WO2024004958A1 - Refrigerant volume measurement system and refrigerant-using system - Google Patents

Refrigerant volume measurement system and refrigerant-using system Download PDF

Info

Publication number
WO2024004958A1
WO2024004958A1 PCT/JP2023/023655 JP2023023655W WO2024004958A1 WO 2024004958 A1 WO2024004958 A1 WO 2024004958A1 JP 2023023655 W JP2023023655 W JP 2023023655W WO 2024004958 A1 WO2024004958 A1 WO 2024004958A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
amount
refrigeration cycle
measuring system
Prior art date
Application number
PCT/JP2023/023655
Other languages
French (fr)
Japanese (ja)
Inventor
龍三郎 矢嶋
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024004958A1 publication Critical patent/WO2024004958A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • refrigerant may be charged based on the difference between the initial charging amount of refrigerant in the refrigeration cycle device and the amount of refrigerant recovered at the time of repair.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2010-190545 discloses a refrigeration device that can detect a refrigerant shortage state by using a receiver tank that is internally connected to a refrigerant circuit.
  • the refrigeration device of Patent Document 1 displays an insufficient amount of refrigerant based on a refrigerant detection value by a liquid level detection unit of a receiver tank built into the device.
  • the refrigeration system of Patent Document 1 detects a refrigerant shortage state using a receiver tank that is internally connected to the refrigerant circuit.
  • the refrigerant flows into a receiver tank built into the device even during normal operation (such as air conditioning operation). Therefore, the refrigeration system of Patent Document 1 requires an amount of refrigerant corresponding to the volume of the receiver tank in addition to an amount of refrigerant corresponding to the existing refrigerant circuit. Further, the refrigeration device of Patent Document 1 causes a pressure loss of the refrigerant when the refrigerant passes through the receiver tank.
  • the present disclosure discloses a refrigerant that is externally connected to the refrigerant circuit of a refrigeration cycle device, does not cause an additional amount of refrigerant or pressure loss, and clarifies the amount of refrigerant leakage from the start of use of the refrigeration cycle device to its disposal.
  • the refrigerant amount measurement system includes a connection section, a storage section, a measurement section, and a storage section.
  • the connection part is connected to the first refrigerant circuit of the first refrigeration cycle device.
  • the storage section stores the refrigerant in the first refrigerant circuit via the connection section, and returns the stored refrigerant to the first refrigerant circuit via the connection section.
  • the measuring section measures the amount of refrigerant in the reservoir.
  • the storage unit stores measurement results measured by the measurement unit.
  • This refrigerant amount measuring system stores the refrigerant in the first refrigerant circuit in a storage section that is externally connected to the first refrigerant circuit.
  • the refrigerant amount measurement system measures the amount of refrigerant in the reservoir and stores the measurement results.
  • the refrigerant amount measuring system returns the stored refrigerant to the first refrigerant circuit from a storage section externally connected to the first refrigerant circuit. Therefore, the refrigerant amount measuring system can clarify the amount of refrigerant leaking from the first refrigerant circuit without causing an additional amount of refrigerant or pressure loss.
  • the refrigerant amount measuring system according to the second aspect is the refrigerant amount measuring system according to the first aspect, and the connecting portion includes a first pipe and a second pipe. Moreover, an on-off valve is provided in each of the first pipe and the second pipe.
  • connection part of this refrigerant amount measuring system has a first pipe and a second pipe. Therefore, the present refrigerant amount measuring system can be divided into a first pipe and a second pipe depending on the state of the refrigerant, and can be connected to the first refrigerant circuit. Moreover, an on-off valve is provided in each of the first pipe and the second pipe. Therefore, the present refrigerant amount measuring system can allow or block communication between the first pipe and the second pipe.
  • the refrigerant amount measuring system is the refrigerant amount measuring system according to the second aspect, and further includes a control section.
  • the control unit performs a first refrigerant amount measurement operation.
  • the first refrigerant amount measuring operation controls the first refrigeration cycle device and the on-off valve to transfer refrigerant from the first refrigerant circuit to the storage section, causes the measurement section to measure the amount of refrigerant, and transfers the refrigerant from the storage section to the storage section. 1 refrigerant circuit.
  • the control unit of this refrigerant amount measurement system performs a first refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system can reduce the effort required to clarify the amount of refrigerant leaking from the first refrigerant circuit.
  • the refrigerant amount measuring system according to the fourth aspect is the refrigerant amount measuring system according to the third aspect, and the connection part is also connected to the second refrigerant circuit of the second refrigeration cycle device.
  • the control unit further includes a third pipe and a fourth pipe each provided with an on-off valve.
  • the connection part is connected to the first refrigerant circuit by the first pipe and the second pipe, and connected to the second refrigerant circuit by the third pipe and the fourth pipe.
  • connection part of this refrigerant amount measuring system is also connected to the second refrigerant circuit of the second refrigeration cycle device. Therefore, this refrigerant amount measuring system can also clarify the amount of refrigerant leaking from the second refrigerant circuit.
  • the connection part of this refrigerant amount measuring system has a third pipe and a fourth pipe. Therefore, this refrigerant amount measuring system can be divided into a third pipe and a fourth pipe depending on the state of the refrigerant, and can be connected to the second refrigerant circuit.
  • an on-off valve is provided in each of the third pipe and the fourth pipe. Therefore, the present refrigerant amount measuring system can allow or block communication between the third pipe and the fourth pipe.
  • the refrigerant amount measuring system is the refrigerant amount measuring system according to the fourth aspect, in which the control section further performs a second refrigerant amount measuring operation.
  • the second refrigerant amount measuring operation controls the second refrigeration cycle device and the on-off valve to transfer the refrigerant from the second refrigerant circuit to the storage section, causes the measuring section to measure the amount of refrigerant, and transfers the refrigerant from the storage section to the storage section. This is an operation to return the refrigerant to the second refrigerant circuit.
  • the control unit of the present refrigerant amount measurement system further performs a second refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system can also reduce the effort required to clarify the amount of refrigerant leaking from the second refrigerant circuit.
  • the refrigerant amount measuring system according to the sixth aspect is the refrigerant amount measuring system according to the fifth aspect, in which the control unit performs the first refrigerant amount measuring operation and the second refrigerant amount measuring operation at different times.
  • the control unit of this refrigerant amount measurement system performs the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. Therefore, the present refrigerant amount measurement system can separate the amount of refrigerant leaked from the first refrigerant circuit and the amount of refrigerant leaked from the second refrigerant circuit, and clarify each.
  • the refrigerant amount measuring system according to the seventh aspect is the refrigerant amount measuring system according to the fifth or sixth aspect, in which the control unit controls the refrigerant amount measuring system according to the first aspect during the time period when the normal operation of the first refrigeration cycle device is stopped. Performs refrigerant amount measurement operation. Further, the control unit performs the second refrigerant amount measuring operation during a time period when the normal operation of the second refrigeration cycle device is stopped.
  • the control unit of the present refrigerant amount measuring system performs the first refrigerant amount measuring operation during the time period when the normal operation of the first refrigeration cycle device is stopped. Therefore, the present refrigerant amount measuring system is not affected by the normal operation of the first refrigeration cycle device, and can more clearly determine the amount of refrigerant leaking from the first refrigerant circuit. Further, the control unit performs the second refrigerant amount measuring operation during a time period when the normal operation of the second refrigeration cycle device is stopped. Therefore, the present refrigerant amount measuring system is not affected by the normal operation of the second refrigeration cycle device, and can more clearly determine the amount of refrigerant leaking from the second refrigerant circuit.
  • the refrigerant amount measuring system is the refrigerant amount measuring system according to any one of the fifth to seventh aspects, in which the control unit performs the first storage operation and the second storage operation.
  • the first storage operation is an operation to transfer the refrigerant from the first refrigerant circuit to the storage section when the refrigerant leaks from the first refrigerant circuit.
  • the second storage operation is an operation to transfer the refrigerant from the second refrigerant circuit to the storage section when the refrigerant leaks from the second refrigerant circuit.
  • the control unit of this refrigerant amount measurement system performs a first storage operation. Therefore, in the case where the refrigerant in the first refrigerant circuit leaks, the present refrigerant amount measuring system can store the refrigerant in the first refrigerant circuit in the storage section and suppress release of the refrigerant into the atmosphere. Further, the control unit of the present refrigerant amount measuring system performs a second storage operation. Therefore, in the case where the refrigerant in the second refrigerant circuit leaks, the present refrigerant amount measuring system can store the refrigerant in the second refrigerant circuit in the storage section and suppress release of the refrigerant into the atmosphere.
  • the refrigerant amount measuring system according to the ninth aspect is the refrigerant amount measuring system according to any one of the first to eighth aspects, in which the measuring section has an electrode rod.
  • the measuring section of this refrigerant amount measuring system has an electrode rod. Therefore, the present refrigerant amount measuring system can clarify the amount of refrigerant leakage using the electrode rod.
  • the refrigerant amount measuring system according to the tenth aspect is the refrigerant amount measuring system according to the ninth aspect, in which the measuring section further includes a cylindrical member surrounding the electrode rod.
  • the measuring section of the present refrigerant amount measuring system further includes a cylindrical member surrounding the electrode rod. Therefore, the present refrigerant amount measuring system can clarify the amount of refrigerant leakage using the cylindrical member.
  • the refrigerant amount measuring system is the refrigerant amount measuring system according to any one of the first to tenth aspects, and the measuring section is a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, or a static type.
  • the amount of refrigerant is measured by at least one of capacitance methods.
  • the measurement unit of this refrigerant amount measurement system measures the amount of refrigerant using at least one of the following methods: radio wave type, ultrasonic type, float type, pressure type, differential pressure type, and capacitance type. Therefore, the present refrigerant amount measuring system can further clarify the amount of refrigerant leakage based on various methods.
  • the refrigerant usage system includes the refrigerant amount measuring system according to any one of the first to eleventh aspects and a refrigeration cycle device.
  • This refrigerant usage system has a refrigerant amount measurement system and a refrigeration cycle device. Therefore, the present refrigerant-using system can clarify the amount of refrigerant leakage from the refrigeration cycle device included in the present refrigerant-using system.
  • FIG. 1 is a schematic configuration diagram showing a refrigerant usage system 1.
  • FIG. FIG. 2 is a control block diagram of a control unit 140.
  • FIG. FIG. 4 is a control block diagram of the arithmetic unit 470.
  • FIG. 4 is a schematic configuration diagram showing the flow of the refrigerant R in the first half of the operation of transferring the refrigerant R to the storage section 460.
  • FIG. 4 is a schematic configuration diagram showing the flow of the refrigerant R in the latter half of the operation of transferring the refrigerant R to the storage section 460. It is a schematic configuration diagram showing a storage section 460 in which refrigerant R is stored and an electrode rod 461.
  • FIG. 5 is a schematic configuration diagram showing the flow of refrigerant R in an operation of returning refrigerant R to refrigerant circulation path 150.
  • FIG. 5 is a schematic configuration diagram showing the flow of refrigerant R in an operation of returning refrigerant R to refrigerant circulation path 150.
  • FIG. FIG. 2 is a schematic configuration diagram showing the flow of refrigerant R in the first half of the first storage operation. It is a schematic block diagram which showed the flow of the refrigerant
  • FIG. 4 is a schematic configuration diagram showing a storage section 460, an electrode rod 461, and a cylindrical member 462.
  • FIG. 12A is a sectional view showing the A section in FIG. 12A.
  • FIG. 1 is a schematic configuration diagram showing a refrigerant usage system 1. As shown in FIG. 1
  • the refrigerant usage system 1 includes a first refrigeration cycle device 100A, a second refrigeration cycle device 100B, and a refrigerant amount measurement system 4.
  • the refrigerant amount measurement system 4 measures the amount of refrigerant R in the first refrigeration cycle device 100A and the second refrigeration cycle device 100B.
  • the first refrigeration cycle device 100A is communicated with the refrigerant amount measuring system 4 through a first pipe 410 and a second pipe 420.
  • the second refrigeration cycle device 100B is communicated with the refrigerant amount measuring system 4 through a third pipe 430 and a fourth pipe 440.
  • the first refrigeration cycle device 100A and the control unit 140a of the refrigerant amount measurement system 4 are electrically connected.
  • the second refrigeration cycle device 100B and the control unit 140b of the refrigerant amount measuring system 4 are electrically connected.
  • FIG. 1 shows a state in which the refrigerant amount measuring system 4 is attached to the first refrigeration cycle device 100A and the second refrigeration cycle device 100B.
  • the number of refrigeration cycle devices 100 included in the refrigerant usage system 1 is not limited to two, and may be one, or three or more.
  • the first refrigeration cycle device 100A and the second refrigeration cycle device 100B have similar equipment and have similar functions. For this reason, below, in the description common to the first refrigeration cycle apparatus 100A and the second refrigeration cycle apparatus 100B, they will be described as the refrigeration cycle apparatus 100. In explanations where it is necessary to distinguish between the first refrigeration cycle apparatus 100A and the second refrigeration cycle apparatus 100B, "A" or "B" is added to the reference numerals of the devices constituting each to distinguish them.
  • control unit 140a and the control unit 140b have similar equipment and have similar functions. Therefore, in the following description, the control unit 140a and the control unit 140b will be described as the control unit 140. In explanations where it is necessary to distinguish between the control unit 140a and the control unit 140b, “a” or “b” is added to the reference numerals of devices constituting the respective units to distinguish them.
  • the refrigeration cycle device 100 is an air conditioner that cools and heats an air-conditioned space (not shown) using a vapor compression type refrigeration cycle.
  • the refrigeration cycle device 100 includes an indoor unit 110, an outdoor unit 120, a gas side communication pipe 131, and a liquid side communication pipe 132.
  • the refrigeration cycle device 100 is a multi-type air conditioner for buildings that includes two indoor units 110.
  • the number of indoor units 110 that the refrigeration cycle device 100 has is not limited to two, but may be one, or three or more.
  • the indoor unit 110 has an indoor refrigerant flow path 111
  • the outdoor unit 120 has an outdoor refrigerant flow path 121.
  • the indoor refrigerant flow path 111, the outdoor refrigerant flow path 121, the gas side communication pipe 131, and the liquid side communication pipe 132 form a refrigerant circulation path 150.
  • the refrigerant circulation path 150 of the first refrigeration cycle device 100A is an example of a first refrigerant circuit.
  • the refrigerant circulation path 150 of the second refrigeration cycle device 100B is an example of a second refrigerant circuit.
  • the refrigerant circulation path 150 is filled with refrigerant R.
  • the refrigerant R filled in the refrigerant circulation path 150 is, but is not limited to, a fluorocarbon refrigerant R, such as R32 or R410A, which has a slightly flammable property (A2L).
  • the refrigerant R may be flammable or toxic.
  • the refrigeration cycle device 100 is not limited to an air conditioner, and may be, for example, a refrigerator, a freezer, a water heater, a floor heating device, or the like.
  • the indoor unit 110 is installed in a space to be air-conditioned.
  • the indoor unit 110 has an indoor refrigerant flow path 111 and a detection section 116.
  • the indoor refrigerant flow path 111 constitutes a part of the refrigerant circulation path 150.
  • Indoor refrigerant flow path 111 is formed by connecting indoor heat exchanger 112 and indoor expansion mechanism 113 via refrigerant piping.
  • the indoor heat exchanger 112 performs heat exchange between the refrigerant R flowing inside the indoor heat exchanger 112 and the air in the air-conditioned space.
  • the indoor heat exchanger 112 functions as an evaporator for refrigerant during cooling operation, and functions as a radiator for refrigerant R during heating operation.
  • One end of the indoor heat exchanger 112 is connected to a gas side connection part 114 via a refrigerant pipe.
  • the other end of the indoor heat exchanger 112 is connected to the indoor expansion mechanism 113 via a refrigerant pipe.
  • the indoor expansion mechanism 113 adjusts the pressure and flow rate of the refrigerant R flowing through the refrigerant circulation path 150.
  • the indoor expansion mechanism 113 is an electronic expansion valve whose opening degree is adjusted by an actuator (not shown).
  • Indoor expansion mechanism 113 is connected to indoor heat exchanger 112 and liquid side connection section 115 via refrigerant piping. The opening degree of the indoor expansion mechanism 113 is controlled by the control unit 140.
  • the gas side connection part 114 is one end of the indoor refrigerant flow path 111.
  • the gas side connection part 114 is connected to the gas side communication pipe 131.
  • the liquid side connection part 115 is the other end of the indoor refrigerant flow path 111.
  • the liquid side connection part 115 is connected to the liquid side communication pipe 132.
  • the detection unit 116 detects leakage of the refrigerant R from the refrigerant circulation path 150.
  • the detection unit 116 is installed inside a casing (not shown) of the indoor unit 110.
  • the detection unit 116 is not limited to any form as long as it can detect leakage of the refrigerant R from the refrigerant circulation path 150, and may be a sensor that detects the refrigerant R, or may be a sensor that detects the temperature inside the casing of the indoor unit 110 or the temperature of the piping. Leakage of the refrigerant R may be detected based on a sudden change.
  • the detection unit 116 transmits a signal indicating the leakage of the refrigerant R to the control unit 140.
  • the outdoor unit 120 is placed outside the air-conditioned space.
  • the outdoor unit 120 is installed, for example, on the roof of the building where the refrigeration cycle device 100 is installed or adjacent to the building.
  • the outdoor unit 120 has an outdoor refrigerant flow path 121, a gas side branch pipe 128, and a liquid side branch pipe 129.
  • the outdoor refrigerant flow path 121 constitutes a part of the refrigerant circulation path 150.
  • the outdoor refrigerant flow path 121 includes a first compressor 122, an outdoor heat exchanger 123, an outdoor expansion mechanism 124, a flow path switching mechanism 125, a gas side connection section 126, and a liquid side connection section 127, which are refrigerant pipes. 121a.
  • the refrigerant pipe 121a includes a first refrigerant pipe 121b, a second refrigerant pipe 121c, and a third refrigerant pipe 121d.
  • the first compressor 122 sucks the low-pressure refrigerant R in the refrigeration cycle from the suction pipe 122a, compresses the refrigerant R with a compression mechanism (not shown), and discharges the compressed refrigerant R to the discharge pipe 122b.
  • the operation of the first compressor 122 is controlled by the control unit 140.
  • the outdoor heat exchanger 123 performs heat exchange between the refrigerant R flowing inside the outdoor heat exchanger 123 and the air (heat source air) at the location where the outdoor unit 120 is installed.
  • the outdoor heat exchanger 123 functions as a radiator for refrigerant R during cooling operation, and functions as an evaporator for refrigerant R during heating operation.
  • One end of the outdoor heat exchanger 123 is connected to a flow path switching mechanism 125 via a refrigerant pipe.
  • the other end of the outdoor heat exchanger 123 is connected to the outdoor expansion mechanism 124 via a refrigerant pipe.
  • the outdoor expansion mechanism 124 adjusts the pressure and flow rate of the refrigerant R flowing through the refrigerant circulation path 150.
  • the outdoor expansion mechanism 124 is an electronic expansion valve whose opening degree is adjusted by an actuator (not shown).
  • the opening degree of the indoor expansion mechanism 113 is controlled by the control unit 140.
  • the outdoor expansion mechanism 124 is connected to the outdoor heat exchanger 123 and the liquid side connection part 127 via a refrigerant pipe.
  • the flow path switching mechanism 125 changes the state of the refrigerant circulation path 150 between the first state and the second state by switching the flow direction of the refrigerant R.
  • the outdoor heat exchanger 123 functions as a radiator for the refrigerant R
  • the indoor heat exchanger 112 functions as an evaporator for the refrigerant R.
  • the outdoor heat exchanger 123 functions as an evaporator for the refrigerant R
  • the indoor heat exchanger 112 functions as a radiator for the refrigerant R.
  • the flow path switching mechanism 125 is controlled by the control section 140. In this embodiment, the flow path switching mechanism 125 is a four-way switching valve.
  • the flow path switching mechanism 125 is not limited to a four-way switching valve.
  • the flow path switching mechanism 125 may be configured by combining a plurality of electromagnetic valves and refrigerant pipes so as to realize switching of the flow direction of the refrigerant R as described below.
  • the flow path switching mechanism 125 sets the state of the refrigerant circulation path 150 to the first state. In other words, during cooling operation, the flow path switching mechanism 125 communicates the suction pipe 122a with the gas side connection part 126, and communicates the discharge pipe 122b with the outdoor heat exchanger 123 (inside the flow path switching mechanism 125 in FIG. ).
  • the flow path switching mechanism 125 sets the state of the refrigerant circulation path 150 to the second state. In other words, during heating operation, the flow path switching mechanism 125 communicates the suction pipe 122a with the outdoor heat exchanger 123, and communicates the discharge pipe 122b with the gas side connection part 126 (inside the flow path switching mechanism 125 in FIG. (see solid line).
  • the gas side connection part 126 is one end of the outdoor refrigerant flow path 121.
  • a gas side communication pipe 131 is connected to the gas side connecting portion 126 .
  • the liquid side connection part 127 is the other end of the outdoor refrigerant flow path 121.
  • the liquid side connecting portion 127 is connected to the liquid side communication pipe 132 .
  • the first refrigerant pipe 121b connects the flow path switching mechanism 125 and the gas side connection part 126.
  • the second refrigerant pipe 121c connects the outdoor heat exchanger 123 and the outdoor expansion mechanism 124.
  • the third refrigerant pipe 121d connects the outdoor expansion mechanism 124 and the liquid side connection part 127.
  • the gas side branch pipe 128 is a pipe that communicates the first refrigerant pipe 121b and the refrigerant amount measurement system 4.
  • one end of the gas side branch pipe 128 is connected to the first refrigerant pipe 121b.
  • the other end of the gas side branch pipe 128 communicates with the first pipe 410 or the third pipe 430.
  • the liquid side branch pipe 129 is a pipe that communicates the second refrigerant pipe 121c and the refrigerant amount measurement system 4.
  • one end of the liquid side branch pipe 129 is connected to the second refrigerant pipe 121c.
  • the other end of the liquid side branch pipe 129 communicates with the second pipe 420 or the fourth pipe 440.
  • (2-1-3) Gas side communication pipe and liquid side communication pipe The gas side communication pipe 131 and the liquid side communication pipe 132 connect the indoor refrigerant flow path 111 and the outdoor refrigerant flow path 121.
  • the gas side communication pipe 131 is connected to the gas side connection portion 114 of the indoor refrigerant flow path 111 and the gas side connection portion 126 of the outdoor refrigerant flow path 121.
  • the indoor refrigerant flow path 111 is connected to the liquid side connection portion 115 of the indoor refrigerant flow path 111 and the liquid side connection portion 127 of the outdoor refrigerant flow path 121.
  • the refrigerant amount measuring system 4 is a system that stores the refrigerant R of the refrigeration cycle device 100, measures the amount of the refrigerant R, and returns the refrigerant R to the refrigeration cycle device 100.
  • the refrigerant amount measuring system 4 includes an on-off valve 230, a first pipe 410, a second pipe 420, a third pipe 430, a fourth pipe 440, a gas side pipe 451, a liquid side pipe 452, a storage section 460, an electrode rod 461, and a calculation unit. It has a device 470 and a control section 140.
  • the on-off valve 230, the first pipe 410, the second pipe 420, the third pipe 430, and the fourth pipe 440 constitute the connecting portion 400.
  • the electrode rod 461 and the measurement calculation section 471 constitute the measurement section 401.
  • the refrigerant amount measuring system 4 is externally connected to the first refrigeration cycle apparatus 100A through a first pipe 410 and a second pipe 420. Further, the refrigerant amount measuring system 4 is externally connected to the second refrigeration cycle apparatus 100B through a third pipe 430 and a fourth pipe 440.
  • the number of refrigeration cycle devices 100 connected to the refrigerant amount measuring system 4 is not limited to two, and may be one, or three or more.
  • the storage unit 460 is a cylindrical container that stores the refrigerant R in the refrigerant circulation path 150 by a refrigerant amount measurement operation that will be described later.
  • the storage section 460 is connected to the refrigeration cycle apparatus 100 via a gas side pipe 451 and a liquid side pipe 452, and a first pipe 410, a second pipe 420, a third pipe 430, and a fourth pipe 440.
  • the storage section 460 is not limited to a cylindrical container, and may be a container of another shape that can store the refrigerant R.
  • the gas side piping 451 is a piping for communicating the first pipe 410 and the third pipe 430 with the storage section 460. One end of the gas side pipe 451 is connected to the storage section 460. The other end of the gas side pipe 451 is connected to the gas side branch pipe 128 via the first pipe 410 or the third pipe 430.
  • the liquid side pipe 452 is a pipe for communicating the second pipe 420 and the fourth pipe 440 with the storage section 460. One end of the liquid side pipe 452 is connected to the storage section 460. The other end of the liquid side pipe 452 is connected to the liquid side branch pipe 129 via the second pipe 420 or the fourth pipe 440.
  • connection portion 400 communicates the refrigerant circulation path 150 of the refrigeration cycle device 100 with the storage portion 460.
  • the connecting portion 400 includes an on-off valve 230, a first pipe 410, a second pipe 420, a third pipe 430, and a fourth pipe 440.
  • the first pipe 410 is a pipe that communicates the gas side branch pipe 128A of the first refrigeration cycle device 100A with the gas side pipe 451.
  • One end of the first pipe 410 is connected to the gas side branch pipe 128A of the first refrigeration cycle apparatus 100A.
  • the other end of the first pipe 410 is connected to a gas side pipe 451.
  • the second pipe 420 is a pipe that communicates the liquid side branch pipe 129A of the first refrigeration cycle device 100A with the liquid side pipe 452.
  • One end of the second pipe 420 is connected to the liquid side branch pipe 129A of the first refrigeration cycle device 100A.
  • the other end of the second pipe 420 is connected to the liquid side pipe 452.
  • the third pipe 430 is a pipe that communicates the gas side branch pipe 128B and the gas side pipe 451 of the second refrigeration cycle device 100B. One end of the third pipe 430 is connected to the gas side branch pipe 128B of the second refrigeration cycle device 100B. The other end of the third pipe 430 is connected to the gas side pipe 451.
  • the fourth pipe 440 is a pipe that communicates the liquid side branch pipe 129B and the liquid side pipe 452 of the second refrigeration cycle device 100B. One end of the fourth pipe 440 is connected to the liquid side branch pipe 129B of the second refrigeration cycle device 100B. The other end of the fourth pipe 440 is connected to the liquid side pipe 452.
  • the on-off valve 230 is provided in the first pipe 410, the second pipe 420, the third pipe 430, and the fourth pipe 440.
  • the on-off valves 230 included in the refrigerant amount measuring system 4 include an on-off valve 230a, an on-off valve 230b, an on-off valve 230c, and an on-off valve 230d.
  • Opening/closing valve 230a The on-off valve 230a is provided in the first pipe 410.
  • the on-off valve 230a allows or blocks communication with the first pipe 410.
  • the on-off valve 230a is an electromagnetic on-off valve, and its opening and closing are controlled by the control unit 140a.
  • Opening/closing valve 230b The on-off valve 230b is provided in the second pipe 420.
  • the on-off valve 230b allows or blocks communication with the second pipe 420.
  • the on-off valve 230b is an electromagnetic on-off valve, and its opening and closing are controlled by the control unit 140a.
  • Opening/closing valve 230c The on-off valve 230c is provided in the third pipe 430.
  • the on-off valve 230c allows or blocks communication with the third pipe 430.
  • the on-off valve 230c is an electromagnetic on-off valve, and its opening and closing are controlled by the control section 140b.
  • control unit 140 controls the operation of each unit constituting the refrigeration cycle device 100 and the refrigerant amount measuring system 4.
  • the control unit 140 can exchange control signals and information with the indoor expansion mechanism 113, the detection unit 116, the first compressor 122, the outdoor expansion mechanism 124, the flow path switching mechanism 125, the on-off valve 230, and the arithmetic unit 470. electrically connected to.
  • FIG. 2 is a control block diagram of the control unit 140.
  • the control unit 140 is installed outside the refrigeration cycle device 100.
  • the control unit 140 may be provided inside the casing of the outdoor unit 120 or in a server remote from the refrigeration cycle device 100.
  • the control unit 140 controls the operation of each part constituting the refrigeration cycle device 100 and the refrigerant amount measurement system 4, and executes air conditioning operation and refrigerant amount measurement operation.
  • Air conditioning operation includes cooling operation and heating operation.
  • the refrigerant amount measuring operation includes a first refrigerant amount measuring operation and a second refrigerant amount measuring operation.
  • the refrigerant amount measurement operation is an operation in which the refrigerant R is transferred from the refrigerant circulation path 150 to the storage section 460, the measurement section 401 measures the amount of the refrigerant R, and the refrigerant R is returned from the storage section 460 to the refrigerant circulation path 150.
  • the first refrigeration cycle device 100A is connected to the control section 140a.
  • the second refrigeration cycle device 100B is connected to the control section 140b.
  • the control unit 140a and the control unit 140b are electrically connected to each other. Since the control unit 140a and the control unit 140b cooperate with each other to execute air conditioning operation and refrigerant amount measurement operation, the control unit 140a and the control unit 140b are hereinafter collectively referred to as the control unit 140.
  • the control unit 140 switches the flow path switching mechanism 125 as indicated by the broken line in FIG. 1 so that the state of the refrigerant circulation path 150 becomes the first state described above. state, and the first compressor 122 is operated.
  • the low pressure gas refrigerant in the refrigeration cycle is compressed and becomes the high pressure gas refrigerant in the refrigeration cycle.
  • the high-pressure gas refrigerant is sent to the outdoor heat exchanger 123 via the flow path switching mechanism 125, exchanges heat with the heat source air, and condenses to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is sent to the indoor unit 110 via the fully opened indoor expansion mechanism 113 and the liquid side communication pipe 132.
  • the refrigerant R in a gas-liquid two-phase state sent to the indoor unit 110 is reduced in pressure to near the suction pressure of the first compressor 122 in the indoor expansion mechanism 113 whose opening degree is restricted, and becomes the refrigerant R in a gas-liquid two-phase state. Then, it is sent to the indoor heat exchanger 112.
  • the gas-liquid two-phase refrigerant R exchanges heat with the air in the air-conditioned space in the indoor heat exchanger 112 and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the outdoor unit 120 via the gas side communication pipe 131, and is sucked into the first compressor 122 again via the flow path switching mechanism 125.
  • the temperature of the air supplied to the indoor heat exchanger 112 decreases by exchanging heat with the refrigerant R flowing through the indoor heat exchanger 112.
  • the air cooled by the indoor heat exchanger 112 is blown out into the air-conditioned space.
  • the control unit 140 switches the flow path switching mechanism 125 as shown by the solid line in FIG. 1 so that the state of the refrigerant circulation path 150 becomes the second state described above. state, and the first compressor 122 is operated.
  • the low pressure gas refrigerant in the refrigeration cycle is compressed and becomes the high pressure gas refrigerant in the refrigeration cycle.
  • the high-pressure gas refrigerant is sent to the indoor unit 110 via the flow path switching mechanism 125 and the gas side communication pipe 131.
  • the refrigerant R sent to the indoor unit 110 is sent to the indoor heat exchanger 112, where it exchanges heat with the air in the air-conditioned space, condenses, and becomes a high-pressure liquid refrigerant.
  • the temperature of the air supplied to the indoor heat exchanger 112 increases by exchanging heat with the refrigerant R flowing through the indoor heat exchanger 112.
  • the air heated by the indoor heat exchanger 112 is blown out into the air-conditioned space.
  • the high-pressure liquid refrigerant flowing out of the indoor heat exchanger 112 is sent to the outdoor unit 120 via the fully opened indoor expansion mechanism 113 and the liquid side communication pipe 132.
  • the refrigerant R sent to the outdoor unit 120 is depressurized to near the suction pressure of the first compressor 122 in the outdoor expansion mechanism 124 whose opening degree is restricted, and becomes a gas-liquid two-phase refrigerant R and sent to the outdoor heat exchanger 123. It will be done.
  • the gas-liquid two-phase refrigerant R exchanges heat with the heat source air in the outdoor heat exchanger 123 and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sucked into the first compressor 122 again via the flow path switching mechanism 125.
  • the control unit 140 is realized by a computer.
  • the control unit 140 includes a control calculation device and a storage device (both not shown).
  • a processor such as a CPU or a GPU can be used as the control calculation device.
  • the control arithmetic device reads a program stored in the storage device, and performs predetermined image processing and arithmetic processing according to this program. Furthermore, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to the program.
  • the storage device can be used as a database. Specific functions realized by the control unit 140 will be described later.
  • control unit 140 described here is only an example, and the functions of the control unit 140 described below may be realized by software or hardware, or by a combination of software and hardware. It may be realized by
  • the arithmetic device 470 is a device that performs arithmetic operations related to measuring the amount of refrigerant R in the storage section 460, and records and stores the measurement results in the storage section 472.
  • FIG. 3 is a control block diagram of the arithmetic unit 470.
  • the calculation device 470 includes a measurement calculation section 471 and a storage section 472.
  • Arithmetic device 470 is electrically connected to electrode rod 461 and control section 140 .
  • Arithmetic device 470 is controlled by control section 140.
  • the arithmetic device 470 may be installed near the location where the storage section 460 is installed, in a building where the refrigeration cycle device 100 or the storage section 460 is installed, in a server remote from the refrigeration cycle device 100, or the like.
  • the measurement calculation section 471 and the storage section 472 may be provided at different locations.
  • the arithmetic unit 470 is realized by a computer.
  • the arithmetic device 470 includes a control arithmetic device and a storage device (both not shown).
  • a processor such as a CPU or a GPU can be used as the control calculation device.
  • the control arithmetic device reads a program stored in the storage device, and performs predetermined image processing and arithmetic processing according to this program. Furthermore, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to the program.
  • the storage device can be used as a database.
  • the configuration of the arithmetic device 470 described here is only an example, and the functions of the arithmetic device 470 described below may be realized by software or hardware, or by a combination of software and hardware. It may be realized by
  • the measurement calculation unit 471 performs calculations related to measuring the amount of refrigerant R in the storage unit 460, and records the measurement results in the storage unit 472.
  • the measurement calculation section 471 is electrically connected to the electrode rod 461 and the control section 140.
  • the measurement calculation section 471 is controlled by the control section 140. The detailed operation of the measurement calculation section 471 will be described later.
  • the storage unit 472 is a storage device that stores the measurement results of the amount of refrigerant R in the storage unit 460.
  • the storage section 472 is electrically connected to the measurement calculation section 471 and the control section 140.
  • the storage unit 472 is controlled by the control unit 140.
  • the refrigerant amount measurement operation is performed by transferring refrigerant R from the refrigerant circulation path 150 to the storage section 460, having the measuring section 401 measure the amount of refrigerant R, and circulating the refrigerant R from the storage section 460. This is an operation to return the path 150 to the path 150.
  • the refrigerant amount measurement operation measures the amount of refrigerant charged in the refrigeration cycle device at each point in time from the start of use to the time of disposal. This operation is performed to clarify the leakage amount of refrigerant R from the refrigerant filling amount and the difference between the refrigerant filling amount at the start of use and at each time point.
  • the refrigerant amount measuring operation includes a first refrigerant amount measuring operation and a second refrigerant amount measuring operation.
  • the first refrigerant amount measurement operation is to transfer refrigerant R from the refrigerant circulation path 150 of the first refrigeration cycle device 100A to the storage section 460, and transfer the refrigerant R to the measurement section 401. This is an operation in which the amount of refrigerant R is measured and the refrigerant R is returned from the storage section 460 to the refrigerant circulation path 150 of the first refrigeration cycle device 100A.
  • the first refrigerant amount measuring operation will be explained by dividing into an operation of transferring the refrigerant R to the storage section 460, an operation of causing the measuring section 401 to measure the amount of the refrigerant R, and an operation of returning the refrigerant R to the refrigerant circulation path 150. .
  • the first half of the operation of transferring the refrigerant R to the storage section 460 is an operation of mainly storing liquid refrigerant of the refrigerant R in the refrigerant circulation path 150.
  • FIG. 4 is a schematic configuration diagram showing the flow of the refrigerant R in the first half of the operation of transferring the refrigerant R to the storage section 460.
  • the control section 140a opens the indoor expansion mechanism 113A for all indoor units 110A. Further, for the outdoor unit 120A, the control unit 140a sets the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A to the closed state, sets the flow path switching mechanism 125A to the first state, and operates the first compressor 122 (On). . Further, in the refrigerant amount measuring system 4, the control unit 140a opens the on-off valve 230b and closes the on-off valves 230 other than the on-off valve 230b. Specifically, the control unit 140a closes the on-off valve 230a, the on-off valve 230c, and the on-off valve 230d.
  • the refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A, and then passes through the flow path switching mechanism 125A and the outdoor heat exchanger 123A.
  • the refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A.
  • the refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230b of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
  • the control section 140a executes the first half of the operation of transferring the refrigerant R to the storage section 460 for a preset predetermined time T1
  • the control section 140a finishes the first half of the operation of transferring the refrigerant R to the storage section 460 and stores the refrigerant R.
  • the second half of the operation of transferring the data to the storage section 460 is started.
  • the predetermined time T1 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150A to be stored in the storage section 460.
  • the second half of the operation of transferring the refrigerant R to the storage section 460 mainly uses the refrigerant R that is not completely stored in the storage section 460 even after performing the first half of the operation of transferring the refrigerant R to the storage section 460 and remains in the outdoor refrigerant flow path 121.
  • This is an operation for storing gas refrigerant in the storage section 460.
  • FIG. 5 is a schematic configuration diagram showing the flow of the refrigerant R in the latter half of the operation of transferring the refrigerant R to the storage section 460.
  • control section 140a opens the on-off valve 230a for the storage section 460.
  • the state of operation in the first half of the operation of transferring the refrigerant R to the storage section 460 is maintained.
  • the refrigerant R that has flowed into the first pipe 410 is sent to the outdoor refrigerant flow path 121A, passes through the flow path switching mechanism 125A, and is sucked by the first compressor 122A.
  • the refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A and passes through the outdoor heat exchanger 123A.
  • the refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A.
  • the refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and returns to the storage section 460.
  • the control unit 140a executes the second half of the operation of transferring the refrigerant R to the storage unit 460 for a preset predetermined time T2
  • the control unit 140a ends the second half of the operation of transferring the refrigerant R to the storage unit 460.
  • the predetermined time T2 is set, for example, to a length that allows the refrigerant R remaining in the refrigerant circulation path 150A to be recovered to the storage section 460 after the first half of the operation of transferring the refrigerant R to the storage section 460 is performed.
  • the operation for causing the measurement unit 401 to measure the amount of refrigerant R is the operation for causing the measurement unit 401 to measure the amount of refrigerant R stored in the storage unit 460. It is.
  • the control unit 140a causes the measuring unit 401 to measure the amount of the refrigerant R when a preset predetermined time T3 has elapsed from the time when the second half of the operation of transferring the refrigerant R to the storage unit 460 is completed. .
  • FIG. 6 is a schematic configuration diagram showing a storage section 460 in which refrigerant R is stored and an electrode rod 461.
  • the capacitance C is determined by the distance X between the electrode rod 461 and the storage section 460, the dielectric constant ⁇ of air and refrigerant R, and the electrode area S.
  • the positional relationship between the electrode rod 461 and the storage section 460 does not change. Therefore, the distance X between the electrode rod 461 and the storage section 460 is a fixed value.
  • the dielectric constants ⁇ of the air and the refrigerant R are also fixed values.
  • the dielectric constant ⁇ of air is 1.00059.
  • the dielectric constant ⁇ is 14.27.
  • the dielectric constant ⁇ is 7.88.
  • the capacitance C varies depending on the electrode area S.
  • the width d of the cylindrical storage portion 460 is a fixed value. Therefore, the electrode area S is proportional to the liquid level height h of the refrigerant R.
  • FIG. 7 is a diagram showing the relationship between the capacitance C and the liquid level h of the refrigerant R depending on the temperature.
  • the dielectric constant ⁇ of the refrigerant R decreases as the temperature increases, and increases as the temperature decreases.
  • the liquid level h of the refrigerant R can be calculated, and the amount of refrigerant can be calculated.
  • the distance X, the width d, the dielectric constant ⁇ of the air and the refrigerant R associated with the temperature, and the like are recorded in advance.
  • the control unit 140a When the operation of causing the measurement unit 401 to measure the amount of refrigerant R is executed, the control unit 140a causes the electrode rod 461 to measure the capacitance C in the storage unit 460 via the measurement calculation unit 471. Further, the control unit 140a causes a thermometer (not shown) to measure the temperature of the refrigerant R.
  • the measurement calculation unit 471 compares the measured temperature of the refrigerant R with the dielectric constant ⁇ of the air and the refrigerant R associated with the temperature recorded in the storage unit 472, and calculates the dielectric constant ⁇ of the air and the refrigerant R. demand.
  • the measurement calculation unit 471 calculates the liquid level height of the refrigerant R based on the measured capacitance C, the distance X and width d recorded in the storage unit 472, and the determined dielectric constant ⁇ of the air and refrigerant R. Find h and the amount of refrigerant R.
  • the measurement calculation unit 471 records the determined amount of refrigerant R in the storage unit 472.
  • the measurement calculation unit 471 may transmit the determined amount of refrigerant R to the control unit 140a.
  • the measurement calculation unit 471 may calculate the dielectric constant ⁇ of air as 1 regardless of changes in temperature.
  • the refrigerant amount measurement system 4 measures the amount of refrigerant R based on the temperature of refrigerant R measured by a thermometer. Therefore, the refrigerant amount measurement system 4 can accurately determine the amount of refrigerant R even if the temperature changes.
  • the measurement calculation unit 471 may perform calculation processing to determine the difference between the measured amount of refrigerant and the amount of refrigerant charged at the start of use. In this case, the amount of refrigerant charged at the time of start of use is recorded in advance in the storage unit 472. The measurement calculation unit 471 performs calculation processing based on the refrigerant charging amount at the start of use stored in the storage unit 472 and the measured refrigerant amount. Thereby, the refrigerant amount measuring system 4 can reduce the burden of the work of clarifying the amount of leakage of the refrigerant R.
  • the measurement calculation unit 471 also calculates the amount of refrigerant charged at the time of starting use, the amount of refrigerant charged after starting use, the amount of refrigerant filled immediately before disposal, and the difference between the measured amount of refrigerant and the amount of refrigerant filled at the time of starting use. It may be determined whether or not the refrigerant R has leaked.
  • the storage unit 472 records in advance at least one of the refrigerant filling amount at the time of starting use, the refrigerant filling amount after use, and the refrigerant filling amount immediately before disposal.
  • the measurement calculation unit 471 stores at least one of the refrigerant filling amount at the time of start of use, the refrigerant filling amount after the start of use, and the refrigerant filling amount immediately before disposal, which is stored in the storage unit 472, and the measured refrigerant amount. Based on the difference between the amount of refrigerant and the amount of refrigerant charged at the start of use, it is determined whether or not refrigerant R has leaked. Thereby, the refrigerant amount measuring system 4 can reduce the burden of the work of clarifying the amount of leakage of the refrigerant R.
  • the measurement calculation unit 471 calculates the refrigerant filling amount at the start of use, the refrigerant filling amount after the start of use, the refrigerant filling amount immediately before disposal, and the measured refrigerant amount and the start of use. Calculation processing may be performed to determine the leakage amount of the refrigerant R based on the difference between the refrigerant filling amount and the refrigerant filling amount at the time. Thereby, the refrigerant amount measuring system 4 can reduce the burden of the work of clarifying the amount of leakage of the refrigerant R.
  • FIG. 8 is a schematic configuration diagram showing the flow of the refrigerant R in the operation of returning the refrigerant R to the refrigerant circulation path 150.
  • the control unit 140a In the operation of returning the refrigerant R to the refrigerant circulation path 150, the control unit 140a, for the outdoor unit 120A, opens the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A, sets the flow path switching mechanism 125A to the first state, and 1 compressor 122A is operated (ON). Further, the control unit 140a opens the on-off valve 230a, and closes the on-off valve 230b, the on-off valve 230c, and the on-off valve 230d.
  • the control unit 140a After executing the operation of returning the refrigerant R to the refrigerant circulation path 150 for a preset predetermined time T4, the control unit 140a ends the operation of returning the refrigerant R to the refrigerant circulation path 150.
  • the predetermined time T4 is set, for example, to a length that allows the refrigerant circulation path 150 to be filled with the refrigerant R stored in the storage section 460.
  • the second refrigerant amount measurement operation is to transfer refrigerant R from the refrigerant circulation path 150 of the second refrigeration cycle device 100B to the storage section 460, and transfer the refrigerant R to the measurement section 401. This is an operation in which the amount of refrigerant R is measured and the refrigerant R is returned from the storage section 460 to the refrigerant circulation path 150 of the second refrigeration cycle device 100B.
  • the second refrigerant amount measuring operation is similar to the first refrigerant amount measuring operation. Therefore, the second refrigerant amount measuring operation will be briefly explained.
  • the control section 140b opens the indoor expansion mechanism 113B for all indoor units 110B. Further, for the outdoor unit 120B, the control unit 140b brings the outdoor expansion mechanism 124B of the second refrigeration cycle device 100B into the closed state, brings the flow path switching mechanism 125B into the first state, and operates the first compressor 122 (On). . Further, the control unit 140b opens the on-off valve 230d and closes the on-off valves 230 other than the on-off valve 230d. Specifically, the control unit 140b closes the on-off valve 230a, the on-off valve 230b, and the on-off valve 230c.
  • the refrigerant R in the indoor refrigerant flow path 111B is sucked by the first compressor 122B of the outdoor unit 120B.
  • the refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B, and then passes through the flow path switching mechanism 125B and the outdoor heat exchanger 123B.
  • the refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B.
  • the refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230d of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
  • the control section 140d executes the first half of the operation of transferring the refrigerant R to the storage section 460 for a preset predetermined time T1
  • the control section 140d finishes the first half of the operation of transferring the refrigerant R to the storage section 460 and stores the refrigerant R.
  • the second half of the operation of transferring the data to the storage section 460 is started.
  • the predetermined time T1 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150B to be stored in the storage section 460.
  • gas refrigerant among the refrigerant R stored in the storage section 460 flows into the third pipe 430 through the on-off valve 230c.
  • the refrigerant R that has flowed into the third pipe 430 is sent to the outdoor refrigerant flow path 121B, passes through the flow path switching mechanism 125B, and is sucked by the first compressor 122B.
  • the refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B and passes through the outdoor heat exchanger 123B.
  • the refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B.
  • the refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and returns to the storage section 460.
  • the control unit 140b executes the second half of the operation of transferring the refrigerant R to the storage unit 460 for a preset predetermined time T2
  • the control unit 140b ends the second half of the operation of transferring the refrigerant R to the storage unit 460.
  • the predetermined time T2 is set, for example, to a length that allows the refrigerant remaining in the refrigerant circulation path 150B to be recovered to the storage section 460 after the latter half of the operation of transferring the refrigerant R to the storage section 460 is performed.
  • the control unit 140b performs the outdoor expansion of the second refrigeration cycle device 100B with respect to the outdoor unit 120B.
  • the mechanism 124B is opened, the flow path switching mechanism 125B is set to the first state, and the first compressor 122B is operated (ON).
  • the control unit 140b opens the on-off valve 230c, and closes the on-off valve 230a, the on-off valve 230b, and the on-off valve 230d.
  • the suction pressure of the first compressor 122B of the outdoor unit 120B increases the flow path switching mechanism 125, the gas side branch pipe 128B, and the third pipe 430. It acts on the inside of the reservoir 460 via. Due to the suction pressure acting within the storage section 460, the refrigerant R within the storage section 460 flows into the third pipe 430 and is filled into the refrigerant circulation path 150 via the gas side branch pipe 128B.
  • the control unit 140b After executing the operation of returning the refrigerant R to the refrigerant circulation path 150 for a preset predetermined time T4, the control unit 140b ends the operation of returning the refrigerant R to the refrigerant circulation path 150.
  • the predetermined time T4 is set, for example, to a length that allows the refrigerant circulation path 150 to be filled with the refrigerant R stored in the storage section 460.
  • the refrigerant amount measurement system 4 includes a connection section 400, a storage section 460, a measurement section 401, and a storage section 472.
  • the connecting portion 400 is connected to the first refrigerant circuit of the first refrigeration cycle device 100A.
  • the storage section 460 stores the refrigerant R in the first refrigerant circuit via the connection section 400 and returns the stored refrigerant R to the first refrigerant circuit via the connection section 400.
  • the measurement unit 401 measures the amount of refrigerant R in the storage unit 460.
  • the storage unit 472 stores the measurement results measured by the measurement unit 401.
  • the refrigeration system of Patent Document 1 detects a refrigerant shortage state using a receiver tank that is internally connected to the refrigerant circuit.
  • the refrigerant flows into a receiver tank built into the device even during normal operation (such as air conditioning operation). Therefore, the refrigeration system of Patent Document 1 requires an amount of refrigerant corresponding to the volume of the receiver tank in addition to an amount of refrigerant corresponding to the existing refrigerant circuit. Further, the refrigeration device of Patent Document 1 causes a pressure loss of the refrigerant when the refrigerant passes through the receiver tank.
  • the present refrigerant amount measurement system 4 stores the refrigerant R in the first refrigerant circuit in a storage section 460 that is externally connected to the first refrigerant circuit.
  • the refrigerant amount measurement system 4 measures the amount of refrigerant R and stores the measurement results.
  • the refrigerant amount measuring system 4 returns the stored refrigerant R to the first refrigerant circuit from a storage section 460 that is externally connected to the first refrigerant circuit. Since the storage section 460 is externally connected, the refrigerant R in the first refrigerant circuit does not flow to the storage section 460 when the first refrigeration cycle device 100A is normally operated. Therefore, the refrigerant amount measuring system can clarify the refrigerant filling amount and leakage amount of the first refrigerant circuit without causing additional refrigerant amount or pressure loss.
  • the refrigeration device of Patent Document 1 measures the difference in liquid level height using a liquid level detection section. Users of this refrigeration system can determine the difference in liquid level height between points in time using the liquid level detection unit, and can identify refrigerant shortages (refrigerant leaks). However, it is difficult for users of this refrigeration system to grasp the filling amount itself (initial filling amount, filling amount at any given point, etc.). Therefore, the user of this refrigeration system cannot associate the filling amount with the time point and grasp the detailed history of filling and leakage.
  • This refrigerant amount measuring system 4 can measure the filling amount at any time.
  • the user of the refrigerant amount measuring system 4 can not only determine whether or not the refrigerant R has leaked, but also be able to ascertain the filling amount in association with any time point.
  • the user of the present refrigerant amount measurement system 4 can grasp details of the circumstances surrounding filling and leakage. Therefore, the refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit.
  • the present refrigerant amount measurement system 4 stores the measurement results measured by the measurement unit 401 in the storage unit 472.
  • the user of the present refrigerant amount measuring system 4 can grasp the measurement results of the filling amount without omission, and can reduce the work required to memorize the measurement results. Therefore, the refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit, and can reduce the effort required to store the measurement results.
  • the connecting portion 400 includes a first pipe 410 and a second pipe 420. Further, an on-off valve 230 is provided in each of the first pipe 410 and the second pipe 420.
  • the connection section 400 of the present refrigerant amount measurement system 4 has a first pipe 410 and a second pipe 420. Therefore, in the refrigerant amount measuring system 4, the refrigerant R can be divided into a first pipe 410 and a second pipe 420 for each state and connected to the first refrigerant circuit. Further, an on-off valve 230 is provided in each of the first pipe 410 and the second pipe 420. Therefore, the present refrigerant amount measuring system 4 can allow or block communication between the first pipe 410 and the second pipe 420.
  • the refrigerant amount measurement system 4 further includes a control section 140.
  • the control unit 140 performs a first refrigerant amount measurement operation.
  • the first refrigerant amount measuring operation controls the first refrigeration cycle device 100A and the on-off valve 230, moves the refrigerant R from the first refrigerant circuit to the storage section 460, causes the measuring section 401 to measure the amount of the refrigerant R, This is an operation for returning the refrigerant R from the storage section 460 to the first refrigerant circuit.
  • the control unit 140 of the present refrigerant amount measurement system 4 performs a first refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system 4 can reduce the effort required to clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit.
  • the present refrigerant amount measurement system 4 can automatically measure the filling amount by the control unit 140.
  • the refrigerant amount measurement system 4 stores the automatically measured filling amount in the storage unit 472.
  • the user of the present refrigerant amount measuring system 4 can grasp the filling amount that was automatically measured at a past point in time using the storage unit 472. Therefore, the user of the present refrigerant amount measuring system 4 can associate the filling amount with a past point in time and grasp the circumstances surrounding filling and leakage in more detail. Therefore, the refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit.
  • a connecting portion 400 is also connected to the second refrigerant circuit of the second refrigeration cycle device 100B.
  • the control unit 140 further includes a third pipe 430 and a fourth pipe 440, each of which is provided with an on-off valve 230.
  • the connecting portion 400 is connected to the first refrigerant circuit by a first pipe 410 and a second pipe 420, and connected to the second refrigerant circuit by a third pipe 430 and a fourth pipe 440.
  • connection part 400 of the present refrigerant amount measurement system 4 is also connected to the second refrigerant circuit of the second refrigeration cycle device 100B. Therefore, the present refrigerant amount measurement system 4 can also clarify the filling amount and leakage amount of the refrigerant R in the second refrigerant circuit. Furthermore, the connection section 400 of the refrigerant amount measuring system 4 includes a third pipe 430 and a fourth pipe 440. Therefore, in the refrigerant amount measuring system 4, the refrigerant R can be divided into a third pipe 430 and a fourth pipe 440 for each state and connected to the second refrigerant circuit. Further, an on-off valve 230 is provided in each of the third pipe 430 and the fourth pipe 440. Therefore, the refrigerant amount measuring system 4 can allow or block communication between the third pipe 430 and the fourth pipe 440.
  • the control unit 140 further performs a second refrigerant amount measurement operation.
  • the second refrigerant amount measuring operation controls the second refrigeration cycle device 100B and the on-off valve 230, transfers the refrigerant R from the second refrigerant circuit to the storage section 460, causes the measuring section 401 to measure the amount of the refrigerant R, This is an operation for returning the refrigerant R from the storage section 460 to the second refrigerant circuit.
  • the control unit 140 of the present refrigerant amount measurement system 4 further performs a second refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system 4 can also reduce the effort required to clarify the filling amount and leakage amount of the refrigerant R in the second refrigerant circuit.
  • the measurement unit 401 includes an electrode rod 461.
  • the measurement unit 401 of the present refrigerant amount measurement system 4 has an electrode rod 461. Therefore, the present refrigerant amount measuring system 4 can clarify the filling amount and leakage amount of the refrigerant R using the electrode rod 461.
  • the refrigerant usage system 1 includes a refrigerant amount measuring system 4 and a refrigeration cycle device 100.
  • This refrigerant usage system 1 includes a refrigerant amount measuring system 4 and a refrigeration cycle device 100. Therefore, the present refrigerant-using system 1 can clarify the filling amount and leakage amount of the refrigerant R of the refrigeration cycle device 100 included in the present refrigerant-using system 1.
  • FIG. 9 is a schematic configuration diagram showing the flow of the refrigerant R in the operation of returning the refrigerant R to the refrigerant circulation path 150.
  • the control unit 140a sets the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A to the open state, sets the flow path switching mechanism 125A to the second state, and sets the outdoor unit 120A to the second state. 1 compressor 122A is operated (ON). Further, the control unit 140a opens the on-off valve 230a and the on-off valve 230b, and closes the on-off valve 230c and the on-off valve 230d.
  • the control unit 140 may perform the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. By electrically connecting the control unit 140a and the control unit 140b to mutually cooperate, the control unit 140a and the control unit 140b perform the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. I can do it.
  • the control unit 140 of the refrigerant amount measurement system 4 performs the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. Therefore, the present refrigerant amount measurement system 4 can separate the filling amount and leakage amount of refrigerant R in the first refrigerant circuit from the filling amount and leakage amount of refrigerant R in the second refrigerant circuit, and can clarify each.
  • the control unit 140 may perform the first refrigerant amount measurement operation during a time period when the normal operation of the first refrigeration cycle device 100A is stopped. Further, the control unit 140 may perform the second refrigerant amount measuring operation during a time period when the normal operation of the second refrigeration cycle device 100B is stopped. Examples of normal operation include cooling operation, heating operation, hot water supply operation, refrigeration operation, freezing operation, and floor heating operation.
  • the control unit 140 of the refrigerant amount measuring system 4 performs the first refrigerant amount measuring operation during the time period when the normal operation of the first refrigeration cycle device 100A is stopped. Therefore, the present refrigerant amount measuring system 4 is not affected by the normal operation of the first refrigeration cycle device 100A, and can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit. Further, the control unit 140 performs the second refrigerant amount measurement operation during a time period when the normal operation of the second refrigeration cycle device 100B is stopped. Therefore, the present refrigerant amount measuring system 4 is not affected by the normal operation of the second refrigeration cycle device 100B, and can clarify the filling amount and leakage amount of the refrigerant R in the second refrigerant circuit.
  • the on-off valve 230 in the embodiment described above is controlled by the control unit 140 and automatically allows or blocks communication between the pipes. However, in addition to or in place of the embodiments described above, the on-off valve 230 may manually allow or block communication between the pipes.
  • the control unit 140 of the refrigerant-using system 1 according to the second embodiment performs a storage operation in addition to the operation performed by the control unit 140 of the refrigerant-using system 1 according to the first embodiment.
  • the storage operation is an operation to transfer the refrigerant R from the refrigerant circulation path 150 to the storage section 460 when the refrigerant R leaks from the refrigerant circulation path 150.
  • the storage operation is performed, for example, in order to suppress further leakage of the refrigerant R when the refrigerant R leaks from the refrigerant circulation path 150.
  • the storage operation includes a first storage operation and a second storage operation.
  • the first storage operation is performed when the refrigerant R leaks from the refrigerant circulation path 150 of the first refrigeration cycle device 100A. This is the action of moving.
  • the first storage operation includes a first half operation and a second half operation.
  • the first half of the first storage operation is an operation for mainly storing liquid refrigerant of the refrigerant R in the refrigerant circulation path 150.
  • FIG. 10 is a schematic configuration diagram showing the flow of refrigerant R in the first half of the first storage operation.
  • the control unit 140a opens the indoor expansion mechanism 113A for all indoor units 110A. Further, for the outdoor unit 120A, the control unit 140a sets the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A to the closed state, sets the flow path switching mechanism 125A to the first state, and operates the first compressor 122 (On). . Further, in the refrigerant amount measuring system 4, the control unit 140a opens the on-off valve 230b and closes the on-off valves 230 other than the on-off valve 230b. Specifically, the control unit 140a closes the on-off valve 230a, the on-off valve 230c, and the on-off valve 230d.
  • the refrigerant R in the indoor refrigerant flow path 111A is sucked by the first compressor 122A of the outdoor unit 120A, as shown by the arrow in FIG.
  • the refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A, and then passes through the flow path switching mechanism 125A and the outdoor heat exchanger 123A.
  • the refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A.
  • the refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230b of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
  • the predetermined time T5 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150A to be stored in the storage section 460.
  • FIG. 11 is a schematic configuration diagram showing the flow of refrigerant R in the second half of the first storage operation.
  • control unit 140a opens the on-off valve 230a.
  • the operating state of the first half of the first storage operation is maintained.
  • the gas refrigerant among the refrigerant R stored in the storage section 460 flows into the first pipe 410 through the on-off valve 230a, as shown by the arrow in FIG. Inflow.
  • the refrigerant R that has flowed into the first pipe 410 is sent to the outdoor refrigerant flow path 121A, passes through the flow path switching mechanism 125A, and is sucked by the first compressor 122A.
  • the refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A and passes through the outdoor heat exchanger 123A.
  • the refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A.
  • the refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and returns to the storage section 460.
  • the control unit 140a After executing the second half of the first storage operation for a preset predetermined time T6, the control unit 140a ends the second half of the first storage operation.
  • the predetermined time T6 is set, for example, to a length that allows the refrigerant R remaining in the refrigerant circulation path 150A to be collected into the storage section 460 after the first half of the first storage operation is performed.
  • the control section 140a executes the first storage operation, even if the refrigerant R leaks from the refrigerant circulation path 150A, the refrigerant R in the refrigerant circulation path 150A is transferred to the storage section 460. Since the refrigerant R is stored in the refrigerant R, leakage of the refrigerant R is further suppressed.
  • Second storage operation is performed when refrigerant R leaks from the refrigerant circulation path 150 of the second refrigeration cycle device 100B. This is the action of moving.
  • the second storage operation is similar to the first storage operation.
  • the control unit 140b opens the indoor expansion mechanisms 113B for all indoor units 110B. Further, for the outdoor unit 120B, the control unit 140b brings the outdoor expansion mechanism 124B of the second refrigeration cycle device 100B into the closed state, brings the flow path switching mechanism 125B into the first state, and operates the first compressor 122 (On). . Further, the control unit 140b opens the on-off valve 230d and closes the on-off valves 230 other than the on-off valve 230d. Specifically, the control unit 140b closes the on-off valve 230a, the on-off valve 230b, and the on-off valve 230c.
  • the refrigerant R in the indoor refrigerant flow path 111B is sucked by the first compressor 122B of the outdoor unit 120B.
  • the refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B, and then passes through the flow path switching mechanism 125B and the outdoor heat exchanger 123B.
  • the refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B.
  • the refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230d of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
  • the predetermined time T7 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150B to be stored in the storage section 460.
  • control unit 140d opens the on-off valve 230c.
  • the state of operation in the first half of the operation of transferring the refrigerant R to the storage section 460 is maintained.
  • gas refrigerant among the refrigerant R stored in the storage section 460 flows into the third pipe 430 through the on-off valve 230c.
  • the refrigerant R that has flowed into the third pipe 430 is sent to the outdoor refrigerant flow path 121B, passes through the flow path switching mechanism 125B, and is sucked by the first compressor 122B.
  • the refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B and passes through the outdoor heat exchanger 123B.
  • the refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B.
  • the refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and returns to the storage section 460.
  • the control unit 140b After executing the second half of the second storage operation for a preset predetermined time T8, the control unit 140b ends the second half of the second storage operation.
  • the predetermined time T8 is set, for example, to a length that allows the refrigerant remaining in the refrigerant circulation path 150B to be collected into the storage section 460 after the second half of the second storage operation is performed.
  • the control unit 140b executes the second storage operation, even if the refrigerant R leaks from the refrigerant circulation path 150B, the refrigerant R in the refrigerant circulation path 150B is transferred to the storage section 460. Since the refrigerant R is stored in the refrigerant R, leakage of the refrigerant R is further suppressed.
  • the control unit 140 performs a first storage operation and a second storage operation.
  • the first storage operation is an operation to transfer the refrigerant R from the first refrigerant circuit to the storage section 460 when the refrigerant R leaks from the first refrigerant circuit.
  • the second storage operation is an operation to transfer the refrigerant R from the second refrigerant circuit to the storage section 460 when the refrigerant R leaks from the second refrigerant circuit.
  • the control unit 140 of the refrigerant amount measuring system 4 performs a first storage operation. Therefore, in the case where the refrigerant R in the first refrigerant circuit leaks, the present refrigerant amount measurement system 4 can store the refrigerant R in the first refrigerant circuit in the storage section 460 and suppress release of the refrigerant R into the atmosphere. Further, the control unit 140 of the refrigerant amount measuring system 4 performs a second storage operation. Therefore, in the case where the refrigerant R in the second refrigerant circuit leaks, the present refrigerant amount measurement system 4 can store the refrigerant R in the second refrigerant circuit in the storage section 460 and suppress release of the refrigerant R into the atmosphere.
  • the measuring unit 401 of the refrigerant-using system 1 according to the third embodiment further includes a cylindrical member 462 in addition to the components of the measuring unit 401 of the refrigerant-using system 1 according to the first embodiment.
  • the measurement section 401 includes a measurement calculation section 471, an electrode rod 461, and a cylindrical member 462.
  • FIG. 12A is a schematic configuration diagram showing the storage section 460, the electrode rod 461, and the cylindrical member 462.
  • the cylindrical member 462 is a member that surrounds the electrode rod 461.
  • FIG. 12B is a sectional view showing the A section in FIG. 12A.
  • the measurement calculation unit 471 uses the distance X between the electrode rod 461 and the cylindrical member 462 in measuring the amount of refrigerant.
  • the cylindrical member 462 allows the measurement unit 401 to accurately measure the amount of refrigerant even when the positional relationship between the reservoir 460 and the electrode rod 461 changes or when the shape of the wall of the reservoir 460 changes. Furthermore, since the refrigerant amount can be measured with high precision regardless of the shape of the storage portion 460, the shape of the electrode rod 461, the position of the electrode rod 461, etc., the design and manufacture of the refrigerant amount measuring system 4 is facilitated.
  • the measurement unit 401 further includes a cylindrical member 462 surrounding the electrode rod 461.
  • the measurement unit 401 of the present refrigerant amount measurement system 4 further includes a cylindrical member 462 surrounding the electrode rod 461. Therefore, the present refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R using the cylindrical member 462.
  • the measurement unit 401 measured the amount of refrigerant R using a capacitive method.
  • the method of measuring the amount of refrigerant by the measurement unit 401 is not limited to this.
  • the measurement unit 401 may measure the amount of refrigerant R using at least one of a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, and a capacitance type.
  • the radio wave method is a method that measures the amount of refrigerant by measuring the time it takes for radio waves to reflect on the liquid surface of refrigerant R and return.
  • the ultrasonic method is a method that measures the amount of refrigerant by measuring the time it takes for ultrasonic waves to reflect on the liquid surface of refrigerant R and return.
  • the float type is a method that measures the amount of refrigerant by measuring the height of a float floating on the liquid level of refrigerant R.
  • the pressure method is a method of measuring the amount of refrigerant by measuring the pressure value at the bottom of the refrigerant R.
  • the differential pressure method is a method that measures the amount of refrigerant by measuring the differential pressure value between the bottom surface of the liquid and the top surface of the storage section 460.
  • the measurement unit 401 measures the amount of refrigerant R using at least one of a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, and a capacitance type. Measure.
  • the measurement unit 401 of the present refrigerant amount measurement system 4 measures the amount of refrigerant R using at least one of a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, and a capacitance type. Therefore, the present refrigerant amount measuring system 4 can clarify the filling amount and leakage amount of the refrigerant R based on various methods.
  • Refrigerant usage system 4 Refrigerant amount measurement system 100
  • Indoor unit 111 Indoor refrigerant flow path 112
  • Indoor heat exchanger 113 Indoor expansion mechanism 114
  • Outdoor unit 121 Outdoor refrigerant flow path 121b
  • First refrigerant pipe 121c Second refrigerant pipe 121d
  • Third refrigerant pipe 122 First compressor 123 Outdoor heat exchanger 124 Outdoor expansion mechanism 125
  • Gas side Connection part 127 Liquid side connection part 128
  • Gas side branch pipe 129 Liquid side branch pipe 131
  • Gas side communication pipe 132 Liquid side communication pipe 140 (140a, 140b)
  • Control part 150 Refrigerant circulation path 230 (230a, 230b, 230c, 230d) Opening/closing Valve 400 Connection part 401 Measuring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigerant volume measurement system (4) comprises a connector (400), a reservoir (460), a measurement unit (401), and a storage unit (472). The connector (400) is connected to a first refrigerant circuit of a first refrigeration cycle device (100A). The reservoir (460) reserves refrigerant (R) from the first refrigerant circuit via the connector (400) and returns the reserved refrigerant (R) to the first refrigerant circuit via the connector (400). The measurement unit (401) measures the volume of the refrigerant (R) in the reservoir (460). The storage unit (472) stores measurement results obtained by the measurement unit (401).

Description

冷媒量測定システム及び冷媒使用システムRefrigerant amount measurement system and refrigerant usage system
 冷媒量測定システム及び冷媒使用システムに関する。 Regarding refrigerant amount measurement system and refrigerant usage system.
 空気調和装置等の冷凍サイクル装置を修理するため、冷凍サイクル装置の冷媒の初期充填量と修理時に回収された冷媒量との差に基づいて冷媒を充填する場合がある。 In order to repair a refrigeration cycle device such as an air conditioner, refrigerant may be charged based on the difference between the initial charging amount of refrigerant in the refrigeration cycle device and the amount of refrigerant recovered at the time of repair.
 特許文献1(特開2010-190545号公報)は、冷媒回路に対して内付け接続するレシーバタンクにより、冷媒の不足状態を検出できる冷凍装置を開示している。特許文献1の冷凍装置は、装置内部に組み込まれたレシーバタンクの液面検出部による冷媒の検出値に基づいて、冷媒量不足の表示を行う。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-190545) discloses a refrigeration device that can detect a refrigerant shortage state by using a receiver tank that is internally connected to a refrigerant circuit. The refrigeration device of Patent Document 1 displays an insufficient amount of refrigerant based on a refrigerant detection value by a liquid level detection unit of a receiver tank built into the device.
 特許文献1の冷凍装置は、冷媒回路に対して内付け接続するレシーバタンクにより、冷媒の不足状態を検出する。冷媒は、通常運転(空調運転など)時においても装置内部に組み込まれたレシーバタンクに流れる。そのため、特許文献1の冷凍装置は、既存の冷媒回路に対応する冷媒量に加え、レシーバタンクの体積に対応する冷媒量を要する。また、特許文献1の冷凍装置は、冷媒がレシーバタンクを通過する際に、冷媒の圧力損失を生じさせる。 The refrigeration system of Patent Document 1 detects a refrigerant shortage state using a receiver tank that is internally connected to the refrigerant circuit. The refrigerant flows into a receiver tank built into the device even during normal operation (such as air conditioning operation). Therefore, the refrigeration system of Patent Document 1 requires an amount of refrigerant corresponding to the volume of the receiver tank in addition to an amount of refrigerant corresponding to the existing refrigerant circuit. Further, the refrigeration device of Patent Document 1 causes a pressure loss of the refrigerant when the refrigerant passes through the receiver tank.
 本開示は、冷凍サイクル装置の冷媒回路に対して外付け接続し、追加の冷媒量や圧力損失を生じさせず、冷凍サイクル装置の使用開始から廃棄に至るまでの冷媒漏洩量を明確化する冷媒量測定システムを提案する。 The present disclosure discloses a refrigerant that is externally connected to the refrigerant circuit of a refrigeration cycle device, does not cause an additional amount of refrigerant or pressure loss, and clarifies the amount of refrigerant leakage from the start of use of the refrigeration cycle device to its disposal. We propose a quantity measurement system.
 第1観点の冷媒量測定システムは、接続部と、貯留部と、測定部と、記憶部とを備える。接続部は、第1冷凍サイクル装置の第1冷媒回路に接続される。貯留部は、接続部を介して第1冷媒回路の中の冷媒を貯留し、貯留している冷媒を接続部を介して第1冷媒回路に戻す。測定部は、貯留部の中の冷媒の量を測定する。記憶部は、測定部が測定した測定結果を記憶する。 The refrigerant amount measurement system according to the first aspect includes a connection section, a storage section, a measurement section, and a storage section. The connection part is connected to the first refrigerant circuit of the first refrigeration cycle device. The storage section stores the refrigerant in the first refrigerant circuit via the connection section, and returns the stored refrigerant to the first refrigerant circuit via the connection section. The measuring section measures the amount of refrigerant in the reservoir. The storage unit stores measurement results measured by the measurement unit.
 本冷媒量測定システムは、第1冷媒回路に対して外付け接続する貯留部に、第1冷媒回路の中の冷媒を貯留する。冷媒量測定システムは、貯留部の中の冷媒の量を測定し、測定結果を記憶する。冷媒量測定システムは、貯留している冷媒を、第1冷媒回路に対して外付け接続する貯留部から第1冷媒回路に戻す。このため、冷媒量測定システムは、追加の冷媒量や圧力損失を生じさせず、第1冷媒回路の冷媒の漏洩量を明確化できる。 This refrigerant amount measuring system stores the refrigerant in the first refrigerant circuit in a storage section that is externally connected to the first refrigerant circuit. The refrigerant amount measurement system measures the amount of refrigerant in the reservoir and stores the measurement results. The refrigerant amount measuring system returns the stored refrigerant to the first refrigerant circuit from a storage section externally connected to the first refrigerant circuit. Therefore, the refrigerant amount measuring system can clarify the amount of refrigerant leaking from the first refrigerant circuit without causing an additional amount of refrigerant or pressure loss.
 第2観点の冷媒量測定システムは、第1観点の冷媒量測定システムであって、接続部が第1管および第2管を有する。また、第1管および第2管のそれぞれに開閉弁が設けられている。 The refrigerant amount measuring system according to the second aspect is the refrigerant amount measuring system according to the first aspect, and the connecting portion includes a first pipe and a second pipe. Moreover, an on-off valve is provided in each of the first pipe and the second pipe.
 本冷媒量測定システムの接続部は、第1管および第2管を有する。このため、本冷媒量測定システムは、冷媒の状態ごとに第1管と第2管に分けて、第1冷媒回路と接続できる。また、第1管および第2管のそれぞれに開閉弁が設けられている。このため、本冷媒量測定システムは、第1管および第2管の連通を許容又は遮断できる。 The connection part of this refrigerant amount measuring system has a first pipe and a second pipe. Therefore, the present refrigerant amount measuring system can be divided into a first pipe and a second pipe depending on the state of the refrigerant, and can be connected to the first refrigerant circuit. Moreover, an on-off valve is provided in each of the first pipe and the second pipe. Therefore, the present refrigerant amount measuring system can allow or block communication between the first pipe and the second pipe.
 第3観点の冷媒量測定システムは、第2観点の冷媒量測定システムであって、制御部をさらに備える。制御部は、第1の冷媒量測定動作を行う。第1の冷媒量測定動作は、第1冷凍サイクル装置および開閉弁を制御して、第1冷媒回路から貯留部に冷媒を移し、測定部に冷媒の量を測定させ、冷媒を貯留部から第1冷媒回路に戻させる動作である。 The refrigerant amount measuring system according to the third aspect is the refrigerant amount measuring system according to the second aspect, and further includes a control section. The control unit performs a first refrigerant amount measurement operation. The first refrigerant amount measuring operation controls the first refrigeration cycle device and the on-off valve to transfer refrigerant from the first refrigerant circuit to the storage section, causes the measurement section to measure the amount of refrigerant, and transfers the refrigerant from the storage section to the storage section. 1 refrigerant circuit.
 本冷媒量測定システムの制御部は第1の冷媒量測定動作を行う。このため、冷媒量測定システムは、第1冷媒回路の冷媒の漏洩量を明確化する作業にかかる手間を削減できる。 The control unit of this refrigerant amount measurement system performs a first refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system can reduce the effort required to clarify the amount of refrigerant leaking from the first refrigerant circuit.
 第4観点の冷媒量測定システムは、第3観点の冷媒量測定システムであって、第2冷凍サイクル装置の第2冷媒回路にも接続部が接続される。また、制御部は、それぞれ開閉弁が設けられた第3管および第4管をさらに有する。さらに、接続部は、第1管および第2管により第1冷媒回路に接続され、第3管および第4管により第2冷媒回路に接続される。 The refrigerant amount measuring system according to the fourth aspect is the refrigerant amount measuring system according to the third aspect, and the connection part is also connected to the second refrigerant circuit of the second refrigeration cycle device. Moreover, the control unit further includes a third pipe and a fourth pipe each provided with an on-off valve. Furthermore, the connection part is connected to the first refrigerant circuit by the first pipe and the second pipe, and connected to the second refrigerant circuit by the third pipe and the fourth pipe.
 本冷媒量測定システムの接続部は、第2冷凍サイクル装置の第2冷媒回路にも接続される。このため、本冷媒量測定システムは、第2冷媒回路の冷媒の漏洩量も明確化できる。また、本冷媒量測定システムの接続部は、第3管および第4管を有する。このため、本冷媒量測定システムは、冷媒の状態ごとに第3管と第4管に分けて、第2冷媒回路と接続できる。また、第3管および第4管のそれぞれに開閉弁が設けられている。このため、本冷媒量測定システムは、第3管および第4管の連通を許容又は遮断できる。 The connection part of this refrigerant amount measuring system is also connected to the second refrigerant circuit of the second refrigeration cycle device. Therefore, this refrigerant amount measuring system can also clarify the amount of refrigerant leaking from the second refrigerant circuit. Moreover, the connection part of this refrigerant amount measuring system has a third pipe and a fourth pipe. Therefore, this refrigerant amount measuring system can be divided into a third pipe and a fourth pipe depending on the state of the refrigerant, and can be connected to the second refrigerant circuit. Moreover, an on-off valve is provided in each of the third pipe and the fourth pipe. Therefore, the present refrigerant amount measuring system can allow or block communication between the third pipe and the fourth pipe.
 第5観点の冷媒量測定システムは、第4観点の冷媒量測定システムであって、制御部が第2の冷媒量測定動作をさらに行う。第2の冷媒量測定動作は、第2冷凍サイクル装置および開閉弁を制御して、第2冷媒回路から貯留部に冷媒を移し、測定部に冷媒の量を測定させ、冷媒を貯留部から第2冷媒回路に戻させる動作である。 The refrigerant amount measuring system according to the fifth aspect is the refrigerant amount measuring system according to the fourth aspect, in which the control section further performs a second refrigerant amount measuring operation. The second refrigerant amount measuring operation controls the second refrigeration cycle device and the on-off valve to transfer the refrigerant from the second refrigerant circuit to the storage section, causes the measuring section to measure the amount of refrigerant, and transfers the refrigerant from the storage section to the storage section. This is an operation to return the refrigerant to the second refrigerant circuit.
 本冷媒量測定システムの制御部は、第2の冷媒量測定動作をさらに行う。このため、冷媒量測定システムは、第2冷媒回路の冷媒の漏洩量を明確化する作業にかかる手間も削減できる。 The control unit of the present refrigerant amount measurement system further performs a second refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system can also reduce the effort required to clarify the amount of refrigerant leaking from the second refrigerant circuit.
 第6観点の冷媒量測定システムは、第5観点の冷媒量測定システムであって、制御部が、第1の冷媒量測定動作と第2の冷媒量測定動作を、時間をずらして行う。 The refrigerant amount measuring system according to the sixth aspect is the refrigerant amount measuring system according to the fifth aspect, in which the control unit performs the first refrigerant amount measuring operation and the second refrigerant amount measuring operation at different times.
 本冷媒量測定システムの制御部は、第1の冷媒量測定動作と第2の冷媒量測定動作を、時間をずらして行う。このため、本冷媒量測定システムは、第1冷媒回路の冷媒の漏洩量と第2冷媒回路の冷媒の漏洩量を分けて、それぞれを明確化できる。 The control unit of this refrigerant amount measurement system performs the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. Therefore, the present refrigerant amount measurement system can separate the amount of refrigerant leaked from the first refrigerant circuit and the amount of refrigerant leaked from the second refrigerant circuit, and clarify each.
 第7観点の冷媒量測定システムは、第5観点又は第6観点の冷媒量測定システムであって、制御部が、第1冷凍サイクル装置の通常運転が停止されている時間帯に、第1の冷媒量測定動作を行う。また、制御部は、第2冷凍サイクル装置の通常運転が停止されている時間帯に、第2の冷媒量測定動作を行う。 The refrigerant amount measuring system according to the seventh aspect is the refrigerant amount measuring system according to the fifth or sixth aspect, in which the control unit controls the refrigerant amount measuring system according to the first aspect during the time period when the normal operation of the first refrigeration cycle device is stopped. Performs refrigerant amount measurement operation. Further, the control unit performs the second refrigerant amount measuring operation during a time period when the normal operation of the second refrigeration cycle device is stopped.
 本冷媒量測定システムの制御部は、第1冷凍サイクル装置の通常運転が停止されている時間帯に、第1の冷媒量測定動作を行う。このため、本冷媒量測定システムは、第1冷凍サイクル装置の通常運転の影響を受けず、第1冷媒回路の冷媒の漏洩量をより明確化できる。また、制御部は、第2冷凍サイクル装置の通常運転が停止されている時間帯に、第2の冷媒量測定動作を行う。このため、本冷媒量測定システムは、第2冷凍サイクル装置の通常運転の影響を受けず、第2冷媒回路の冷媒の漏洩量をより明確化できる。 The control unit of the present refrigerant amount measuring system performs the first refrigerant amount measuring operation during the time period when the normal operation of the first refrigeration cycle device is stopped. Therefore, the present refrigerant amount measuring system is not affected by the normal operation of the first refrigeration cycle device, and can more clearly determine the amount of refrigerant leaking from the first refrigerant circuit. Further, the control unit performs the second refrigerant amount measuring operation during a time period when the normal operation of the second refrigeration cycle device is stopped. Therefore, the present refrigerant amount measuring system is not affected by the normal operation of the second refrigeration cycle device, and can more clearly determine the amount of refrigerant leaking from the second refrigerant circuit.
 第8観点の冷媒量測定システムは、第5観点から第7観点のいずれかの冷媒量測定システムであって、制御部が、第1の貯留動作および第2の貯留動作を行う。第1の貯留動作は、第1冷媒回路から冷媒が漏洩した場合に、第1冷媒回路から貯留部に冷媒を移す動作である。第2の貯留動作は、第2冷媒回路から冷媒が漏洩した場合に、第2冷媒回路から貯留部に冷媒を移す動作である。 The refrigerant amount measuring system according to the eighth aspect is the refrigerant amount measuring system according to any one of the fifth to seventh aspects, in which the control unit performs the first storage operation and the second storage operation. The first storage operation is an operation to transfer the refrigerant from the first refrigerant circuit to the storage section when the refrigerant leaks from the first refrigerant circuit. The second storage operation is an operation to transfer the refrigerant from the second refrigerant circuit to the storage section when the refrigerant leaks from the second refrigerant circuit.
 本冷媒量測定システムの制御部は、第1の貯留動作を行う。このため、本冷媒量測定システムは、第1冷媒回路の冷媒が漏洩した場合に、第1冷媒回路の冷媒を貯留部に貯留し、冷媒の大気放出を抑制できる。また、本冷媒量測定システムの制御部は、第2の貯留動作を行う。このため、本冷媒量測定システムは、第2冷媒回路の冷媒が漏洩した場合に、第2冷媒回路の冷媒を貯留部に貯留し、冷媒の大気放出を抑制できる。 The control unit of this refrigerant amount measurement system performs a first storage operation. Therefore, in the case where the refrigerant in the first refrigerant circuit leaks, the present refrigerant amount measuring system can store the refrigerant in the first refrigerant circuit in the storage section and suppress release of the refrigerant into the atmosphere. Further, the control unit of the present refrigerant amount measuring system performs a second storage operation. Therefore, in the case where the refrigerant in the second refrigerant circuit leaks, the present refrigerant amount measuring system can store the refrigerant in the second refrigerant circuit in the storage section and suppress release of the refrigerant into the atmosphere.
 第9観点の冷媒量測定システムは、第1観点から第8観点のいずれかの冷媒量測定システムであって、測定部が、電極棒を有する。 The refrigerant amount measuring system according to the ninth aspect is the refrigerant amount measuring system according to any one of the first to eighth aspects, in which the measuring section has an electrode rod.
 本冷媒量測定システムの測定部は、電極棒を有する。このため、本冷媒量測定システムは、電極棒を用いて冷媒の漏洩量をより明確化できる。 The measuring section of this refrigerant amount measuring system has an electrode rod. Therefore, the present refrigerant amount measuring system can clarify the amount of refrigerant leakage using the electrode rod.
 第10観点の冷媒量測定システムは、第9観点の冷媒量測定システムであって、測定部が、電極棒を囲う筒部材をさらに有する。 The refrigerant amount measuring system according to the tenth aspect is the refrigerant amount measuring system according to the ninth aspect, in which the measuring section further includes a cylindrical member surrounding the electrode rod.
 本冷媒量測定システムの測定部は、電極棒を囲う筒部材をさらに有する。このため、本冷媒量測定システムは、筒部材を用いて冷媒の漏洩量をより明確化できる。 The measuring section of the present refrigerant amount measuring system further includes a cylindrical member surrounding the electrode rod. Therefore, the present refrigerant amount measuring system can clarify the amount of refrigerant leakage using the cylindrical member.
 第11観点の冷媒量測定システムは、第1観点から第10観点のいずれかの冷媒量測定システムであって、測定部が、電波式、超音波式、フロート式、圧力式、差圧式、静電容量式の少なくともいずれかの方式により、冷媒の量を測定する。 The refrigerant amount measuring system according to the eleventh aspect is the refrigerant amount measuring system according to any one of the first to tenth aspects, and the measuring section is a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, or a static type. The amount of refrigerant is measured by at least one of capacitance methods.
 本冷媒量測定システムの測定部は、電波式、超音波式、フロート式、圧力式、差圧式、静電容量式の少なくともいずれかの方式により、冷媒の量を測定する。このため、本冷媒量測定システムは、多様な方式に基づいて、冷媒の漏洩量をより明確化できる。 The measurement unit of this refrigerant amount measurement system measures the amount of refrigerant using at least one of the following methods: radio wave type, ultrasonic type, float type, pressure type, differential pressure type, and capacitance type. Therefore, the present refrigerant amount measuring system can further clarify the amount of refrigerant leakage based on various methods.
 第12観点の冷媒使用システムは、第1観点から第11観点のいずれかの冷媒量測定システムと、冷凍サイクル装置を有する。 The refrigerant usage system according to the twelfth aspect includes the refrigerant amount measuring system according to any one of the first to eleventh aspects and a refrigeration cycle device.
 本冷媒使用システムは、冷媒量測定システムと、冷凍サイクル装置を有する。このため、本冷媒使用システムは、本冷媒使用システムに含まれる冷凍サイクル装置の冷媒の漏洩量を明確化できる。 This refrigerant usage system has a refrigerant amount measurement system and a refrigeration cycle device. Therefore, the present refrigerant-using system can clarify the amount of refrigerant leakage from the refrigeration cycle device included in the present refrigerant-using system.
冷媒使用システム1を示す概略構成図である。1 is a schematic configuration diagram showing a refrigerant usage system 1. FIG. 制御部140の制御ブロック図である。FIG. 2 is a control block diagram of a control unit 140. FIG. 演算装置470の制御ブロック図である。FIG. 4 is a control block diagram of the arithmetic unit 470. 冷媒Rを貯留部460に移す動作の前半の動作における冷媒Rの流れを示した概略構成図である。FIG. 4 is a schematic configuration diagram showing the flow of the refrigerant R in the first half of the operation of transferring the refrigerant R to the storage section 460. 冷媒Rを貯留部460に移す動作の後半の動作における冷媒Rの流れを示した概略構成図である。FIG. 4 is a schematic configuration diagram showing the flow of the refrigerant R in the latter half of the operation of transferring the refrigerant R to the storage section 460. 冷媒Rが貯留されている貯留部460及び電極棒461を示した概略構成図である。It is a schematic configuration diagram showing a storage section 460 in which refrigerant R is stored and an electrode rod 461. 温度による静電容量Cと液面高さhの関係を示した図である。It is a diagram showing the relationship between capacitance C and liquid level height h depending on temperature. 冷媒Rを冷媒循環路150に戻させる動作における冷媒Rの流れを示した概略構成図である。5 is a schematic configuration diagram showing the flow of refrigerant R in an operation of returning refrigerant R to refrigerant circulation path 150. FIG. 冷媒Rを冷媒循環路150に戻させる動作における冷媒Rの流れを示した概略構成図である。5 is a schematic configuration diagram showing the flow of refrigerant R in an operation of returning refrigerant R to refrigerant circulation path 150. FIG. 第1の貯留動作の前半の動作における冷媒Rの流れを示した概略構成図である。FIG. 2 is a schematic configuration diagram showing the flow of refrigerant R in the first half of the first storage operation. 第1の貯留動作の後半の動作における冷媒Rの流れを示した概略構成図である。It is a schematic block diagram which showed the flow of the refrigerant|coolant R in the operation|movement of the latter half of a 1st storage operation. 貯留部460と、電極棒461及び筒部材462を示した概略構成図である。FIG. 4 is a schematic configuration diagram showing a storage section 460, an electrode rod 461, and a cylindrical member 462. 図12AにおけるA断面を示す断面図である。FIG. 12A is a sectional view showing the A section in FIG. 12A.
 <第1実施形態>
 (1)全体構成
 本開示の第1実施形態に係る冷媒使用システム1について説明する。図1は、冷媒使用システム1を示す概略構成図である。
<First embodiment>
(1) Overall configuration A refrigerant usage system 1 according to a first embodiment of the present disclosure will be described. FIG. 1 is a schematic configuration diagram showing a refrigerant usage system 1. As shown in FIG.
 冷媒使用システム1は、第1冷凍サイクル装置100Aおよび第2冷凍サイクル装置100Bと、冷媒量測定システム4とを備える。冷媒量測定システム4は、第1冷凍サイクル装置100Aおよび第2冷凍サイクル装置100Bの冷媒Rの量を測定する。第1冷凍サイクル装置100Aは、第1管410および第2管420により、冷媒量測定システム4に連通される。また、第2冷凍サイクル装置100Bは、第3管430および第4管440により、冷媒量測定システム4に連通される。 The refrigerant usage system 1 includes a first refrigeration cycle device 100A, a second refrigeration cycle device 100B, and a refrigerant amount measurement system 4. The refrigerant amount measurement system 4 measures the amount of refrigerant R in the first refrigeration cycle device 100A and the second refrigeration cycle device 100B. The first refrigeration cycle device 100A is communicated with the refrigerant amount measuring system 4 through a first pipe 410 and a second pipe 420. Further, the second refrigeration cycle device 100B is communicated with the refrigerant amount measuring system 4 through a third pipe 430 and a fourth pipe 440.
 第1冷凍サイクル装置100Aと、冷媒量測定システム4の制御部140aは、電気的に接続される。第2冷凍サイクル装置100Bと、冷媒量測定システム4の制御部140bは、電気的に接続される。 The first refrigeration cycle device 100A and the control unit 140a of the refrigerant amount measurement system 4 are electrically connected. The second refrigeration cycle device 100B and the control unit 140b of the refrigerant amount measuring system 4 are electrically connected.
 図1は、第1冷凍サイクル装置100Aおよび第2冷凍サイクル装置100Bに冷媒量測定システム4が取り付けられた状態を示している。なお、冷媒使用システム1が備える冷凍サイクル装置100の数は、2台に限定されず、1台であってもよいし、3台以上であってもよい。 FIG. 1 shows a state in which the refrigerant amount measuring system 4 is attached to the first refrigeration cycle device 100A and the second refrigeration cycle device 100B. Note that the number of refrigeration cycle devices 100 included in the refrigerant usage system 1 is not limited to two, and may be one, or three or more.
 第1冷凍サイクル装置100Aと第2冷凍サイクル装置100Bとは、同様の機器を有し、同様の機能を有する。このため、以下では、第1冷凍サイクル装置100Aと第2冷凍サイクル装置100Bとに共通する説明では、冷凍サイクル装置100として説明をする。第1冷凍サイクル装置100Aと第2冷凍サイクル装置100Bとの区別が必要な説明では、それぞれを構成する機器の参照符号に「A」又は「B」を付して区別をする。 The first refrigeration cycle device 100A and the second refrigeration cycle device 100B have similar equipment and have similar functions. For this reason, below, in the description common to the first refrigeration cycle apparatus 100A and the second refrigeration cycle apparatus 100B, they will be described as the refrigeration cycle apparatus 100. In explanations where it is necessary to distinguish between the first refrigeration cycle apparatus 100A and the second refrigeration cycle apparatus 100B, "A" or "B" is added to the reference numerals of the devices constituting each to distinguish them.
 制御部140aと制御部140bとは、同様の機器を有し、同様の機能を有する。このため、以下では、制御部140aと制御部140bとに共通する説明では、制御部140として説明をする。制御部140aと制御部140bとの区別が必要な説明では、それぞれを構成する機器の参照符号に「a」又は「b」を付して区別をする。 The control unit 140a and the control unit 140b have similar equipment and have similar functions. Therefore, in the following description, the control unit 140a and the control unit 140b will be described as the control unit 140. In explanations where it is necessary to distinguish between the control unit 140a and the control unit 140b, “a” or “b” is added to the reference numerals of devices constituting the respective units to distinguish them.
 なお、以下の説明では、各実施形態、変形例の間で同一又は対応する構成については、同一の参照符号を付して適宜説明を省略する。 In the following description, the same or corresponding configurations among the embodiments and modifications will be given the same reference numerals and the description will be omitted as appropriate.
 (2)詳細構成
 (2-1)冷凍サイクル装置
 冷凍サイクル装置100は、蒸気圧縮式の冷凍サイクルを利用して、空調対象空間(図示省略)の冷房及び暖房を行う空気調和装置である。冷凍サイクル装置100は、室内ユニット110と、室外ユニット120と、ガス側連絡配管131と、液側連絡配管132とを有する。冷凍サイクル装置100は、2台の室内ユニット110を有するビル用マルチタイプの空気調和装置である。冷凍サイクル装置100が有する室内ユニット110の数は、2台に限定されず、1台であってもよいし、3台以上であってよい。
(2) Detailed configuration (2-1) Refrigeration cycle device The refrigeration cycle device 100 is an air conditioner that cools and heats an air-conditioned space (not shown) using a vapor compression type refrigeration cycle. The refrigeration cycle device 100 includes an indoor unit 110, an outdoor unit 120, a gas side communication pipe 131, and a liquid side communication pipe 132. The refrigeration cycle device 100 is a multi-type air conditioner for buildings that includes two indoor units 110. The number of indoor units 110 that the refrigeration cycle device 100 has is not limited to two, but may be one, or three or more.
 詳細は後述するが、室内ユニット110は室内冷媒流路111を有し、室外ユニット120は室外冷媒流路121を有する。室内冷媒流路111と、室外冷媒流路121と、ガス側連絡配管131と、液側連絡配管132とは、冷媒循環路150を形成する。第1冷凍サイクル装置100Aの冷媒循環路150は、第1冷媒回路の一例である。また、第2冷凍サイクル装置100Bの冷媒循環路150は、第2冷媒回路の一例である。冷媒循環路150には、冷媒Rが充填される。冷媒循環路150に充填される冷媒Rは、限定するものではないが、例えば微燃性(A2L)を有するR32、R410A等のフルオロカーボン系の冷媒Rである。冷媒Rは、可燃性又は毒性を有するものであってもよい。なお、冷凍サイクル装置100は、空気調和装置に限定されず、例えば、冷蔵庫、冷凍庫、給湯器、床暖房装置等であってよい。 Although details will be described later, the indoor unit 110 has an indoor refrigerant flow path 111, and the outdoor unit 120 has an outdoor refrigerant flow path 121. The indoor refrigerant flow path 111, the outdoor refrigerant flow path 121, the gas side communication pipe 131, and the liquid side communication pipe 132 form a refrigerant circulation path 150. The refrigerant circulation path 150 of the first refrigeration cycle device 100A is an example of a first refrigerant circuit. Further, the refrigerant circulation path 150 of the second refrigeration cycle device 100B is an example of a second refrigerant circuit. The refrigerant circulation path 150 is filled with refrigerant R. The refrigerant R filled in the refrigerant circulation path 150 is, but is not limited to, a fluorocarbon refrigerant R, such as R32 or R410A, which has a slightly flammable property (A2L). The refrigerant R may be flammable or toxic. Note that the refrigeration cycle device 100 is not limited to an air conditioner, and may be, for example, a refrigerator, a freezer, a water heater, a floor heating device, or the like.
 (2-1-1)室内ユニット
 室内ユニット110は、空調対象空間に設置される。室内ユニット110は、室内冷媒流路111と、検出部116とを有する。
(2-1-1) Indoor unit The indoor unit 110 is installed in a space to be air-conditioned. The indoor unit 110 has an indoor refrigerant flow path 111 and a detection section 116.
 室内冷媒流路111は、冷媒循環路150の一部を構成する。室内冷媒流路111は、室内熱交換器112と、室内膨張機構113とが冷媒配管を介して接続されることにより形成される。 The indoor refrigerant flow path 111 constitutes a part of the refrigerant circulation path 150. Indoor refrigerant flow path 111 is formed by connecting indoor heat exchanger 112 and indoor expansion mechanism 113 via refrigerant piping.
 室内熱交換器112は、室内熱交換器112の内部を流れる冷媒Rと、空調対象空間の空気との間での熱交換を行う。室内熱交換器112は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒Rの放熱器として機能する。室内熱交換器112の一端は、冷媒配管を介してガス側接続部114と接続される。室内熱交換器112の他端は、冷媒配管を介して室内膨張機構113と接続される。 The indoor heat exchanger 112 performs heat exchange between the refrigerant R flowing inside the indoor heat exchanger 112 and the air in the air-conditioned space. The indoor heat exchanger 112 functions as an evaporator for refrigerant during cooling operation, and functions as a radiator for refrigerant R during heating operation. One end of the indoor heat exchanger 112 is connected to a gas side connection part 114 via a refrigerant pipe. The other end of the indoor heat exchanger 112 is connected to the indoor expansion mechanism 113 via a refrigerant pipe.
 室内膨張機構113は、冷媒循環路150を流れる冷媒Rの圧力や流量の調節を行う。室内膨張機構113は、図示しないアクチュエータによって開度が調整される電子膨張弁である。室内膨張機構113は、冷媒配管を介して室内熱交換器112と液側接続部115とに接続される。室内膨張機構113の開度は、制御部140により制御される。 The indoor expansion mechanism 113 adjusts the pressure and flow rate of the refrigerant R flowing through the refrigerant circulation path 150. The indoor expansion mechanism 113 is an electronic expansion valve whose opening degree is adjusted by an actuator (not shown). Indoor expansion mechanism 113 is connected to indoor heat exchanger 112 and liquid side connection section 115 via refrigerant piping. The opening degree of the indoor expansion mechanism 113 is controlled by the control unit 140.
 ガス側接続部114は、室内冷媒流路111の一端である。ガス側接続部114は、ガス側連絡配管131に接続される。 The gas side connection part 114 is one end of the indoor refrigerant flow path 111. The gas side connection part 114 is connected to the gas side communication pipe 131.
 液側接続部115は、室内冷媒流路111の他端である。液側接続部115は、液側連絡配管132に接続される。 The liquid side connection part 115 is the other end of the indoor refrigerant flow path 111. The liquid side connection part 115 is connected to the liquid side communication pipe 132.
 検出部116は、冷媒循環路150からの冷媒Rの漏洩を検出する。検出部116は、室内ユニット110のケーシング(図示省略)内部に設置される。検出部116は、冷媒循環路150からの冷媒Rの漏洩を検出できれば態様は限定されず、冷媒Rを検知するセンサであってもよいし、室内ユニット110のケーシング内部の気温や配管の温度の急激な変化により冷媒Rの漏洩を検出してもよい。検出部116は、冷媒Rの漏洩を検出すると制御部140に冷媒Rの漏洩を示す信号を送信する。 The detection unit 116 detects leakage of the refrigerant R from the refrigerant circulation path 150. The detection unit 116 is installed inside a casing (not shown) of the indoor unit 110. The detection unit 116 is not limited to any form as long as it can detect leakage of the refrigerant R from the refrigerant circulation path 150, and may be a sensor that detects the refrigerant R, or may be a sensor that detects the temperature inside the casing of the indoor unit 110 or the temperature of the piping. Leakage of the refrigerant R may be detected based on a sudden change. When detecting the leakage of the refrigerant R, the detection unit 116 transmits a signal indicating the leakage of the refrigerant R to the control unit 140.
 (2-1-2)室外ユニット
 室外ユニット120は、空調対象空間の外に配置される。室外ユニット120は、たとえば、冷凍サイクル装置100の設置される建物の屋上や、建物に隣接して設置される。室外ユニット120は、室外冷媒流路121と、ガス側分岐配管128と、液側分岐配管129とを有する。
(2-1-2) Outdoor Unit The outdoor unit 120 is placed outside the air-conditioned space. The outdoor unit 120 is installed, for example, on the roof of the building where the refrigeration cycle device 100 is installed or adjacent to the building. The outdoor unit 120 has an outdoor refrigerant flow path 121, a gas side branch pipe 128, and a liquid side branch pipe 129.
 室外冷媒流路121は、冷媒循環路150の一部を構成する。室外冷媒流路121は、第1圧縮機122と、室外熱交換器123と、室外膨張機構124と、流路切換機構125と、ガス側接続部126と、液側接続部127とが冷媒配管121aを介して接続されることにより形成される。冷媒配管121aは、第1冷媒配管121bと、第2冷媒配管121cと、第3冷媒配管121dとを含む。 The outdoor refrigerant flow path 121 constitutes a part of the refrigerant circulation path 150. The outdoor refrigerant flow path 121 includes a first compressor 122, an outdoor heat exchanger 123, an outdoor expansion mechanism 124, a flow path switching mechanism 125, a gas side connection section 126, and a liquid side connection section 127, which are refrigerant pipes. 121a. The refrigerant pipe 121a includes a first refrigerant pipe 121b, a second refrigerant pipe 121c, and a third refrigerant pipe 121d.
 第1圧縮機122は、吸入管122aから冷凍サイクルにおける低圧の冷媒Rを吸入し、圧縮機構(図示省略)で冷媒Rを圧縮して、圧縮した冷媒Rを吐出管122bへと吐出する。第1圧縮機122の運転は、制御部140により制御される。 The first compressor 122 sucks the low-pressure refrigerant R in the refrigeration cycle from the suction pipe 122a, compresses the refrigerant R with a compression mechanism (not shown), and discharges the compressed refrigerant R to the discharge pipe 122b. The operation of the first compressor 122 is controlled by the control unit 140.
 室外熱交換器123は、室外熱交換器123の内部を流れる冷媒Rと室外ユニット120の設置場所の空気(熱源空気)との間での熱交換を行う。室外熱交換器123は、冷房運転時には冷媒Rの放熱器として機能し、暖房運転時には冷媒Rの蒸発器として機能する。室外熱交換器123の一端は、冷媒配管を介して流路切換機構125に接続される。室外熱交換器123の他端は、冷媒配管を介して室外膨張機構124に接続される。 The outdoor heat exchanger 123 performs heat exchange between the refrigerant R flowing inside the outdoor heat exchanger 123 and the air (heat source air) at the location where the outdoor unit 120 is installed. The outdoor heat exchanger 123 functions as a radiator for refrigerant R during cooling operation, and functions as an evaporator for refrigerant R during heating operation. One end of the outdoor heat exchanger 123 is connected to a flow path switching mechanism 125 via a refrigerant pipe. The other end of the outdoor heat exchanger 123 is connected to the outdoor expansion mechanism 124 via a refrigerant pipe.
 室外膨張機構124は、冷媒循環路150を流れる冷媒Rの圧力や流量の調節を行う。室外膨張機構124は、図示しないアクチュエータによって開度が調整される電子膨張弁である。室内膨張機構113の開度は、制御部140により制御される。室外膨張機構124は、冷媒配管を介して室外熱交換器123と液側接続部127とに接続される。 The outdoor expansion mechanism 124 adjusts the pressure and flow rate of the refrigerant R flowing through the refrigerant circulation path 150. The outdoor expansion mechanism 124 is an electronic expansion valve whose opening degree is adjusted by an actuator (not shown). The opening degree of the indoor expansion mechanism 113 is controlled by the control unit 140. The outdoor expansion mechanism 124 is connected to the outdoor heat exchanger 123 and the liquid side connection part 127 via a refrigerant pipe.
 流路切換機構125は、冷媒Rの流向を切り換えることで、冷媒循環路150の状態を、第1状態と第2状態との間で変更する。冷媒循環路150が第1状態にある時には、室外熱交換器123が冷媒Rの放熱器として機能し、室内熱交換器112が冷媒Rの蒸発器として機能する。冷媒循環路150が第2状態にあるときには、室外熱交換器123が冷媒Rの蒸発器として機能し、室内熱交換器112が冷媒Rの放熱器として機能する。流路切換機構125は、制御部140により制御される。本実施形態では、流路切換機構125は四路切換弁である。ただし、流路切換機構125は四路切換弁に限られるものではない。例えば、流路切換機構125は、複数の電磁弁及び冷媒管が下記のような冷媒Rの流れ方向の切り換えを実現できるように組み合わせられて構成されてもよい。 The flow path switching mechanism 125 changes the state of the refrigerant circulation path 150 between the first state and the second state by switching the flow direction of the refrigerant R. When the refrigerant circulation path 150 is in the first state, the outdoor heat exchanger 123 functions as a radiator for the refrigerant R, and the indoor heat exchanger 112 functions as an evaporator for the refrigerant R. When the refrigerant circulation path 150 is in the second state, the outdoor heat exchanger 123 functions as an evaporator for the refrigerant R, and the indoor heat exchanger 112 functions as a radiator for the refrigerant R. The flow path switching mechanism 125 is controlled by the control section 140. In this embodiment, the flow path switching mechanism 125 is a four-way switching valve. However, the flow path switching mechanism 125 is not limited to a four-way switching valve. For example, the flow path switching mechanism 125 may be configured by combining a plurality of electromagnetic valves and refrigerant pipes so as to realize switching of the flow direction of the refrigerant R as described below.
 冷房運転時には、流路切換機構125は冷媒循環路150の状態を第1状態とする。言い換えれば、冷房運転時には、流路切換機構125は、吸入管122aをガス側接続部126と連通させ、吐出管122bを室外熱交換器123と連通させる(図1中の流路切換機構125内の破線参照)。暖房運転時には、流路切換機構125は、冷媒循環路150の状態を第2状態とする。言い換えれば、暖房運転時には、流路切換機構125は、吸入管122aを室外熱交換器123と連通させ、吐出管122bをガス側接続部126と連通させる(図1中の流路切換機構125内の実線参照)。 During cooling operation, the flow path switching mechanism 125 sets the state of the refrigerant circulation path 150 to the first state. In other words, during cooling operation, the flow path switching mechanism 125 communicates the suction pipe 122a with the gas side connection part 126, and communicates the discharge pipe 122b with the outdoor heat exchanger 123 (inside the flow path switching mechanism 125 in FIG. ). During heating operation, the flow path switching mechanism 125 sets the state of the refrigerant circulation path 150 to the second state. In other words, during heating operation, the flow path switching mechanism 125 communicates the suction pipe 122a with the outdoor heat exchanger 123, and communicates the discharge pipe 122b with the gas side connection part 126 (inside the flow path switching mechanism 125 in FIG. (see solid line).
 ガス側接続部126は、室外冷媒流路121の一端である。ガス側接続部126には、ガス側連絡配管131が接続される。 The gas side connection part 126 is one end of the outdoor refrigerant flow path 121. A gas side communication pipe 131 is connected to the gas side connecting portion 126 .
 液側接続部127は、室外冷媒流路121の他端である。液側接続部127は、液側連絡配管132が接続される。 The liquid side connection part 127 is the other end of the outdoor refrigerant flow path 121. The liquid side connecting portion 127 is connected to the liquid side communication pipe 132 .
 第1冷媒配管121bは、流路切換機構125及びガス側接続部126を接続する。 The first refrigerant pipe 121b connects the flow path switching mechanism 125 and the gas side connection part 126.
 第2冷媒配管121cは、室外熱交換器123及び室外膨張機構124を接続する。 The second refrigerant pipe 121c connects the outdoor heat exchanger 123 and the outdoor expansion mechanism 124.
 第3冷媒配管121dは、室外膨張機構124及び液側接続部127を接続する。 The third refrigerant pipe 121d connects the outdoor expansion mechanism 124 and the liquid side connection part 127.
 ガス側分岐配管128は、第1冷媒配管121bと冷媒量測定システム4とを連通する配管である。本実施形態では、ガス側分岐配管128の一端は、第1冷媒配管121bに接続される。ガス側分岐配管128の他端は、第1管410又は第3管430に連通する。 The gas side branch pipe 128 is a pipe that communicates the first refrigerant pipe 121b and the refrigerant amount measurement system 4. In this embodiment, one end of the gas side branch pipe 128 is connected to the first refrigerant pipe 121b. The other end of the gas side branch pipe 128 communicates with the first pipe 410 or the third pipe 430.
 液側分岐配管129は、第2冷媒配管121cと冷媒量測定システム4とを連通する配管である。本実施形態では、液側分岐配管129の一端は、第2冷媒配管121cに接続される。液側分岐配管129の他端は、第2管420又は第4管440に連通する。 The liquid side branch pipe 129 is a pipe that communicates the second refrigerant pipe 121c and the refrigerant amount measurement system 4. In this embodiment, one end of the liquid side branch pipe 129 is connected to the second refrigerant pipe 121c. The other end of the liquid side branch pipe 129 communicates with the second pipe 420 or the fourth pipe 440.
 (2-1-3)ガス側連絡配管及び液側連絡配管
 ガス側連絡配管131及び液側連絡配管132は、室内冷媒流路111と室外冷媒流路121とを接続する。
(2-1-3) Gas side communication pipe and liquid side communication pipe The gas side communication pipe 131 and the liquid side communication pipe 132 connect the indoor refrigerant flow path 111 and the outdoor refrigerant flow path 121.
 ガス側連絡配管131は、室内冷媒流路111のガス側接続部114と室外冷媒流路121のガス側接続部126に接続される。 The gas side communication pipe 131 is connected to the gas side connection portion 114 of the indoor refrigerant flow path 111 and the gas side connection portion 126 of the outdoor refrigerant flow path 121.
 室内冷媒流路111は、室内冷媒流路111の液側接続部115と室外冷媒流路121の液側接続部127に接続される。 The indoor refrigerant flow path 111 is connected to the liquid side connection portion 115 of the indoor refrigerant flow path 111 and the liquid side connection portion 127 of the outdoor refrigerant flow path 121.
 (2-2)冷媒量測定システム
 冷媒量測定システム4は、冷凍サイクル装置100の冷媒Rを貯留し、冷媒Rの量を測定して、冷凍サイクル装置100に冷媒Rを戻すシステムである。冷媒量測定システム4は、開閉弁230、第1管410、第2管420、第3管430、第4管440、ガス側配管451、液側配管452、貯留部460、電極棒461、演算装置470、制御部140を有する。開閉弁230、第1管410、第2管420、第3管430、第4管440は接続部400を構成する。電極棒461、測定演算部471は測定部401を構成する。
(2-2) Refrigerant Amount Measuring System The refrigerant amount measuring system 4 is a system that stores the refrigerant R of the refrigeration cycle device 100, measures the amount of the refrigerant R, and returns the refrigerant R to the refrigeration cycle device 100. The refrigerant amount measuring system 4 includes an on-off valve 230, a first pipe 410, a second pipe 420, a third pipe 430, a fourth pipe 440, a gas side pipe 451, a liquid side pipe 452, a storage section 460, an electrode rod 461, and a calculation unit. It has a device 470 and a control section 140. The on-off valve 230, the first pipe 410, the second pipe 420, the third pipe 430, and the fourth pipe 440 constitute the connecting portion 400. The electrode rod 461 and the measurement calculation section 471 constitute the measurement section 401.
 冷媒量測定システム4は、第1管410および第2管420により第1冷凍サイクル装置100Aに対して外付け接続する。また、冷媒量測定システム4は、第3管430および第4管440により第2冷凍サイクル装置100Bに対して外付け接続する。冷媒量測定システム4が接続する冷凍サイクル装置100の数は、2台に限定されず、1台であってもよいし、3台以上であってもよい。 The refrigerant amount measuring system 4 is externally connected to the first refrigeration cycle apparatus 100A through a first pipe 410 and a second pipe 420. Further, the refrigerant amount measuring system 4 is externally connected to the second refrigeration cycle apparatus 100B through a third pipe 430 and a fourth pipe 440. The number of refrigeration cycle devices 100 connected to the refrigerant amount measuring system 4 is not limited to two, and may be one, or three or more.
 (2-2-1)貯留部
 貯留部460は、後述する冷媒量測定動作により冷媒循環路150の冷媒Rを貯留する円筒型容器である。貯留部460は、ガス側配管451、液側配管452を介して第1管410、第2管420、第3管430、第4管440により、冷凍サイクル装置100に接続される。貯留部460は、円筒型容器に限定されず、冷媒Rを貯留できる他の形状の容器であってもよい。
(2-2-1) Storage Unit The storage unit 460 is a cylindrical container that stores the refrigerant R in the refrigerant circulation path 150 by a refrigerant amount measurement operation that will be described later. The storage section 460 is connected to the refrigeration cycle apparatus 100 via a gas side pipe 451 and a liquid side pipe 452, and a first pipe 410, a second pipe 420, a third pipe 430, and a fourth pipe 440. The storage section 460 is not limited to a cylindrical container, and may be a container of another shape that can store the refrigerant R.
 (2-2-2)ガス側配管および液側配管
 ガス側配管451は、第1管410および第3管430と、貯留部460とを連通させるための配管である。ガス側配管451の一端は、貯留部460に接続される。ガス側配管451の他端は、第1管410又は第3管430を介してガス側分岐配管128に接続される。
(2-2-2) Gas side piping and liquid side piping The gas side piping 451 is a piping for communicating the first pipe 410 and the third pipe 430 with the storage section 460. One end of the gas side pipe 451 is connected to the storage section 460. The other end of the gas side pipe 451 is connected to the gas side branch pipe 128 via the first pipe 410 or the third pipe 430.
 液側配管452は、第2管420および第4管440と、貯留部460とを連通させるための配管である。液側配管452の一端は、貯留部460に接続される。液側配管452の他端は、第2管420又は第4管440を介して液側分岐配管129に接続される。 The liquid side pipe 452 is a pipe for communicating the second pipe 420 and the fourth pipe 440 with the storage section 460. One end of the liquid side pipe 452 is connected to the storage section 460. The other end of the liquid side pipe 452 is connected to the liquid side branch pipe 129 via the second pipe 420 or the fourth pipe 440.
 (2-2-3)接続部
 接続部400は、冷凍サイクル装置100の冷媒循環路150と、貯留部460とを連通させる。接続部400は、開閉弁230、第1管410、第2管420、第3管430、第4管440を有する。
(2-2-3) Connection portion The connection portion 400 communicates the refrigerant circulation path 150 of the refrigeration cycle device 100 with the storage portion 460. The connecting portion 400 includes an on-off valve 230, a first pipe 410, a second pipe 420, a third pipe 430, and a fourth pipe 440.
 (2-2-3-1)第1管
 第1管410は、第1冷凍サイクル装置100Aのガス側分岐配管128Aとガス側配管451を連通する配管である。第1管410の一端は、第1冷凍サイクル装置100Aのガス側分岐配管128Aに接続される。第1管410の他端は、ガス側配管451に接続される。
(2-2-3-1) First Pipe The first pipe 410 is a pipe that communicates the gas side branch pipe 128A of the first refrigeration cycle device 100A with the gas side pipe 451. One end of the first pipe 410 is connected to the gas side branch pipe 128A of the first refrigeration cycle apparatus 100A. The other end of the first pipe 410 is connected to a gas side pipe 451.
 (2-2-3-2)第2管
 第2管420は、第1冷凍サイクル装置100Aの液側分岐配管129Aと液側配管452を連通する配管である。第2管420の一端は、第1冷凍サイクル装置100Aの液側分岐配管129Aに接続される。第2管420の他端は、液側配管452に接続される。
(2-2-3-2) Second Pipe The second pipe 420 is a pipe that communicates the liquid side branch pipe 129A of the first refrigeration cycle device 100A with the liquid side pipe 452. One end of the second pipe 420 is connected to the liquid side branch pipe 129A of the first refrigeration cycle device 100A. The other end of the second pipe 420 is connected to the liquid side pipe 452.
 (2-2-3-3)第3管
 第3管430は、第2冷凍サイクル装置100Bのガス側分岐配管128Bとガス側配管451を連通する配管である。第3管430の一端は、第2冷凍サイクル装置100Bのガス側分岐配管128Bに接続される。第3管430の他端は、ガス側配管451に接続される。
(2-2-3-3) Third Pipe The third pipe 430 is a pipe that communicates the gas side branch pipe 128B and the gas side pipe 451 of the second refrigeration cycle device 100B. One end of the third pipe 430 is connected to the gas side branch pipe 128B of the second refrigeration cycle device 100B. The other end of the third pipe 430 is connected to the gas side pipe 451.
 (2-2-3-4)第4管
 第4管440は、第2冷凍サイクル装置100Bの液側分岐配管129Bと液側配管452を連通する配管である。第4管440の一端は、第2冷凍サイクル装置100Bの液側分岐配管129Bに接続される。第4管440の他端は、液側配管452に接続される。
(2-2-3-4) Fourth Pipe The fourth pipe 440 is a pipe that communicates the liquid side branch pipe 129B and the liquid side pipe 452 of the second refrigeration cycle device 100B. One end of the fourth pipe 440 is connected to the liquid side branch pipe 129B of the second refrigeration cycle device 100B. The other end of the fourth pipe 440 is connected to the liquid side pipe 452.
 (2-2-3-5)開閉弁
 開閉弁230は、第1管410、第2管420、第3管430、第4管440に設けられる。冷媒量測定システム4に含まれる開閉弁230は、開閉弁230a、開閉弁230b、開閉弁230c、開閉弁230dがある。
(2-2-3-5) On-off valve The on-off valve 230 is provided in the first pipe 410, the second pipe 420, the third pipe 430, and the fourth pipe 440. The on-off valves 230 included in the refrigerant amount measuring system 4 include an on-off valve 230a, an on-off valve 230b, an on-off valve 230c, and an on-off valve 230d.
 (2-2-3-5-1)開閉弁230a
 開閉弁230aは第1管410に設けられる。開閉弁230aは第1管410の連通を許容又は遮断する。開閉弁230aは、電磁開閉弁であって制御部140aにより開閉制御される。
(2-2-3-5-1) Opening/closing valve 230a
The on-off valve 230a is provided in the first pipe 410. The on-off valve 230a allows or blocks communication with the first pipe 410. The on-off valve 230a is an electromagnetic on-off valve, and its opening and closing are controlled by the control unit 140a.
 (2-2-3-5-2)開閉弁230b
 開閉弁230bは第2管420に設けられる。開閉弁230bは第2管420の連通を許容又は遮断する。開閉弁230bは、電磁開閉弁であって制御部140aにより開閉制御される。
(2-2-3-5-2) Opening/closing valve 230b
The on-off valve 230b is provided in the second pipe 420. The on-off valve 230b allows or blocks communication with the second pipe 420. The on-off valve 230b is an electromagnetic on-off valve, and its opening and closing are controlled by the control unit 140a.
 (2-2-3-5-3)開閉弁230c
 開閉弁230cは第3管430に設けられる。開閉弁230cは第3管430の連通を許容又は遮断する。開閉弁230cは、電磁開閉弁であって制御部140bにより開閉制御される。
(2-2-3-5-3) Opening/closing valve 230c
The on-off valve 230c is provided in the third pipe 430. The on-off valve 230c allows or blocks communication with the third pipe 430. The on-off valve 230c is an electromagnetic on-off valve, and its opening and closing are controlled by the control section 140b.
 (2-2-3-5-4)開閉弁230d
 開閉弁230dは第4管440に設けられる。開閉弁230dは第4管440の連通を許容又は遮断する。開閉弁230dは、電磁開閉弁であって制御部140bにより開閉制御される。
(2-2-3-5-4) On-off valve 230d
The on-off valve 230d is provided in the fourth pipe 440. The on-off valve 230d allows or blocks communication with the fourth pipe 440. The on-off valve 230d is an electromagnetic on-off valve, and its opening and closing are controlled by the control unit 140b.
 (2-2-4)電極棒
 電極棒461は、貯留部460の冷媒Rの量を測定するための装置である。電極棒461は、測定演算部471と電気的に接続される。電極棒461は、測定演算部471を介して制御部140により制御される。電極棒461は、電極棒461と貯留部460の位置関係は変化しないように設けられる。電極棒461に関わる詳細な動作については後述する。
(2-2-4) Electrode Rod The electrode rod 461 is a device for measuring the amount of refrigerant R in the storage section 460. The electrode rod 461 is electrically connected to the measurement calculation section 471. The electrode rod 461 is controlled by the control section 140 via the measurement calculation section 471. The electrode rod 461 is provided so that the positional relationship between the electrode rod 461 and the storage section 460 does not change. Detailed operations related to the electrode rod 461 will be described later.
 (2-2-5)制御部
 制御部140は、冷凍サイクル装置100及び冷媒量測定システム4を構成する各部の動作を制御する。制御部140は、室内膨張機構113、検出部116、第1圧縮機122、室外膨張機構124、流路切換機構125、開閉弁230及び演算装置470と制御信号や情報のやりとりを行うことが可能に電気的に接続されている。
(2-2-5) Control Unit The control unit 140 controls the operation of each unit constituting the refrigeration cycle device 100 and the refrigerant amount measuring system 4. The control unit 140 can exchange control signals and information with the indoor expansion mechanism 113, the detection unit 116, the first compressor 122, the outdoor expansion mechanism 124, the flow path switching mechanism 125, the on-off valve 230, and the arithmetic unit 470. electrically connected to.
 図2は、制御部140の制御ブロック図である。本実施形態では、制御部140は、冷凍サイクル装置100の外部に設置される。制御部140は、室外ユニット120のケーシング内部、冷凍サイクル装置100から離れたサーバーに設けられてもよい。 FIG. 2 is a control block diagram of the control unit 140. In this embodiment, the control unit 140 is installed outside the refrigeration cycle device 100. The control unit 140 may be provided inside the casing of the outdoor unit 120 or in a server remote from the refrigeration cycle device 100.
 制御部140は、冷凍サイクル装置100及び冷媒量測定システム4を構成する各部の動作を制御して、空調運転と、冷媒量測定動作を実行する。空調運転は、冷房運転及び暖房運転を含む。冷媒量測定動作は、第1の冷媒量測定動作及び第2の冷媒量測定動作を含む。冷媒量測定動作は、冷媒循環路150から冷媒Rを貯留部460に移し、測定部401に冷媒Rの量を測定させ、冷媒Rを貯留部460から冷媒循環路150に戻させる動作である。 The control unit 140 controls the operation of each part constituting the refrigeration cycle device 100 and the refrigerant amount measurement system 4, and executes air conditioning operation and refrigerant amount measurement operation. Air conditioning operation includes cooling operation and heating operation. The refrigerant amount measuring operation includes a first refrigerant amount measuring operation and a second refrigerant amount measuring operation. The refrigerant amount measurement operation is an operation in which the refrigerant R is transferred from the refrigerant circulation path 150 to the storage section 460, the measurement section 401 measures the amount of the refrigerant R, and the refrigerant R is returned from the storage section 460 to the refrigerant circulation path 150.
 第1冷凍サイクル装置100Aは制御部140aと接続する。第2冷凍サイクル装置100Bは制御部140bと接続する。制御部140aと制御部140bは相互電気的に接続される。制御部140aと制御部140bとは、互いに連携して空調運転、冷媒量測定動作を実行するため、以下では、制御部140aと制御部140bとをまとめて制御部140とよぶ。 The first refrigeration cycle device 100A is connected to the control section 140a. The second refrigeration cycle device 100B is connected to the control section 140b. The control unit 140a and the control unit 140b are electrically connected to each other. Since the control unit 140a and the control unit 140b cooperate with each other to execute air conditioning operation and refrigerant amount measurement operation, the control unit 140a and the control unit 140b are hereinafter collectively referred to as the control unit 140.
 冷房運転時及び暖房運転時の冷凍サイクル装置100の制御について説明する。冷媒量測定動作の詳細については、後述する。 Control of the refrigeration cycle device 100 during cooling operation and heating operation will be explained. Details of the refrigerant amount measurement operation will be described later.
 (冷房運転)
 冷凍サイクル装置100に対して冷房運転の実行が指示されると、制御部140は、冷媒循環路150の状態が前述の第1状態になるよう、流路切換機構125を図1において破線で示す状態に制御し、第1圧縮機122を運転する。
(Cooling operation)
When the refrigeration cycle apparatus 100 is instructed to perform the cooling operation, the control unit 140 switches the flow path switching mechanism 125 as indicated by the broken line in FIG. 1 so that the state of the refrigerant circulation path 150 becomes the first state described above. state, and the first compressor 122 is operated.
 第1圧縮機122が運転されると、冷凍サイクルにおける低圧のガス冷媒が圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。高圧のガス冷媒は、流路切換機構125を経由して室外熱交換器123に送られ、熱源空気と熱交換を行って凝縮し、高圧の液冷媒となる。高圧の液冷媒は、全開にされた室内膨張機構113及び液側連絡配管132を経由して室内ユニット110へと送られる。室内ユニット110へと送られた気液二相状態の冷媒Rは、開度が絞られた室内膨張機構113において第1圧縮機122の吸入圧力近くまで減圧されて気液二相状態の冷媒Rとなり室内熱交換器112に送られる。気液二相状態の冷媒Rは、室内熱交換器112において、空調対象空間の空気と熱交換を行って蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、ガス側連絡配管131を経由して室外ユニット120に送られ、流路切換機構125を経由して、再び、第1圧縮機122に吸入される。室内熱交換器112に供給された空気は、室内熱交換器112を流れる冷媒Rと熱交換することで温度が低下する。室内熱交換器112で冷却された空気は、空調対象空間に吹き出される。 When the first compressor 122 is operated, the low pressure gas refrigerant in the refrigeration cycle is compressed and becomes the high pressure gas refrigerant in the refrigeration cycle. The high-pressure gas refrigerant is sent to the outdoor heat exchanger 123 via the flow path switching mechanism 125, exchanges heat with the heat source air, and condenses to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is sent to the indoor unit 110 via the fully opened indoor expansion mechanism 113 and the liquid side communication pipe 132. The refrigerant R in a gas-liquid two-phase state sent to the indoor unit 110 is reduced in pressure to near the suction pressure of the first compressor 122 in the indoor expansion mechanism 113 whose opening degree is restricted, and becomes the refrigerant R in a gas-liquid two-phase state. Then, it is sent to the indoor heat exchanger 112. The gas-liquid two-phase refrigerant R exchanges heat with the air in the air-conditioned space in the indoor heat exchanger 112 and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is sent to the outdoor unit 120 via the gas side communication pipe 131, and is sucked into the first compressor 122 again via the flow path switching mechanism 125. The temperature of the air supplied to the indoor heat exchanger 112 decreases by exchanging heat with the refrigerant R flowing through the indoor heat exchanger 112. The air cooled by the indoor heat exchanger 112 is blown out into the air-conditioned space.
 (暖房運転)
 冷凍サイクル装置100に対して暖房運転の実行が指示されると、制御部140は、冷媒循環路150の状態が前述の第2状態になるよう、流路切換機構125を図1において実線で示す状態に制御し、第1圧縮機122を運転する。
(Heating operation)
When the refrigeration cycle device 100 is instructed to perform the heating operation, the control unit 140 switches the flow path switching mechanism 125 as shown by the solid line in FIG. 1 so that the state of the refrigerant circulation path 150 becomes the second state described above. state, and the first compressor 122 is operated.
 第1圧縮機122が運転されると、冷凍サイクルにおける低圧のガス冷媒が圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。高圧のガス冷媒は、流路切換機構125及びガス側連絡配管131を経由して室内ユニット110へと送られる。室内ユニット110へと送られた冷媒Rは、室内熱交換器112に送られ空調対象空間の空気と熱交換を行って凝縮し、高圧の液冷媒となる。室内熱交換器112に供給された空気は、室内熱交換器112を流れる冷媒Rと熱交換することで温度が上昇する。室内熱交換器112で加熱された空気は、空調対象空間に吹き出される。室内熱交換器112から流出する高圧の液冷媒は、全開にされた室内膨張機構113及び液側連絡配管132を経由して室外ユニット120に送られる。室外ユニット120に送られた冷媒Rは、開度が絞られた室外膨張機構124において第1圧縮機122の吸入圧力近くまで減圧され気液二相状態の冷媒Rとなり室外熱交換器123に送られる。気液二相状態の冷媒Rは、室外熱交換器123において、熱源空気と熱交換を行って蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、流路切換機構125を経由して、再び、第1圧縮機122に吸入される。 When the first compressor 122 is operated, the low pressure gas refrigerant in the refrigeration cycle is compressed and becomes the high pressure gas refrigerant in the refrigeration cycle. The high-pressure gas refrigerant is sent to the indoor unit 110 via the flow path switching mechanism 125 and the gas side communication pipe 131. The refrigerant R sent to the indoor unit 110 is sent to the indoor heat exchanger 112, where it exchanges heat with the air in the air-conditioned space, condenses, and becomes a high-pressure liquid refrigerant. The temperature of the air supplied to the indoor heat exchanger 112 increases by exchanging heat with the refrigerant R flowing through the indoor heat exchanger 112. The air heated by the indoor heat exchanger 112 is blown out into the air-conditioned space. The high-pressure liquid refrigerant flowing out of the indoor heat exchanger 112 is sent to the outdoor unit 120 via the fully opened indoor expansion mechanism 113 and the liquid side communication pipe 132. The refrigerant R sent to the outdoor unit 120 is depressurized to near the suction pressure of the first compressor 122 in the outdoor expansion mechanism 124 whose opening degree is restricted, and becomes a gas-liquid two-phase refrigerant R and sent to the outdoor heat exchanger 123. It will be done. The gas-liquid two-phase refrigerant R exchanges heat with the heat source air in the outdoor heat exchanger 123 and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is sucked into the first compressor 122 again via the flow path switching mechanism 125.
 制御部140は、コンピュータにより実現されるものである。制御部140は、制御演算装置と記憶装置とを備える(いずれも図示省略)。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。記憶装置は、データベースとして用いることができる。制御部140により実現される具体的な機能については後述する。 The control unit 140 is realized by a computer. The control unit 140 includes a control calculation device and a storage device (both not shown). A processor such as a CPU or a GPU can be used as the control calculation device. The control arithmetic device reads a program stored in the storage device, and performs predetermined image processing and arithmetic processing according to this program. Furthermore, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to the program. The storage device can be used as a database. Specific functions realized by the control unit 140 will be described later.
 なお、ここで説明する制御部140の構成は一例に過ぎず、以下で説明する制御部140の機能は、ソフトウェアで実現されても、ハードウェアで実現されても、ソフトウェアとハードウェアとの組み合わせで実現されてもよい。 Note that the configuration of the control unit 140 described here is only an example, and the functions of the control unit 140 described below may be realized by software or hardware, or by a combination of software and hardware. It may be realized by
 (2-2-6)演算装置
 演算装置470は、貯留部460の冷媒Rの量の測定に関わる演算を行い、測定結果を記憶部472に記録し、記憶する装置である。図3は、演算装置470の制御ブロック図である。演算装置470は、測定演算部471と、記憶部472を有する。演算装置470は、電極棒461および制御部140と電気的に接続される。演算装置470は、制御部140により制御される。
(2-2-6) Arithmetic Device The arithmetic device 470 is a device that performs arithmetic operations related to measuring the amount of refrigerant R in the storage section 460, and records and stores the measurement results in the storage section 472. FIG. 3 is a control block diagram of the arithmetic unit 470. The calculation device 470 includes a measurement calculation section 471 and a storage section 472. Arithmetic device 470 is electrically connected to electrode rod 461 and control section 140 . Arithmetic device 470 is controlled by control section 140.
 演算装置470は、貯留部460が設けられる場所の付近、冷凍サイクル装置100又は貯留部460が設けられる建物内、冷凍サイクル装置100から離れたサーバーなどに設けられてもよい。測定演算部471と記憶部472は、異なる場所に設けられてもよい。 The arithmetic device 470 may be installed near the location where the storage section 460 is installed, in a building where the refrigeration cycle device 100 or the storage section 460 is installed, in a server remote from the refrigeration cycle device 100, or the like. The measurement calculation section 471 and the storage section 472 may be provided at different locations.
 演算装置470は、コンピュータにより実現されるものである。演算装置470は、制御演算装置と記憶装置とを備える(いずれも図示省略)。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。記憶装置は、データベースとして用いることができる。 The arithmetic unit 470 is realized by a computer. The arithmetic device 470 includes a control arithmetic device and a storage device (both not shown). A processor such as a CPU or a GPU can be used as the control calculation device. The control arithmetic device reads a program stored in the storage device, and performs predetermined image processing and arithmetic processing according to this program. Furthermore, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to the program. The storage device can be used as a database.
 なお、ここで説明する演算装置470の構成は一例に過ぎず、以下で説明する演算装置470の機能は、ソフトウェアで実現されても、ハードウェアで実現されても、ソフトウェアとハードウェアとの組み合わせで実現されてもよい。 Note that the configuration of the arithmetic device 470 described here is only an example, and the functions of the arithmetic device 470 described below may be realized by software or hardware, or by a combination of software and hardware. It may be realized by
 (2-2-6-1)測定演算部
 測定演算部471は、貯留部460の冷媒Rの量の測定に関わる演算を行い、測定結果を記憶部472に記録する。測定演算部471は、電極棒461および制御部140と電気的に接続される。測定演算部471は、制御部140により制御される。測定演算部471の詳細動作は後述する。
(2-2-6-1) Measurement Calculation Unit The measurement calculation unit 471 performs calculations related to measuring the amount of refrigerant R in the storage unit 460, and records the measurement results in the storage unit 472. The measurement calculation section 471 is electrically connected to the electrode rod 461 and the control section 140. The measurement calculation section 471 is controlled by the control section 140. The detailed operation of the measurement calculation section 471 will be described later.
 (2-2-6-2)記憶部
 記憶部472は、貯留部460の冷媒Rの量の測定結果を記憶する記憶装置である。記憶部472は、測定演算部471および制御部140と電気的に接続される。記憶部472は、制御部140により制御される。
(2-2-6-2) Storage Unit The storage unit 472 is a storage device that stores the measurement results of the amount of refrigerant R in the storage unit 460. The storage section 472 is electrically connected to the measurement calculation section 471 and the control section 140. The storage unit 472 is controlled by the control unit 140.
 (3)動作
 冷媒量測定システム4の制御部140が実行する、冷媒量測定動作について説明をする。
(3) Operation The refrigerant amount measurement operation performed by the control unit 140 of the refrigerant amount measurement system 4 will be described.
 (3-1)冷媒量測定動作
 冷媒量測定動作は、冷媒循環路150から冷媒Rを貯留部460に移し、測定部401に冷媒Rの量を測定させ、冷媒Rを貯留部460から冷媒循環路150に戻させる動作である。冷媒量測定動作は、冷凍サイクル装置の使用開始から廃棄に至る各時点における冷凍サイクル装置内の冷媒充填量を測定し、使用開始時の冷媒充填量、使用開始後の冷媒充填量、廃棄直前の冷媒充填量、及び、使用開始時と各時点での冷媒充填量の差から冷媒Rの漏洩量、を明確化するために行われる動作である。冷媒量測定動作は、第1の冷媒量測定動作及び第2の冷媒量測定動作を含む。
(3-1) Refrigerant amount measurement operation The refrigerant amount measurement operation is performed by transferring refrigerant R from the refrigerant circulation path 150 to the storage section 460, having the measuring section 401 measure the amount of refrigerant R, and circulating the refrigerant R from the storage section 460. This is an operation to return the path 150 to the path 150. The refrigerant amount measurement operation measures the amount of refrigerant charged in the refrigeration cycle device at each point in time from the start of use to the time of disposal. This operation is performed to clarify the leakage amount of refrigerant R from the refrigerant filling amount and the difference between the refrigerant filling amount at the start of use and at each time point. The refrigerant amount measuring operation includes a first refrigerant amount measuring operation and a second refrigerant amount measuring operation.
 (3-1-1)第1の冷媒量測定動作
 第1の冷媒量測定動作は、第1冷凍サイクル装置100Aの冷媒循環路150から冷媒Rを貯留部460に移し、測定部401に冷媒Rの量を測定させ、冷媒Rを貯留部460から第1冷凍サイクル装置100Aの冷媒循環路150に戻させる動作である。第1の冷媒量測定動作を、冷媒Rを貯留部460に移す動作と、測定部401に冷媒Rの量を測定させる動作と、冷媒Rを冷媒循環路150に戻させる動作に分けて説明する。
(3-1-1) First refrigerant amount measurement operation The first refrigerant amount measurement operation is to transfer refrigerant R from the refrigerant circulation path 150 of the first refrigeration cycle device 100A to the storage section 460, and transfer the refrigerant R to the measurement section 401. This is an operation in which the amount of refrigerant R is measured and the refrigerant R is returned from the storage section 460 to the refrigerant circulation path 150 of the first refrigeration cycle device 100A. The first refrigerant amount measuring operation will be explained by dividing into an operation of transferring the refrigerant R to the storage section 460, an operation of causing the measuring section 401 to measure the amount of the refrigerant R, and an operation of returning the refrigerant R to the refrigerant circulation path 150. .
 (3-1-1-1)冷媒を貯留部に移す動作
 (前半の動作)
 冷媒Rを貯留部460に移す動作の前半の動作は、冷媒循環路150内の冷媒Rの内の、主に液冷媒を貯留する動作である。図4は、冷媒Rを貯留部460に移す動作の前半の動作における冷媒Rの流れを示した概略構成図である。
(3-1-1-1) Operation to transfer refrigerant to storage section (first half operation)
The first half of the operation of transferring the refrigerant R to the storage section 460 is an operation of mainly storing liquid refrigerant of the refrigerant R in the refrigerant circulation path 150. FIG. 4 is a schematic configuration diagram showing the flow of the refrigerant R in the first half of the operation of transferring the refrigerant R to the storage section 460.
 冷媒Rを貯留部460に移す動作の前半の動作において制御部140aは、全ての室内ユニット110Aについて、室内膨張機構113Aを開状態とする。また、制御部140aは、室外ユニット120Aについて、第1冷凍サイクル装置100Aの室外膨張機構124Aを閉状態とし、流路切換機構125Aを第1状態とし、第1圧縮機122を運転する(On)。さらに、制御部140aは、冷媒量測定システム4について、開閉弁230bを開状態とし、開閉弁230b以外の開閉弁230を閉状態とする。具体的には、制御部140aは、開閉弁230a、開閉弁230c及び開閉弁230dを閉状態とする。 In the first half of the operation of transferring the refrigerant R to the storage section 460, the control section 140a opens the indoor expansion mechanism 113A for all indoor units 110A. Further, for the outdoor unit 120A, the control unit 140a sets the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A to the closed state, sets the flow path switching mechanism 125A to the first state, and operates the first compressor 122 (On). . Further, in the refrigerant amount measuring system 4, the control unit 140a opens the on-off valve 230b and closes the on-off valves 230 other than the on-off valve 230b. Specifically, the control unit 140a closes the on-off valve 230a, the on-off valve 230c, and the on-off valve 230d.
 冷媒Rを貯留部460に移す動作の前半の動作が実行されることにより、図4に矢印で示されるように、室内冷媒流路111Aの冷媒Rは、室外ユニット120Aの第1圧縮機122Aにより吸入される。第1圧縮機122Aに吸入された冷媒Rは、第1圧縮機122Aから吐出された後、流路切換機構125A及び室外熱交換器123Aを通過する。室外熱交換器123Aを通過した冷媒Rは室外膨張機構124Aに送られるが、室外膨張機構124Aは閉状態にあることから、液側分岐配管129Aに流入する。液側分岐配管129Aに流入した冷媒Rは、第2管420及び液側配管452を通過して貯留部460に流入する。冷媒量測定システム4の開閉弁230b以外の開閉弁230は閉状態にあるため、流入した冷媒Rは貯留部460内に貯留される。 By performing the first half of the operation of transferring the refrigerant R to the storage section 460, as shown by the arrow in FIG. Inhaled. The refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A, and then passes through the flow path switching mechanism 125A and the outdoor heat exchanger 123A. The refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A. The refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230b of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
 制御部140aは、あらかじめ設定された所定時間T1の間、冷媒Rを貯留部460に移す動作の前半の動作を実行すると冷媒Rを貯留部460に移す動作の前半の動作を終了して冷媒Rを貯留部460に移す動作の後半の動作を開始する。所定時間T1は、例えば、冷媒循環路150A内の液冷媒を貯留部460に貯留できる長さに設定される。 When the control section 140a executes the first half of the operation of transferring the refrigerant R to the storage section 460 for a preset predetermined time T1, the control section 140a finishes the first half of the operation of transferring the refrigerant R to the storage section 460 and stores the refrigerant R. The second half of the operation of transferring the data to the storage section 460 is started. The predetermined time T1 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150A to be stored in the storage section 460.
 (後半の動作)
 冷媒Rを貯留部460に移す動作の後半の動作は、冷媒Rを貯留部460に移す動作の前半の動作の実行によっても貯留部460に貯留しきれず室外冷媒流路121に残留した、主にガス冷媒を貯留部460に貯留するための動作である。図5は、冷媒Rを貯留部460に移す動作の後半の動作における冷媒Rの流れを示した概略構成図である。
(Second half of operation)
The second half of the operation of transferring the refrigerant R to the storage section 460 mainly uses the refrigerant R that is not completely stored in the storage section 460 even after performing the first half of the operation of transferring the refrigerant R to the storage section 460 and remains in the outdoor refrigerant flow path 121. This is an operation for storing gas refrigerant in the storage section 460. FIG. 5 is a schematic configuration diagram showing the flow of the refrigerant R in the latter half of the operation of transferring the refrigerant R to the storage section 460.
 冷媒Rを貯留部460に移す動作の後半の動作においては、制御部140aは、貯留部460について、開閉弁230aを開状態とする。それ以外の機器については、冷媒Rを貯留部460に移す動作の前半の動作の状態が維持される。 In the latter half of the operation of transferring the refrigerant R to the storage section 460, the control section 140a opens the on-off valve 230a for the storage section 460. For other devices, the state of operation in the first half of the operation of transferring the refrigerant R to the storage section 460 is maintained.
 冷媒Rを貯留部460に移す動作の後半の動作が実行されることにより、図5に矢印で示されるように、貯留部460に貯留された冷媒Rの内、ガス冷媒が開閉弁230aを通して第1管410に流入する。第1管410に流入した冷媒Rは、室外冷媒流路121Aに送られて、流路切換機構125Aを通過して第1圧縮機122Aにより吸入される。第1圧縮機122Aに吸入された冷媒Rは、第1圧縮機122Aから吐出され、室外熱交換器123Aを通過する。室外熱交換器123Aを通過した冷媒Rは室外膨張機構124Aに送られるが、室外膨張機構124Aは閉状態にあることから、液側分岐配管129Aに流入する。液側分岐配管129Aに流入した冷媒Rは、第2管420を通過して貯留部460に戻る。 By performing the latter half of the operation of transferring the refrigerant R to the storage section 460, as shown by the arrow in FIG. 1 pipe 410 . The refrigerant R that has flowed into the first pipe 410 is sent to the outdoor refrigerant flow path 121A, passes through the flow path switching mechanism 125A, and is sucked by the first compressor 122A. The refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A and passes through the outdoor heat exchanger 123A. The refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A. The refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and returns to the storage section 460.
 制御部140aは、あらかじめ設定された所定時間T2の間、冷媒Rを貯留部460に移す動作の後半の動作を実行すると、冷媒Rを貯留部460に移す動作の後半の動作を終了する。所定時間T2は、例えば、冷媒Rを貯留部460に移す動作の前半の動作の実行後に冷媒循環路150A内に残留した冷媒Rを貯留部460に回収できる長さに設定される。 When the control unit 140a executes the second half of the operation of transferring the refrigerant R to the storage unit 460 for a preset predetermined time T2, the control unit 140a ends the second half of the operation of transferring the refrigerant R to the storage unit 460. The predetermined time T2 is set, for example, to a length that allows the refrigerant R remaining in the refrigerant circulation path 150A to be recovered to the storage section 460 after the first half of the operation of transferring the refrigerant R to the storage section 460 is performed.
 (3-1-1-2)測定部401に冷媒の量を測定させる動作
 測定部401に冷媒Rの量を測定させる動作は、貯留部460に貯留されている冷媒Rの量を測定させる動作である。制御部140aは、冷媒Rを貯留部460に移す動作の後半の動作が終了した時刻から、あらかじめ設定された所定時間T3が経過すると、測定部401に冷媒Rの量を測定させる動作を実行する。
(3-1-1-2) Operation for causing the measurement unit 401 to measure the amount of refrigerant R The operation for causing the measurement unit 401 to measure the amount of refrigerant R is the operation for causing the measurement unit 401 to measure the amount of refrigerant R stored in the storage unit 460. It is. The control unit 140a causes the measuring unit 401 to measure the amount of the refrigerant R when a preset predetermined time T3 has elapsed from the time when the second half of the operation of transferring the refrigerant R to the storage unit 460 is completed. .
 (測定の原理)
 図6は、冷媒Rが貯留されている貯留部460及び電極棒461を示した概略構成図である。静電容量Cは、電極棒461と貯留部460の間の距離Xと、空気及び冷媒Rの誘電率εと、電極面積Sにより決まる。
(Principle of measurement)
FIG. 6 is a schematic configuration diagram showing a storage section 460 in which refrigerant R is stored and an electrode rod 461. The capacitance C is determined by the distance X between the electrode rod 461 and the storage section 460, the dielectric constant ε of air and refrigerant R, and the electrode area S.
 電極棒461と貯留部460の位置関係は変化しない。このため、電極棒461と貯留部460の間の距離Xは固定値である。 The positional relationship between the electrode rod 461 and the storage section 460 does not change. Therefore, the distance X between the electrode rod 461 and the storage section 460 is a fixed value.
 温度が一定である場合、空気及び冷媒Rの誘電率εも固定値である。例えば、温度が0度である場合、空気の誘電率εは1.00059である。温度が25度であり、冷媒RがR32である場合、誘電率εは14.27である。温度が25度であり、冷媒RがR410Aである場合、誘電率εは7.88である。 When the temperature is constant, the dielectric constants ε of the air and the refrigerant R are also fixed values. For example, when the temperature is 0 degrees, the dielectric constant ε of air is 1.00059. When the temperature is 25 degrees and the refrigerant R is R32, the dielectric constant ε is 14.27. When the temperature is 25 degrees and the refrigerant R is R410A, the dielectric constant ε is 7.88.
 このため、静電容量Cは、電極面積Sにより変動する。円筒型の貯留部460の幅dは固定値ある。このため、電極面積Sは冷媒Rの液面高さhに比例する。 Therefore, the capacitance C varies depending on the electrode area S. The width d of the cylindrical storage portion 460 is a fixed value. Therefore, the electrode area S is proportional to the liquid level height h of the refrigerant R.
 図7は、温度による静電容量Cと冷媒Rの液面高さhの関係を示した図である。冷媒Rの誘電率εは、高温になると低くなり、低温になると高くなる。 FIG. 7 is a diagram showing the relationship between the capacitance C and the liquid level h of the refrigerant R depending on the temperature. The dielectric constant ε of the refrigerant R decreases as the temperature increases, and increases as the temperature decreases.
 従って、静電容量Cと冷媒Rの温度を測定して他の固有値を用いると、冷媒Rの液面高さhを算出でき、冷媒量を算出できる。 Therefore, by measuring the capacitance C and the temperature of the refrigerant R and using other characteristic values, the liquid level h of the refrigerant R can be calculated, and the amount of refrigerant can be calculated.
 (測定の動作)
 記憶部472には、距離X、幅d、温度と関連付けられた空気及び冷媒Rの誘電率εなどがあらかじめ記録される。
(Measurement operation)
In the storage unit 472, the distance X, the width d, the dielectric constant ε of the air and the refrigerant R associated with the temperature, and the like are recorded in advance.
 測定部401に冷媒Rの量を測定させる動作が実行されると、制御部140aは、測定演算部471を介して電極棒461に貯留部460内の静電容量Cを測定させる。また、制御部140aは、温度計(図示しない)に冷媒Rの温度を測定させる。測定演算部471は、測定された冷媒Rの温度を、記憶部472に記録されている温度と関連付けられた空気及び冷媒Rの誘電率εに照らし合わせて、空気及び冷媒Rの誘電率εを求める。測定演算部471は、測定された静電容量Cと、記憶部472に記録されている距離X及び幅dと、求められた空気及び冷媒Rの誘電率εにより、冷媒Rの液面高さh及び冷媒Rの量を求める。測定演算部471は、求めた冷媒Rの量を記憶部472に記録する。測定演算部471は、求めた冷媒Rの量を制御部140aに送信してもよい。 When the operation of causing the measurement unit 401 to measure the amount of refrigerant R is executed, the control unit 140a causes the electrode rod 461 to measure the capacitance C in the storage unit 460 via the measurement calculation unit 471. Further, the control unit 140a causes a thermometer (not shown) to measure the temperature of the refrigerant R. The measurement calculation unit 471 compares the measured temperature of the refrigerant R with the dielectric constant ε of the air and the refrigerant R associated with the temperature recorded in the storage unit 472, and calculates the dielectric constant ε of the air and the refrigerant R. demand. The measurement calculation unit 471 calculates the liquid level height of the refrigerant R based on the measured capacitance C, the distance X and width d recorded in the storage unit 472, and the determined dielectric constant ε of the air and refrigerant R. Find h and the amount of refrigerant R. The measurement calculation unit 471 records the determined amount of refrigerant R in the storage unit 472. The measurement calculation unit 471 may transmit the determined amount of refrigerant R to the control unit 140a.
 測定演算部471は、温度の変化に関わらず、空気の誘電率εを1として演算してもよい。 The measurement calculation unit 471 may calculate the dielectric constant ε of air as 1 regardless of changes in temperature.
 冷媒量測定システム4は、温度計により測定された冷媒Rの温度に基づいて、冷媒Rの量を測定する。このため、冷媒量測定システム4は、温度が変化しても冷媒Rの量を正確に求めることができる。 The refrigerant amount measurement system 4 measures the amount of refrigerant R based on the temperature of refrigerant R measured by a thermometer. Therefore, the refrigerant amount measurement system 4 can accurately determine the amount of refrigerant R even if the temperature changes.
 なお、測定演算部471は、測定した冷媒量と使用開始時の冷媒充填量との差を求める演算処理を行ってもよい。この場合、記憶部472には、予め、使用開始時の冷媒充填量が記録される。測定演算部471は、記憶部472が記憶している使用開始時の冷媒充填量と測定した冷媒量により、演算処理を行う。これにより、冷媒量測定システム4は、冷媒Rの漏洩量を明確化する作業の負担を軽減できる。 Note that the measurement calculation unit 471 may perform calculation processing to determine the difference between the measured amount of refrigerant and the amount of refrigerant charged at the start of use. In this case, the amount of refrigerant charged at the time of start of use is recorded in advance in the storage unit 472. The measurement calculation unit 471 performs calculation processing based on the refrigerant charging amount at the start of use stored in the storage unit 472 and the measured refrigerant amount. Thereby, the refrigerant amount measuring system 4 can reduce the burden of the work of clarifying the amount of leakage of the refrigerant R.
 また、測定演算部471は、使用開始時の冷媒充填量、使用開始後の冷媒充填量、廃棄直前の冷媒充填量、及び、測定した冷媒量と使用開始時の冷媒充填量との差に基づいて、冷媒Rが漏洩したか否かを判定してもよい。この場合、記憶部472には、予め、使用開始時の冷媒充填量、使用開始後の冷媒充填量、廃棄直前の冷媒充填量の少なくとも何れかの冷媒充填量が記録される。測定演算部471は、記憶部472が記憶している使用開始時の冷媒充填量、使用開始後の冷媒充填量、廃棄直前の冷媒充填量の少なくとも何れかの冷媒充填量と、測定した冷媒量と使用開始時の冷媒充填量との差により、冷媒Rが漏洩したか否かを判定する。これにより、冷媒量測定システム4は、冷媒Rの漏洩量を明確化する作業の負担を軽減できる。 The measurement calculation unit 471 also calculates the amount of refrigerant charged at the time of starting use, the amount of refrigerant charged after starting use, the amount of refrigerant filled immediately before disposal, and the difference between the measured amount of refrigerant and the amount of refrigerant filled at the time of starting use. It may be determined whether or not the refrigerant R has leaked. In this case, the storage unit 472 records in advance at least one of the refrigerant filling amount at the time of starting use, the refrigerant filling amount after use, and the refrigerant filling amount immediately before disposal. The measurement calculation unit 471 stores at least one of the refrigerant filling amount at the time of start of use, the refrigerant filling amount after the start of use, and the refrigerant filling amount immediately before disposal, which is stored in the storage unit 472, and the measured refrigerant amount. Based on the difference between the amount of refrigerant and the amount of refrigerant charged at the start of use, it is determined whether or not refrigerant R has leaked. Thereby, the refrigerant amount measuring system 4 can reduce the burden of the work of clarifying the amount of leakage of the refrigerant R.
 さらに、測定演算部471は、冷媒Rが漏洩したと判定した場合、使用開始時の冷媒充填量、使用開始後の冷媒充填量、廃棄直前の冷媒充填量、及び、測定した冷媒量と使用開始時の冷媒充填量との差に基づいて、冷媒Rの漏洩量を求める演算処理を行ってもよい。これにより、冷媒量測定システム4は、冷媒Rの漏洩量を明確化する作業の負担を軽減できる。 Furthermore, when it is determined that the refrigerant R has leaked, the measurement calculation unit 471 calculates the refrigerant filling amount at the start of use, the refrigerant filling amount after the start of use, the refrigerant filling amount immediately before disposal, and the measured refrigerant amount and the start of use. Calculation processing may be performed to determine the leakage amount of the refrigerant R based on the difference between the refrigerant filling amount and the refrigerant filling amount at the time. Thereby, the refrigerant amount measuring system 4 can reduce the burden of the work of clarifying the amount of leakage of the refrigerant R.
 (3-1-1-3)冷媒を冷媒循環路150に戻させる動作
 冷媒Rを冷媒循環路150に戻させる動作は、貯留部460に貯留された冷媒Rを冷媒循環路150に充填する運転である。以下の説明では、第1冷凍サイクル装置100Aに冷媒Rを戻させる場合を例にして説明をする。図8は、冷媒Rを冷媒循環路150に戻させる動作における冷媒Rの流れを示した概略構成図である。
(3-1-1-3) Operation of returning the refrigerant to the refrigerant circulation path 150 The operation of returning the refrigerant R to the refrigerant circulation path 150 is an operation of filling the refrigerant circulation path 150 with the refrigerant R stored in the storage section 460. It is. In the following description, a case will be explained in which the refrigerant R is returned to the first refrigeration cycle device 100A as an example. FIG. 8 is a schematic configuration diagram showing the flow of the refrigerant R in the operation of returning the refrigerant R to the refrigerant circulation path 150.
 冷媒Rを冷媒循環路150に戻させる動作において制御部140aは、室外ユニット120Aについて、第1冷凍サイクル装置100Aの室外膨張機構124Aを開状態とし、流路切換機構125Aを第1状態とし、第1圧縮機122Aを運転する(On)。また、制御部140aは、開閉弁230aを開状態とし、開閉弁230b、開閉弁230c、開閉弁230dを閉状態とする。 In the operation of returning the refrigerant R to the refrigerant circulation path 150, the control unit 140a, for the outdoor unit 120A, opens the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A, sets the flow path switching mechanism 125A to the first state, and 1 compressor 122A is operated (ON). Further, the control unit 140a opens the on-off valve 230a, and closes the on-off valve 230b, the on-off valve 230c, and the on-off valve 230d.
 冷媒Rを冷媒循環路150に戻させる動作が実行されることにより、図8に矢印で示されるように、室外ユニット120Aの第1圧縮機122Aの吸入圧が、流路切換機構125、ガス側分岐配管128A、及び第1管410を経由して貯留部460内に作用する。貯留部460内に作用した吸入圧により、貯留部460内の冷媒Rは、第1管410に流入し、ガス側分岐配管128Aを経由して冷媒循環路150に充填される。 By performing the operation of returning the refrigerant R to the refrigerant circulation path 150, as shown by the arrow in FIG. It acts into the storage section 460 via the branch pipe 128A and the first pipe 410. Due to the suction pressure acting within the storage section 460, the refrigerant R within the storage section 460 flows into the first pipe 410 and is filled into the refrigerant circulation path 150 via the gas side branch pipe 128A.
 制御部140aは、あらかじめ設定された所定時間T4の間、冷媒Rを冷媒循環路150に戻させる動作を実行すると、冷媒Rを冷媒循環路150に戻させる動作を終了する。所定時間T4は、たとえば、貯留部460内に貯留された冷媒Rを冷媒循環路150に充填できる長さに設定される。 After executing the operation of returning the refrigerant R to the refrigerant circulation path 150 for a preset predetermined time T4, the control unit 140a ends the operation of returning the refrigerant R to the refrigerant circulation path 150. The predetermined time T4 is set, for example, to a length that allows the refrigerant circulation path 150 to be filled with the refrigerant R stored in the storage section 460.
 (3-1-2)第2の冷媒量測定動作
 第2の冷媒量測定動作は、第2冷凍サイクル装置100Bの冷媒循環路150から冷媒Rを貯留部460に移し、測定部401に冷媒Rの量を測定させ、冷媒Rを貯留部460から第2冷凍サイクル装置100Bの冷媒循環路150に戻させる動作である。第2の冷媒量測定動作は、第1の冷媒量測定動作と同様である。このため、第2の冷媒量測定動作を簡潔に説明する。
(3-1-2) Second refrigerant amount measurement operation The second refrigerant amount measurement operation is to transfer refrigerant R from the refrigerant circulation path 150 of the second refrigeration cycle device 100B to the storage section 460, and transfer the refrigerant R to the measurement section 401. This is an operation in which the amount of refrigerant R is measured and the refrigerant R is returned from the storage section 460 to the refrigerant circulation path 150 of the second refrigeration cycle device 100B. The second refrigerant amount measuring operation is similar to the first refrigerant amount measuring operation. Therefore, the second refrigerant amount measuring operation will be briefly explained.
 (3-1-2-1)冷媒を貯留部に移す動作
 (前半の動作)
 冷媒Rを貯留部460に移す動作の前半の動作において制御部140bは、全ての室内ユニット110Bについて、室内膨張機構113Bを開状態とする。また、制御部140bは、室外ユニット120Bについて、第2冷凍サイクル装置100Bの室外膨張機構124Bを閉状態とし、流路切換機構125Bを第1状態とし、第1圧縮機122を運転する(On)。さらに、制御部140bは、開閉弁230dを開状態とし、開閉弁230d以外の開閉弁230を閉状態とする。具体的には、制御部140bは、開閉弁230a、開閉弁230b及び開閉弁230cを閉状態とする。
(3-1-2-1) Operation to transfer refrigerant to storage section (first half operation)
In the first half of the operation of transferring the refrigerant R to the storage section 460, the control section 140b opens the indoor expansion mechanism 113B for all indoor units 110B. Further, for the outdoor unit 120B, the control unit 140b brings the outdoor expansion mechanism 124B of the second refrigeration cycle device 100B into the closed state, brings the flow path switching mechanism 125B into the first state, and operates the first compressor 122 (On). . Further, the control unit 140b opens the on-off valve 230d and closes the on-off valves 230 other than the on-off valve 230d. Specifically, the control unit 140b closes the on-off valve 230a, the on-off valve 230b, and the on-off valve 230c.
 冷媒Rを貯留部460に移す動作の前半の動作が実行されることにより、室内冷媒流路111Bの冷媒Rは、室外ユニット120Bの第1圧縮機122Bにより吸入される。第1圧縮機122Bに吸入された冷媒Rは、第1圧縮機122Bから吐出された後、流路切換機構125B及び室外熱交換器123Bを通過する。室外熱交換器123Bを通過した冷媒Rは室外膨張機構124Bに送られるが、室外膨張機構124Bは閉状態にあることから、液側分岐配管129Bに流入する。液側分岐配管129Bに流入した冷媒Rは、第4管440及び液側配管452を通過して貯留部460に流入する。冷媒量測定システム4の開閉弁230d以外の開閉弁230は閉状態にあるため、流入した冷媒Rは貯留部460内に貯留される。 By performing the first half of the operation of transferring the refrigerant R to the storage section 460, the refrigerant R in the indoor refrigerant flow path 111B is sucked by the first compressor 122B of the outdoor unit 120B. The refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B, and then passes through the flow path switching mechanism 125B and the outdoor heat exchanger 123B. The refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B. The refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230d of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
 制御部140dは、あらかじめ設定された所定時間T1の間、冷媒Rを貯留部460に移す動作の前半の動作を実行すると冷媒Rを貯留部460に移す動作の前半の動作を終了して冷媒Rを貯留部460に移す動作の後半の動作を開始する。所定時間T1は、例えば、冷媒循環路150B内の液冷媒を貯留部460に貯留できる長さに設定される。 When the control section 140d executes the first half of the operation of transferring the refrigerant R to the storage section 460 for a preset predetermined time T1, the control section 140d finishes the first half of the operation of transferring the refrigerant R to the storage section 460 and stores the refrigerant R. The second half of the operation of transferring the data to the storage section 460 is started. The predetermined time T1 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150B to be stored in the storage section 460.
 (後半の動作)
 冷媒Rを貯留部460に移す動作の後半の動作においては、制御部140dは開閉弁230cを開状態とする。それ以外の機器については、冷媒Rを貯留部460に移す動作の前半の動作の状態が維持される。
(Second half of operation)
In the latter half of the operation of transferring the refrigerant R to the storage section 460, the control section 140d opens the on-off valve 230c. For other devices, the state of operation in the first half of the operation of transferring the refrigerant R to the storage section 460 is maintained.
 冷媒Rを貯留部460に移す動作の後半の動作が実行されることにより、貯留部460に貯留された冷媒Rの内、ガス冷媒が開閉弁230cを通して第3管430に流入する。第3管430に流入した冷媒Rは、室外冷媒流路121Bに送られて、流路切換機構125Bを通過して第1圧縮機122Bにより吸入される。第1圧縮機122Bに吸入された冷媒Rは、第1圧縮機122Bから吐出され、室外熱交換器123Bを通過する。室外熱交換器123Bを通過した冷媒Rは室外膨張機構124Bに送られるが、室外膨張機構124Bは閉状態にあることから、液側分岐配管129Bに流入する。液側分岐配管129Bに流入した冷媒Rは、第4管440を通過して貯留部460に戻る。 By performing the latter half of the operation of transferring the refrigerant R to the storage section 460, gas refrigerant among the refrigerant R stored in the storage section 460 flows into the third pipe 430 through the on-off valve 230c. The refrigerant R that has flowed into the third pipe 430 is sent to the outdoor refrigerant flow path 121B, passes through the flow path switching mechanism 125B, and is sucked by the first compressor 122B. The refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B and passes through the outdoor heat exchanger 123B. The refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B. The refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and returns to the storage section 460.
 制御部140bは、あらかじめ設定された所定時間T2の間、冷媒Rを貯留部460に移す動作の後半の動作を実行すると、冷媒Rを貯留部460に移す動作の後半の動作を終了する。所定時間T2は、例えば、冷媒Rを貯留部460に移す動作の後半の動作の実行後に冷媒循環路150B内に残留した冷媒を貯留部460に回収できる長さに設定される。 When the control unit 140b executes the second half of the operation of transferring the refrigerant R to the storage unit 460 for a preset predetermined time T2, the control unit 140b ends the second half of the operation of transferring the refrigerant R to the storage unit 460. The predetermined time T2 is set, for example, to a length that allows the refrigerant remaining in the refrigerant circulation path 150B to be recovered to the storage section 460 after the latter half of the operation of transferring the refrigerant R to the storage section 460 is performed.
 (3-1-2-2)測定部401に冷媒の量を測定させる動作
 第2の冷媒量測定動作における測定部401に冷媒の量を測定させる動作は、第1の冷媒量測定動作における測定部401に冷媒の量を測定させる動作と同様である。
(3-1-2-2) Operation for causing the measuring unit 401 to measure the amount of refrigerant This operation is similar to the operation of causing the section 401 to measure the amount of refrigerant.
 (3-1-2-3)冷媒を冷媒循環路150に戻させる動作
 冷媒Rを冷媒循環路150に戻させる動作において制御部140bは、室外ユニット120Bについて、第2冷凍サイクル装置100Bの室外膨張機構124Bを開状態とし、流路切換機構125Bを第1状態とし、第1圧縮機122Bを運転する(On)。また、制御部140bは、開閉弁230cを開状態とし、開閉弁230a、開閉弁230b、開閉弁230dを閉状態とする。
(3-1-2-3) Operation of returning the refrigerant to the refrigerant circulation path 150 In the operation of returning the refrigerant R to the refrigerant circulation path 150, the control unit 140b performs the outdoor expansion of the second refrigeration cycle device 100B with respect to the outdoor unit 120B. The mechanism 124B is opened, the flow path switching mechanism 125B is set to the first state, and the first compressor 122B is operated (ON). Further, the control unit 140b opens the on-off valve 230c, and closes the on-off valve 230a, the on-off valve 230b, and the on-off valve 230d.
 冷媒Rを冷媒循環路150に戻させる動作が実行されることにより、室外ユニット120Bの第1圧縮機122Bの吸入圧が、流路切換機構125、ガス側分岐配管128B、及び第3管430を経由して貯留部460内に作用する。貯留部460内に作用した吸入圧により、貯留部460内の冷媒Rは、第3管430に流入し、ガス側分岐配管128Bを経由して冷媒循環路150に充填される。 By performing the operation of returning the refrigerant R to the refrigerant circulation path 150, the suction pressure of the first compressor 122B of the outdoor unit 120B increases the flow path switching mechanism 125, the gas side branch pipe 128B, and the third pipe 430. It acts on the inside of the reservoir 460 via. Due to the suction pressure acting within the storage section 460, the refrigerant R within the storage section 460 flows into the third pipe 430 and is filled into the refrigerant circulation path 150 via the gas side branch pipe 128B.
 制御部140bは、あらかじめ設定された所定時間T4の間、冷媒Rを冷媒循環路150に戻させる動作を実行すると、冷媒Rを冷媒循環路150に戻させる動作を終了する。所定時間T4は、たとえば、貯留部460内に貯留された冷媒Rを冷媒循環路150に充填できる長さに設定される。 After executing the operation of returning the refrigerant R to the refrigerant circulation path 150 for a preset predetermined time T4, the control unit 140b ends the operation of returning the refrigerant R to the refrigerant circulation path 150. The predetermined time T4 is set, for example, to a length that allows the refrigerant circulation path 150 to be filled with the refrigerant R stored in the storage section 460.
 (4)特徴
 (4-1)
 冷媒量測定システム4は、接続部400と、貯留部460と、測定部401と、記憶部472とを備える。接続部400は、第1冷凍サイクル装置100Aの第1冷媒回路に接続される。貯留部460は、接続部400を介して第1冷媒回路の中の冷媒Rを貯留し、貯留している冷媒Rを接続部400を介して第1冷媒回路に戻す。測定部401は、貯留部460の中の冷媒Rの量を測定する。記憶部472は、測定部401が測定した測定結果を記憶する。
(4) Features (4-1)
The refrigerant amount measurement system 4 includes a connection section 400, a storage section 460, a measurement section 401, and a storage section 472. The connecting portion 400 is connected to the first refrigerant circuit of the first refrigeration cycle device 100A. The storage section 460 stores the refrigerant R in the first refrigerant circuit via the connection section 400 and returns the stored refrigerant R to the first refrigerant circuit via the connection section 400. The measurement unit 401 measures the amount of refrigerant R in the storage unit 460. The storage unit 472 stores the measurement results measured by the measurement unit 401.
 特許文献1の冷凍装置は、冷媒回路に対して内付け接続するレシーバタンクにより、冷媒の不足状態を検出する。冷媒は、通常運転(空調運転など)時においても装置内部に組み込まれたレシーバタンクに流れる。そのため、特許文献1の冷凍装置は、既存の冷媒回路に対応する冷媒量に加え、レシーバタンクの体積に対応する冷媒量を要する。また、特許文献1の冷凍装置は、冷媒がレシーバタンクを通過する際に、冷媒の圧力損失を生じさせる。 The refrigeration system of Patent Document 1 detects a refrigerant shortage state using a receiver tank that is internally connected to the refrigerant circuit. The refrigerant flows into a receiver tank built into the device even during normal operation (such as air conditioning operation). Therefore, the refrigeration system of Patent Document 1 requires an amount of refrigerant corresponding to the volume of the receiver tank in addition to an amount of refrigerant corresponding to the existing refrigerant circuit. Further, the refrigeration device of Patent Document 1 causes a pressure loss of the refrigerant when the refrigerant passes through the receiver tank.
 本冷媒量測定システム4は、第1冷媒回路に対して外付け接続する貯留部460に、第1冷媒回路の中の冷媒Rを貯留する。冷媒量測定システム4は、冷媒Rの量を測定し、測定結果を記憶する。冷媒量測定システム4は、貯留している冷媒Rを、第1冷媒回路に対して外付け接続する貯留部460から第1冷媒回路に戻す。貯留部460が外付け接続されるため、第1冷凍サイクル装置100Aが普通運転される場合、第1冷媒回路の中の冷媒Rは貯留部460に流れない。このため、冷媒量測定システムは、追加の冷媒量や圧力損失を生じさせず、第1冷媒回路の冷媒の充填量及び漏洩量を明確化できる。 The present refrigerant amount measurement system 4 stores the refrigerant R in the first refrigerant circuit in a storage section 460 that is externally connected to the first refrigerant circuit. The refrigerant amount measurement system 4 measures the amount of refrigerant R and stores the measurement results. The refrigerant amount measuring system 4 returns the stored refrigerant R to the first refrigerant circuit from a storage section 460 that is externally connected to the first refrigerant circuit. Since the storage section 460 is externally connected, the refrigerant R in the first refrigerant circuit does not flow to the storage section 460 when the first refrigeration cycle device 100A is normally operated. Therefore, the refrigerant amount measuring system can clarify the refrigerant filling amount and leakage amount of the first refrigerant circuit without causing additional refrigerant amount or pressure loss.
 特許文献1の冷凍装置は、液面検出部により液面高さの差を計測する。当冷凍装置のユーザーは、液面検出部を用いた時点同士の液面高さの差を把握でき、冷媒の不足(冷媒の漏洩)を把握できる。しかし、当冷凍装置のユーザーは、充填量(初期充填量、任意の時点における充填量など)そのものを把握するのは困難である。そのため、当冷凍装置のユーザーは、充填量と時点を関連付けて、充填及び漏洩に関わる経緯を詳細に把握できない。 The refrigeration device of Patent Document 1 measures the difference in liquid level height using a liquid level detection section. Users of this refrigeration system can determine the difference in liquid level height between points in time using the liquid level detection unit, and can identify refrigerant shortages (refrigerant leaks). However, it is difficult for users of this refrigeration system to grasp the filling amount itself (initial filling amount, filling amount at any given point, etc.). Therefore, the user of this refrigeration system cannot associate the filling amount with the time point and grasp the detailed history of filling and leakage.
 本冷媒量測定システム4は、任意の時点における充填量を測定できる。本冷媒量測定システム4のユーザーは、冷媒Rが漏洩したか否かだけでなく、任意の時点と充填量を関連付けて把握できる。本冷媒量測定システム4のユーザーは、充填及び漏洩に関わる経緯を詳細に把握できる。このため、冷媒量測定システム4は、第1冷媒回路の冷媒Rの充填量及び漏洩量をより明確化できる。 This refrigerant amount measuring system 4 can measure the filling amount at any time. The user of the refrigerant amount measuring system 4 can not only determine whether or not the refrigerant R has leaked, but also be able to ascertain the filling amount in association with any time point. The user of the present refrigerant amount measurement system 4 can grasp details of the circumstances surrounding filling and leakage. Therefore, the refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit.
 手作業で充填量の測定結果を記録する場合、作業の手間が増え、人的ミスによる測定結果の漏れや記録媒体の経年劣化による測定結果の流失のおそれがある。本冷媒量測定システム4は、測定部401が測定した測定結果を記憶部472で記憶する。本冷媒量測定システム4のユーザーは、漏れなく充填量の測定結果を把握でき、測定結果を記憶させるための作業の手間を削減できる。このため、冷媒量測定システム4は、第1冷媒回路の冷媒Rの充填量及び漏洩量をより明確化でき、測定結果を記憶させるための作業の手間を削減できる。 When manually recording the filling amount measurement results, the work increases and there is a risk that measurement results may be omitted due to human error or may be lost due to aging of the recording medium. The present refrigerant amount measurement system 4 stores the measurement results measured by the measurement unit 401 in the storage unit 472. The user of the present refrigerant amount measuring system 4 can grasp the measurement results of the filling amount without omission, and can reduce the work required to memorize the measurement results. Therefore, the refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit, and can reduce the effort required to store the measurement results.
 (4-2)
 冷媒量測定システム4は、接続部400が第1管410および第2管420を有する。また、第1管410および第2管420のそれぞれに開閉弁230が設けられている。
(4-2)
In the refrigerant amount measuring system 4, the connecting portion 400 includes a first pipe 410 and a second pipe 420. Further, an on-off valve 230 is provided in each of the first pipe 410 and the second pipe 420.
 本冷媒量測定システム4の接続部400は、第1管410および第2管420を有する。このため、本冷媒量測定システム4は、冷媒Rの状態ごとに第1管410と第2管420に分けて、第1冷媒回路と接続できる。また、第1管410および第2管420のそれぞれに開閉弁230が設けられている。このため、本冷媒量測定システム4は、第1管410および第2管420の連通を許容又は遮断できる。 The connection section 400 of the present refrigerant amount measurement system 4 has a first pipe 410 and a second pipe 420. Therefore, in the refrigerant amount measuring system 4, the refrigerant R can be divided into a first pipe 410 and a second pipe 420 for each state and connected to the first refrigerant circuit. Further, an on-off valve 230 is provided in each of the first pipe 410 and the second pipe 420. Therefore, the present refrigerant amount measuring system 4 can allow or block communication between the first pipe 410 and the second pipe 420.
 (4-3)
 冷媒量測定システム4は、制御部140をさらに備える。制御部140は、第1の冷媒量測定動作を行う。第1の冷媒量測定動作は、第1冷凍サイクル装置100Aおよび開閉弁230を制御して、第1冷媒回路から貯留部460に冷媒Rを移し、測定部401に冷媒Rの量を測定させ、冷媒Rを貯留部460から第1冷媒回路に戻させる動作である。
(4-3)
The refrigerant amount measurement system 4 further includes a control section 140. The control unit 140 performs a first refrigerant amount measurement operation. The first refrigerant amount measuring operation controls the first refrigeration cycle device 100A and the on-off valve 230, moves the refrigerant R from the first refrigerant circuit to the storage section 460, causes the measuring section 401 to measure the amount of the refrigerant R, This is an operation for returning the refrigerant R from the storage section 460 to the first refrigerant circuit.
 本冷媒量測定システム4の制御部140は第1の冷媒量測定動作を行う。このため、冷媒量測定システム4は、第1冷媒回路の冷媒Rの充填量及び漏洩量を明確化する作業にかかる手間を削減できる。 The control unit 140 of the present refrigerant amount measurement system 4 performs a first refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system 4 can reduce the effort required to clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit.
 本冷媒量測定システム4は、制御部140により、自動で充填量を測定できる。本冷媒量測定システム4は、自動で測定した充填量を記憶部472で記憶する。本冷媒量測定システム4のユーザーは、記憶部472により、過去の時点において自動で測定された充填量を把握できる。このため、本冷媒量測定システム4のユーザーは、充填量と過去の時点を関連付けて、充填及び漏洩に関わる経緯をより詳細に把握できる。このため、冷媒量測定システム4は、第1冷媒回路の冷媒Rの充填量及び漏洩量をより明確化できる。 The present refrigerant amount measurement system 4 can automatically measure the filling amount by the control unit 140. The refrigerant amount measurement system 4 stores the automatically measured filling amount in the storage unit 472. The user of the present refrigerant amount measuring system 4 can grasp the filling amount that was automatically measured at a past point in time using the storage unit 472. Therefore, the user of the present refrigerant amount measuring system 4 can associate the filling amount with a past point in time and grasp the circumstances surrounding filling and leakage in more detail. Therefore, the refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit.
 (4-4)
 冷媒量測定システム4は、第2冷凍サイクル装置100Bの第2冷媒回路にも接続部400が接続される。また、制御部140は、それぞれ開閉弁230が設けられた第3管430および第4管440をさらに有する。さらに、接続部400は、第1管410および第2管420により第1冷媒回路に接続され、第3管430および第4管440により第2冷媒回路に接続される。
(4-4)
In the refrigerant amount measuring system 4, a connecting portion 400 is also connected to the second refrigerant circuit of the second refrigeration cycle device 100B. Moreover, the control unit 140 further includes a third pipe 430 and a fourth pipe 440, each of which is provided with an on-off valve 230. Further, the connecting portion 400 is connected to the first refrigerant circuit by a first pipe 410 and a second pipe 420, and connected to the second refrigerant circuit by a third pipe 430 and a fourth pipe 440.
 本冷媒量測定システム4の接続部400は、第2冷凍サイクル装置100Bの第2冷媒回路にも接続される。このため、本冷媒量測定システム4は、第2冷媒回路の冷媒Rの充填量及び漏洩量も明確化できる。また、本冷媒量測定システム4の接続部400は、第3管430および第4管440を有する。このため、本冷媒量測定システム4は、冷媒Rの状態ごとに第3管430と第4管440に分けて、第2冷媒回路と接続できる。また、第3管430および第4管440のそれぞれに開閉弁230が設けられている。このため、本冷媒量測定システム4は、第3管430および第4管440の連通を許容又は遮断できる。 The connection part 400 of the present refrigerant amount measurement system 4 is also connected to the second refrigerant circuit of the second refrigeration cycle device 100B. Therefore, the present refrigerant amount measurement system 4 can also clarify the filling amount and leakage amount of the refrigerant R in the second refrigerant circuit. Furthermore, the connection section 400 of the refrigerant amount measuring system 4 includes a third pipe 430 and a fourth pipe 440. Therefore, in the refrigerant amount measuring system 4, the refrigerant R can be divided into a third pipe 430 and a fourth pipe 440 for each state and connected to the second refrigerant circuit. Further, an on-off valve 230 is provided in each of the third pipe 430 and the fourth pipe 440. Therefore, the refrigerant amount measuring system 4 can allow or block communication between the third pipe 430 and the fourth pipe 440.
 (4-5)
 冷媒量測定システム4は、制御部140が第2の冷媒量測定動作をさらに行う。第2の冷媒量測定動作は、第2冷凍サイクル装置100Bおよび開閉弁230を制御して、第2冷媒回路から貯留部460に冷媒Rを移し、測定部401に冷媒Rの量を測定させ、冷媒Rを貯留部460から第2冷媒回路に戻させる動作である。
(4-5)
In the refrigerant amount measurement system 4, the control unit 140 further performs a second refrigerant amount measurement operation. The second refrigerant amount measuring operation controls the second refrigeration cycle device 100B and the on-off valve 230, transfers the refrigerant R from the second refrigerant circuit to the storage section 460, causes the measuring section 401 to measure the amount of the refrigerant R, This is an operation for returning the refrigerant R from the storage section 460 to the second refrigerant circuit.
 本冷媒量測定システム4の制御部140は、第2の冷媒量測定動作をさらに行う。このため、冷媒量測定システム4は、第2冷媒回路の冷媒Rの充填量及び漏洩量を明確化する作業にかかる手間も削減できる。 The control unit 140 of the present refrigerant amount measurement system 4 further performs a second refrigerant amount measurement operation. Therefore, the refrigerant amount measuring system 4 can also reduce the effort required to clarify the filling amount and leakage amount of the refrigerant R in the second refrigerant circuit.
 (4-6)
 冷媒量測定システム4は、測定部401が、電極棒461を有する。
(4-6)
In the refrigerant amount measurement system 4, the measurement unit 401 includes an electrode rod 461.
 本冷媒量測定システム4の測定部401は、電極棒461を有する。このため、本冷媒量測定システム4は、電極棒461を用いて冷媒Rの充填量及び漏洩量をより明確化できる。 The measurement unit 401 of the present refrigerant amount measurement system 4 has an electrode rod 461. Therefore, the present refrigerant amount measuring system 4 can clarify the filling amount and leakage amount of the refrigerant R using the electrode rod 461.
 (4-7)
 冷媒使用システム1は、冷媒量測定システム4と、冷凍サイクル装置100を有する。
(4-7)
The refrigerant usage system 1 includes a refrigerant amount measuring system 4 and a refrigeration cycle device 100.
 本冷媒使用システム1は、冷媒量測定システム4と、冷凍サイクル装置100を有する。このため、本冷媒使用システム1は、本冷媒使用システム1に含まれる冷凍サイクル装置100の冷媒Rの充填量及び漏洩量を明確化できる。 This refrigerant usage system 1 includes a refrigerant amount measuring system 4 and a refrigeration cycle device 100. Therefore, the present refrigerant-using system 1 can clarify the filling amount and leakage amount of the refrigerant R of the refrigeration cycle device 100 included in the present refrigerant-using system 1.
 (5)変形例
 (5-1)変形例1A
 上述の実施形態の冷媒量測定動作では、吸入圧により冷媒Rを冷媒循環路150に戻させた。しかしながら、冷媒Rを冷媒循環路150に戻させる動作はこれに限定しない。例えば、冷媒Rを第1冷凍サイクル装置100Aの冷媒循環路150に戻させる動作を説明する。図9は、冷媒Rを冷媒循環路150に戻させる動作における冷媒Rの流れを示した概略構成図である。
(5) Modification (5-1) Modification 1A
In the refrigerant amount measurement operation of the embodiment described above, the refrigerant R was returned to the refrigerant circulation path 150 by the suction pressure. However, the operation of returning the refrigerant R to the refrigerant circulation path 150 is not limited to this. For example, the operation of returning the refrigerant R to the refrigerant circulation path 150 of the first refrigeration cycle device 100A will be described. FIG. 9 is a schematic configuration diagram showing the flow of the refrigerant R in the operation of returning the refrigerant R to the refrigerant circulation path 150.
 冷媒Rを冷媒循環路150に戻させる動作において制御部140aは、室外ユニット120Aについて、第1冷凍サイクル装置100Aの室外膨張機構124Aを開状態とし、流路切換機構125Aを第2状態とし、第1圧縮機122Aを運転する(On)。また、制御部140aは、開閉弁230a及び開閉弁230bを開状態とし、開閉弁230c、開閉弁230dを閉状態とする。 In the operation of returning the refrigerant R to the refrigerant circulation path 150, the control unit 140a sets the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A to the open state, sets the flow path switching mechanism 125A to the second state, and sets the outdoor unit 120A to the second state. 1 compressor 122A is operated (ON). Further, the control unit 140a opens the on-off valve 230a and the on-off valve 230b, and closes the on-off valve 230c and the on-off valve 230d.
 冷媒Rを冷媒循環路150に戻させる動作が実行されることにより、図9に矢印で示されるように、室外ユニット120Aの第1圧縮機122Aの吐出圧が、流路切換機構125、ガス側分岐配管128A、及び第1管410を経由して貯留部460内に作用する。貯留部460内に作用した吐出圧により、貯留部460内の冷媒Rは、逆止弁455を迂回して、第2管420に流入し、液側分岐配管129を経由して冷媒循環路150に充填される。 By performing the operation of returning the refrigerant R to the refrigerant circulation path 150, as shown by the arrow in FIG. It acts into the storage section 460 via the branch pipe 128A and the first pipe 410. Due to the discharge pressure acting in the storage section 460, the refrigerant R in the storage section 460 bypasses the check valve 455, flows into the second pipe 420, and flows into the refrigerant circulation path 150 via the liquid side branch pipe 129. is filled with.
 なお、冷媒Rを第2冷凍サイクル装置100Bの冷媒循環路150に戻させる動作も、上述同様に行われてもよい。 Note that the operation of returning the refrigerant R to the refrigerant circulation path 150 of the second refrigeration cycle device 100B may also be performed in the same manner as described above.
 (5-2)変形例1B
 制御部140は、第1の冷媒量測定動作と第2の冷媒量測定動作を、時間をずらして行ってもよい。制御部140aと制御部140bが電気的に接続して相互連携することにより、制御部140a及び制御部140bは、第1の冷媒量測定動作と第2の冷媒量測定動作を、時間をずらして行える。
(5-2) Modification example 1B
The control unit 140 may perform the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. By electrically connecting the control unit 140a and the control unit 140b to mutually cooperate, the control unit 140a and the control unit 140b perform the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. I can do it.
 本実施形態にかかる冷媒量測定システム4の制御部140は、第1の冷媒量測定動作と第2の冷媒量測定動作を、時間をずらして行う。このため、本冷媒量測定システム4は、第1冷媒回路の冷媒Rの充填量及び漏洩量と、第2冷媒回路の冷媒Rの充填量及び漏洩量を分けて、それぞれを明確化できる。 The control unit 140 of the refrigerant amount measurement system 4 according to the present embodiment performs the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times. Therefore, the present refrigerant amount measurement system 4 can separate the filling amount and leakage amount of refrigerant R in the first refrigerant circuit from the filling amount and leakage amount of refrigerant R in the second refrigerant circuit, and can clarify each.
 (5-3)変形例1C
 制御部140は、第1冷凍サイクル装置100Aの通常運転が停止されている時間帯に、第1の冷媒量測定動作を行ってもよい。また、制御部140は、第2冷凍サイクル装置100Bの通常運転が停止されている時間帯に、第2の冷媒量測定動作を行ってもよい。通常運転の例としては、冷房運転、暖房運転、給湯運転、冷蔵運転、冷凍運転、床暖房運転などが挙げられる。
(5-3) Modification example 1C
The control unit 140 may perform the first refrigerant amount measurement operation during a time period when the normal operation of the first refrigeration cycle device 100A is stopped. Further, the control unit 140 may perform the second refrigerant amount measuring operation during a time period when the normal operation of the second refrigeration cycle device 100B is stopped. Examples of normal operation include cooling operation, heating operation, hot water supply operation, refrigeration operation, freezing operation, and floor heating operation.
 本実施形態にかかる冷媒量測定システム4の制御部140は、第1冷凍サイクル装置100Aの通常運転が停止されている時間帯に、第1の冷媒量測定動作を行う。このため、本冷媒量測定システム4は、第1冷凍サイクル装置100Aの通常運転の影響を受けず、第1冷媒回路の冷媒Rの充填量及び漏洩量をより明確化できる。また、制御部140は、第2冷凍サイクル装置100Bの通常運転が停止されている時間帯に、第2の冷媒量測定動作を行う。このため、本冷媒量測定システム4は、第2冷凍サイクル装置100Bの通常運転の影響を受けず、第2冷媒回路の冷媒Rの充填量及び漏洩量をより明確化できる。 The control unit 140 of the refrigerant amount measuring system 4 according to this embodiment performs the first refrigerant amount measuring operation during the time period when the normal operation of the first refrigeration cycle device 100A is stopped. Therefore, the present refrigerant amount measuring system 4 is not affected by the normal operation of the first refrigeration cycle device 100A, and can clarify the filling amount and leakage amount of the refrigerant R in the first refrigerant circuit. Further, the control unit 140 performs the second refrigerant amount measurement operation during a time period when the normal operation of the second refrigeration cycle device 100B is stopped. Therefore, the present refrigerant amount measuring system 4 is not affected by the normal operation of the second refrigeration cycle device 100B, and can clarify the filling amount and leakage amount of the refrigerant R in the second refrigerant circuit.
 (5-4)変形例1D
 上述の実施形態の開閉弁230は制御部140により制御され、自動で管の連通を許容又は遮断する。しかし、開閉弁230は、上述の実施形態に加えて又は上述の実施形態に代えて、手動で管の連通を許容又は遮断してもよい。
(5-4) Modification example 1D
The on-off valve 230 in the embodiment described above is controlled by the control unit 140 and automatically allows or blocks communication between the pipes. However, in addition to or in place of the embodiments described above, the on-off valve 230 may manually allow or block communication between the pipes.
 手動で開閉弁230が管の連通を許容又は遮断することにより、制御部140による制御が困難な状況などにおいても、管の連通を許容又は遮断できる。 By manually allowing or blocking pipe communication with the on-off valve 230, it is possible to allow or block pipe communication even in situations where control by the control unit 140 is difficult.
 <第2実施形態>
 (1)構成
 本開示の第2実施形態に係る冷媒使用システム1について、第1実施形態に係る冷媒使用システム1と相違を中心に説明する。
<Second embodiment>
(1) Configuration A refrigerant-using system 1 according to a second embodiment of the present disclosure will be described, focusing on differences from the refrigerant-using system 1 according to the first embodiment.
 第2実施形態に係る冷媒使用システム1の制御部140は、第1実施形態に係る冷媒使用システム1の制御部140が実行する動作に加えて、貯留動作を行う。 The control unit 140 of the refrigerant-using system 1 according to the second embodiment performs a storage operation in addition to the operation performed by the control unit 140 of the refrigerant-using system 1 according to the first embodiment.
 (2)動作
 (2-1)貯留動作
 貯留動作は、冷媒循環路150から冷媒Rが漏洩した場合に、冷媒循環路150から貯留部460に冷媒Rを移す動作である。貯留動作は、たとえば、冷媒循環路150から冷媒Rが漏洩した際に、さらに冷媒Rが漏洩することを抑制するために実行される。貯留動作には、第1の貯留動作及び第2の貯留動作が含まれる。
(2) Operation (2-1) Storage operation The storage operation is an operation to transfer the refrigerant R from the refrigerant circulation path 150 to the storage section 460 when the refrigerant R leaks from the refrigerant circulation path 150. The storage operation is performed, for example, in order to suppress further leakage of the refrigerant R when the refrigerant R leaks from the refrigerant circulation path 150. The storage operation includes a first storage operation and a second storage operation.
 (2-1-1)第1の貯留動作
 第1の貯留動作は、第1冷凍サイクル装置100Aの冷媒循環路150から冷媒Rが漏洩した場合に、冷媒循環路150から貯留部460に冷媒Rを移す動作である。第1の貯留動作は、前半の動作と後半の動作を含む。
(2-1-1) First storage operation The first storage operation is performed when the refrigerant R leaks from the refrigerant circulation path 150 of the first refrigeration cycle device 100A. This is the action of moving. The first storage operation includes a first half operation and a second half operation.
 (前半の動作)
 第1の貯留動作の前半の動作は、冷媒循環路150内の冷媒Rの内の、主に液冷媒を貯留する動作である。図10は、第1の貯留動作の前半の動作における冷媒Rの流れを示した概略構成図である。
(First half of action)
The first half of the first storage operation is an operation for mainly storing liquid refrigerant of the refrigerant R in the refrigerant circulation path 150. FIG. 10 is a schematic configuration diagram showing the flow of refrigerant R in the first half of the first storage operation.
 第1の貯留動作の前半の動作において制御部140aは、全ての室内ユニット110Aについて、室内膨張機構113Aを開状態とする。また、制御部140aは、室外ユニット120Aについて、第1冷凍サイクル装置100Aの室外膨張機構124Aを閉状態とし、流路切換機構125Aを第1状態とし、第1圧縮機122を運転する(On)。さらに、制御部140aは、冷媒量測定システム4について、開閉弁230bを開状態とし、開閉弁230b以外の開閉弁230を閉状態とする。具体的には、制御部140aは、開閉弁230a、開閉弁230c及び開閉弁230dを閉状態とする。 In the first half of the first storage operation, the control unit 140a opens the indoor expansion mechanism 113A for all indoor units 110A. Further, for the outdoor unit 120A, the control unit 140a sets the outdoor expansion mechanism 124A of the first refrigeration cycle device 100A to the closed state, sets the flow path switching mechanism 125A to the first state, and operates the first compressor 122 (On). . Further, in the refrigerant amount measuring system 4, the control unit 140a opens the on-off valve 230b and closes the on-off valves 230 other than the on-off valve 230b. Specifically, the control unit 140a closes the on-off valve 230a, the on-off valve 230c, and the on-off valve 230d.
 第1の貯留動作の前半の動作が実行されることにより、図10に矢印で示されるように、室内冷媒流路111Aの冷媒Rは、室外ユニット120Aの第1圧縮機122Aにより吸入される。第1圧縮機122Aに吸入された冷媒Rは、第1圧縮機122Aから吐出された後、流路切換機構125A及び室外熱交換器123Aを通過する。室外熱交換器123Aを通過した冷媒Rは室外膨張機構124Aに送られるが、室外膨張機構124Aは閉状態にあることから、液側分岐配管129Aに流入する。液側分岐配管129Aに流入した冷媒Rは、第2管420及び液側配管452を通過して貯留部460に流入する。冷媒量測定システム4の開閉弁230b以外の開閉弁230は閉状態にあるため、流入した冷媒Rは貯留部460内に貯留される。 By performing the first half of the first storage operation, the refrigerant R in the indoor refrigerant flow path 111A is sucked by the first compressor 122A of the outdoor unit 120A, as shown by the arrow in FIG. The refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A, and then passes through the flow path switching mechanism 125A and the outdoor heat exchanger 123A. The refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A. The refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230b of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
 制御部140aは、あらかじめ設定された所定時間T5の間、第1の貯留動作の前半の動作を実行すると第1の貯留動作の前半の動作を終了して第1の貯留動作の後半の動作を開始する。所定時間T5は、例えば、冷媒循環路150A内の液冷媒を貯留部460に貯留できる長さに設定される。 When the control unit 140a executes the first half of the first storage operation for a preset predetermined time T5, the control unit 140a ends the first half of the first storage operation and starts the second half of the first storage operation. Start. The predetermined time T5 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150A to be stored in the storage section 460.
 (後半の動作)
 第1の貯留動作の後半の動作は、第1の貯留動作の前半の動作の実行によっても貯留部460に貯留しきれず室外冷媒流路121に残留した、主にガス冷媒を貯留部460に貯留するための動作である。図11は、第1の貯留動作の後半の動作における冷媒Rの流れを示した概略構成図である。
(Second half of operation)
The second half of the first storage operation mainly stores gas refrigerant in the storage section 460, which is not fully stored in the storage section 460 even by performing the first half of the first storage operation and remains in the outdoor refrigerant flow path 121. This is an action to do. FIG. 11 is a schematic configuration diagram showing the flow of refrigerant R in the second half of the first storage operation.
 第1の貯留動作の後半の動作においては、制御部140aは、開閉弁230aを開状態とする。それ以外の機器については、第1の貯留動作の前半の動作の状態が維持される。 In the second half of the first storage operation, the control unit 140a opens the on-off valve 230a. For other devices, the operating state of the first half of the first storage operation is maintained.
 第1の貯留動作の後半の動作が実行されることにより、図11に矢印で示されるように、貯留部460に貯留された冷媒Rの内、ガス冷媒が開閉弁230aを通して第1管410に流入する。第1管410に流入した冷媒Rは、室外冷媒流路121Aに送られて、流路切換機構125Aを通過して第1圧縮機122Aにより吸入される。第1圧縮機122Aに吸入された冷媒Rは、第1圧縮機122Aから吐出され、室外熱交換器123Aを通過する。室外熱交換器123Aを通過した冷媒Rは室外膨張機構124Aに送られるが、室外膨張機構124Aは閉状態にあることから、液側分岐配管129Aに流入する。液側分岐配管129Aに流入した冷媒Rは、第2管420を通過して貯留部460に戻る。 By performing the second half of the first storage operation, the gas refrigerant among the refrigerant R stored in the storage section 460 flows into the first pipe 410 through the on-off valve 230a, as shown by the arrow in FIG. Inflow. The refrigerant R that has flowed into the first pipe 410 is sent to the outdoor refrigerant flow path 121A, passes through the flow path switching mechanism 125A, and is sucked by the first compressor 122A. The refrigerant R sucked into the first compressor 122A is discharged from the first compressor 122A and passes through the outdoor heat exchanger 123A. The refrigerant R that has passed through the outdoor heat exchanger 123A is sent to the outdoor expansion mechanism 124A, but since the outdoor expansion mechanism 124A is in a closed state, it flows into the liquid side branch pipe 129A. The refrigerant R that has flowed into the liquid side branch pipe 129A passes through the second pipe 420 and returns to the storage section 460.
 制御部140aは、あらかじめ設定された所定時間T6の間、第1の貯留動作の後半の動作を実行すると、第1の貯留動作の後半の動作を終了する。所定時間T6は、例えば、第1の貯留動作の前半の動作の実行後に冷媒循環路150A内に残留した冷媒Rを貯留部460に回収できる長さに設定される。 After executing the second half of the first storage operation for a preset predetermined time T6, the control unit 140a ends the second half of the first storage operation. The predetermined time T6 is set, for example, to a length that allows the refrigerant R remaining in the refrigerant circulation path 150A to be collected into the storage section 460 after the first half of the first storage operation is performed.
 以上説明をしたように、制御部140aが第1の貯留動作を実行することにより、冷媒循環路150Aから冷媒Rが漏洩した場合であっても、冷媒循環路150A内の冷媒Rが貯留部460に貯留されるため、さらに冷媒Rが漏洩することが抑制される。 As explained above, when the control section 140a executes the first storage operation, even if the refrigerant R leaks from the refrigerant circulation path 150A, the refrigerant R in the refrigerant circulation path 150A is transferred to the storage section 460. Since the refrigerant R is stored in the refrigerant R, leakage of the refrigerant R is further suppressed.
 (2-1-2)第2の貯留動作
 第2の貯留動作は、第2冷凍サイクル装置100Bの冷媒循環路150から冷媒Rが漏洩した場合に、冷媒循環路150から貯留部460に冷媒Rを移す動作である。第2の貯留動作は、第1の貯留動作と同様である。
(2-1-2) Second storage operation The second storage operation is performed when refrigerant R leaks from the refrigerant circulation path 150 of the second refrigeration cycle device 100B. This is the action of moving. The second storage operation is similar to the first storage operation.
 (前半の動作)
 第2の貯留動作の前半の動作において制御部140bは、全ての室内ユニット110Bについて、室内膨張機構113Bを開状態とする。また、制御部140bは、室外ユニット120Bについて、第2冷凍サイクル装置100Bの室外膨張機構124Bを閉状態とし、流路切換機構125Bを第1状態とし、第1圧縮機122を運転する(On)。さらに、制御部140bは、開閉弁230dを開状態とし、開閉弁230d以外の開閉弁230を閉状態とする。具体的には、制御部140bは、開閉弁230a、開閉弁230b及び開閉弁230cを閉状態とする。
(First half of action)
In the first half of the second storage operation, the control unit 140b opens the indoor expansion mechanisms 113B for all indoor units 110B. Further, for the outdoor unit 120B, the control unit 140b brings the outdoor expansion mechanism 124B of the second refrigeration cycle device 100B into the closed state, brings the flow path switching mechanism 125B into the first state, and operates the first compressor 122 (On). . Further, the control unit 140b opens the on-off valve 230d and closes the on-off valves 230 other than the on-off valve 230d. Specifically, the control unit 140b closes the on-off valve 230a, the on-off valve 230b, and the on-off valve 230c.
 第2の貯留動作の前半の動作が実行されることにより、室内冷媒流路111Bの冷媒Rは、室外ユニット120Bの第1圧縮機122Bにより吸入される。第1圧縮機122Bに吸入された冷媒Rは、第1圧縮機122Bから吐出された後、流路切換機構125B及び室外熱交換器123Bを通過する。室外熱交換器123Bを通過した冷媒Rは室外膨張機構124Bに送られるが、室外膨張機構124Bは閉状態にあることから、液側分岐配管129Bに流入する。液側分岐配管129Bに流入した冷媒Rは、第4管440及び液側配管452を通過して貯留部460に流入する。冷媒量測定システム4の開閉弁230d以外の開閉弁230は閉状態にあるため、流入した冷媒Rは貯留部460内に貯留される。 By performing the first half of the second storage operation, the refrigerant R in the indoor refrigerant flow path 111B is sucked by the first compressor 122B of the outdoor unit 120B. The refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B, and then passes through the flow path switching mechanism 125B and the outdoor heat exchanger 123B. The refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B. The refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and the liquid side pipe 452 and flows into the storage section 460. Since the on-off valves 230 other than the on-off valve 230d of the refrigerant amount measuring system 4 are in the closed state, the refrigerant R that has flowed in is stored in the storage section 460.
 制御部140dは、あらかじめ設定された所定時間T7の間、第2の貯留動作の前半の動作を実行すると第2の貯留動作の前半の動作を終了して第2の貯留動作の後半の動作を開始する。所定時間T7は、例えば、冷媒循環路150B内の液冷媒を貯留部460に貯留できる長さに設定される。 When the control unit 140d executes the first half of the second storage operation for a preset predetermined time T7, the control unit 140d ends the first half of the second storage operation and starts the second half of the second storage operation. Start. The predetermined time T7 is set, for example, to a length that allows the liquid refrigerant in the refrigerant circulation path 150B to be stored in the storage section 460.
 (後半の動作)
 第2の貯留動作の後半の動作においては、制御部140dは開閉弁230cを開状態とする。それ以外の機器については、冷媒Rを貯留部460に移す動作の前半の動作の状態が維持される。
(Second half of operation)
In the latter half of the second storage operation, the control unit 140d opens the on-off valve 230c. For other devices, the state of operation in the first half of the operation of transferring the refrigerant R to the storage section 460 is maintained.
 第2の貯留動作の後半の動作が実行されることにより、貯留部460に貯留された冷媒Rの内、ガス冷媒が開閉弁230cを通して第3管430に流入する。第3管430に流入した冷媒Rは、室外冷媒流路121Bに送られて、流路切換機構125Bを通過して第1圧縮機122Bにより吸入される。第1圧縮機122Bに吸入された冷媒Rは、第1圧縮機122Bから吐出され、室外熱交換器123Bを通過する。室外熱交換器123Bを通過した冷媒Rは室外膨張機構124Bに送られるが、室外膨張機構124Bは閉状態にあることから、液側分岐配管129Bに流入する。液側分岐配管129Bに流入した冷媒Rは、第4管440を通過して貯留部460に戻る。 By performing the second half of the second storage operation, gas refrigerant among the refrigerant R stored in the storage section 460 flows into the third pipe 430 through the on-off valve 230c. The refrigerant R that has flowed into the third pipe 430 is sent to the outdoor refrigerant flow path 121B, passes through the flow path switching mechanism 125B, and is sucked by the first compressor 122B. The refrigerant R sucked into the first compressor 122B is discharged from the first compressor 122B and passes through the outdoor heat exchanger 123B. The refrigerant R that has passed through the outdoor heat exchanger 123B is sent to the outdoor expansion mechanism 124B, but since the outdoor expansion mechanism 124B is in a closed state, it flows into the liquid side branch pipe 129B. The refrigerant R that has flowed into the liquid side branch pipe 129B passes through the fourth pipe 440 and returns to the storage section 460.
 制御部140bは、あらかじめ設定された所定時間T8の間、第2の貯留動作の後半の動作を実行すると、第2の貯留動作の後半の動作を終了する。所定時間T8は、例えば、第2の貯留動作の後半の動作の実行後に冷媒循環路150B内に残留した冷媒を貯留部460に回収できる長さに設定される。 After executing the second half of the second storage operation for a preset predetermined time T8, the control unit 140b ends the second half of the second storage operation. The predetermined time T8 is set, for example, to a length that allows the refrigerant remaining in the refrigerant circulation path 150B to be collected into the storage section 460 after the second half of the second storage operation is performed.
 以上説明をしたように、制御部140bが第2の貯留動作を実行することにより、冷媒循環路150Bから冷媒Rが漏洩した場合であっても、冷媒循環路150B内の冷媒Rが貯留部460に貯留されるため、さらに冷媒Rが漏洩することが抑制される。 As explained above, when the control unit 140b executes the second storage operation, even if the refrigerant R leaks from the refrigerant circulation path 150B, the refrigerant R in the refrigerant circulation path 150B is transferred to the storage section 460. Since the refrigerant R is stored in the refrigerant R, leakage of the refrigerant R is further suppressed.
 (3)特徴
 冷媒量測定システム4は、制御部140が、第1の貯留動作および第2の貯留動作を行う。第1の貯留動作は、第1冷媒回路から冷媒Rが漏洩した場合に、第1冷媒回路から貯留部460に冷媒Rを移す動作である。第2の貯留動作は、第2冷媒回路から冷媒Rが漏洩した場合に、第2冷媒回路から貯留部460に冷媒Rを移す動作である。
(3) Features In the refrigerant amount measuring system 4, the control unit 140 performs a first storage operation and a second storage operation. The first storage operation is an operation to transfer the refrigerant R from the first refrigerant circuit to the storage section 460 when the refrigerant R leaks from the first refrigerant circuit. The second storage operation is an operation to transfer the refrigerant R from the second refrigerant circuit to the storage section 460 when the refrigerant R leaks from the second refrigerant circuit.
 本冷媒量測定システム4の制御部140は、第1の貯留動作を行う。このため、本冷媒量測定システム4は、第1冷媒回路の冷媒Rが漏洩した場合に、第1冷媒回路の冷媒Rを貯留部460に貯留し、冷媒Rの大気放出を抑制できる。また、本冷媒量測定システム4の制御部140は、第2の貯留動作を行う。このため、本冷媒量測定システム4は、第2冷媒回路の冷媒Rが漏洩した場合に、第2冷媒回路の冷媒Rを貯留部460に貯留し、冷媒Rの大気放出を抑制できる。 The control unit 140 of the refrigerant amount measuring system 4 performs a first storage operation. Therefore, in the case where the refrigerant R in the first refrigerant circuit leaks, the present refrigerant amount measurement system 4 can store the refrigerant R in the first refrigerant circuit in the storage section 460 and suppress release of the refrigerant R into the atmosphere. Further, the control unit 140 of the refrigerant amount measuring system 4 performs a second storage operation. Therefore, in the case where the refrigerant R in the second refrigerant circuit leaks, the present refrigerant amount measurement system 4 can store the refrigerant R in the second refrigerant circuit in the storage section 460 and suppress release of the refrigerant R into the atmosphere.
 <第3実施形態>
 (1)全体構成
 本開示の第3実施形態に係る冷媒使用システム1について、第1実施形態に係る冷媒使用システム1と相違を中心に説明する。
<Third embodiment>
(1) Overall Configuration A refrigerant-using system 1 according to a third embodiment of the present disclosure will be described, focusing on differences from the refrigerant-using system 1 according to the first embodiment.
 第3実施形態に係る冷媒使用システム1の測定部401は、第1実施形態に係る冷媒使用システム1の測定部401の構成要素に加えて、筒部材462をさらに備える。測定部401は、測定演算部471と、電極棒461及び筒部材462を備える。 The measuring unit 401 of the refrigerant-using system 1 according to the third embodiment further includes a cylindrical member 462 in addition to the components of the measuring unit 401 of the refrigerant-using system 1 according to the first embodiment. The measurement section 401 includes a measurement calculation section 471, an electrode rod 461, and a cylindrical member 462.
 (2)詳細構成
 図12Aは、貯留部460と、電極棒461及び筒部材462を示した概略構成図である。筒部材462は、電極棒461を囲う部材である。図12Bは、図12AにおけるA断面を示す断面図である。測定演算部471は、第1実施形態とは異なり、冷媒量の測定において電極棒461と筒部材462との間の距離Xを用いる。
(2) Detailed Configuration FIG. 12A is a schematic configuration diagram showing the storage section 460, the electrode rod 461, and the cylindrical member 462. The cylindrical member 462 is a member that surrounds the electrode rod 461. FIG. 12B is a sectional view showing the A section in FIG. 12A. Unlike the first embodiment, the measurement calculation unit 471 uses the distance X between the electrode rod 461 and the cylindrical member 462 in measuring the amount of refrigerant.
 筒部材462により、測定部401は、貯留部460と電極棒461との位置関係が変化する場合又は貯留部460の壁面の形状が変化する場合でも、冷媒量を精度高く測定できる。また、貯留部460の形状、電極棒461の形状、電極棒461の位置などに関わらず、冷媒量を精度高く測定できるため、冷媒量測定システム4の設計及び製造が容易になる。 The cylindrical member 462 allows the measurement unit 401 to accurately measure the amount of refrigerant even when the positional relationship between the reservoir 460 and the electrode rod 461 changes or when the shape of the wall of the reservoir 460 changes. Furthermore, since the refrigerant amount can be measured with high precision regardless of the shape of the storage portion 460, the shape of the electrode rod 461, the position of the electrode rod 461, etc., the design and manufacture of the refrigerant amount measuring system 4 is facilitated.
 (3)特徴
 冷媒量測定システム4は、測定部401が、電極棒461を囲う筒部材462をさらに有する。
(3) Features In the refrigerant amount measurement system 4, the measurement unit 401 further includes a cylindrical member 462 surrounding the electrode rod 461.
 本冷媒量測定システム4の測定部401は、電極棒461を囲う筒部材462をさらに有する。このため、本冷媒量測定システム4は、筒部材462を用いて冷媒Rの充填量及び漏洩量をより明確化できる。 The measurement unit 401 of the present refrigerant amount measurement system 4 further includes a cylindrical member 462 surrounding the electrode rod 461. Therefore, the present refrigerant amount measurement system 4 can clarify the filling amount and leakage amount of the refrigerant R using the cylindrical member 462.
 (4)変形例
 (4-1)変形例1A
 上記の実施形態では、測定部401が静電容量式の方式により冷媒Rの量を測定した。しかし、測定部401の冷媒量の測定方法はこれに限定しない。測定部401は、電波式、超音波式、フロート式、圧力式、差圧式、静電容量式の少なくともいずれかの方式により、冷媒Rの量を測定してもよい。
(4) Modification (4-1) Modification 1A
In the above embodiment, the measurement unit 401 measured the amount of refrigerant R using a capacitive method. However, the method of measuring the amount of refrigerant by the measurement unit 401 is not limited to this. The measurement unit 401 may measure the amount of refrigerant R using at least one of a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, and a capacitance type.
 電波式は、電波が冷媒Rの液面に反射して返ってくるまでの時間を測ることにより、冷媒量を測定する方式である。超音波式は、超音波が冷媒Rの液面に反射して返ってくるまでの時間を測ることにより、冷媒量を測定する方式である。フロート式は、冷媒Rの液面に浮ぶフロートの高さを測ることにより、冷媒量を測定する方式である。圧力式は、冷媒Rの液底面の圧力値を測ることにより、冷媒量を測定する方式である。差圧式は、液底面と貯留部460上面との差圧値を測ることにより、冷媒量を測定する方式である。 The radio wave method is a method that measures the amount of refrigerant by measuring the time it takes for radio waves to reflect on the liquid surface of refrigerant R and return. The ultrasonic method is a method that measures the amount of refrigerant by measuring the time it takes for ultrasonic waves to reflect on the liquid surface of refrigerant R and return. The float type is a method that measures the amount of refrigerant by measuring the height of a float floating on the liquid level of refrigerant R. The pressure method is a method of measuring the amount of refrigerant by measuring the pressure value at the bottom of the refrigerant R. The differential pressure method is a method that measures the amount of refrigerant by measuring the differential pressure value between the bottom surface of the liquid and the top surface of the storage section 460.
 本実施形態に係る冷媒量測定システム4は、測定部401が、電波式、超音波式、フロート式、圧力式、差圧式、静電容量式の少なくともいずれかの方式により、冷媒Rの量を測定する。 In the refrigerant amount measurement system 4 according to the present embodiment, the measurement unit 401 measures the amount of refrigerant R using at least one of a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, and a capacitance type. Measure.
 本冷媒量測定システム4の測定部401は、電波式、超音波式、フロート式、圧力式、差圧式、静電容量式の少なくともいずれかの方式により、冷媒Rの量を測定する。このため、本冷媒量測定システム4は、多様な方式に基づいて、冷媒Rの充填量及び漏洩量をより明確化できる。 The measurement unit 401 of the present refrigerant amount measurement system 4 measures the amount of refrigerant R using at least one of a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, and a capacitance type. Therefore, the present refrigerant amount measuring system 4 can clarify the filling amount and leakage amount of the refrigerant R based on various methods.
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as described in the claims.
 1  冷媒使用システム
 4  冷媒量測定システム
 100  冷凍サイクル装置
 100A  第1冷凍サイクル装置
 100B  第2冷凍サイクル装置
 110  室内ユニット
 111  室内冷媒流路
 112  室内熱交換器
 113  室内膨張機構
 114  ガス側接続部
 115  液側接続部
 116  検出部
 120  室外ユニット
 121  室外冷媒流路
 121b  第1冷媒配管
 121c  第2冷媒配管
 121d  第3冷媒配管
 122  第1圧縮機
 123  室外熱交換器
 124  室外膨張機構
 125  流路切換機構
 126  ガス側接続部
 127  液側接続部
 128  ガス側分岐配管
 129  液側分岐配管
 131  ガス側連絡配管
 132  液側連絡配管
 140(140a、140b)  制御部
 150  冷媒循環路
 230(230a、230b、230c、230d)  開閉弁
 400  接続部
 401  測定部
 410  第1管
 420  第2管
 430  第3管
 440  第4管
 451  ガス側配管
 452  液側配管
 455  逆止弁
 460  貯留部
 461  電極棒
 462  筒部材
 470  演算装置
 471  測定演算部
 472  記憶部
1 Refrigerant usage system 4 Refrigerant amount measurement system 100 Refrigeration cycle device 100A First refrigeration cycle device 100B Second refrigeration cycle device 110 Indoor unit 111 Indoor refrigerant flow path 112 Indoor heat exchanger 113 Indoor expansion mechanism 114 Gas side connection part 115 Liquid side Connection part 116 Detection part 120 Outdoor unit 121 Outdoor refrigerant flow path 121b First refrigerant pipe 121c Second refrigerant pipe 121d Third refrigerant pipe 122 First compressor 123 Outdoor heat exchanger 124 Outdoor expansion mechanism 125 Flow path switching mechanism 126 Gas side Connection part 127 Liquid side connection part 128 Gas side branch pipe 129 Liquid side branch pipe 131 Gas side communication pipe 132 Liquid side communication pipe 140 (140a, 140b) Control part 150 Refrigerant circulation path 230 (230a, 230b, 230c, 230d) Opening/closing Valve 400 Connection part 401 Measuring part 410 First pipe 420 Second pipe 430 Third pipe 440 Fourth pipe 451 Gas side piping 452 Liquid side piping 455 Check valve 460 Storage part 461 Electrode rod 462 Cylinder member 470 Arithmetic device 471 Measurement calculation Section 472 Storage section
特開2010-190545号公報Japanese Patent Application Publication No. 2010-190545

Claims (12)

  1.  第1冷凍サイクル装置(100A)の第1冷媒回路に接続される接続部(400)と、
     前記接続部を介して前記第1冷媒回路の中の冷媒(R)を貯留し、貯留している前記冷媒を前記接続部を介して前記第1冷媒回路に戻す、貯留部(460)と、
     前記貯留部の中の前記冷媒の量を測定する測定部(401)と、
     前記測定部が測定した測定結果を記憶する記憶部(472)と、
     を備える冷媒量測定システム(4)。
    a connection part (400) connected to the first refrigerant circuit of the first refrigeration cycle device (100A);
    a storage section (460) that stores the refrigerant (R) in the first refrigerant circuit via the connection section and returns the stored refrigerant to the first refrigerant circuit via the connection section;
    a measurement unit (401) that measures the amount of the refrigerant in the storage unit;
    a storage unit (472) that stores measurement results measured by the measurement unit;
    A refrigerant amount measuring system (4) comprising:
  2.  前記接続部は、第1管(410)および第2管(420)を有し、
     前記第1管および前記第2管のそれぞれに開閉弁(230)が設けられている、
     請求項1に記載の冷媒量測定システム。
    The connection part has a first pipe (410) and a second pipe (420),
    An on-off valve (230) is provided in each of the first pipe and the second pipe,
    The refrigerant amount measuring system according to claim 1.
  3.  前記第1冷凍サイクル装置および前記開閉弁を制御して、前記第1冷媒回路から前記貯留部に前記冷媒を移し、前記測定部に前記冷媒の量を測定させ、前記冷媒を前記貯留部から前記第1冷媒回路に戻させる、第1の冷媒量測定動作を行う制御部(140)、
    をさらに備える、
     請求項2に記載の冷媒量測定システム。
    The first refrigeration cycle device and the on-off valve are controlled to transfer the refrigerant from the first refrigerant circuit to the storage section, cause the measurement section to measure the amount of the refrigerant, and transfer the refrigerant from the storage section to the storage section. a control unit (140) that performs a first refrigerant amount measurement operation to return the refrigerant to the first refrigerant circuit;
    further comprising,
    The refrigerant amount measuring system according to claim 2.
  4.  第2冷凍サイクル装置(100B)の第2冷媒回路にも前記接続部が接続され、
     前記接続部は、それぞれ開閉弁が設けられた第3管(430)および第4管(440)をさらに有し、
     前記接続部は、前記第1管および前記第2管により前記第1冷媒回路に接続され、前記第3管および前記第4管により前記第2冷媒回路に接続される、
     請求項3に記載の冷媒量測定システム。
    The connection part is also connected to a second refrigerant circuit of a second refrigeration cycle device (100B),
    The connecting portion further includes a third pipe (430) and a fourth pipe (440) each provided with an on-off valve,
    The connecting portion is connected to the first refrigerant circuit by the first pipe and the second pipe, and connected to the second refrigerant circuit by the third pipe and the fourth pipe.
    The refrigerant amount measuring system according to claim 3.
  5.  前記制御部は、前記第2冷凍サイクル装置および前記開閉弁を制御して、前記第2冷媒回路から前記貯留部に前記冷媒を移し、前記測定部に前記冷媒の量を測定させ、前記冷媒を前記貯留部から前記第2冷媒回路に戻させる、第2の冷媒量測定動作をさらに行う、
     請求項4に記載の冷媒量測定システム。
    The control unit controls the second refrigeration cycle device and the on-off valve to transfer the refrigerant from the second refrigerant circuit to the storage unit, causes the measurement unit to measure the amount of the refrigerant, and controls the refrigerant. further performing a second refrigerant amount measurement operation of returning the refrigerant from the storage section to the second refrigerant circuit;
    The refrigerant amount measuring system according to claim 4.
  6.  前記制御部は、前記第1の冷媒量測定動作と前記第2の冷媒量測定動作を、時間をずらして行う、
     請求項5に記載の冷媒量測定システム。
    The control unit performs the first refrigerant amount measurement operation and the second refrigerant amount measurement operation at different times.
    The refrigerant amount measuring system according to claim 5.
  7.  前記制御部は、前記第1冷凍サイクル装置の通常運転が停止されている時間帯に、前記第1の冷媒量測定動作を行い、
     前記制御部は、前記第2冷凍サイクル装置の通常運転が停止されている時間帯に、前記第2の冷媒量測定動作を行う、
     請求項5または請求項6に記載の冷媒量測定システム。
    The control unit performs the first refrigerant amount measurement operation during a time period when normal operation of the first refrigeration cycle device is stopped;
    The control unit performs the second refrigerant amount measurement operation during a time period when normal operation of the second refrigeration cycle device is stopped.
    The refrigerant amount measuring system according to claim 5 or 6.
  8.  前記制御部は、前記第1冷媒回路から前記冷媒が漏洩した場合に、前記第1冷媒回路から前記貯留部に前記冷媒を移す、第1の貯留動作を行い、
     前記制御部は、前記第2冷媒回路から前記冷媒が漏洩した場合に、前記第2冷媒回路から前記貯留部に前記冷媒を移す、第2の貯留動作を行う、
     請求項5から請求項7のいずれか1項に記載の冷媒量測定システム。
    The control unit performs a first storage operation to transfer the refrigerant from the first refrigerant circuit to the storage unit when the refrigerant leaks from the first refrigerant circuit,
    The control unit performs a second storage operation of transferring the refrigerant from the second refrigerant circuit to the storage unit when the refrigerant leaks from the second refrigerant circuit.
    The refrigerant amount measuring system according to any one of claims 5 to 7.
  9.  前記測定部は、電極棒(461)を有する、
     請求項1から請求項8のいずれか1項に記載の冷媒量測定システム。
    The measurement unit has an electrode rod (461),
    The refrigerant amount measuring system according to any one of claims 1 to 8.
  10.  前記測定部は、前記電極棒を囲う筒部材(462)をさらに有する、
     請求項9に記載の冷媒量測定システム。
    The measurement unit further includes a cylindrical member (462) surrounding the electrode rod.
    The refrigerant amount measuring system according to claim 9.
  11.  前記測定部は、電波式、超音波式、フロート式、圧力式、差圧式、静電容量式の少なくともいずれかの方式により、前記冷媒の量を測定する、
     請求項1から請求項10のいずれか1項に記載の冷媒量測定システム。
    The measurement unit measures the amount of the refrigerant using at least one of a radio wave type, an ultrasonic type, a float type, a pressure type, a differential pressure type, and a capacitance type.
    The refrigerant amount measuring system according to any one of claims 1 to 10.
  12.  冷凍サイクル装置と、
     請求項1から請求項11のいずれか1項に記載の冷媒量測定システムを有する、
     冷媒使用システム(1)。
    A refrigeration cycle device,
    Having the refrigerant amount measuring system according to any one of claims 1 to 11,
    Refrigerant usage system (1).
PCT/JP2023/023655 2022-07-01 2023-06-26 Refrigerant volume measurement system and refrigerant-using system WO2024004958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022107129A JP2024006336A (en) 2022-07-01 2022-07-01 Refrigerant quantity measuring system and refrigerant using system
JP2022-107129 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024004958A1 true WO2024004958A1 (en) 2024-01-04

Family

ID=89383099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023655 WO2024004958A1 (en) 2022-07-01 2023-06-26 Refrigerant volume measurement system and refrigerant-using system

Country Status (2)

Country Link
JP (1) JP2024006336A (en)
WO (1) WO2024004958A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218008A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Refrigerating cycle
WO2017037771A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Refrigeration cycle device
JP2018071955A (en) * 2016-11-04 2018-05-10 日立ジョンソンコントロールズ空調株式会社 Air-conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218008A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Refrigerating cycle
WO2017037771A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Refrigeration cycle device
JP2018071955A (en) * 2016-11-04 2018-05-10 日立ジョンソンコントロールズ空調株式会社 Air-conditioner

Also Published As

Publication number Publication date
JP2024006336A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP5247833B2 (en) Air conditioner
CN101504177B (en) Air conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
CN102149990B (en) Leakage diagnosing device, leakage diagnosing method, and refrigerating device
KR101207004B1 (en) Air conditioner
US20040111239A1 (en) Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
JPWO2006090451A1 (en) Air conditioner
CN107110539A (en) The abnormality determination method of the control device of air-conditioning system, air-conditioning system and air-conditioning system
JP2017009267A (en) Air-conditioning system
CN110050159A (en) Air conditioner
WO2011161720A1 (en) Air-conditioning apparatus
KR20090013187A (en) Air conditioner
KR20080081281A (en) Air conditioner
JPWO2020003528A1 (en) Air conditioning management system, air conditioning management method, and program
JP6849138B2 (en) Air conditioner, control device, and refrigerant connecting pipe
KR20090039791A (en) Air conditioning apparatus
JP2007255818A (en) Diagnosing device for refrigerating cycle device, heat source-side unit and use-side unit having diagnosing device, and refrigerating cycle device
Sieres et al. Influence of the refrigerant charge in an R407C liquid-to-water heat pump for space heating and domestic hot water production
KR20070013826A (en) Process for sensing shortage of refrigerant in air conditioner
CN112362197A (en) Throttling device-based multi-online air-conditioning heat exchange heat metering method and device
JP6297151B2 (en) Refrigeration cycle apparatus, refrigerant leak detection apparatus and refrigerant leak detection method
KR100670603B1 (en) Automatic Refrigerant Charging Apparatus for Air-Conditioner
WO2024004958A1 (en) Refrigerant volume measurement system and refrigerant-using system
JP3531440B2 (en) Air conditioner with refrigerant charge determination device and refrigerant charge determination method
Bailey et al. Creating an automated chiller fault detection and diagnostics tool using a data fault library
JPH055581A (en) Refrigerant recovering and charging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831398

Country of ref document: EP

Kind code of ref document: A1