WO2024005157A1 - Adipocyte activator - Google Patents

Adipocyte activator Download PDF

Info

Publication number
WO2024005157A1
WO2024005157A1 PCT/JP2023/024246 JP2023024246W WO2024005157A1 WO 2024005157 A1 WO2024005157 A1 WO 2024005157A1 JP 2023024246 W JP2023024246 W JP 2023024246W WO 2024005157 A1 WO2024005157 A1 WO 2024005157A1
Authority
WO
WIPO (PCT)
Prior art keywords
serpina1
obesity
adipocytes
expression
brown
Prior art date
Application number
PCT/JP2023/024246
Other languages
French (fr)
Japanese (ja)
Inventor
雅司 阪口
栄一 荒木
Original Assignee
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学 filed Critical 国立大学法人熊本大学
Publication of WO2024005157A1 publication Critical patent/WO2024005157A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • the present invention relates to an adipocyte activator and its uses.
  • Obesity and its accompanying metabolic syndrome and type 2 diabetes have become major problems in modern society. These are said to be major obstacles to extending healthy life expectancy, as they increase the risk of cardiovascular disease, kidney disease, and malignant tumors.
  • Mammalian adipose tissue is broadly classified into two types, white adipose tissue and brown adipose tissue, depending on its function and histological characteristics.
  • white adipocytes present in white adipose tissue
  • brown adipocytes present in brown adipose tissue
  • beige adipocytes that are scatteredly induced within white adipose tissue. classified as adipocytes.
  • These three types of adipocytes are the same in that they contain neutral fat within their cells, but their localized sites and functions are significantly different.
  • White fat cells exist in various areas such as the subcutaneous tissue, visceral tissue, and intraperitoneal cavity, and store excess energy in the body as fat, and release it into the blood as free fatty acids when nutrition is needed, such as during times of starvation.
  • brown fat cells exist abundantly between the shoulder blades and play a role in burning fat and producing heat, but as they grow, they decrease, and in adults, brown fat cells are present in abundance between the shoulder blades and play a role in burning fat and producing heat. It is present in the suprafossa, around the spine, and around the heart. Brown fat cells are abundant in newborns and hibernating animals and are thought to be important for maintaining body temperature.
  • Brown adipocytes are characterized by having multilocular lipid droplets and abundant mitochondria, and UCP1 (uncoupling protein 1) present in the mitochondria plays a role in dissipating energy as heat.
  • Beige adipocytes are UCP1-positive adipocytes that exist scattered within white adipose tissue, especially subcutaneous adipose tissue.
  • Brown adipocytes and beige adipocytes have similar morphological characteristics of being multivesicular and containing many mitochondria, and both have the function of thermogenic adipocytes, but their origins and localization are different.
  • Brown adipocytes are derived from muscle progenitor cells that express Myogenic factor 5 (Myf5), which is common to skeletal muscle, whereas beige adipocytes, like white adipocytes, are derived from Myf5-negative preadipocytes.
  • Myf5 Myogenic factor 5
  • beige adipocytes are formed from preadipocytes, through transdifferentiation from mature white adipocytes, or both. In this way, beige adipocytes are said to have characteristics similar to white adipocytes and brown adipocytes.
  • Non-Patent Document 1 Non-Patent Document 2
  • Non-Patent Document 3 Patent Document 1
  • ⁇ 1-antitrypsin belongs to the Serpin superfamily, and its function as a protease inhibitor has been revealed from the protein structure. In humans, it is encoded by the SERPINA1 gene.
  • SERPINA1 The previously known function of ⁇ 1-antitrypsin as an inhibitor of enzyme activity in the blood is thought to protect surrounding tissues from neutrophil elastase.
  • neutrophil elastase degrades elastin excessively, resulting in lung It is thought that this decrease in elasticity may cause respiratory complications of chronic obstructive pulmonary disease (COPD) in adults.
  • COPD chronic obstructive pulmonary disease
  • An object of the present invention is to provide a new adipocyte activator and its uses.
  • the present inventor established IR/IGF1R-inducible double knockout mice that can induce organ-specific insulin receptor/IGF-1 receptor (IR/IGF1R) deficiency after growing into adults, and rapidly developed adipose tissue. It was found that the disappearance of . In these mice, we confirmed that insulin resistance in adipose tissue is the primary cause of metabolic syndrome, and also demonstrated that brown adipose tissue can recover its function even in such a severe disease state. I found out. Therefore, we extracted 1,469 types of serum proteins from serum proteomics analysis using IR/IGF1R-inducible double knockout mice and conducted intensive research on factors that induce the proliferation and activation of brown fat cells.
  • IR/IGF1R organ-specific insulin receptor/IGF-1 receptor
  • SerpinA1 a physiologically active factor derived from SerpinA1
  • SerpinA1 is a molecule related to the activation of adipocytes (brown adipocytes and/or beige adipocytes).
  • SerpinA1 is also known as ⁇ 1-antitrypsin. Therefore, in this specification, SerpinA1 and ⁇ 1-antitrypsin are used to mean the same thing, and mean terms that can be replaced with each other.
  • the present invention includes the following.
  • the adipocyte is a brown preadipocyte, and the adipocyte activator according to [1] or [2] above has an effect of promoting proliferation of the brown preadipocyte.
  • the fat cells are beige fat cells, and the fat cells according to [1] or [2] above have an effect of promoting beigeization of white fat cells (transdifferentiation of white fat cells into beige fat cells).
  • Activator [5] The adipocyte activator according to [1] above, wherein the SerpinA1 is SerpinA1 ( ⁇ 1-antitrypsin) purified from mammalian plasma (preferably human plasma).
  • the SerpinA1 expression promoter is a substance that promotes the expression of the SerpinA1 gene (for example, a substance that promotes transcription initiation of the SerpinA1 gene, a substance that inhibits degradation of SerpinA1 gene mRNA, transcription from the mRNA to SerpinA1 protein)
  • the adipocyte activating agent according to [1] above which is a SerpinA1 nucleic acid construct.
  • the SerpinA1 agonist binds to EphB2 receptor (Ephrin type-B receptor 2) and has the activity of (1) enhancing expression and/or phosphorylation of EphB2 receptor, or (2) brown fat
  • EphB2 receptor Ephrin type-B receptor 2
  • the adipocyte activator according to [7] above which is a substance having any of the following activities: promoting the expression of UCP1 (uncoupling protein 1) in cells.
  • UCP1 uncoupling protein 1
  • a pharmaceutical composition for preventing and/or treating obesity and/or obesity-related diseases comprising the adipocyte activator according to any one of [1] to [10] above.
  • the obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and high uric acid.
  • the pharmaceutical composition according to the above [11] which is a disease selected from the group consisting of bloodemia.
  • a pharmaceutical composition for preventing and/or treating obesity and/or obesity-related diseases comprising a SerpinA1 expression promoter, wherein the SerpinA1 expression promoter is a substance that promotes SerpinA1 gene expression.
  • the SerpinA1 expression promoter is a substance that promotes SerpinA1 gene expression.
  • a substance that promotes transcription initiation of the SerpinA1 gene a substance that inhibits degradation of mRNA of the SerpinA1 gene, a substance that promotes transcription from the mRNA to SerpinA1 protein
  • a pharmaceutical composition that is a SerpinA1 nucleic acid construct is carried in a nucleic acid vector and/or included in a lipid nanoparticle.
  • the obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and hyperuricemia.
  • the indicator has the ability to promote the expression of SerpinA1 gene (for example, the ability to promote the production of SerpinA1 gene mRNA, the ability to promote the transcription initiation of SerpinA1 gene, the ability to inhibit the degradation of SerpinA1 gene mRNA, the method according to [16] above.
  • the SerpinA1 agonist action binds to the EphB2 receptor and (1) has the activity of enhancing the expression and/or phosphorylation of the EphB2 receptor, or (2) inhibits UCP1 (depletion) in brown adipocytes.
  • the candidate substance is selected from the group consisting of a low molecular weight substance, a high molecular weight substance, a nucleic acid molecule, a protein, and a peptide.
  • the drug to be screened is a drug for improving obesity by enhancing lipolysis, improving insulin resistance, or acquiring obesity resistance by turning into beige adipocytes. Any one of the methods described.
  • the method according to any one of [16] to [21] above, wherein the drug to be screened is a drug for preventing or treating obesity and/or obesity-related diseases.
  • the obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and hyperuricemia.
  • the disease is a disease selected from the group consisting of:
  • a method for treating or preventing obesity or obesity-related diseases which comprises administering to a subject in need thereof a therapeutically effective amount of a substance selected from the group consisting of SerpinA1, a SerpinA1 agonist, and a SerpinA1 expression promoter.
  • a method comprising administering.
  • the SerpinA1 is SerpinA1 ( ⁇ 1-antitrypsin) purified from mammalian plasma (preferably human plasma).
  • the SerpinA1 agonist binds to EphB2 receptor (Ephrin type-B receptor 2) and has the activity of (1) enhancing the expression and/or phosphorylation of EphB2 receptor, or (2) brown fat.
  • the SerpinA1 expression promoter may be a substance that promotes SerpinA1 gene expression (for example, a substance that promotes transcription initiation of the SerpinA1 gene, a substance that inhibits degradation of SerpinA1 gene mRNA, transcription from the mRNA to SerpinA1 protein)
  • the obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and hyperuricemia.
  • the present invention it is possible to activate brown adipocytes and beige adipocytes and obtain effects such as improving obesity by increasing intracellular fat decomposition or acquiring obesity resistance by turning into beige adipocytes. Furthermore, according to the present invention, it is possible to provide new drugs for obesity-related diseases.
  • Figure 1 shows the amino acid sequence of SerpinA1.
  • Figure 2 shows the base sequence of SerpinA1.
  • the left panel (A) in FIG. 3 shows the results of cold stimulation after tamoxifen induction, and the right panel (B) in FIG. 3 shows the results of cold stimulation after a long period of time. This is the result of imaging the neck of a mouse using a thermography camera.
  • Control is the result of cold stimulation using a control mouse
  • Ai-DKO is a mouse in which IR and IGF1R deficiency has been induced by administration of tamoxifen (IGF1R ⁇ / ⁇ IR ⁇ / ⁇ ). Darker (red) areas indicate higher temperatures.
  • the results of analysis of the expression of SerpinA1 in the liver due to cold stimulation in mice are shown.
  • the left panel shows SerpinA1 mRNA expression.
  • the upper right figure shows the results of confirming SerpinA1 protein expression by Western blot analysis.
  • the lower right figure is a graph of the Western blot analysis results.
  • Inguinal white adipose tissue; iWAT, epididymal white adipose tissue; eWAT, cervical brown adipose tissue; iBAT liver: Liver.
  • Data represent mean ⁇ SEM, black circles indicate individual subjects (mice) (unless otherwise stated, the same applies in the following figures).
  • the results of analysis of UCP1 expression in fat induced by cold stimulation in mice are shown.
  • the left panel shows UCP1 mRNA expression.
  • the upper right figure shows the results of confirming UCP1 protein expression by Western blot analysis.
  • the lower right figure is a graph of the Western blot analysis results.
  • CD is a normal diet group
  • HFD is a high-fat diet group.
  • the left panel shows SerpinA1 mRNA expression.
  • the center figure shows the results of Western blot analysis confirming protein expression of SerpinA1 in the liver.
  • the figure on the right is a graph of the Western blot analysis results.
  • iWAT, eWAT, iBAT and Liver are the same as above. These are the results of confirming the proliferation effect of SerpinA1 protein on brown preadipocytes.
  • A shows the results of measuring the ratio of EdU to DAPI.
  • B shows the measurement results of UCP1 mRNA expression and protein expression.
  • C is the measurement result of oxygen consumption rate.
  • B shows the measurement results of UCP1 mRNA expression and protein expression.
  • C is the measurement result of oxygen consumption rate.
  • mice liver-specific SerpinA1 overexpressing Tg mice
  • the left figure shows the measurement results of random blood sugar and fasting blood sugar.
  • the upper right figure shows the results of the insulin tolerance test (ITT), and the lower right figure shows the results of the glucose tolerance test (GTT).
  • ITT insulin tolerance test
  • GTT glucose tolerance test
  • A shows the results of qPCR
  • B shows the results of immunostaining.
  • A is the result of qPCR analysis of mRNA expression in subcutaneous white tissues of wild-type mice and SerA1Tg mice.
  • B is the result of measuring the amount of subcutaneous fat per body weight.
  • the left panel C shows the results of HE staining the tissue.
  • the right panel C shows the results of measuring the diameter of a lipid droplet from an HE-stained image. These are the results of high-fat diet feeding to wild-type mice and SerA1Tg mice.
  • A is the measurement result of fasting blood sugar
  • B is the result of glucose tolerance test (GTT)
  • C is the result of insulin tolerance test (ITT).
  • A shows an outline of the SerpinA1 gene KOed using CRISPR-Cas9 technology.
  • B and C are the results of glucose tolerance test (GTT) and insulin tolerance test (ITT) in wild-type mice and SerA1KO mice, respectively. These are the results of comparing wild-type mice and SerA1KO mice.
  • A is the measurement result of oxygen intake.
  • B and C are the results of measuring rectal temperature after cold stimulation and imaging the neck with a thermography camera, respectively. These are the results of Western blot analysis after inducing differentiation of brown adipocyte precursor cells into brown adipocytes, adding SerpinA1 at various concentrations.
  • the left figure shows the expression of EphB2 receptor, and the right figure shows the expression of tyrosine-phosphorylated EphB2 receptor.
  • FIG. 2 is a diagram showing the correlation between serum SerpinA1 concentration and HbA1c or BMI in metabolic patients with type 2 diabetes and obesity. This figure shows the results of feeding high-fat diet to SerA1KO mice. The upper figure shows the weight change, and the lower figure shows the weight of subcutaneous fat (iWAT) and visceral fat (eWAT). WT is the result of control wild type mice.
  • iWAT subcutaneous fat
  • eWAT visceral fat
  • SerpinA1 is a protein that belongs to the Serpin superfamily and is a protease inhibitor. Serpins are classified into AI (9 types), which have multiple members, and 37 types have been identified in humans so far, and each molecule has different structures and expressions, as well as different targets and functions. SerpinA1 is a 52 kDa protein, also called ⁇ 1-antitrypsin (A1AT).
  • A1AT ⁇ 1-antitrypsin
  • SerpinA1 gene nucleotide sequence has been registered in GenBank provided by the National Center for Biotechnology Information (NCBI) with the accession number (NM_00112770.1) (if multiple revisions are registered, the latest (understood as referring to revision).
  • the amino acid sequence of SerpinA1 is shown in SEQ ID NO: 1 (natural A1AT of 418 amino acids, transcript variants 1 to 11 have been reported), and its base sequence is shown in SEQ ID NO: 2.
  • SerpinA1 exists in the blood and is said to protect surrounding tissues from the protein-cleaving enzyme elastase. Neutrophils secrete elastase to degrade connective tissue during inflammation. On the other hand, blood cells migrate to the area surrounding the inflammation, protecting it from foreign substances and repairing degraded tissue. SerpinA1 protects adjacent areas and primarily prevents this neutrophil elastase from spreading throughout the body. Furthermore, SerpinA1 has been reported to have multiple paralogs encoding A1AT in mice, and due to the complexity of this gene structure, detailed analysis using knockout mice has not progressed to date.
  • activation of adipocytes means activating one or more of adipocytes such as brown adipocyte precursor cells, brown adipocytes, or beige adipocytes, and is limited thereto. However, it means an action that produces one or more of the following effects.
  • adipocytes such as brown adipocyte precursor cells, brown adipocytes, or beige adipocytes
  • UCP1 expression here means UCP1 gene expression and/or UCP1 protein expression
  • Effect of promoting proliferation of brown adipose progenitor cells Effect of promoting transdifferentiation from white adipocytes to beige adipocytes.
  • the activator of the present invention activates brown fat cells and beige fat cells, burns intracellular fat, and functions to prevent hypothermia and obesity.
  • activation of brown adipocytes and “activators of brown adipocytes” are used to include the activation of brown adipocyte precursor cells, which are precursor cells of brown adipocytes;
  • brown adipocytes is used to include both brown adipocytes and brown preadipocytes, unless the context clearly indicates that only one or the other is meant. be understood.
  • adipocyte activator is used interchangeably with the term “brown adipocyte and/or beige adipocyte activator.” In this case as well, brown adipocytes are understood to include brown adipocytes and brown preadipocytes.
  • SerpinA1 contained in the adipocyte activator of the present invention is not particularly limited as long as it has the amino acid sequence of SerpinA1 and has any one of the effects described in (1) to (5) above, such as , SerpinA1 isolated from a living body, or recombinant SerpinA1 produced using genetic engineering technology.
  • Examples of SerpinA1 isolated from a living body include, but are not limited to, SerpinA1 isolated from pooled mammalian (preferably human) plasma. Methods for isolating SerpinA1 from plasma are known, and SerpinA1 used in the present invention can be produced by appropriately referring to the known methods. For example, it can be carried out with reference to the method described in WO2004/060528 (this description is incorporated herein by reference).
  • Plasma-derived A1AT is commercially available and is also used as a drug for ⁇ 1-antitrypsin deficiency, and can also be used in the present invention.
  • Recombinant SerpinA1 can be produced using known genetic engineering methods, for example, with reference to the methods described in WO2010/127939 and WO2020/092448 (these descriptions are , incorporated herein by reference).
  • having the amino acid sequence of SerpinA1 means having substantially the amino acid sequence of SerpinA1, and is not limited to this, but 90% or more, 91% or more of the amino acid sequence of SerpinA1 shown in SEQ ID NO: 1. , 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, or 98% or more, and of the amino acid sequence of SerpinA1 shown in SEQ ID NO: 1. Also includes amino acid sequences with partial substitutions, deletions, and additions (for example, one or more, but not limited to, specifically one, two, three, four, or five amino acids). , and an adipocyte activator containing a mutation in the amino acids surrounding the serine residues of the active center loop involved in suppressing the serine protease enzyme activity of SerpinA1.
  • the adipocyte activator of the present invention has an effect of promoting the expression of UCP1 (uncoupling protein 1) in brown adipocytes and beige adipocytes.
  • UCP1 uncoupling protein 1
  • brown adipocytes and beige adipocytes can be activated.
  • expression of UCP1 is used to include both UCP1 gene expression (that is, mRNA expression) and protein expression.
  • the adipocyte activator of the present invention has an effect of promoting proliferation of brown preadipocytes.
  • brown adipocytes can be activated, and thermogenic action in brown adipose tissue can be enhanced.
  • the adipocyte activating agent of the present invention has the effect of promoting beigeization of white adipocytes, in other words, the transdifferentiation of white adipocytes into beige adipocytes.
  • Beige adipocytes can be activated by promoting differentiation into beige adipocytes, and thermogenic action in white adipose tissue including beige adipocytes can be enhanced.
  • the adipocyte activating agent of the present invention has an action of enhancing thermogenic action in adipose tissue. Enhancement of thermogenic action in adipose tissue can be achieved by promoting one or more of the above-mentioned actions, but in addition, UCP1-independent thermogenic mechanisms can be achieved by activating brown fat cells and beige cells. It can also be done by enhancement. Examples of such a thermogenic mechanism include Ca 2+ cycling.
  • the adipocyte activating agent of the present invention is an adipocyte activating agent containing an expression promoter of SerpinA1.
  • a SerpinA1 expression promoter means a substance that promotes the expression of SerpinA1 in cells.
  • a substance that promotes transcription initiation of SerpinA1 in cells a substance that inhibits degradation of SerpinA1 gene mRNA, a substance that promotes transcription from SerpinA1 mRNA to SerpinA1 protein, or a substance that promotes transcription of SerpinA1 in cells. Examples include substances that promote expression.
  • Examples of the substance that promotes the expression of SerpinA1 in the cells include a nucleic acid construct containing the SerpinA1 gene. By introducing the nucleic acid construct into cells and expressing it within the cells, the expression of SerpinA1 within the cells can be enhanced.
  • the nucleic acid construct is preferably carried in a nucleic acid vector or encapsulated in a lipid nanoparticle.
  • a nucleic acid construct carried by a nucleic acid vector (preferably a viral vector) may be included in the lipid nanoparticle.
  • viral vectors examples include adeno-associated virus (AAV) vectors, adenovirus vectors, retrovirus vectors, and lentivirus vectors.
  • AAV vectors include AAV1, AAV2, AAV3, AAV3B, AAV4, AAV5, AAV6, AAV6.2, AAV7, AAVrh. 64R1, AAVhu. 37, AAVrh. 8, AAVrh. Mention may be made of vectors consisting of 32.33, AAV8, AAV9, AAV-DJ, AAV2/8, AAVrhlO, AAVLK03, AV10, AAV11, AAV12, rh10, and hybrids thereof.
  • any lipid nanoparticles that can encapsulate nucleic acids and can be used for introducing nucleic acids into cells can be used in the present invention without any limitations.
  • Such lipid nanoparticles are known and many reports have been made, and can be used in the present invention.
  • nucleic acid construct may have additional sequences, such as an origin of replication, a promoter, and a gene encoding antibiotic resistance.
  • Nucleic acid constructs can be either as naked nucleic acids, loaded onto non-viral vector delivery systems such as non-viral vectors, plasmid vectors, or complexed with delivery vehicles such as liposomes, lipid nanoparticles (LNPs) or poloxamers. or in a viral vector (e.g., adenovirus, AAV, herpesvirus, retrovirus, lentivirus), or even in a vector as described above and complexed with the delivery vehicle as described above.
  • a viral vector e.g., adenovirus, AAV, herpesvirus, retrovirus, lentivirus
  • a nucleic acid construct containing the SerpinA1 gene can be produced using known genetic engineering techniques.
  • the production of a nucleic acid construct containing the SerpinA1 gene can be performed, for example, with reference to the methods described in WO2013/106589, WO2016/110565, WO2017/093804, WO2020/082047, and WO2020/092448 ( (These descriptions are incorporated herein by reference).
  • the expression mode of the SerpinA1 gene within the cell is not particularly limited, and for example, the SerpinA1 gene may be expressed within the cell using an expression vector, or the SerpinA1 gene may be expressed by targeted insertion into a safe harbor locus.
  • Methods for introduction into cells and expression are known and can be carried out using these methods.
  • a method for inserting and expressing the SerpinA1 gene at the human safe harbor locus using a guide RNA is described in WO2017/093804 and WO2020/082047 (these descriptions are incorporated herein by reference). part of the book).
  • the present invention is a pharmaceutical composition for treating obesity and/or obesity-related diseases, which comprises a SerpinA1 expression promoter.
  • a SerpinA1 expression promoter As the SerpinA1 expression promoter, the SerpinA1 expression promoter described in the adipocyte activator can also be used in the pharmaceutical composition.
  • the adipocyte activating agent of the present invention is an adipocyte activating agent containing a SerpinA1 agonist.
  • SerpinA1 binds to EphB2 receptors. This indicates that SerpinA1 regulates EphB2 receptor as a target. Therefore, as used herein, an agonist of SerpinA1 is defined as one that binds to the EphB2 receptor and (1) has the activity of enhancing expression and/or phosphorylation of the EphB2 receptor, or (2) agonist of UCP1 ( A substance having any of the following activities: promoting the expression of uncoupling protein 1).
  • EphB2 receptor (Ephrin type-B receptor 2) is a single-transmembrane receptor tyrosine kinase encoded by the EPHB2 gene, and is known to bind to a ligand called ephrin B. Eph receptors are classified into two subclasses, EphA and EphB, based on differences in their amino acid sequences and affinity with ligands, and six types of EphB subclasses have been identified in vertebrates (EphB1-6).
  • an agonist of SerpinA1 means a substance that binds to EphB2 receptor and activates the same intracellular signal transduction system as SerpinA1.
  • it refers to a substance that binds to the EphB2 receptor and has any one or more of the following activities (1) to (3): (1) has the activity of enhancing the expression of the EphB2 receptor;
  • enhancing the expression of EphB2 receptor means enhancing the expression of EphB2 receptor mRNA, suppressing the degradation of EphB2 receptor mRNA, enhancing the expression of EphB2 receptor protein, and suppressing the degradation of EphB2 receptor protein.
  • the agonist has an activity of enhancing EphB2 expression compared to the case where no agonist is used.
  • It has the activity of enhancing the phosphorylation of EphB2 receptor.
  • It has the activity of promoting the expression of UCP1 (uncoupling protein 1) in brown fat cells.
  • Measurement of the agonist activity of SerpinA1 is not limited to this, but includes, for example, measuring the expression levels of EphB2 receptor mRNA and protein using brown adipocytes expressing EphB2 receptor using known techniques; This can be carried out by measuring the amount of phosphorylation (preferably tyrosine phosphorylation) or by measuring the expression of UCP1 in brown cells.
  • phosphorylation preferably tyrosine phosphorylation
  • the substance that is an agonist of SerpinA1 is not particularly limited, and may be any of a low molecular weight substance, a high molecular weight substance, a nucleic acid molecule, a protein, or a peptide.
  • Another embodiment of the present invention is a pharmaceutical composition containing the adipocyte activating agent of the present invention.
  • the adipocyte activator or pharmaceutical composition of the present invention can be used to prevent or treat obesity or obesity-related diseases.
  • a state in which there is too much adipose tissue in the body is referred to as "obesity”.
  • the term "obesity” refers to a state of excessive body fat, and refers to a case where the body mass index (BMI) is 30 or more, according to the World Health Organization (WHO).
  • BMI body mass index
  • WHO World Health Organization
  • obesity-related disease encompasses disorders associated with, caused by, or resulting from obesity. Examples of obesity-related diseases include overeating and bulimia, diabetes, hypertension, elevated plasma insulin levels and insulin resistance, dyslipidemia, hyperlipidemia, breast, prostate, endometrial and colon cancers, heart disease, and heart disease.
  • vascular disorders include vascular disorders, abnormal heart rhythms and arrhythmias, myocardial infarction, congestive heart failure, coronary heart disease, angina, cerebral infarction, cerebral thrombosis and transient ischemic attacks, and osteoarthritis.
  • pathological conditions that exhibit decreased metabolic activity or decreased resting energy expenditure as a percentage of total lean mass.
  • obesity-related diseases include metabolic syndrome, also known as syndrome Secondary consequences of obesity include sclerosis, hypercholesterolemia, hyperuricemia, and left ventricular hypertrophy.
  • Obesity-related diseases also include obesity-related liver abnormalities such as non-alcoholic fatty liver disease (NAFLD), which is responsible for the increased cirrhosis associated with obesity and metabolic syndrome.
  • NAFLD non-alcoholic fatty liver disease
  • NAFLD can exist as simple steatosis or progress to inflammation and steatohepatitis (NASH).
  • “Dyslipidemia” is a major risk factor for coronary heart disease (CHD) and is often associated with obesity. Therefore, when using the adipocyte activator and pharmaceutical composition of the present invention, not only obesity but also the aforementioned obesity-related diseases can be prevented or treated at the same time. It also includes objects that there is a desire to reduce.
  • dosage forms for the pharmaceutical composition of the present invention include injections, oral preparations (tablets, granules, powders, capsules), ointments, creams, patches, suppositories, and the like. Among these, injections and oral preparations are preferred.
  • the pharmaceutical composition of the present invention can be mixed with a pharmaceutically acceptable carrier used to form a pharmaceutical composition.
  • a pharmaceutically acceptable carrier used to form a pharmaceutical composition.
  • the carrier include solubilizing agents, excipients, binders, lubricants, disintegrants, coloring agents, flavoring agents, preservatives, and surfactants.
  • excipients, binders, lubricants, disintegrants, coloring agents, flavoring agents, etc. are used, and the preparation can be carried out by conventional methods.
  • water, a solubilizing agent, etc. are used.
  • the injection is preferably an intravenous injection, a subcutaneous injection, or an intramuscular injection, and examples include freeze-dried preparations and powder fillers.
  • terapéuticaally effective amount herein is meant an amount of SerpinA1 or its agonist that results in the activation of brown adipocytes and/or beige adipocytes, which provides the desired benefit/risk ratio. It means an amount that is effective to produce a therapeutic effect, such as weight loss.
  • a therapeutically effective amount can vary depending on the route of administration used, as is known to those skilled in the art. Furthermore, the therapeutically effective amount can be appropriately determined depending on the subject to be treated, the severity of the symptoms, the route of administration, the frequency of administration, the judgment of the prescribing physician, and other relevant factors. Generally, a therapeutically effective amount will be about 0.01 to about 1000 mg/kg body weight, preferably about 0.05 to about 500 mg/kg body weight, more preferably about 0.1 to about 100 mg/kg body weight.
  • the adipocyte activator or pharmaceutical composition of the present invention is an agent other than SerpinA1 or an agonist thereof or a SerpinA1 expression promoter (hereinafter collectively referred to as SerpinA1 drug in this paragraph) for treating obesity and/or obesity-related diseases.
  • SerpinA1 drug in this paragraph
  • administering in combination means (i) administering the SerpinA1 drug and the non-SerpinA1 drug in the same pharmaceutical composition, or (ii) administering the SerpinA1 drug and the non-SerpinA1 drug as separate formulations.
  • the SerpinA1 drug and the drug other than SerpinA1 may be prepared as separate preparations and administered at separate timings. The usage, dosage, administration timing, administration interval, etc. of the SerpinA1 drug and other drugs to be administered can be determined as appropriate based on the common technical knowledge known to those skilled in the art, depending on the above-mentioned factors.
  • the adipocyte activator or pharmaceutical composition of the present invention induces differentiation of beige adipocytes in white adipose tissue, and/or activates beige adipocytes and brown adipocytes, and consumes whole body energy, especially through thermogenesis.
  • By promoting metabolism by promoting obesity can be prevented and/or suppressed (treated). Therefore, in addition to treating and/or preventing obesity, it may also be effective in treating and/or preventing diseases caused by obesity. It can also prevent the body from getting cold by activating brown fat cells and/or beige fat cells and increasing cold-induced heat production.
  • the adipocyte activating agents or pharmaceutical compositions of the invention can be used in combination with one or more of the following therapeutic agents in treating obesity or obesity-related disorders: .
  • Such drugs include, but are not limited to, phenylpropanolamine, phentermine, diethylpropion, mazindol, fenfluramine, dexfenfluramine, phentiramine, beta3 adrenoceptor agonist drugs; sibutramine, gastrointestinal lipase inhibitors (eg, orlistat), and leptin.
  • Other drugs used in treating obesity or obesity-related diseases include neuropeptide Y, enterostatin, cholecytokinin, bombesin, amylin, histamine H3 receptors, dopamine, D2 receptor modulators, melanocytes.
  • the stimulating hormones include galanin and gamma-aminobutyric acid (GABA).
  • treatment refers to the use of the pharmaceutical composition of the present invention (a pharmaceutical composition containing an adipocyte activator and a pharmaceutical composition containing a SerpinA1 expression promoter) for reducing or maintaining the body weight of an obese subject.
  • a pharmaceutical composition containing an adipocyte activator and a pharmaceutical composition containing a SerpinA1 expression promoter for reducing or maintaining the body weight of an obese subject.
  • An example of one treatment result is a decrease in the obese subject's weight compared to the subject's weight prior to administration.
  • Another example of a therapeutic outcome may be the prevention of regaining weight that has already been lost as a result of diet, exercise or drug therapy.
  • Another example of a therapeutic outcome may be a reduction in the occurrence and/or severity of obesity-related diseases.
  • prevention refers to the administration of the pharmaceutical composition of the present invention to reduce or maintain body weight in a subject at risk of obesity.
  • An example of one preventive outcome is a reduction in the weight of a subject at risk of obesity compared to the subject's weight before administration.
  • Another example of a preventive outcome may be the prevention of regaining weight that has already been lost as a result of diet, exercise or drug therapy.
  • Another example of a preventive outcome may be prevention of the development of obesity when therapeutic administration occurs prior to the onset of obesity development in a subject at risk of obesity.
  • Another example of a preventive outcome may be a reduction in the occurrence and/or severity of obesity-related disorders when therapeutic administration occurs prior to the onset of obesity development in a subject at risk of obesity.
  • Treatment is initiated in a subject who is already obese, such treatment may prevent the onset, progression, or severity of obesity-related diseases.
  • the subject to whom the pharmaceutical composition of the present invention is administered is any subject for whom diagnosis, prognosis, or treatment is desired, particularly mammals.
  • Mammalian subjects include, but are not limited to, humans, non-human primates, domestic animals, farm animals, companion animals, rodents, etc., which are recipients of certain treatments; Preferably it is a human.
  • the pharmaceutical composition of the present invention can be used to treat obesity caused by a relatively lower numerical or mass ratio of beige adipocytes or brown adipocytes to white adipocytes than in a healthy state, as well as beige adipocytes or brown adipocytes. Due to low expression of the cell-specific gene UCP1, the numerical or mass ratio of beige or brown adipocytes to white adipocytes is relatively lower than in a healthy state. It can be effective against obesity.
  • Obesity caused by a relatively lower numerical or mass ratio of beige adipocytes or brown adipocytes to white adipocytes than in a healthy state can be investigated using methods known in the art.
  • obesity can be investigated by quantifying the activity of brown fat cells using a test called FDG-PET that quantifies glucose uptake after applying a cold stimulus.
  • Cold stimulation can be performed under the usual conditions used in the art.
  • the activity of brown adipocytes is quantified by determining that, among the areas that are consistent with adipose tissue in CT values, the areas in which glucose uptake above a threshold value is observed in FDG-PET are determined to be brown adipocytes, and the remaining areas are determined to be white adipocytes. be able to.
  • the above quantitative result in an obese patient is lower than the above quantitative result for one healthy person or the average value of the above quantitative results for multiple healthy individuals, the It can be determined that the patient has obesity caused by a numerical ratio or a mass ratio that is relatively lower than a healthy state. Furthermore, the above-mentioned quantification can be used to confirm that the prevention or treatment of obesity according to the present invention has been achieved by promoting the differentiation of preadipocytes into beige adipocytes.
  • the present invention is also a method for confirming or evaluating the state of obesity or an obesity-related disease using SerpinA1 in blood or serum as an indicator.
  • Obesity and obesity-related diseases are as described above.
  • a method for screening drugs for obesity or obesity-related diseases is provided.
  • the ability to promote the action of SerpinA1 is used as an indicator of the ability of a candidate drug, and candidate drugs having this ability are identified as agents for treating obesity-related diseases.
  • promoting the action of SerpinA1 includes, but is not limited to, the ability to promote SerpinA1 gene expression, binding activity to EphB2 receptor, which is a receptor for SerpinA1, or agonist activity of SerpinA1. can.
  • Examples of the ability to promote SerpinA1 gene expression include the ability to promote SerpinA1 gene transcription initiation, the ability to inhibit the degradation of SerpinA1 gene mRNA, or the ability to promote transcription from SerpinA1 mRNA to SerpinA1 protein. I can do things.
  • the agonist activity of SerpinA1 binds to the EphB2 receptor and can include any of the activities described above.
  • the screening method of the present invention can be appropriately implemented by those skilled in the art by referring to known techniques in the technical field, depending on the index used for drug selection. For example, by preparing hepatocytes expressing SerpinA1 or cells transformed by gene transfer so that the SerpinA1 gene is expressed, an expression test is performed in the presence and absence of a candidate substance, and the amount of SerpinA1 mRNA is determined. Alternatively, the ability of the candidate substance to promote (enhance) SerpinA1 gene expression can be measured by comparing the protein amounts. The amount of SerpinA1 mRNA can be measured by PCR using primers specific to the SerpinA1 gene according to a conventional method.
  • the amount of SerpinA1 protein can be measured according to a conventional method using an assay system using an antibody that specifically reacts with SerpinA1. Furthermore, a solid-phase binding elastase binding assay (see, for example, WO2012/159700) can also be used to measure the activity of SerpinA1.
  • a DNA fragment containing the transcription regulatory region of the SerpinA1 gene and a DNA fragment containing a reporter gene are operable.
  • candidate substances that promote transcription of the SerpinA1 gene can be screened.
  • the nucleotide sequence of the transcriptional regulatory region of the SerpinA1 gene is available from the NCBI Gene Bank.
  • the reporter gene may be one for which a method for detecting the expression product of the gene is known, such as a photoprotein gene such as a luciferase gene, an enzyme gene such as a ⁇ -galactosidase gene, or a chloramphenicol acetyltransferase gene.
  • Genes, fluorescent protein genes such as the green fluorescent protein (GFP) gene, etc. can be used.
  • GFP green fluorescent protein
  • an in vitro transcription activity evaluation system into which the nucleic acid molecule has been introduced or cells transformed with the nucleic acid molecule (mammalian cells, insect cells, yeast, Escherichia coli, etc.) can be used.
  • detection of reporter gene expression, and general techniques for screening candidate substances techniques well known to those skilled in the art can be used.
  • agonists of serepin A1 can also be screened as candidate substances using an evaluation system using the EphB2 receptor.
  • the expression levels of EphB2 receptor mRNA and protein can be measured using known techniques or the genetic engineering technique described above for SerpinA1, and the phosphorylation of the EphB2 receptor ( Preferably, this can be carried out by measuring the amount of tyrosine phosphorylation) or by measuring the expression of UCP1 in brown cells.
  • various types of substances can be used as drug candidates, such as low-molecular substances, high-molecular substances, nucleic acid molecules, proteins, and peptides (including cyclic peptides).
  • the present invention provides a method for treating or preventing obesity or obesity-related diseases, wherein a subject in need thereof is given a therapeutically effective amount of SerpinA1, a SerpinA1 agonist, or a SerpinA1 expression promoter.
  • the method includes administering a substance selected from the group consisting of:
  • obesity-related diseases include the diseases described regarding the adipocyte activating agent of the present invention and the pharmaceutical composition containing the activating agent, which also apply to the treatment or prevention method of the present invention.
  • the contents described regarding the adipocyte activating agent of the present invention and the pharmaceutical composition containing the activating agent also apply to the treatment or prevention method of the present invention. Applicable.
  • IR/IGF1R-inducible double knockout mice In which organ-specific insulin receptor/IGF-1 receptor (IR/IGF1R) deficiency can be induced with tamoxifen, IR/IGF1R- Inducible double knockout mice were generated (see Sakaguchi et al., Cell Metabolism 25, 448-462, 2017, which is incorporated herein by reference). By crossing mice with floxed insulin and/or IGF1 receptor alleles (foxedIR/IGF1R) and mice carrying a tamoxifen-inducible Cre ER T2 transgene under the control of the adiponectin promoter (AdipoqCreER T2 ).
  • AdipoqCreER T2 adiponectin promoter
  • mice carrying the floxed allele but not the Cre transgene served as controls.
  • Control mice were also given tamoxifen, which under the conditions used showed no adverse effects.
  • mice carrying foxedIR/IGF1R and AdipoqCreER T2 transgenes (Ai-DKO mice) were treated with tamoxifen, rapid loss of adipose tissue was observed.
  • glucose intolerance and insulin resistance were induced, and at the same time, brown fat weight was decreased, and cold tolerance was significantly decreased by cold stimulation.
  • FIG. 3A shows the results of cold stimulation (2 hours of exposure to an 8°C environment) 9 days after tamoxifen induction. Thereafter, after a long period of time (90 days), cold stimulation was applied again, and the results are shown in FIG. 3B. It was suggested that brown adipocytes disappear due to tamoxifen induction, but that brown adipocytes regenerate after a long period of time. Recalling the existence of physiologically active factors involved in the regeneration of brown adipose tissue, the factors were identified as follows.
  • Example 2 Identification of brown fat cell regeneration factor Serum was collected from control mice and Ai-DKO mice during the acute phase (adipose tissue loss phase) and brown adipose tissue regeneration phase, analyzed by mass spectrometry, and proteomics. From the analysis, we searched for physiologically active substances whose expression significantly increases in serum during brown adipose tissue regeneration. 1469 types of serum proteins were extracted. We narrowed down the factors that induce mouse brown fat cell proliferation and activation, and identified SerpinA1 (Serpin Family A Member 1) ( ⁇ 1-antitrypsin) as a physiologically active factor derived from the liver. As a result of measuring the mRNA expression of SerpinA1 in various organs of mice, it was found that SerpinA1 is a liver-derived factor that is selectively expressed in the liver, and mRNA expression in other organs is minimal.
  • SerpinA1 Serpin Family A Member 1
  • Example 4 Expression of SerpinA1 in a pathological model
  • SerpinA1 expression in each tissue was analyzed using C57BL/6 mice after being fed a high-fat diet for 4 months from the age of 5 weeks. did.
  • the results of analyzing SerpinA1 mRNA expression by qPCR are shown in FIG. There were no significant differences in subcutaneous fat, visceral fat, and brown fat between the normal diet group and the high-fat diet group, but in the liver, SerpinA1 expression was significantly decreased in the high-fat diet group. I understand.
  • the results of Western blot analysis confirmed that protein expression was also significantly reduced in the high-fat diet loaded group.
  • Example 4 Effect of SerpinA1 on brown adipocytes Brown adipose progenitor cells were loaded with SerpinA1 recombinant protein (purchased from Bio Vision (product number 7294-1000)) at various concentrations (50, 100 ⁇ g/mL) for 18 hours. , and staining with EdU for 2 hours to measure the ratio of EdU to DAPI. The results are shown in Figure 7A. SerpinA1 was confirmed to have an effect of inducing proliferation of brown preadipocytes.
  • SerpinA1 recombinant protein was loaded for 12 hours (200 ⁇ g/mL) or 24 hours (300 ⁇ g/mL) into mature brown adipocytes in which brown preadipocytes were induced to differentiate, and UCP1 mRNA and protein expression was confirmed. However, there was a significant increase.
  • the results are shown in Figure 7B.
  • mature brown adipocytes were loaded with SerpinA1 for 16 hours (300 ⁇ g/mL), and in the respiratory chain complex (electron transfer assay), an inhibitor (oligo) of the electron transport chain and oxidative phosphorylation coupling (coupling assay) was used.
  • Oxygen consumption rate (OCR) was measured while adding mycin, FCCR, rotenone, and antimycin A), and the effect on mitochondrial activity was investigated. It turned out to be effective.
  • the results are shown in Figure 7C.
  • Example 5 Effect of SerpinA1 on white adipocytes
  • White preadipocytes were loaded with SerpinA1 recombinant protein at various concentrations (100, 200 ⁇ g/mL) for 18 hours, and stained with EdU for 2 hours to determine the ratio of EdU to DAPI. It was measured. The results are shown in Figure 8A.
  • SerpinA1 was confirmed to have an effect of inducing proliferation of white preadipocytes.
  • SerpinA1 recombinant protein was loaded for 16 hours (200,500 ⁇ g/mL) or 36 hours (500 ⁇ g/mL) into mature white adipocytes that had been induced to differentiate from white preadipocytes, and UCP1 mRNA and protein expression was inhibited.
  • Example 6 Examination of SerpinA1 overexpression transgenic mice This is a vector in which a liver-specific albumin promoter is integrated after adding the 3xFlag gene to human SerpinA1 using p3X Flag-CMV-14 Expression Vector (Sigma).
  • a liver-specific SerpinA1 overexpressing Tg mouse (SerA1Tg mouse) was created using a transgene created by inserting it into pLive vector (Minus Bio).
  • pLive vector Minus Bio
  • the SerpinA1Tg mouse was dissected and the tissue was analyzed. There was no significant difference in liver tissue amount per body weight between WT and Tg mice. However, regarding the subcutaneous fat of SerpinA1Tg mice, the amount of tissue per body weight was significantly reduced compared to WT. Furthermore, when subcutaneous adipose tissue was stained with HE and observed, it was confirmed that fat droplets were smaller in Tg mice than in WT mice. Furthermore, regarding intraperitoneal fat, although no significant difference in weight was observed, HE staining showed a tendency for the fat droplets in Tg mice to be smaller compared to WT mice.
  • FIG. A is the fasting blood sugar level
  • B is the result of the glucose tolerance test (GTT)
  • C is the result of the insulin tolerance test (ITT).
  • GTT glucose tolerance test
  • ITT insulin tolerance test
  • Example 7 Identification of SerpinA1 receptor SerpinA1 with a FLAG tag (3xFLAG) was introduced into brown preadipocytes using an adenovirus vector.
  • an adenovirus vector carrying only FLAG (3xFLAG) was introduced into cells.
  • Brown preadipocytes overexpressing FLAG-tagged SerpinA1 were prepared, treated with DTSSP, a chemical cross-linker, and FLAG-specific immunoprecipitation was performed, followed by proteomic analysis by mass spectrometry.
  • EphB2 receptor was identified as a candidate molecule for SerpinA1 complex formation.
  • Western blot analysis of the immunoprecipitated sample confirmed that SerpinA1 and EphB2 receptor were co-precipitated. From this, the EphB2 receptor was identified as a molecule that forms a complex with SerpinA1 and functions as a receptor.
  • EphB2 receptor which is a single-transmembrane receptor tyrosine kinase, transmits a signal into cells by binding to a ligand, ephrin.
  • a ligand ephrin
  • tyrosine located near the transmembrane region is phosphorylated upon binding of a ligand. Therefore, the influence of SeprinA1 on the expression and phosphorylation of EphB2 was confirmed in vitro and in vivo as follows.
  • Example 9 Study on EphB2 receptor KO mice
  • the EphB2 receptor was knocked out using CRISPR-Cas9 technology ( EphB2 receptor KO) brown adipose progenitor cell line was established.
  • the expression of EphB2 receptor protein in the established cells was measured by Western blot analysis, and it was confirmed that the EphB2 receptor gene was knocked out.
  • Mitochondrial activity was analyzed using the EphB2 receptor KO brown adipose progenitor cell line using OCR as an indicator. As shown in FIG.
  • Example 11 Analysis of Serum SerpinA1 Concentration in Patients with Type 2 Diabetes and Obesity
  • serum SerpinA1 was analyzed in metabolic syndrome patients with type 2 diabetes and obesity who were visiting the outpatient clinic. The concentration was verified. The results are shown in FIG. SerpinA1 values in serum were low in patients with poor diabetes (high HbA1c values), and an inverse correlation between HbA1c values and SerpinA1 was confirmed.
  • the body mass index (BMI) and serum SerpinA1 concentration of diabetic patients were analyzed. As a result, it was confirmed that BMI and SerpinA1 concentration showed an inverse correlation.
  • Example 12 Analysis by loading SerA1KO mice with a high-fat diet SerpinA1 knockout (SerA1KO) mice were fed a high-fat diet for 3 months from the age of 5 weeks, and analyzed as a pathological model of obesity and diabetes. The results are shown in FIG. 22. A significant weight increase was observed in SerA1KO mice compared to WT. Furthermore, in SerA1KO mice fed a high-fat diet, an increase in the weight of white fat such as subcutaneous fat (iWAT) and visceral fat (eWAT) was also observed.
  • iWAT subcutaneous fat
  • eWAT visceral fat
  • the present invention provides a new adipocyte activator.
  • the adipocyte activating agent of the present invention is useful as a pharmaceutical composition for preventing and/or treating obesity-related diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Genetics & Genomics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Urology & Nephrology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)

Abstract

The purpose of the present invention is to provide: a novel adipocyte activator; and a use thereof. The present invention provides an adipocyte activator containing SerpinA1, a SerpinA1 expression promoter, or a SerpinA1 agonist, wherein the adipocyte is selected from among a brown preadipocyte, a brown adipocyte, and a beige adipocyte. An adipose tissue activator according to the present invention has an action that enhances a heat production action in adipose tissue, and can be used as a pharmaceutical composition for preventing and/or treating obesity and/or obesity-related diseases.

Description

脂肪細胞活性化剤fat cell activator
 本発明は脂肪細胞の活性化剤およびその用途に関する。 The present invention relates to an adipocyte activator and its uses.
 肥満および併発するメタボリックシンドロームや2型糖尿病は、現代社会において大きな問題となっている。これらは、心血管疾患、腎疾患や悪性腫瘍のリスクを高めることから、健康寿命の延伸を目指す上でも大きな障害と言われている。 Obesity and its accompanying metabolic syndrome and type 2 diabetes have become major problems in modern society. These are said to be major obstacles to extending healthy life expectancy, as they increase the risk of cardiovascular disease, kidney disease, and malignant tumors.
 哺乳動物の脂肪組織は、その機能と組織学的特性により、白色脂肪組織と褐色脂肪組織の2つに大きく分類される。現在では、脂肪細胞は、白色脂肪組織に存在する白色脂肪細胞と褐色脂肪組織に存在する褐色脂肪細胞に加え、白色脂肪組織内に散在的に誘導されるベージュ脂肪細胞とを合わせて、3種類の脂肪細胞に分類される。これらの3種の脂肪細胞は、細胞内に中性脂肪を有している点では同じであるが、その局在部位や機能は大きく異なる。 Mammalian adipose tissue is broadly classified into two types, white adipose tissue and brown adipose tissue, depending on its function and histological characteristics. At present, there are three types of adipocytes: white adipocytes present in white adipose tissue, brown adipocytes present in brown adipose tissue, and beige adipocytes that are scatteredly induced within white adipose tissue. classified as adipocytes. These three types of adipocytes are the same in that they contain neutral fat within their cells, but their localized sites and functions are significantly different.
 白色脂肪細胞は、皮下組織、内臓組織、腹腔内など様々な部位に存在し、体内の余分なエネルギーを脂肪として蓄積し、飢餓時など栄養の必要時に血液中に遊離脂肪酸として放出する。一方、褐色脂肪細胞は、ヒトの若年時では、肩甲骨間に豊富に存在し、脂肪を燃焼し熱を産生する働きを担っているが、成長するにつれて減少し、成人では、頸部、鎖骨上窩、脊椎周辺、心臓周辺に存在している。褐色脂肪細胞は新生児や冬眠動物に豊富に存在し体温維持に重要であるとされている。このように褐色脂肪細胞の生理的役割は白色脂肪細胞と全く逆で、交感神経の刺激等により、エネルギーを熱として消費、散逸する。褐色脂肪細胞は、多房性の脂肪滴や豊富なミトコンドリアを有することを特徴とし、ミトコンドリアに存在するUCP1(脱共役蛋白質1)がエネルギーを熱として散逸させる機能を担っている。 White fat cells exist in various areas such as the subcutaneous tissue, visceral tissue, and intraperitoneal cavity, and store excess energy in the body as fat, and release it into the blood as free fatty acids when nutrition is needed, such as during times of starvation. On the other hand, when humans are young, brown fat cells exist abundantly between the shoulder blades and play a role in burning fat and producing heat, but as they grow, they decrease, and in adults, brown fat cells are present in abundance between the shoulder blades and play a role in burning fat and producing heat. It is present in the suprafossa, around the spine, and around the heart. Brown fat cells are abundant in newborns and hibernating animals and are thought to be important for maintaining body temperature. In this way, the physiological role of brown fat cells is completely opposite to that of white fat cells, and they consume and dissipate energy as heat when stimulated by sympathetic nerves. Brown adipocytes are characterized by having multilocular lipid droplets and abundant mitochondria, and UCP1 (uncoupling protein 1) present in the mitochondria plays a role in dissipating energy as heat.
 ベージュ脂肪細胞は、白色脂肪組織内、特に皮下脂肪組織内に散在的に存在する、UCP1陽性の脂肪細胞である。褐色脂肪細胞とベージュ脂肪細胞は、多胞性でミトコンドリアを多く含むという形態学的特徴は類似しており、何れも熱産生脂肪細胞という機能を有するが、発生起源や局在部位が異なる。褐色脂肪細胞は、骨格筋と共通するMyogenic factor 5(Myf5)を発現する筋前駆細胞に由来するのに対し、ベージュ脂肪細胞は白色脂肪細胞同様、Myf5陰性の脂肪前駆細胞に由来する。しかしながら、現時点では、ベージュ脂肪細胞が、脂肪前駆細胞から形成されるのか、あるいは成熟した白色脂肪細胞から分化転換(transdifferentiation)してできるのか、あるいはその両者によるのかはまだ決定されていない。このように、ベージュ脂肪細胞は、白色脂肪細胞に褐色脂肪細胞類似の特徴も合わせ持つとされる。 Beige adipocytes are UCP1-positive adipocytes that exist scattered within white adipose tissue, especially subcutaneous adipose tissue. Brown adipocytes and beige adipocytes have similar morphological characteristics of being multivesicular and containing many mitochondria, and both have the function of thermogenic adipocytes, but their origins and localization are different. Brown adipocytes are derived from muscle progenitor cells that express Myogenic factor 5 (Myf5), which is common to skeletal muscle, whereas beige adipocytes, like white adipocytes, are derived from Myf5-negative preadipocytes. However, at present, it has not yet been determined whether beige adipocytes are formed from preadipocytes, through transdifferentiation from mature white adipocytes, or both. In this way, beige adipocytes are said to have characteristics similar to white adipocytes and brown adipocytes.
 褐色脂肪組織は若い時期にのみ存在し、年齢を重ねるにつれて退化すると考えられていたが、近年、ヒト成人においても褐色脂肪細胞やベージュ脂肪細胞の働きが注目され、その活性は肥満やインスリン抵抗性に対して負に相関することが明らかになっている。従って、脂肪細胞の活性化(褐色化)は多くの生活習慣病や肥満症に対して予防や治療的な効果をもつことが期待され、注目されている(非特許文献1、非特許文献2、非特許文献3、特許文献1)。 Brown adipose tissue was thought to exist only in youth and degenerate with age, but in recent years, the function of brown adipose tissue and beige adipose tissue has attracted attention even in adult humans, and their activity has been linked to obesity and insulin resistance. It has been shown that there is a negative correlation with Therefore, activation (browning) of fat cells is expected to have preventive and therapeutic effects on many lifestyle-related diseases and obesity, and is attracting attention (Non-Patent Document 1, Non-Patent Document 2). , Non-Patent Document 3, Patent Document 1).
 α1-アンチトリプシンは、Serpinスーパーファミリーに属し、タンパク質構造からプロテアーゼインヒビターとしての機能が明らかにされている。ヒトでは、SERPINA1遺伝子によってコードされている。これまで知られているα1-アンチトリプシンの血中の酵素活性阻害因子としての働きは、好中球エラスターゼから周辺組織を保護すると考えられている。血中のα1-アンチトリプシンの量が不十分、または機能的欠陥のあるSERPNA1が存在している場合(α1-アンチトリプシン欠乏症)、好中球エラスターゼはエラスチンを過剰に分解し、その結果、肺の弾性が低下して成人では慢性閉塞性肺疾患(COPD)の呼吸器合併症が起こると考えられている。このようなタンパク質分解阻害が、実際どのような生理活性を有するのか、その標的臓器はどのような臓器が対象となるのかなど多くは未知のまま残されている。 α1-antitrypsin belongs to the Serpin superfamily, and its function as a protease inhibitor has been revealed from the protein structure. In humans, it is encoded by the SERPINA1 gene. The previously known function of α1-antitrypsin as an inhibitor of enzyme activity in the blood is thought to protect surrounding tissues from neutrophil elastase. When there is an insufficient amount of α1-antitrypsin in the blood or a functionally defective SERPNA1 (α1-antitrypsin deficiency), neutrophil elastase degrades elastin excessively, resulting in lung It is thought that this decrease in elasticity may cause respiratory complications of chronic obstructive pulmonary disease (COPD) in adults. Many things remain unknown, such as what kind of physiological activity this kind of protein degradation inhibition actually has and what kind of organs it targets.
WO2022/045074WO2022/045074
 本発明の目的は、新たな脂肪細胞の活性化剤およびその用途を提供することである。 An object of the present invention is to provide a new adipocyte activator and its uses.
 本発明者は、成体に成長した後で、臓器特異的インスリン受容体/IGF-1受容体(IR/IGF1R)の欠損を誘導できるIR/IGF1R-inducibleダブルノックアウトマウスを樹立し、急激な脂肪組織の消失が起こることを見出した。このマウスで、脂肪組織のインスリン抵抗性がメタボリックシンドロームの第一次的原因となることを確認するとともに、このような重篤な病態であっても、褐色脂肪組織は機能を回復することができることを見出した。そこで、IR/IGF1R-inducibleダブルノックアウトマウスを用いた血清のプロテオミックス解析から、1,469種類の血清タンパク質を抽出し、褐色脂肪細胞の増殖および活性化を誘導する因子を鋭意研究した結果、肝臓由来の生理活性因子であるSerpinA1(セルピンA1)が、脂肪細胞(褐色脂肪細胞および/またはベージュ脂肪細胞)の活性化に関連する分子であることを見出し、本発明を完成した。SerpinA1は、α1-アンチトリプシンとしても知られている。よって、本明細書においては、SerpinA1とα1-アンチトリプシンは、同じものを意味する用語として用いられ、相互に置換可能な用語を意味する。 The present inventor established IR/IGF1R-inducible double knockout mice that can induce organ-specific insulin receptor/IGF-1 receptor (IR/IGF1R) deficiency after growing into adults, and rapidly developed adipose tissue. It was found that the disappearance of . In these mice, we confirmed that insulin resistance in adipose tissue is the primary cause of metabolic syndrome, and also demonstrated that brown adipose tissue can recover its function even in such a severe disease state. I found out. Therefore, we extracted 1,469 types of serum proteins from serum proteomics analysis using IR/IGF1R-inducible double knockout mice and conducted intensive research on factors that induce the proliferation and activation of brown fat cells. The present invention was completed based on the discovery that SerpinA1, a physiologically active factor derived from SerpinA1, is a molecule related to the activation of adipocytes (brown adipocytes and/or beige adipocytes). SerpinA1 is also known as α1-antitrypsin. Therefore, in this specification, SerpinA1 and α1-antitrypsin are used to mean the same thing, and mean terms that can be replaced with each other.
 本発明は以下のものを含む。
[1]SerpinA1および/またはSerpinA1発現促進剤を含有する脂肪細胞の活性化剤であって、前記脂肪細胞は、褐色脂肪前駆細胞、褐色脂肪細胞、およびベージュ脂肪細胞から選ばれる脂肪細胞である脂肪細胞の活性化剤。
[2]UCP1(脱共役蛋白質1)発現促進作用を有する上記[1]に記載の脂肪細胞の活性化剤。
[3]前記脂肪細胞は褐色脂肪前駆細胞であり、褐色脂肪前駆細胞の増殖促進作用を有する上記[1]または[2]に記載の脂肪細胞の活性化剤。
[4]前記脂肪細胞はベージュ脂肪細胞であり、白色脂肪細胞のベージュ化(白色脂肪細胞のベージュ脂肪細胞への分化転換)促進作用を有する上記[1]または[2]に記載の脂肪細胞の活性化剤。
[5]前記SerpinA1は、哺乳動物の血漿(好ましくはヒトの血漿)から精製されたSerpinA1(α1-アンチトリプシン)である上記[1]に記載の脂肪細胞の活性化剤。
[6]前記SerpinA1発現促進剤は、SerpinA1遺伝子の発現を促進する物質(例えば、SerpinA1遺伝子の転写開始を促進する物質、SerpinA1遺伝子のmRNAの分解を阻害する物質、該mRNAからSerpinA1タンパク質への転写を促進する物質)またはSerpinA1核酸構築物である上記[1]に記載の脂肪細胞の活性化剤。
[7]SerpinA1のアゴニストを含有する脂肪細胞の活性化剤であって、前記脂肪細胞は、褐色脂肪前駆細胞、褐色脂肪細胞、およびベージュ脂肪細胞から選ばれる脂肪細胞である脂肪細胞の活性化剤。
[8]前記SerpinA1のアゴニストは、EphB2レセプター(Ephrin type-B receptor 2)に結合し、かつ、(1)EphB2レセプターの発現および/またはリン酸化を増強する活性を有する、または(2)褐色脂肪細胞においてUCP1(脱共役蛋白質1)の発現を促進する活性を有する、のいずれかの活性を有する物質である、上記[7]に記載の脂肪細胞の活性化剤。
[9]前記SerpinA1のアゴニストは、低分子物質、高分子物質、核酸分子、タンパク質およびペプチドからなる群から選択される、上記[7]または[8]に記載の脂肪細胞の活性化剤。
[10]脂肪組織での熱産生作用を亢進させる作用を有する上記[1]~[9]のいずれか一つに記載の脂肪細胞の活性化剤。
[11]上記[1]~[10]のいずれか一つに記載の脂肪細胞の活性化剤を含む、肥満および/または肥満関連疾患を予防および/または治療するための医薬組成物。
[12]前記肥満関連疾患は、糖尿病、非アルコール性肝障害、高血圧、脂質異常症、心臓疾患(心筋梗塞、狭心症など)、脳血管障害、脂肪肝、肥満関連腎臓病、および高尿酸血症からなる群より選ばれる疾患である上記[11]に記載の医薬組成物。
The present invention includes the following.
[1] An activator for adipocytes containing SerpinA1 and/or a SerpinA1 expression promoter, wherein the adipocytes are adipocytes selected from brown adipocytes, brown adipocytes, and beige adipocytes. Cell activator.
[2] The adipocyte activator according to [1] above, which has an effect of promoting UCP1 (uncoupling protein 1) expression.
[3] The adipocyte is a brown preadipocyte, and the adipocyte activator according to [1] or [2] above has an effect of promoting proliferation of the brown preadipocyte.
[4] The fat cells are beige fat cells, and the fat cells according to [1] or [2] above have an effect of promoting beigeization of white fat cells (transdifferentiation of white fat cells into beige fat cells). Activator.
[5] The adipocyte activator according to [1] above, wherein the SerpinA1 is SerpinA1 (α1-antitrypsin) purified from mammalian plasma (preferably human plasma).
[6] The SerpinA1 expression promoter is a substance that promotes the expression of the SerpinA1 gene (for example, a substance that promotes transcription initiation of the SerpinA1 gene, a substance that inhibits degradation of SerpinA1 gene mRNA, transcription from the mRNA to SerpinA1 protein) The adipocyte activating agent according to [1] above, which is a SerpinA1 nucleic acid construct.
[7] An activator for adipocytes containing a SerpinA1 agonist, wherein the adipocytes are adipocytes selected from brown adipocytes, brown adipocytes, and beige adipocytes. .
[8] The SerpinA1 agonist binds to EphB2 receptor (Ephrin type-B receptor 2) and has the activity of (1) enhancing expression and/or phosphorylation of EphB2 receptor, or (2) brown fat The adipocyte activator according to [7] above, which is a substance having any of the following activities: promoting the expression of UCP1 (uncoupling protein 1) in cells.
[9] The adipocyte activator according to [7] or [8] above, wherein the SerpinA1 agonist is selected from the group consisting of low molecular weight substances, high molecular weight substances, nucleic acid molecules, proteins, and peptides.
[10] The adipocyte activator according to any one of [1] to [9] above, which has an effect of enhancing thermogenic action in adipose tissue.
[11] A pharmaceutical composition for preventing and/or treating obesity and/or obesity-related diseases, comprising the adipocyte activator according to any one of [1] to [10] above.
[12] The obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and high uric acid. The pharmaceutical composition according to the above [11], which is a disease selected from the group consisting of bloodemia.
[13]SerpinA1発現促進剤を含んでなる、肥満および/または肥満関連疾患を予防および/または治療するための医薬組成物であって、前記SerpinA1発現促進剤が、SerpinA1遺伝子の発現を促進する物質(例えば、SerpinA1遺伝子の転写開始を促進する物質、SerpinA1遺伝子のmRNAの分解を阻害する物質、該mRNAからSerpinA1タンパク質への転写を促進する物質)またはSerpinA1核酸構築物である医薬組成物。
[14]前記SerpinA1核酸構築物が、核酸ベクターに搭載された状態および/または脂質ナノ粒子中に包含された状態である上記[13]に記載の医薬組成物。
[15]前記肥満関連疾患は、糖尿病、非アルコール性肝障害、高血圧、脂質異常症、心臓疾患(心筋梗塞、狭心症など)、脳血管障害、脂肪肝、肥満関連腎臓病、高尿酸血症からなる群より選ばれる疾患である上記[13]または[14]に記載の医薬組成物。
[13] A pharmaceutical composition for preventing and/or treating obesity and/or obesity-related diseases, comprising a SerpinA1 expression promoter, wherein the SerpinA1 expression promoter is a substance that promotes SerpinA1 gene expression. (For example, a substance that promotes transcription initiation of the SerpinA1 gene, a substance that inhibits degradation of mRNA of the SerpinA1 gene, a substance that promotes transcription from the mRNA to SerpinA1 protein) or a pharmaceutical composition that is a SerpinA1 nucleic acid construct.
[14] The pharmaceutical composition according to the above [13], wherein the SerpinA1 nucleic acid construct is carried in a nucleic acid vector and/or included in a lipid nanoparticle.
[15] The obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and hyperuricemia. The pharmaceutical composition according to [13] or [14] above, which is a disease selected from the group consisting of:
[16]肥満または肥満関連疾患を予防または治療するための薬物をスクリーニングする方法であって、SerpinA1の作用を促進する能力を指標として用いて、該能力を有する候補物質を、肥満または肥満関連疾患を予防または治療するための薬剤として特定することを特徴とする、方法。
[17]前記指標は、SerpinA1遺伝子の発現を促進する能力(例えば、SerpinA1遺伝子のmRNAの産生を促進する能力、SerpinA1遺伝子の転写開始を促進する能力、SerpinA1遺伝子のmRNAの分解を阻害する能力、該mRNAからSerpinA1タンパク質への転写を促進する能力)である、上記[16]に記載の方法。
[18]前記指標は、EphB2レセプターに対するセレピンA1のアゴニストとしての作用である、上記[16]に記載の方法。
[19]前記SerpinA1のアゴニストとしての作用は、EphB2レセプターに結合し、かつ、(1)EphB2レセプターの発現および/またはリン酸化を増強する活性を有する、または(2)褐色脂肪細胞においてUCP1(脱共役蛋白質1)の発現を促進する活性を有する、のいずれかの活性を有することである、上記[18]に記載の方法。
[20]前記候補物質が、低分子物質、高分子物質、核酸分子、タンパク質およびペプチドからなる群から選択される、上記[16]~[19]にいずれか一つに記載の方法。
[21]スクリーニングされる薬剤が、脂肪分解亢進による肥満の改善、インスリン抵抗性の改善、またはベージュ脂肪細胞化による耐肥満性の獲得のために薬物である、上記[16]~[20]のいずれか一つに記載の方法。
[22]スクリーニングされる薬剤が、肥満および/または肥満関連疾患を予防または治療するための薬物である、上記[16]~[21]のいずれか一つに記載の方法。
[23]前記肥満関連疾患は、糖尿病、非アルコール性肝障害、高血圧、脂質異常症、心臓疾患(心筋梗塞、狭心症など)、脳血管障害、脂肪肝、肥満関連腎臓病、高尿酸血症からなる群より選ばれる疾患である上記[22]に記載の方法。
[16] A method for screening drugs for preventing or treating obesity or obesity-related diseases, using the ability to promote the action of SerpinA1 as an indicator, and screening candidate substances having this ability to prevent or treat obesity or obesity-related diseases. A method, characterized in that it is identified as a drug for preventing or treating.
[17] The indicator has the ability to promote the expression of SerpinA1 gene (for example, the ability to promote the production of SerpinA1 gene mRNA, the ability to promote the transcription initiation of SerpinA1 gene, the ability to inhibit the degradation of SerpinA1 gene mRNA, the method according to [16] above.
[18] The method according to [16] above, wherein the indicator is the effect of serepin A1 as an agonist on EphB2 receptor.
[19] The SerpinA1 agonist action binds to the EphB2 receptor and (1) has the activity of enhancing the expression and/or phosphorylation of the EphB2 receptor, or (2) inhibits UCP1 (depletion) in brown adipocytes. The method according to [18] above, wherein the method has any of the following activities: promoting the expression of coupling protein 1).
[20] The method according to any one of [16] to [19] above, wherein the candidate substance is selected from the group consisting of a low molecular weight substance, a high molecular weight substance, a nucleic acid molecule, a protein, and a peptide.
[21] The above-mentioned [16] to [20], wherein the drug to be screened is a drug for improving obesity by enhancing lipolysis, improving insulin resistance, or acquiring obesity resistance by turning into beige adipocytes. Any one of the methods described.
[22] The method according to any one of [16] to [21] above, wherein the drug to be screened is a drug for preventing or treating obesity and/or obesity-related diseases.
[23] The obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and hyperuricemia. The method according to [22] above, wherein the disease is a disease selected from the group consisting of:
[24]肥満または肥満関連疾患を治療または予防するための方法であって、それを必要とする対象に、治療有効量のSerpinA1、SerpinA1のアゴニスト、SerpinA1発現促進剤からなる群より選ばれる物質を投与することを含む方法。
[25]前記SerpinA1は、哺乳動物の血漿(好ましくはヒトの血漿)から精製されたSerpinA1(α1-アンチトリプシン)である上記[24]に記載の方法。
[26]前記SerpinA1のアゴニストは、EphB2レセプター(Ephrin type-B receptor 2)に結合し、かつ、(1)EphB2レセプターの発現および/またはリン酸化を増強する活性を有する、または(2)褐色脂肪細胞においてUCP1(脱共役蛋白質1)の発現を促進する活性を有する、のいずれかの活性を有する物質である、上記[24]に記載の方法。
[27]前記SerpinA1発現促進剤が、SerpinA1遺伝子の発現を促進する物質(例えば、SerpinA1遺伝子の転写開始を促進する物質、SerpinA1遺伝子のmRNAの分解を阻害する物質、該mRNAからSerpinA1タンパク質への転写を促進する物質)またはSerpinA1核酸構築物である上記[24]に記載の方法。
[28]前記肥満関連疾患は、糖尿病、非アルコール性肝障害、高血圧、脂質異常症、心臓疾患(心筋梗塞、狭心症など)、脳血管障害、脂肪肝、肥満関連腎臓病、高尿酸血症からなる群より選ばれる疾患である上記[24]~[27]のいずれか一つに記載の方法。
[24] A method for treating or preventing obesity or obesity-related diseases, which comprises administering to a subject in need thereof a therapeutically effective amount of a substance selected from the group consisting of SerpinA1, a SerpinA1 agonist, and a SerpinA1 expression promoter. A method comprising administering.
[25] The method according to [24] above, wherein the SerpinA1 is SerpinA1 (α1-antitrypsin) purified from mammalian plasma (preferably human plasma).
[26] The SerpinA1 agonist binds to EphB2 receptor (Ephrin type-B receptor 2) and has the activity of (1) enhancing the expression and/or phosphorylation of EphB2 receptor, or (2) brown fat. The method according to [24] above, wherein the substance has any of the following activities: promoting the expression of UCP1 (uncoupling protein 1) in cells.
[27] The SerpinA1 expression promoter may be a substance that promotes SerpinA1 gene expression (for example, a substance that promotes transcription initiation of the SerpinA1 gene, a substance that inhibits degradation of SerpinA1 gene mRNA, transcription from the mRNA to SerpinA1 protein) The method according to [24] above, which is a SerpinA1 nucleic acid construct.
[28] The obesity-related diseases include diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease (myocardial infarction, angina pectoris, etc.), cerebrovascular disease, fatty liver, obesity-related kidney disease, and hyperuricemia. The method according to any one of [24] to [27] above, wherein the disease is a disease selected from the group consisting of:
 本発明によれば、褐色脂肪細胞やベージュ脂肪細胞を活性化し、細胞内脂肪の分解亢進による肥満の改善、またはベージュ脂肪細胞化による耐肥満性の獲得などの効果を得ることが可能となる。また、本発明によれば、肥満関連疾患に対する新規薬剤を提供することが可能となる。 According to the present invention, it is possible to activate brown adipocytes and beige adipocytes and obtain effects such as improving obesity by increasing intracellular fat decomposition or acquiring obesity resistance by turning into beige adipocytes. Furthermore, according to the present invention, it is possible to provide new drugs for obesity-related diseases.
図1にSerpinA1のアミノ酸配列を示す。Figure 1 shows the amino acid sequence of SerpinA1. 図2にSerpinA1の塩基配列を示す。Figure 2 shows the base sequence of SerpinA1. 図3左図(A)は、タモキシフェン誘導後の寒冷刺激の結果を、図3右図(B)は長期間経過後の寒冷刺激の結果を示す。マウスの頸部をサーモグラフィーカメラで撮像した結果である。コントロールはコントロールマウス、Ai-DKOはタモキシフェン投与によりIRおよびIGF1Rの欠損を誘導したマウス(IGF1R-/-IR-/-)をそれぞれ用いた寒冷刺激の結果である。色が濃い(赤い)部分が、温度が高いことを示す。The left panel (A) in FIG. 3 shows the results of cold stimulation after tamoxifen induction, and the right panel (B) in FIG. 3 shows the results of cold stimulation after a long period of time. This is the result of imaging the neck of a mouse using a thermography camera. Control is the result of cold stimulation using a control mouse, and Ai-DKO is a mouse in which IR and IGF1R deficiency has been induced by administration of tamoxifen (IGF1R −/− IR −/− ). Darker (red) areas indicate higher temperatures. マウスでの寒冷刺激による肝臓でのSerpinA1の発現の解析結果を示す。左図は、SerpinA1のmRNA発現を示している。右上図は、SerpinA1のタンパク質発現をウエスタンブロット解析により確認した結果である。右下図は、ウエスタンブロット解析結果をグラフにしたものである。鼠蹊部白色脂肪組織;iWAT、精巣上体白色脂肪組織;eWAT、頸部褐色脂肪組織;iBAT、肝臓:Liverである。データは平均値±SEMを表し、黒丸は個々の対象(マウス)を示す(特に断らない限り、以下の図面においても同様である)。*は、P<0.05、**は、P<0.01、***は、P<0.001、n.s.は有意差なし、を示す(特に断らない限り、以下の図面においても同様である)。The results of analysis of the expression of SerpinA1 in the liver due to cold stimulation in mice are shown. The left panel shows SerpinA1 mRNA expression. The upper right figure shows the results of confirming SerpinA1 protein expression by Western blot analysis. The lower right figure is a graph of the Western blot analysis results. Inguinal white adipose tissue; iWAT, epididymal white adipose tissue; eWAT, cervical brown adipose tissue; iBAT, liver: Liver. Data represent mean ± SEM, black circles indicate individual subjects (mice) (unless otherwise stated, the same applies in the following figures). *: P<0.05, **: P<0.01, ***: P<0.001, n. s. indicates that there is no significant difference (the same applies to the following drawings unless otherwise specified). マウスでの寒冷刺激による脂肪でのUCP1の発現の解析結果を示す。左図は、UCP1のmRNA発現を示している。右上図は、UCP1のタンパク質発現をウエスタンブロット解析により確認した結果である。右下図は、ウエスタンブロット解析結果をグラフにしたものである。The results of analysis of UCP1 expression in fat induced by cold stimulation in mice are shown. The left panel shows UCP1 mRNA expression. The upper right figure shows the results of confirming UCP1 protein expression by Western blot analysis. The lower right figure is a graph of the Western blot analysis results. マウス病態モデル(高脂肪食負荷モデル)でのSerpinA1発現を解析した結果である。CDは通常食群、HFDは高脂肪食負荷群である。左図は、SerpinA1のmRNA発現を示している。中央図は、肝臓でのSerpinA1のタンパク質発現をウエスタンブロット解析により確認した結果である。右図は、ウエスタンブロット解析結果をグラフにしたものである。iWAT、eWAT、iBATおよびLiverは上記と同じである。These are the results of analyzing SerpinA1 expression in a mouse pathological model (high-fat diet loading model). CD is a normal diet group, and HFD is a high-fat diet group. The left panel shows SerpinA1 mRNA expression. The center figure shows the results of Western blot analysis confirming protein expression of SerpinA1 in the liver. The figure on the right is a graph of the Western blot analysis results. iWAT, eWAT, iBAT and Liver are the same as above. SerpinA1タンパク質の褐色脂肪前駆細胞の増殖効果を確認した結果である。Aは、DAPIに対するEdUの割合を測定した結果を示す。Bは、UCP1のmRNA発現およびタンパク発現の測定結果である。Cは、酸素消費速度の測定結果である。These are the results of confirming the proliferation effect of SerpinA1 protein on brown preadipocytes. A shows the results of measuring the ratio of EdU to DAPI. B shows the measurement results of UCP1 mRNA expression and protein expression. C is the measurement result of oxygen consumption rate. SerpinA1タンパク質の白色脂肪細胞の増殖効果を確認した結果である。Aは、DAPIに対するEdUの割合を測定した結果を示す。Bは、UCP1のmRNA発現およびタンパク発現の測定結果である。Cは、酸素消費速度の測定結果である。These are the results of confirming the proliferation effect of SerpinA1 protein on white adipocytes. A shows the results of measuring the ratio of EdU to DAPI. B shows the measurement results of UCP1 mRNA expression and protein expression. C is the measurement result of oxygen consumption rate. 野生型マウスと肝臓特異的SerpinA1過剰発現Tgマウス(SerA1Tgマウス)を比較した結果である。左図は、随時血糖および空腹時血糖の測定結果である。右上図は、インスリン負荷試験(ITT)の結果、右下図は、ブドウ糖負荷試験(GTT)の結果である。These are the results of comparing wild-type mice and liver-specific SerpinA1 overexpressing Tg mice (SerA1Tg mice). The left figure shows the measurement results of random blood sugar and fasting blood sugar. The upper right figure shows the results of the insulin tolerance test (ITT), and the lower right figure shows the results of the glucose tolerance test (GTT). 野生型マウスとSerA1Tgマウスの褐色脂肪組織におけるmRNA発現を解析した結果である。AはqPCRの結果を、Bは免疫染色の結果である。These are the results of analyzing mRNA expression in brown adipose tissue of wild-type mice and SerA1Tg mice. A shows the results of qPCR, and B shows the results of immunostaining. 野生型マウスとSerA1Tgマウスの寒冷刺激に対する結果である。左図は直腸温度を、右図は頸部をサーモグラフィーカメラで撮像した結果である。These are the results of wild-type mice and SerA1Tg mice in response to cold stimulation. The figure on the left shows the rectal temperature, and the figure on the right shows the result of imaging the neck with a thermography camera. Aは、野生型マウスとSerA1Tgマウスの皮下白色組織におけるmRNA発現をqPCR解析した結果である。Bは、体重当たりの皮下脂肪量を測定した結果である。C左図は、組織をHE染色した結果である。C右図は、HE染色した画像より、脂肪滴の直径(Diameter)を測定した結果である。A is the result of qPCR analysis of mRNA expression in subcutaneous white tissues of wild-type mice and SerA1Tg mice. B is the result of measuring the amount of subcutaneous fat per body weight. The left panel C shows the results of HE staining the tissue. The right panel C shows the results of measuring the diameter of a lipid droplet from an HE-stained image. 野生型マウスとSerA1Tgマウスに高脂肪食負荷を行った結果である。Aは空腹時血糖の測定結果、Bはブドウ糖負荷試験(GTT)の結果、Cはインスリン負荷試験(ITT)の結果であるThese are the results of high-fat diet feeding to wild-type mice and SerA1Tg mice. A is the measurement result of fasting blood sugar, B is the result of glucose tolerance test (GTT), and C is the result of insulin tolerance test (ITT). Aは、CRISPR-Cas9の技術を用いてKOしたSerpinA1遺伝子の概略を示している。BおよびCは、それぞれ、野生型マウスとSerA1KOマウスにおける、ブドウ糖負荷試験(GTT)の結果およびインスリン負荷試験(ITT)の結果である。A shows an outline of the SerpinA1 gene KOed using CRISPR-Cas9 technology. B and C are the results of glucose tolerance test (GTT) and insulin tolerance test (ITT) in wild-type mice and SerA1KO mice, respectively. 野生型マウスとSerA1KOマウスを比較した結果である。Aは酸素摂取量の測定結果である。BおよびCは、それぞれ、寒冷刺激後の直腸温の測定結果および頸部をサーモグラフィーカメラで撮像した結果である。These are the results of comparing wild-type mice and SerA1KO mice. A is the measurement result of oxygen intake. B and C are the results of measuring rectal temperature after cold stimulation and imaging the neck with a thermography camera, respectively. 褐色脂肪前駆細胞を褐色脂肪細胞に分化誘導させた後、各濃度のSerpinA1を付加し、ウエスタンブロット解析を行った結果である。左図は、EphB2レセプターの発現を、右図はチロシンリン酸化EphB2レセプターの発現を示す。These are the results of Western blot analysis after inducing differentiation of brown adipocyte precursor cells into brown adipocytes, adding SerpinA1 at various concentrations. The left figure shows the expression of EphB2 receptor, and the right figure shows the expression of tyrosine-phosphorylated EphB2 receptor. 野生型マウスとSerpinA1Tgマウスから取り出した褐色脂肪組織を用いて、ウエスタンブロット解析を行った結果である。左図は、EphB2レセプターの発現を、右図はチロシンリン酸化EphB2レセプターの発現を示す。These are the results of Western blot analysis using brown adipose tissue taken from wild-type mice and SerpinA1Tg mice. The left figure shows the expression of EphB2 receptor, and the right figure shows the expression of tyrosine-phosphorylated EphB2 receptor. 野生型マウスとEphB2レセプターKOマウスからそれぞれ樹立した褐色脂肪前駆細胞株を用いて酸素消費速度を測定した結果である。These are the results of measuring oxygen consumption rates using brown preadipocyte cell lines established from wild-type mice and EphB2 receptor KO mice. 野生型マウスとEphB2レセプターKOマウスからそれぞれ樹立した褐色脂肪前駆細胞株を用いてUCP1の発現を測定した結果である。These are the results of measuring the expression of UCP1 using brown preadipocyte cell lines established from wild-type mice and EphB2 receptor KO mice. 左右の頸部の褐色脂肪組織に、生理食塩水(コントロール)またはヒトSerpinA1リコンビナントタンパクを投与した野生型マウスにおける、寒冷刺激に対する結果である。上図は直腸温度と肩甲骨間BAT温度を示している。下図は頸部をサーモグラフィーカメラで撮像した結果である。These are the results of cold stimulation in wild-type mice in which physiological saline (control) or human SerpinA1 recombinant protein was administered to the left and right cervical brown adipose tissue. The above figure shows rectal temperature and interscapular BAT temperature. The figure below shows the results of an image of the neck taken with a thermography camera. 2型糖尿病や肥満のあるメタボ患者における、血清中のSerpinA1濃度とHbA1cまたはBMIとの相関を示した図である。FIG. 2 is a diagram showing the correlation between serum SerpinA1 concentration and HbA1c or BMI in metabolic patients with type 2 diabetes and obesity. SerA1KOマウスへ高脂肪食負荷を与えた結果を示している。上図は体重推移を、下図は、皮下脂肪(iWAT)および内臓脂肪(eWAT)の重量を示している。WTは、コントロールの野生型マウスの結果である。This figure shows the results of feeding high-fat diet to SerA1KO mice. The upper figure shows the weight change, and the lower figure shows the weight of subcutaneous fat (iWAT) and visceral fat (eWAT). WT is the result of control wild type mice.
 以下、本発明を、例示的な実施態様を例として、本発明の実施において使用することができる好ましい方法および材料とともに説明するが、本発明は以下に記載の態様に限定されるものではない。なお、文中で特に断らない限り、本明細書で用いるすべての技術用語および科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。また、本明細書に記載されたものと同等または同様の任意の材料および方法は、本発明の実施において同様に使用することができる。また、本発明に関連して本明細書中で引用されるすべての刊行物および特許は、例えば、本発明で使用できる方法や材料その他を示すものとして、本明細書中に引用されそして本明細書の一部を構成するものである。 The present invention will now be described by way of example embodiments, along with preferred methods and materials that can be used in the practice of the invention, but the invention is not limited to the embodiments described below. It should be noted that, unless otherwise specified herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Also, any materials and methods equivalent or similar to those described herein can also be used in the practice of the invention. In addition, all publications and patents cited herein in connection with the present invention are incorporated herein by reference, e.g., as indicating methods, materials, etc. that can be used in the present invention. It forms part of the book.
 本明細書において、数値範囲を示す「A~B」の記載は、端点であるAおよびBを含む数値範囲を意味する。また、「AないしB」についても同様である。また本明細書において、「約」とは、±10%を許容する意味で用いる。 In this specification, the description "A to B" indicating a numerical range means a numerical range that includes the end points A and B. The same applies to "A to B". Furthermore, in this specification, "about" is used to mean a tolerance of ±10%.
(SerpinA1、SerpinA1の発現促進剤、SerpinA1のアゴニストを含有する脂肪細胞の活性化剤)
 本発明は一つの態様において、SerpinA1を含有する脂肪細胞の活性化剤である。SerpinA1は、Serpinスーパーファミリーに属するタンパク質であり、プロテアーゼインヒビターである。Serpinは複数のメンバーを持つA-I(9つ)に分類され、ヒトではこれまでに37種類が同定されており、分子によって構造や発現も違い、標的や機能も異なる。SerpinA1は52kDaのタンパク質で、α1-アンチトリプシン(α1-antitrypsin:A1AT)とも呼ばれる。SerpinA1遺伝子の塩基配列は、米国生物工学情報センター(NCBI)が提供するGenBankに、アクセッション番号(NM_00112770.1)で登録されている(複数のリビジョン(revision)が登録されている場合、最新のリビジョンを指すと理解される。)。SerpinA1のアミノ酸配列を配列番号1(418アミノ酸の天然A1AT、transcript variantが1~11まで報告されている)に、その塩基配列を配列番号2に示す。
(SerpinA1, SerpinA1 expression promoter, adipocyte activator containing SerpinA1 agonist)
In one embodiment, the present invention is an adipocyte activator containing SerpinA1. SerpinA1 is a protein that belongs to the Serpin superfamily and is a protease inhibitor. Serpins are classified into AI (9 types), which have multiple members, and 37 types have been identified in humans so far, and each molecule has different structures and expressions, as well as different targets and functions. SerpinA1 is a 52 kDa protein, also called α1-antitrypsin (A1AT). The SerpinA1 gene nucleotide sequence has been registered in GenBank provided by the National Center for Biotechnology Information (NCBI) with the accession number (NM_00112770.1) (if multiple revisions are registered, the latest (understood as referring to revision). The amino acid sequence of SerpinA1 is shown in SEQ ID NO: 1 (natural A1AT of 418 amino acids, transcript variants 1 to 11 have been reported), and its base sequence is shown in SEQ ID NO: 2.
 SerpinA1は血液中に存在し、タンパク質を切断する酵素エラスターゼ(elastase)から周囲の組織を守るとされている。好中球は炎症時にエラスターゼを分泌して結合組織を分解する。一方、炎症周辺に血液細胞が遊走されて、異物からの防御や分解した組織の修復をしている。SerpinA1は隣接する領域を保護し、主にこの好中球エラスターゼが身体中に広がらないようにしている。また、SerpinA1は、マウスではA1ATをコードする複数のパラログ(paralogs)が存在するとの報告があり、この遺伝子構造の複雑性のため、これまでノックアウトマウスを用いた詳細な解析が進んでいない。 SerpinA1 exists in the blood and is said to protect surrounding tissues from the protein-cleaving enzyme elastase. Neutrophils secrete elastase to degrade connective tissue during inflammation. On the other hand, blood cells migrate to the area surrounding the inflammation, protecting it from foreign substances and repairing degraded tissue. SerpinA1 protects adjacent areas and primarily prevents this neutrophil elastase from spreading throughout the body. Furthermore, SerpinA1 has been reported to have multiple paralogs encoding A1AT in mice, and due to the complexity of this gene structure, detailed analysis using knockout mice has not progressed to date.
 本明細書において、「脂肪細胞の活性化」とは、脂肪細胞である褐色脂肪前駆細胞、褐色脂肪細胞、またはベージュ脂肪細胞のいずれか一つ以上を活性化することを意味し、これに限定されないが、以下のいずれかの一つ以上の効果を生じる作用を意味する。(1)褐色脂肪前駆細胞、褐色脂肪細胞、またはベージュ脂肪細胞におけるUCP1の発現を促進する効果(ここでいう、UCP1の発現とは、UCP1遺伝子の発現および/またはUCP1タンパク質の発現を意味する)。(2)褐色脂肪前駆細胞の増殖を促進する効果。(3)白色脂肪細胞からベージュ脂肪細胞への分化転換を促進する効果。(4)褐色脂肪細胞またはベージュ脂肪細胞よる脂肪の燃焼を促進し熱を産生する効果。(5)褐色脂肪組織、またはベージュ細胞を含む白色脂肪組織における熱産生作用を亢進する効果。従って、本発明の活性化剤は、褐色脂肪細胞やベージュ脂肪細胞を活性化し、細胞内の脂肪を燃やし、低体温と肥満を予防する方向に機能する。本明細書においては、「褐色脂肪細胞の活性化」や「褐色脂肪細胞の活性化剤」なる用語は、褐色脂肪細胞の前駆細胞である褐色脂肪前駆細胞の活性化を含む意味で用い、脂肪細胞の活性化について記載している場合に、褐色脂肪細胞という語は、前後の文脈から明らかに一方のみを意味している場合を除き、褐色脂肪細胞および褐色脂肪前駆細胞の両方を含む意味に理解される。本明細書において、「脂肪細胞活性剤」なる用語は、「褐色脂肪細胞および/またはベージュ脂肪細胞活性化剤」なる語と互換的に用いる。この場合においても、褐色脂肪細胞は、褐色脂肪細胞および褐色脂肪前駆細胞を含む意味で理解される。 As used herein, "activation of adipocytes" means activating one or more of adipocytes such as brown adipocyte precursor cells, brown adipocytes, or beige adipocytes, and is limited thereto. However, it means an action that produces one or more of the following effects. (1) Effect of promoting UCP1 expression in brown adipose progenitor cells, brown adipocytes, or beige adipocytes (UCP1 expression here means UCP1 gene expression and/or UCP1 protein expression) . (2) Effect of promoting proliferation of brown adipose progenitor cells. (3) Effect of promoting transdifferentiation from white adipocytes to beige adipocytes. (4) Effect of promoting fat burning by brown fat cells or beige fat cells and producing heat. (5) Effect of enhancing thermogenic action in brown adipose tissue or white adipose tissue containing beige cells. Therefore, the activator of the present invention activates brown fat cells and beige fat cells, burns intracellular fat, and functions to prevent hypothermia and obesity. In this specification, the terms "activation of brown adipocytes" and "activators of brown adipocytes" are used to include the activation of brown adipocyte precursor cells, which are precursor cells of brown adipocytes; When describing cell activation, the term brown adipocytes is used to include both brown adipocytes and brown preadipocytes, unless the context clearly indicates that only one or the other is meant. be understood. As used herein, the term "adipocyte activator" is used interchangeably with the term "brown adipocyte and/or beige adipocyte activator." In this case as well, brown adipocytes are understood to include brown adipocytes and brown preadipocytes.
 本発明の脂肪細胞活性化剤に含まれるSerpinA1は、SerpinA1のアミノ酸配列を有し、上記(1)~(5)に記載のいずれか一つの作用を有するものであれば特に制限がなく、例えば、生体から単離したSerpinA1、遺伝子工学技術を用いて製造した組換え体SerpinA1のいずれであってもよい。生体から単離したSerpinA1は、これに限定されないが、例えば、プールした哺乳動物(好ましくはヒト)の血漿から単離したSerpinA1を挙げることができる。血漿からのSerpinA1を単離する方法は公知であり、当該公知の方法を適宜参照して本発明で用いるSerpinA1を製造することができる。例えば、WO2004/060528号に記載の方法を参照して行うことができる(この記載は、引用することにより本明細書の一部である)。血漿由来のA1ATは市販されているほか、α1-アンチトリプシン欠乏症に対する医薬品としても用いられており、それらを本願発明において用いることもできる。組換え体SerpinA1の製造は、公知の遺伝子工学的手法を用いて行うことができ、例えば、WO2010/127939号やWO2020/092448号に記載の方法を参照して行うことができる(これらの記載は、引用することにより本明細書の一部である)。 SerpinA1 contained in the adipocyte activator of the present invention is not particularly limited as long as it has the amino acid sequence of SerpinA1 and has any one of the effects described in (1) to (5) above, such as , SerpinA1 isolated from a living body, or recombinant SerpinA1 produced using genetic engineering technology. Examples of SerpinA1 isolated from a living body include, but are not limited to, SerpinA1 isolated from pooled mammalian (preferably human) plasma. Methods for isolating SerpinA1 from plasma are known, and SerpinA1 used in the present invention can be produced by appropriately referring to the known methods. For example, it can be carried out with reference to the method described in WO2004/060528 (this description is incorporated herein by reference). Plasma-derived A1AT is commercially available and is also used as a drug for α1-antitrypsin deficiency, and can also be used in the present invention. Recombinant SerpinA1 can be produced using known genetic engineering methods, for example, with reference to the methods described in WO2010/127939 and WO2020/092448 (these descriptions are , incorporated herein by reference).
 ここでSerpinA1のアミノ酸配列を有するとは、実質的にSerpinA1のアミノ酸配列を有していればよく、これに限定されないが、配列番号1に示されるSerpinA1のアミノ酸配列の90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、または98%以上を有していればよく、また、配列番号1に示されるSerpinA1のアミノ酸配列の一部に(例えば、1または複数、これに限定されないが、具体的には1つ、2つ、3つ、4つ、または5つのアミノ酸に)置換・欠失・付加があるアミノ酸配列も含み、またSerpinA1のセリンプロテアーゼ酵素活性抑制に関わる活性中心ループ(reactive center loop)のセリン残基を囲むアミノ酸における変異を含む脂肪細胞活性化剤を含む。 Here, having the amino acid sequence of SerpinA1 means having substantially the amino acid sequence of SerpinA1, and is not limited to this, but 90% or more, 91% or more of the amino acid sequence of SerpinA1 shown in SEQ ID NO: 1. , 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, or 98% or more, and of the amino acid sequence of SerpinA1 shown in SEQ ID NO: 1. Also includes amino acid sequences with partial substitutions, deletions, and additions (for example, one or more, but not limited to, specifically one, two, three, four, or five amino acids). , and an adipocyte activator containing a mutation in the amino acids surrounding the serine residues of the active center loop involved in suppressing the serine protease enzyme activity of SerpinA1.
 本発明は他の一つの態様において、本発明の脂肪細胞活性化剤は、褐色脂肪細胞やベージュ脂肪細胞においてUCP1(脱共役蛋白質1)の発現促進作用を有する。UCP1の発現を亢進させることにより褐色脂肪細胞やベージュ脂肪細胞を活性化することができる。ここで、UCP1の発現とは、UCP1の遺伝子の発現(つまり、mRNAの発現)およびタンパク質の発現のいずれも含む意味で用いられる。 In another embodiment of the present invention, the adipocyte activator of the present invention has an effect of promoting the expression of UCP1 (uncoupling protein 1) in brown adipocytes and beige adipocytes. By increasing the expression of UCP1, brown adipocytes and beige adipocytes can be activated. Here, expression of UCP1 is used to include both UCP1 gene expression (that is, mRNA expression) and protein expression.
 本発明は別の一つの態様において、本発明の脂肪細胞活性化剤は、褐色脂肪前駆細胞の増殖促進作用を有する。前駆細胞の増殖を亢進させることにより褐色脂肪細胞を活性化することができ、また褐色脂肪組織での熱産生作用を亢進することができる。 In another embodiment of the present invention, the adipocyte activator of the present invention has an effect of promoting proliferation of brown preadipocytes. By enhancing proliferation of progenitor cells, brown adipocytes can be activated, and thermogenic action in brown adipose tissue can be enhanced.
 本発明は別の一つの態様において、本発明の脂肪細胞活性化剤は、白色脂肪細胞のベージュ化、言い換えれば、白色脂肪細胞のベージュ脂肪細胞への分化転換を促進する作用を有する。ベージュ脂肪細胞への分化を亢進させることによりベージュ脂肪細胞を活性化することができ、またベージュ脂肪細胞を含む白色脂肪組織での熱産生作用を亢進することができる。 In another embodiment of the present invention, the adipocyte activating agent of the present invention has the effect of promoting beigeization of white adipocytes, in other words, the transdifferentiation of white adipocytes into beige adipocytes. Beige adipocytes can be activated by promoting differentiation into beige adipocytes, and thermogenic action in white adipose tissue including beige adipocytes can be enhanced.
 本発明は別の一つの態様において、本発明の脂肪細胞活性化剤は、脂肪組織での熱産生作用を亢進させる作用を有する。脂肪組織での熱産生作用の亢進は、上記したいずれか一つ以上の促進作用によっても達成できるが、その他、褐色脂肪細胞やベージュ細胞を活性化することによるUCP1非依存性の熱産生機構の亢進によっても行うことができる。このような熱産生機構としては、例えば、Ca2+サイクリングなどを挙げることができる。 In another embodiment of the present invention, the adipocyte activating agent of the present invention has an action of enhancing thermogenic action in adipose tissue. Enhancement of thermogenic action in adipose tissue can be achieved by promoting one or more of the above-mentioned actions, but in addition, UCP1-independent thermogenic mechanisms can be achieved by activating brown fat cells and beige cells. It can also be done by enhancement. Examples of such a thermogenic mechanism include Ca 2+ cycling.
 本発明は別の一つの態様において、本発明の脂肪細胞活性化剤は、SerpinA1の発現促進剤を含有する脂肪細胞の活性化剤である。本発明においてSerpinA1発現促進剤とは、細胞におけるSerpinA1の発現を促進する物質を意味する。例えば、これに限定されないが、細胞におけるSerpinA1の転写開始を促進する物質、SerpinA1遺伝子のmRNAの分解を阻害する物質、SerpinA1のmRNAからSerpinA1タンパク質への転写を促進する物質、または細胞内でSerpinA1の発現を促進する物質を挙げることができる。 In another embodiment of the present invention, the adipocyte activating agent of the present invention is an adipocyte activating agent containing an expression promoter of SerpinA1. In the present invention, a SerpinA1 expression promoter means a substance that promotes the expression of SerpinA1 in cells. For example, but not limited to, a substance that promotes transcription initiation of SerpinA1 in cells, a substance that inhibits degradation of SerpinA1 gene mRNA, a substance that promotes transcription from SerpinA1 mRNA to SerpinA1 protein, or a substance that promotes transcription of SerpinA1 in cells. Examples include substances that promote expression.
 前記細胞内でSerpinA1の発現を促進する物質としては、SerpinA1の遺伝子を含む核酸構築物を挙げることができる。当該核酸構築物を細胞内に導入し、細胞内において発現させることにより、細胞内でのSerpinA1の発現を亢進できる。前記核酸構築物は、好ましくは、核酸ベクターに搭載されている状態または脂質ナノ粒子中に包含された状態である。さらには、核酸ベクター(好ましくはウイルスベクター)に搭載された核酸構築物が脂質ナノ粒子中に包含されていてもよい。そのような状態で対象に投与されることにより、細胞内において効率良くSerpinA1遺伝子の発現を促進できる。 Examples of the substance that promotes the expression of SerpinA1 in the cells include a nucleic acid construct containing the SerpinA1 gene. By introducing the nucleic acid construct into cells and expressing it within the cells, the expression of SerpinA1 within the cells can be enhanced. The nucleic acid construct is preferably carried in a nucleic acid vector or encapsulated in a lipid nanoparticle. Furthermore, a nucleic acid construct carried by a nucleic acid vector (preferably a viral vector) may be included in the lipid nanoparticle. By administering to a subject in such a state, expression of the SerpinA1 gene can be efficiently promoted within cells.
 ウイルスベクターとしては、例えば、アデノ随伴ウイルス(AAV)ベクター、アデノウイルスベクター、レトロウイルスベクター、およびレンチウイルスベクターをあげることができる。AAVベクターとしては、AAV1、AAV2、AAV3、AAV3B、AAV4、AAV5、AAV6、AAV6.2、AAV7、AAVrh.64R1、AAVhu.37、AAVrh.8、AAVrh.32.33、AAV8、AAV9、AAV-DJ、AAV2/8、AAVrh10、AAVLK03、AV10、AAV11、AAV12、rh10、およびそれらのハイブリッドからなるベクターを挙げることができる。 Examples of viral vectors include adeno-associated virus (AAV) vectors, adenovirus vectors, retrovirus vectors, and lentivirus vectors. AAV vectors include AAV1, AAV2, AAV3, AAV3B, AAV4, AAV5, AAV6, AAV6.2, AAV7, AAVrh. 64R1, AAVhu. 37, AAVrh. 8, AAVrh. Mention may be made of vectors consisting of 32.33, AAV8, AAV9, AAV-DJ, AAV2/8, AAVrhlO, AAVLK03, AV10, AAV11, AAV12, rh10, and hybrids thereof.
 脂質ナノ粒子としては、核酸を内包でき、細胞内への核酸導入に用いることができる脂質ナノ粒子であれば制限なく本発明において用いることができる。このような脂質ナノ粒子は、公知であり多くの報告が成されており、本願発明において用いることができる。 As lipid nanoparticles, any lipid nanoparticles that can encapsulate nucleic acids and can be used for introducing nucleic acids into cells can be used in the present invention without any limitations. Such lipid nanoparticles are known and many reports have been made, and can be used in the present invention.
 前記核酸構築物は、SerpinA1の遺伝子に加え、例えば、複製起源、プロモーター、および抗生物質耐性をコードする遺伝子などの追加の配列を有していてもよい。核酸構築物は、裸の核酸として、非ウイルスベクター、プラスミドベクターなどの非ウイルスベクター送達系核酸に搭載された状態で、リポソーム、脂質ナノ粒子(LNP)もしくはポロキサマーなどの送達ビヒクルと複合体化した核酸として、またはウイルスベクター(例えば、アデノウイルス、AAV、ヘルペスウイルス、レトロウイルス、レンチウイルス)に搭載された状態で、さらには、上記のベクターに搭載された上で上記送達ビヒクルと複合体化した状態にて、対象に投与され得る。SerpinA1の遺伝子を含む核酸構築物の製造は、公知の遺伝子工学的手法を用いて行うことができる。SerpinA1の遺伝子を含む核酸構築物の製造は、例えば、WO2013/106589号、WO2016/110565号、WO2017/093804号、WO2020/082047号やWO2020/092448号に記載の方法を参照して行うことができる(これらの記載は、引用することにより本明細書の一部である)。 In addition to the SerpinA1 gene, the nucleic acid construct may have additional sequences, such as an origin of replication, a promoter, and a gene encoding antibiotic resistance. Nucleic acid constructs can be either as naked nucleic acids, loaded onto non-viral vector delivery systems such as non-viral vectors, plasmid vectors, or complexed with delivery vehicles such as liposomes, lipid nanoparticles (LNPs) or poloxamers. or in a viral vector (e.g., adenovirus, AAV, herpesvirus, retrovirus, lentivirus), or even in a vector as described above and complexed with the delivery vehicle as described above. may be administered to a subject at A nucleic acid construct containing the SerpinA1 gene can be produced using known genetic engineering techniques. The production of a nucleic acid construct containing the SerpinA1 gene can be performed, for example, with reference to the methods described in WO2013/106589, WO2016/110565, WO2017/093804, WO2020/082047, and WO2020/092448 ( (These descriptions are incorporated herein by reference).
 細胞内でのSerpinA1遺伝子の発現様式は特に制限されず、例えば、発現ベクター用いて細胞内で発現させても、または、セーフハーバー遺伝子座にSerpinA1遺伝子を標的挿入して発現させてもよい。細胞内への導入および発現方法は、公知であり、それらを用いて行うことができる。例えば、ヒトセーフハーバー遺伝子座にガイドRNAを用いてSerpinA1遺伝子を挿入して発現させる方法は、WO2017/093804号やWO2020/082047号に記載されている(これらの記載は、引用することにより本明細書の一部である)。 The expression mode of the SerpinA1 gene within the cell is not particularly limited, and for example, the SerpinA1 gene may be expressed within the cell using an expression vector, or the SerpinA1 gene may be expressed by targeted insertion into a safe harbor locus. Methods for introduction into cells and expression are known and can be carried out using these methods. For example, a method for inserting and expressing the SerpinA1 gene at the human safe harbor locus using a guide RNA is described in WO2017/093804 and WO2020/082047 (these descriptions are incorporated herein by reference). part of the book).
 本発明は別の一つの態様において、SerpinA1発現促進剤を含んでなる肥満および/または肥満関連疾患を治療するための医薬組成物である。SerpinA1発現促進剤としては、脂肪細胞活性化剤において記載したSerpinA1発現促進剤が医薬組成物についても用いることができる。 In another embodiment, the present invention is a pharmaceutical composition for treating obesity and/or obesity-related diseases, which comprises a SerpinA1 expression promoter. As the SerpinA1 expression promoter, the SerpinA1 expression promoter described in the adipocyte activator can also be used in the pharmaceutical composition.
 本発明は別の一つの態様において、本発明の脂肪細胞活性化剤は、SerpinA1のアゴニストを含有する脂肪細胞の活性化剤である。本発明者は、本発明の一つの側面として、SerpinA1がEphB2レセプターに結合することを見出している。このことは、SerpinA1は標的としてEphB2レセプターを制御することを示す。よって、本明細書において、SerpinA1のアゴニストとは、EphB2レセプターに結合し、かつ、(1)EphB2レセプターの発現および/またはリン酸化を増強する活性を有する、または(2)褐色脂肪細胞においてUCP1(脱共役蛋白質1)の発現を促進する活性を有する、のいずれかの活性を有する物質である。 In another embodiment of the present invention, the adipocyte activating agent of the present invention is an adipocyte activating agent containing a SerpinA1 agonist. The present inventors have discovered, as one aspect of the present invention, that SerpinA1 binds to EphB2 receptors. This indicates that SerpinA1 regulates EphB2 receptor as a target. Therefore, as used herein, an agonist of SerpinA1 is defined as one that binds to the EphB2 receptor and (1) has the activity of enhancing expression and/or phosphorylation of the EphB2 receptor, or (2) agonist of UCP1 ( A substance having any of the following activities: promoting the expression of uncoupling protein 1).
 EphB2レセプター(Ephrin type-B receptor 2)とは、EPHB2遺伝子にコードされる1回膜貫通型の受容体型チロシンキナーゼであり、エフリンBと呼ばれるリガンドと結合することが知られている。Ephレセプターは、そのアミノ酸配列およびリガンドとの親和性の違いにより、EphAとEphBの2つのサブクラスに分類されており、脊椎動物においては、EphBサブクラスは6種類同定されている(EphB1-6)。 EphB2 receptor (Ephrin type-B receptor 2) is a single-transmembrane receptor tyrosine kinase encoded by the EPHB2 gene, and is known to bind to a ligand called ephrin B. Eph receptors are classified into two subclasses, EphA and EphB, based on differences in their amino acid sequences and affinity with ligands, and six types of EphB subclasses have been identified in vertebrates (EphB1-6).
 本発明において、SerpinA1のアゴニストとは、EphB2レセプターに結合し、SerpinA1と同様の細胞内情報伝達系を作動させる物質と意味する。例えば、EphB2レセプターに結合し、以下の(1)~(3)のいずれか一つまたはそれ以上の活性を有する物質を意味する、(1)EphB2レセプターの発現を増強する活性を有する。ここで、EphB2レセプターの発現を増強するとは、EphB2レセプターのmRNAの発現を増強する、EphB2レセプターのmRNAの分解を抑制する、EphB2レセプターのタンパク質の発現を増強する、EphB2レセプターのタンパク質の分解を抑制するの何れであってもよく、結果として、アゴニストを用いない場合に比べてEphB2の発現を増強する活性を有する場合を意味する。(2)EphB2レセプターのリン酸化を増強する活性を有する。(3)褐色脂肪細胞においてUCP1(脱共役蛋白質1)の発現を促進する活性を有する。 In the present invention, an agonist of SerpinA1 means a substance that binds to EphB2 receptor and activates the same intracellular signal transduction system as SerpinA1. For example, it refers to a substance that binds to the EphB2 receptor and has any one or more of the following activities (1) to (3): (1) has the activity of enhancing the expression of the EphB2 receptor; Here, enhancing the expression of EphB2 receptor means enhancing the expression of EphB2 receptor mRNA, suppressing the degradation of EphB2 receptor mRNA, enhancing the expression of EphB2 receptor protein, and suppressing the degradation of EphB2 receptor protein. As a result, it means a case where the agonist has an activity of enhancing EphB2 expression compared to the case where no agonist is used. (2) It has the activity of enhancing the phosphorylation of EphB2 receptor. (3) It has the activity of promoting the expression of UCP1 (uncoupling protein 1) in brown fat cells.
 SerpinA1のアゴニスト活性の測定は、これに限定されないが、例えば、EphB2レセプターを発現する褐色脂肪細胞を用いて、公知の技術を用い、EphB2レセプターのmRNAやタンパク質の発現量を測定すること、EphB2レセプターのリン酸化(好ましくは、チロシンリン酸化)の量を測定すること、または褐色細胞におけるUCP1の発現を測定することにより行うことができる。 Measurement of the agonist activity of SerpinA1 is not limited to this, but includes, for example, measuring the expression levels of EphB2 receptor mRNA and protein using brown adipocytes expressing EphB2 receptor using known techniques; This can be carried out by measuring the amount of phosphorylation (preferably tyrosine phosphorylation) or by measuring the expression of UCP1 in brown cells.
 本発明において、SerpinA1のアゴニストである物質は、特に制限がなく、低分子物質、高分子物質、核酸分子、タンパク質、またはペプチドのいずれであってもよい。 In the present invention, the substance that is an agonist of SerpinA1 is not particularly limited, and may be any of a low molecular weight substance, a high molecular weight substance, a nucleic acid molecule, a protein, or a peptide.
 本発明は別の一つの態様において、本発明の脂肪細胞活性化剤を含む医薬組成物である。本発明の脂肪細胞活性化剤または医薬組成物は、肥満または肥満関連疾患を予防または治療するために用いることができる。一般的に、体内に脂肪組織が過多である状態を「肥満(obesity)」と称する。用語「肥満」は、体脂肪が過度な状態を言い、体質量指数(BMI:Body Mass Index)が、世界保健機構(WHO)によれば、30以上の場合を言う。一般的には、体重が正常値より多い場合を意味するが、体重が多くないにしても、身体構成成分において、体脂肪の比率が高い場合、肥満と診断し、成人でも小児でもいずれにおいても発病する疾患を言う。「肥満関連疾患」という用語は、肥満に関連し、肥満により引き起こされ、または肥満に起因する障害を包含する。肥満関連疾患の例として、過食および大食症、糖尿病、高血圧、血漿インスリン濃度上昇およびインスリン抵抗性、脂質異常症、高脂血症、乳房、前立腺、子宮内膜および結腸ガン、心臓疾患、心血管障害、心拍リズム異常および不整脈、心筋梗塞、うっ血性心不全、冠動脈性心疾患、狭心症、脳梗塞、脳血栓症および一過性脳虚血発作、ならびに変形性関節症が挙げられる。他の例として、総除脂肪量の百分率としての、代謝活性低下または安静時エネルギー消費量の減少を示す病態が挙げられる。肥満関連疾患のさらなる例として、X症候群としても公知であるメタボリックシンドローム、インスリン抵抗性症候群、II型糖尿病、空腹時血糖異常、耐糖能異常、脈管構造の全身性炎症などの炎症、アテローム性動脈硬化症、高コレステロール血症、高尿酸血症、ならびに左室肥大などの肥満の二次的結果が挙げられる。肥満関連疾患としてはさらに、肥満およびメタボリックシンドロームに関連する硬変症の増大原因である、非アルコール性脂肪肝疾患(NAFLD)などの肥満に関連する肝臓異常も挙げられる。NAFLDは単純脂肪症として存在するか、または炎症および脂肪性肝炎(NASH)に進展していく可能性がある。「脂質異常症」は、冠動脈性心疾患(CHD)の主要な危険因子であり、多くの場合、肥満に関連する。従って、本発明の脂肪細胞活性化剤および医薬組成物を利用する場合、肥満だけではなく、前記肥満関連疾患の予防または治療も同時になされる、そのような肥満関連疾患の治療対象は、体重を減らそうとする欲求がある対象も含まれる。 Another embodiment of the present invention is a pharmaceutical composition containing the adipocyte activating agent of the present invention. The adipocyte activator or pharmaceutical composition of the present invention can be used to prevent or treat obesity or obesity-related diseases. Generally, a state in which there is too much adipose tissue in the body is referred to as "obesity". The term "obesity" refers to a state of excessive body fat, and refers to a case where the body mass index (BMI) is 30 or more, according to the World Health Organization (WHO). Generally, it means that the body weight is higher than the normal value, but even if the body weight is not high, if the body composition has a high proportion of body fat, it is diagnosed as obesity, and it can be diagnosed as obesity in both adults and children. Refers to the disease that occurs. The term "obesity-related disease" encompasses disorders associated with, caused by, or resulting from obesity. Examples of obesity-related diseases include overeating and bulimia, diabetes, hypertension, elevated plasma insulin levels and insulin resistance, dyslipidemia, hyperlipidemia, breast, prostate, endometrial and colon cancers, heart disease, and heart disease. These include vascular disorders, abnormal heart rhythms and arrhythmias, myocardial infarction, congestive heart failure, coronary heart disease, angina, cerebral infarction, cerebral thrombosis and transient ischemic attacks, and osteoarthritis. Other examples include pathological conditions that exhibit decreased metabolic activity or decreased resting energy expenditure as a percentage of total lean mass. Further examples of obesity-related diseases include metabolic syndrome, also known as syndrome Secondary consequences of obesity include sclerosis, hypercholesterolemia, hyperuricemia, and left ventricular hypertrophy. Obesity-related diseases also include obesity-related liver abnormalities such as non-alcoholic fatty liver disease (NAFLD), which is responsible for the increased cirrhosis associated with obesity and metabolic syndrome. NAFLD can exist as simple steatosis or progress to inflammation and steatohepatitis (NASH). "Dyslipidemia" is a major risk factor for coronary heart disease (CHD) and is often associated with obesity. Therefore, when using the adipocyte activator and pharmaceutical composition of the present invention, not only obesity but also the aforementioned obesity-related diseases can be prevented or treated at the same time. It also includes objects that there is a desire to reduce.
 本発明の医薬組成物の投与形態としては、注射剤、経口剤(錠剤、顆粒剤、散剤、カプセル剤)、軟膏剤、クリーム剤、貼付剤、坐剤等が挙げられる。このうち、注射剤、経口剤が好ましい。 Examples of dosage forms for the pharmaceutical composition of the present invention include injections, oral preparations (tablets, granules, powders, capsules), ointments, creams, patches, suppositories, and the like. Among these, injections and oral preparations are preferred.
 本発明の医薬組成物は、医薬組成物の形態とするために用いられる薬学的に許容される担体と混合することができる。担体としては、例えば、溶解補助剤、賦形剤、結合剤、滑沢剤、崩壊剤、着色剤、矯味剤、防腐剤、界面活性剤などが挙げられる。経口剤とする場合には、賦形剤、結合剤、滑沢剤、崩壊剤、着色剤、矯味剤などが用いられ、常法によって製造できる。注射剤とする場合には、水、溶解補助剤などが用いられる。注射剤としては、静脈内投与剤、皮下注射剤、筋肉内投与剤が好ましく、凍結乾燥製剤、粉末充填剤の形態が挙げられる。 The pharmaceutical composition of the present invention can be mixed with a pharmaceutically acceptable carrier used to form a pharmaceutical composition. Examples of the carrier include solubilizing agents, excipients, binders, lubricants, disintegrants, coloring agents, flavoring agents, preservatives, and surfactants. When preparing an oral preparation, excipients, binders, lubricants, disintegrants, coloring agents, flavoring agents, etc. are used, and the preparation can be carried out by conventional methods. When preparing an injection, water, a solubilizing agent, etc. are used. The injection is preferably an intravenous injection, a subcutaneous injection, or an intramuscular injection, and examples include freeze-dried preparations and powder fillers.
 本明細書中で「治療有効量」とは、褐色脂肪細胞および/またはベージュ脂肪細胞の活性化を生じるSerpinA1またはそのアゴニストの量を意味し、これは、合理的利益/危険比率での所望の治療効果、例えば体重減少を生じるために有効である量を意味する。治療有効量は、当業者に知られているように、使用する投与経路に応じて変わりうる。さらに、治療有効量は、処置する対象、症状の重篤度、投与経路、投与の頻度、処方する医師の判断、およびその他の関連する要因などによって適宜決定されうる。一般的には、治療上有効量は、1回当たり、約0.01~約1000mg/体重kg、好ましくは約0.05~約500mg/体重kgであり、より好ましくは約0.1~約100mg/体重kgである。 By "therapeutically effective amount" herein is meant an amount of SerpinA1 or its agonist that results in the activation of brown adipocytes and/or beige adipocytes, which provides the desired benefit/risk ratio. It means an amount that is effective to produce a therapeutic effect, such as weight loss. A therapeutically effective amount can vary depending on the route of administration used, as is known to those skilled in the art. Furthermore, the therapeutically effective amount can be appropriately determined depending on the subject to be treated, the severity of the symptoms, the route of administration, the frequency of administration, the judgment of the prescribing physician, and other relevant factors. Generally, a therapeutically effective amount will be about 0.01 to about 1000 mg/kg body weight, preferably about 0.05 to about 500 mg/kg body weight, more preferably about 0.1 to about 100 mg/kg body weight.
 本発明の脂肪細胞活性化剤または医薬組成物は、肥満および/または肥満関連疾患を治療するためのSerpinA1またはそのアゴニストまたはSerpinA1発現促進剤(以下、本段落では合わせて、SerpinA1薬剤という)以外の薬剤と組み合わせて投与することができる。ここで、「組み合わせて投与する」は、(i)SerpinA1薬剤およびのSerpinA1以外の薬剤を同じ医薬組成物に混合して投与する、(ii)SerpinA1薬剤およびのSerpinA1以外の薬剤を別々の製剤として調製し、同時に投与する、(iii)SerpinA1薬剤およびのSerpinA1以外の薬剤を別々の製剤として調製し、それぞれ別々のタイミングで投与する、のいずれでもよい。投与されるSerpinA1薬剤および他の薬剤の用法、用量、投与タイミングや投与間隔等は、上記した要因に応じて当業者に知られた技術常識により適宜決定されうる。 The adipocyte activator or pharmaceutical composition of the present invention is an agent other than SerpinA1 or an agonist thereof or a SerpinA1 expression promoter (hereinafter collectively referred to as SerpinA1 drug in this paragraph) for treating obesity and/or obesity-related diseases. Can be administered in combination with drugs. Here, "administering in combination" means (i) administering the SerpinA1 drug and the non-SerpinA1 drug in the same pharmaceutical composition, or (ii) administering the SerpinA1 drug and the non-SerpinA1 drug as separate formulations. (iii) The SerpinA1 drug and the drug other than SerpinA1 may be prepared as separate preparations and administered at separate timings. The usage, dosage, administration timing, administration interval, etc. of the SerpinA1 drug and other drugs to be administered can be determined as appropriate based on the common technical knowledge known to those skilled in the art, depending on the above-mentioned factors.
 本発明の脂肪細胞活性化剤または医薬組成物は、白色脂肪組織中でベージュ脂肪細胞を分化誘導すること、および/またはベージュ脂肪細胞や褐色脂肪細胞を活性化し、特に熱産生による全身のエネルギー消費を促進することにより代謝を促進することで、肥満を予防および/または抑制(治療)することができる。従って、肥満症の治療および/または予防に加え、肥満に起因する疾患の治療および/または予防にも有効でありうる。また、褐色脂肪細胞および/またはベージュ脂肪細胞を活性化させ、寒冷誘導熱産生を増やすことで身体が冷えるのを防ぐこともできる。 The adipocyte activator or pharmaceutical composition of the present invention induces differentiation of beige adipocytes in white adipose tissue, and/or activates beige adipocytes and brown adipocytes, and consumes whole body energy, especially through thermogenesis. By promoting metabolism by promoting , obesity can be prevented and/or suppressed (treated). Therefore, in addition to treating and/or preventing obesity, it may also be effective in treating and/or preventing diseases caused by obesity. It can also prevent the body from getting cold by activating brown fat cells and/or beige fat cells and increasing cold-induced heat production.
 本発明の別の態様において、本発明の脂肪細胞活性化剤または医薬組成物は、肥満または肥満関連障害を治療する際に、1つまたはそれ以上の下記の治療剤と組み合わせて用いることができる。このような薬剤としては、これに限定されないが、フェニルプロパノールアミン、フェンテルミン、ジエチルプロピオン、マジンドール、フェンフルラミン、デクスフェンフルラミン、フェンテルミン(phentiramine)、β3アドレナリン受容体アゴニスト薬剤;シブトラミン、胃腸のリパーゼ阻害剤(例えば、オーリスタット)、およびレプチンが挙げられる。肥満または肥満関連疾患を治療する際に用いられる他の薬剤として、ニューロペプチドY、エンテロスタチン、コレシストキニン(cholecytokinin)、ボンベシン、アミリン、ヒスタミンH3受容体、ドパミン、D2受容体調節薬、メラニン細胞刺激ホルモン、ガラニンおよびガンマアミノ酪酸(GABA)が挙げられる。 In another aspect of the invention, the adipocyte activating agents or pharmaceutical compositions of the invention can be used in combination with one or more of the following therapeutic agents in treating obesity or obesity-related disorders: . Such drugs include, but are not limited to, phenylpropanolamine, phentermine, diethylpropion, mazindol, fenfluramine, dexfenfluramine, phentiramine, beta3 adrenoceptor agonist drugs; sibutramine, gastrointestinal lipase inhibitors (eg, orlistat), and leptin. Other drugs used in treating obesity or obesity-related diseases include neuropeptide Y, enterostatin, cholecytokinin, bombesin, amylin, histamine H3 receptors, dopamine, D2 receptor modulators, melanocytes. The stimulating hormones include galanin and gamma-aminobutyric acid (GABA).
 本明細書で「治療」は、肥満対象の体重を減少または維持させるための、本発明の医薬組成物(脂肪細胞活性化剤を含む医薬組成物およびSerpinA1発現促進剤を含む医薬組成物)の投与を意味する。1つの治療結果の例は、肥満対象の体重が、投与前のその対象の体重と比較して減少することである。もう1つの治療結果の例は、ダイエット、運動または薬物療法の結果として既に減少した体重の再増加の防止でありうる。もう1つの治療結果の例は、肥満関連疾患の発生および/または重症度の低減でありうる。 As used herein, "treatment" refers to the use of the pharmaceutical composition of the present invention (a pharmaceutical composition containing an adipocyte activator and a pharmaceutical composition containing a SerpinA1 expression promoter) for reducing or maintaining the body weight of an obese subject. means administration. An example of one treatment result is a decrease in the obese subject's weight compared to the subject's weight prior to administration. Another example of a therapeutic outcome may be the prevention of regaining weight that has already been lost as a result of diet, exercise or drug therapy. Another example of a therapeutic outcome may be a reduction in the occurrence and/or severity of obesity-related diseases.
 本明細書で「予防」は、肥満のリスクを有する対象の体重を減少または維持させるための、本発明の医薬組成物の投与を意味する。1つの予防結果の例は、肥満のリスクを有する対象の体重が、投与前のその対象の体重と比較して減少することである。もう1つの予防結果の例は、ダイエット、運動または薬物療法の結果として既に減少した体重の再増加の予防でありうる。もう1つの予防結果の例は、肥満のリスクを有する対象における肥満の発生開始の前に治療投与を行った場合の、肥満の発生の予防でありうる。もう1つの予防結果の例は、肥満のリスクを有する対象における肥満の発生開始の前に治療投与を行った場合の、肥満関連障害の発生および/または重症度の低減でありうる。更に、既に肥満の対象において治療を開始した場合、そのような治療は肥満関連疾患の発生、進行または重症化を予防しうる。 As used herein, "prevention" refers to the administration of the pharmaceutical composition of the present invention to reduce or maintain body weight in a subject at risk of obesity. An example of one preventive outcome is a reduction in the weight of a subject at risk of obesity compared to the subject's weight before administration. Another example of a preventive outcome may be the prevention of regaining weight that has already been lost as a result of diet, exercise or drug therapy. Another example of a preventive outcome may be prevention of the development of obesity when therapeutic administration occurs prior to the onset of obesity development in a subject at risk of obesity. Another example of a preventive outcome may be a reduction in the occurrence and/or severity of obesity-related disorders when therapeutic administration occurs prior to the onset of obesity development in a subject at risk of obesity. Furthermore, if treatment is initiated in a subject who is already obese, such treatment may prevent the onset, progression, or severity of obesity-related diseases.
 本発明の医薬組成物を投与する対象は、診断、予後、または治療が望まれる任意の対象であり、特には哺乳動物である。哺乳動物の対象としては、これらに限定されるものではないが、特定の治療のレシピエントとなる、ヒト、非ヒト霊長類、家畜動物、農場動物、愛玩動物、齧歯類などが挙げられ、好ましくはヒトである。 The subject to whom the pharmaceutical composition of the present invention is administered is any subject for whom diagnosis, prognosis, or treatment is desired, particularly mammals. Mammalian subjects include, but are not limited to, humans, non-human primates, domestic animals, farm animals, companion animals, rodents, etc., which are recipients of certain treatments; Preferably it is a human.
 本発明の医薬組成物は、ベージュ脂肪細胞または褐色脂肪細胞の白色脂肪細胞に対する数的比率または質量的比率が健常状態よりも相対的に低いことに起因する肥満症、さらにベージュ脂肪細胞または褐色脂肪細胞に特異的な遺伝子であるUCP1の発現が低いことに起因して、ベージュ脂肪細胞または褐色脂肪細胞の白色脂肪細胞に対する数的比率または質量的比率が健常状態よりも相対的に低くなっている肥満症に対して有効でありうる。 The pharmaceutical composition of the present invention can be used to treat obesity caused by a relatively lower numerical or mass ratio of beige adipocytes or brown adipocytes to white adipocytes than in a healthy state, as well as beige adipocytes or brown adipocytes. Due to low expression of the cell-specific gene UCP1, the numerical or mass ratio of beige or brown adipocytes to white adipocytes is relatively lower than in a healthy state. It can be effective against obesity.
 ベージュ脂肪細胞または褐色脂肪細胞の白色脂肪細胞に対する数的比率または質量的比率が健常状態よりも相対的に低いことに起因する肥満症については、当該技術分野において公知の方法で調べることができる。例えば、上記肥満症は、寒冷刺激をかけた上でFDG-PETと呼ばれるグルコースの取り込みを定量する検査を用いて褐色脂肪細胞の活性を定量することにより、調べることができる。寒冷刺激は、当該技術分野にて行われている通常の条件にて行うことができる。褐色脂肪細胞の活性は、CT値において脂肪組織として矛盾しない領域のうち、FDG-PETにおいて閾値以上のグルコースの取り込みを認める領域を褐色脂肪細胞、残りを白色脂肪細胞と判定することにより、定量することができる。従って、1人の健常者の上記定量結果、または複数の健常者の上記定量結果の平均値よりも、肥満症患者における上記定量結果が低い場合、ベージュ脂肪細胞または褐色脂肪細胞の白色脂肪細胞に対する数的比率または質量的比率が健常状態よりも相対的に低いことに起因する肥満症であると判断することができる。また、前記定量は、本発明による肥満症の予防または治療が脂肪前駆細胞からベージュ脂肪細胞への分化を促進することにより達成されたことを確認するため、に用いることができる。 Obesity caused by a relatively lower numerical or mass ratio of beige adipocytes or brown adipocytes to white adipocytes than in a healthy state can be investigated using methods known in the art. For example, obesity can be investigated by quantifying the activity of brown fat cells using a test called FDG-PET that quantifies glucose uptake after applying a cold stimulus. Cold stimulation can be performed under the usual conditions used in the art. The activity of brown adipocytes is quantified by determining that, among the areas that are consistent with adipose tissue in CT values, the areas in which glucose uptake above a threshold value is observed in FDG-PET are determined to be brown adipocytes, and the remaining areas are determined to be white adipocytes. be able to. Therefore, if the above quantitative result in an obese patient is lower than the above quantitative result for one healthy person or the average value of the above quantitative results for multiple healthy individuals, the It can be determined that the patient has obesity caused by a numerical ratio or a mass ratio that is relatively lower than a healthy state. Furthermore, the above-mentioned quantification can be used to confirm that the prevention or treatment of obesity according to the present invention has been achieved by promoting the differentiation of preadipocytes into beige adipocytes.
 本発明の一つの態様において、本発明は、血液または血清中のSerpinA1を指標として、肥満または肥満関連疾患の状態を確認または評価する方法でもある。肥満および肥満関連疾患は、上記した通りである。 In one embodiment of the present invention, the present invention is also a method for confirming or evaluating the state of obesity or an obesity-related disease using SerpinA1 in blood or serum as an indicator. Obesity and obesity-related diseases are as described above.
(肥満または肥満関連疾患のための薬物をスクリーニングする方法)
 本発明によれば、肥満または肥満関連疾患を治療するための薬物をスクリーニングする方法が提供される。この方法では、SerpinA1の作用を促進する能力を候補薬物の能力の指標として用い、この能力を有する候補薬物が肥満関連疾患を治療するための薬剤として特定される。ここで、SerpinA1の作用の促進とは、これに限定されないが、例えば、SerpinA1遺伝子の発現を促進する能力、SerpinA1の受容体であるEphB2レセプターへの結合活性、またはSerpinA1のアゴニスト活性を挙げることができる。SerpinA1遺伝子の発現を促進する能力としては、例えば、SerpinA1遺伝子の転写開始を促進する能力、SerpinA1遺伝子のmRNAの分解を阻害する能力、またはSerpinA1のmRNAからSerpinA1タンパク質への転写を促進する能力を挙げることがきる。SerpinA1のアゴニスト活性とは、EphB2レセプターに結合し、上記したいずれかの活性を挙げることができる。
(Method of screening drugs for obesity or obesity-related diseases)
According to the present invention, a method for screening drugs for treating obesity or obesity-related diseases is provided. In this method, the ability to promote the action of SerpinA1 is used as an indicator of the ability of a candidate drug, and candidate drugs having this ability are identified as agents for treating obesity-related diseases. Here, promoting the action of SerpinA1 includes, but is not limited to, the ability to promote SerpinA1 gene expression, binding activity to EphB2 receptor, which is a receptor for SerpinA1, or agonist activity of SerpinA1. can. Examples of the ability to promote SerpinA1 gene expression include the ability to promote SerpinA1 gene transcription initiation, the ability to inhibit the degradation of SerpinA1 gene mRNA, or the ability to promote transcription from SerpinA1 mRNA to SerpinA1 protein. I can do things. The agonist activity of SerpinA1 binds to the EphB2 receptor and can include any of the activities described above.
 本発明のスクリーニング方法は、薬物選定のために使用する指標に応じて、当該技術分野の公知の技術を参照し、当業者であれば適切に実施することができる。例えば、SerpinA1が発現している肝細胞や、遺伝子導入によりSerpinA1遺伝子が発現するように形質転換された細胞などを用意し、候補物質の存在下および不在下において発現試験を行い、SerpinA1のmRNA量またはタンパク質量を比較することにより、候補物質のSerpinA1遺伝子発現促進(亢進)能を測定することができる。SerpinA1のmRNA量は、常法に従い、SerpinA1遺伝子に特異的なプライマーを用いてPCR法により測定できる。SerpinA1タンパク質量は、常法に従い、SerpinA1に特異的に反応する抗体を用いたアッセイ系により測定することができる。また、SerpinA1の活性の測定のために、固相結合エラスターゼ結合アッセイ(例えば、WO2012/159700参照)を用いることもできる。 The screening method of the present invention can be appropriately implemented by those skilled in the art by referring to known techniques in the technical field, depending on the index used for drug selection. For example, by preparing hepatocytes expressing SerpinA1 or cells transformed by gene transfer so that the SerpinA1 gene is expressed, an expression test is performed in the presence and absence of a candidate substance, and the amount of SerpinA1 mRNA is determined. Alternatively, the ability of the candidate substance to promote (enhance) SerpinA1 gene expression can be measured by comparing the protein amounts. The amount of SerpinA1 mRNA can be measured by PCR using primers specific to the SerpinA1 gene according to a conventional method. The amount of SerpinA1 protein can be measured according to a conventional method using an assay system using an antibody that specifically reacts with SerpinA1. Furthermore, a solid-phase binding elastase binding assay (see, for example, WO2012/159700) can also be used to measure the activity of SerpinA1.
 また、SerpinA1遺伝子の発現を促進(亢進)する能力を指標として、候補物質をスクリーニングするにあたり、例えば、SerpinA1遺伝子の転写調節領域を含んでなるDNA断片とレポーター遺伝子を含んでなるDNA断片が作動可能なように連結された核酸分子を用いることにより、SerpinA1遺伝子の転写を促進する候補物質をスクリーニングすることができる。SerpinA1遺伝子の転写調節領域の塩基配列は、NCBIのGene Bankより入手可能である。また、レポーター遺伝子としては、該遺伝子の発現産物の検出方法が知られているものであればよく、例えば、ルシフェラーゼ遺伝子などの発光タンパク質遺伝子、β-ガラクトシダーゼ、クロラムフェニコールアセチルトランスフェラーゼ遺伝子などの酵素遺伝子、緑色蛍光タンパク質(GFP)遺伝子などの蛍光タンパク質遺伝子などを使用することができる。候補物質のSerpinA1遺伝子の発現を促進する能力を検出評価するにあたっては、前記核酸分子を導入したインビトロの転写活性評価系、あるいは、前記核酸分子により形質転換された細胞(哺乳動物細胞、昆虫細胞、酵母、大腸菌など)を用いることができる。関連する遺伝子操作、レポーター遺伝子発現の検出および候補物質のスクリーニングの一般的な手法については、当業者によく知られた手法を用いることができる。 In addition, when screening candidate substances using the ability to promote (enhance) the expression of the SerpinA1 gene as an indicator, for example, a DNA fragment containing the transcription regulatory region of the SerpinA1 gene and a DNA fragment containing a reporter gene are operable. By using nucleic acid molecules linked in this manner, candidate substances that promote transcription of the SerpinA1 gene can be screened. The nucleotide sequence of the transcriptional regulatory region of the SerpinA1 gene is available from the NCBI Gene Bank. Furthermore, the reporter gene may be one for which a method for detecting the expression product of the gene is known, such as a photoprotein gene such as a luciferase gene, an enzyme gene such as a β-galactosidase gene, or a chloramphenicol acetyltransferase gene. Genes, fluorescent protein genes such as the green fluorescent protein (GFP) gene, etc. can be used. In detecting and evaluating the ability of a candidate substance to promote SerpinA1 gene expression, an in vitro transcription activity evaluation system into which the nucleic acid molecule has been introduced or cells transformed with the nucleic acid molecule (mammalian cells, insect cells, yeast, Escherichia coli, etc.) can be used. For related genetic manipulation, detection of reporter gene expression, and general techniques for screening candidate substances, techniques well known to those skilled in the art can be used.
 本発明においては、EphB2レセプターを用いた評価系により、候補物質として、セレピンA1のアゴニストをスクリーニングすることもできる。例えば、EphB2レセプターを発現する褐色脂肪細胞を用いて、公知の技術や上記したSerpinA1について記載した遺伝子工学技術を用い、EphB2レセプターのmRNAやタンパク質の発現量を測定すること、EphB2レセプターのリン酸化(好ましくは、チロシンリン酸化)の量を測定すること、または褐色細胞におけるUCP1の発現を測定することにより行うことができる。 In the present invention, agonists of serepin A1 can also be screened as candidate substances using an evaluation system using the EphB2 receptor. For example, using brown adipocytes that express the EphB2 receptor, the expression levels of EphB2 receptor mRNA and protein can be measured using known techniques or the genetic engineering technique described above for SerpinA1, and the phosphorylation of the EphB2 receptor ( Preferably, this can be carried out by measuring the amount of tyrosine phosphorylation) or by measuring the expression of UCP1 in brown cells.
 本発明のスクリーニング方法では、低分子物質、高分子物質、核酸分子、タンパク質、ペプチド(環状ペプチドを含む)など、さまざまなタイプの物質を候補薬物とすることができる。 In the screening method of the present invention, various types of substances can be used as drug candidates, such as low-molecular substances, high-molecular substances, nucleic acid molecules, proteins, and peptides (including cyclic peptides).
(肥満または肥満関連疾患を治療または予防するための方法)
 本発明は別の一つの態様において、肥満または肥満関連疾患を治療または予防するための方法であって、それを必要とする対象に、治療有効量のSerpinA1、SerpinA1のアゴニスト、SerpinA1発現促進剤からなる群より選ばれる物質を投与することを含む方法である。ここで、肥満関連疾患は、本発明の脂肪細胞の活性化剤および該活性化剤を含む医薬組成物に関し記載した疾患が、本発明の治療または予防方法においても該当する。同様に、SerpinA1、SerpinA1のアゴニスト、またはSerpinA1発現促進剤についても、本発明の脂肪細胞の活性化剤および該活性化剤を含む医薬組成物に関し記載した内容が本発明の治療または予防方法においても該当する。
(Method for treating or preventing obesity or obesity-related diseases)
In another aspect, the present invention provides a method for treating or preventing obesity or obesity-related diseases, wherein a subject in need thereof is given a therapeutically effective amount of SerpinA1, a SerpinA1 agonist, or a SerpinA1 expression promoter. The method includes administering a substance selected from the group consisting of: Here, obesity-related diseases include the diseases described regarding the adipocyte activating agent of the present invention and the pharmaceutical composition containing the activating agent, which also apply to the treatment or prevention method of the present invention. Similarly, regarding SerpinA1, SerpinA1 agonists, or SerpinA1 expression promoters, the contents described regarding the adipocyte activating agent of the present invention and the pharmaceutical composition containing the activating agent also apply to the treatment or prevention method of the present invention. Applicable.
 以下、実施例により、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.
(実施例1)IR/IGF1R-inducibleダブルノックアウトマウスの作製
 以下のようにして、臓器特異的インスリン受容体/IGF-1受容体(IR/IGF1R)の欠損をタモキシフェンで誘導できる、IR/IGF1R-inducibleダブルノックアウトマウスを作製した(Sakaguchiら、Cell Metabolism 25, 448-462, 2017 参照。これは、引用することにより本明細書の一部である。)。
 インスリンおよび/またはIGF1受容体対立遺伝子がfloxedされたマウス(foxedIR・IGF1R)と、アディポネクチンプロモーターの制御下にあるタモキシフェン誘導性Cre ERT2導入遺伝子を保有するマウス(AdipoqCreERT2)とを交配することにより、誘導すると脂肪組織特異的にIRおよび/またはIGF1Rが特異的に欠損されるマウスモデルを確立した。floxed対立遺伝子は持つが、Cre導入遺伝子を持たないマウスを対照とした。対照マウスにもタモキシフェンを投与したが、使用した条件下では、悪影響は示さなかった。
 foxedIR・IGF1RとAdipoqCreERT2導入遺伝子を持つ8週齢のマウス(Ai-DKOマウス)をタモキシフェンで処理すると、急激な脂肪組織消失を認めた。また、耐糖能異常、インスリン抵抗性が惹き起こされ、それと同時に褐色脂肪重量の低下がみられ、寒冷刺激で耐寒能が著しく低下した。このマウスで脂肪組織のインスリン抵抗性が、メタボリックシンドロームの第一次的原因となることが示された。
 しかし、このAi-DKOマウスを長期間観察すると、褐色脂肪組織の再生が起こり、耐寒能もほぼ正常な状態にまで改善していることがわかった。タモキシフェン誘導を行った9日後、寒冷刺激(8℃の環境に2時間暴露)を与えた後の結果を図3Aに示す。その後、長期間経過後(90日後)に再び寒冷刺激を与えた後の結果を図3Bに示す。タモキシフェン誘導により、褐色脂肪細胞の消失が起こるが、その後、長期間経過すると褐色脂肪細胞の再生が起こることが示唆された。褐色脂肪組織の再生に関わる生理活性因子の存在を想起し、因子の特定を以下のようにして行った。
(Example 1) Preparation of IR/IGF1R-inducible double knockout mice In which organ-specific insulin receptor/IGF-1 receptor (IR/IGF1R) deficiency can be induced with tamoxifen, IR/IGF1R- Inducible double knockout mice were generated (see Sakaguchi et al., Cell Metabolism 25, 448-462, 2017, which is incorporated herein by reference).
By crossing mice with floxed insulin and/or IGF1 receptor alleles (foxedIR/IGF1R) and mice carrying a tamoxifen-inducible Cre ER T2 transgene under the control of the adiponectin promoter (AdipoqCreER T2 ). established a mouse model in which IR and/or IGF1R are specifically deleted in adipose tissue when induced. Mice carrying the floxed allele but not the Cre transgene served as controls. Control mice were also given tamoxifen, which under the conditions used showed no adverse effects.
When 8-week-old mice carrying foxedIR/IGF1R and AdipoqCreER T2 transgenes (Ai-DKO mice) were treated with tamoxifen, rapid loss of adipose tissue was observed. In addition, glucose intolerance and insulin resistance were induced, and at the same time, brown fat weight was decreased, and cold tolerance was significantly decreased by cold stimulation. In these mice, insulin resistance in adipose tissue was shown to be the primary cause of metabolic syndrome.
However, when these Ai-DKO mice were observed for a long period of time, it was found that the brown adipose tissue regenerated and the cold tolerance improved to an almost normal state. Figure 3A shows the results of cold stimulation (2 hours of exposure to an 8°C environment) 9 days after tamoxifen induction. Thereafter, after a long period of time (90 days), cold stimulation was applied again, and the results are shown in FIG. 3B. It was suggested that brown adipocytes disappear due to tamoxifen induction, but that brown adipocytes regenerate after a long period of time. Recalling the existence of physiologically active factors involved in the regeneration of brown adipose tissue, the factors were identified as follows.
(実施例2)褐色脂肪細胞再生因子の同定
 コントロールマウスとともに、Ai-DKOマウスの急性期(脂肪組織消失期)および褐色脂肪組織再生期に血清を採取し、マスペクトロメトリーにより解析し、プロテオミックス解析から、褐色脂肪組織の再生時に血清中で有意に発現上昇する生理活性物質を探索した。1469種類の血清タンパク質を抽出した。マウス褐色脂肪細胞増殖および活性化を誘導する因子の絞り込みを行ない、肝臓由来の生理活性因子としてSerpinA1(Serpin Family A Member 1)(α1-アンチトリプシン)を同定した。マウスのさまざまな臓器におけるSerpinA1のmRNA発現を測定した結果、SerpinA1は肝臓で選択的に発現している、肝臓由来因子であり、その他の臓器でのmRNA発現はごくわずかであることが判った。
(Example 2) Identification of brown fat cell regeneration factor Serum was collected from control mice and Ai-DKO mice during the acute phase (adipose tissue loss phase) and brown adipose tissue regeneration phase, analyzed by mass spectrometry, and proteomics. From the analysis, we searched for physiologically active substances whose expression significantly increases in serum during brown adipose tissue regeneration. 1469 types of serum proteins were extracted. We narrowed down the factors that induce mouse brown fat cell proliferation and activation, and identified SerpinA1 (Serpin Family A Member 1) (α1-antitrypsin) as a physiologically active factor derived from the liver. As a result of measuring the mRNA expression of SerpinA1 in various organs of mice, it was found that SerpinA1 is a liver-derived factor that is selectively expressed in the liver, and mRNA expression in other organs is minimal.
(実施例3)寒冷環境でのSerpinA1の発現
 寒冷刺激におけるSerpinA1の発現への影響について解析した。
 12週齢のC57BL/6マウスをそれぞれ23℃と4℃の環境に48時間暴露した後、肝臓でのSerpinA1発現と脂肪でのUCP1(Uncoupled protein 1)の発現について解析を行った。肝臓でのSerpinA1の発現の結果を図4に示す。寒冷刺激により肝臓でのSerpinA1のmRNA発現およびタンパク質発現が有意に上昇していることがわかった。また、脂肪でのUCP1の発現の結果を図5に示す。寒冷刺激により皮下脂肪および褐色脂肪組織におけるUCP1のmRNA発現およびタンパク質発現が有意に上昇していることがわかった。これらのことから、肝臓でのSerpinA1発現と褐色脂肪組織でのUCP1発現に正の相関があることがわかった。
(Example 3) Expression of SerpinA1 in a cold environment The influence of cold stimulation on the expression of SerpinA1 was analyzed.
After exposing 12-week-old C57BL/6 mice to environments of 23°C and 4°C for 48 hours, SerpinA1 expression in the liver and UCP1 (Uncoupled protein 1) expression in fat were analyzed. The results of SerpinA1 expression in the liver are shown in FIG. It was found that mRNA expression and protein expression of SerpinA1 in the liver were significantly increased by cold stimulation. Furthermore, the results of UCP1 expression in fat are shown in FIG. It was found that cold stimulation significantly increased UCP1 mRNA and protein expression in subcutaneous fat and brown adipose tissue. These results revealed that there was a positive correlation between SerpinA1 expression in the liver and UCP1 expression in brown adipose tissue.
(実施例4)病態モデルでのSerpinA1の発現
 病態モデルでの解析のため、C57BL/6マウスを用い、5週齢から4か月間高脂肪食を負荷した後の各組織でのSerpinA1発現を解析した。qPCRでSerpinA1のmRNA発現を解析した結果を図6に示す。皮下脂肪、内臓脂肪、褐色脂肪では、普通食群と高脂肪食負荷群の両者に有意差はみられなかったが、肝臓では、高脂肪食負荷群で有意にSerpinA1の発現が低下していることがわかった。また、ウエスタンブロット解析結果から、タンパク質発現も高脂肪食負荷群で有意に低下していることが確認された。
(Example 4) Expression of SerpinA1 in a pathological model For analysis in a pathological model, SerpinA1 expression in each tissue was analyzed using C57BL/6 mice after being fed a high-fat diet for 4 months from the age of 5 weeks. did. The results of analyzing SerpinA1 mRNA expression by qPCR are shown in FIG. There were no significant differences in subcutaneous fat, visceral fat, and brown fat between the normal diet group and the high-fat diet group, but in the liver, SerpinA1 expression was significantly decreased in the high-fat diet group. I understand. Furthermore, the results of Western blot analysis confirmed that protein expression was also significantly reduced in the high-fat diet loaded group.
(実施例4)SerpinA1の褐色脂肪細胞に対する作用
 褐色脂肪前駆細胞に、各濃度(50,100μg/mL)のSerpinA1リコンビナントタンパク(Bio Vision社(品番7294―1000)より購入。)を18時間負荷し、EdUで2時間染色してDAPIに対するEdUの割合を測定した。結果を図7Aに示す。SerpinA1には褐色脂肪前駆細胞の増殖を誘導する作用が確認できた。
 次に、褐色脂肪前駆細胞を分化誘導させた成熟褐色脂肪細胞に、SerpinA1リコンビナントタンパクを12時間(200μg/mL)または24時間(300μg/mL)負荷し、UCP1のmRNA発現およびタンパク発現を確認したところ、有意に上昇していた。結果を図7Bに示す。また、成熟褐色脂肪細胞にSerpinA1を16時間(300μg/mL)負荷し、呼吸鎖複合体(電子伝達アッセイ)にて、電子伝達系と酸化的リン酸化共役(カップリングアッセイ)の阻害剤(オリゴマイシン、FCCR、ロテノン、アンチマイシンA)を添加しながら、酸素消費速度(Oxygen Consumption Rate:OCR)を計測し、ミトコンドリア活性への影響を調べたところ、SerpinA1には成熟褐色脂肪細胞におけるミトコンドリア活性上昇作用があることが判った。結果を図7Cに示す。
(Example 4) Effect of SerpinA1 on brown adipocytes Brown adipose progenitor cells were loaded with SerpinA1 recombinant protein (purchased from Bio Vision (product number 7294-1000)) at various concentrations (50, 100 μg/mL) for 18 hours. , and staining with EdU for 2 hours to measure the ratio of EdU to DAPI. The results are shown in Figure 7A. SerpinA1 was confirmed to have an effect of inducing proliferation of brown preadipocytes.
Next, SerpinA1 recombinant protein was loaded for 12 hours (200 μg/mL) or 24 hours (300 μg/mL) into mature brown adipocytes in which brown preadipocytes were induced to differentiate, and UCP1 mRNA and protein expression was confirmed. However, there was a significant increase. The results are shown in Figure 7B. In addition, mature brown adipocytes were loaded with SerpinA1 for 16 hours (300 μg/mL), and in the respiratory chain complex (electron transfer assay), an inhibitor (oligo) of the electron transport chain and oxidative phosphorylation coupling (coupling assay) was used. Oxygen consumption rate (OCR) was measured while adding mycin, FCCR, rotenone, and antimycin A), and the effect on mitochondrial activity was investigated. It turned out to be effective. The results are shown in Figure 7C.
(実施例5)SerpinA1の白色脂肪細胞に対する作用
 白色脂肪前駆細胞に、各濃度(100,200μg/mL)のSerpinA1リコンビナントタンパクを18時間負荷し、EdUで2時間染色してDAPIに対するEdUの割合を測定した。結果を図8Aに示す。SerpinA1には白色脂肪前駆細胞の増殖を誘導する作用が確認できた。
 次に、白色脂肪前駆細胞を分化誘導させた成熟白色脂肪細胞に、SerpinA1リコンビナントタンパクを16時間(200,500μg/mL)または36時間(500μg/mL)負荷し、UCP1のmRNA発現およびタンパク発現を確認したところ、有意に上昇していた。結果を図8Bに示す。また、成熟褐色脂肪細胞にSerpinA1(500μg/mL)を36時間負荷し、酸素消費速度(OCR)を指標に、ミトコンドリア活性への影響を調べたところ、SerpinA1には成熟白色脂肪細胞におけるミトコンドリア活性上昇作用があることが判った。結果を図8Cに示す。
 これらのことより、SerpinA1は、褐色脂肪細胞と同様に白色脂肪細胞にも効果を示した。
(Example 5) Effect of SerpinA1 on white adipocytes White preadipocytes were loaded with SerpinA1 recombinant protein at various concentrations (100, 200 μg/mL) for 18 hours, and stained with EdU for 2 hours to determine the ratio of EdU to DAPI. It was measured. The results are shown in Figure 8A. SerpinA1 was confirmed to have an effect of inducing proliferation of white preadipocytes.
Next, SerpinA1 recombinant protein was loaded for 16 hours (200,500 μg/mL) or 36 hours (500 μg/mL) into mature white adipocytes that had been induced to differentiate from white preadipocytes, and UCP1 mRNA and protein expression was inhibited. When I checked, it was found to have increased significantly. The results are shown in Figure 8B. In addition, when mature brown adipocytes were loaded with SerpinA1 (500 μg/mL) for 36 hours and the effect on mitochondrial activity was investigated using oxygen consumption rate (OCR) as an index, it was found that SerpinA1 increases mitochondrial activity in mature white adipocytes. It turned out to be effective. The results are shown in Figure 8C.
From these results, SerpinA1 showed an effect on white adipocytes as well as brown adipocytes.
(実施例6)SerpinA1過剰発現トランスジェニックマウスの検討
 ヒトSerpinA1にp3X Flag-CMV-14 Expression Vector (Sigma)を用いて3xFlag遺伝子を付加した後に、肝臓特異的なアルブミンプロモーターが組み込まれたベクターであるpLive vector(Minus Bio社)に挿入して作製したトランスジーンを用いて、肝臓特異的SerpinA1過剰発現Tgマウス(SerA1Tgマウス)を作製した。
 Tgマウスの血糖値を測定した結果、随時血糖では有意な差はみられなかったが、空腹時血糖では野生型WTと比較しTgマウスで有意な低下を認めた。また、インスリン負荷試験(ITT)では両者にほとんど差がみられなかったが、ブドウ糖負荷試験(GTT)を行うと、腹腔内グルコース注射後30分、60分、120分の血糖値はWTに比べTgマウスで有意に低下していた。AUC(エリア・アンダー・ザ・カーブ)をみてもTgマウスで有意な低下を認めており、WTと比較し、SerA1Tgマウスでは耐糖能が高いことが示された。結果を図9に示す。
(Example 6) Examination of SerpinA1 overexpression transgenic mice This is a vector in which a liver-specific albumin promoter is integrated after adding the 3xFlag gene to human SerpinA1 using p3X Flag-CMV-14 Expression Vector (Sigma). A liver-specific SerpinA1 overexpressing Tg mouse (SerA1Tg mouse) was created using a transgene created by inserting it into pLive vector (Minus Bio).
As a result of measuring blood sugar levels in Tg mice, no significant difference was observed in casual blood sugar, but a significant decrease in fasting blood sugar was observed in Tg mice compared to wild type WT. In addition, in the insulin tolerance test (ITT), there was almost no difference between the two, but in the glucose tolerance test (GTT), the blood sugar levels at 30, 60, and 120 minutes after intraperitoneal glucose injection were higher than those in WT. It was significantly decreased in Tg mice. A significant decrease in AUC (area under the curve) was also observed in Tg mice, indicating that SerA1Tg mice had higher glucose tolerance compared to WT. The results are shown in FIG.
 次いで、SerpinA1Tgマウスを解剖し、組織の解析を行った。肝臓の体重当たりの組織量は、WTとTgマウスの両者に有意差はなかった。しかしながら、SerpinA1Tgマウスの皮下脂肪に関しては、WTと比較して体重当たりの組織量が有意に低下していた。また、皮下脂肪組織をHE染色して観察すると、WTと比較してTgマウスでは脂肪滴が小さくなっていることが確認できた。さらに、腹腔内脂肪に関しては、重量に有意な差は認めなかったものの、HE染色ではTgマウスの脂肪滴がWTと比較して縮小している傾向が認められた。褐色脂肪に関しても、重量に有意差はなかったが、HE染色ではTgマウスの褐色脂肪の方がWTと比較して脂肪滴が密になっていた。このことから、SerpinA1Tgマウスの耐糖能の改善に、この脂肪組織の変化が関係していることが示唆された。 Next, the SerpinA1Tg mouse was dissected and the tissue was analyzed. There was no significant difference in liver tissue amount per body weight between WT and Tg mice. However, regarding the subcutaneous fat of SerpinA1Tg mice, the amount of tissue per body weight was significantly reduced compared to WT. Furthermore, when subcutaneous adipose tissue was stained with HE and observed, it was confirmed that fat droplets were smaller in Tg mice than in WT mice. Furthermore, regarding intraperitoneal fat, although no significant difference in weight was observed, HE staining showed a tendency for the fat droplets in Tg mice to be smaller compared to WT mice. Regarding brown fat, there was no significant difference in weight, but HE staining showed that fat droplets were denser in the brown fat of Tg mice than in WT mice. This suggests that this change in adipose tissue is related to the improvement of glucose tolerance in SerpinA1Tg mice.
 さらに、SerA1Tgマウスの褐色脂肪組織におけるmRNA発現をqPCRで解析した。結果を図10に示す。AdiponectinやLeptinなどの遺伝子の発現は、有意な変化はなかったが、SerA1TgマウスではUCP1の発現が有意に上昇していた(図10A)。このことは、褐色脂肪組織の免疫染色でも確認された。緑のPerilipinにMergeして赤く光るUCP1の蛋白発現は、左のWTと比較して、右のTgマウスでは上昇していた(図10B)。 Furthermore, mRNA expression in the brown adipose tissue of SerA1Tg mice was analyzed by qPCR. The results are shown in FIG. Although there was no significant change in the expression of genes such as Adiponectin and Leptin, the expression of UCP1 was significantly increased in SerA1Tg mice (FIG. 10A). This was also confirmed by immunostaining of brown adipose tissue. The protein expression of UCP1, which glows red after merging with green Perilipin, was increased in the Tg mouse on the right compared to the WT on the left (FIG. 10B).
 また、4℃の寒冷刺激を行うと、30分以降SerA1Tgマウスの直腸温はWTと比較して高く保たれており、サーモグラフィーカメラによる観察でも180分時点でのSerA1Tgマウスの頸部のBATにおける熱産生が上昇していた。結果を図11に示す。このことから、SerA1Tgマウスでは、褐色脂肪組織でUCP1の発現が上昇し、熱産生も上昇していることが示された。 In addition, when subjected to cold stimulation at 4°C, the rectal temperature of SerA1Tg mice remained higher than that of WT after 30 minutes, and observation using a thermography camera also showed that the temperature in the BAT of the neck of SerA1Tg mice at 180 minutes was high. Production was on the rise. The results are shown in FIG. This indicates that in SerA1Tg mice, UCP1 expression increases in brown adipose tissue and thermogenesis also increases.
 SerA1Tgマウスの皮下白色脂肪組織におけるmRNA発現をqPCRで解析したところUCP1の発現が有意に上昇しており(図12A)、またUCP1タンパク質発現の上昇も免疫染色で確認できた。さらに、体重当たりの皮下脂肪重量は、WTに比べてSerA1Tgマウスで有意に低下してした(図12B)。さらに、組織をHE染色すると。脂肪滴が小さくなっていることが確認できた(図12C)。図12Cの右図は、脂肪滴の直径を測定した結果であり、SerA1Tgマウスでグラフが左にシフトしていること(脂肪的が小さくなっていること)がわかる。
 このことから、SerpinA1による皮下白色脂肪組織のベージュ化が示唆され、このことがSerA1Tgマウスのfenotypeに影響していると考えられる。
When mRNA expression in the subcutaneous white adipose tissue of SerA1Tg mice was analyzed by qPCR, the expression of UCP1 was significantly increased (FIG. 12A), and the increase in UCP1 protein expression was also confirmed by immunostaining. Furthermore, the subcutaneous fat weight per body weight was significantly lower in SerA1Tg mice than in WT (FIG. 12B). Furthermore, when the tissue is stained with HE. It was confirmed that the lipid droplets had become smaller (FIG. 12C). The right diagram in FIG. 12C shows the results of measuring the diameter of lipid droplets, and it can be seen that the graph shifts to the left (fatty size becomes smaller) in SerA1Tg mice.
This suggests that subcutaneous white adipose tissue becomes beige due to SerpinA1, and this is thought to affect the phenotype of SerA1Tg mice.
 WTマウスとSerA1Tgマウスを用い、5週齢から3か月間高脂肪食を負荷し、耐糖能およびインスリン抵抗性を確認した。結果を図13に示す。Aは空腹時血糖値、Bはブドウ糖負荷試験(GTT)の結果、Cはインスリン負荷試験(ITT)の結果である。SerA1Tgマウスでは、普通食摂取時と同様に、空腹時血糖の改善を認める一方で、随時血糖や体重推移には有意差を認めなかったが、GTTだけでなく、ITTでの血糖改善も認められ、高い耐糖能を示すだけでなくインスリン抵抗性の改善も示された。 WT mice and SerA1Tg mice were fed a high-fat diet for 3 months from the age of 5 weeks, and glucose tolerance and insulin resistance were confirmed. The results are shown in FIG. A is the fasting blood sugar level, B is the result of the glucose tolerance test (GTT), and C is the result of the insulin tolerance test (ITT). In SerA1Tg mice, while an improvement in fasting blood sugar was observed, similar to when ingesting normal food, no significant differences were observed in random blood sugar or body weight changes, but blood sugar improvement was observed not only in GTT but also in ITT. , not only showed high glucose tolerance but also improved insulin resistance.
(実施例6)SerpinA1ノックアウトマウスの検討
 マウスのSerpinA1遺伝子は5つのparalogsをもつ。図14Aに示すように、CRISPR-Cas9の技術を用いて、マウスのSerpinA1遺伝子をコードする5つのparalogsすべてをノックアウトしたクインティプルノックアウトマウス(SerA1KOマウス)を作製し、ウエスタンブロット解析により肝臓でのSerpinA1蛋白発現がないことを確認した。
 このマウスを用いてGTTおよびITT解析を行ったところ、GTTではWTに比べKOマウスで有意な血糖上昇を認め、AUCも有意に高値であり、SerA1KOマウスは耐糖能の低下を認めた(図14B)。また、ITTでも、腹腔内インスリン注射後15、30、60分の血糖値がWTに比べKOマウスで有意に高値であり、AUCをみてもKOマウスで有意な上昇が認められ、SerA1KOマウスではインスリン抵抗性を認めた(図14C)。
(Example 6) Study of SerpinA1 knockout mouse The mouse SerpinA1 gene has five paralogs. As shown in Figure 14A, we created a quintiple knockout mouse (SerA1 KO mouse) in which all five paralogs encoding the mouse SerpinA1 gene were knocked out using CRISPR-Cas9 technology, and Western blot analysis revealed that SerpinA1 in the liver It was confirmed that there was no protein expression.
When GTT and ITT analyzes were performed using these mice, a significant increase in blood sugar was observed in KO mice compared to WT in GTT, and the AUC was also significantly higher, indicating that SerA1 KO mice had decreased glucose tolerance (Figure 14B ). In addition, in ITT, blood glucose levels at 15, 30, and 60 minutes after intraperitoneal insulin injection were significantly higher in KO mice than in WT, and a significant increase in AUC was observed in KO mice. Resistance was observed (Fig. 14C).
 SerA1KOマウスを自由摂食下で代謝ケージに入れてモニターしたところ、暗期(活動期)では、WTと比較して酸素摂取量の低下を認めた(図15A)。また、4℃寒冷刺激を行うと、SerA1KOマウスの直腸温はWTと比較して低下傾向であり、90分以降の直腸温で有意差を認め(図15B)、サーモグラフィーの結果でも体温低下が確認できた(図15C)。KOマウスの結果も、生体でのSerpinA1の褐色脂肪組織における熱産生作用を裏付けている。 When SerA1 KO mice were placed in a metabolic cage and monitored under free feeding, a decrease in oxygen uptake was observed in the dark period (active period) compared to WT (Figure 15A). Furthermore, when cold stimulation was performed at 4°C, the rectal temperature of SerA1KO mice tended to decrease compared to WT, and a significant difference was observed in rectal temperature after 90 minutes (Figure 15B), and thermography also confirmed a decrease in body temperature. It was completed (Fig. 15C). The results of KO mice also support the thermogenic effect of SerpinA1 in brown adipose tissue in vivo.
(実施例7)SerpinA1受容体の同定
 アデノウイルスベクターを用いて、FLAGタグ(3xFLAG)を付けたSerpinA1を褐色脂肪前駆細胞に導入した。コントロールとしてアデノウイルスベクターにFLAG(3xFLAG)のみを搭載したものを細胞に導入した。FLAGを付けたSerpinA1を過剰発現させた褐色脂肪前駆細胞を準備し、ケミカルクロスリンカーであるDTSSPで処理した後、FLAG特異的に免疫沈降して、マススペクトロメトリーによるプロテオミクス解析を行った。その結果、EphB2レセプターがSerpinA1複合体形成の候補分子として同定された。免疫沈降したサンプルをウエスタンブロット解析すると、SerpinA1とEphB2レセプターが共沈していることが確認できた。このことから、EphB2レセプターは、SerpinA1と複合体を形成し、受容体として機能する分子として同定できた。
(Example 7) Identification of SerpinA1 receptor SerpinA1 with a FLAG tag (3xFLAG) was introduced into brown preadipocytes using an adenovirus vector. As a control, an adenovirus vector carrying only FLAG (3xFLAG) was introduced into cells. Brown preadipocytes overexpressing FLAG-tagged SerpinA1 were prepared, treated with DTSSP, a chemical cross-linker, and FLAG-specific immunoprecipitation was performed, followed by proteomic analysis by mass spectrometry. As a result, EphB2 receptor was identified as a candidate molecule for SerpinA1 complex formation. Western blot analysis of the immunoprecipitated sample confirmed that SerpinA1 and EphB2 receptor were co-precipitated. From this, the EphB2 receptor was identified as a molecule that forms a complex with SerpinA1 and functions as a receptor.
(実施例8)SerpinA1のEphB2レセプターへの作用
 1回膜貫通型の受容体型チロシンキナーゼであるEphB2レセプターは、リガンドであるエフリンと結合することによって、細胞内にシグナルを伝達する。EphB2レセプターは、リガンドの結合により、膜貫通領域の近傍に位置するチロシンがリン酸化される。そこで、SeprinA1による、EphB2の発現およびリン酸化への影響をインビトロおよびインビボにおいて、以下のようにして確認した。
 インビトロの実験では、単離した褐色脂肪前駆細胞を褐色脂肪細胞に分化誘導させた後、SerpinA1(300μg/mL)を負荷し、ウエスタンブロット解析を行った。その結果、EphB2レセプターの発現はSerpinA1負荷群で有意に高く、さらに、EphB2レセプターのチロシンリン酸化も同様に、SerpinA1負荷群で有意に増強されていた。結果を図16に示す。
(Example 8) Effect of SerpinA1 on EphB2 receptor The EphB2 receptor, which is a single-transmembrane receptor tyrosine kinase, transmits a signal into cells by binding to a ligand, ephrin. In the EphB2 receptor, tyrosine located near the transmembrane region is phosphorylated upon binding of a ligand. Therefore, the influence of SeprinA1 on the expression and phosphorylation of EphB2 was confirmed in vitro and in vivo as follows.
In an in vitro experiment, isolated brown preadipocytes were induced to differentiate into brown adipocytes, then SerpinA1 (300 μg/mL) was loaded and Western blot analysis was performed. As a result, the expression of EphB2 receptor was significantly higher in the SerpinA1-loaded group, and tyrosine phosphorylation of EphB2 receptor was also significantly enhanced in the SerpinA1-loaded group. The results are shown in FIG.
 インビボの実験では、WTとSerpinA1Tgマウスから取り出した褐色脂肪組織を用いて、ウエスタンブロット解析を行った。EphB2レセプターの発現は、SerpinA1Tgマウス群で有意に高く、さらに、EphB2レセプターのチロシンリン酸化も同様に、SerpinA1Tgマウス群で有意に増強されていた。結果を図17に示す。このことから、SerpinA1は褐色脂肪のEphB2レセプターの発現とリン酸化を増強することがわかった。 In in vivo experiments, Western blot analysis was performed using brown adipose tissue taken from WT and SerpinA1Tg mice. EphB2 receptor expression was significantly higher in the SerpinA1Tg mouse group, and tyrosine phosphorylation of the EphB2 receptor was also significantly enhanced in the SerpinA1Tg mouse group. The results are shown in FIG. From this, it was found that SerpinA1 enhances the expression and phosphorylation of EphB2 receptor in brown fat.
(実施例9)EphB2レセプターKOマウスでの検討
 成熟褐色脂肪細胞に対するSerpinA1のUCP1発現上昇作用がEphB2レセプターを介するかどうかを検証するため、CRISPR-Cas9の技術を用いて、EphB2レセプターをノックアウトした(EphB2レセプターKO)褐色脂肪前駆細胞株を樹立した。ウエスタンブロット解析によりに樹立細胞におけるEphB2レセプタータンパク質の発現を測定し、EphB2レセプター遺伝子がノックアウトされていることを確認した。EphB2レセプターKO褐色脂肪前駆細胞株を用い、OCRを指標として、ミトコンドリア活性の解析を行った。図18に示すように、SerpinA1負荷によるFCCP投与後の酸素消費速度の上昇は、EphB2レセプターのノックアウトにより減弱しており、最大呼吸能や予備呼吸能も減弱することがわかった。また、qPCRでUCP1のmRNA発現を解析した結果を図19に示す。SerpinA1負荷によるUCP1の発現上昇は、EphB2レセプターのノックアウトにより減弱することがわかった。これらのことより、SerpinA1の成熟褐色脂肪細胞に対するUCP1発現上昇作用はEphB2を介することが示唆された。
(Example 9) Study on EphB2 receptor KO mice In order to verify whether the effect of SerpinA1 to increase UCP1 expression on mature brown adipocytes is mediated by the EphB2 receptor, the EphB2 receptor was knocked out using CRISPR-Cas9 technology ( EphB2 receptor KO) brown adipose progenitor cell line was established. The expression of EphB2 receptor protein in the established cells was measured by Western blot analysis, and it was confirmed that the EphB2 receptor gene was knocked out. Mitochondrial activity was analyzed using the EphB2 receptor KO brown adipose progenitor cell line using OCR as an indicator. As shown in FIG. 18, it was found that the increase in oxygen consumption rate after FCCP administration due to SerpinA1 loading was attenuated by knockout of EphB2 receptor, and the maximum respiratory capacity and preliminary respiratory capacity were also attenuated. Furthermore, the results of analyzing UCP1 mRNA expression by qPCR are shown in FIG. 19. It was found that the increase in UCP1 expression caused by SerpinA1 loading was attenuated by knockout of the EphB2 receptor. These results suggested that the effect of SerpinA1 to increase UCP1 expression on mature brown adipocytes is mediated by EphB2.
(実施例10)褐色脂肪組織へのSerpinA1投与
 生体マウスの左右の肩甲骨の間の褐色脂肪組織(BAT)に、生理食塩水またはヒトSerpinA1リコンビナントタンパク(1mg)を投与して、寒冷刺激による褐色脂肪組織の熱産生能を評価した。結果を図20に示す。4℃の寒冷刺激後120分以降、SerpinA1投与マウスの直腸温は食塩水投与と比較して高く保たれていた。また、サーモグラフィーカメラによる観察でも、240分時点でのSerpinA1投与マウスの頸部のBATにおける熱産生が上昇していた。このことから、SerpinA1が、褐色脂肪組織で熱産生を促すことが示された。
(Example 10) SerpinA1 administration to brown adipose tissue Physiological saline or human SerpinA1 recombinant protein (1 mg) was administered to the brown adipose tissue (BAT) between the left and right shoulder blades of living mice, and the brown adipose tissue (BAT) was browned by cold stimulation. The thermogenic capacity of adipose tissue was evaluated. The results are shown in FIG. After 120 minutes after cold stimulation at 4°C, the rectal temperature of SerpinA1-administered mice remained higher than that of saline-administered mice. Furthermore, observation using a thermography camera also showed that heat production in the cervical BAT of SerpinA1-administered mice increased at 240 minutes. This indicates that SerpinA1 promotes thermogenesis in brown adipose tissue.
(実施例11)2型糖尿病や肥満のある患者における血清SerpinA1濃度の解析
 熊本大学の倫理委員会の承認を得て、外来通院中の2型糖尿病や肥満のあるメタボ患者における、血清中のSerpinA1濃度を検証した。結果を図21に示す。糖尿病の状態が悪い患者(HbA1cが高値)では、血清中のSerpinA1値が低く、HbA1c値とSerpinA1の逆相関が確認された。さらに、糖尿病の患者の肥満度(BMI)と血清中のSerpinA1濃度について解析した。その結果、BMIとSerpinA1の濃度が逆相関を示すことが確認できた。これらの結果から、SerpinA1は、慢性の代謝病の診断、病態把握のマーカーとしても有用であることが確認された。
(Example 11) Analysis of Serum SerpinA1 Concentration in Patients with Type 2 Diabetes and Obesity After obtaining approval from the Ethics Committee of Kumamoto University, serum SerpinA1 was analyzed in metabolic syndrome patients with type 2 diabetes and obesity who were visiting the outpatient clinic. The concentration was verified. The results are shown in FIG. SerpinA1 values in serum were low in patients with poor diabetes (high HbA1c values), and an inverse correlation between HbA1c values and SerpinA1 was confirmed. Furthermore, the body mass index (BMI) and serum SerpinA1 concentration of diabetic patients were analyzed. As a result, it was confirmed that BMI and SerpinA1 concentration showed an inverse correlation. These results confirmed that SerpinA1 is also useful as a marker for diagnosing chronic metabolic diseases and understanding pathological conditions.
(実施例12)SerA1KOマウスへの高脂肪食負荷による解析
 SerpinA1ノックアウト(SerA1KO)マウスに、5週齢から3ヶ月間高脂肪食を摂取させ、肥満、糖尿病モデル病態モデルとして解析を行なった。結果を図22に示す。WTと比較し、SerA1KOマウスでは有意な体重増加を認めた。また、高脂肪食負荷をしたSerA1KOマウスでは、皮下脂肪(iWAT)、内臓脂肪(eWAT)といった白色脂肪の重量の増加も観察された。
(Example 12) Analysis by loading SerA1KO mice with a high-fat diet SerpinA1 knockout (SerA1KO) mice were fed a high-fat diet for 3 months from the age of 5 weeks, and analyzed as a pathological model of obesity and diabetes. The results are shown in FIG. 22. A significant weight increase was observed in SerA1KO mice compared to WT. Furthermore, in SerA1KO mice fed a high-fat diet, an increase in the weight of white fat such as subcutaneous fat (iWAT) and visceral fat (eWAT) was also observed.
 本出願は、日本国で出願された特願2022-105460(出願日:2022年6月30日)を基礎としており、その内容はすべて本明細書に包含されるものとする。 This application is based on Japanese Patent Application No. 2022-105460 (filing date: June 30, 2022) filed in Japan, and the contents thereof are all included in this specification.
 上記の詳細な記載は、本発明の目的および対象を単に説明するものであり、添付の特許請求の範囲を限定するものではない。添付の特許請求の範囲から離れることなしに、記載された実施態様に対しての、種々の変更および置換は、本明細書に記載された教示より当業者にとって明らかである。 The above detailed description is merely illustrative of the purpose and subject matter of the invention and is not intended to limit the scope of the appended claims. Various modifications and substitutions to the described embodiments will be apparent to those skilled in the art from the teachings provided herein without departing from the scope of the appended claims.
 本発明により、新たな脂肪細胞の活性化剤が提供された。本発明の脂肪細胞活性剤は、肥満関連疾患を予防および/または治療するための医薬組成物として有用である。 The present invention provides a new adipocyte activator. The adipocyte activating agent of the present invention is useful as a pharmaceutical composition for preventing and/or treating obesity-related diseases.

Claims (23)

  1.  SerpinA1および/またはSerpinA1発現促進剤を含有する脂肪細胞の活性化剤であって、前記脂肪細胞は、褐色脂肪前駆細胞、褐色脂肪細胞、およびベージュ脂肪細胞から選ばれる脂肪細胞である脂肪細胞の活性化剤。 An activator for adipocytes containing SerpinA1 and/or a SerpinA1 expression promoter, wherein the adipocytes are adipocytes selected from brown adipocytes, brown adipocytes, and beige adipocytes. agent.
  2.  UCP1(脱共役蛋白質1)発現促進作用を有する請求項1に記載の脂肪細胞の活性化剤。 The adipocyte activator according to claim 1, which has an effect of promoting UCP1 (uncoupling protein 1) expression.
  3.  前記脂肪細胞は褐色脂肪前駆細胞であり、褐色脂肪前駆細胞の増殖促進作用を有する請求項1に記載の脂肪細胞の活性化剤。 The adipocyte activator according to claim 1, wherein the adipocytes are brown preadipocytes, and the adipocyte activator has an effect of promoting proliferation of brown preadipocytes.
  4.  前記脂肪細胞はベージュ脂肪細胞であり、白色脂肪細胞のベージュ化(白色脂肪細胞のベージュ脂肪細胞への分化転換)促進作用を有する請求項1に記載の脂肪細胞の活性化剤。 The adipocyte activator according to claim 1, wherein the adipocytes are beige adipocytes and have an effect of promoting beigeization of white adipocytes (transdifferentiation of white adipocytes into beige adipocytes).
  5.  前記SerpinA1は、哺乳動物の血漿から精製されたSerpinA1(α1-アンチトリプシン)である請求項1に記載の脂肪細胞の活性化剤。 The adipocyte activator according to claim 1, wherein the SerpinA1 is SerpinA1 (α1-antitrypsin) purified from mammalian plasma.
  6.  前記SerpinA1発現促進剤は、SerpinA1遺伝子の転写開始を促進する物質、SerpinA1遺伝子のmRNAの分解を阻害する物質、および該mRNAからSerpinA1タンパク質への転写を促進する物質からなる群より選ばれる物質、またはSerpinA1核酸構築物である請求項1に記載の脂肪細胞の活性化剤。 The SerpinA1 expression promoter is a substance selected from the group consisting of a substance that promotes transcription initiation of the SerpinA1 gene, a substance that inhibits degradation of mRNA of the SerpinA1 gene, and a substance that promotes transcription from the mRNA to SerpinA1 protein, or The adipocyte activator according to claim 1, which is a SerpinA1 nucleic acid construct.
  7.  SerpinA1のアゴニストを含有する脂肪細胞の活性化剤であって、前記脂肪細胞は、褐色脂肪前駆細胞、褐色脂肪細胞、およびベージュ脂肪細胞から選ばれる脂肪細胞である脂肪細胞の活性化剤。 An activator for adipocytes containing a SerpinA1 agonist, wherein the adipocytes are adipocytes selected from brown preadipocytes, brown adipocytes, and beige adipocytes.
  8.  前記SerpinA1のアゴニストは、EphB2レセプター(Ephrin type-B receptor 2)に結合し、かつ、(1)EphB2レセプターの発現および/またはリン酸化を増強する活性を有する、または(2)褐色脂肪細胞においてUCP1(脱共役蛋白質1)の発現を促進する活性を有する、のいずれかの活性を有する物質である、請求項7に記載の脂肪細胞の活性化剤。 The SerpinA1 agonist binds to EphB2 receptor (Ephrin type-B receptor 2) and has the activity of (1) enhancing expression and/or phosphorylation of EphB2 receptor, or (2) UCP1 in brown adipocytes. 8. The adipocyte activator according to claim 7, which is a substance having an activity of promoting the expression of (uncoupling protein 1).
  9.  前記SerpinA1のアゴニストは、低分子物質、高分子物質、核酸分子、タンパク質およびペプチドからなる群から選択される、請求項8に記載の脂肪細胞の活性化剤。 The adipocyte activator according to claim 8, wherein the SerpinA1 agonist is selected from the group consisting of low molecular weight substances, high molecular weight substances, nucleic acid molecules, proteins, and peptides.
  10.  脂肪組織での熱産生作用を亢進させる作用を有する請求項1~9のいずれか一つに記載の脂肪細胞の活性化剤。 The adipocyte activator according to any one of claims 1 to 9, which has the effect of enhancing thermogenic action in adipose tissue.
  11.  請求項1~9のいずれか一つに記載の脂肪細胞の活性化剤を含む、肥満および/または肥満関連疾患を予防および/または治療するための医薬組成物。 A pharmaceutical composition for preventing and/or treating obesity and/or obesity-related diseases, comprising the adipocyte activator according to any one of claims 1 to 9.
  12.  前記肥満関連疾患は、糖尿病、非アルコール性肝障害、高血圧、脂質異常症、心臓疾患、脳血管障害、脂肪肝、肥満関連腎臓病、および高尿酸血症からなる群より選ばれる疾患である請求項11に記載の医薬組成物。 The obesity-related disease is a disease selected from the group consisting of diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease, cerebrovascular disorder, fatty liver, obesity-related kidney disease, and hyperuricemia. Item 12. Pharmaceutical composition according to item 11.
  13.  SerpinA1発現促進剤を含んでなる、肥満および/または肥満関連疾患を予防および/または治療するための医薬組成物であって、前記SerpinA1発現促進剤が、SerpinA1遺伝子の転写開始を促進する物質、SerpinA1遺伝子のmRNAの分解を阻害する物質、該mRNAからSerpinA1タンパク質への転写を促進する物質からなる群より選ばれる物質、またはSerpinA1核酸構築物である医薬組成物。 A pharmaceutical composition for preventing and/or treating obesity and/or obesity-related diseases, comprising a SerpinA1 expression promoter, wherein the SerpinA1 expression promoter is a substance that promotes transcription initiation of the SerpinA1 gene, SerpinA1. A pharmaceutical composition that is a substance selected from the group consisting of a substance that inhibits degradation of gene mRNA, a substance that promotes transcription of the mRNA to SerpinA1 protein, or a SerpinA1 nucleic acid construct.
  14.  前記SerpinA1核酸構築物が、核酸ベクターに搭載された状態および/または脂質ナノ粒子中に包含された状態である請求項13に記載の医薬組成物。 The pharmaceutical composition according to claim 13, wherein the SerpinA1 nucleic acid construct is carried in a nucleic acid vector and/or included in a lipid nanoparticle.
  15.  前記肥満関連疾患は、糖尿病、非アルコール性肝障害、高血圧、脂質異常症、心臓疾患、脳血管障害、脂肪肝、肥満関連腎臓病、および高尿酸血症からなる群より選ばれる疾患である請求項13または14に記載の医薬組成物。 The obesity-related disease is a disease selected from the group consisting of diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease, cerebrovascular disorder, fatty liver, obesity-related kidney disease, and hyperuricemia. The pharmaceutical composition according to item 13 or 14.
  16.  肥満または肥満関連疾患を予防または治療するための薬物をスクリーニングする方法であって、SerpinA1の作用を促進する能力を指標として用いて、該能力を有する候補物質を、肥満または肥満関連疾患を予防または治療するための薬剤として特定することを特徴とする、方法。 A method of screening for drugs for preventing or treating obesity or obesity-related diseases, using the ability to promote the action of SerpinA1 as an indicator, and screening candidate substances having the ability to prevent or treat obesity or obesity-related diseases. A method, characterized in that it is identified as a drug for treatment.
  17.  前記指標は、SerpinA1遺伝子の発現を促進する能力であって、該SerpinA1遺伝子の発現を促進する能力は、SerpinA1遺伝子のmRNAの産生を促進する能力、SerpinA1遺伝子の転写開始を促進する能力、SerpinA1遺伝子のmRNAの分解を阻害する能力、および該mRNAからSerpinA1タンパク質への転写を促進する能力からなる群より選ばれる能力である、請求項16に記載の方法。 The index is the ability to promote the expression of the SerpinA1 gene, and the ability to promote the expression of the SerpinA1 gene includes the ability to promote the production of SerpinA1 gene mRNA, the ability to promote transcription initiation of the SerpinA1 gene, and the ability to promote the SerpinA1 gene expression. 17. The method according to claim 16, wherein the ability is selected from the group consisting of the ability to inhibit the degradation of mRNA of SerpinA1, and the ability to promote transcription of the mRNA to SerpinA1 protein.
  18.  前記指標は、EphB2レセプターに対するSerpinA1のアゴニストとしての作用である、請求項16に記載の方法。 17. The method according to claim 16, wherein the indicator is the action of SerpinA1 as an agonist on the EphB2 receptor.
  19.  前記SerpinA1のアゴニストとしての作用は、EphB2レセプターに結合し、かつ、(1)EphB2レセプターの発現および/またはリン酸化を増強する活性を有する、または(2)褐色脂肪細胞においてUCP1(脱共役蛋白質1)の発現を促進する活性を有する、のいずれかの活性を有することである、請求項18に記載の方法。 The agonist action of SerpinA1 binds to the EphB2 receptor and (1) has the activity of enhancing the expression and/or phosphorylation of the EphB2 receptor, or (2) has the activity of enhancing UCP1 (uncoupling protein 1) in brown adipocytes. 19. The method according to claim 18, wherein the method has any of the following activities.
  20.  前記候補物質が、低分子物質、高分子物質、核酸分子、タンパク質およびペプチドからなる群から選択される、請求項16~19にいずれか一つに記載の方法。 The method according to any one of claims 16 to 19, wherein the candidate substance is selected from the group consisting of a low molecular weight substance, a high molecular weight substance, a nucleic acid molecule, a protein, and a peptide.
  21.  スクリーニングされる薬剤が、脂肪分解亢進による肥満の改善、インスリン抵抗性の改善、またはベージュ脂肪細胞化による耐肥満性の獲得のために薬物である、請求項16~19のいずれか一つに記載の方法。 According to any one of claims 16 to 19, the drug to be screened is a drug for improving obesity by enhancing lipolysis, improving insulin resistance, or acquiring obesity resistance by turning into beige adipocytes. the method of.
  22.  スクリーニングされる薬剤が、肥満または肥満関連疾患を予防または治療するための薬物である、請求項21に記載の方法。 22. The method according to claim 21, wherein the drug to be screened is a drug for preventing or treating obesity or obesity-related diseases.
  23.  前記肥満関連疾患は、糖尿病、非アルコール性肝障害、高血圧、脂質異常症、心臓疾患、脳血管障害、脂肪肝、肥満関連腎臓病、および高尿酸血症からなる群より選ばれる疾患である請求項22に記載の方法。 The obesity-related disease is a disease selected from the group consisting of diabetes, non-alcoholic liver disease, hypertension, dyslipidemia, heart disease, cerebrovascular disorder, fatty liver, obesity-related kidney disease, and hyperuricemia. The method according to item 22.
PCT/JP2023/024246 2022-06-30 2023-06-29 Adipocyte activator WO2024005157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-105460 2022-06-30
JP2022105460 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024005157A1 true WO2024005157A1 (en) 2024-01-04

Family

ID=89382506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024246 WO2024005157A1 (en) 2022-06-30 2023-06-29 Adipocyte activator

Country Status (1)

Country Link
WO (1) WO2024005157A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502579A (en) * 2015-01-08 2018-02-01 アプセト ゲーエムベーハー アンド ツェーオー.カーゲー Genetically modified mesenchymal stem cells expressing α1-antitrypsin (AAT)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502579A (en) * 2015-01-08 2018-02-01 アプセト ゲーエムベーハー アンド ツェーオー.カーゲー Genetically modified mesenchymal stem cells expressing α1-antitrypsin (AAT)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA HONGXIA, LU YUANQING, LOWE KEITH, VAN DER MEIJDEN-ERKELENS LONNEKE, WASSERFALL CLIVE, ATKINSON MARK A., SONG SIHONG: "Regulated hAAT Expression from a Novel rAAV Vector and Its Application in the Prevention of Type 1 Diabetes", JOURNAL OF CLINICAL MEDICINE, MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE (MDPI), CH, vol. 8, no. 9, 28 August 2019 (2019-08-28), CH , pages 1321, XP093121895, ISSN: 2077-0383, DOI: 10.3390/jcm8091321 *
WEIR GORDON C, EHLERS MARIO R, HARRIS KRISTINA M, KANAPARTHI SAI, LONG ALICE, PHIPPARD DEBORAH, WEINER LIA J, JEPSON BRETT, MCNAMA: "Alpha-1 antitrypsin treatment of new-onset type 1 diabetes: An open-label, phase I clinical trial (RETAIN) to assess safety and pharmacokinetics", PEDIATRIC DIABETES, MUNKSGAARD, COPENHAGEN, DK, vol. 19, no. 5, 1 August 2018 (2018-08-01), DK , pages 945 - 954, XP093121894, ISSN: 1399-543X, DOI: 10.1111/pedi.12660 *

Similar Documents

Publication Publication Date Title
Jimenez et al. FGF21 gene therapy as treatment for obesity and insulin resistance
Tomita et al. Hepatic AdipoR2 signaling plays a protective role against progression of nonalcoholic steatohepatitis in mice
Yang et al. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-κB agonist Card9 by CK2
JP4351896B2 (en) Pharmaceutical composition for cancer treatment comprising p38 / JTV-1 as active ingredient and screening method for pharmaceutical composition for cancer treatment
Haupenthal et al. Reduced efficacy of the Plk1 inhibitor BI 2536 on the progression of hepatocellular carcinoma due to low intratumoral drug levels
KR102398039B1 (en) Selective gene therapy expression system
Tung et al. FTO is necessary for the induction of leptin resistance by high-fat feeding
Chen et al. miR-30a attenuates cardiac fibrosis in rats with myocardial infarction by inhibiting CTGF
EP1900374B1 (en) Angiogenetic agent containing adrenomedulin as the active ingredient
KR20210133227A (en) Interneuron-specific therapeutics to normalize neuronal cell excitability and treat Dravet syndrome
Lee et al. Intrathecal delivery of recombinant AAV1 encoding hepatocyte growth factor improves motor functions and protects neuromuscular system in the nerve crush and SOD1-G93A transgenic mouse models
JP2015503924A (en) Methods and compositions for gene transfer
WO2024005157A1 (en) Adipocyte activator
Xiao et al. A novel function of B‐cell translocation gene 1 (BTG1) in the regulation of hepatic insulin sensitivity in mice via c‐Jun
US11918632B2 (en) Pharmaceutical composition for diagnosing, preventing or treating liver cancer using SSU72 protein or a polynucleotide encoding the same
WO2007139120A1 (en) AMYLOID-β CLEARANCE ENHANCER
EP3914720B9 (en) Vgll4 with ucp-1 cis-regulatory element and method of use thereof
Yoshida et al. Serum‐dependence of AMPA receptor‐mediated proliferation in glioma cells
JP5290208B2 (en) Disease diagnosis method by molecular imaging using adenovirus carrying trans-splicing ribozyme
EP1909574A2 (en) Role of gax in alzheimer neurovascular dysfunction
US8404435B2 (en) Enigma-Mdm2 interaction and uses thereof
Li et al. DNMT3a-mediated methylation of TCF21/hnRNPA1 aggravates hepatic fibrosis by regulating the NF-κB signaling pathway
US11793862B2 (en) Pharmaceutical composition for treating non-alcoholic fatty liver, non-alcoholic steatohepatitis, or hepatic fibrosis using Ssu72 protein or a polynucleotide encoding the same
Park et al. Therapeutic potential of AAV-FL-klotho in obesity: Impact on weight loss and lipid metabolism in mice
JPWO2017195901A1 (en) Therapeutic agent for obesity related diseases by inhibiting the function of liver secretion type metabolic regulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831596

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)