If it is within the pore size range, the efficiency of the photoelectrochemical reaction can be increased, for example, the amount of oxygen generated in PEC water decomposition can be increased.
  • the photoelectrode includes preparing a transparent electrode; Forming a hydrogel layer on the transparent electrode; And it may include forming a biomaterial layer on the hydrogel layer.
  • the transparent electrode, the hydrogel, and the biomaterial are suitable for a photoelectrochemical process, as mentioned in the photoelectrode.
  • the step of preparing the transparent electrode may include additional processes such as cleaning, drying, and/or surface modification (eg, plasma treatment).
  • the step of forming the hydrogel layer involves preparing the hydrogel coating solution mentioned in the photoelectrode and applying the transparent coating to various coating processes such as spin coating, dip coating, drop coating, printing method, spray coating, and roll-to-roll coating. It can be coated on the electrode.
  • the step of forming the hydrogel layer involves preparing a coating solution of a polymer having an amine group and a crosslinking agent coating solution, respectively, coating the polymer coating solution on the transparent electrode, and then coating the crosslinking agent coating solution to proceed with a crosslinking reaction to produce hydro A gel layer can be formed.
  • the step of forming a biomaterial layer on the hydrogel layer involves preparing the biomaterial coating solution mentioned in the photoelectrode and using various methods such as spin coating, dip coating, drop coating, printing method, spray coating, and roll-to-roll coating. A coating process can be used.
  • the photoelectrode can be applied to an electrochemical reaction system using a photoelectrochemical reaction by a natural light harvesting system.
  • the electrochemical reaction system is a photoelectrode according to the present invention.
  • it may include an opposite electrode to the photoelectrode.
  • it may be a water splitting system using PEC water oxidation reaction (photoelectrochemical water oxidation). That is, the photoelectrode may be an electrode used in a PEC water oxidation reaction.
  • a hydrogel was prepared by preparing a polyethyleneimine solution (2 mg/ml) and drop-coating it on a TiO 2 (Inverse Opal, IO) transparent electrode, followed by cross-linking in a glutaraldehyde solution (2.5 wt%) for 1 minute at room temperature. After coating the hydrogel on a TiO 2 (Inverse Opal, IO) transparent electrode, PS II solution was drop-coated to produce a hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II).
  • Figure 1 shows an SEM image of a bare TiO 2 (Inverse Opal, IO) electrode and a hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II), (a) of the Bare TiO 2 (Inverse Opal, IO) electrode SEM image, (b) shows the SEM image of a hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II).
  • PS II stacking can be confirmed in the SEM image of the hybrid photoelectrode. Additionally, it can be confirmed that the pores on the surface of the hybrid photoelectrode are 380 nm to 430 nm.
  • Figure 2 is a measurement of the PEC Water Oxidation efficiency of each electrode (TiO 2 , TiO 2 /PS II, TiO 2 /PEI-hydrogel/PS II), and the hybrid photoelectrode (TiO 2 /PEI- Improved onset potential and high light efficiency can be confirmed in hydrogel/PS II).
  • Figure 3 shows side reactions measured during operation of each electrode (TiO 2 /PS II, TiO 2 /PEI-hydrogel/PS II) according to an embodiment of the present invention, (a) of each electrode in the low voltage region (b) The optical efficiency was measured, and (b) the optical efficiency of each electrode was measured in the high voltage region.
  • Figures 4 and 5 confirm the reaction stability and oxygen generation of each electrode (TiO 2 /PS II and TiO 2 /PEI-hydrogel/PS II) according to an embodiment of the present invention, and Figure 4 shows the photoreaction This is a stability test, and Figure 5 measures oxygen generation.
  • Figure 6 shows the photovoltage of each electrode measured according to an embodiment of the present invention.
  • the photovoltage measurement results show that TiO in the hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II) 2
  • the interaction between the transparent photoelectrode and PS II can be confirmed.
  • the highest photovoltage (0.81 V) was confirmed in the hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II), which is due to the adjustment of orientation by PEI and the improvement of contact between the transparent photoelectrode/PS II. will be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to a photoelectrode comprising a natural light harvesting system and an electrochemical reaction system comprising same, and more specifically, according to an embodiment of the present invention, to a photoelectrode and an electrochemical reaction system comprising same wherein the photoelectrode comprises: a transparent electrode layer; a polymer hydrogel layer having an amine group formed on the transparent electrode layer; and a PS II layer formed on the polymer hydrogel layer, wherein the hydrogel is formed of a polymer having an amine group crosslinked through glutaraldehyde.

Description

자연광수확시스템을 포함하는 광전극 및 이를 포함하는 전기화학반응 시스템Photoelectrode including natural light harvesting system and electrochemical reaction system including same
본 발명은, 자연광수확시스템을 포함하는 광전극 및 이를 포함하는 전기화학반응 시스템에 관한 것이다.The present invention relates to a photoelectrode including a natural light harvesting system and an electrochemical reaction system including the same.
녹색식물의 자연광수확시스템(Photosystem Ⅱ, PSⅡ)을 이용한 광전기화학적 (Photoelectrochemical, PEC) 물 산화 반응은 실제 자연 생체 물질 활용을 통한 친환경 에너지 전환연구로 많은 관심을 받고 있다. PSⅡ를 활용한 물 산화반응 연구의 경우, 현재 i) 자연광시스템의 효과적인 전극 고정화 및 광 반응 안정성 증대, ii) PSⅡ의 배향성 조절을 통한 전극/PSⅡ간 전자전달 효율 증대, iii) 엽록소 (chlorophyll a)에 의한 부반응(예: 산소환원반응, H2O2 생성) 억제 문제를 나타내고 있다. 예를 들어, 기존에 PSⅡ고정법으로 주로 사용되어진 드롭-캐스팅(drop-casting) 방식은 추가 처리 없이 PSⅡ를 다양한 형태의 전극에 도포할 수 있다는 장점이 있으나, PSⅡ의 무작위 배열 및 광 반응 조건에서 쉽게 탈착되는 문제를 보이고 있다. 몇몇 연구 들에서는 전자 공여체(Electron mediator)를 이용한 전극/PSⅡ 간 전자전달 효율 증대를 도모하였으나, 엽록소에 의한 산소환원반응을 억제하지 못하여 저 전압에서 여전히 낮은 효율을 나타내고 있다. 이러한 결과는 부분적인 문제 개선만으로는 PSⅡ의 높은 PEC 물 산화반응 효율을 기대하기 어렵다는 것을 시사한다. 따라서, PSⅡ배향성 조절 및 부반응 억제가 동시에 가능한 올인원(All-in-one) 전략이 필요하다. Photoelectrochemical (PEC) water oxidation reaction using the natural light harvesting system (Photosystem II, PSII) of green plants is receiving much attention as a research study on eco-friendly energy conversion through the use of actual natural biological materials. In the case of water oxidation reaction research using PSⅡ, currently: i) effective immobilization of electrodes in natural light systems and increase in light reaction stability, ii) increase in electron transfer efficiency between electrodes/PSⅡ by controlling the orientation of PSⅡ, iii) chlorophyll a) This indicates a problem of suppressing side reactions (e.g. oxygen reduction reaction, H 2 O 2 production). For example, the drop-casting method, which has been mainly used as a PSII fixation method, has the advantage of being able to apply PSII to various types of electrodes without additional processing, but can be easily applied under random arrangement and photoreaction conditions of PSII. It is showing a detachment problem. Some studies have attempted to increase electron transfer efficiency between electrodes and PSII using electron donors (electron mediators), but the oxygen reduction reaction by chlorophyll cannot be suppressed, so the efficiency is still low at low voltages. These results suggest that it is difficult to expect high PEC water oxidation reaction efficiency of PSII by only partially improving the problem. Therefore, an all-in-one strategy that can simultaneously control PSII orientation and suppress side reactions is needed.
본 발명은, 상기 언급한 문제점을 해결하기 위해서, 친수성 고분자 물질의 전처리(예: 가교결합)를 통해 생체 물질(예: 자연광수확시스템) 고정화를 위한 하이드로겔을 제조하고, 이를 활용하여 광전기화학적 반응 환경 및 성능을 개선시킬 수 있는, 생체 물질이 고정화(예: 자연광수확시스템)된, 광전극에 관한 것이다. In order to solve the above-mentioned problems, the present invention manufactures a hydrogel for immobilizing biological materials (e.g., natural light harvesting system) through pretreatment (e.g., cross-linking) of a hydrophilic polymer material, and utilizes the hydrogel to perform a photoelectrochemical reaction. It relates to a photoelectrode with immobilized biological material (e.g., natural light harvesting system) that can improve the environment and performance.
본 발명은, 본 발명에 의한 광전극을 포함하는 생체 물질(예: 자연광수확시스템)을 활용한 전기화학반응 시스템(예: 물분해 시스템)에 관한 것이다. The present invention relates to an electrochemical reaction system (e.g., water decomposition system) utilizing a biological material (e.g., natural light harvesting system) containing a photoelectrode according to the present invention.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다. However, the problems to be solved by the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 발명의 일 실시예에 따라, 투명 전극층; 상기 투명 전극층 상에 형성된 아민기를 갖는 고분자 하이드로겔층; 및 상기 고분자 하이드로겔층 상에 형성된 PS Ⅱ층; 을 포함하고, 상기 하이드로겔은 글루타알데히드를 통해 가교결합된 아민기를 갖는 고분자로 형성된 것인, 광전극에 관한 것이다. According to one embodiment of the present invention, a transparent electrode layer; A polymer hydrogel layer having an amine group formed on the transparent electrode layer; And a PS II layer formed on the polymer hydrogel layer; It relates to a photoelectrode, wherein the hydrogel is formed of a polymer having an amine group cross-linked through glutaraldehyde.
본 발명의 일 실시예에 따라, 상기 투명 전극층은, 기판; 상기 기판 상에 형성된 투명 반도체 물질;을 포함하는 것일 수 있다. According to one embodiment of the present invention, the transparent electrode layer includes: a substrate; It may include a transparent semiconductor material formed on the substrate.
본 발명의 일 실시예에 따라, 상기 투명 반도체 물질은, BaTiO3, BaSnO3, Bi2O3, V2O5, VO2, Fe2O3, Fe3O4, BiVO4, Bi2WO4, TiO2, SrTiO3, ZnO, CuO, Cu2O, NiO, SnO2, CoO, In2O3, WO3, MgO, CaO, La2O3, Nd2O3, Nb2O5, Y2O3, CeO2, PbO, ZrO2, Co3O4 및 Al2O3로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 것일 수 있다. According to one embodiment of the present invention, the transparent semiconductor material is BaTiO 3 , BaSnO 3 , Bi 2 O 3 , V 2 O 5 , VO 2 , Fe 2 O 3 , Fe 3 O 4 , BiVO 4 , Bi 2 WO 4 , TiO 2 , SrTiO 3 , ZnO, CuO, Cu 2 O, NiO, SnO 2 , CoO, In 2 O 3 , WO 3 , MgO, CaO, La 2 O 3 , Nd 2 O 3 , Nb 2 O 5, Y 2 O 3 , CeO 2 , PbO, ZrO 2, Co 3 O 4 and Al 2 O It may include at least one selected from the group consisting of 3 .
본 발명의 일 실시예에 따라, 상기 고분자 하이드로겔층의 두께는 10 nm 내지 1000 nm인 것일 수 있다. According to one embodiment of the present invention, the thickness of the polymer hydrogel layer may be 10 nm to 1000 nm.
본 발명의 일 실시예에 따라, 상기 PS Ⅱ층의 두께는 10 nm 내지 1000 nm인 것일 수 있다. According to one embodiment of the present invention, the thickness of the PS II layer may be 10 nm to 1000 nm.
본 발명의 일 실시예에 따라, 상기 광전극의 기공 크기는 200 nm 내지 500 nm인 것일 수 있다. According to one embodiment of the present invention, the pore size of the photoelectrode may be 200 nm to 500 nm.
본 발명의 일 실시예에 따라, 상기 아민기를 갖는 고분자는, 폴리에틸렌이민(Polyethyleneimine: PEI), 폴리아민(Polyamine), 폴리아미드아민 (Polyamideamine), 폴리비닐아민(Polyvinylamine), 폴리아미도이민(Polyamidoimine), 폴리알릴아민 (Polyallylamine), 폴리라이신(Poly-L-lysine), 폴리아크릴아미드(polyacrylamide), 폴리아미도아민 (Polyamidoamine), 폴리비닐피리딘(polyvinylpyridine), 폴리비닐이미다졸 (polyvinylimidazole) 및 키토산(Chitosan)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 것일 수 있다. According to one embodiment of the present invention, the polymer having the amine group is polyethyleneimine (PEI), polyamine, polyamideamine, polyvinylamine, polyamidoimine, Polyallylamine, Poly-L-lysine, polyacrylamide, Polyamidoamine, polyvinylpyridine, polyvinylimidazole and Chitosan ) may include at least one selected from the group consisting of
본 발명의 일 실시예에 따라, 상기 아민기를 갖는 고분자의 분자량은 500 (g/mol) 이상인 것일 수 있다. According to one embodiment of the present invention, the molecular weight of the polymer having the amine group may be 500 (g/mol) or more.
본 발명의 일 실시예에 따라, 상기 하이드로겔은, 글루타알데히드 대 아민기를 갖는 고분자의 질량비 1 : 9 내지 9 : 1에서 가교결합된 것일 수 있다. According to one embodiment of the present invention, the hydrogel may be crosslinked at a mass ratio of glutaraldehyde to polymer having an amine group of 1:9 to 9:1.
본 발명의 일 실시예에 따라, 상기 광전극은, PEC 물 산화 반응에 이용되는 것일 수 있다. According to an embodiment of the present invention, the photoelectrode may be used for a PEC water oxidation reaction.
본 발명의 일 실시예에 따라, 본 발명에 의한 광전극; 및 상기 광전극의 반대 전극; 을 포함하는, 전기화학반응 시스템에 관한 것이다. According to one embodiment of the present invention, a photoelectrode according to the present invention; and an opposite electrode to the photoelectrode; It relates to an electrochemical reaction system including.
본 발명의 일 실시예에 따라, 상기 전기화학반응 시스템은 PEC 물 산화 반응을 이용하는 물분해 시스템인 것일 수 있다. According to an embodiment of the present invention, the electrochemical reaction system may be a water splitting system using a PEC water oxidation reaction.
본 발명의 일 실시예에 따라, 본 발명은, 아민 기(Amine group)를 가지는 고분자 하이드로겔(Hydrogel)을 이용하여 자연광수확시스템(예: PS Ⅱ)의 배향성 조절 및 부반응 억제가 동시에 가능한 고정화 플랫폼 및 이를 활용한 광전극 및 전기화학반응 시스템을 제공할 수 있다. 더욱이, 본 발명의 하이드로겔 고정화 플랫폼을 통하여 광전기화학 공정에서 기존에 문제점으로 제시된 자연광수확시스템(예: PS Ⅱ)의 무작위 배열 및 부반응 문제를 동시에 해결할 수 있으며, 광전기화학 공정의 효율 및 생산성을 높이고, 광전 성능을 안정적으로 향상시킬 수 있다. According to one embodiment of the present invention, the present invention is an immobilization platform that can simultaneously control the orientation and suppress side reactions of a natural light harvesting system (e.g. PS II) using a polymer hydrogel having an amine group. And a photoelectrode and electrochemical reaction system using the same can be provided. Moreover, through the hydrogel immobilization platform of the present invention, it is possible to simultaneously solve the random arrangement and side reaction problems of natural light harvesting systems (e.g. PS II), which have previously been presented as problems in the photoelectrochemical process, and increase the efficiency and productivity of the photoelectrochemical process. , photoelectric performance can be stably improved.
본 발명의 일 실시예에 따라, 본 발명의 하이드로겔은 제작이 간단하고 생체 물질 고정화 기술에서 다양한 응용(application) 가능성이 높은 물질이며, 예를 들어, 다양한 고분자 물질을 활용하여 제작하거나 및/또는 고정화시킬 수 있고, 생체 물질에 따른 기공 크기의 조절이 용이할 수 있다. According to one embodiment of the present invention, the hydrogel of the present invention is a material that is simple to manufacture and has high potential for various applications in biomaterial immobilization technology. For example, it can be manufactured using various polymer materials and/or It can be immobilized, and the pore size can be easily controlled depending on the biological material.
도 1은 본 발명의 일 실시예에 따라, 광전극의 SEM 사진을 나타낸 것으로, (a) Bare TiO2(Inverse Opal, IO) 전극의 SEM 사진 및 (b) 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)의 SEM 사진이다. Figure 1 shows an SEM photograph of a photoelectrode according to an embodiment of the present invention, (a) a SEM photograph of a bare TiO 2 (Inverse Opal, IO) electrode and (b) a hybrid photoelectrode (TiO 2 /PEI- This is an SEM photo of hydrogel/PS Ⅱ).
도 2는 본 발명의 일 실시예에 따라, 각 전극(TiO2, TiO2/PS Ⅱ, TiO2/PEI-하이드로겔/PS Ⅱ)의 PEC 물 산화(PEC Water Oxidation; Oxygen Evolution Reaction, OER) 효율의 나타낸 것이다. Figure 2 shows PEC Water Oxidation (Oxygen Evolution Reaction, OER) of each electrode (TiO 2 , TiO 2 /PS II, TiO 2 /PEI-hydrogel/PS II) according to an embodiment of the present invention. It is an indication of efficiency.
도 3은 본 발명의 일 실시예에 따라, 광전극의 (a) 저전압 영역에서 광효율 및 (b) 고전압 영역에서 광효율을 나타낸 것이다. Figure 3 shows the luminous efficiency in (a) a low voltage region and (b) the luminous efficiency in a high voltage region of a photoelectrode, according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라, 광전극의 광반응 안정성 테스트 결과를 나타낸 것이다. Figure 4 shows the results of a photoreaction stability test of a photoelectrode, according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따라, 광전극의 산소 발생 결과를 나타낸 것이다. Figure 5 shows the results of oxygen generation by a photoelectrode according to an embodiment of the present invention.
도 6는 본 발명의 일 실시예에 따라, 광전극의 광전압(Photovoltage)을 나타낸 것이다. Figure 6 shows the photovoltage of the photoelectrode according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따라, 종래 자연광수확시스템(Photosystem Ⅱ, PSⅡ)을 이용한 물분해 시스템의 광전기화학적(Photoelectrochemical, PEC) 물 산화 반응의 경로 및 부반응 (a) 및 (b)를 나타낸 것이다. Figure 7 shows the path and side reactions (a) and (b) of the photoelectrochemical (PEC) water oxidation reaction of a water splitting system using a conventional natural light harvesting system (Photosystem II, PSII), according to an embodiment of the present invention. It is shown.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. In describing the present invention, if a detailed description of a related known function or configuration is judged to unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, the terms used in this specification are terms used to appropriately express preferred embodiments of the present invention, and may vary depending on the intention of the user or operator or the customs of the field to which the present invention belongs. Therefore, definitions of these terms should be made based on the content throughout this specification. The same reference numerals in each drawing indicate the same members.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be located “on” another member, this includes not only cases where a member is in contact with another member, but also cases where another member exists between the two members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part “includes” a certain component, this does not mean excluding other components, but rather means that it can further include other components.
이하, 본 발명은 광전극 및 이를 포함하는 전기화학반응 시스템에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다. Hereinafter, the present invention will be described in detail with respect to the photoelectrode and the electrochemical reaction system including the same with reference to examples and drawings. However, the present invention is not limited to these examples and drawings.
본 발명의 일 실시예에 따라, 상기 광전극은 고분자 하이드로겔(Hydrogel)을 이용하여 생체 물질(예: 자연광수확시스템)이 고정화된 하이브리드 광전극일 수 있다. According to an embodiment of the present invention, the photoelectrode may be a hybrid photoelectrode in which a biological material (eg, natural light harvesting system) is immobilized using a polymer hydrogel.
본 발명의 일 실시예에 따라, 상기 광전극은 투명 전극층; 투명 전극층 상에 형성된 아민기를 갖는 고분자 하이드로겔층; 및 고분자 하이드로겔층 상에 형성된 생체 물질층;을 포함할 수 있다. According to one embodiment of the present invention, the photoelectrode includes a transparent electrode layer; A polymer hydrogel layer having an amine group formed on the transparent electrode layer; and a biomaterial layer formed on the polymer hydrogel layer.
본 발명의 일 실시예에 따라, 상기 투명 전극층은, 기판; 상기 기판 상에 형성된 투명 반도체 물질;을 포함하는 투명 광전극이며, 상기 반도체 물질층은, 빛을 받아 전자와 정공을 발생시킬 수 있는 반도체 물질이며, 상기 반도체 물질층은, Ti, Sn, Zn, Mn, Mg, Ni, W, Co, Fe, Ba, In, Zr, Cu, Al, Bi, Pb, Ag, Cd, Y, Mo, Rh, Pd, Sb, Cs, La, V, Si, Al, Sr, B, O 및 C의 원소; 및 이들 중 적어도 하나를 포함하는 금속 산화물;로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. 예를 들어, 상기 금속 산화물은, BaTiO3, BaSnO3, Bi2O3, V2O5, VO2, Fe2O3(또는, α-Fe2O3), Fe3O4, BiVO4, Bi2WO4, TiO2, SrTiO3, ZnO, CuO, Cu2O, NiO, SnO2, CoO, In2O3, WO3, MgO, CaO, La2O3, Nd2O3, Nb2O5, Y2O3, CeO2, PbO, ZrO2, Co3O4 및 Al2O3으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. According to one embodiment of the present invention, the transparent electrode layer includes: a substrate; A transparent photoelectrode comprising a transparent semiconductor material formed on the substrate, wherein the semiconductor material layer is a semiconductor material capable of generating electrons and holes by receiving light, and the semiconductor material layer includes Ti, Sn, Zn, Mn, Mg, Ni, W, Co, Fe, Ba, In, Zr, Cu, Al, Bi, Pb, Ag, Cd, Y, Mo, Rh, Pd, Sb, Cs, La, V, Si, Al, elements Sr, B, O and C; and a metal oxide containing at least one of these. For example, the metal oxide is BaTiO 3 , BaSnO 3 , Bi 2 O 3 , V 2 O 5 , VO 2 , Fe 2 O 3 (or, α-Fe 2 O 3 ), Fe 3 O 4 , BiVO 4 , Bi 2 WO 4 , TiO 2 , SrTiO 3 , ZnO, CuO, Cu 2 O, NiO, SnO 2 , CoO, In 2 O 3 , WO 3 , At least one selected from the group consisting of MgO, CaO, La 2 O 3 , Nd 2 O 3 , Nb 2 O 5, Y 2 O 3 , CeO 2 , PbO, ZrO 2, Co 3 O 4 and Al 2 O 3 It can be included.
본 발명의 일 실시예에 따라, 상기 기판은, 투명기판이며, 예를 들어, 유리, 사파이어, 투명 폴리머기판이며, 상기 투명 폴리머 기판은, 폴리스틸렌(polystyrene), 폴리카보네이트(polycarbonate), 폴리메틸메타크릴레이트(poly methyl methacrylate), 폴리에틸렌테레프탈레이트(polyetheylene terephtalate), 폴리에틸렌나프탈레이트(poly(ethylenenaphthalate) 폴리프탈레이트 카보네이트(polyphthalate carbonate), 폴리우레탄(polyurethane), 폴리에테르술폰(poly(ether sulfone)) 및 폴리이미드(polyimide)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 또한, 상기 기판은, FTO, ITO 등의 전도성 기판일 수 있다. According to one embodiment of the present invention, the substrate is a transparent substrate, for example, glass, sapphire, or a transparent polymer substrate, and the transparent polymer substrate is polystyrene, polycarbonate, or polymethylmethane. Poly methyl methacrylate, polyethylene terephthalate, poly(ethylenenaphthalate), polyphthalate carbonate, polyurethane, poly(ether sulfone) and polyethylene It may include one or more types selected from the group consisting of polyimide.In addition, the substrate may be a conductive substrate such as FTO or ITO.
본 발명의 일 실시예에 따라, 상기 반도체 물질층은, 수 nm 내지 수백 ㎛ 크기를 갖는 입자를 포함하고, 예를 들어, 1 nm 이상; 1 nm 내지 900 ㎛; 또는 1 nm 내지 300 ㎛의 크기일 수 있다. 상기 크기는, 입자의 형태에 따라, 직경, 길이 등을 의미할 수 있다. 상기 크기 범위 내에 포함되면 효율적인 전자 이동 경로를 제공하고, 상기 반도체 물질층 상에 적층되는 생체 물질(예: 자연광수확시스템)의 집적 및 광전기화학적 공정(예: 광전기화학적 물분해의 공정)에서 이들의 상호작용을 증가시킬 수 있다. According to one embodiment of the present invention, the semiconductor material layer includes particles having a size of several nm to hundreds of μm, for example, 1 nm or more; 1 nm to 900 μm; Alternatively, it may have a size of 1 nm to 300 μm. The size may mean diameter, length, etc., depending on the shape of the particle. If it is within the above size range, it provides an efficient electron movement path, and can be used in the integration of biological materials (e.g., natural light harvesting system) stacked on the semiconductor material layer and in the photoelectrochemical process (e.g., photoelectrochemical water splitting process). Interaction can be increased.
본 발명의 일 실시예에 따라, 상기 반도체 물질층은, 수 nm 내지 수백 ㎛ 두께를 갖는 것일 수 있고, 예를 들어, 1 nm 이상; 1 nm 내지 1000 ㎛ 미만; 10 nm 내지 900 ㎛; 또는 30 nm 내지 500 ㎛의 두께일 수 있다. 상기 두께 범위 내에 포함되면 효율적인 전자 이동 경로를 제공하여 광전기화학적 공정(예: 광전기화학적 물분해의 공정)를 원활하게 진행시킬 수 있다. According to one embodiment of the present invention, the semiconductor material layer may have a thickness of several nm to hundreds of μm, for example, 1 nm or more; 1 nm to less than 1000 μm; 10 nm to 900 μm; Or it may be 30 nm to 500 μm thick. If the thickness is within the above range, an efficient electron movement path can be provided to allow a photoelectrochemical process (e.g., photoelectrochemical water decomposition process) to proceed smoothly.
본 발명의 일 실시예에 따라, 상기 고분자 하이드로겔층은 상기 투명 전극층 상에 형성되고 생체 물질의 고정화에 이용될 수 있다. 상기 생체 물질은 효소, 단백질, 세포, 생체 조직의 추출물 등일 수 있다. 어떤 예에서 상기 고분자 하이드로겔은 기재 상에 생체 물질의 고정화에 이용될 수 있으며, 상기 기재는 전극(예: 광전극, 투명전극 등), 필름, 시트, 섬유, 비즈, 나노튜브, 입자(예: 다공성 입자) 등일 수 있으나, 이에 제한되지 않는다. According to one embodiment of the present invention, the polymer hydrogel layer is formed on the transparent electrode layer and can be used to immobilize biological materials. The biological material may be an enzyme, protein, cell, extract of biological tissue, etc. In some examples, the polymer hydrogel can be used for immobilization of biological materials on a substrate, which can be used to form electrodes (e.g. photoelectrodes, transparent electrodes, etc.), films, sheets, fibers, beads, nanotubes, particles (e.g. : porous particles), etc., but is not limited thereto.
본 발명의 일 실시예에 따라, 상기 고분자 하이드로겔은 광전극(예: 투명 전극) 상에 자연광수확시스템(예: PS Ⅱ)를 고정화하는데 이용될 수 있으며, 이는 광전기화학 프로세스의 공정 효율을 향상시킬 수 있다. 예를 들어, 광반응 안정성 및 광전압을 향상시키고 광전기화학에 의한 생성물(예: 물 산화에 의한 산소 발생)의 발생을 증가시킬 수 있다. 즉, 이는 아민기를 갖는 고분자를 가교결합된 하이드로겔은 수분을 쉽게 흡수하는 특성으로 전극 표면에서 높은 혐기성 (Anaerobicity)을 나타낸다. 도 7의 (b)에서 나타나는 부반응을 억제할 수 있으며, 즉, 용액상에서 (+) 전하(아민 기)를 갖는 하이드로겔의 특성으로 자연광수확시스템을 활용한 광전기화학 시스템에서 Stromal side(PSⅡ)의 광전극 배향을 통한 광전극/PS Ⅱ 간 전자전달 효율을 증대할 수 있었다. 또한, 하이드로겔의 높은 혐기 특성을 이용한 산소 기체 접근 제한을 통해 부반응(산소환원반응, H2O2 생성)을 억제하였고, H2O2에 의한 PS Ⅱ의 손상을 줄일 수 있다. According to one embodiment of the present invention, the polymer hydrogel can be used to immobilize a natural light harvesting system (e.g. PS II) on a photoelectrode (e.g. transparent electrode), which improves the process efficiency of the photoelectrochemical process. You can do it. For example, it can improve photoreaction stability and photovoltage and increase the generation of products by photoelectrochemistry (e.g., oxygen generation by water oxidation). In other words, this hydrogel, which is a cross-linked polymer with an amine group, easily absorbs moisture and exhibits high anaerobicity on the electrode surface. The side reaction shown in (b) of Figure 7 can be suppressed, that is, the stromal side (PSII) in the photoelectrochemical system utilizing a natural light harvesting system due to the characteristics of the hydrogel having a (+) charge (amine group) in the solution phase. The electron transfer efficiency between photoelectrode/PS II was able to be increased through photoelectrode orientation. In addition, side reactions (oxygen reduction reaction, H 2 O 2 production) are suppressed by limiting oxygen gas access using the highly anaerobic properties of the hydrogel, and damage to PS II caused by H 2 O 2 can be reduced.
본 발명의 일 실시예에 따라, 상기 하이드로겔층의 두께는 10 nm 이상; 30 nm 이상; 50 nm 이상; 100 nm 이상; 10 nm 내지 1000 nm; 10 nm 내지 900 nm; 10 nm 내지 800 nm; 10 nm 내지 600 nm; 10 nm 내지 400 nm; 또는 50 nm 내지 300 nm인 것일 수 있다. 어떤 예에서 바람직하게는 10 nm 내지 800 nm일 수 있다. 상기 범위 내에 포함되면 투명 전극/PS Ⅱ간 전자전달 효율 및 부반응(예: 산소환원반응, H2O2 생성)하고, H2O2에 의한 PS Ⅱ의 손상을 줄일 수 있다. According to one embodiment of the present invention, the thickness of the hydrogel layer is 10 nm or more; 30 nm or more; 50 nm or more; 100 nm or more; 10 nm to 1000 nm; 10 nm to 900 nm; 10 nm to 800 nm; 10 nm to 600 nm; 10 nm to 400 nm; Or it may be 50 nm to 300 nm. In some instances it may preferably be between 10 nm and 800 nm. If it is within the above range, the electron transfer efficiency and side reactions between transparent electrode/PS II (e.g., oxygen reduction reaction, H 2 O 2 production) can be improved, and damage to PS II caused by H 2 O 2 can be reduced.
본 발명의 일 실시예에 따라, 상기 아민기를 갖는 고분자는, 분자 내에 하나 이상의 아민기를 갖거나 고리 내 아민을 갖는 고분자일 수 있다. 예를 들어, 상기 아민기를 갖는 고분자는 폴리에틸렌이민(Polyethyleneimine: PEI)(예: b-PEI(branched-poly(ethylene imine)), l-PEI(linear-poly(ethylene imine)), 폴리아민(Polyamine), 폴리아미드아민(Polyamideamine), 폴리비닐아민(Polyvinylamine), 폴리아미도이민(Polyamidoimine), 폴리알릴아민 (Polyallylamine), 폴리라이신(Poly-L-lysine), 폴리아크릴아미드(polyacrylamide), 폴리아미도아민(Polyamidoamine), 폴리비닐피리딘(polyvinylpyridine), 폴리비닐이미다졸(polyvinylimidazole) 및 키토산(Chitosan)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. According to one embodiment of the present invention, the polymer having the amine group may be a polymer having one or more amine groups in the molecule or an amine in the ring. For example, the polymer having the amine group is polyethyleneimine (PEI) (e.g., b-PEI (branched-poly(ethylene imine)), l-PEI (linear-poly(ethylene imine)), polyamine (Polyamine) , Polyamideamine, Polyvinylamine, Polyamidoimine, Polyallylamine, Poly-L-lysine, polyacrylamide, polyamidoamine ( It may include at least one selected from the group consisting of polyamidoamine, polyvinylpyridine, polyvinylimidazole, and chitosan.
어떤 예에서 상기 아민기를 갖는 고분자는 바람직하게는 폴리에틸렌이민(Polyethyleneimine: PEI), b-PEI(branched-poly(ethylene imine), l-PEI(linear-poly(ethylene imine), 리아민(Polyamine) 및 폴리아미드아민 (Polyamideamine)에서 선택될 수 있다. In some examples, the polymer having an amine group is preferably polyethyleneimine (PEI), branched-poly(ethylene imine) (b-PEI), linear-poly(ethylene imine) (l-PEI), polyamine, and It can be selected from polyamideamine.
본 발명의 일 실시예에 따라, 상기 아민기를 갖는 고분자의 분자량은 500 이상(g/mol); 1,000 (g/mol) 이상; 5,000 (g/mol) 이상; 10,000 (g/mol) 이상; 또는 500 (g/mol) 내지 10,000 (g/mol) 이며, 예를 들어, 상기 분자량은 중량평균분자량 또는 수평균분자량일 수 있다. 상기 분자량 범위 내에 포함되면 생체물질의 고정화에 유리하고 생체물질(예: PS Ⅱ)과 투명 전극층 간의 상호 작용을 증가시키는데 도움을 줄 수 있다. According to one embodiment of the present invention, the molecular weight of the polymer having the amine group is 500 or more (g/mol); 1,000 (g/mol) or more; 5,000 (g/mol) or more; 10,000 (g/mol) or more; Or 500 (g/mol) to 10,000 (g/mol). For example, the molecular weight may be a weight average molecular weight or a number average molecular weight. If it is within the above molecular weight range, it is advantageous for immobilizing biomaterials and can help increase the interaction between biomaterials (e.g. PS II) and the transparent electrode layer.
본 발명의 일 실시예에 따라, 상기 고분자 하이드로겔은 아민기를 갖는 고분자를 가교제로 가교결합(예: 화학적 가교결합(chemical crosslinking))한 하이드로겔일 수 있다. 이는 생체 물질(예: 자연광수확시스템)을 광전극 상에 고정화시키고 광전기화학적 공정에서 광전극의 반도체 물질과 생체 물질 간의 상호 작용을 증가시키고, 생체 물질의 배열을 제어하여 광전기화학적 공정의 안정성 및 효율을 향상시킬 수 있다. 예를 들어, 상기 가교제는 글루타알데히드(glutaraldehyde, GA), 포름알데히드, 덱스트린알데히드, MBAAm(N,N'-methylenebisacrylamide) 및 PEGDA(poly(ethylene glycol) diacrylate)로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. 어떤 예에서 바람직하게는 글루타알데히드일 수 있다. According to one embodiment of the present invention, the polymer hydrogel may be a hydrogel obtained by crosslinking a polymer having an amine group with a crosslinking agent (eg, chemical crosslinking). This immobilizes biological materials (e.g., natural light harvesting system) on the photoelectrode, increases the interaction between the semiconductor material of the photoelectrode and the biological material in the photoelectrochemical process, and controls the arrangement of the biological material to ensure stability and efficiency of the photoelectrochemical process. can be improved. For example, the cross-linking agent is at least one selected from the group consisting of glutaraldehyde (GA), formaldehyde, dextrinaldehyde, MBAAm (N,N'-methylenebisacrylamide), and PEGDA (poly(ethylene glycol) diacrylate). It can be included. In some instances it may preferably be glutaraldehyde .
본 발명의 일 실시예에 따라, 상기 고분자 하이드로겔은 아민기를 갖는 고분자 용액을 준비하는 단계, 가교제 용액을 준비하는 단계; 및 상기 고분자 용액 및 상기 가교제 용액을 혼합하여 반응 혼합물을 제조하고, 상온(rt) 이상; 상온(rt) 내지 200 ℃; 상온 내지 150 ℃; 상온 내지 100 ℃; 상온 내지 50 ℃ 온도에서 가교반응하는 단계를 포함할 수 있다. 예를 들어, 상기 가교 반응은 30초 이상; 1분 이상; 1분 내지 1시간; 1분 내지 30분; 1분 내지 10분; 또는 1분 내지 5분; 동안 진행될 수 있다. 예를 들어, 상기 반응 혼합물에서 가교제 대 아민기를 갖는 고분자의 질량비 1 : 9 내지 9 : 1; 2 : 8 내지 8 : 2; 또는 3 : 7 내지 7 : 3일 수 있다. 상기 질량비 범위를 적용할 경우에 광전극에서 생체 물질(예: PS Ⅱ)의 고정화 및 광전극의 성능을 향상시킬 수 있는 하이드로겔을 제공할 수 있다. According to one embodiment of the present invention, the polymer hydrogel includes the steps of preparing a polymer solution having an amine group, preparing a crosslinker solution; and mixing the polymer solution and the cross-linking agent solution to prepare a reaction mixture, at room temperature (rt) or higher; Room temperature (rt) to 200°C; Room temperature to 150°C; Room temperature to 100°C; It may include a crosslinking reaction at a temperature from room temperature to 50°C. For example, the crosslinking reaction may take at least 30 seconds; More than 1 minute; 1 minute to 1 hour; 1 to 30 minutes; 1 to 10 minutes; or 1 to 5 minutes; It can take place over a period of time. For example, the mass ratio of the crosslinker to the polymer having amine groups in the reaction mixture is 1:9 to 9:1; 2:8 to 8:2; Or it may be 3:7 to 7:3. When the above mass ratio range is applied, it is possible to provide a hydrogel that can immobilize biological materials (eg, PS II) in a photoelectrode and improve the performance of the photoelectrode.
본 발명의 일 실시예에 따라, 상기 고분자 하이드로겔은 아민기를 갖는 고분자 용액을 준비하는 단계; 가교제 용액을 준비하는 단계; 및 상기 고분자 용액을 투명 전극 상에 코팅하여 막을 형성하는 단계; 상기 막 상에 상기 가교제 용액을 코팅하고 가교반응시키는 단계;를 포함할 수 있다. 상기 가교반응은 상온(rt, ℃) 이상; 상온(rt) 내지 200 ℃; 상온 내지 150 ℃; 상온 내지 100 ℃; 또는 상온 내지 50 ℃ 온도에서 가교반응이 진행될 수 있다. 예를 들어, 상기 가교 반응은 30초 이상; 1분 이상; 1분 내지 1시간; 1분 내지 30분; 1분 내지 10분; 또는 1분 내지 5분 동안 진행될 수 있다. 예를 들어, 상기 가교반응시키는 단계에서 가교제 대 아민기를 갖는 고분자의 질량비 1 : 9 내지 9 : 1; 2 : 8 내지 8 : 2; 3 : 7 내지 7 : 3; 또는 4 : 6 내지 6 : 4일 수 있다. 상기 질량비 범위를 적용할 경우에 광전극에서 생체 물질(예: PS Ⅱ)의 고정화 및 광전극의 성능을 향상시킬 수 있는 하이드로겔을 제공할 수 있다. According to one embodiment of the present invention, the polymer hydrogel includes the steps of preparing a polymer solution having an amine group; Preparing a cross-linking agent solution; and forming a film by coating the polymer solution on a transparent electrode. It may include the step of coating the cross-linking agent solution on the membrane and performing a cross-linking reaction. The crosslinking reaction is performed at room temperature (rt, ℃) or higher; Room temperature (rt) to 200°C; Room temperature to 150°C; Room temperature to 100°C; Alternatively, the crosslinking reaction may proceed at a temperature between room temperature and 50°C. For example, the crosslinking reaction may take at least 30 seconds; More than 1 minute; 1 minute to 1 hour; 1 to 30 minutes; 1 to 10 minutes; Alternatively, it may last from 1 minute to 5 minutes. For example, in the crosslinking reaction step, the mass ratio of the crosslinking agent to the polymer having an amine group is 1:9 to 9:1; 2:8 to 8:2; 3:7 to 7:3; Or it may be 4:6 to 6:4. When the above mass ratio range is applied, it is possible to provide a hydrogel capable of immobilizing biological materials (eg, PS II) in a photoelectrode and improving the performance of the photoelectrode.
본 발명의 일 실시예에 따라, 상기 생체 물질은 전기화학적 활성 효소이며, 예를 들어, 자연광수확시스템인 PS Ⅱ 효소(photosystem Ⅱ, water-plastoquinone oxidoreductase)일 수 있다. 이는 광전기화학 반응(예: PEC 물 산화 반응)을 위한 자연광수확시스템인 PS Ⅱ전극을 형성할 수 있다. 예를 들어, PEC 물 산화 반응에서 명/암(light/dark) 상태에서 O2의 발생 및 H2O2 형성의 기능을 제공할 수 있다. 또한, 상기 PS Ⅱ전극은 본 발명에 의한 하이드로겔로 고정화됨으로써, 높은 광전압을 유도하고 안정적인 광전 성능을 제공할 수 있다. According to one embodiment of the present invention, the biological material is an electrochemically active enzyme, for example, it may be PS II enzyme (photosystem II, water-plastoquinone oxidoreductase), which is a natural light harvesting system. This can form a PS II electrode, a natural light harvesting system for photoelectrochemical reactions (e.g. PEC water oxidation reaction). For example, in the PEC water oxidation reaction, it can provide the function of generating O 2 and forming H 2 O 2 in light/dark conditions. In addition, the PS II electrode can induce high photovoltage and provide stable photoelectric performance by being immobilized with the hydrogel according to the present invention.
본 발명의 일 실시예에 따라, 상기 생체 물질층(예: 자연광수확시스템)(예: (예: PS Ⅱ)층의 두께는 10 nm 이상; 30 nm 이상; 50 nm 이상; 100 nm 이상; 10 nm 내지 1000 nm; 10 nm 내지 900 nm; 10 nm 내지 800 nm; 10 nm 내지 600 nm; 10 nm 내지 400 nm; 또는 50 nm 내지 300 nm인 것일 수 있다. 어떤 예에서 바람직하게는 10 nm 내지 800 nm일 수 있다. 상기 범위 내에 포함되면 투명 전극층과 상호 작용이 증가되어 높은 광전압을 유도하고 안정적인 광전 성능을 제공할 수 있다. According to one embodiment of the present invention, the thickness of the biomaterial layer (e.g., natural light harvesting system) (e.g., PS II) layer is 10 nm or more; 30 nm or more; 50 nm or more; 100 nm or more; 10 nm to 1000 nm; 10 nm to 900 nm; 10 nm to 800 nm; 10 nm to 600 nm; 10 nm to 400 nm; or 50 nm to 300 nm. In some instances, preferably 10 nm to 800 nm. nm. If it is within the above range, the interaction with the transparent electrode layer increases, thereby inducing a high photovoltage and providing stable photoelectric performance.
본 발명의 일 실시예에 따라, 상기 광전극의 기공 크기는 200 nm 내지 500 nm; 200 nm 내지 450 nm; 또는 300 nm 내지 400 nm인 것일 수 있다. 어떤 예에서 바람직하게는 200 nm 내지 450 nm일 수 있다. 상기 기공 크기는 상기 생체 물질층의 표면에서 측정되는 것으로, 예를 들어, 상기 생체 물질층의 기공크기일 수 있다. 상기 기공 크기 범위 내에 포함되면 광전기화학 반응의 효율을 증가시킬 수 있으며, 예를 들어, PEC 물분해에서 산소 발생량을 증가시킬 수 있다. According to one embodiment of the present invention, the pore size of the photoelectrode is 200 nm to 500 nm; 200 nm to 450 nm; Or it may be 300 nm to 400 nm. In some instances it may preferably be between 200 nm and 450 nm. The pore size is measured on the surface of the biological material layer, and may be, for example, the pore size of the biological material layer. If it is within the pore size range, the efficiency of the photoelectrochemical reaction can be increased, for example, the amount of oxygen generated in PEC water decomposition can be increased.
본 발명의 일 실시예에 따라, 상기 광전극은 투명 전극을 준비하는 단계; 상기 투명 전극 상에 하이드로겔층을 형성하는 단계; 및 상기 하이드로겔층 상에 생체 물질층을 형성하는 단계를 포함할 수 있다. 상기 투명전극, 상기 하이드로겔 및 상기 생체 물질은 광전기화학 공정에 적합한 것으로, 상기 광전극에서 언급한 바와 같다. 예를 들어, 상기 투명 전극을 준비하는 단계는 세정, 건조 및/또는 표면 개질(예: 플라즈마 처리) 등과 같은 공정이 더 추가될 수 있다. 예를 들어, 상기 하이드로겔층을 형성하는 단계는 상기 광전극에서 언급한 하이드로겔 코팅액을 준비하고 스핀 코팅, 딥코팅, 드랍 코팅, 프린팅 방식, 분무 코팅 및 롤투롤 코팅 등과 같은 다양한 코팅 공정으로 상기 투명 전극 상에 코팅할 수 있다. 어떤 예에서 상기 하이드로겔층을 형성하는 단계는 아민기를 갖는 고분자의 코팅액 및 가교제 코팅액을 각각 준비하고, 상기 투명 전극 상에 상기 고분자 코팅액을 코팅한 이후에 상기 가교제 코팅액을 코팅하여 가교 반응을 진행시켜 하이드로겔층을 형성할 수 있다. 예를 들어, 상기 하이드로겔층 상에 생체 물질층을 형성하는 단계는 상기 광전극에서 언급한 생체 물질 코팅액을 준비하고 스핀 코팅, 딥코팅, 드랍 코팅, 프린팅 방식, 분무 코팅 및 롤투롤 코팅 등과 같은 다양한 코팅 공정을 이용할 수 있다. According to one embodiment of the present invention, the photoelectrode includes preparing a transparent electrode; Forming a hydrogel layer on the transparent electrode; And it may include forming a biomaterial layer on the hydrogel layer. The transparent electrode, the hydrogel, and the biomaterial are suitable for a photoelectrochemical process, as mentioned in the photoelectrode. For example, the step of preparing the transparent electrode may include additional processes such as cleaning, drying, and/or surface modification (eg, plasma treatment). For example, the step of forming the hydrogel layer involves preparing the hydrogel coating solution mentioned in the photoelectrode and applying the transparent coating to various coating processes such as spin coating, dip coating, drop coating, printing method, spray coating, and roll-to-roll coating. It can be coated on the electrode. In some examples, the step of forming the hydrogel layer involves preparing a coating solution of a polymer having an amine group and a crosslinking agent coating solution, respectively, coating the polymer coating solution on the transparent electrode, and then coating the crosslinking agent coating solution to proceed with a crosslinking reaction to produce hydro A gel layer can be formed. For example, the step of forming a biomaterial layer on the hydrogel layer involves preparing the biomaterial coating solution mentioned in the photoelectrode and using various methods such as spin coating, dip coating, drop coating, printing method, spray coating, and roll-to-roll coating. A coating process can be used.
본 발명의 일 실시예에 따라, 상기 광전극은 자연광수확시스템에 의한 광전기화학 반응을 이용하는 전기화학반응 시스템에 적용될 수 있으며, 본 발명의 일 예로, 상기 전기화학반응 시스템은 본 발명에 의한 광전극 및 상기 광전극의 반대전극을 포함할 수 있다. 예를 들어, PEC 물 산화 반응(photoelectrochemical water oxidation)을 이용하는 물분해 시스템일 수 있다. 즉, 상기 광전극은 PEC 물 산화 반응에 이용되는 전극일 수 있다. According to an embodiment of the present invention, the photoelectrode can be applied to an electrochemical reaction system using a photoelectrochemical reaction by a natural light harvesting system. As an example of the present invention, the electrochemical reaction system is a photoelectrode according to the present invention. And it may include an opposite electrode to the photoelectrode. For example, it may be a water splitting system using PEC water oxidation reaction (photoelectrochemical water oxidation). That is, the photoelectrode may be an electrode used in a PEC water oxidation reaction.
본 발명의 바람직한 실시예를 참조하여 설명하지만, 본 발명은 이에 한정되는 것이 아니고, 하기의 특허 청구의 범위, 발명의 상세한 설명 및 첨부된 도면에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있다. Although the present invention is described with reference to preferred embodiments, the present invention is not limited thereto, and is to be understood without departing from the spirit and scope of the present invention as set forth in the following claims, the detailed description of the invention, and the accompanying drawings. The present invention can be modified and changed in various ways.
실시예Example
폴리에틸렌이민 용액(2mg/ml)을 제작 후 TiO2 (Inverse Opal, IO) 투명 전극 상에 드랍 코팅한 이후 상온에서 글루타알데히드 용액(2.5 wt%)에 1분 가교결합하여 하이드로겔을 제조하였다. TiO2 (Inverse Opal, IO) 투명 전극 상에 상기 하이드로겔을 코팅한 이후 PS Ⅱ 용액을 드랍 코팅하여 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)을 제작하였다. A hydrogel was prepared by preparing a polyethyleneimine solution (2 mg/ml) and drop-coating it on a TiO 2 (Inverse Opal, IO) transparent electrode, followed by cross-linking in a glutaraldehyde solution (2.5 wt%) for 1 minute at room temperature. After coating the hydrogel on a TiO 2 (Inverse Opal, IO) transparent electrode, PS II solution was drop-coated to produce a hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II).
도 1은 Bare TiO2(Inverse Opal, IO) 전극 및 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)의 SEM 사진을 나타낸 것으로, (a) Bare TiO2(Inverse Opal, IO) 전극의 SEM 사진, (b) 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)의 SEM 사진을 나타낸 것으로, 하이브리드 광전극의 SEM 사진에서 PS Ⅱ 적층을 확인할 수 있다. 또한, 하이브리드 광전극 표면의 기공이 380 nm 내지 430 nm인 것을 확인할 수 있다. Figure 1 shows an SEM image of a bare TiO 2 (Inverse Opal, IO) electrode and a hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II), (a) of the Bare TiO 2 (Inverse Opal, IO) electrode SEM image, (b) shows the SEM image of a hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II). PS II stacking can be confirmed in the SEM image of the hybrid photoelectrode. Additionally, it can be confirmed that the pores on the surface of the hybrid photoelectrode are 380 nm to 430 nm.
도 2는 각 전극(TiO2, TiO2/PS Ⅱ, TiO2/PEI-하이드로겔/PS Ⅱ)의 PEC 물 산화(PEC Water Oxidation) 효율을 측정한 것으로, 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)에서 향상된 개시전위 및 높은 광효율을 확인할 수 있다. Figure 2 is a measurement of the PEC Water Oxidation efficiency of each electrode (TiO 2 , TiO 2 /PS Ⅱ, TiO 2 /PEI-hydrogel/PS Ⅱ), and the hybrid photoelectrode (TiO 2 /PEI- Improved onset potential and high light efficiency can be confirmed in hydrogel/PS Ⅱ).
도 3은 본 발명의 일 실시예에 따라, 각 전극(TiO2/PS Ⅱ, TiO2/PEI-하이드로겔/PS Ⅱ)의 작동 시 부반응을 측정한 것으로, (a) 저전압 영역에서 각 전극의 광효율을 측정한 것이고, (b) 고전압 영역에서 각 전극의 광효율을 측정한 것이다. Figure 3 shows side reactions measured during operation of each electrode (TiO 2 /PS Ⅱ, TiO 2 /PEI-hydrogel/PS Ⅱ) according to an embodiment of the present invention, (a) of each electrode in the low voltage region (b) The optical efficiency was measured, and (b) the optical efficiency of each electrode was measured in the high voltage region.
도 3의 (a)에서 TiO2/PS Ⅱ전극에서는 Cathodic current(부반응, O2 환원반응) 관측하고, 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)에서 Anodic current (Water Oxidation)을 관측할 수 있다. 도 3의 (b)에서 고전압 영역에서 각 전극의 광효율 측정한 것으로 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)이 TiO2/PS Ⅱ 전극에 비하여 높은 효율을 나타내는 것을 확인할 수 있다. In (a) of Figure 3, cathodic current (side reaction, O 2 reduction reaction) is observed at the TiO 2 /PS II electrode, and anodic current (water oxidation) is observed at the hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II). It can be observed. In Figure 3 (b), the luminous efficiency of each electrode was measured in the high voltage region, and it can be seen that the hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II) shows higher efficiency than the TiO 2 /PS II electrode.
도 4 및 도 5는 본 발명의 일 실시예에 따라, 각 전극(TiO2/PS Ⅱ 및 TiO2/PEI-하이드로겔/PS Ⅱ)의 반응 안정성 및 산소 발생을 확인한 것으로, 도 4는 광반응 안정성 테스트이고, 도 5는 산소 발생을 측정한 것이다. Figures 4 and 5 confirm the reaction stability and oxygen generation of each electrode (TiO 2 /PS II and TiO 2 /PEI-hydrogel/PS II) according to an embodiment of the present invention, and Figure 4 shows the photoreaction This is a stability test, and Figure 5 measures oxygen generation.
도 4를 살펴보면, 0.3 V vs. RHE에서 각 전극의 광반응 안정성 테스트 결과에서 하이브리드 광전극의 PEI/PS Ⅱ 전극에서 높은 전류 및 좋은 안정성을 확인할 수 있다. Looking at Figure 4, 0.3 V vs. The photoreaction stability test results of each electrode in RHE show high current and good stability in the PEI/PS II electrode of the hybrid photoelectrode.
도 5를 살펴보면, 0.2 V, 0.3 V vs. RHE에서 각 전극의 산소 발생을 측정한 것으로, 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)에서 PEI 존재 시 (PEI/PS Ⅱ) 산소 발생가 증가하는 것을 확인할 수 있다. Looking at Figure 5, 0.2 V, 0.3 V vs. By measuring the oxygen generation of each electrode in RHE, it can be seen that the oxygen generation increases in the presence of PEI (PEI/PS II) in the hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II).
도 6은 본 발명의 일 실시예에 따라, 각 전극의 광전압(Photovoltage)을 측정한 것으로, 광전압(Photovoltage) 측정 결과에서 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)에서 TiO2 투명 광전극과 PS Ⅱ 간의 상호작용을 확인할 수 있다. 하이브리드 광전극(TiO2/PEI-하이드로겔/PS Ⅱ)에서 가장 큰 광전압(0.81 V)을 확인하였고, 이는 PEI에 의한 배향성 조절 및 투명 광전극/PS Ⅱ 간 접촉(contact) 향상에 기인한 것이다. 도 7을 참조하면, 도 7의 (a) 및 (b)에서 기존의 PS Ⅱ를 이용한 PEC Water Oxidation 에는 2가지 반응경로가 있으며, Mn4Ca 촉매에서의 Water Oxidation 및 (2) Chlorophyll a 에서의 O2 reduction (H2O2 생성)이며, 이는 Side reaction에 해당된다. 이러한 Side reaction 억제를 위해서는 Redox mediator 사용하거나 PS Ⅱ의 배향성 조절 필요(예: Stromal side를 전극쪽으로 배향)하지만, 이 둘을 동시에 해결하는 것이 어렵다. 하지만, 본 발명에서는, 가교결합된 PEI 하이드로겔을 활용한 생체 물질 고정화를 통해 도 7의 (b)에서 나타나는 부반응을 억제하였으며, 상기 가교결합된 PEI 하이드로겔을 투명 광전극(TiO2) 상에 도입함으로써, PS Ⅱ 배향성 조절 및 하이드로겔의 혐기성 특성을 이용하여 O2 접근의 차단을 동시에 실현시킬 수 있다.Figure 6 shows the photovoltage of each electrode measured according to an embodiment of the present invention. The photovoltage measurement results show that TiO in the hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II) 2 The interaction between the transparent photoelectrode and PS II can be confirmed. The highest photovoltage (0.81 V) was confirmed in the hybrid photoelectrode (TiO 2 /PEI-hydrogel/PS II), which is due to the adjustment of orientation by PEI and the improvement of contact between the transparent photoelectrode/PS II. will be. Referring to Figure 7, there are two reaction paths for PEC Water Oxidation using existing PS II in Figure 7 (a) and (b), (2) Water Oxidation in Mn4Ca catalyst and (2) O2 in Chlorophyll a. reduction (producing H 2 O 2 ), which corresponds to a side reaction. To suppress this side reaction, it is necessary to use a redox mediator or adjust the orientation of PS II (e.g., orient the stromal side toward the electrode), but it is difficult to solve both at the same time. However, in the present invention, the side reaction shown in (b) of Figure 7 was suppressed through immobilization of biomaterials using cross-linked PEI hydrogel, and the cross-linked PEI hydrogel was placed on a transparent photoelectrode (TiO 2 ). By introducing it, it is possible to simultaneously control PS II orientation and block O 2 access using the anaerobic properties of the hydrogel.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다. As described above, although the embodiments have been described with limited examples and drawings, various modifications and variations can be made by those skilled in the art from the above description. For example, even if the described techniques are performed in a different order than the described method, and/or the described components are combined or combined in a different form than the described method, or are replaced or substituted by other components or equivalents. Adequate results can be achieved. Therefore, other implementations, other embodiments, and equivalents of the claims also fall within the scope of the claims described below.

Claims (12)

  1. 투명 전극층; Transparent electrode layer;
    상기 투명 전극층 상에 형성된 아민기를 갖는 고분자 하이드로겔층; 및 A polymer hydrogel layer having an amine group formed on the transparent electrode layer; and
    상기 고분자 하이드로겔층 상에 형성된 PS Ⅱ층;PS II layer formed on the polymer hydrogel layer;
    을 포함하고,Including,
    상기 하이드로겔은 글루타알데히드를 통해 가교결합된 아민기를 갖는 고분자로 형성된 것인, The hydrogel is formed of a polymer having an amine group cross-linked through glutaraldehyde,
    광전극. Photoelectrode.
  2. 제1항에 있어서,According to paragraph 1,
    상기 투명 전극층은, 기판; 및 상기 기판 상에 형성된 투명 반도체 물질;을 포함하는 것인,The transparent electrode layer includes: a substrate; and a transparent semiconductor material formed on the substrate.
    광전극.Photoelectrode.
  3. 제1항에 있어서,According to paragraph 1,
    상기 투명 반도체 물질은, BaTiO3, BaSnO3, Bi2O3, V2O5, VO2, Fe2O3, Fe3O4, BiVO4, Bi2WO4, TiO2, SrTiO3, ZnO, CuO, Cu2O, NiO, SnO2, CoO, In2O3, WO3, MgO, CaO, La2O3, Nd2O3, Nb2O5, Y2O3, CeO2, PbO, ZrO2, Co3O4 및 Al2O3로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 것인,The transparent semiconductor material is BaTiO 3 , BaSnO 3 , Bi 2 O 3 , V 2 O 5 , VO 2 , Fe 2 O 3 , Fe 3 O 4 , BiVO 4 , Bi 2 WO 4 , TiO 2 , SrTiO 3 , ZnO, CuO, Cu 2 O, NiO, SnO 2 , CoO, In 2 O 3 , WO 3 , MgO, CaO, La 2 O 3 , Nd 2 O 3 , Nb 2 O 5, Y 2 O 3 , CeO 2 , PbO, ZrO 2, Co 3 O 4 and Al 2 O Containing at least one selected from the group consisting of 3 ,
    광전극. Photoelectrode.
  4. 제1항에 있어서,According to paragraph 1,
    상기 고분자 하이드로겔층의 두께는 10 nm 내지 1000 nm인 것인,The thickness of the polymer hydrogel layer is 10 nm to 1000 nm,
    광전극. Photoelectrode.
  5. 제1항에 있어서,According to paragraph 1,
    상기 PS Ⅱ층의 두께는 10 nm 내지 1000 nm인 것인,The thickness of the PS II layer is 10 nm to 1000 nm,
    광전극. Photoelectrode.
  6. 제1항에 있어서,According to paragraph 1,
    상기 광전극의 기공 크기는 200 nm 내지 500 nm인 것인, The pore size of the photoelectrode is 200 nm to 500 nm,
    광전극. Photoelectrode.
  7. 제1항에 있어서,According to paragraph 1,
    상기 아민기를 갖는 고분자는, The polymer having the amine group is,
    폴리에틸렌이민(Polyethyleneimine: PEI), 폴리아민(Polyamine), 폴리아미드아민 (Polyamideamine), 폴리비닐아민(Polyvinylamine), 폴리아미도이민(Polyamidoimine), 폴리알릴아민(Polyallylamine), 폴리라이신(Poly-L-lysine), 폴리아크릴아미드(polyacrylamide), 폴리아미도아민(Polyamidoamine), 폴리비닐피리딘(polyvinylpyridine), 폴리비닐이미다졸(polyvinylimidazole) 및 키토산(Chitosan)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 것인, Polyethyleneimine (PEI), Polyamine, Polyamideamine, Polyvinylamine, Polyamidoimine, Polyallylamine, Poly-L-lysine , polyacrylamide, polyamidoamine, polyvinylpyridine, polyvinylimidazole, and chitosan, which includes at least one selected from the group consisting of,
    광전극. Photoelectrode.
  8. 제1항에 있어서,According to paragraph 1,
    상기 아민기를 갖는 고분자의 분자량은 500 (g/mol) 이상인 것인, The molecular weight of the polymer having the amine group is 500 (g/mol) or more,
    광전극. Photoelectrode.
  9. 제1항에 있어서,According to paragraph 1,
    상기 하이드로겔은, The hydrogel is,
    글루타알데히드 대 아민기를 갖는 고분자의 질량비 1 : 9 내지 9 : 1에서 가교결합된 것인, Crosslinked at a mass ratio of glutaraldehyde to polymer having amine groups of 1:9 to 9:1,
    광전극.Photoelectrode.
  10. 제1항에 있어서,According to paragraph 1,
    상기 광전극은, PEC 물 산화 반응에 이용되는 것인, The photoelectrode is used in the PEC water oxidation reaction,
    광전극.Photoelectrode.
  11. 제1항의 광전극; 및 The photoelectrode of claim 1; and
    상기 광전극의 반대 전극; an opposite electrode to the photoelectrode;
    을 포함하는, Including,
    물분해 시스템water decomposition system
  12. 제11항에 있어서,According to clause 11,
    상기 PEC 물 산화 반응을 이용하는 물분해 시스템인 것인, A water decomposition system using the PEC water oxidation reaction,
    물분해 시스템.Water splitting system.
PCT/KR2022/009401 2022-06-29 2022-06-30 Photoelectrode comprising natural light harvesting system and electrochemical reaction system comprising same WO2024005231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220079834A KR20240002536A (en) 2022-06-29 2022-06-29 Photoelectrode comprising photosystem ⅱ and electrochemical reaction system comprising same
KR10-2022-0079834 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024005231A1 true WO2024005231A1 (en) 2024-01-04

Family

ID=89380733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009401 WO2024005231A1 (en) 2022-06-29 2022-06-30 Photoelectrode comprising natural light harvesting system and electrochemical reaction system comprising same

Country Status (2)

Country Link
KR (1) KR20240002536A (en)
WO (1) WO2024005231A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042407A1 (en) * 2012-08-08 2014-02-13 Vanderbilt University Biohybrid photoelectrochemical energy conversion device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042407A1 (en) * 2012-08-08 2014-02-13 Vanderbilt University Biohybrid photoelectrochemical energy conversion device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADRIAN BADURA; DMITRII GUSCHIN; BERNDT ESPER; TIM KOTHE; SEBASTIAN NEUGEBAUER; WOLFGANG SCHUHMANN; MATTHIAS RÖGNER: "Photo‐Induced Electron Transfer Between Photosystem 2 via Cross‐linked Redox Hydrogels", ELECTROANALYSIS, VHC PUBLISHERS, INC., US, vol. 20, no. 10, 8 April 2008 (2008-04-08), US , pages 1043 - 1047, XP071935573, ISSN: 1040-0397, DOI: 10.1002/elan.200804191 *
SOKOL KATARZYNA P., MERSCH DIRK, HARTMANN VOLKER, ZHANG JENNY Z., NOWACZYK MARC M., RÖGNER MATTHIAS, RUFF ADRIAN, SCHUHMANN WOLFGA: "Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers", ENERGY & ENVIRONMENTAL SCIENCE, RSC PUBL., CAMBRIDGE, vol. 9, no. 12, 1 January 2016 (2016-01-01), Cambridge , pages 3698 - 3709, XP093121442, ISSN: 1754-5692, DOI: 10.1039/C6EE01363E *
SOKOL KATARZYNA P.; ROBINSON WILLIAM E.; WARNAN JULIEN; KORNIENKO NIKOLAY; NOWACZYK MARC M.; RUFF ADRIAN; ZHANG JENNY Z.; REISNER : "Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase", NATURE ENERGY, NATURE PUBLISHING GROUP UK, LONDON, vol. 3, no. 11, 3 September 2018 (2018-09-03), London , pages 944 - 951, XP036629362, DOI: 10.1038/s41560-018-0232-y *
ZHANG JENNY Z.; REISNER ERWIN: "Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis", NATURE REVIEWS CHEMISTRY, NATURE PUBLISHING GROUP UK, LONDON, vol. 4, no. 1, 21 December 2019 (2019-12-21), London , pages 6 - 21, XP036984689, DOI: 10.1038/s41570-019-0149-4 *

Also Published As

Publication number Publication date
KR20240002536A (en) 2024-01-05

Similar Documents

Publication Publication Date Title
Kellett et al. Cobalt porphyrin electrode films as hydrogen catalysts
Cen et al. Antibacterial activity of cloth functionalized with N‐alkylated poly (4‐vinylpyridine)
US6838210B2 (en) Solid electrolyte with high ion conductivity and electrochemical system using the solid electrolyte
JP5251130B2 (en) Biomolecule-immobilized carbon membrane
WO2016153272A1 (en) Method for preparing hydrogel containing reduced graphene oxide
Srinophakun et al. Application of modified chitosan membrane for microbial fuel cell: Roles of proton carrier site and positive charge
Zhao et al. A photosystem I monolayer with anisotropic electron flow enables Z-scheme like photosynthetic water splitting
US20070116950A1 (en) Electrophoretically deposited hydrophilic coatings for fuel cell diffuser/current collector
CN1195336C (en) Improved gas diffusion electrode, mehtod for producing said electrode and method for waterproofing gas diffusion electrode
KR20140128528A (en) Electrode of polymer nanofiber coated with aluminum thin film and manufacturing method thereof
CN110364664A (en) A kind of Water based metal ion secondary battery diaphragm and its preparation method and application
EP3375030A1 (en) Improved electrode for redox flow battery
CN111600025A (en) Zinc cathode material with elastic protective layer and preparation and application thereof
WO2024005231A1 (en) Photoelectrode comprising natural light harvesting system and electrochemical reaction system comprising same
KR20210085447A (en) Photoelectrode for modulating charge separation efficiency, its manufacturing method and device for photoelectrochemical water splitting
CN113013421A (en) Preparation method and application of PDMS-based silver nanowire/nanogold/nano-nickel composite electrode
KR102579378B1 (en) Method for preparing electron transfer material using biochar produced from microalgae sludge
US7238445B2 (en) Solid electrolyte with high ion conductivity and electrochemical system using the solid electrolyte
JP2018037394A (en) Conductive laminate
CN108503839B (en) Multifunctional reticular polymer and film, preparation method and application of film in electrochromic or electric control fluorescence aspect
KR20190127405A (en) Photoelectrode, manufacturing method thereof and method for photoelectrochemical water splitting using the same
US20070102039A1 (en) Electrolyte composition for dye-sensitized solar cell, manufacturing method of the composition, and dye-sensitized solar cell including the composition
KR20190127404A (en) High efficiency polyoxometalate-based multi-layer photoelectrode, manufacturing method thereof and method for photoelectrochemical water splitting having improved efficiency
JP4636802B2 (en) Photoelectric conversion element
Yan et al. Advances in integrating carbon dots with membranes and their applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949524

Country of ref document: EP

Kind code of ref document: A1