WO2024004917A1 - Detection system, cartridge, detection method, method for producing nucleic acid probe, and method for producing biosensor - Google Patents

Detection system, cartridge, detection method, method for producing nucleic acid probe, and method for producing biosensor Download PDF

Info

Publication number
WO2024004917A1
WO2024004917A1 PCT/JP2023/023497 JP2023023497W WO2024004917A1 WO 2024004917 A1 WO2024004917 A1 WO 2024004917A1 JP 2023023497 W JP2023023497 W JP 2023023497W WO 2024004917 A1 WO2024004917 A1 WO 2024004917A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
reaction
capture
section
amplification
Prior art date
Application number
PCT/JP2023/023497
Other languages
French (fr)
Japanese (ja)
Inventor
洋和 松田
康貴 前田
浩康 田中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024004917A1 publication Critical patent/WO2024004917A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present disclosure relates to a detection system, a cartridge, a detection method, a method for manufacturing a nucleic acid probe, and a method for manufacturing a biosensor using the probe.
  • Patent Documents 1 and 2 When investigating whether a sample contains a detection target (for example, a nucleic acid), a method may be adopted in which the substance is amplified and then detected (Patent Documents 1 and 2).
  • a detection target for example, a nucleic acid
  • Patent Document 3 describes a method for manufacturing a DNA chip in which DNA fragments and oligonucleotides are arranged on a solid phase surface.
  • a detection system includes an amplification unit that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a first capture substance that can capture the nucleic acid in the reaction solution.
  • a reaction section having a capture section disposed on a surface thereof, and a detection device capable of detecting a change in physical properties of the surface due to interaction between the nucleic acid and the first capture substance.
  • a detection system includes a translation part in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a translation part capable of capturing translation products in the reaction solution.
  • a cartridge according to an aspect of the present disclosure is a reaction section that accommodates a reaction solution for amplifying a nucleic acid having a predetermined sequence, and includes an amplification section that performs an amplification reaction of the nucleic acid in the reaction solution; a reaction part having a capture part on the surface of which a first capture substance capable of capturing the nucleic acid; and a change in the physical properties of the surface due to the interaction between the nucleic acid and the first capture substance can be detected. and a mounting portion for mounting on a detection device.
  • a cartridge includes a reaction section that stores a liquid containing a target nucleic acid having a predetermined sequence, and a capturing section that has a capture substance on a surface that can capture the target nucleic acid in the liquid. and an attachment part for attaching to a detection device capable of detecting a change in the physical properties of the surface due to the interaction between the target nucleic acid and the first capture substance, and the capture substance is , a first capture region including a first nucleic acid fragment having a first complementary sequence complementary to the base sequence of the first end of the target nucleic acid, and a second end different from the first end of the target nucleic acid. and a second capture region including a second nucleic acid fragment having a second complementary sequence complementary to the base sequence of It is a sensor that uses either Surface Plasmon Resonance) or FET (Field Effect Transistor).
  • a cartridge according to one aspect of the present disclosure is a reaction section that accommodates a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation section that performs a translation reaction from the nucleic acid in the reaction solution; a reaction part having a second capture substance on its surface that is capable of capturing a translation product in a reaction solution; and physical properties of the surface resulting from the interaction between the translation product and the second capture substance. and a mounting part for mounting on a detection device capable of detecting a change in the temperature.
  • a detection method includes: an amplification unit that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence; and a first capture substance that can capture the nucleic acid in the reaction solution.
  • a detection method includes a translation part in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation part capable of capturing a translation product in the reaction solution. 2.
  • a method for producing a nucleic acid probe includes a preparation step of preparing a nucleic acid fragment having a base sequence that binds to a target molecule to be captured; and a modification step of modifying at least a portion of the material by adding an electrically neutral functional group or a positively charged functional group.
  • FIG. 1 is a diagram showing the appearance of a detection system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a schematic diagram schematically showing the internal configuration of a cartridge.
  • FIG. 2 is a schematic diagram schematically showing the internal configuration of a sensor unit. It is a figure showing an example of reaction in a reaction part step by step.
  • FIG. 2 is a block diagram showing the main components of a cartridge and a detection device. It is a flowchart which shows an example of the detection method performed in a detection system. It is a figure showing an example of reaction in a reaction part step by step. It is a figure showing an example of reaction in a reaction part step by step. It is a figure showing an example of reaction in a reaction part step by step. It is a figure showing an example of reaction in a reaction part step by step.
  • FIG. 2 is a diagram illustrating an example of the configuration of a capture unit including a nucleic acid probe according to one embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram schematically showing an example of an internal configuration of a sensor unit according to one aspect of the present disclosure.
  • FIG. 2 is a schematic diagram schematically showing an example of the configuration of a capturing section according to one aspect of the present disclosure. It is a figure showing an example of the manufacturing method of the trapping part concerning one aspect of the present disclosure.
  • FIG. 2 is a diagram showing an example of addition of a functional group to a phosphate ester included in a nucleic acid fragment according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a bond between a fixing part and a polymer according to one embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of terminal activation of a polymer according to one embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a change in charge of a polymer layer due to terminal activation of a polymer according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing an example of binding between a nucleic acid probe and a polymer according to one embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of terminal deactivation of a polymer according to one embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of the overall configuration of a capture unit including a nucleic acid probe in which a phosphate ester of a nucleic acid fragment is not modified.
  • an example of a virus detection method that can be used in medical institutions and the like is a PCR test using a PCR method (Polymerase Chain Reaction) to amplify virus-derived nucleic acids.
  • a method is generally designed in which the nucleic acid that is the amplification product is labeled with a fluorescent dye.
  • fluorescent dyes are often unstable and must be handled with care, including storage.
  • detection methods that use optical systems, there has been a demand for detection methods that can ensure sufficient detection sensitivity and that can be performed easily.
  • the inventors conducted studies to solve the above problems, and as a result, they developed a detection system, a cartridge, and a detection method that can easily detect amplified products with high sensitivity.
  • the developed detection system, cartridge, and detection method are applicable to the detection of peptides, proteins, etc. in addition to nucleic acids.
  • FIG. 1 is a diagram showing the appearance of a detection system 100 according to an embodiment.
  • the detection system 100 includes, as an example, a detection device 3 and a cartridge 2 (flow path device).
  • FIG. 1 shows a state in which the cartridge 2 is not completely attached to the detection device 3 but is being inserted.
  • the detection device 3 and the cartridge 2 are configured as separate bodies, and detection is performed by inserting the cartridge 2 into the detection device 3 and electrically connecting each other. shall be carried out.
  • fluids such as reagents and sample liquid used for detection may be stored in the cartridge 2 in advance, as will be described later.
  • the cartridge 2 is a consumable item, and for example, one cartridge 2 is used to perform detection for one individual subject. In other examples, multiple cartridges 2 may be used per individual subject depending on the type of detection.
  • Such a configuration of the detection system 100 may be adopted, for example, when performing a rapid test called POCT (Point Of Care Testing), which performs detection immediately after obtaining a sample and presents the result to the user.
  • POCT Point Of Care Testing
  • the detection device 3 may be configured as a relatively small device that can be placed in a pharmacy, clinic, home, etc., for example.
  • the detection system 100 of the present disclosure is not limited to the above-mentioned example, but can also be applied to cases where a large amount of specimens once collected in a laboratory or the like are simultaneously measured using the large detection device 3.
  • a configuration may be adopted in which fluids such as reagents and sample liquids are sent into the cartridge from the detection device 3 and then into the cartridge when performing detection.
  • the detection system 100 is a system that detects a detection target included in a sample P and presents the detection results to a user.
  • the user may be an operator of the detection device 3 in charge of the detection work, a client such as a doctor who requested the measurement, or a subject such as a patient who provided the specimen P. .
  • the detection system 100 includes, as an example, a cartridge 2 and a detection device 3. After the cartridge 2 is inserted into the detection device 3 and the two are electrically connected, the detection device 3 may start measuring the cartridge 2 immediately, or it may start the measurement according to the user's input operation. good. In another example, the detection device 3 may authenticate the cartridge 2 and start detection if the authentication is successful.
  • the detection device 3 may include a display unit 35 and may present various information to the user. For example, the detection device 3 can display on the display unit 35 the progress of the measurement, a message prompting the user to perform some input operation, an error message when detection is not possible, and the like.
  • the specimen P may be saliva, for example.
  • the detection system 100 will be described as a system for detecting an amplified substance to be detected contained in saliva as a specimen P.
  • the specimen P is not limited to saliva, and may be any substance derived from a living body.
  • the specimen P may be, for example, urine, blood, sweat, or nasal discharge.
  • the cartridge 2 may be configured as appropriate so that the detection device 3 can detect the sample P contained in the cartridge 2. An example of the configuration of the cartridge 2 will be described in detail later with reference to separate drawings.
  • FIG. 2 is a schematic diagram schematically showing the internal configuration of the cartridge 2.
  • the cartridge 2 may be a disposable cartridge that can be attached to and detached from the detection device 3.
  • the cartridge 2 may be made of resin, for example.
  • the resin may be, for example, polycarbonate, cycloolefin polymer, polymethyl methacrylate resin, polydimethylsiloxane, and the like.
  • the cartridge 2 includes a holding part 21 (a first accommodating part, a second accommodating part), a liquid receiving part 22 (a first accommodating part, a second accommodating part), a sensor unit 23, and a flow path 28. and an attachment part 29 for attaching the cartridge to the detection device 3.
  • the holding unit 21 holds a liquid, particularly a liquid such as a reagent that does not contain a measurement target.
  • the detection system 100 may use two different types of reagents for measurement.
  • the holding section 21 that holds the first reagent will be referred to as a first holding section 211 (first storage section, second storage section), and the holding section 21 that holds the second reagent will be referred to as a second holding section 212 ( 1st storage part, 2nd storage part).
  • the detection system 100 may use one type of reagent for measurement, or may use three or more types of reagents for measurement. That is, the cartridge 2 may include one holding section 21, or may include three or more holding sections 21.
  • the holding section 21 accommodates enzymes necessary for amplifying the nucleic acids. Examples of enzymes necessary for nucleic acid amplification include DNA polymerase and RNA polymerase.
  • the liquid receiving part 22 takes in a liquid, particularly a sample P as a sample liquid containing a measurement target, into the cartridge 2 and holds it therein.
  • the shape of the liquid receiving part 22 is not particularly limited.
  • the liquid receiving portion 22 is connected to a flow path 28 .
  • the sample P accommodated in the liquid receiving part 22 is pushed out from the liquid receiving part 22 by being pressed by a pressing pin (not shown) of the detection device 3, and is supplied to the sensor unit 23 via the connected flow path 28. be done.
  • the liquid receiving part 22 may be formed integrally with the flow path 28 or may be formed separately from the flow path 28.
  • the liquid receiving portion 22 may be formed by a conventionally known technique.
  • the sensor unit 23 detects a measurement target included in the sample P.
  • the sensor unit 23 includes at least one sensor that detects a measurement target.
  • the sensor unit 23 may include multiple sensors.
  • the sensor unit 23 may include two sensors: a reaction section 50 (sensor, first sensor) and a reference section 25 (sensor, second sensor).
  • the sensor unit 23 may be simply referred to as a sensor.
  • the reaction section 50 and the reference section 25 the reaction section 50 and the reference section 25 may be collectively referred to as a sensor if there is no need to distinguish between the individual sensors. good.
  • the entire sensor unit 23 including the reaction section 50 and the reference section 25 may be referred to as a sensor.
  • the reaction section 50 includes an amplification section 51 that performs a nucleic acid amplification reaction in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a capture section 24 that has a first capture substance on its surface that can capture the nucleic acid in the reaction solution. and has.
  • "surface" is intended to be the surface on which the first capture substance is placed.
  • the reaction section 50 is a place where amplification reaction and capture are performed, and if the amplification reaction and capture are separated or limited, the reaction section 50 is a place where the amplification reaction and capture are performed, even if they are at a specific location. good.
  • the reaction section 50 can be any place where the reaction solution is accommodated.
  • the predetermined location may be the reaction section 50.
  • the capture unit 24 captures nucleic acids in the reaction solution. For example, if a primer for amplifying a nucleic acid is present on the surface of the capture section 24, an amplification reaction may proceed in the capture section 24.
  • the capture unit 24 will be described later.
  • the flow path 28 is for supplying one or more types of fluid to the sensor unit 23.
  • the flow path 28 extends inside the cartridge 2 so as to connect each of the above-mentioned components of the cartridge 2, specifically, the first holding part 211, the second holding part 212, and the liquid receiving part 22, and the sensor unit 23. is formed.
  • the fluid contained in the first holding part 211, the second holding part 212, and the liquid receiving part 22 is supplied to the sensor unit 23 via the flow path 28.
  • the attachment part 29 is a mechanism for attaching and fixing the cartridge 2 to the detection device 3. Further, the attachment portion 29 electrically connects the cartridge 2 and the detection device 3. Since the cartridge 2 includes the attachment portion 29, the cartridge 2 is attached to the detection device 3, and the cartridge 2 and the detection device 3 are electrically connected.
  • the cartridge 2 can be electrically connected to the detection device 3 and can input and output electrical signals to and from the detection device 3. Terminals and the like for electrically connecting the cartridge 2 and the detection device 3 may be manufactured by a conventionally known method. In other examples, the cartridge 2 may not be physically attached to the detection device 3.
  • the cartridge 2 may include a communication section capable of communicating with the detection device 3. In this case, the cartridge 2 may transmit and receive various information such as electrical signals related to the test to and from the detection device 3 through wired or wireless communication.
  • FIG. 3 is a schematic diagram schematically showing the internal configuration of the sensor unit 23.
  • the sensor unit 23 according to one embodiment is, for example, a sensor using elastic waves, and includes a reaction section 50, a reference section 25, a pair of first IDT (Inter Digital Transducer) electrodes 26A, a pair of second IDT electrodes 26B, and A substrate 27 is provided.
  • the reaction section 50, the reference section 25, the pair of first IDT electrodes 26A, and the pair of second IDT electrodes 26B may be located on the substrate 27.
  • the reaction section 50 and the reference section 25 of the sensor unit 23 may be sensors that utilize elastic waves, QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), FET (Field Effect Transistor), or the like, for example. That is, the sensor unit 23 may mutually convert an electric signal and an elastic wave, QCM, SPR, FET, etc.
  • the sensor unit 23 may be manufactured by a conventionally known method. As described above, the sensor unit 23 according to one embodiment is, for example, a sensor device that uses elastic waves, and can mutually convert an electric signal into an elastic wave and an elastic wave into an electric signal. In this case, information specific to a sensor using elastic waves, such as the initial phase of the elastic waves and the orientation of the substrate 27, may be held in the detection device 3.
  • the capture unit 24 has a capture substance capable of capturing the amplification product in the reaction solution on its surface.
  • the capture substance will be described later.
  • the surface of the trap 24 may be made of metal, for example.
  • the trap 24 may be made of metals such as gold, chromium, and titanium, or a combination of these metals.
  • the trapping section 24 may be a single-layer metal film made of a single material, or a multilayer metal film made of a plurality of materials.
  • the material constituting the trapping section 24 is not limited to the above-mentioned metals, but any material that has a function of fixing the trapped substance can be used.
  • the trap 24 may be manufactured by a conventionally known method.
  • the capture substance can be, for example, a fragment of a nucleic acid, an antibody, an enzyme, etc. That is, the detection target may be, for example, a nucleic acid, an antigen, a substrate, a protein, or the like. Detection targets are not limited to these examples. In this way, depending on the purpose, the detection target to be detected by the detection device 3 may be selected as appropriate, and the capture substance paired with the detection target may be selected as appropriate. In this embodiment, a case will be described in which the capture substance is a fragment of a nucleic acid and the detection target is a nucleic acid.
  • the pair of first IDT electrodes 26A can generate elastic waves between the pair of first IDT electrodes 26A.
  • the elastic waves that propagate on the surface of the substrate 27 are also referred to as surface acoustic waves (SAW).
  • SAW surface acoustic waves
  • the pair of first IDT electrodes 26A may be arranged on the substrate 27 so as to sandwich the reaction section 50 therebetween.
  • an electric signal (input signal) is input to one of the pair of first IDT electrodes 26A under the control of the detection device 3.
  • the input electrical signal is converted into an elastic wave that propagates toward the reaction section 50 and is transmitted from one first IDT electrode 26A.
  • the emitted elastic waves pass through the reaction section 50.
  • the other first IDT electrode 26A can receive the elastic wave that has passed through the reaction section 50.
  • the received elastic waves are converted into electrical signals (output signals).
  • the converted electrical signal is output to the detection device 3.
  • the pair of first IDT electrodes 26A may be formed of a metal such as gold, chromium, or titanium, or a combination of these metals.
  • the pair of first IDT electrodes 26A may be a single layer electrode made of a single material, or a multilayer electrode made of a plurality of materials.
  • the interaction between the nucleic acid and the capture substance changes the propagation characteristics of the elastic wave propagating on the substrate 27.
  • the reaction between the nucleic acid and the capture substance changes the weight applied to the substrate 27 or the viscosity of the liquid that contacts the surface of the substrate 27.
  • the magnitude of these changes correlates with the amount of reaction between the nucleic acid and the capture substance.
  • the characteristics of the elastic wave (for example, phase, amplitude, period, etc.) change as it propagates through the capture unit 24.
  • the magnitude of the change in characteristics correlates with the magnitude of the weight applied to the substrate 27 or the magnitude of the viscosity of the liquid that contacts the surface of the substrate 27. Therefore, the detection device 3 can detect nucleic acids based on changes in the propagation characteristics of elastic waves by analyzing the output signal output from the sensor unit 23. Specifically, the detection device 3 can calculate, for example, the concentration of the amplified nucleic acid.
  • the sensor unit 23 may have two or more combinations of the capturing section 24 and the pair of IDT electrodes 26A.
  • the detection device 3 may measure different types of target substances for each combination, for example.
  • the detection device 3 may, for example, measure the same type of target substance in multiple combinations and compare the respective measurement results.
  • the reference portion 25 does not have a captured substance fixed thereto. Therefore, in the reference section 25, no reaction occurs between the nucleic acid and the capture substance. Therefore, the reference section 25 can function as a control for the capture section 24.
  • the reference section 25 may be configured the same as or similar to the capture section 24 .
  • the pair of second IDT electrodes 26B can generate elastic waves between the pair of second IDT electrodes 26B.
  • the pair of second IDT electrodes 26B may be arranged on the substrate 27 so as to sandwich the reference portion 25 therebetween.
  • an electrical signal (input signal) is input to one of the pair of second IDT electrodes 26B under the control of the detection device 3.
  • the input electrical signal is converted into an elastic wave that propagates toward the reference section 25 and is emitted from one second IDT electrode 26B.
  • the emitted elastic wave passes through the reference section 25.
  • the other second IDT electrode 26B can receive the elastic wave that has passed through the reference section 25.
  • the received elastic waves are converted into electrical signals (output signals).
  • the converted electrical signal is output to the detection device 3.
  • the pair of second IDT electrodes 26B may be configured the same as or similar to the pair of first IDT electrodes 26A.
  • the substrate 27 may be a piezoelectric substrate, for example.
  • the substrate 27 may be a crystal substrate.
  • the substrate 27 is not limited to a crystal substrate, and may be made of any material capable of propagating elastic waves.
  • the substrate 27 may be manufactured by a conventionally known method.
  • FIG. 4 is a cross-sectional view taken along the line III-III of the reaction section 50 in FIG. 3, and is a diagram showing the reaction in the reaction section 50 (amplification reaction in the amplification section 51 and capture in the capture section 24) step by step.
  • the reaction section 50 includes an amplification section 51 that performs a nucleic acid amplification reaction in a reaction solution that amplifies a nucleic acid having a predetermined sequence contained in the sample P, and a first capture substance on the surface that can capture the nucleic acid in the reaction solution. It has a capturing part 24 arranged therein.
  • the amplification reaction is performed in the entire reaction solution in the reaction section 50.
  • a trapping section 24 is arranged on the substrate 27, and a first trapping substance is arranged on the surface of the trapping section 24.
  • the nucleic acid amplified in the amplification section 51 is captured by the first capture substance of the capture section 24.
  • the amplification reaction in the amplification section 51 a known nucleic acid amplification method may be used.
  • the amplification reaction includes, for example, a heat denaturation step, an annealing step, and a DNA extension step.
  • the amplification reaction may include a plurality of cycles with the above steps as one cycle.
  • the amplification reaction progresses as appropriate under temperature control by the temperature control section 46.
  • the reaction section 50 may include the capture section 24 in the same system as the amplification section 51. Furthermore, in the reaction section 50, the amplification reaction and the capture of the nucleic acid in the reaction solution by the first capture substance may be performed simultaneously. “Performed simultaneously” means that the amplification reaction and the capture (reaction) of the nucleic acid should be performed in parallel for most of the time period from the start to the end of each reaction. Strictly speaking, the start of the amplification reaction and the time when the nucleic acid is first captured are not simultaneous, but the start of either the amplification reaction or the capture is used as a trigger to start the other reaction. That's fine.
  • the detection system 100 includes an amplification section 51 in which nucleic acids are amplified, and a capture section 24 that has a first capture substance on its surface that can capture nucleic acids in the reaction solution. Amplification and nucleic acid capture can be performed within the same system.
  • the amplification reaction and the capture of the nucleic acid in the reaction solution by the first capture substance are performed simultaneously, so that the time from amplification to detection can be shortened. That is, the time from when the user attaches the sample P to the cartridge to when the detection result is obtained is shortened.
  • the first capture substance may be capable of capturing at least one of a nucleic acid that serves as a template in an amplification reaction and a nucleic acid that is an amplification product from the amplification reaction.
  • the nucleic acid of an amplification product is a nucleic acid amplified by an amplification reaction.
  • the first capture substance is capable of capturing the nucleic acid of the amplification product resulting from the amplification reaction.
  • the first capture substance may include a first nucleic acid fragment having a first complementary sequence that is complementary to the base sequence at the first end of the amplification product.
  • the first end portion of the amplification product is DNA, RNA, LNA, BNA, or ⁇ RNA.
  • the first capture substance may be modified at its 3' end, for example, so that it does not extend itself.
  • FIG. 4 a mode is shown in which a pair of fragments, a first nucleic acid fragment F1 having a sequence A' and a first nucleic acid fragment F11 having a sequence D, are arranged as a first capture substance on the surface of the capture part 24. show.
  • FIG. 4 only schematically shows the trapping section 24, and a plurality of first trapping substances may be arranged on the surface of the trapping section 24.
  • the number of first capture substances disposed in the capture unit 24 is not particularly limited, but for example, the number of first capture substances arranged in the capture unit 24 is such that the amplification product can be captured to the extent that a change in the physical properties of the surface of the capture unit 24 can be detected by the detection device 3.
  • a trapping substance may be provided.
  • step (1) in FIG. 4 the nucleic acid is first amplified in the amplification section 51.
  • step (2) the amplified nucleic acid becomes single-stranded by heat denaturation. Then, the single-stranded nucleic acid is captured by a first nucleic acid fragment F11 having a first complementary sequence (sequence D') that is complementary to the base sequence (sequence D) at the first end of the nucleic acid.
  • step (3) the other nucleic acid that has become single stranded in step (2) has a first complementary sequence (sequence A) that is complementary to the base sequence (sequence A) at the first end of the nucleic acid.
  • steps (1) to (3) the amplification reaction in the amplification section 51 is progressing, and each time the amplification product is annealed, the nucleic acid that is the amplification product and the first nucleic acid fragment that is the first capture substance are complementary to each other. join to.
  • FIG. 5 is a block diagram showing the main components of the cartridge 2 and the detection device 3 that constitute the detection system 100. As described above, the detection system 100 includes the cartridge 2 and the detection device 3.
  • the press pins (not shown) of the connected detection device 3 are pushed down toward the liquid receiving part 22, the first holding part 211, and the second holding part 212 of the cartridge 2, respectively. Accordingly, the liquid stored inside each of the liquid receiving part 22, the first holding part 211, and the second holding part 212 is pushed out to the flow path 28, and passes through the flow path 28 to the sensor unit 23. supplied to
  • the detection device 3 is a device capable of detecting changes in the physical characteristics of the trapping section 24 due to interaction with the first trapping substance described above.
  • the physical property detectable by the detection device may be at least one of surface acoustic waves, frequency, refractive index, and conductivity.
  • the detection device 3 includes, for example, a control section 31, a storage section 32, a pressing section 33, a signal processing section 34, a display section 35, a communication section 36, and a temperature adjustment section 37.
  • the control section 31 centrally controls each section of the detection device 3.
  • the control unit 31 is configured by, for example, an arithmetic device such as a CPU (Central Processing Unit) or a dedicated processor.
  • arithmetic device such as a CPU (Central Processing Unit) or a dedicated processor.
  • Each part of the control unit 31, which will be described later, allows the above-mentioned arithmetic unit to read a program stored in a storage device (for example, the storage unit 32) implemented using a ROM (read only memory) or the like into a RAM (random access memory) or the like. This can be achieved by executing
  • a storage device for example, the storage unit 32
  • ROM read only memory
  • RAM random access memory
  • control section 31 may include a temperature control section 46 for controlling the temperature of the temperature adjustment section 37.
  • the temperature control section 46 controls the temperature adjustment section 37 to raise and lower the temperature of the reaction section 50 according to a preset program.
  • the storage unit 32 stores various data processed by the control unit 31 and various data referred to during processing.
  • the storage unit 32 stores a normal model.
  • the normal model is referred to by the control unit 31 when the control unit 31 determines whether there is a measurement defect.
  • the pressing part 33 is a drive mechanism for pushing out liquid from each of the liquid receiving part 22, the first holding part 211, and the second holding part 212.
  • the pressing section 33 includes, for example, a pressing pin (not shown) and an actuator that generates power for pressing the pressing pin down toward the cartridge 2 .
  • the signal processing section 34 transmits and receives electrical signals to and from the electrically connected sensor unit 23.
  • the signal processing section 34 receives at least the output signal OS from the sensor unit 23.
  • the signal processing section 34 further generates the input signal IS under the control of the control section 31. , is transmitted to the sensor unit 23.
  • the display unit 35 outputs various data processed by the control unit 31 as visual information that can be viewed by the user.
  • the communication unit 36 is configured by wireless or wired communication means, and communicates with other devices. In the detection system 100 in which the detection device 3 does not need to communicate with an external device, the communication unit 36 may be omitted.
  • the detection device 3 may further include an operation unit that accepts input operations from the user.
  • the operating section may be configured as hardware components such as buttons and switches, or may be configured as a combination of a touch panel formed integrally with the display section 35 and software components displayed on the display section 35.
  • the temperature adjustment section 37 can adjust the temperature of the reaction section 50 of the cartridge 2, which will be described later, based on the control of the temperature control section 46.
  • the temperature adjustment section 37 may be a heater or a cooler, although it is not particularly limited, and the temperature adjustment section 37 may be configured by, for example, a compressor, a Peltier element (heat transfer module), a heat lid, or the like.
  • FIG. 6 is a flowchart showing a process flow of a detection method executed by the detection system 100 according to an embodiment of the present disclosure.
  • step S1 the control unit 31 of the detection device 3 first detects that the cartridge 2 is electrically connected to the detection device 3. In detection system 100 in which cartridge 2 is not provided, this step may be omitted. When detecting that the cartridge 2 is connected, the control unit 31 advances the process from YES in S1 to S2.
  • step S2 an amplification unit 51 that performs a nucleic acid amplification reaction in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a capture unit 24 that has a first capture substance on its surface that can capture nucleic acids in the reaction solution.
  • a reaction solution is accommodated in the reaction section 50 having the following (accommodation step).
  • step S3 a nucleic acid amplification reaction is performed in the reaction solution contained in the reaction section 50 (amplification step). Specifically, the temperature controller 46 adjusts the temperature of the temperature controller 37 according to a temperature adjustment program for amplifying nucleic acids.
  • step S4 the detection device 3 detects a change in the physical properties of the surface due to the interaction between the nucleic acid and the first capture substance (detection step).
  • the detection step may be started before the amplification reaction in the amplification step is completed, and the amplification step and the detection step may be performed simultaneously. That is, the trigger for starting the detection step may be the presence of a nucleic acid amplified by the amplification reaction of the amplification step, but in an amplification reaction that can be performed in multiple cycles, detection is performed at the end of one cycle. Steps may be initiated.
  • the detection method of the present embodiment includes an accommodation step of accommodating a reaction solution in a reaction section 50 having an amplification section 51 and a capture section 24, an amplification step of performing an amplification reaction in the reaction section 50, a nucleic acid, and a first capture section. and detecting changes in physical properties of the surface due to interaction with the substance.
  • the amplification reaction and the capture can be performed simultaneously in the same system, so the time from the start of the amplification reaction to detection is shortened.
  • the detection system 100 since changes in the physical properties (for example, propagation properties of elastic waves) of the surface of the capture unit 24 are utilized for detection, the detection system 100 detects the amplified nucleic acid in the reaction solution with high sensitivity. It can be detected easily and easily.
  • the nucleic acid amplified in the amplification unit 51 was captured in the capture unit 24, but in this embodiment, the amplification reaction proceeds in the capture unit 24A, which is different from Embodiment 1. different from. That is, in this embodiment, the amplifying section 51A and the capturing section 24A are the same.
  • FIG. 7 is a diagram showing the reaction in the reaction section 50A (the amplification reaction in the amplification section 51A and the capture in the capture section 24A) step by step.
  • the amplifying section 51A may have a surface on which the first capturing substance is disposed and functioning as the capturing section 24A. This means that the amplifying section 51A also has a function as the capturing section 24A. According to this, in the detection system 100, the amplification reaction progresses in the capture unit 24A, and the detection device 3 can detect changes over time in the amplification reaction.
  • the first capture substance may include a second nucleic acid fragment having a second complementary sequence that is complementary to the base sequence at the second end of the nucleic acid serving as a template. Furthermore, the length of the second nucleic acid fragment that has captured the template nucleic acid is extended by an amplification reaction using the captured template nucleic acid as a template.
  • a pair of fragments, a second nucleic acid fragment F2 having the sequence A' and a second nucleic acid fragment F21 having the sequence D, are arranged as the first trapping substance on the surface of the trapping part 24A. shows.
  • the second nucleic acid fragment F2 and the second nucleic acid fragment F21 may be primers.
  • the nucleic acid T serving as a template is separated from a double-stranded state into a single-stranded one by thermal denaturation.
  • the single-stranded nucleic acid T1 and nucleic acid T2 are captured by the second nucleic acid fragment F2 and the second nucleic acid fragment F21, respectively.
  • the nucleic acid T1 binds to a second nucleic acid fragment F2 having a second complementary sequence (sequence A') that is complementary to the base sequence (sequence A) at the second end of the nucleic acid T1.
  • the nucleic acid T2 binds to a second nucleic acid fragment F21 having a second complementary sequence (sequence D) that is complementary to the base sequence (sequence D') at the second end of the nucleic acid T2.
  • step (3) the second nucleic acid fragments F2 and F21 to which nucleic acid T1 and nucleic acid T2 are complementary bound are elongated using nucleic acid T1 and nucleic acid T2 as templates, respectively, and new nucleic acid T1' and nucleic acid T2' are amplified. (amplification reaction).
  • step (4) nucleic acid T1' and nucleic acid T2' become single-stranded by heat denaturation. As a result, the amplified nucleic acid is immobilized on the capture portion 24A.
  • the detection system 100 since the amplification section 51A has the function of the capture section 24A, the detection system 100 not only detects the nucleic acid of the amplification product, but also detects changes over time in the amplification reaction on the surface of the capture section 24A. It can be detected as a change in characteristics. That is, the detection system 100 can detect the progress of the amplification reaction in real time.
  • This embodiment is similar to Embodiment 2 in that the amplification reaction proceeds in the capture section 24B, but is similar to Embodiment 2 in that the end of the nucleic acid chain extended by the amplification reaction is further captured in the capture section 24B. It is different from.
  • FIG. 8 is a diagram showing the reaction in the reaction section 50B (the amplification reaction in the amplification section 51B and the capture in the capture section 24B) step by step.
  • the amplification section 51B may include, as the first capture substance, a second nucleic acid fragment having a second complementary sequence that is complementary to the base sequence at the second end of the nucleic acid serving as a template.
  • the first capture substance is a third compound having a third complementary sequence that is complementary to the base sequence of the third end located far from the surface of the nucleic acid strand extended by the amplification reaction. It may further contain a nucleic acid fragment.
  • FIG. 8 shows, as an example, a mode in which the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) are connected as a single chain.
  • the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) do not necessarily have to be a single strand; for example, the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) may be arranged separately on the surface side of the capturing portion 24B. In this case, as will be described later, the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) may be arranged at a close distance to such an extent that the amplified nucleic acid can form a folded structure.
  • the second nucleic acid fragment F2 and the second nucleic acid fragment F21 may be primers.
  • the nucleic acid T serving as a template is separated from a double-stranded state into a single-stranded one by thermal denaturation.
  • the single-stranded nucleic acid T1 and nucleic acid T2 are captured by the second nucleic acid fragment F2 and the second nucleic acid fragment F21, respectively.
  • the nucleic acid T1 binds to a second nucleic acid fragment F2 having a second complementary sequence (sequence A') that is complementary to the base sequence (sequence A) at the second end of the nucleic acid T1.
  • the nucleic acid T2 binds to a second nucleic acid fragment F21 having a second complementary sequence (sequence D) that is complementary to the base sequence (sequence D') at the second end of the nucleic acid T2.
  • step (3) the second nucleic acid fragments F2 and F21 to which nucleic acid T1 and nucleic acid T2 are complementary bound are elongated using nucleic acid T1 and nucleic acid T2 as templates, respectively, and new nucleic acid T1' and nucleic acid T2' are amplified. (amplification reaction).
  • step (4) nucleic acid T1' and nucleic acid T2' become single-stranded by heat denaturation. As a result, the amplified nucleic acid is immobilized on the capture portion 24A. Further, the third end portion of the nucleic acid T1′ on the side far from the capture portion 24B is a third nucleic acid fragment having a third complementary sequence (sequence D) that is complementary to the base sequence (sequence D′) of the third end portion. Captured by F3.
  • the third end of the nucleic acid T2' far from the capture portion 24B is a third nucleic acid fragment F31 having a third complementary sequence (sequence A') that is complementary to the base sequence (sequence A) of the third end. Captured. That is, one nucleic acid has two ends fixed to the capture portion 24B in a folded structure.
  • the detection system 100 since the amplification section 51B has the function of the capture section 24B, the detection system 100 not only detects the nucleic acid of the amplification product, but also detects changes over time in the amplification reaction on the surface of the capture section 24B. It can be detected as a change in characteristics. That is, the detection system 100 can detect the progress of the amplification reaction in real time.
  • the capture portion 24B includes the third nucleic acid fragment
  • the surface characteristics of the capture portion 24B change more greatly when nucleic acid is captured than in the capture portion 24A of the second embodiment.
  • the capture section 24B uses SAW
  • the capture section The surface density of 24B increases, resulting in a higher surface viscosity. Even when the amount of amplified nucleic acid is small, the detection system 100 can detect the nucleic acid of the amplification product with high sensitivity.
  • the reaction sections 50, 50A, and 50B each included the capture sections 24, 24A, and 24B, and the amplification sections 51, 51A, and 51B.
  • the reaction section 50 includes only the capture section 24. That is, in Embodiments 1 to 3, the capture section 24 and the amplification section 51 were provided in the same system, and the amplification reaction of the nucleic acid and the capture of the nucleic acid were performed simultaneously, but in this modification, Nucleic acid amplification reactions and nucleic acid capture are performed at different locations.
  • the cartridge 2 includes a reaction section 50 and an attachment section 29.
  • the reaction section 50 contains a liquid containing a target nucleic acid having a predetermined sequence, and has a capturing section 24 on the surface of which a capture substance capable of capturing the target nucleic acid in the liquid is disposed.
  • the attachment section 29 is a mechanism for attaching the target nucleic acid to the detection device 3 capable of detecting changes in the physical properties of the surface caused by the interaction with the capture substance.
  • the capture substance includes a first capture region that includes a first nucleic acid fragment having a first complementary sequence complementary to the base sequence of the first end of the target nucleic acid, and a second end that is different from the first end of the target nucleic acid. and a second capture region containing a second nucleic acid fragment having a second complementary sequence that is complementary to the base sequence of the second region.
  • the detection system 100 uses the capture unit 24 to capture the nucleic acid amplified at a location other than the capture unit 24. That is, by dropping a liquid containing the amplified nucleic acid onto the cartridge 2, the detection system 100 can detect the amplified nucleic acid. According to this, the amplified nucleic acid can be detected with high sensitivity regardless of the type of amplification reaction method.
  • RNA and ⁇ RNA in specimens are required for early testing of various diseases, but detection requires the use of LC-MSMS, next-generation sequencers, etc. Furthermore, since short RNA contained in a sample has a small molecular weight, it may be difficult to detect it even when, for example, a SAW is used as a capture unit.
  • This embodiment performs amplification of RNA that may be contained in such a sample, translation into protein, and detection of protein in the same system.
  • the reaction section 50 includes an amplification section 51 and a capture section 24, and the capture section 24 captures nucleic acids.
  • the reaction section 50C includes a translation section 52 and a capture section 24C, and the capture section 24C captures the translation product generated by the translation reaction.
  • the detection device 3 is capable of detecting changes in the physical properties of the surface caused by the interaction between the translation product and a second capture substance, which will be described later.
  • the reaction section 50C includes a translation section 52 in which a translation reaction from a nucleic acid is carried out in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a second capture substance on the surface that can capture translation products in the reaction solution. It has a capturing section 24C.
  • the reaction solution may contain transfer RNA and amino acid molecules. According to this, the protein translation reaction progresses in the translation section 52. That is, in this embodiment, the holding portion 21 of the cartridge 2 accommodates ribosomes, transfer RNA, amino acid molecules, and the like.
  • the translation unit 52 may perform a protein translation reaction and an amplification reaction in which a nucleic acid used in the translation reaction is amplified before the translation reaction.
  • the amplification reaction and the translation reaction may be performed simultaneously.
  • “To be performed simultaneously” means that the amplification reaction and the translation reaction are performed in parallel for most of the time period from the start to the end of the nuclear reaction. Strictly speaking, the start of the amplification reaction and the start of the translation reaction are not simultaneous, but the translation reaction is triggered by the start of the amplification reaction and the amplification of a nucleic acid having a predetermined sequence.
  • “translation reaction” will be described as including amplification reaction.
  • the translation reaction and the capture of the translation product in the reaction solution by the second capture substance may be performed simultaneously.
  • “Performed simultaneously” means that the translation reaction and the capture (reaction) of the translation product may be performed in parallel for most of the time period from the start to the end of each reaction. Strictly speaking, the start of the translation reaction and the time when the translation product is first captured are not simultaneous, but the capture may be started when a translation product is generated by the translation reaction.
  • FIG. 9 is a diagram showing the reaction in the reaction section 50C (translation reaction in the translation section 52 and capture in the capture section 24C) step by step.
  • step (1) in FIG. 9 a nucleic acid amplification reaction and a translation reaction from the amplified nucleic acid are performed in the translation unit 52, and protein P is generated.
  • step (2) protein P produced by the translation reaction is captured by ligand L.
  • the detection system 100 since the reaction section 50C includes the translation section 52 and the capture section 24C, the detection system 100 not only detects proteins that are translation products, but also detects changes over time produced by translation products. This can be detected as a change in the characteristics of the surface of the trapping section 24C.
  • the detection system 100 has the effect of making it easier for the user to identify the causative agent by detecting the source (translation product) of diseases such as cancer metastasis and infectious diseases, rather than directly detecting nucleic acids. play.
  • the detection system 100 can perform multi-step reactions such as amplification reaction, translation reaction, and capture in the same system and perform them simultaneously. The time it takes to detect is shortened.
  • FIG. 10 is a flowchart showing the process flow of a detection method executed by the detection system 100 according to an embodiment of the present disclosure.
  • step S11 the control unit 31 of the detection device 3 first detects that the cartridge 2 is electrically connected to the detection device 3. In detection system 100 in which cartridge 2 is not provided, this step may be omitted. When detecting that the cartridge 2 is connected, the control unit 31 advances the process from YES in S1 to S12.
  • step S12 a translation unit 52 in which a translation reaction from a nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a second capture substance capable of capturing translation products in the reaction solution are arranged on the surface.
  • the reaction liquid is accommodated in the reaction section 50C having the captured section 24C (accommodation step).
  • step S13 a translation reaction from the nucleic acid is performed in the reaction solution contained in the reaction section 50C (translation step).
  • step S14 the detection device 3 detects a change in the physical properties of the surface caused by the interaction between the translation product and the second capture substance (detection step).
  • the detection step may be started before the translation reaction in the translation step is completed, and the translation step and the detection step may be performed simultaneously. That is, the trigger for starting the detection step may be the presence of a translation product translated by the translation reaction of the translation step, but in a translation reaction that may occur sequentially, the detection step starts at the point when one reaction is completed. may be started.
  • the detection method of this embodiment includes an accommodation step of accommodating a reaction solution in a reaction section 50C having a translation section 52 and a capture section 24C, a translation step of performing a translation reaction, and an interaction between a translation product and a second capture substance. detecting changes in physical properties of the surface due to the action.
  • the translation reaction and the capture can be performed simultaneously in the same system, so the time from the start of the translation reaction to detection is shortened.
  • the detection system 100 detects the amplified nucleic acid in the reaction solution with high sensitivity. It can be detected easily and easily.
  • FIG. 11 is a diagram showing an example of the overall configuration of the capture section 24 including the nucleic acid probe 243.
  • the capture unit 24 has a function of specifically capturing target molecules, and can be applied to biosensors, detection systems, etc. that detect target organisms.
  • the capturing section 24 includes a fixing section 241, a polymer layer 242a made of a polymer 242, and a nucleic acid probe 243.
  • the fixing portion 241 and the polymer 242 are bonded at a bonding portion B1. Further, the polymer 242 and the nucleic acid probe 243 are bonded at a bonding portion B2. Details of the fixing portion 241, the polymer 242, the bonding portion B1, and the bonding portion B2 will be described later.
  • the nucleic acid probe 243 has a base sequence that binds to the target molecule to be captured.
  • the target molecule may be, for example, a nucleic acid, a peptide capable of binding to a nucleic acid, a transcription regulatory factor, a nucleic acid binding protein such as a polymerase, and the like.
  • the base sequence is composed of polynucleotides.
  • the polynucleotide is obtained by polymerizing nucleotides through a phosphodiester bond between the phosphate groups of each nucleotide.
  • a phosphodiester possessed by a polynucleotide will be referred to as a "phosphate ester.” That is, the phosphate ester is a component constituting the nucleic acid probe 243.
  • At least some of the plurality of phosphoric acid esters constituting the nucleic acid probe 243 have an electrically neutral functional group R or a positively charged functional group R added thereto.
  • a cation may be coordinated to at least some of the plurality of phosphate esters that constitute the nucleic acid probe 243.
  • the nucleic acid probe 243 may be electrically neutral or positively charged in an aqueous solution ranging from pH 6 to pH 8.
  • FIG. 21 is a diagram showing an example of the overall configuration of the capture section 1024 including the nucleic acid probe 1243 that is not modified with a phosphate ester.
  • the capturing section 1024 includes a fixing section 1241, a polymer layer 1242a made of a polymer 1242, and a nucleic acid probe 1243.
  • the phosphoric acid ester of nucleic acid probe 1243 has not been subjected to addition of a functional group.
  • the nucleic acid probe 1243 whose phosphoric acid ester has not been modified such as addition of a functional group will have a negative charge in an aqueous solution.
  • the nucleic acid probe 1243 is immobilized on the immobilization part 1241 on which the polymer 1242 having a positive electrical property is disposed, the following phenomenon may occur.
  • An electrical attraction is generated between the polymer 1242, which has a positive electrical property, and the nucleic acid probe 1243, which has a negative electrical property, and which is arranged on the fixing part 1241. Therefore, as shown in FIG. 21, there is a high possibility that the nucleic acid probe 1243 is solidified in a sideways state on the fixing surface of the fixing part 1241, that is, the polymer layer 1242a, due to the electrical attraction.
  • the nucleic acid probe 1243 immobilized in a sideways state is no longer able to fully exhibit its original functions such as capturing target molecules.
  • the nucleic acid probe 243 has an electrically neutral or positively charged functional group R added to at least some of the plurality of phosphate esters. ing.
  • the charge of the nucleic acid probe 243 in the aqueous solution is changed to be electrically neutral or positively charged compared to before the functional group R is added. Therefore, when the nucleic acid probe 243 is immobilized on the fixing part 241, which has a positive electrical property, there is a possibility that the nucleic acid probe 243 will be solidified on the fixing surface of the fixing part 241, that is, on the polymer layer 242a, while lying on its side. can be reduced.
  • the nucleic acid probes 243 whose charges are more electrically neutral than before the addition of the functional group R, are different from those of the adjacent nucleic acid probes 243 due to the charge of each of the nucleic acid probes 243. The repulsion between them is weak. Therefore, the nucleic acid probe 243 to which the functional group R is added can be immobilized on the immobilization part 241 at high density.
  • the nucleic acid probe 243 having the above configuration has a high ability to specifically capture the target molecule because the repulsive force generated between the target molecule and the nucleic acid probe 243 is weak.
  • the detection system 100 using the nucleic acid probe 243 according to this embodiment will be explained.
  • the detection system 100 may detect peptides capable of binding to nucleic acids, transcriptional regulators, nucleic acid binding proteins such as polymerases, and the like.
  • the detection system 100 includes, as an example, a detection device 3 and a cartridge 2 (flow path device) (see FIG. 2).
  • FIG. 12 is a schematic diagram schematically showing an example of the internal configuration of the sensor unit 23 according to this embodiment. Here, only the points different from the sensor unit 23 described above will be explained.
  • the sensor unit 23 may include two sensors: a capture section 24 (sensor section) and a reference section 25 (sensor section).
  • the sensor unit 23 may be simply referred to as a biosensor.
  • the sensor unit 23 has a plurality of sensors, for example, a capturing section 24 and a reference section 25, the capturing section 24 and the reference section 25 are collectively referred to as a biosensor if there is no need to distinguish between the individual sensors. Good too.
  • the entire sensor unit 23 including the capturing section 24 and the reference section 25 may be referred to as a biosensor.
  • the capture unit 24 has a nucleic acid probe 243 capable of capturing nucleic acids in the reaction solution on its surface, and captures the nucleic acids in the reaction solution.
  • the "surface” is intended to be the surface on which the nucleic acid probe 243 is placed. Details of the capture unit 24 will be described later.
  • the sensor unit 23 is, for example, a sensor using elastic waves, and includes a capturing section 24, a reference section 25, a pair of first IDT (Inter Digital Transducer) electrodes 26A, a pair of second IDT electrodes 26B, and A substrate 27 is provided.
  • the capture section 24, the reference section 25, the pair of first IDT electrodes 26A, and the pair of second IDT electrodes 26B may be located on the substrate 27.
  • the capturing section 24 and the reference section 25 of the sensor unit 23 may be sensors that utilize elastic waves, QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), FET (Field Effect Transistor), or the like, for example.
  • QCM Quadrature Crystal Microbalance
  • SPR Surface Plasmon Resonance
  • FET Field Effect Transistor
  • the sensor unit 23 may include a reaction section.
  • the reaction section may include an amplification section and the above-mentioned capture section 24.
  • the amplification section amplifies a nucleic acid having a predetermined sequence in the reaction solution.
  • the reaction section is a place where the amplification reaction by the amplification section and the capture of the nucleic acid in the reaction solution by the capture section 24 are performed. In the reaction section, areas where amplification reactions and capture are performed may be divided.
  • the amplification section where the amplification reaction proceeds does not need to be inside the sensor unit 23. Any location where a reaction solution is accommodated can serve as an amplification section. For example, when the amplification reaction is performed at a predetermined location in the channel 28, the predetermined location may be used as the amplification section.
  • FIG. 13 is a schematic diagram schematically showing an example of the configuration of the capturing section 24.
  • the capture section 24 includes a fixing section 241, a polymer 242, and a nucleic acid probe 243.
  • the fixing portion 241 and the polymer 242 are bonded at a bonding portion B1. Further, the polymer 242 and the nucleic acid probe 243 are bonded at a bonding portion B2.
  • the fixing part 241 may be made of metal, for example. Specifically, the fixing portion 241 may be made of metals such as gold, chromium, and titanium, or a combination of these metals.
  • the fixing portion 241 may be a single-layer metal film made of a single material, or may be a multi-layer metal film made of a plurality of materials. The material constituting the fixing part 241 is not limited to the metals mentioned above, and any material can be used as appropriate.
  • the fixing part 241 may be manufactured by a conventionally known method.
  • the fixing part 241 is made of gold (Au)
  • Au gold
  • bonding portion B1 in FIG. 13 the fixing portion 241 and the polymer 242 are bonded by a gold thiol bond (Au—S—).
  • bonding portion B2 in FIG. 13 the polymer 242 and the nucleic acid probe 243 are bonded through an amide bond (-CONH-).
  • the polymer 242 is 2-carboxy-N,N-dimethyl-N-[2'-(methacryloyl)oxyethyl]ethanaminium (3-[[2-(methacryloyloxy)ethyl]dimethylammonio]propionate). ) (p-CBMA2) will be described.
  • polymer 242 examples include carboxybetaine methacrylate (CBMA) polymers other than CBMA2, sulfobetaine methacrylate (SBMA) polymers, and the like.
  • CBMA carboxybetaine methacrylate
  • SBMA sulfobetaine methacrylate
  • the nucleic acid probe 243 has a base sequence that binds to the target molecule to be captured. At least some of the plurality of phosphoric acid esters constituting the nucleic acid probe 243 have an electrically neutral functional group or a positively charged functional group added thereto.
  • the target molecule to be captured by the nucleic acid probe 243 is not particularly limited as long as it has the property of binding to the nucleic acid probe.
  • the target molecule may be a nucleic acid having a complementary base sequence to the base sequence of the nucleic acid probe.
  • the target molecule may be a nucleic acid binding protein, including peptides and antibodies capable of binding to nucleic acids, transcriptional regulators, polymerases, and the like.
  • the pair of first IDT electrodes 26A may be arranged on the substrate 27 so as to sandwich the capture portion 24 therebetween.
  • an electric signal (input signal) is input to one of the pair of first IDT electrodes 26A under the control of the detection device 3.
  • the input electrical signal is converted into an elastic wave that propagates toward the capturing section 24 and is emitted from one first IDT electrode 26A.
  • the emitted elastic waves pass through the trapping section 24 .
  • the other first IDT electrode 26A can receive the elastic wave that has passed through the capture section 24.
  • the target molecule to be captured interacts with the nucleic acid probe 243, thereby changing the propagation characteristics of the elastic wave propagating on the substrate 27.
  • the reaction between the target molecule and the nucleic acid probe 243 changes the weight applied to the substrate 27 or the viscosity of the liquid in contact with the surface of the substrate 27. The magnitude of these changes correlates with the amount of reaction between the target molecule and the nucleic acid probe 243.
  • the nucleic acid probe 243 is not immobilized on the reference section 25. Therefore, in the reference portion 25, no reaction occurs between the target molecule and the nucleic acid probe 243. Therefore, the reference section 25 can function as a control for the capture section 24.
  • the reference section 25 may be configured the same as or similar to the capture section 24 .
  • FIG. 14 is a diagram illustrating an example of a method for manufacturing the trapping section 24 in this embodiment.
  • the nucleic acid probe 243 is manufactured including a preparation step S21 and a modification step S22.
  • a nucleic acid fragment having a base sequence that binds to a target molecule to be captured is prepared (S21: preparation step).
  • nucleic acid fragment (nucleic acid probe) modified in S22 and the polymer 242 whose terminal was activated in S24 are bonded (S25: immobilization step).
  • the process of S25 can also be expressed as follows.
  • the nucleic acid probe 243 manufactured by the method for manufacturing the nucleic acid probe 243 is immobilized on the immobilization part 241 in which the polymer 242 having positive electrical properties is disposed by activating the terminal.
  • nucleic acid fragment having a base sequence that binds to a target molecule to be captured is prepared.
  • the nucleic acid fragment can be prepared by synthesizing it by a conventionally well-known method.
  • nucleic acid fragments may be prepared by the phosphoramidite method.
  • FIG. 15 is a diagram showing an example of addition of a functional group to a phosphate ester included in a nucleic acid fragment.
  • An electrically neutral functional group R or a positively charged functional group R is added to at least some of the plurality of phosphate esters constituting the nucleic acid fragment.
  • a nucleic acid fragment in which the functional group R is added to at least a portion of a phosphoric acid ester is used as the nucleic acid probe 243.
  • the functional group R added to the phosphoric ester may be at least one of an alkyl group, a methoxy group, an ethoxy group, a hydroxyl group, an aldehyde group, a ketone group, an amino group, and a mercapto group.
  • the charge of the nucleic acid probe 243 can be changed to electrically neutral or positive charge.
  • the functional group added to the phosphoric acid ester may be a different type of functional group.
  • an alkyl group may be added to one phosphoric ester, and a functional group other than the alkyl group may be added to another phosphoric ester.
  • the functional group may be added to at least a portion of the phosphoric ester via a spacer.
  • spacers examples include polyethylene glycol (PEG).
  • PEG3 may be used as the spacer.
  • other spacers include alkyl, polypropylene glycol, polybutylene glycol, and the like.
  • one functional group or two functional groups may be added to the phosphate ester at the 5' end of the nucleic acid fragment.
  • the two functional groups added to the phosphoric acid ester may be different types of functional group R and functional group R1, or may be the same type of functional group R.
  • NH 2 may be added to the end of the nucleic acid probe 243 in order to form an amide bond with the polymer 242 whose end is esterified with NHS. Furthermore, NH 2 may be added via a spacer.
  • FIG. 16 is a diagram showing an example of the connection between the fixing part 241 and the polymer 242.
  • p-CBMA2 which is the polymer 242
  • Au which is the fixing part 241
  • the bond may be formed by a chemical reaction shown in the following formula.
  • the fixing part 241 is Au and the polymer 242 to be fixed is R-SH.
  • SH is a thiol group
  • R represents a portion of p-CBMA2 other than the thiol group.
  • the bond may be formed by a chemical reaction shown in the following formula.
  • the fixing part 241 is Au 2 O 3 and the polymer 242 to be fixed is R-SH.
  • SH is a thiol group
  • R represents a portion of p-CBMA2 other than the thiol group.
  • FIG. 17 is a diagram showing an example of activation of the terminal of a polymer.
  • EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • NHS N-hydroxysuccinimide
  • FIG. 18 is a diagram showing the change in charge of the polymer layer 242a due to activation of the terminal of the polymer 242.
  • the polymer layer 242a is entirely neutral because it is a zwitterionic polymer layer.
  • activation of the end of polymer 242 converts the COO 2 ⁇ at the side chain end of polymer 242 to an NHS ester. This conversion changes the electrical properties of polymer 242 to a positive charge.
  • the polymer layer 242a becomes positively charged.
  • the activation of the terminal of the polymer 242 is necessary for the formation of an amide bond between the nucleic acid probe 243 and the polymer 242 in S25.
  • FIG. 19 is a diagram showing an example of binding between the nucleic acid probe 243 and the polymer 242. As shown in FIG. 19, for example, the end of the polymer 242 converted to NHS ester and the end of the nucleic acid probe 243 to which NH 2 has been added may be bonded with an amide bond.
  • the bond between the nucleic acid probe 243 and the polymer 242 may be performed while the polymer layer 242a is positively charged, and is not limited to the above-mentioned amide bond.
  • the nucleic acid probe 243 is immobilized on the immobilization part 241 on which the polymer 242 having a positive electrical property is disposed. That is, as shown in FIGS. 12 and 13, the nucleic acid probe 243 is immobilized on the immobilization part 241 of the capture part 24.
  • FIG. 20 is a diagram showing an example of inactivation of the end of the polymer 242 that did not bind to the nucleic acid probe 243.
  • the terminal NHS ester of the polymer 242 that is not bound to the nucleic acid probe 243 is inactivated by hydrolysis.
  • the end of the side chain of the polymer 242 having an NHS ester that is not bound to the nucleic acid probe 243 is returned to the COO 2 ⁇ state before activation.
  • a detection system 100 includes an amplification unit 51 that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a first amplification unit that is capable of capturing the nucleic acid in the reaction solution.
  • a reaction unit 50 having a capture unit 24 with a capture substance disposed on its surface; a detection device 3 capable of detecting a change in physical properties of the surface due to interaction between the nucleic acid and the first capture substance; Equipped with.
  • the amplifying section 51 may have a surface on which the first capturing substance is disposed and functioning as the capturing section 24.
  • the amplification reaction and the capture of the nucleic acid in the reaction solution by the first capture substance are performed simultaneously. Good too.
  • the first capture substance is at least one of a nucleic acid serving as a template in the amplification reaction and a nucleic acid of an amplification product from the amplification reaction. It may be possible to capture either of them.
  • the first capture substance is a first nucleic acid fragment F1 having a first complementary sequence complementary to the base sequence of the first end of the amplification product. , F11.
  • the first capture substance is a second complementary substance that is complementary to the base sequence at the second end of the nucleic acid serving as the template.
  • the length of the second nucleic acid fragments F2 and F21, which contain the second nucleic acid fragments F2 and F21 having the sequence and capture the nucleic acid serving as the template, may be extended by the amplification reaction using the captured nucleic acid as a template. .
  • the detection system 100 is configured such that, in any of Aspects 1 to 6, the first capture substance is the third end of the nucleic acid strand that is elongated by the amplification reaction and is located on the side far from the surface. It may further contain a third nucleic acid fragment F3, F31 having a third complementary sequence complementary to the base sequence of the third nucleic acid fragment.
  • the detection system 100 includes a translation unit 52 in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a translation unit 52 capable of capturing translation products in the reaction solution.
  • a reaction section 50C having a capturing section 24C having a second capturing substance disposed on its surface;
  • a device 3 is provided.
  • the reaction solution may contain transfer RNA and amino acid molecules.
  • the physical property may be at least one of surface acoustic waves, frequency, refractive index, and electrical conductivity.
  • the reaction section is a SAW (Surface Acoustic Wave), a QCM (Quartz Crystal Microbalance), an SPR (Surface Plasmon Resonance), or a FET. (Field Effect Transistor).
  • SAW Surface Acoustic Wave
  • QCM Quadrat Crystal Microbalance
  • SPR Surface Plasmon Resonance
  • FET Field Effect Transistor
  • the detection system 100 may further include a temperature adjustment section 37 that can adjust the temperature of the reaction sections 50, 50A to 50C in any of the aspects 1 to 11.
  • the cartridge 2 includes reaction sections 50, 50A, and 50B that accommodate a reaction solution for amplifying a nucleic acid having a predetermined sequence, and an amplification section that performs an amplification reaction of the nucleic acid in the reaction solution.
  • 51, 51A, 51B, and a reaction section 50, 50A, 50B having a capture section 24, 24A, 24B on the surface of which a first capture substance capable of capturing the nucleic acid in the reaction solution; an attachment portion 29 for attachment to a detection device capable of detecting changes in the physical properties of the surface due to interaction with a first capture substance.
  • the cartridge 2 according to aspect 14 of the present disclosure is a reaction section 50 that accommodates a liquid containing a target nucleic acid having a predetermined sequence, the reaction unit 50 having a capture substance disposed on the surface that can capture the target nucleic acid in the liquid.
  • a reaction section 50 having a reaction section 24; and an attachment section 29 for attachment to a detection device capable of detecting a change in the physical properties of the surface due to the interaction between the target nucleic acid and the capture substance
  • the substance includes a first capture region containing first nucleic acid fragments F1 and F11 having a first complementary sequence complementary to the base sequence of the first end of the target nucleic acid, and the first end of the target nucleic acid.
  • the capture section 24 includes SAW (Surface Acoustic Wave)
  • the sensor uses one of QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), or FET (Field Effect Transistor).
  • the cartridge 2 includes a reaction section 50C that accommodates a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation section 52 in which a translation reaction from the nucleic acid is performed in the reaction solution. and a trapping portion 24C having a second trapping substance on its surface capable of trapping the translation product in the reaction solution, and an interaction between the translation product and the second trapping substance. and an attachment part 29 for attachment to a detection device capable of detecting changes in the physical properties of the surface.
  • a detection method includes: an amplification unit 51 that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence; and a first capture unit that can capture the nucleic acid in the reaction solution.
  • the detection method according to aspect 17 of the present disclosure includes a translation unit 52 in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation unit 52 capable of capturing a translation product in the reaction solution.
  • the capturing section has a nucleic acid probe
  • the nucleic acid probe has a base sequence that binds to a target molecule to be captured
  • An electrically neutral functional group or a positively charged functional group is added to at least some of the plurality of phosphate esters constituting the nucleic acid probe.
  • the functional group is at least one of an alkyl group, a methoxy group, an ethoxy group, a hydroxyl group, an aldehyde group, a ketone group, an amino group, and a mercapto group. It may be.
  • the electrically neutral functional group or the positively charged functional group is attached to one of the phosphoric esters via a spacer. It may be added to at least a part of it.
  • the nucleic acid probe may be electrically neutral or positively charged in an aqueous solution with a pH in the range of pH 6 to pH 8. .
  • the capturing section has a nucleic acid probe
  • the nucleic acid probe is a nucleic acid probe having a base sequence that binds to a target molecule to be captured.
  • a cation may be coordinated to at least a portion of the plurality of phosphate esters constituting the nucleic acid probe.
  • a detection system according to Aspect 23 of the present disclosure is a detection system according to any one of Aspects 18 to 22, in which a sensor part in which the nucleic acid probe is immobilized on a fixing part on which a substance having a positive electrical property is disposed is provided. You may prepare.
  • a method for producing a nucleic acid probe according to aspect 24 of the present disclosure includes a preparation step of preparing a nucleic acid fragment having a base sequence that binds to a target molecule to be captured; and a modification step of modifying at least a portion of the material by adding an electrically neutral functional group or a positively charged functional group.
  • the target molecule is a nucleic acid
  • the nucleic acid fragment prepared in the preparation step has a base sequence that the nucleic acid that is the target molecule has. may have a complementary base sequence.
  • a method for producing a biosensor according to Aspect 26 of the present disclosure includes a method for producing a biosensor, in which a nucleic acid probe produced by the method for producing a nucleic acid probe according to Aspect 24 or 25 is fixed to a fixing part on which a substance having positive electrical properties is disposed. It includes an immobilization step of immobilizing on.

Abstract

A nucleic acid that has been amplified in a reaction solution is detected easily and at good sensitivity. The detection system comprises a reaction unit, having an amplification unit that subjects the nucleic acid to an amplification reaction in a reaction solution that amplifies a nucleic acid having a predetermined sequence and a capture unit having disposed on the surface a first capture substance capable of capturing the nucleic acid in the reaction solution, and a detection unit capable of detecting a change in a physical characteristic of the surface caused by the interaction of the nucleic acid and the first capture substance.

Description

検出システム、カートリッジ、検出方法、核酸プローブの製造方法およびバイオセンサの製造方法Detection system, cartridge, detection method, nucleic acid probe manufacturing method, and biosensor manufacturing method
 本開示は検出システム、カートリッジ、検出方法、核酸プローブの製造方法および当該プローブを用いたバイオセンサの製造方法に関する。 The present disclosure relates to a detection system, a cartridge, a detection method, a method for manufacturing a nucleic acid probe, and a method for manufacturing a biosensor using the probe.
 検体に検出対象(例えば、核酸)が含まれているか否かを調べる場合、該物質を増幅した後に検出する方法が採用され得る(特許文献1、2)。 When investigating whether a sample contains a detection target (for example, a nucleic acid), a method may be adopted in which the substance is amplified and then detected (Patent Documents 1 and 2).
 また、近年、固相担体に固定したDNA断片に対して相補性を持つDNA断片試料をハイブリダイゼーションさせることによる検出系が確立されている。例えば、特許文献3にはDNA断片やオリゴヌクレオチドを固相表面に整列させたDNAチップの製造方法が記載されている。 Furthermore, in recent years, a detection system has been established in which a DNA fragment sample complementary to a DNA fragment immobilized on a solid phase carrier is hybridized. For example, Patent Document 3 describes a method for manufacturing a DNA chip in which DNA fragments and oligonucleotides are arranged on a solid phase surface.
日本国特開2007-105041Japanese Patent Publication 2007-105041 日本国特開2020-96626Japanese Unexamined Publication 2020-96626 日本国特開2001-272402号公報Japanese Patent Application Publication No. 2001-272402
 本開示の一態様に係る検出システムは、所定の配列を有する核酸を増幅させる反応液中で前記核酸の増幅反応を行う増幅部と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部と、を有する反応部と、前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置と、を備える。 A detection system according to an aspect of the present disclosure includes an amplification unit that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a first capture substance that can capture the nucleic acid in the reaction solution. a reaction section having a capture section disposed on a surface thereof, and a detection device capable of detecting a change in physical properties of the surface due to interaction between the nucleic acid and the first capture substance.
 本開示の一態様に係る検出システムは、所定の配列を有する核酸およびリボソームを含む反応液中で前記核酸からの翻訳反応が行われる翻訳部と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部と、を有する反応部と、前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置と、を備える。 A detection system according to one aspect of the present disclosure includes a translation part in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a translation part capable of capturing translation products in the reaction solution. a reaction unit having a capture unit having a second capture substance disposed on its surface; and a detection device capable of detecting a change in the physical property of the surface due to the interaction between the translation product and the second capture substance. Be prepared.
 本開示の一態様に係るカートリッジは、所定の配列を有する核酸を増幅させる反応液を収容する反応部であって、前記反応液中で前記核酸の増幅反応を行う増幅部と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部とを有する反応部と、前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部と、を備える。 A cartridge according to an aspect of the present disclosure is a reaction section that accommodates a reaction solution for amplifying a nucleic acid having a predetermined sequence, and includes an amplification section that performs an amplification reaction of the nucleic acid in the reaction solution; a reaction part having a capture part on the surface of which a first capture substance capable of capturing the nucleic acid; and a change in the physical properties of the surface due to the interaction between the nucleic acid and the first capture substance can be detected. and a mounting portion for mounting on a detection device.
 本開示の一態様に係るカートリッジは、所定の配列を有する対象核酸を含む液を収容する反応部であって、前記液中の前記対象核酸を捕捉可能な捕捉物質を表面に配した捕捉部とを有する反応部と、前記対象核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部と、を備え、前記捕捉物質は、前記対象核酸の第1末端部の塩基配列と相補的な第1相補的配列を有する第1核酸断片を含む第1捕捉領域と、前記対象核酸の前記第1末端とは異なる第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片を含む第2捕捉領域とを有し、前記捕捉部は、SAW(Surface Acoustic Wave)、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)のうちのいずれかを利用するセンサである。 A cartridge according to one aspect of the present disclosure includes a reaction section that stores a liquid containing a target nucleic acid having a predetermined sequence, and a capturing section that has a capture substance on a surface that can capture the target nucleic acid in the liquid. and an attachment part for attaching to a detection device capable of detecting a change in the physical properties of the surface due to the interaction between the target nucleic acid and the first capture substance, and the capture substance is , a first capture region including a first nucleic acid fragment having a first complementary sequence complementary to the base sequence of the first end of the target nucleic acid, and a second end different from the first end of the target nucleic acid. and a second capture region including a second nucleic acid fragment having a second complementary sequence complementary to the base sequence of It is a sensor that uses either Surface Plasmon Resonance) or FET (Field Effect Transistor).
 本開示の一態様に係るカートリッジは、所定の配列を有する核酸およびリボソームを含む反応液を収容する反応部であって、前記反応液中で前記核酸からの翻訳反応が行われる翻訳部と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部と、を有する反応部と、前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部と、を備える。 A cartridge according to one aspect of the present disclosure is a reaction section that accommodates a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation section that performs a translation reaction from the nucleic acid in the reaction solution; a reaction part having a second capture substance on its surface that is capable of capturing a translation product in a reaction solution; and physical properties of the surface resulting from the interaction between the translation product and the second capture substance. and a mounting part for mounting on a detection device capable of detecting a change in the temperature.
 本開示の一態様に係る検出方法は、所定の配列を有する核酸を増幅させる反応液中で前記核酸の増幅反応を行う増幅部と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部と、を有する反応部に、前記反応液を収容する収容ステップと、前記反応部に収容された前記反応液中で前記核酸の増幅反応を行う増幅ステップと、前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出する検出ステップと、を含む。 A detection method according to an aspect of the present disclosure includes: an amplification unit that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence; and a first capture substance that can capture the nucleic acid in the reaction solution. an amplification step of carrying out an amplification reaction of the nucleic acid in the reaction solution accommodated in the reaction section; and detecting a change in a physical property of the surface due to the interaction with the first capture substance.
 本開示の一態様に係る検出方法は、所定の配列を有する核酸およびリボソームを含む反応液中で前記核酸からの翻訳反応が行われる翻訳部と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部と、を有する反応部に、前記反応液を収容する収容ステップと、前記反応部に収容された前記反応液中で前記核酸からの翻訳反応を行う翻訳ステップと、前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出する検出ステップと、を含む。 A detection method according to one aspect of the present disclosure includes a translation part in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation part capable of capturing a translation product in the reaction solution. 2. A containing step of accommodating the reaction solution in a reaction section having a capture section having a capture substance disposed on its surface, and a translation step of carrying out a translation reaction from the nucleic acid in the reaction solution accommodated in the reaction section. and a detection step of detecting a change in physical properties of the surface due to the interaction between the translation product and the second capture substance.
 本開示の一態様に係る核酸プローブの製造方法は、捕捉対象となる標的分子と結合する塩基配列を有する核酸断片を準備する準備工程と、前記核酸断片が備えている複数のリン酸エステルのうちの少なくとも一部に、電気的に中性である官能基、または、正電荷を有する官能基を付加することによって修飾する修飾工程と、を含む。 A method for producing a nucleic acid probe according to one aspect of the present disclosure includes a preparation step of preparing a nucleic acid fragment having a base sequence that binds to a target molecule to be captured; and a modification step of modifying at least a portion of the material by adding an electrically neutral functional group or a positively charged functional group.
本開示の実施形態1にかかる検出システムの外観を示す図である。1 is a diagram showing the appearance of a detection system according to Embodiment 1 of the present disclosure. カートリッジの内部構成を模式的に示す概略図である。FIG. 2 is a schematic diagram schematically showing the internal configuration of a cartridge. センサユニットの内部構成を模式的に示す概略図である。FIG. 2 is a schematic diagram schematically showing the internal configuration of a sensor unit. 反応部における反応の一例を段階的に示す図である。It is a figure showing an example of reaction in a reaction part step by step. カートリッジおよび検出装置の要部構成を示すブロック図である。FIG. 2 is a block diagram showing the main components of a cartridge and a detection device. 検出システムにおいて実行される検出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the detection method performed in a detection system. 反応部における反応の一例を段階的に示す図である。It is a figure showing an example of reaction in a reaction part step by step. 反応部における反応の一例を段階的に示す図である。It is a figure showing an example of reaction in a reaction part step by step. 反応部における反応の一例を段階的に示す図である。It is a figure showing an example of reaction in a reaction part step by step. 検出システムにおいて実行される検出方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the detection method performed in a detection system. 本開示の一態様に係る核酸プローブを備えている捕捉部の構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a capture unit including a nucleic acid probe according to one embodiment of the present disclosure. 本開示の一態様に係るセンサユニットの内部構成の一例を模式的に示す概略図である。FIG. 2 is a schematic diagram schematically showing an example of an internal configuration of a sensor unit according to one aspect of the present disclosure. 本開示の一態様に係る捕捉部の構成の一例を模式的に示す概略図である。FIG. 2 is a schematic diagram schematically showing an example of the configuration of a capturing section according to one aspect of the present disclosure. 本開示の一態様に係る捕捉部の製造方法の一例を示す図である。It is a figure showing an example of the manufacturing method of the trapping part concerning one aspect of the present disclosure. 本開示の一態様に係る核酸断片が備えるリン酸エステルに対する官能基の付加の一例を示す図である。FIG. 2 is a diagram showing an example of addition of a functional group to a phosphate ester included in a nucleic acid fragment according to an embodiment of the present disclosure. 本開示の一態様に係る固定部とポリマーとの結合の一例を示す図である。FIG. 3 is a diagram illustrating an example of a bond between a fixing part and a polymer according to one embodiment of the present disclosure. 本開示の一態様に係るポリマーの末端の活性化の一例を示す図である。FIG. 3 is a diagram illustrating an example of terminal activation of a polymer according to one embodiment of the present disclosure. 本開示の一態様に係るポリマーの末端の活性化によるポリマー層の電荷の変化を示す図である。FIG. 3 is a diagram illustrating a change in charge of a polymer layer due to terminal activation of a polymer according to an embodiment of the present disclosure. 本開示の一態様に係る核酸プローブとポリマーとの結合の一例を示す図である。FIG. 3 is a diagram showing an example of binding between a nucleic acid probe and a polymer according to one embodiment of the present disclosure. 本開示の一態様に係るポリマーの末端の不活性化の一例を示す図である。FIG. 3 is a diagram illustrating an example of terminal deactivation of a polymer according to one embodiment of the present disclosure. 核酸断片が備えるリン酸エステルが修飾されていない核酸プローブを備える捕捉部の全体構成の一例を示す図である。FIG. 2 is a diagram showing an example of the overall configuration of a capture unit including a nucleic acid probe in which a phosphate ester of a nucleic acid fragment is not modified.
 〔実施形態1〕
 以下、本開示の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, one embodiment of the present disclosure will be described in detail.
 <本開示の技術思想>
 まず、本開示の一実施形態に係る増幅産物の検出システムの技術思想について説明する。
<Technical thought of this disclosure>
First, the technical concept of the amplification product detection system according to an embodiment of the present disclosure will be described.
 例えば、医療機関などにおいて使用されうるウイルス検出の方法の一例として、ウイルス由来の核酸を増幅させるためのPCR法(Polymerase Chain Reaction)を用いたPCR検査が挙げられる。 For example, an example of a virus detection method that can be used in medical institutions and the like is a PCR test using a PCR method (Polymerase Chain Reaction) to amplify virus-derived nucleic acids.
 PCR法などによって増幅された増幅産物、または増幅反応の進行を確認するためには、増幅産物である核酸が蛍光色素によって標識されるように設計した手法が一般的である。しかし、蛍光色素は不安定である場合が多く、保管を含む取り扱いに注意を要する。光学系を使用する検出方法に代わり、検出感度が十分に担保され、かつ簡便に行うことができる検出方法が求められてきた。 In order to confirm the amplification product amplified by PCR method or the like or the progress of the amplification reaction, a method is generally designed in which the nucleic acid that is the amplification product is labeled with a fluorescent dye. However, fluorescent dyes are often unstable and must be handled with care, including storage. In place of detection methods that use optical systems, there has been a demand for detection methods that can ensure sufficient detection sensitivity and that can be performed easily.
 そこで、発明者らは、上記の課題を解決するべく検討を行った結果、感度良く、かつ簡便に増幅産物を検出することが可能な検出システム、カートリッジ、および検出方法の開発に至った。開発された検出システム、カートリッジ、および検出方法は、核酸のほか、ペプチドまたはタンパク質などの検出にも適用可能である。 Therefore, the inventors conducted studies to solve the above problems, and as a result, they developed a detection system, a cartridge, and a detection method that can easily detect amplified products with high sensitivity. The developed detection system, cartridge, and detection method are applicable to the detection of peptides, proteins, etc. in addition to nucleic acids.
 <検出システム100の外観>
 図1は、一実施形態に係る検出システム100の外観を示す図である。検出システム100は、一例として、検出装置3およびカートリッジ2(流路デバイス)を含む。図1は、カートリッジ2が検出装置3に完全に装着されておらず、挿入される途中の様子を示している。
<External appearance of detection system 100>
FIG. 1 is a diagram showing the appearance of a detection system 100 according to an embodiment. The detection system 100 includes, as an example, a detection device 3 and a cartridge 2 (flow path device). FIG. 1 shows a state in which the cartridge 2 is not completely attached to the detection device 3 but is being inserted.
 本実施形態では、一例として、検出システム100は、検出装置3とカートリッジ2とが別体として構成されており、カートリッジ2が検出装置3に挿入されて互いに電気的に接続されることにより検出が実行されるものとする。このような検出システム100においては、後述するように、検出に用いられる試薬および検体液などの流体は、予め、カートリッジ2に収容されていてもよい。検出装置3とカートリッジ2とが別体として構成される場合、カートリッジ2は、消耗品であり、一例として、1つのカートリッジ2が、被検体1個体につき、検出を行うために使用される。他の例では、検出の種類に応じて、被検体1個体につき、複数のカートリッジ2が使用されてもよい。 In the present embodiment, as an example, in the detection system 100, the detection device 3 and the cartridge 2 are configured as separate bodies, and detection is performed by inserting the cartridge 2 into the detection device 3 and electrically connecting each other. shall be carried out. In such a detection system 100, fluids such as reagents and sample liquid used for detection may be stored in the cartridge 2 in advance, as will be described later. When the detection device 3 and the cartridge 2 are configured as separate bodies, the cartridge 2 is a consumable item, and for example, one cartridge 2 is used to perform detection for one individual subject. In other examples, multiple cartridges 2 may be used per individual subject depending on the type of detection.
 このような検出システム100の構成は、例えば、検体取得後ただちに検出を実行し、結果をユーザに提示するようなPOCT(Point Of Care Testing)と呼ばれる迅速検査を実行する場合に採用されてもよい。この場合、検出装置3は、例えば、薬局、クリニック、家庭などに配置し得る、比較的小型の装置として構成されてもよい。 Such a configuration of the detection system 100 may be adopted, for example, when performing a rapid test called POCT (Point Of Care Testing), which performs detection immediately after obtaining a sample and presents the result to the user. . In this case, the detection device 3 may be configured as a relatively small device that can be placed in a pharmacy, clinic, home, etc., for example.
 上述の例に限らず、本開示の検出システム100は、検査室等に一旦集められた大量の検体を大型の検出装置3にて同時に測定するような場合においても適用可能である。この場合、試薬および検体液などの流体は、検出を実行する時に、検出装置3からカートリッジに送り込まれた後、カートリッジ内に送液されるような構成をとることも考えられる。 The detection system 100 of the present disclosure is not limited to the above-mentioned example, but can also be applied to cases where a large amount of specimens once collected in a laboratory or the like are simultaneously measured using the large detection device 3. In this case, a configuration may be adopted in which fluids such as reagents and sample liquids are sent into the cartridge from the detection device 3 and then into the cartridge when performing detection.
 一実施形態に係る検出システム100は、検体Pに含まれる検出対象について検出を行い、検出結果を、ユーザに提示するシステムである。ユーザは、検出作業を担当する検出装置3のオペレータであってもよいし、医師など測定を依頼した依頼者であってもよいし、患者など検体Pを提供した被検者であってもよい。 The detection system 100 according to one embodiment is a system that detects a detection target included in a sample P and presents the detection results to a user. The user may be an operator of the detection device 3 in charge of the detection work, a client such as a doctor who requested the measurement, or a subject such as a patient who provided the specimen P. .
 検出システム100は、一例として、カートリッジ2および検出装置3を含む。検出装置3にカートリッジ2が挿入されて、両者が電気的に接続された後、検出装置3は即時にカートリッジ2の測定を開始してもよいし、ユーザの入力操作に従って測定を開始してもよい。他の例では、検出装置3は、カートリッジ2の認証を行って、認証に成功した場合に検出を開始してもよい。検出装置3は、表示部35を備え、ユーザに対して各種の情報を提示してもよい。例えば、検出装置3は、測定の進行状況、ユーザになんらかの入力操作を促すメッセージ、検出が出来なかった場合のエラーメッセージなどを表示部35に表示させることができる。 The detection system 100 includes, as an example, a cartridge 2 and a detection device 3. After the cartridge 2 is inserted into the detection device 3 and the two are electrically connected, the detection device 3 may start measuring the cartridge 2 immediately, or it may start the measurement according to the user's input operation. good. In another example, the detection device 3 may authenticate the cartridge 2 and start detection if the authentication is successful. The detection device 3 may include a display unit 35 and may present various information to the user. For example, the detection device 3 can display on the display unit 35 the progress of the measurement, a message prompting the user to perform some input operation, an error message when detection is not possible, and the like.
 検出システム100において、例えば、検体Pは、唾液であってもよい。以下では、検出システム100が、検体Pとしての唾液に含まれる検出対象の増幅物を検出するためのシステムであるとして説明する。しかし、検体Pは、唾液に限られず、生体由来の物質であればよい。検体Pは、例えば、尿、血液、汗、または鼻汁であってもよい。カートリッジ2は、カートリッジ2に収容される検体Pを、検出装置3が検出できるように適宜構成されればよい。カートリッジ2の構成の一例については別図を参照しながら後に詳述する。 In the detection system 100, the specimen P may be saliva, for example. In the following, the detection system 100 will be described as a system for detecting an amplified substance to be detected contained in saliva as a specimen P. However, the specimen P is not limited to saliva, and may be any substance derived from a living body. The specimen P may be, for example, urine, blood, sweat, or nasal discharge. The cartridge 2 may be configured as appropriate so that the detection device 3 can detect the sample P contained in the cartridge 2. An example of the configuration of the cartridge 2 will be described in detail later with reference to separate drawings.
 (カートリッジ2の構成)
 図2は、カートリッジ2の内部構成を模式的に示す概略図である。カートリッジ2は検出装置3に着脱可能な使い捨てのカートリッジであってよい。カートリッジ2は、例えば樹脂で形成されてよい。樹脂は、例えば、ポリカーボネート、シクロオレフィンポリマー、ポリメタクリル酸メチル樹脂およびポリジメチルシロキサンなどであってよい。
(Configuration of cartridge 2)
FIG. 2 is a schematic diagram schematically showing the internal configuration of the cartridge 2. As shown in FIG. The cartridge 2 may be a disposable cartridge that can be attached to and detached from the detection device 3. The cartridge 2 may be made of resin, for example. The resin may be, for example, polycarbonate, cycloolefin polymer, polymethyl methacrylate resin, polydimethylsiloxane, and the like.
 一実施形態に係るカートリッジ2は、保持部21(第1収容部、第2収容部)と、受液部22(第1収容部、第2収容部)と、センサユニット23と、流路28と、カートリッジを検出装置3に取り付けるための取り付け部29とを備えている。 The cartridge 2 according to one embodiment includes a holding part 21 (a first accommodating part, a second accommodating part), a liquid receiving part 22 (a first accommodating part, a second accommodating part), a sensor unit 23, and a flow path 28. and an attachment part 29 for attaching the cartridge to the detection device 3.
 保持部21は、液体、とりわけ、測定対象を含まない試薬などの液体を保持するものである。本実施形態では、一例として、検出システム100は、種類の異なる2つの試薬を測定に用いてもよい。以下では、第1の試薬を保持する保持部21を第1保持部211(第1収容部、第2収容部)と称し、第2の試薬を保持する保持部21を第2保持部212(第1収容部、第2収容部)と称する。他の例では、検出システム100は、1種類の試薬を測定に用いてもよいし、3種類以上の試薬を測定に用いてもよい。すなわち、カートリッジ2は、保持部21を1つ備えていてもよいし、3つ以上備えていてもよい。例えば、核酸を増幅させる場合には、保持部21には、核酸増幅に必要な酵素が収容されている。核酸増幅に必要な酵素としては、例えばDNAポリメラーゼ、およびRNAポリメラーゼなどが挙げられる。 The holding unit 21 holds a liquid, particularly a liquid such as a reagent that does not contain a measurement target. In this embodiment, as an example, the detection system 100 may use two different types of reagents for measurement. Hereinafter, the holding section 21 that holds the first reagent will be referred to as a first holding section 211 (first storage section, second storage section), and the holding section 21 that holds the second reagent will be referred to as a second holding section 212 ( 1st storage part, 2nd storage part). In other examples, the detection system 100 may use one type of reagent for measurement, or may use three or more types of reagents for measurement. That is, the cartridge 2 may include one holding section 21, or may include three or more holding sections 21. For example, when amplifying nucleic acids, the holding section 21 accommodates enzymes necessary for amplifying the nucleic acids. Examples of enzymes necessary for nucleic acid amplification include DNA polymerase and RNA polymerase.
 受液部22は、液体、とりわけ、測定対象を含む検体液としての検体Pをカートリッジ2の内部に取り込み、保持するものである。受液部22の形状は特に限定されない。受液部22は、流路28と接続されている。受液部22に収容された検体Pは、検出装置3の不図示の押圧ピンによって押圧されたことにより、受液部22から押し出され、接続された流路28を介してセンサユニット23に供給される。受液部22は、流路28と一体に形成されてもよいし、流路28と別体として形成されてもよい。受液部22は、従来周知の技術によって形成されてよい。 The liquid receiving part 22 takes in a liquid, particularly a sample P as a sample liquid containing a measurement target, into the cartridge 2 and holds it therein. The shape of the liquid receiving part 22 is not particularly limited. The liquid receiving portion 22 is connected to a flow path 28 . The sample P accommodated in the liquid receiving part 22 is pushed out from the liquid receiving part 22 by being pressed by a pressing pin (not shown) of the detection device 3, and is supplied to the sensor unit 23 via the connected flow path 28. be done. The liquid receiving part 22 may be formed integrally with the flow path 28 or may be formed separately from the flow path 28. The liquid receiving portion 22 may be formed by a conventionally known technique.
 センサユニット23は、検体Pに含まれる測定対象を検出するものである。センサユニット23は、測定対象を検出するセンサを少なくとも1つ備えている。センサユニット23は、複数のセンサを備えていてもよい。一例として、センサユニット23は、反応部50(センサ、第1センサ)および参照部25(センサ、第2センサ)の2つのセンサを備えていてもよい。以下では、センサユニット23が、単一のセンサを有する場合、センサユニット23を単にセンサと称してもよい。センサユニット23が複数のセンサ、例えば、反応部50および参照部25を有する場合、個々のセンサを特に区別する必要がない場合には、反応部50および参照部25をまとめてセンサと称してもよい。また、反応部50および参照部25を備えるセンサユニット23全体をセンサと称してもよい。 The sensor unit 23 detects a measurement target included in the sample P. The sensor unit 23 includes at least one sensor that detects a measurement target. The sensor unit 23 may include multiple sensors. As an example, the sensor unit 23 may include two sensors: a reaction section 50 (sensor, first sensor) and a reference section 25 (sensor, second sensor). Below, when the sensor unit 23 has a single sensor, the sensor unit 23 may be simply referred to as a sensor. When the sensor unit 23 has a plurality of sensors, for example, the reaction section 50 and the reference section 25, the reaction section 50 and the reference section 25 may be collectively referred to as a sensor if there is no need to distinguish between the individual sensors. good. Further, the entire sensor unit 23 including the reaction section 50 and the reference section 25 may be referred to as a sensor.
 反応部50は、所定の配列を有する核酸を増幅させる反応液中で核酸の増幅反応を行う増幅部51と、反応液中の核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部24と、を有する。本開示において、「表面」は、第1捕捉物質が配されている面を意図している。反応部50は、増幅反応と、捕捉とが行われる場であり、反応部50は、増幅反応と捕捉とが場所が区画され、または限定されている場合は、その特定の場所であってもよい。増幅反応が進行する場が限定されない場合、反応液が収容されている任意の場所が反応部50となりうる。例えば、増幅反応と、捕捉とが流路28の所定の場所で行われる場合、その所定の場所が反応部50であってもよい。 The reaction section 50 includes an amplification section 51 that performs a nucleic acid amplification reaction in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a capture section 24 that has a first capture substance on its surface that can capture the nucleic acid in the reaction solution. and has. In this disclosure, "surface" is intended to be the surface on which the first capture substance is placed. The reaction section 50 is a place where amplification reaction and capture are performed, and if the amplification reaction and capture are separated or limited, the reaction section 50 is a place where the amplification reaction and capture are performed, even if they are at a specific location. good. When the place where the amplification reaction proceeds is not limited, the reaction section 50 can be any place where the reaction solution is accommodated. For example, when the amplification reaction and the capture are performed at a predetermined location in the channel 28, the predetermined location may be the reaction section 50.
 捕捉部24は、反応液中の核酸を捕捉する。例えば、捕捉部24の表面上に、核酸を増幅させるためのプライマーが存在する場合は、捕捉部24において増幅反応が進行してもよい。捕捉部24については後述する。 The capture unit 24 captures nucleic acids in the reaction solution. For example, if a primer for amplifying a nucleic acid is present on the surface of the capture section 24, an amplification reaction may proceed in the capture section 24. The capture unit 24 will be described later.
 流路28は、センサユニット23に1種類以上の流体を供給するためのものである。流路28は、カートリッジ2の上述の各構成要素、具体的には、第1保持部211、第2保持部212および受液部22と、センサユニット23とを接続するようにカートリッジ2の内部に形成されている。第1保持部211、第2保持部212および受液部22に収容されている流体は、流路28を介して、センサユニット23に供給される。 The flow path 28 is for supplying one or more types of fluid to the sensor unit 23. The flow path 28 extends inside the cartridge 2 so as to connect each of the above-mentioned components of the cartridge 2, specifically, the first holding part 211, the second holding part 212, and the liquid receiving part 22, and the sensor unit 23. is formed. The fluid contained in the first holding part 211, the second holding part 212, and the liquid receiving part 22 is supplied to the sensor unit 23 via the flow path 28.
 取り付け部29は、カートリッジ2を検出装置3に取り付けて固定するための機構である。また、取り付け部29は、カートリッジ2と、検出装置3とを電気的に接続する。カートリッジ2が取り付け部29を備えることにより、カートリッジ2が検出装置3に取り付けられ、カートリッジ2と、検出装置3とが電気的に接続される。 The attachment part 29 is a mechanism for attaching and fixing the cartridge 2 to the detection device 3. Further, the attachment portion 29 electrically connects the cartridge 2 and the detection device 3. Since the cartridge 2 includes the attachment portion 29, the cartridge 2 is attached to the detection device 3, and the cartridge 2 and the detection device 3 are electrically connected.
 カートリッジ2は、上述したとおり、検出装置3と電気的に接続可能であり、検出装置3との間で、電気信号を相互に入出力することができる。カートリッジ2と検出装置3とを電気的に接続する端子等は、従来周知の方法によって作製されてよい。他の例では、カートリッジ2は、検出装置3に物理的に装着されなくともよい。例えば、カートリッジ2は検出装置3と通信可能な通信部を備えていてもよい。この場合、カートリッジ2は、有線または無線通信によって、検査に係る電気信号等の種々の情報を検出装置3と相互に送受信してもよい。 As described above, the cartridge 2 can be electrically connected to the detection device 3 and can input and output electrical signals to and from the detection device 3. Terminals and the like for electrically connecting the cartridge 2 and the detection device 3 may be manufactured by a conventionally known method. In other examples, the cartridge 2 may not be physically attached to the detection device 3. For example, the cartridge 2 may include a communication section capable of communicating with the detection device 3. In this case, the cartridge 2 may transmit and receive various information such as electrical signals related to the test to and from the detection device 3 through wired or wireless communication.
 (センサユニット23の構成)
 図3は、センサユニット23の内部構成を模式的に示す概略図である。一実施形態に係るセンサユニット23は、一例として、弾性波を利用したセンサであり、反応部50、参照部25、一対の第1IDT(Inter Digital Transducer)電極26A、一対の第2IDT電極26B、および基板27を備える。反応部50、参照部25、一対の第1IDT電極26A、および一対の第2IDT電極26Bは、基板27上に位置してよい。
(Configuration of sensor unit 23)
FIG. 3 is a schematic diagram schematically showing the internal configuration of the sensor unit 23. As shown in FIG. The sensor unit 23 according to one embodiment is, for example, a sensor using elastic waves, and includes a reaction section 50, a reference section 25, a pair of first IDT (Inter Digital Transducer) electrodes 26A, a pair of second IDT electrodes 26B, and A substrate 27 is provided. The reaction section 50, the reference section 25, the pair of first IDT electrodes 26A, and the pair of second IDT electrodes 26B may be located on the substrate 27.
 センサユニット23の反応部50および参照部25は、例えば、弾性波、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)等を利用するセンサであってもよい。すなわち、センサユニット23は、電気信号と、弾性波、QCM、SPRおよびFET等とを相互に変換してもよい。センサユニット23は、従来周知の方法によって作製してもよい。一実施形態に係るセンサユニット23は、上述のとおり、一例として、弾性波を利用するセンサ装置であり、電気信号を弾性波に、弾性波を電気信号に相互に変換することができる。この場合、弾性波の初期位相および基板27の方位など、弾性波を利用するセンサに特有の情報が、検出装置3に保持されていてもよい。 The reaction section 50 and the reference section 25 of the sensor unit 23 may be sensors that utilize elastic waves, QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), FET (Field Effect Transistor), or the like, for example. That is, the sensor unit 23 may mutually convert an electric signal and an elastic wave, QCM, SPR, FET, etc. The sensor unit 23 may be manufactured by a conventionally known method. As described above, the sensor unit 23 according to one embodiment is, for example, a sensor device that uses elastic waves, and can mutually convert an electric signal into an elastic wave and an elastic wave into an electric signal. In this case, information specific to a sensor using elastic waves, such as the initial phase of the elastic waves and the orientation of the substrate 27, may be held in the detection device 3.
 捕捉部24は、反応液中の増幅産物を捕捉可能な捕捉物質を表面に配する。捕捉物質については後述する。捕捉部24の表面は、例えば金属で構成されてもよい。具体的には、捕捉部24は、例えば金、クロム、およびチタン等の金属、またはこれらの金属の組合せで構成されてもよい。捕捉部24は、単一の材料で構成された単層の金属膜であってもよいし、複数の材料で構成された多層の金属膜であってもよい。捕捉部24を構成する材料としては、上述の金属に限定されず、捕捉物質を固定する機能を備えている任意の材料を採用することができる。捕捉部24は、従来周知の方法により作製されてもよい。 The capture unit 24 has a capture substance capable of capturing the amplification product in the reaction solution on its surface. The capture substance will be described later. The surface of the trap 24 may be made of metal, for example. Specifically, the trap 24 may be made of metals such as gold, chromium, and titanium, or a combination of these metals. The trapping section 24 may be a single-layer metal film made of a single material, or a multilayer metal film made of a plurality of materials. The material constituting the trapping section 24 is not limited to the above-mentioned metals, but any material that has a function of fixing the trapped substance can be used. The trap 24 may be manufactured by a conventionally known method.
 捕捉物質は、例えば、核酸の断片、抗体および酵素等であり得る。つまり、検出対象は、例えば、核酸、抗原、基質、およびタンパク質等であり得る。検出対象はこれらの例に限定されない。このように、目的に応じて、検出装置3によって検出される検出対象が適宜選択されてもよく、該検出対象と対になる捕捉物質が適宜選択されてもよい。本実施形態においては、捕捉物質が核酸の断片であり、検出対象が核酸である場合について説明する。 The capture substance can be, for example, a fragment of a nucleic acid, an antibody, an enzyme, etc. That is, the detection target may be, for example, a nucleic acid, an antigen, a substrate, a protein, or the like. Detection targets are not limited to these examples. In this way, depending on the purpose, the detection target to be detected by the detection device 3 may be selected as appropriate, and the capture substance paired with the detection target may be selected as appropriate. In this embodiment, a case will be described in which the capture substance is a fragment of a nucleic acid and the detection target is a nucleic acid.
 一対の第1IDT電極26Aは、一対の第1IDT電極26A間に弾性波を発生させることができる。発生した弾性波のうち、基板27の表面を伝搬する弾性波は、弾性表面波(SAW:Surface Acoustic Wave)ともいう。一対の第1IDT電極26Aは、基板27において、反応部50を挟むように配置されてもよい。一実施形態に係るセンサユニット23では、検出装置3の制御により一対の第1IDT電極26Aの一方に電気信号(入力信号)が入力される。入力された電気信号は、反応部50に向かって伝搬する弾性波に変換されて一方の第1IDT電極26Aから発信される。発信された弾性波は、反応部50を通過する。他方の第1IDT電極26Aは、反応部50を通過した弾性波を受信することができる。受信された弾性波は、電気信号(出力信号)に変換される。変換された電気信号は、検出装置3に出力される。一対の第1IDT電極26Aは、例えば、金、クロムまたはチタン等の金属、またはこれらの金属の組合せで形成されてもよい。一対の第1IDT電極26Aは、単一の材料で構成された単層の電極、または複数の材料で構成された多層の電極であってもよい。 The pair of first IDT electrodes 26A can generate elastic waves between the pair of first IDT electrodes 26A. Among the generated elastic waves, the elastic waves that propagate on the surface of the substrate 27 are also referred to as surface acoustic waves (SAW). The pair of first IDT electrodes 26A may be arranged on the substrate 27 so as to sandwich the reaction section 50 therebetween. In the sensor unit 23 according to one embodiment, an electric signal (input signal) is input to one of the pair of first IDT electrodes 26A under the control of the detection device 3. The input electrical signal is converted into an elastic wave that propagates toward the reaction section 50 and is transmitted from one first IDT electrode 26A. The emitted elastic waves pass through the reaction section 50. The other first IDT electrode 26A can receive the elastic wave that has passed through the reaction section 50. The received elastic waves are converted into electrical signals (output signals). The converted electrical signal is output to the detection device 3. The pair of first IDT electrodes 26A may be formed of a metal such as gold, chromium, or titanium, or a combination of these metals. The pair of first IDT electrodes 26A may be a single layer electrode made of a single material, or a multilayer electrode made of a plurality of materials.
 反応部50が備える捕捉部24において、核酸と捕捉物質とが相互作用することによって、基板27上を伝播する弾性波の伝搬特性が変化する。具体的には、核酸と捕捉物質とが反応することで、基板27にかかる重量、あるいは基板27の表面に接触する液体の粘度が変化する。これらの変化の大きさは、核酸と捕捉物質との反応量に相関する。また、弾性波の特性(例えば位相、振幅、あるいは周期等)は、捕捉部24を伝搬することで変化する。特性の変化の大きさは、基板27にかかる重量の大きさ、あるいは基板27の表面に接触する液体の粘度の大きさと相関する。したがって、検出装置3は、センサユニット23から出力された出力信号を解析することにより、弾性波の伝搬特性の変化に基づいて、核酸を検出することができる。具体的には、検出装置3は、例えば増幅された核酸の濃度を算出することができる。 In the capture unit 24 included in the reaction unit 50, the interaction between the nucleic acid and the capture substance changes the propagation characteristics of the elastic wave propagating on the substrate 27. Specifically, the reaction between the nucleic acid and the capture substance changes the weight applied to the substrate 27 or the viscosity of the liquid that contacts the surface of the substrate 27. The magnitude of these changes correlates with the amount of reaction between the nucleic acid and the capture substance. Furthermore, the characteristics of the elastic wave (for example, phase, amplitude, period, etc.) change as it propagates through the capture unit 24. The magnitude of the change in characteristics correlates with the magnitude of the weight applied to the substrate 27 or the magnitude of the viscosity of the liquid that contacts the surface of the substrate 27. Therefore, the detection device 3 can detect nucleic acids based on changes in the propagation characteristics of elastic waves by analyzing the output signal output from the sensor unit 23. Specifically, the detection device 3 can calculate, for example, the concentration of the amplified nucleic acid.
 センサユニット23は、捕捉部24および一対のIDT電極26Aの組合せを2つ以上有していてもよい。この場合、検出装置3は、例えば、組合せごとに異なる種類の標的物質を測定してもよい。または、検出装置3は、例えば、同じ種類の標的物質を複数の組合せで測定し、それぞれの測定結果を比較してもよい。 The sensor unit 23 may have two or more combinations of the capturing section 24 and the pair of IDT electrodes 26A. In this case, the detection device 3 may measure different types of target substances for each combination, for example. Alternatively, the detection device 3 may, for example, measure the same type of target substance in multiple combinations and compare the respective measurement results.
 参照部25には、捕捉部24と異なり、捕捉物質が固定されていない。したがって、参照部25では、核酸と捕捉物質との反応が起こらない。そのため、参照部25は、捕捉部24のコントロールとして機能することができる。参照部25は、捕捉部24と同一または類似に構成され得る。 Unlike the trapping portion 24, the reference portion 25 does not have a captured substance fixed thereto. Therefore, in the reference section 25, no reaction occurs between the nucleic acid and the capture substance. Therefore, the reference section 25 can function as a control for the capture section 24. The reference section 25 may be configured the same as or similar to the capture section 24 .
 一対の第2IDT電極26Bは、一対の第2IDT電極26B間に弾性波を発生させることができる。一対の第2IDT電極26Bは、基板27において、参照部25を挟むように配置されてもよい。一実施形態に係るセンサユニット23では、検出装置3の制御により一対の第2IDT電極26Bの一方に電気信号(入力信号)が入力される。入力された電気信号は、参照部25に向かって伝搬する弾性波に変換されて一方の第2IDT電極26Bから発信される。発信された弾性波は、参照部25を通過する。他方の第2IDT電極26Bは、参照部25を通過した弾性波を受信することができる。受信された弾性波は、電気信号(出力信号)に変換される。変換された電気信号は、検出装置3に出力される。一対の第2IDT電極26Bは、一対の第1IDT電極26Aと同一または類似に構成され得る。 The pair of second IDT electrodes 26B can generate elastic waves between the pair of second IDT electrodes 26B. The pair of second IDT electrodes 26B may be arranged on the substrate 27 so as to sandwich the reference portion 25 therebetween. In the sensor unit 23 according to one embodiment, an electrical signal (input signal) is input to one of the pair of second IDT electrodes 26B under the control of the detection device 3. The input electrical signal is converted into an elastic wave that propagates toward the reference section 25 and is emitted from one second IDT electrode 26B. The emitted elastic wave passes through the reference section 25. The other second IDT electrode 26B can receive the elastic wave that has passed through the reference section 25. The received elastic waves are converted into electrical signals (output signals). The converted electrical signal is output to the detection device 3. The pair of second IDT electrodes 26B may be configured the same as or similar to the pair of first IDT electrodes 26A.
 基板27は、例えば圧電性を有する基板であってもよい。一例として、基板27は、水晶基板であってもよい。基板27は、水晶基板に限らず、弾性波を伝搬することができる任意の材料で構成され得る。基板27は、従来周知の手法により作製されてもよい。 The substrate 27 may be a piezoelectric substrate, for example. As an example, the substrate 27 may be a crystal substrate. The substrate 27 is not limited to a crystal substrate, and may be made of any material capable of propagating elastic waves. The substrate 27 may be manufactured by a conventionally known method.
 (反応部50における反応)
 図4は、図3における反応部50のIII-III線断面図であり、反応部50における反応(増幅部51における増幅反応と、捕捉部24における捕捉)を段階的に示す図である。反応部50は、検体Pに含まれる所定の配列を有する核酸を増幅させる反応液中で核酸の増幅反応を行う増幅部51と、反応液中の核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部24とを有する。図4において、増幅反応は、反応部50の反応液全体において行われている。また、反応部50には、基板27上に捕捉部24が配され、捕捉部24の表面には、第1捕捉物質が配されている。
(Reaction in reaction section 50)
FIG. 4 is a cross-sectional view taken along the line III-III of the reaction section 50 in FIG. 3, and is a diagram showing the reaction in the reaction section 50 (amplification reaction in the amplification section 51 and capture in the capture section 24) step by step. The reaction section 50 includes an amplification section 51 that performs a nucleic acid amplification reaction in a reaction solution that amplifies a nucleic acid having a predetermined sequence contained in the sample P, and a first capture substance on the surface that can capture the nucleic acid in the reaction solution. It has a capturing part 24 arranged therein. In FIG. 4, the amplification reaction is performed in the entire reaction solution in the reaction section 50. Further, in the reaction section 50, a trapping section 24 is arranged on the substrate 27, and a first trapping substance is arranged on the surface of the trapping section 24.
 本実施形態の反応部50においては、増幅部51で増幅された核酸が、捕捉部24の第1捕捉物質に捕捉される。 In the reaction section 50 of this embodiment, the nucleic acid amplified in the amplification section 51 is captured by the first capture substance of the capture section 24.
 増幅部51における増幅反応は、公知の核酸増幅方法が用いられ得る。増幅反応は、一例として、熱変性工程、アニーリング工程、およびDNA伸長工程を含む。増幅反応には、上記の工程を1つのサイクルとして、複数のサイクルが含まれていてよい。増幅反応は、温度制御部46の温度制御によって適宜進行される。 For the amplification reaction in the amplification section 51, a known nucleic acid amplification method may be used. The amplification reaction includes, for example, a heat denaturation step, an annealing step, and a DNA extension step. The amplification reaction may include a plurality of cycles with the above steps as one cycle. The amplification reaction progresses as appropriate under temperature control by the temperature control section 46.
 反応部50は、増幅部51と同一系内に捕捉部24を備えてよい。また、反応部50において、増幅反応と、第1捕捉物質による反応液中の核酸の捕捉とが同時に行われてもよい。「同時に行われる」とは、増幅反応と、核酸の捕捉(反応)とが、各反応の開始から終了までの時間帯において、大部分の時間帯並行して行われていればよい。厳密には、増幅反応の開始時と、核酸が最初に捕捉される時とは、同時ではなく、増幅反応および捕捉のいずれか一方が開始されたことをトリガーに、もう一方の反応が開始されればよい。 The reaction section 50 may include the capture section 24 in the same system as the amplification section 51. Furthermore, in the reaction section 50, the amplification reaction and the capture of the nucleic acid in the reaction solution by the first capture substance may be performed simultaneously. "Performed simultaneously" means that the amplification reaction and the capture (reaction) of the nucleic acid should be performed in parallel for most of the time period from the start to the end of each reaction. Strictly speaking, the start of the amplification reaction and the time when the nucleic acid is first captured are not simultaneous, but the start of either the amplification reaction or the capture is used as a trigger to start the other reaction. That's fine.
 反応部50が、核酸の増幅が行われる増幅部51と、反応液中の核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部24とを備えることにより、検出システム100は、核酸の増幅と、核酸の捕捉とを同一系内で行うことができる。 The detection system 100 includes an amplification section 51 in which nucleic acids are amplified, and a capture section 24 that has a first capture substance on its surface that can capture nucleic acids in the reaction solution. Amplification and nucleic acid capture can be performed within the same system.
 また、反応部50において、増幅反応と、第1捕捉物質による反応液中の核酸の捕捉とが同時に行われることによって、増幅から検出までの時間を短くすることができる。すなわち、ユーザが検体Pをカートリッジに付してから、検出結果を得るまでの時間が短くなる。 Furthermore, in the reaction section 50, the amplification reaction and the capture of the nucleic acid in the reaction solution by the first capture substance are performed simultaneously, so that the time from amplification to detection can be shortened. That is, the time from when the user attaches the sample P to the cartridge to when the detection result is obtained is shortened.
 第1捕捉物質は、増幅反応において鋳型となる核酸、および、増幅反応による増幅産物の核酸のうち少なくともいずれかを捕捉可能であってよい。増幅産物の核酸は、増幅反応によって増幅された核酸のことである。本実施形態においては、第1捕捉物質が増幅反応による増幅産物の核酸を捕捉可能である場合について説明する。 The first capture substance may be capable of capturing at least one of a nucleic acid that serves as a template in an amplification reaction and a nucleic acid that is an amplification product from the amplification reaction. The nucleic acid of an amplification product is a nucleic acid amplified by an amplification reaction. In this embodiment, a case will be described in which the first capture substance is capable of capturing the nucleic acid of the amplification product resulting from the amplification reaction.
 第1捕捉物質は、増幅産物の第1末端部の塩基配列と相補的な第1相補的配列を有する第1核酸断片を含んでよい。増幅産物の第1末端部は、具体的には、DNA、RNA、LNA,BNA、μRNAである。また、第1捕捉物質は、それ自体が伸長しないように、一例として3’末端が修飾されていてもよい。 The first capture substance may include a first nucleic acid fragment having a first complementary sequence that is complementary to the base sequence at the first end of the amplification product. Specifically, the first end portion of the amplification product is DNA, RNA, LNA, BNA, or μRNA. Furthermore, the first capture substance may be modified at its 3' end, for example, so that it does not extend itself.
 図4においては、捕捉部24の表面に第1捕捉物質として、配列A’を有する第1核酸断片F1と、配列Dを有する第1核酸断片F11との1対の断片が配される態様を示す。図4は捕捉部24を模式的に示しているに過ぎず、捕捉部24の表面には、第1捕捉物質が複数配されていてよい。捕捉部24に配される第1捕捉物質の数は特に限定されないが、例えば、捕捉部24の表面の物理特性の変化が検出装置3において検出できる程度に、増幅産物が捕捉できる数の第1捕捉物質が配されればよい。 In FIG. 4, a mode is shown in which a pair of fragments, a first nucleic acid fragment F1 having a sequence A' and a first nucleic acid fragment F11 having a sequence D, are arranged as a first capture substance on the surface of the capture part 24. show. FIG. 4 only schematically shows the trapping section 24, and a plurality of first trapping substances may be arranged on the surface of the trapping section 24. The number of first capture substances disposed in the capture unit 24 is not particularly limited, but for example, the number of first capture substances arranged in the capture unit 24 is such that the amplification product can be captured to the extent that a change in the physical properties of the surface of the capture unit 24 can be detected by the detection device 3. A trapping substance may be provided.
 例えば、図4の工程(1)においては、まず増幅部51にて核酸が増幅される。工程(2)において、増幅された核酸が熱変性によって一本鎖となる。そして、一本鎖となった核酸が、該核酸の第1末端部の塩基配列(配列D)と相補的な第1相補的配列(配列D’)を有する第1核酸断片F11に捕捉される。工程(3)においては、工程(2)で一本鎖となったもう片方の核酸が、該核酸の第1末端部の塩基配列(配列A)と相補的な第1相補的配列(配列A’)を有する第1核酸断片F1に捕捉される。工程(1)~(3)の間に、増幅部51における増幅反応は進行しており、アニーリングされる度に増幅産物である核酸と、第1捕捉物質である第1核酸断片とが相補的に結合する。 For example, in step (1) in FIG. 4, the nucleic acid is first amplified in the amplification section 51. In step (2), the amplified nucleic acid becomes single-stranded by heat denaturation. Then, the single-stranded nucleic acid is captured by a first nucleic acid fragment F11 having a first complementary sequence (sequence D') that is complementary to the base sequence (sequence D) at the first end of the nucleic acid. . In step (3), the other nucleic acid that has become single stranded in step (2) has a first complementary sequence (sequence A) that is complementary to the base sequence (sequence A) at the first end of the nucleic acid. ') is captured by the first nucleic acid fragment F1. During steps (1) to (3), the amplification reaction in the amplification section 51 is progressing, and each time the amplification product is annealed, the nucleic acid that is the amplification product and the first nucleic acid fragment that is the first capture substance are complementary to each other. join to.
 <検出システム100の構成>
 図5は、検出システム100を構成するカートリッジ2および検出装置3の要部構成を示すブロック図である。上述のとおり、検出システム100は、カートリッジ2および検出装置3を含んで構成される。
<Configuration of detection system 100>
FIG. 5 is a block diagram showing the main components of the cartridge 2 and the detection device 3 that constitute the detection system 100. As described above, the detection system 100 includes the cartridge 2 and the detection device 3.
 上述したとおり、カートリッジ2の受液部22、第1保持部211および第2保持部212のそれぞれに向かって、接続された検出装置3の不図示の押圧ピンがカートリッジ2に向かって押し下げられる。これに伴い、受液部22、第1保持部211および第2保持部212のそれぞれの内部に収容されていた液体は、流路28へと押し出されて、流路28を介してセンサユニット23に供給される。 As described above, the press pins (not shown) of the connected detection device 3 are pushed down toward the liquid receiving part 22, the first holding part 211, and the second holding part 212 of the cartridge 2, respectively. Accordingly, the liquid stored inside each of the liquid receiving part 22, the first holding part 211, and the second holding part 212 is pushed out to the flow path 28, and passes through the flow path 28 to the sensor unit 23. supplied to
 (検出装置3のハードウェア構成)
 検出装置3は上述の第1捕捉物質との相互作用に起因する捕捉部24の物理特性の変化を検出可能な装置である。検出装置が検出可能な物理特性は、表面弾性波、周波数、屈折率、および導電率のうち少なくとも1つであってよい。
(Hardware configuration of detection device 3)
The detection device 3 is a device capable of detecting changes in the physical characteristics of the trapping section 24 due to interaction with the first trapping substance described above. The physical property detectable by the detection device may be at least one of surface acoustic waves, frequency, refractive index, and conductivity.
 検出装置3は、一例として、制御部31、記憶部32、押圧部33、信号処理部34、表示部35、通信部36および温度調節部37を備えている。 The detection device 3 includes, for example, a control section 31, a storage section 32, a pressing section 33, a signal processing section 34, a display section 35, a communication section 36, and a temperature adjustment section 37.
 制御部31は、検出装置3の各部を統括して制御する。制御部31は、例えば、CPU(Central processing unit)または専用プロセッサなどの演算装置により構成されている。後述する制御部31の各部は、上述の演算装置がROM(read only memory)などで実現された記憶装置(例えば、記憶部32)に記憶されているプログラムをRAM(random access memory)などに読み出して実行することで実現できる。 The control section 31 centrally controls each section of the detection device 3. The control unit 31 is configured by, for example, an arithmetic device such as a CPU (Central Processing Unit) or a dedicated processor. Each part of the control unit 31, which will be described later, allows the above-mentioned arithmetic unit to read a program stored in a storage device (for example, the storage unit 32) implemented using a ROM (read only memory) or the like into a RAM (random access memory) or the like. This can be achieved by executing
 また、制御部31は、温度調節部37の温度を制御するための温度制御部46を備えていてよい。温度制御部46は、予め設定されたプログラムの通りに反応部50の温度を上下させるよう温度調節部37を制御する。 Additionally, the control section 31 may include a temperature control section 46 for controlling the temperature of the temperature adjustment section 37. The temperature control section 46 controls the temperature adjustment section 37 to raise and lower the temperature of the reaction section 50 according to a preset program.
 記憶部32は、制御部31が処理する各種データおよび処理に際して参照する各種データを記憶している。一例として、記憶部32は、正常モデルを記憶している。正常モデルは、制御部31が測定不良の有無を判定するときに、制御部31によって参照される。 The storage unit 32 stores various data processed by the control unit 31 and various data referred to during processing. As an example, the storage unit 32 stores a normal model. The normal model is referred to by the control unit 31 when the control unit 31 determines whether there is a measurement defect.
 押圧部33は、受液部22、第1保持部211および第2保持部212のそれぞれから液体を押し出すための駆動機構である。押圧部33は、例えば、不図示の押圧ピンと、該押圧ピンをカートリッジ2に向かって押し下げるための動力を生じさせるアクチュエータとを含む。 The pressing part 33 is a drive mechanism for pushing out liquid from each of the liquid receiving part 22, the first holding part 211, and the second holding part 212. The pressing section 33 includes, for example, a pressing pin (not shown) and an actuator that generates power for pressing the pressing pin down toward the cartridge 2 .
 信号処理部34は、電気的に接続されたセンサユニット23と電気信号の送受信を行う。測定のために解析される対象の電気信号が、センサユニット23から出力される出力信号OSである場合には、信号処理部34は、少なくとも、出力信号OSをセンサユニット23から受信する。センサユニット23に入力される入力信号ISおよび上述の出力信号OSの両方を用いて解析が行われる場合には、信号処理部34は、さらに、制御部31の制御下で入力信号ISを生成し、センサユニット23に送信する。 The signal processing section 34 transmits and receives electrical signals to and from the electrically connected sensor unit 23. When the electrical signal to be analyzed for measurement is the output signal OS output from the sensor unit 23, the signal processing section 34 receives at least the output signal OS from the sensor unit 23. When analysis is performed using both the input signal IS input to the sensor unit 23 and the above-mentioned output signal OS, the signal processing section 34 further generates the input signal IS under the control of the control section 31. , is transmitted to the sensor unit 23.
 表示部35は、制御部31によって処理された各種データをユーザが視認可能な視覚情報として出力する。 The display unit 35 outputs various data processed by the control unit 31 as visual information that can be viewed by the user.
 通信部36は、無線または有線の通信手段によって構成され、他の装置と通信する。検出装置3が外部の装置と通信する必要が無い検出システム100においては、通信部36は省略されてもよい。 The communication unit 36 is configured by wireless or wired communication means, and communicates with other devices. In the detection system 100 in which the detection device 3 does not need to communicate with an external device, the communication unit 36 may be omitted.
 検出装置3は、さらに、ユーザの入力操作を受け付ける操作部を備えていてもよい。操作部は、ボタンおよびスイッチなどのハードウェア部品として構成されてもよいし、表示部35と一体に形成されたタッチパネルと表示部35に表示されるソフトウェア部品との組合せによって構成されてもよい。 The detection device 3 may further include an operation unit that accepts input operations from the user. The operating section may be configured as hardware components such as buttons and switches, or may be configured as a combination of a touch panel formed integrally with the display section 35 and software components displayed on the display section 35.
 温度調節部37は、温度制御部46の制御に基づいて、後述するカートリッジ2の反応部50の温度を調節可能である。温度調節部37は、特に限定されないが、ヒーター、冷却器であってよく、温度調節部37は、例えば、コンプレッサー、ペルチェ素子(伝熱モジュール)、ヒートリッドなどによって構成されてもよい。 The temperature adjustment section 37 can adjust the temperature of the reaction section 50 of the cartridge 2, which will be described later, based on the control of the temperature control section 46. The temperature adjustment section 37 may be a heater or a cooler, although it is not particularly limited, and the temperature adjustment section 37 may be configured by, for example, a compressor, a Peltier element (heat transfer module), a heat lid, or the like.
 <検出方法>
 図6は、本開示の一実施形態に係る検出システム100が実行する検出方法の処理の流れを示すフローチャートである。
<Detection method>
FIG. 6 is a flowchart showing a process flow of a detection method executed by the detection system 100 according to an embodiment of the present disclosure.
 ステップS1においては、まず、検出装置3の制御部31は、カートリッジ2が検出装置3に電気的に接続されたことを検出する。カートリッジ2が設けられていない検出システム100においては、このステップは省略されてもよい。カートリッジ2が接続されたことを検出すると、制御部31は、S1のYESからS2に処理を進める。 In step S1, the control unit 31 of the detection device 3 first detects that the cartridge 2 is electrically connected to the detection device 3. In detection system 100 in which cartridge 2 is not provided, this step may be omitted. When detecting that the cartridge 2 is connected, the control unit 31 advances the process from YES in S1 to S2.
 ステップS2においては、所定の配列を有する核酸を増幅させる反応液中で核酸の増幅反応を行う増幅部51と、反応液中の核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部24を有する反応部50に、反応液を収容する(収容ステップ)。 In step S2, an amplification unit 51 that performs a nucleic acid amplification reaction in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a capture unit 24 that has a first capture substance on its surface that can capture nucleic acids in the reaction solution. A reaction solution is accommodated in the reaction section 50 having the following (accommodation step).
 ステップS3においては、反応部50に収容された反応液中で核酸の増幅反応が行われる(増幅ステップ)。具体的には、温度制御部46は、核酸を増幅させるための温度調節プログラムに従って、温度調節部37温度を調節する。 In step S3, a nucleic acid amplification reaction is performed in the reaction solution contained in the reaction section 50 (amplification step). Specifically, the temperature controller 46 adjusts the temperature of the temperature controller 37 according to a temperature adjustment program for amplifying nucleic acids.
 ステップS4においては、検出装置3が、核酸と第1捕捉物質との相互作用に起因する表面の物理特性の変化を検出する(検出ステップ)。検出ステップは、増幅ステップにおける増幅反応が終了する前に開始されてよく、増幅ステップと、検出ステップとは、同時に行われてよい。すなわち、検出ステップが開始されるトリガーは、増幅ステップの増幅反応によって増幅された核酸の存在であってよいが、複数のサイクルが行われ得る増幅反応において、1回のサイクルが終了した時点で検出ステップが開始されてよい。 In step S4, the detection device 3 detects a change in the physical properties of the surface due to the interaction between the nucleic acid and the first capture substance (detection step). The detection step may be started before the amplification reaction in the amplification step is completed, and the amplification step and the detection step may be performed simultaneously. That is, the trigger for starting the detection step may be the presence of a nucleic acid amplified by the amplification reaction of the amplification step, but in an amplification reaction that can be performed in multiple cycles, detection is performed at the end of one cycle. Steps may be initiated.
 本実施形態の検出方法は、増幅部51と、捕捉部24とを有する反応部50に反応液を収容する収容ステップと、反応部50において増幅反応を行う増幅ステップと、核酸と、第1捕捉物質との相互作用に起因する表面の物理特性の変化を検出する検出ステップとを含む。上述の方法によれば、増幅反応と、捕捉とを同一系内において同時に行うことができるため、増幅反応開始から検出までの時間が短くなる。また、上述の方法によれば、捕捉部24の表面の物理特性(例えば、弾性波の伝搬特性)の変化を検出に利用するため、検出システム100が、反応液中の増幅された核酸を感度良く、かつ簡便に検出することが可能である。 The detection method of the present embodiment includes an accommodation step of accommodating a reaction solution in a reaction section 50 having an amplification section 51 and a capture section 24, an amplification step of performing an amplification reaction in the reaction section 50, a nucleic acid, and a first capture section. and detecting changes in physical properties of the surface due to interaction with the substance. According to the above method, the amplification reaction and the capture can be performed simultaneously in the same system, so the time from the start of the amplification reaction to detection is shortened. Further, according to the above-described method, since changes in the physical properties (for example, propagation properties of elastic waves) of the surface of the capture unit 24 are utilized for detection, the detection system 100 detects the amplified nucleic acid in the reaction solution with high sensitivity. It can be detected easily and easily.
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present disclosure will be described below. For convenience of explanation, members having the same functions as those described in the above embodiments are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施形態1においては、増幅部51にて増幅された核酸を捕捉部24にて捕捉する態様であったが、本実施形態においては、捕捉部24Aにて増幅反応が進行する点において実施形態1と異なる。すなわち、本実施形態においては、増幅部51Aと、捕捉部24Aとが同じである。 In Embodiment 1, the nucleic acid amplified in the amplification unit 51 was captured in the capture unit 24, but in this embodiment, the amplification reaction proceeds in the capture unit 24A, which is different from Embodiment 1. different from. That is, in this embodiment, the amplifying section 51A and the capturing section 24A are the same.
 図7は、反応部50Aにおける反応(増幅部51Aにおける増幅反応と、捕捉部24Aにおける捕捉)を段階的に示す図である。 FIG. 7 is a diagram showing the reaction in the reaction section 50A (the amplification reaction in the amplification section 51A and the capture in the capture section 24A) step by step.
 増幅部51Aは、第1捕捉物質が配され、捕捉部24Aとして機能する表面を有してもよい。これは、増幅部51Aが、捕捉部24Aとしての機能も備えることを意味する。これによれば、検出システム100は、捕捉部24Aにて増幅反応が進行し、増幅反応の経時的変化を検出装置3にて検出することができる。 The amplifying section 51A may have a surface on which the first capturing substance is disposed and functioning as the capturing section 24A. This means that the amplifying section 51A also has a function as the capturing section 24A. According to this, in the detection system 100, the amplification reaction progresses in the capture unit 24A, and the detection device 3 can detect changes over time in the amplification reaction.
 本実施形態において、第1捕捉物質は、鋳型となる核酸の第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片を含んでもよい。また、鋳型となる核酸を捕捉した第2核酸断片の長さは、捕捉した鋳型となる核酸を鋳型とする増幅反応によって伸長される。 In this embodiment, the first capture substance may include a second nucleic acid fragment having a second complementary sequence that is complementary to the base sequence at the second end of the nucleic acid serving as a template. Furthermore, the length of the second nucleic acid fragment that has captured the template nucleic acid is extended by an amplification reaction using the captured template nucleic acid as a template.
 図7においては、捕捉部24Aの表面に、第1捕捉物質として、配列A’を有する第2核酸断片F2と、配列Dを有する第2核酸断片F21との1対の断片が配される態様を示す。第2核酸断片F2および第2核酸断片F21はプライマーであってよい。 In FIG. 7, a pair of fragments, a second nucleic acid fragment F2 having the sequence A' and a second nucleic acid fragment F21 having the sequence D, are arranged as the first trapping substance on the surface of the trapping part 24A. shows. The second nucleic acid fragment F2 and the second nucleic acid fragment F21 may be primers.
 例えば、図7の工程(1)においては、鋳型となる核酸Tが二本鎖の状態から熱変性によって一本鎖に分かれる。工程(2)において、一本鎖になった核酸T1および核酸T2が、それぞれ第2核酸断片F2および第2核酸断片F21に捕捉される。具体的には、核酸T1は、核酸T1の第2末端部の塩基配列(配列A)と相補的な第2相補的配列(配列A’)を有する第2核酸断片F2に結合する。また、核酸T2は、核酸T2の第2末端部の塩基配列(配列D’)と相補的な第2相補的配列(配列D)を有する第2核酸断片F21に結合する。 For example, in step (1) of FIG. 7, the nucleic acid T serving as a template is separated from a double-stranded state into a single-stranded one by thermal denaturation. In step (2), the single-stranded nucleic acid T1 and nucleic acid T2 are captured by the second nucleic acid fragment F2 and the second nucleic acid fragment F21, respectively. Specifically, the nucleic acid T1 binds to a second nucleic acid fragment F2 having a second complementary sequence (sequence A') that is complementary to the base sequence (sequence A) at the second end of the nucleic acid T1. Furthermore, the nucleic acid T2 binds to a second nucleic acid fragment F21 having a second complementary sequence (sequence D) that is complementary to the base sequence (sequence D') at the second end of the nucleic acid T2.
 工程(3)において、核酸T1および核酸T2が相補的に結合した第2核酸断片F2およびF21は、核酸T1および核酸T2を鋳型としてそれぞれ伸長され、新たに核酸T1’および核酸T2’が増幅される(増幅反応)。 In step (3), the second nucleic acid fragments F2 and F21 to which nucleic acid T1 and nucleic acid T2 are complementary bound are elongated using nucleic acid T1 and nucleic acid T2 as templates, respectively, and new nucleic acid T1' and nucleic acid T2' are amplified. (amplification reaction).
 工程(4)において、熱変性により、核酸T1’および核酸T2’は一本鎖となる。結果、捕捉部24A上には、増幅された核酸が固定されている状態である。 In step (4), nucleic acid T1' and nucleic acid T2' become single-stranded by heat denaturation. As a result, the amplified nucleic acid is immobilized on the capture portion 24A.
 このように、増幅部51Aが、捕捉部24Aとしての機能を備えることにより、検出システム100は、増幅産物の核酸を検出することに加え、増幅反応の経時的変化を、捕捉部24Aの表面の特性変化として検出することができる。すなわち、検出システム100は、増幅反応の進行をリアルタイムに検出することができる。 In this way, since the amplification section 51A has the function of the capture section 24A, the detection system 100 not only detects the nucleic acid of the amplification product, but also detects changes over time in the amplification reaction on the surface of the capture section 24A. It can be detected as a change in characteristics. That is, the detection system 100 can detect the progress of the amplification reaction in real time.
 〔実施形態3〕
 本開示の他の実施形態について、以下に説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the present disclosure will be described below. For convenience of explanation, members having the same functions as those described in the above embodiments are denoted by the same reference numerals, and the description thereof will not be repeated.
 本実施形態は、捕捉部24Bにて増幅反応が進行する点においては、実施形態2と共通であるが、増幅反応によって伸長した核酸鎖の末端をさらに捕捉部24Bにおいて捕捉する点において実施形態2とは異なる。 This embodiment is similar to Embodiment 2 in that the amplification reaction proceeds in the capture section 24B, but is similar to Embodiment 2 in that the end of the nucleic acid chain extended by the amplification reaction is further captured in the capture section 24B. It is different from.
 図8は、反応部50Bにおける反応(増幅部51Bにおける増幅反応と、捕捉部24Bにおける捕捉)を段階的に示す図である。 FIG. 8 is a diagram showing the reaction in the reaction section 50B (the amplification reaction in the amplification section 51B and the capture in the capture section 24B) step by step.
 増幅部51Bは、実施形態2と同じく、第1捕捉物質として、鋳型となる核酸の第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片を含んでもよい。また、本実施形態においては、第1捕捉物質として、増幅反応によって伸長した核酸鎖の、表面から遠い側に位置する第3末端部の塩基配列と相補的な第3相補的配列を有する第3核酸断片をさらに含んでもよい。 Similarly to Embodiment 2, the amplification section 51B may include, as the first capture substance, a second nucleic acid fragment having a second complementary sequence that is complementary to the base sequence at the second end of the nucleic acid serving as a template. In this embodiment, the first capture substance is a third compound having a third complementary sequence that is complementary to the base sequence of the third end located far from the surface of the nucleic acid strand extended by the amplification reaction. It may further contain a nucleic acid fragment.
 図8においては、捕捉部24Bの表面に、第1捕捉物質として、配列A’を有する第2核酸断片F2と、配列Dを有する第2核酸断片F21との1対の断片が配される。また、第2核酸断片F2およびF21に加えて、配列Dを有する第3核酸断片F3と、配列A’を有する第3核酸断片F31とが捕捉部24Bの表面側に配されている。図8においては、一例として、第2核酸断片F2(F21)と、第3核酸断片F3(F31)とが、一本の鎖として繋がっている態様を示している。しかし、第2核酸断片F2(F21)と、第3核酸断片F3(F31)とは、必ずしも一本の鎖でなくてよく、例えば、第2核酸断片F2(F21)と、第3核酸断片F3(F31)とは、別々に捕捉部24Bの表面側に配されていてもよい。この場合、後述するように、増幅した核酸が折り返し構造を取れる程度に、第2核酸断片F2(F21)と、第3核酸断片F3(F31)とが近い距離に配されていてよい。第2核酸断片F2および第2核酸断片F21は、プライマーであってよい。 In FIG. 8, a pair of fragments, a second nucleic acid fragment F2 having the sequence A' and a second nucleic acid fragment F21 having the sequence D, are arranged as the first trapping substance on the surface of the trapping part 24B. Furthermore, in addition to the second nucleic acid fragments F2 and F21, a third nucleic acid fragment F3 having sequence D and a third nucleic acid fragment F31 having sequence A' are arranged on the surface side of the capture portion 24B. FIG. 8 shows, as an example, a mode in which the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) are connected as a single chain. However, the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) do not necessarily have to be a single strand; for example, the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) may be arranged separately on the surface side of the capturing portion 24B. In this case, as will be described later, the second nucleic acid fragment F2 (F21) and the third nucleic acid fragment F3 (F31) may be arranged at a close distance to such an extent that the amplified nucleic acid can form a folded structure. The second nucleic acid fragment F2 and the second nucleic acid fragment F21 may be primers.
 例えば、図8の工程(1)においては、鋳型となる核酸Tが二本鎖の状態から熱変性によって一本鎖に分かれる。工程(2)において、一本鎖になった核酸T1および核酸T2が、それぞれ第2核酸断片F2および第2核酸断片F21に捕捉される。具体的には、核酸T1は、核酸T1の第2末端部の塩基配列(配列A)と相補的な第2相補的配列(配列A’)を有する第2核酸断片F2に結合する。また、核酸T2は、核酸T2の第2末端部の塩基配列(配列D’)と相補的な第2相補的配列(配列D)を有する第2核酸断片F21に結合する。 For example, in step (1) of FIG. 8, the nucleic acid T serving as a template is separated from a double-stranded state into a single-stranded one by thermal denaturation. In step (2), the single-stranded nucleic acid T1 and nucleic acid T2 are captured by the second nucleic acid fragment F2 and the second nucleic acid fragment F21, respectively. Specifically, the nucleic acid T1 binds to a second nucleic acid fragment F2 having a second complementary sequence (sequence A') that is complementary to the base sequence (sequence A) at the second end of the nucleic acid T1. Furthermore, the nucleic acid T2 binds to a second nucleic acid fragment F21 having a second complementary sequence (sequence D) that is complementary to the base sequence (sequence D') at the second end of the nucleic acid T2.
 工程(3)において、核酸T1および核酸T2が相補的に結合した第2核酸断片F2およびF21は、核酸T1および核酸T2を鋳型としてそれぞれ伸長され、新たに核酸T1’および核酸T2’が増幅される(増幅反応)。 In step (3), the second nucleic acid fragments F2 and F21 to which nucleic acid T1 and nucleic acid T2 are complementary bound are elongated using nucleic acid T1 and nucleic acid T2 as templates, respectively, and new nucleic acid T1' and nucleic acid T2' are amplified. (amplification reaction).
 工程(4)において、熱変性により、核酸T1’および核酸T2’は一本鎖となる。結果、捕捉部24A上には、増幅された核酸が固定されている状態である。また、核酸T1’の捕捉部24Bから遠い側の第3末端部は、第3末端部の塩基配列(配列D’)と相補的な第3相補的配列(配列D)を有する第3核酸断片F3に捕捉される。核酸T2’の捕捉部24Bから遠い側の第3末端部は、第3末端部の塩基配列(配列A)と相補的な第3相補的配列(配列A’)を有する第3核酸断片F31に捕捉される。すなわち、一本の核酸は、折り返し構造で2つの末端部が捕捉部24Bに固定されていることになる。 In step (4), nucleic acid T1' and nucleic acid T2' become single-stranded by heat denaturation. As a result, the amplified nucleic acid is immobilized on the capture portion 24A. Further, the third end portion of the nucleic acid T1′ on the side far from the capture portion 24B is a third nucleic acid fragment having a third complementary sequence (sequence D) that is complementary to the base sequence (sequence D′) of the third end portion. Captured by F3. The third end of the nucleic acid T2' far from the capture portion 24B is a third nucleic acid fragment F31 having a third complementary sequence (sequence A') that is complementary to the base sequence (sequence A) of the third end. Captured. That is, one nucleic acid has two ends fixed to the capture portion 24B in a folded structure.
 このように、増幅部51Bが、捕捉部24Bとしての機能を備えることにより、検出システム100は、増幅産物の核酸を検出することに加え、増幅反応の経時的変化を、捕捉部24Bの表面の特性変化として検出することができる。すなわち、検出システム100は、増幅反応の進行をリアルタイムに検出することができる。 In this way, since the amplification section 51B has the function of the capture section 24B, the detection system 100 not only detects the nucleic acid of the amplification product, but also detects changes over time in the amplification reaction on the surface of the capture section 24B. It can be detected as a change in characteristics. That is, the detection system 100 can detect the progress of the amplification reaction in real time.
 また、捕捉部24Bが、第3核酸断片を含むことにより、実施形態2の捕捉部24Aよりも、核酸を捕捉した際の捕捉部24Bの表面の特性変化が大きく生じることになる。特に、捕捉部24BがSAWを利用するセンサの場合、核酸の2つの末端部が捕捉部24Bに捕捉されたときは、1つの末端部が捕捉部24Aに捕捉されたときと比べて、捕捉部24Bの表面密度が上がり、結果、表面の粘度が高くなる。核酸の増幅量が少ない場合であっても、検出システム100は、増幅産物の核酸を感度良く検出することができる。 Furthermore, since the capture portion 24B includes the third nucleic acid fragment, the surface characteristics of the capture portion 24B change more greatly when nucleic acid is captured than in the capture portion 24A of the second embodiment. In particular, in the case of a sensor in which the capture section 24B uses SAW, when two ends of the nucleic acid are captured by the capture section 24B, the capture section The surface density of 24B increases, resulting in a higher surface viscosity. Even when the amount of amplified nucleic acid is small, the detection system 100 can detect the nucleic acid of the amplification product with high sensitivity.
 〔変形例〕
 本開示の変形例について、以下に説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Modified example]
Modifications of the present disclosure will be described below. For convenience of explanation, members having the same functions as those described in the above embodiments are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施形態1~4においては、反応部50、50A、50Bは、それぞれ捕捉部24、24A、24B、および増幅部51、51A、51Bを備える態様であった。一方、本変形例において、反応部50は、捕捉部24のみを備える。すなわち、実施形態1~3においては、同一系内に捕捉部24と、増幅部51とを備え、核酸の増幅反応と、核酸の捕捉とが同時に行われていたが、本変形例においては、核酸の増幅反応と、核酸の捕捉とが別の場所で行われる。 In Embodiments 1 to 4, the reaction sections 50, 50A, and 50B each included the capture sections 24, 24A, and 24B, and the amplification sections 51, 51A, and 51B. On the other hand, in this modification, the reaction section 50 includes only the capture section 24. That is, in Embodiments 1 to 3, the capture section 24 and the amplification section 51 were provided in the same system, and the amplification reaction of the nucleic acid and the capture of the nucleic acid were performed simultaneously, but in this modification, Nucleic acid amplification reactions and nucleic acid capture are performed at different locations.
 本変形例において、カートリッジ2は、反応部50と、取り付け部29とを備える。反応部50は、所定の配列を有する対象核酸を含む液を収容し、液中の対象核酸を捕捉可能な捕捉物質を表面に配した捕捉部24を有する。また、取り付け部29は、対象核酸と、捕捉物質との相互作用に起因する表面の物理特性の変化を検出可能な検出装置3に取り付けるための機構である。 In this modification, the cartridge 2 includes a reaction section 50 and an attachment section 29. The reaction section 50 contains a liquid containing a target nucleic acid having a predetermined sequence, and has a capturing section 24 on the surface of which a capture substance capable of capturing the target nucleic acid in the liquid is disposed. Furthermore, the attachment section 29 is a mechanism for attaching the target nucleic acid to the detection device 3 capable of detecting changes in the physical properties of the surface caused by the interaction with the capture substance.
 捕捉物質は、対象核酸の第1末端部の塩基配列と相補的な第1相補的配列を有する第1核酸断片を含む第1捕捉領域と、対象核酸の第1末端部とは異なる第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片を含む第2捕捉領域とを有する。 The capture substance includes a first capture region that includes a first nucleic acid fragment having a first complementary sequence complementary to the base sequence of the first end of the target nucleic acid, and a second end that is different from the first end of the target nucleic acid. and a second capture region containing a second nucleic acid fragment having a second complementary sequence that is complementary to the base sequence of the second region.
 これによれば、検出システム100は、捕捉部24とは別の場所にて増幅された核酸を捕捉部24にて捕捉する。すなわち、カートリッジ2に、増幅された核酸が含まれた液を滴下することによって、検出システム100が増幅された核酸を検出することが可能である。これによれば、増幅反応方法の種類によらず、増幅された核酸を感度良く検出することができる。 According to this, the detection system 100 uses the capture unit 24 to capture the nucleic acid amplified at a location other than the capture unit 24. That is, by dropping a liquid containing the amplified nucleic acid onto the cartridge 2, the detection system 100 can detect the amplified nucleic acid. According to this, the amplified nucleic acid can be detected with high sensitivity regardless of the type of amplification reaction method.
 〔実施形態4〕
 本開示の他の実施形態について、以下に説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 4]
Other embodiments of the present disclosure will be described below. For convenience of explanation, members having the same functions as those described in the above embodiments are denoted by the same reference numerals, and the description thereof will not be repeated.
 検体中のmRNAおよびμRNAを検出することは、様々な疾患の早期検査において求められるが、検出にはLC-MSMSや次世代シーケンサー等を使用することが必要である。また、検体中に含まれる短いRNAは、分子量が小さいため、例えば、捕捉部としてSAWが用られる場合であっても検出が難しい場合がある。本実施形態は、このような検体中に含まれ得るRNAの増幅、タンパク質への翻訳、およびタンパク質の検出を同一系内で行う。 Detection of mRNA and μRNA in specimens is required for early testing of various diseases, but detection requires the use of LC-MSMS, next-generation sequencers, etc. Furthermore, since short RNA contained in a sample has a small molecular weight, it may be difficult to detect it even when, for example, a SAW is used as a capture unit. This embodiment performs amplification of RNA that may be contained in such a sample, translation into protein, and detection of protein in the same system.
 実施形態1~3においては、反応部50は、増幅部51と、捕捉部24と備え、捕捉部24は核酸を捕捉する態様であった。一方、本実施形態において、反応部50Cは、翻訳部52と、捕捉部24Cとを備え、捕捉部24Cは、翻訳反応によって生成された翻訳産物を捕捉する。 In Embodiments 1 to 3, the reaction section 50 includes an amplification section 51 and a capture section 24, and the capture section 24 captures nucleic acids. On the other hand, in this embodiment, the reaction section 50C includes a translation section 52 and a capture section 24C, and the capture section 24C captures the translation product generated by the translation reaction.
 本実施形態において、検出装置3は、翻訳産物と、後述する第2捕捉物質との相互作用に起因する表面の物理特性の変化を検出可能である。 In this embodiment, the detection device 3 is capable of detecting changes in the physical properties of the surface caused by the interaction between the translation product and a second capture substance, which will be described later.
 反応部50Cは、所定の配列を有する核酸およびリボソームを含む反応液中で核酸からの翻訳反応が行われる翻訳部52と、反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部24Cとを有する。 The reaction section 50C includes a translation section 52 in which a translation reaction from a nucleic acid is carried out in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a second capture substance on the surface that can capture translation products in the reaction solution. It has a capturing section 24C.
 反応液は、トランスファーRNA、およびアミノ酸分子を含んでもよい。これによれば、翻訳部52において、タンパク質の翻訳反応が進行する。すなわち、本実施形態においては、カートリッジ2の保持部21に、リボソーム、トランスファーRNA、およびアミノ酸分子などが収容されている。 The reaction solution may contain transfer RNA and amino acid molecules. According to this, the protein translation reaction progresses in the translation section 52. That is, in this embodiment, the holding portion 21 of the cartridge 2 accommodates ribosomes, transfer RNA, amino acid molecules, and the like.
 翻訳部52は、タンパク質の翻訳反応と、翻訳反応前に翻訳反応に利用される核酸が増幅される増幅反応とが行われてよい。翻訳部52において、増幅反応と、翻訳反応とは、同時に行われてもよい。「同時に行われる」とは、増幅反応と、翻訳反応とが、核反応の開始から終了までの時間帯において、大部分の時間帯並行して行われていればよい。厳密には、増幅反応の開始時と、翻訳反応の開始時とは、同時ではなく、増幅反応が開始されて、所定の配列を有する核酸が増幅されたことをトリガーに翻訳反応が開始されればよい。以降、「翻訳反応」には、増幅反応も含まれるとして記載する。 The translation unit 52 may perform a protein translation reaction and an amplification reaction in which a nucleic acid used in the translation reaction is amplified before the translation reaction. In the translation section 52, the amplification reaction and the translation reaction may be performed simultaneously. "To be performed simultaneously" means that the amplification reaction and the translation reaction are performed in parallel for most of the time period from the start to the end of the nuclear reaction. Strictly speaking, the start of the amplification reaction and the start of the translation reaction are not simultaneous, but the translation reaction is triggered by the start of the amplification reaction and the amplification of a nucleic acid having a predetermined sequence. Bye. Hereinafter, "translation reaction" will be described as including amplification reaction.
 反応部50Cにおいて、翻訳反応と、第2捕捉物質による反応液中の翻訳産物の捕捉とが同時に行われてもよい。「同時に行われる」とは、翻訳反応と、翻訳産物の捕捉(反応)とが、各反応の開始から終了までの時間帯において、大部分の時間帯並行して行われていればよい。厳密には、翻訳反応の開始時と、翻訳産物が最初に捕捉される時とは、同時ではなく、翻訳反応によって翻訳産物が生成されたことをトリガーに、捕捉が開始されればよい。 In the reaction section 50C, the translation reaction and the capture of the translation product in the reaction solution by the second capture substance may be performed simultaneously. "Performed simultaneously" means that the translation reaction and the capture (reaction) of the translation product may be performed in parallel for most of the time period from the start to the end of each reaction. Strictly speaking, the start of the translation reaction and the time when the translation product is first captured are not simultaneous, but the capture may be started when a translation product is generated by the translation reaction.
 図9は、反応部50Cにおける反応(翻訳部52における翻訳反応と、捕捉部24Cにおける捕捉)を段階的に示す図である。 FIG. 9 is a diagram showing the reaction in the reaction section 50C (translation reaction in the translation section 52 and capture in the capture section 24C) step by step.
 例えば、図9の工程(1)においては、翻訳部52において核酸の増幅反応と、増幅された核酸からの翻訳反応が行われ、タンパク質Pが生成される。 For example, in step (1) in FIG. 9, a nucleic acid amplification reaction and a translation reaction from the amplified nucleic acid are performed in the translation unit 52, and protein P is generated.
 工程(2)においては、翻訳反応によって生成されたタンパク質PがリガンドLに捕捉される。 In step (2), protein P produced by the translation reaction is captured by ligand L.
 このように、反応部50Cが、翻訳部52と、捕捉部24Cとを有することにより、検出システム100は、翻訳産物であるタンパク質を検出することに加え、翻訳産物が生成する経時的変化を、捕捉部24Cの表面の特性変化として検出することができる。 In this way, since the reaction section 50C includes the translation section 52 and the capture section 24C, the detection system 100 not only detects proteins that are translation products, but also detects changes over time produced by translation products. This can be detected as a change in the characteristics of the surface of the trapping section 24C.
 また、対象の核酸を、分子量の大きいタンパク質にまで翻訳してから検出するため、核酸を直接検出するよりも、捕捉部24Cの表面の特性変化が大きく生じることになり、翻訳産物を感度良く検出することができる。また、検出システム100が、核酸を直接検出するよりも、ガンの転移や、感染症等の病気の元(翻訳産物)を検出することにより、ユーザが原因物質の特定が容易になるという効果を奏する。 In addition, since the target nucleic acid is translated into a protein with a large molecular weight before being detected, the characteristics of the surface of the capture part 24C change more significantly than when directly detecting the nucleic acid, and the translation product can be detected with high sensitivity. can do. Furthermore, the detection system 100 has the effect of making it easier for the user to identify the causative agent by detecting the source (translation product) of diseases such as cancer metastasis and infectious diseases, rather than directly detecting nucleic acids. play.
 また、検出システム100は、上記の構成により、増幅反応、翻訳反応、および捕捉という多段階の反応を同一の系で行い、同時に行うことができるため、増幅反応開始から翻訳反応を経て、タンパク質を検出するまでの時間が短くなる。 Furthermore, with the above configuration, the detection system 100 can perform multi-step reactions such as amplification reaction, translation reaction, and capture in the same system and perform them simultaneously. The time it takes to detect is shortened.
 <検出方法>
 図10は、本開示の一実施形態に係る検出システム100が実行する検出方法の処理の流れを示すフローチャートである。
<Detection method>
FIG. 10 is a flowchart showing the process flow of a detection method executed by the detection system 100 according to an embodiment of the present disclosure.
 ステップS11においては、まず、検出装置3の制御部31は、カートリッジ2が検出装置3に電気的に接続されたことを検出する。カートリッジ2が設けられていない検出システム100においては、このステップは省略されてもよい。カートリッジ2が接続されたことを検出すると、制御部31は、S1のYESからS12に処理を進める。 In step S11, the control unit 31 of the detection device 3 first detects that the cartridge 2 is electrically connected to the detection device 3. In detection system 100 in which cartridge 2 is not provided, this step may be omitted. When detecting that the cartridge 2 is connected, the control unit 31 advances the process from YES in S1 to S12.
 ステップS12においては、所定の配列を有する核酸およびリボソームを含む反応液中で核酸からの翻訳反応が行われる翻訳部52と、反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部24Cとを有する反応部50Cに、反応液を収容する(収容ステップ)。 In step S12, a translation unit 52 in which a translation reaction from a nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a second capture substance capable of capturing translation products in the reaction solution are arranged on the surface. The reaction liquid is accommodated in the reaction section 50C having the captured section 24C (accommodation step).
 ステップS13においては、反応部50Cに収容された反応液中で核酸からの翻訳反応が行われる(翻訳ステップ)。 In step S13, a translation reaction from the nucleic acid is performed in the reaction solution contained in the reaction section 50C (translation step).
 ステップS14においては、検出装置3が、翻訳産物と第2捕捉物質との相互作用に起因する表面の物理特性の変化を検出する(検出ステップ)。検出ステップは、翻訳ステップにおける翻訳反応が終了する前に開始されてよく、翻訳ステップと、検出ステップとは、同時に行われてよい。すなわち、検出ステップが開始されるトリガーは、翻訳ステップの翻訳反応によって翻訳された翻訳産物の存在であってよいが、逐次的に生じ得る翻訳反応において、1回の反応が終了した時点で検出ステップが開始されてよい。 In step S14, the detection device 3 detects a change in the physical properties of the surface caused by the interaction between the translation product and the second capture substance (detection step). The detection step may be started before the translation reaction in the translation step is completed, and the translation step and the detection step may be performed simultaneously. That is, the trigger for starting the detection step may be the presence of a translation product translated by the translation reaction of the translation step, but in a translation reaction that may occur sequentially, the detection step starts at the point when one reaction is completed. may be started.
 本実施形態の検出方法は、翻訳部52と、捕捉部24Cとを有する反応部50Cに反応液を収容する収容ステップと、翻訳反応を行う翻訳ステップと、翻訳産物と第2捕捉物質との相互作用に起因する表面の物理特性の変化を検出する検出ステップとを含む。上述の方法によれば、翻訳反応と、捕捉とを同一系内において同時に行うことができるため、翻訳反応開始から検出までの時間が短くなる。また、上述の方法によれば、捕捉部24の表面の物理特性(例えば、弾性波の伝搬特性)の変化を検出に利用するため、検出システム100が、反応液中の増幅された核酸を感度良く、かつ簡便に検出することが可能である。 The detection method of this embodiment includes an accommodation step of accommodating a reaction solution in a reaction section 50C having a translation section 52 and a capture section 24C, a translation step of performing a translation reaction, and an interaction between a translation product and a second capture substance. detecting changes in physical properties of the surface due to the action. According to the above method, the translation reaction and the capture can be performed simultaneously in the same system, so the time from the start of the translation reaction to detection is shortened. Further, according to the above-described method, since changes in the physical properties (for example, propagation properties of elastic waves) of the surface of the capture unit 24 are utilized for detection, the detection system 100 detects the amplified nucleic acid in the reaction solution with high sensitivity. It can be detected easily and easily.
 〔実施形態5〕
 以下、核酸プローブ243を備えた捕捉部24に関する一実施形態について、詳細に説明する。
[Embodiment 5]
Hereinafter, one embodiment of the capture unit 24 including the nucleic acid probe 243 will be described in detail.
 <核酸プローブ243の概要>
 はじめに、図11を用いて本実施形態に係る核酸プローブ243の概要を説明する。図11は、核酸プローブ243を備えている捕捉部24の全体構成の一例を示す図である。捕捉部24は標的分子を特異的に捕捉できる機能を有し、標的生物を検出するバイオセンサ、検出システムなどに適用され得る。
<Overview of Nucleic Acid Probe 243>
First, the outline of the nucleic acid probe 243 according to this embodiment will be explained using FIG. 11. FIG. 11 is a diagram showing an example of the overall configuration of the capture section 24 including the nucleic acid probe 243. The capture unit 24 has a function of specifically capturing target molecules, and can be applied to biosensors, detection systems, etc. that detect target organisms.
 図11に示すように、捕捉部24は固定部241、ポリマー242からなるポリマー層242aおよび核酸プローブ243を備えている。固定部241とポリマー242とは結合部B1にて結合している。また、ポリマー242と核酸プローブ243とは結合部B2にて結合している。固定部241、ポリマー242、結合部B1および結合部B2の詳細については後述する。 As shown in FIG. 11, the capturing section 24 includes a fixing section 241, a polymer layer 242a made of a polymer 242, and a nucleic acid probe 243. The fixing portion 241 and the polymer 242 are bonded at a bonding portion B1. Further, the polymer 242 and the nucleic acid probe 243 are bonded at a bonding portion B2. Details of the fixing portion 241, the polymer 242, the bonding portion B1, and the bonding portion B2 will be described later.
 核酸プローブ243は、捕捉対象となる標的分子と結合する塩基配列を有している。ここで、標的分子は、例えば、核酸、核酸に結合可能であるペプチド、転写調節因子およびポリメラーゼなどの核酸結合タンパク質などであってもよい。 The nucleic acid probe 243 has a base sequence that binds to the target molecule to be captured. Here, the target molecule may be, for example, a nucleic acid, a peptide capable of binding to a nucleic acid, a transcription regulatory factor, a nucleic acid binding protein such as a polymerase, and the like.
 また、図11に示すように、塩基配列はポリヌクレオチドにより構成さている。当該ポリヌクレオチドは各ヌクレオチドが有するリン酸基がリン酸ジエステル結合により、ヌクレオチドが重合したものである。以下では、ポリヌクレオチドが有するリン酸ジエステルを「リン酸エステル」と記載する。すなわち、リン酸エステルは、核酸プローブ243を構成する構成要素である。 Furthermore, as shown in FIG. 11, the base sequence is composed of polynucleotides. The polynucleotide is obtained by polymerizing nucleotides through a phosphodiester bond between the phosphate groups of each nucleotide. Hereinafter, a phosphodiester possessed by a polynucleotide will be referred to as a "phosphate ester." That is, the phosphate ester is a component constituting the nucleic acid probe 243.
 また、核酸プローブ243を構成する複数のリン酸エステルのうちの少なくとも一部には、電気的に中性である官能基R、または、正電荷を有する官能基Rが付加されている。 Further, at least some of the plurality of phosphoric acid esters constituting the nucleic acid probe 243 have an electrically neutral functional group R or a positively charged functional group R added thereto.
 また、核酸プローブ243を構成する複数のリン酸エステルのうちの少なくとも一部に、陽イオンを配位させてもよい。 Furthermore, a cation may be coordinated to at least some of the plurality of phosphate esters that constitute the nucleic acid probe 243.
 例えば、核酸プローブ243は、pH6からpH8の範囲の水溶液中において、電気的に中性、または、正の電荷を帯びていてもよい。 For example, the nucleic acid probe 243 may be electrically neutral or positively charged in an aqueous solution ranging from pH 6 to pH 8.
 ここで、核酸プローブ243が備える有利な特性について、図21を用いて説明する。図21は、リン酸エステルが修飾されていない核酸プローブ1243を備える捕捉部1024の全体構成の一例を示す図である。捕捉部1024は固定部1241およびポリマー1242からなるポリマー層1242aと核酸プローブ1243とを備えている。核酸プローブ1243が有するリン酸エステルには官能基の付加の処置が施されていない。 Here, the advantageous properties of the nucleic acid probe 243 will be explained using FIG. 21. FIG. 21 is a diagram showing an example of the overall configuration of the capture section 1024 including the nucleic acid probe 1243 that is not modified with a phosphate ester. The capturing section 1024 includes a fixing section 1241, a polymer layer 1242a made of a polymer 1242, and a nucleic acid probe 1243. The phosphoric acid ester of nucleic acid probe 1243 has not been subjected to addition of a functional group.
 リン酸エステルに官能基付加などの修飾が施されていない核酸プローブ1243は、水溶液中において負電荷を有することになる。核酸プローブ1243を電気的性質が正電荷であるポリマー1242が配された固定部1241に固定化する場合、次の現象が生じ得る。固定部1241に配された電気的性質が正電荷であるポリマー1242と電気的性質が負電荷である核酸プローブ1243との間に電気的な引力が生じる。そのため、図21に示すように、当該電気的な引力が原因となり、核酸プローブ1243は固定部1241の固定面、すなわち、ポリマー層1242aにおいて横倒しの状態で固体化される可能性が高くなる。 The nucleic acid probe 1243 whose phosphoric acid ester has not been modified such as addition of a functional group will have a negative charge in an aqueous solution. When the nucleic acid probe 1243 is immobilized on the immobilization part 1241 on which the polymer 1242 having a positive electrical property is disposed, the following phenomenon may occur. An electrical attraction is generated between the polymer 1242, which has a positive electrical property, and the nucleic acid probe 1243, which has a negative electrical property, and which is arranged on the fixing part 1241. Therefore, as shown in FIG. 21, there is a high possibility that the nucleic acid probe 1243 is solidified in a sideways state on the fixing surface of the fixing part 1241, that is, the polymer layer 1242a, due to the electrical attraction.
 横倒しの状態で固定化された核酸プローブ1243は、標的分子の捕捉などの本来の機能を十分に発揮することができなくなる。 The nucleic acid probe 1243 immobilized in a sideways state is no longer able to fully exhibit its original functions such as capturing target molecules.
 本開示の構成によれば、図11に示すように、核酸プローブ243は、複数のリン酸エステルのうち少なくとも一部に、電気的に中性、または、正電荷を有する官能基Rが付加されている。これにより、水溶液中における核酸プローブ243の電荷は、官能基Rが付加される前に比べて電気的に中性寄り、あるいは正電荷に変更される。そのため、電気的性質が正電荷である固定部241に核酸プローブ243を固定化する場合、固定部241の固定面すなわち、ポリマー層242aに核酸プローブ243が横倒しの状態で固体化される可能性を低減することができる。 According to the configuration of the present disclosure, as shown in FIG. 11, the nucleic acid probe 243 has an electrically neutral or positively charged functional group R added to at least some of the plurality of phosphate esters. ing. As a result, the charge of the nucleic acid probe 243 in the aqueous solution is changed to be electrically neutral or positively charged compared to before the functional group R is added. Therefore, when the nucleic acid probe 243 is immobilized on the fixing part 241, which has a positive electrical property, there is a possibility that the nucleic acid probe 243 will be solidified on the fixing surface of the fixing part 241, that is, on the polymer layer 242a, while lying on its side. can be reduced.
 また、上記の構成において、官能基Rが付加される前に比べて電荷が電気的に中性寄りとなった核酸プローブ243は、核酸プローブ243の各々の電荷に起因して近接する核酸プローブ243間に生じる斥力が弱い。それゆえ、固定部241に、官能基Rが付加された核酸プローブ243を高密度で固定化することができる。 In addition, in the above configuration, the nucleic acid probes 243 whose charges are more electrically neutral than before the addition of the functional group R, are different from those of the adjacent nucleic acid probes 243 due to the charge of each of the nucleic acid probes 243. The repulsion between them is weak. Therefore, the nucleic acid probe 243 to which the functional group R is added can be immobilized on the immobilization part 241 at high density.
 さらに、上記の構成を備える核酸プローブ243は、標的分子が核酸である場合、当該標的分子と核酸プローブ243との間に生じる斥力が弱いため、標的分子を特異的に捕捉する機能が高い。 Furthermore, when the target molecule is a nucleic acid, the nucleic acid probe 243 having the above configuration has a high ability to specifically capture the target molecule because the repulsive force generated between the target molecule and the nucleic acid probe 243 is weak.
 <検出システム100>
 次に、本実施形態に係る核酸プローブ243を用いた検出システム100について説明する。ここでは、上述した実施形態1~4に係る検出システム100とは異なる点のみ説明する。検出システム100は、核酸のほか、核酸に結合可能であるペプチド、転写調節因子およびポリメラーゼなどの核酸結合タンパク質などを検出してもよい。検出システム100は、一例として、検出装置3およびカートリッジ2(流路デバイス)を含む(図2参照)。
<Detection system 100>
Next, the detection system 100 using the nucleic acid probe 243 according to this embodiment will be explained. Here, only the points different from the detection system 100 according to the first to fourth embodiments described above will be explained. In addition to nucleic acids, the detection system 100 may detect peptides capable of binding to nucleic acids, transcriptional regulators, nucleic acid binding proteins such as polymerases, and the like. The detection system 100 includes, as an example, a detection device 3 and a cartridge 2 (flow path device) (see FIG. 2).
 (センサユニット23の構成)
 図12は、本実施形態に係るセンサユニット23の内部構成の一例を模式的に示す概略図である。ここでは、上述したセンサユニット23とは異なる点のみ説明する。
(Configuration of sensor unit 23)
FIG. 12 is a schematic diagram schematically showing an example of the internal configuration of the sensor unit 23 according to this embodiment. Here, only the points different from the sensor unit 23 described above will be explained.
 一例として、センサユニット23は、捕捉部24(センサ部)および参照部25(センサ部)の2つのセンサを備えていてもよい。以下では、センサユニット23が、単一のセンサを有する場合、センサユニット23を単にバイオセンサと称してもよい。センサユニット23が複数のセンサ、例えば、捕捉部24および参照部25を有する場合、個々のセンサを特に区別する必要がない場合には、捕捉部24および参照部25をまとめてバイオセンサと称してもよい。また、捕捉部24および参照部25を備えるセンサユニット23全体をバイオセンサと称してもよい。 As an example, the sensor unit 23 may include two sensors: a capture section 24 (sensor section) and a reference section 25 (sensor section). Below, when the sensor unit 23 has a single sensor, the sensor unit 23 may be simply referred to as a biosensor. When the sensor unit 23 has a plurality of sensors, for example, a capturing section 24 and a reference section 25, the capturing section 24 and the reference section 25 are collectively referred to as a biosensor if there is no need to distinguish between the individual sensors. Good too. Further, the entire sensor unit 23 including the capturing section 24 and the reference section 25 may be referred to as a biosensor.
 捕捉部24は、反応液中の核酸を捕捉可能な核酸プローブ243を表面に配し、反応液中の核酸を捕捉する。本開示において、「表面」は、核酸プローブ243が配されている面を意図している。捕捉部24の詳細については後述する。 The capture unit 24 has a nucleic acid probe 243 capable of capturing nucleic acids in the reaction solution on its surface, and captures the nucleic acids in the reaction solution. In this disclosure, the "surface" is intended to be the surface on which the nucleic acid probe 243 is placed. Details of the capture unit 24 will be described later.
 一実施形態に係るセンサユニット23は、一例として、弾性波を利用したセンサであり、捕捉部24、参照部25、一対の第1IDT(Inter Digital Transducer)電極26A、一対の第2IDT電極26B、および基板27を備える。捕捉部24、参照部25、一対の第1IDT電極26A、および一対の第2IDT電極26Bは、基板27上に位置してよい。 The sensor unit 23 according to one embodiment is, for example, a sensor using elastic waves, and includes a capturing section 24, a reference section 25, a pair of first IDT (Inter Digital Transducer) electrodes 26A, a pair of second IDT electrodes 26B, and A substrate 27 is provided. The capture section 24, the reference section 25, the pair of first IDT electrodes 26A, and the pair of second IDT electrodes 26B may be located on the substrate 27.
 センサユニット23の捕捉部24および参照部25は、例えば、弾性波、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)等を利用するセンサであってもよい。 The capturing section 24 and the reference section 25 of the sensor unit 23 may be sensors that utilize elastic waves, QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), FET (Field Effect Transistor), or the like, for example.
 また、他の例として、センサユニット23は反応部を備えていてもよい。反応部は増幅部および上述の捕捉部24を備えていてもよい。増幅部は反応液中にて所定の配列を有する核酸を増幅させる。反応部は、増幅部による増幅反応と、捕捉部24による反応液中の核酸の捕捉とが行われる場である。反応部では、増幅反応および捕捉が行われる場所が区画されていてもよい。また、増幅反応が進行する場所である増幅部はセンサユニット23内になくてもよい。反応液が収容されている任意の場所が増幅部となりうる。例えば、増幅反応が流路28の所定の場所で行われる場合、その所定の場所を増幅部としてもよい。 Furthermore, as another example, the sensor unit 23 may include a reaction section. The reaction section may include an amplification section and the above-mentioned capture section 24. The amplification section amplifies a nucleic acid having a predetermined sequence in the reaction solution. The reaction section is a place where the amplification reaction by the amplification section and the capture of the nucleic acid in the reaction solution by the capture section 24 are performed. In the reaction section, areas where amplification reactions and capture are performed may be divided. Furthermore, the amplification section where the amplification reaction proceeds does not need to be inside the sensor unit 23. Any location where a reaction solution is accommodated can serve as an amplification section. For example, when the amplification reaction is performed at a predetermined location in the channel 28, the predetermined location may be used as the amplification section.
 図13は、捕捉部24の構成の一例を模式的に示す概略図である。捕捉部24は固定部241、ポリマー242および核酸プローブ243を備えている。固定部241とポリマー242とは結合部B1にて結合している。また、ポリマー242と核酸プローブ243とは結合部B2にて結合している。固定部241は、例えば金属で構成されてもよい。具体的には、固定部241は、例えば金、クロム、およびチタン等の金属、またはこれらの金属の組合せで構成されてもよい。固定部241は、単一の材料で構成された単層の金属膜であってもよいし、複数の材料で構成された多層の金属膜であってもよい。固定部241を構成する材料としては、上述の金属に限定されず、適宜、任意の材料を採用することができる。固定部241は、従来周知の方法により作製されてもよい。 FIG. 13 is a schematic diagram schematically showing an example of the configuration of the capturing section 24. The capture section 24 includes a fixing section 241, a polymer 242, and a nucleic acid probe 243. The fixing portion 241 and the polymer 242 are bonded at a bonding portion B1. Further, the polymer 242 and the nucleic acid probe 243 are bonded at a bonding portion B2. The fixing part 241 may be made of metal, for example. Specifically, the fixing portion 241 may be made of metals such as gold, chromium, and titanium, or a combination of these metals. The fixing portion 241 may be a single-layer metal film made of a single material, or may be a multi-layer metal film made of a plurality of materials. The material constituting the fixing part 241 is not limited to the metals mentioned above, and any material can be used as appropriate. The fixing part 241 may be manufactured by a conventionally known method.
 本実施形態においては、固定部241が金(Au)によって構成されている例について説明する。図13の結合部B1に示すように、固定部241とポリマー242とは金チオール結合(Au-S-)によって結合している。また、図13の結合部B2に示すように、ポリマー242と核酸プローブ243とはアミド結合(-CONH-)によって結合している。 In this embodiment, an example in which the fixing part 241 is made of gold (Au) will be described. As shown in bonding portion B1 in FIG. 13, the fixing portion 241 and the polymer 242 are bonded by a gold thiol bond (Au—S—). Furthermore, as shown in bonding portion B2 in FIG. 13, the polymer 242 and the nucleic acid probe 243 are bonded through an amide bond (-CONH-).
 本実施形態においては、ポリマー242として、2-カルボキシ-N,N-ジメチル-N-[2’-(メタクリロイル)オキシエチル]エタナミニウム(3-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]プロピオナート)(p-CBMA2)を用いる例について説明する。 In this embodiment, the polymer 242 is 2-carboxy-N,N-dimethyl-N-[2'-(methacryloyl)oxyethyl]ethanaminium (3-[[2-(methacryloyloxy)ethyl]dimethylammonio]propionate). ) (p-CBMA2) will be described.
 ポリマー242の他の例としては、CBMA2以外のカルボキシベタインメタクリレート(CBMA)のポリマー、スルホベタインメタクリレート(SBMA)のポリマーなどを挙げることができる。 Other examples of the polymer 242 include carboxybetaine methacrylate (CBMA) polymers other than CBMA2, sulfobetaine methacrylate (SBMA) polymers, and the like.
 核酸プローブ243は捕捉対象となる標的分子と結合する塩基配列を有する。核酸プローブ243を構成する複数のリン酸エステルのうちの少なくとも一部には、電気的に中性である官能基、または、正電荷を有する官能基が付加されている。 The nucleic acid probe 243 has a base sequence that binds to the target molecule to be captured. At least some of the plurality of phosphoric acid esters constituting the nucleic acid probe 243 have an electrically neutral functional group or a positively charged functional group added thereto.
 核酸プローブ243の捕捉対象となる標的分子は、核酸プローブに結合する性質を有していればよく、特に限定されない。例えば、標的分子は、当該核酸プローブが有する塩基配列に対して相補的な塩基配列を有する核酸であってもよい。あるいは、標的分子は、核酸に結合可能なぺプチドおよび抗体、転写調節因子、およびポリメラーゼなどを含む核酸結合タンパク質等であってもよい。 The target molecule to be captured by the nucleic acid probe 243 is not particularly limited as long as it has the property of binding to the nucleic acid probe. For example, the target molecule may be a nucleic acid having a complementary base sequence to the base sequence of the nucleic acid probe. Alternatively, the target molecule may be a nucleic acid binding protein, including peptides and antibodies capable of binding to nucleic acids, transcriptional regulators, polymerases, and the like.
 一対の第1IDT電極26Aは、基板27において、捕捉部24を挟むように配置されてもよい。一実施形態に係るセンサユニット23では、検出装置3の制御により一対の第1IDT電極26Aの一方に電気信号(入力信号)が入力される。入力された電気信号は、捕捉部24に向かって伝搬する弾性波に変換されて一方の第1IDT電極26Aから発信される。発信された弾性波は、捕捉部24を通過する。他方の第1IDT電極26Aは、捕捉部24を通過した弾性波を受信することができる。 The pair of first IDT electrodes 26A may be arranged on the substrate 27 so as to sandwich the capture portion 24 therebetween. In the sensor unit 23 according to one embodiment, an electric signal (input signal) is input to one of the pair of first IDT electrodes 26A under the control of the detection device 3. The input electrical signal is converted into an elastic wave that propagates toward the capturing section 24 and is emitted from one first IDT electrode 26A. The emitted elastic waves pass through the trapping section 24 . The other first IDT electrode 26A can receive the elastic wave that has passed through the capture section 24.
 捕捉部24において、捕捉対象である標的分子と核酸プローブ243とが相互作用することによって、基板27上を伝播する弾性波の伝搬特性が変化する。具体的には、標的分子と核酸プローブ243とが反応することで、基板27にかかる重量、あるいは基板27の表面に接触する液体の粘度が変化する。これらの変化の大きさは、標的分子と核酸プローブ243との反応量に相関する。 In the capture unit 24, the target molecule to be captured interacts with the nucleic acid probe 243, thereby changing the propagation characteristics of the elastic wave propagating on the substrate 27. Specifically, the reaction between the target molecule and the nucleic acid probe 243 changes the weight applied to the substrate 27 or the viscosity of the liquid in contact with the surface of the substrate 27. The magnitude of these changes correlates with the amount of reaction between the target molecule and the nucleic acid probe 243.
 参照部25には、捕捉部24と異なり、核酸プローブ243が固定されていない。したがって、参照部25では、標的分子と核酸プローブ243との反応が起こらない。そのため、参照部25は、捕捉部24のコントロールとして機能することができる。参照部25は、捕捉部24と同一または類似に構成され得る。 Unlike the capture section 24, the nucleic acid probe 243 is not immobilized on the reference section 25. Therefore, in the reference portion 25, no reaction occurs between the target molecule and the nucleic acid probe 243. Therefore, the reference section 25 can function as a control for the capture section 24. The reference section 25 may be configured the same as or similar to the capture section 24 .
 <センサユニット23の製造方法>
 次に、本実施形態におけるセンサユニット(バイオセンサ)23の製造方法について説明する。ここでは、特に、センサユニット23が備えている捕捉部24の製造方法について、図14を用いて説明する。図14は、本実施形態における捕捉部24の製造方法の一例を示す図である。
<Method for manufacturing sensor unit 23>
Next, a method for manufacturing the sensor unit (biosensor) 23 in this embodiment will be described. Here, in particular, a method for manufacturing the capturing section 24 included in the sensor unit 23 will be described using FIG. 14. FIG. 14 is a diagram illustrating an example of a method for manufacturing the trapping section 24 in this embodiment.
 まず、準備工程S21および修飾工程S22を含む核酸プローブ243の製造が行われる。 First, the nucleic acid probe 243 is manufactured including a preparation step S21 and a modification step S22.
 はじめに、捕捉対象となる標的分子と結合する塩基配列を有する核酸断片が準備される(S21:準備工程)。 First, a nucleic acid fragment having a base sequence that binds to a target molecule to be captured is prepared (S21: preparation step).
 次に、S21にて準備された核酸断片が備えている複数のリン酸エステルのうちの少なくとも一部は、電気的に中性である官能基、または、正電荷を有する官能基を付加されることにより修飾される(S22;修飾工程)。 Next, at least some of the plurality of phosphate esters included in the nucleic acid fragment prepared in S21 are added with an electrically neutral functional group or a positively charged functional group. (S22; modification step).
 次に、固定部241とポリマー242とが結合される(S23)。 Next, the fixing part 241 and the polymer 242 are combined (S23).
 次に、S23にて固定部241と結合されたポリマー242の末端の活性化が行われる(S24)。 Next, the end of the polymer 242 bonded to the fixing part 241 in S23 is activated (S24).
 次に、S22にて修飾された核酸断片(核酸プローブ)とS24にて末端を活性化されたポリマー242とが結合される(S25:固定化工程)。 Next, the nucleic acid fragment (nucleic acid probe) modified in S22 and the polymer 242 whose terminal was activated in S24 are bonded (S25: immobilization step).
 S25の工程は、以下のように表現することもできる。核酸プローブ243の製造方法によって製造された核酸プローブ243が、末端の活性化によって電気的性質が正電荷であるポリマー242が配された固定部241に固定化される。 The process of S25 can also be expressed as follows. The nucleic acid probe 243 manufactured by the method for manufacturing the nucleic acid probe 243 is immobilized on the immobilization part 241 in which the polymer 242 having positive electrical properties is disposed by activating the terminal.
 次に、S25にて核酸断片と結合しなかったポリマー242の末端が不活性化され(S26)、処理は終了する。 Next, the ends of the polymer 242 that did not bind to the nucleic acid fragment in S25 are inactivated (S26), and the process ends.
 以下、上述の捕捉部24の製造方法の各工程の詳細について、図15~図20を用いて説明する。 Hereinafter, details of each step of the method for manufacturing the above-mentioned trapping part 24 will be explained using FIGS. 15 to 20.
 (S21:核酸断片の準備の例)
 S21においては、捕捉対象となる標的分子と結合する塩基配列を有している核酸断片が準備される。当該核酸断片は、従来周知の方法により合成することによって準備することができる。例えば、核酸断片をホスホロアミダイト法によって準備してもよい。
(S21: Example of preparing a nucleic acid fragment)
In S21, a nucleic acid fragment having a base sequence that binds to a target molecule to be captured is prepared. The nucleic acid fragment can be prepared by synthesizing it by a conventionally well-known method. For example, nucleic acid fragments may be prepared by the phosphoramidite method.
 (S22:核酸断片が備えるリン酸エステルに対する官能基の付加の例)
 次に、S22における核酸断片が備えるリン酸エステルに対する官能基の付加の一例について、図15を用いて説明する。図15は、核酸断片が備えるリン酸エステルに対する官能基の付加の一例を示す図である。核酸断片を構成する複数のリン酸エステルのうちの少なくとも一部に、電気的に中性である官能基R、または、正電荷を有する官能基Rが付加される。本開示では、リン酸エステルのうちの少なくとも一部に当該官能基Rを付加された核酸断片を核酸プローブ243として用いる。
(S22: Example of addition of functional group to phosphate ester included in nucleic acid fragment)
Next, an example of addition of a functional group to a phosphate ester included in a nucleic acid fragment in S22 will be described using FIG. 15. FIG. 15 is a diagram showing an example of addition of a functional group to a phosphate ester included in a nucleic acid fragment. An electrically neutral functional group R or a positively charged functional group R is added to at least some of the plurality of phosphate esters constituting the nucleic acid fragment. In the present disclosure, a nucleic acid fragment in which the functional group R is added to at least a portion of a phosphoric acid ester is used as the nucleic acid probe 243.
 また、当該リン酸エステルに付加される官能基Rは、アルキル基、メトキシ基、エトキシ基、ヒドロキシル基、アルデヒド基、ケトン基、アミノ基およびメルカプト基のうちの少なくとも1つであってもよい。 Furthermore, the functional group R added to the phosphoric ester may be at least one of an alkyl group, a methoxy group, an ethoxy group, a hydroxyl group, an aldehyde group, a ketone group, an amino group, and a mercapto group.
 上記の構成によれば、核酸プローブ243の電荷を、電気的に中性寄り、あるいは正電荷に変更することができる。 According to the above configuration, the charge of the nucleic acid probe 243 can be changed to electrically neutral or positive charge.
 また、当該リン酸エステルに付加される官能基は異なる種類の官能基であってもよい。例えば、あるリン酸エステルにはアルキル基が付加されており、別のリン酸エステルにはアルキル基以外の官能基が付加されてもよい。 Further, the functional group added to the phosphoric acid ester may be a different type of functional group. For example, an alkyl group may be added to one phosphoric ester, and a functional group other than the alkyl group may be added to another phosphoric ester.
 また、前記官能基はスペーサーを介してリン酸エステルのうちの少なくとも一部に付加されてもよい。 Furthermore, the functional group may be added to at least a portion of the phosphoric ester via a spacer.
 スペーサーの例として、ポリエチレングリコール(PEG:Polyethylene glycol)などを挙げることができる。例えば、スペーサーとして、PEG3を用いてもよい。他のスペーサーの例として、アルキル、ポリプロピレングリコール、ポリブチレングリコールなどを挙げることができる。 Examples of spacers include polyethylene glycol (PEG). For example, PEG3 may be used as the spacer. Examples of other spacers include alkyl, polypropylene glycol, polybutylene glycol, and the like.
 また、図15に示すように、核酸断片の5’末端のリン酸エステルには、1つの官能基が付加されてもよいし、2つの官能基が付加されてもよい。当該リン酸エステルに付加される2つの官能基は異なる種類の官能基Rおよび官能基R1であってもよいし、同じ種類の官能基Rであってもよい。 Further, as shown in FIG. 15, one functional group or two functional groups may be added to the phosphate ester at the 5' end of the nucleic acid fragment. The two functional groups added to the phosphoric acid ester may be different types of functional group R and functional group R1, or may be the same type of functional group R.
 また、末端がNHSエステル化されたポリマー242とアミド結合するために、核酸プローブ243の末端にはNHが付加されてもよい。また、スペーサーを介してNHが付加されてもよい。 Further, NH 2 may be added to the end of the nucleic acid probe 243 in order to form an amide bond with the polymer 242 whose end is esterified with NHS. Furthermore, NH 2 may be added via a spacer.
 (S23:固定部241とポリマー242との結合の例)
 ここでは、S23における固定部241とポリマー242との結合の一例について、図16を用いて説明する。図16は、固定部241とポリマー242との結合の一例を示す図である。図16に示すように、本例では、ポリマー242であるp-CBMA2と固定部241であるAuとを金-チオール結合によって結合させる。
(S23: Example of bonding between fixing part 241 and polymer 242)
Here, an example of the bonding between the fixing part 241 and the polymer 242 in S23 will be described using FIG. 16. FIG. 16 is a diagram showing an example of the connection between the fixing part 241 and the polymer 242. As shown in FIG. 16, in this example, p-CBMA2, which is the polymer 242, and Au, which is the fixing part 241, are bonded by a gold-thiol bond.
 例えば、以下の式に示す化学反応によって当該結合が形成されてもよい。 For example, the bond may be formed by a chemical reaction shown in the following formula.
Figure JPOXMLDOC01-appb-C000001
 上記の式においては、固定部241がAuであり、固定化されるポリマー242がR-SHである。「SH」はチオール基であり、「R」はp-CBMA2のチオール基以外の部分を示している。
Figure JPOXMLDOC01-appb-C000001
In the above formula, the fixing part 241 is Au and the polymer 242 to be fixed is R-SH. "SH" is a thiol group, and "R" represents a portion of p-CBMA2 other than the thiol group.
 また、その他の化学反応の例として、以下の式に示す化学反応によって当該結合が形成されてもよい。 Furthermore, as another example of a chemical reaction, the bond may be formed by a chemical reaction shown in the following formula.
Figure JPOXMLDOC01-appb-C000002
 上記の式においては、固定部241がAuであり、固定化されるポリマー242がR-SHである。「SH」はチオール基であり、「R」はp-CBMA2のチオール基以外の部分を示している。
Figure JPOXMLDOC01-appb-C000002
In the above formula, the fixing part 241 is Au 2 O 3 and the polymer 242 to be fixed is R-SH. "SH" is a thiol group, and "R" represents a portion of p-CBMA2 other than the thiol group.
 (S24:ポリマー242の末端の活性化の例)
 次に、S24におけるポリマー242の末端の活性化の一例について、図17および図18を用いて説明する。図17は、ポリマーの末端の活性化の一例を示す図である。図17に示すように、固定部241と結合しているポリマー242であるp-CBMA2に対して、EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide)およびNHS(N-hydroxysuccinimide)を反応させる。この反応により、ポリマー242の側鎖末端のCOOをNHSエステルに変換する。
(S24: Example of terminal activation of polymer 242)
Next, an example of activation of the terminal of the polymer 242 in S24 will be explained using FIGS. 17 and 18. FIG. 17 is a diagram showing an example of activation of the terminal of a polymer. As shown in FIG. 17, EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) and NHS (N-hydroxysuccinimide) are reacted with p-CBMA2, which is the polymer 242 bonded to the fixing part 241. let This reaction converts COO - at the end of the side chain of polymer 242 into an NHS ester.
 図18はポリマー242の末端の活性化によるポリマー層242aの電荷の変化を示す図である。図18に示すように、ポリマー242の末端の活性化前においては、ポリマー層242aは両性イオンポリマー層であるため全体として中性である。上述のように、ポリマー242の末端の活性化によって、ポリマー242の側鎖末端のCOOがNHSエステルに変換する。この変換は、ポリマー242の電気的性質を正電荷に変化させる。その結果、ポリマー242の末端の活性化後においては、ポリマー層242aは正電荷に帯電することになる。 FIG. 18 is a diagram showing the change in charge of the polymer layer 242a due to activation of the terminal of the polymer 242. As shown in FIG. 18, before the terminal end of the polymer 242 is activated, the polymer layer 242a is entirely neutral because it is a zwitterionic polymer layer. As described above, activation of the end of polymer 242 converts the COO 2 at the side chain end of polymer 242 to an NHS ester. This conversion changes the electrical properties of polymer 242 to a positive charge. As a result, after the terminal end of the polymer 242 is activated, the polymer layer 242a becomes positively charged.
 本例においては、ポリマー242の末端の活性化は、S25にて行う核酸プローブ243とポリマー242とのアミド結合の形成に必要となる。 In this example, the activation of the terminal of the polymer 242 is necessary for the formation of an amide bond between the nucleic acid probe 243 and the polymer 242 in S25.
 (S25:核酸プローブ243とポリマー242との結合の例)
 次に、S25における核酸プローブ(核酸断片)243とポリマー242との結合の一例について、図19を用いて説明する。図19は、核酸プローブ243とポリマー242との結合の一例を示す図である。図19に示すように、例えば、NHSエステルに変換されたポリマー242の末端とNHが付加された核酸プローブ243の末端とをアミド結合させてもよい。
(S25: Example of binding between nucleic acid probe 243 and polymer 242)
Next, an example of the binding between the nucleic acid probe (nucleic acid fragment) 243 and the polymer 242 in S25 will be described using FIG. 19. FIG. 19 is a diagram showing an example of binding between the nucleic acid probe 243 and the polymer 242. As shown in FIG. 19, for example, the end of the polymer 242 converted to NHS ester and the end of the nucleic acid probe 243 to which NH 2 has been added may be bonded with an amide bond.
 また、核酸プローブ243とポリマー242との結合は、ポリマー層242aが正電荷に帯電している状態で行われればよく、上述のアミド結合に限定されない。 Furthermore, the bond between the nucleic acid probe 243 and the polymer 242 may be performed while the polymer layer 242a is positively charged, and is not limited to the above-mentioned amide bond.
 当該結合によって、電気的性質が正電荷であるポリマー242が配された固定部241に核酸プローブ243が固定化される。すなわち、図12および図13に示すように、核酸プローブ243は捕捉部24の固定部241に固定化される。 Through this bonding, the nucleic acid probe 243 is immobilized on the immobilization part 241 on which the polymer 242 having a positive electrical property is disposed. That is, as shown in FIGS. 12 and 13, the nucleic acid probe 243 is immobilized on the immobilization part 241 of the capture part 24.
 (S26:ポリマー242の末端の不活性化の例)
 次に、S26における核酸プローブ243と結合しなかったポリマー242の末端の不活性化の一例について、図20を用いて説明する。図20は、核酸プローブ243と結合しなかったポリマー242の末端の不活性化の一例を示す図である。例えば、核酸プローブ243と結合しなかったポリマー242の末端のNHSエステルを加水分解することによって不活性化する。例えば、図20に示すように、アルカリ性の環境下にすることにより、核酸プローブ243と結合していないNHSエステルを有するポリマー242の側鎖末端を、活性化される前のCOOに戻す。
(S26: Example of terminal inactivation of polymer 242)
Next, an example of inactivation of the end of the polymer 242 that did not bind to the nucleic acid probe 243 in S26 will be described using FIG. 20. FIG. 20 is a diagram showing an example of inactivation of the end of the polymer 242 that did not bind to the nucleic acid probe 243. For example, the terminal NHS ester of the polymer 242 that is not bound to the nucleic acid probe 243 is inactivated by hydrolysis. For example, as shown in FIG. 20, by placing the polymer 242 in an alkaline environment, the end of the side chain of the polymer 242 having an NHS ester that is not bound to the nucleic acid probe 243 is returned to the COO 2 − state before activation.
 〔まとめ〕
 本開示の態様1に係る検出システム100は、所定の配列を有する核酸を増幅させる反応液中で前記核酸の増幅反応を行う増幅部51と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部24と、を有する反応部50と、前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置3と、を備える。
〔summary〕
A detection system 100 according to aspect 1 of the present disclosure includes an amplification unit 51 that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence, and a first amplification unit that is capable of capturing the nucleic acid in the reaction solution. a reaction unit 50 having a capture unit 24 with a capture substance disposed on its surface; a detection device 3 capable of detecting a change in physical properties of the surface due to interaction between the nucleic acid and the first capture substance; Equipped with.
 本開示の態様2に係る検出システム100は、前記態様1において、増幅部51は、前記第1捕捉物質が配され、捕捉部24として機能する表面を有してもよい。 In the detection system 100 according to Aspect 2 of the present disclosure, in Aspect 1, the amplifying section 51 may have a surface on which the first capturing substance is disposed and functioning as the capturing section 24.
 本開示の態様3に係る検出システム100は、前記態様1または2において、反応部50において、前記増幅反応と、前記第1捕捉物質による前記反応液中の前記核酸の捕捉とが同時に行われてもよい。 In the detection system 100 according to aspect 3 of the present disclosure, in aspect 1 or 2, in the reaction section 50, the amplification reaction and the capture of the nucleic acid in the reaction solution by the first capture substance are performed simultaneously. Good too.
 本開示の態様4に係る検出システム100は、前記態様1~3の何れかにおいて、第1捕捉物質は、前記増幅反応において鋳型となる核酸、および、該増幅反応による増幅産物の核酸のうち少なくともいずれかを捕捉可能であってもよい。 In the detection system 100 according to Aspect 4 of the present disclosure, in any of Aspects 1 to 3, the first capture substance is at least one of a nucleic acid serving as a template in the amplification reaction and a nucleic acid of an amplification product from the amplification reaction. It may be possible to capture either of them.
 本開示の態様5に係る検出システム100は、前記態様4において、第1捕捉物質は、前記増幅産物の第1末端部の塩基配列と相補的な第1相補的配列を有する第1核酸断片F1、F11を含んでいてもよい。 In the detection system 100 according to Aspect 5 of the present disclosure, in Aspect 4, the first capture substance is a first nucleic acid fragment F1 having a first complementary sequence complementary to the base sequence of the first end of the amplification product. , F11.
 本開示の態様6に係る検出システム100は、前記態様4または5の何れかにおいて、前記第1捕捉物質は、前記鋳型となる核酸の第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片F2、F21を含み、前記鋳型となる核酸を捕捉した第2核酸断片F2、F21の長さは、該捕捉した核酸を鋳型とする前記増幅反応によって伸長してもよい。 In the detection system 100 according to Aspect 6 of the present disclosure, in either Aspect 4 or 5, the first capture substance is a second complementary substance that is complementary to the base sequence at the second end of the nucleic acid serving as the template. The length of the second nucleic acid fragments F2 and F21, which contain the second nucleic acid fragments F2 and F21 having the sequence and capture the nucleic acid serving as the template, may be extended by the amplification reaction using the captured nucleic acid as a template. .
 本開示の態様7に係る検出システム100は、前記態様1~6の何れかにおいて、前記第1捕捉物質として、前記増幅反応によって伸長した核酸鎖の、前記表面から遠い側に位置する第3末端部の塩基配列と相補的な第3相補的配列を有する第3核酸断片F3、F31をさらに含んでいてもよい。 The detection system 100 according to Aspect 7 of the present disclosure is configured such that, in any of Aspects 1 to 6, the first capture substance is the third end of the nucleic acid strand that is elongated by the amplification reaction and is located on the side far from the surface. It may further contain a third nucleic acid fragment F3, F31 having a third complementary sequence complementary to the base sequence of the third nucleic acid fragment.
 本開示の態様8に係る検出システム100は、所定の配列を有する核酸およびリボソームを含む反応液中で前記核酸からの翻訳反応が行われる翻訳部52と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部24Cと、を有する反応部50Cと、前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置3と、を備える。 The detection system 100 according to aspect 8 of the present disclosure includes a translation unit 52 in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and ribosomes, and a translation unit 52 capable of capturing translation products in the reaction solution. a reaction section 50C having a capturing section 24C having a second capturing substance disposed on its surface; A device 3 is provided.
 本開示の態様9に係る検出システム100は、前記態様8において、前記反応液は、トランスファーRNA、およびアミノ酸分子を含んでいてもよい。 In the detection system 100 according to Aspect 9 of the present disclosure, in Aspect 8, the reaction solution may contain transfer RNA and amino acid molecules.
 本開示の態様10に係る検出システム100は、前記態様1~9の何れかにおいて、前記物理特性は、表面弾性波、周波数、屈折率、および導電率のうち少なくとも1つであってよい。 In the detection system 100 according to Aspect 10 of the present disclosure, in any of Aspects 1 to 9, the physical property may be at least one of surface acoustic waves, frequency, refractive index, and electrical conductivity.
 本開示の態様11に係る検出システム100は、前記態様1~10の何れかにおいて、前記反応部は、SAW(Surface Acoustic Wave)、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)のうちのいずれかを利用するセンサであってよい。 In a detection system 100 according to an eleventh aspect of the present disclosure, in any one of the first to tenth aspects, the reaction section is a SAW (Surface Acoustic Wave), a QCM (Quartz Crystal Microbalance), an SPR (Surface Plasmon Resonance), or a FET. (Field Effect Transistor).
 本開示の態様12に係る検出システム100は、前記態様1~11の何れかにおいて、前記反応部50、50A~50Cの温度を調節可能な温度調節部37をさらに備えてもよい。 The detection system 100 according to aspect 12 of the present disclosure may further include a temperature adjustment section 37 that can adjust the temperature of the reaction sections 50, 50A to 50C in any of the aspects 1 to 11.
 本開示の態様13に係るカートリッジ2は、所定の配列を有する核酸を増幅させる反応液を収容する反応部50、50A、50Bであって、前記反応液中で前記核酸の増幅反応を行う増幅部51、51A、51Bと、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部24、24A、24Bとを有する反応部50、50A、50Bと、前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部29と、を備える。 The cartridge 2 according to aspect 13 of the present disclosure includes reaction sections 50, 50A, and 50B that accommodate a reaction solution for amplifying a nucleic acid having a predetermined sequence, and an amplification section that performs an amplification reaction of the nucleic acid in the reaction solution. 51, 51A, 51B, and a reaction section 50, 50A, 50B having a capture section 24, 24A, 24B on the surface of which a first capture substance capable of capturing the nucleic acid in the reaction solution; an attachment portion 29 for attachment to a detection device capable of detecting changes in the physical properties of the surface due to interaction with a first capture substance.
 本開示の態様14に係るカートリッジ2は、所定の配列を有する対象核酸を含む液を収容する反応部50であって、前記液中の前記対象核酸を捕捉可能な捕捉物質を表面に配した捕捉部24を有する反応部50と、前記対象核酸と前記捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部29と、を備え、前記捕捉物質は、前記対象核酸の第1末端部の塩基配列と相補的な第1相補的配列を有する第1核酸断片F1、F11を含む第1捕捉領域と、前記対象核酸の前記第1末端部とは異なる第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片F2、F21を含む第2捕捉領域とを有し、捕捉部24は、SAW(Surface Acoustic Wave)、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)のうちのいずれかを利用するセンサである。 The cartridge 2 according to aspect 14 of the present disclosure is a reaction section 50 that accommodates a liquid containing a target nucleic acid having a predetermined sequence, the reaction unit 50 having a capture substance disposed on the surface that can capture the target nucleic acid in the liquid. a reaction section 50 having a reaction section 24; and an attachment section 29 for attachment to a detection device capable of detecting a change in the physical properties of the surface due to the interaction between the target nucleic acid and the capture substance, The substance includes a first capture region containing first nucleic acid fragments F1 and F11 having a first complementary sequence complementary to the base sequence of the first end of the target nucleic acid, and the first end of the target nucleic acid. has a second capture region including second nucleic acid fragments F2 and F21 having a second complementary sequence complementary to a different base sequence at the second end, and the capture section 24 includes SAW (Surface Acoustic Wave), The sensor uses one of QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), or FET (Field Effect Transistor).
 本開示の態様15に係るカートリッジ2は、所定の配列を有する核酸およびリボソームを含む反応液を収容する反応部50Cであって、前記反応液中で前記核酸からの翻訳反応が行われる翻訳部52と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部24Cと、を有する反応部50Cと、前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部29と、を備える。 The cartridge 2 according to aspect 15 of the present disclosure includes a reaction section 50C that accommodates a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation section 52 in which a translation reaction from the nucleic acid is performed in the reaction solution. and a trapping portion 24C having a second trapping substance on its surface capable of trapping the translation product in the reaction solution, and an interaction between the translation product and the second trapping substance. and an attachment part 29 for attachment to a detection device capable of detecting changes in the physical properties of the surface.
 本開示の態様16に係る検出方法は、所定の配列を有する核酸を増幅させる反応液中で前記核酸の増幅反応を行う増幅部51と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部24と、を有する反応部50に、前記反応液を収容する収容ステップと、前記反応部に収容された前記反応液中で前記核酸の増幅反応を行う増幅ステップと、前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出する検出ステップと、を含む。 A detection method according to aspect 16 of the present disclosure includes: an amplification unit 51 that performs an amplification reaction of a nucleic acid in a reaction solution that amplifies a nucleic acid having a predetermined sequence; and a first capture unit that can capture the nucleic acid in the reaction solution. a containment step of accommodating the reaction solution in a reaction section 50 having a capture section 24 with a substance disposed on its surface; an amplification step of carrying out an amplification reaction of the nucleic acid in the reaction solution accommodated in the reaction section; , a detection step of detecting a change in physical properties of the surface due to the interaction between the nucleic acid and the first capture substance.
 本開示の態様17に係る検出方法は、所定の配列を有する核酸およびリボソームを含む反応液中で前記核酸からの翻訳反応が行われる翻訳部52と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部24Cと、を有する反応部50Cに、前記反応液を収容する収容ステップと、反応部50Cに収容された前記反応液中で前記核酸からの翻訳反応を行う翻訳ステップと、前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出する検出ステップと、を含む。 The detection method according to aspect 17 of the present disclosure includes a translation unit 52 in which a translation reaction from the nucleic acid is performed in a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, and a translation unit 52 capable of capturing a translation product in the reaction solution. a containing step of accommodating the reaction solution in a reaction section 50C having a capture section 24C having a second capture substance disposed on its surface; and a step of accommodating the reaction solution from the nucleic acid in the reaction solution accommodated in the reaction section 50C. and a detection step of detecting a change in physical properties of the surface due to the interaction between the translation product and the second capture substance.
 本開示の態様18に係る検出システムは、前記態様1または8において、前記捕捉部は、核酸プローブを有し、前記核酸プローブは、捕捉対象となる標的分子と結合する塩基配列を有し、前記核酸プローブを構成する複数のリン酸エステルのうちの少なくとも一部に、電気的に中性である官能基、または、正電荷を有する官能基が付加されている。 In the detection system according to aspect 18 of the present disclosure, in the aspect 1 or 8, the capturing section has a nucleic acid probe, the nucleic acid probe has a base sequence that binds to a target molecule to be captured, and An electrically neutral functional group or a positively charged functional group is added to at least some of the plurality of phosphate esters constituting the nucleic acid probe.
 本開示の態様19に係る検出システムは、前記態様18において、前記官能基は、アルキル基、メトキシ基、エトキシ基、ヒドロキシル基、アルデヒド基、ケトン基、アミノ基およびメルカプト基のうちの少なくとも1つであってもよい。 In the detection system according to Aspect 19 of the present disclosure, in Aspect 18, the functional group is at least one of an alkyl group, a methoxy group, an ethoxy group, a hydroxyl group, an aldehyde group, a ketone group, an amino group, and a mercapto group. It may be.
 本開示の態様20に係る検出システムは、前記態様18または19において、電気的に中性である前記官能基、または、正電荷を有する前記官能基はスペーサーを介して前記リン酸エステルのうちの少なくとも一部に付加されていてもよい。 In the detection system according to Aspect 20 of the present disclosure, in Aspect 18 or 19, the electrically neutral functional group or the positively charged functional group is attached to one of the phosphoric esters via a spacer. It may be added to at least a part of it.
 本開示の態様21に係る検出システムは、前記態様18から20において、前記核酸プローブは、pH6からpH8の範囲の水溶液中において、電気的に中性、または、正の電荷を帯びていてもよい。 In the detection system according to aspect 21 of the present disclosure, in aspects 18 to 20, the nucleic acid probe may be electrically neutral or positively charged in an aqueous solution with a pH in the range of pH 6 to pH 8. .
 本開示の態様22に係る検出システムは、前記態様1または8において、前記捕捉部は、核酸プローブを有し、前記核酸プローブは、捕捉対象となる標的分子と結合する塩基配列を有する核酸プローブであって、前記核酸プローブを構成する複数のリン酸エステルのうちの少なくとも一部に、陽イオンを配位させてもよい。 In the detection system according to aspect 22 of the present disclosure, in the aspect 1 or 8, the capturing section has a nucleic acid probe, and the nucleic acid probe is a nucleic acid probe having a base sequence that binds to a target molecule to be captured. A cation may be coordinated to at least a portion of the plurality of phosphate esters constituting the nucleic acid probe.
 本開示の態様23に係る検出システムは、前記態様18から22の何れかにおいて、電気的性質が正電荷である物質が配された固定部に、前記核酸プローブが固定化されているセンサ部を備えてもよい。 A detection system according to Aspect 23 of the present disclosure is a detection system according to any one of Aspects 18 to 22, in which a sensor part in which the nucleic acid probe is immobilized on a fixing part on which a substance having a positive electrical property is disposed is provided. You may prepare.
 本開示の態様24に係る核酸プローブの製造方法は、捕捉対象となる標的分子と結合する塩基配列を有する核酸断片を準備する準備工程と、前記核酸断片が備えている複数のリン酸エステルのうちの少なくとも一部に、電気的に中性である官能基、または、正電荷を有する官能基を付加することによって修飾する修飾工程と、を含む。 A method for producing a nucleic acid probe according to aspect 24 of the present disclosure includes a preparation step of preparing a nucleic acid fragment having a base sequence that binds to a target molecule to be captured; and a modification step of modifying at least a portion of the material by adding an electrically neutral functional group or a positively charged functional group.
 本開示の態様25に係る核酸プローブの製造方法は、前記態様24において、前記標的分子は核酸であり、前記準備工程にて準備される前記核酸断片は、前記標的分子である核酸が有する塩基配列と相補的な塩基配列を有してもよい。 In the method for producing a nucleic acid probe according to Aspect 25 of the present disclosure, in Aspect 24, the target molecule is a nucleic acid, and the nucleic acid fragment prepared in the preparation step has a base sequence that the nucleic acid that is the target molecule has. may have a complementary base sequence.
 本開示の態様26に係るバイオセンサの製造方法は、前記態様24または25に記載の核酸プローブの製造方法によって製造された核酸プローブを、電気的性質が正電荷である物質が配された固定部に固定化する固定化工程を含む。 A method for producing a biosensor according to Aspect 26 of the present disclosure includes a method for producing a biosensor, in which a nucleic acid probe produced by the method for producing a nucleic acid probe according to Aspect 24 or 25 is fixed to a fixing part on which a substance having positive electrical properties is disposed. It includes an immobilization step of immobilizing on.
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。 The invention according to the present disclosure has been described above based on the drawings and examples. However, the invention according to the present disclosure is not limited to each embodiment described above. That is, the invention according to the present disclosure can be modified in various ways within the scope shown in the present disclosure, and the invention according to the present disclosure also applies to embodiments obtained by appropriately combining technical means disclosed in different embodiments. Included in technical scope. In other words, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. It should also be noted that these variations or modifications are included within the scope of this disclosure.
 2          カートリッジ
 3          検出装置
 23         センサユニット(バイオセンサ)
 24、24A~24C 捕捉部(センサ部、バイオセンサ)
 25         参照部(センサ部、バイオセンサ)
 29         取り付け部
 37         温度調節部
 50、50A~50C 反応部
 51、51A、51B 増幅部
 52         翻訳部
 100        検出システム
 241        固定部
 243        核酸プローブ
 F1、F11     第1核酸断片
 F2、F21     第2核酸断片
 F3、F31     第3核酸断片
 R、R1       官能基
 S1         準備工程
 S2         修飾工程
2 Cartridge 3 Detection device 23 Sensor unit (biosensor)
24, 24A to 24C Capture section (sensor section, biosensor)
25 Reference part (sensor part, biosensor)
29 Attachment section 37 Temperature adjustment section 50, 50A to 50C Reaction section 51, 51A, 51B Amplification section 52 Translation section 100 Detection system 241 Fixation section 243 Nucleic acid probe F1, F11 First nucleic acid fragment F2, F21 Second nucleic acid fragment F3, F31 Third nucleic acid fragment R, R1 Functional group S1 Preparation step S2 Modification step

Claims (26)

  1.  所定の配列を有する核酸を増幅させる反応液中で前記核酸の増幅反応を行う増幅部と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部と、を有する反応部と、
     前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置と、
    を備える検出システム。
    It has an amplification section that performs an amplification reaction of the nucleic acid in a reaction solution that amplifies the nucleic acid having a predetermined sequence, and a capture section that has a first capture substance on its surface that can capture the nucleic acid in the reaction solution. a reaction part;
    a detection device capable of detecting a change in the physical properties of the surface due to the interaction between the nucleic acid and the first capture substance;
    A detection system comprising:
  2.  前記増幅部は、前記第1捕捉物質が配され、前記捕捉部として機能する表面を有する、請求項1に記載の検出システム。 The detection system according to claim 1, wherein the amplification section has a surface on which the first capture substance is disposed and functions as the capture section.
  3.  前記反応部において、前記増幅反応と、前記第1捕捉物質による前記反応液中の前記核酸の捕捉とが同時に行われる、
    請求項1または2に記載の検出システム。
    In the reaction section, the amplification reaction and the capture of the nucleic acid in the reaction solution by the first capture substance are performed simultaneously.
    The detection system according to claim 1 or 2.
  4.  前記第1捕捉物質は、前記増幅反応において鋳型となる核酸、および、該増幅反応による増幅産物の核酸のうち少なくともいずれかを捕捉可能である、請求項1から3の何れか1項に記載の検出システム。 4. The first capturing substance is capable of capturing at least one of a nucleic acid serving as a template in the amplification reaction and a nucleic acid of an amplification product from the amplification reaction. detection system.
  5.  前記第1捕捉物質は、前記増幅産物の第1末端部の塩基配列と相補的な第1相補的配列を有する第1核酸断片を含む、請求項4に記載の検出システム。 The detection system according to claim 4, wherein the first capture substance includes a first nucleic acid fragment having a first complementary sequence that is complementary to the base sequence of the first end of the amplification product.
  6.  前記第1捕捉物質は、前記鋳型となる核酸の第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片を含み、前記鋳型となる核酸を捕捉した第2核酸断片の長さは、捕捉した核酸を鋳型とする前記増幅反応によって伸長する、
    請求項4または5に記載の検出システム。
    The first capture substance includes a second nucleic acid fragment having a second complementary sequence that is complementary to the base sequence at the second end of the template nucleic acid, and the second nucleic acid fragment captures the template nucleic acid. The length of is extended by the amplification reaction using the captured nucleic acid as a template.
    The detection system according to claim 4 or 5.
  7.  前記第1捕捉物質として、前記増幅反応によって伸長した核酸鎖の、前記表面から遠い側に位置する第3末端部の塩基配列と相補的な第3相補的配列を有する第3核酸断片をさらに含む、
    請求項1から6の何れか1項に記載の検出システム。
    The first capture substance further includes a third nucleic acid fragment having a third complementary sequence that is complementary to the base sequence at the third end of the nucleic acid chain extended by the amplification reaction, which is located on the side far from the surface. ,
    The detection system according to any one of claims 1 to 6.
  8.  所定の配列を有する核酸およびリボソームを含む反応液中で前記核酸からの翻訳反応が行われる翻訳部と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部と、を有する反応部と、
     前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置と、
    を備える検出システム。
    a translation part in which a translation reaction from the nucleic acid is carried out in a reaction solution containing a nucleic acid having a predetermined sequence and ribosome; a capture part having a second capture substance on its surface capable of capturing translation products in the reaction solution; a reaction section having;
    a detection device capable of detecting a change in the physical properties of the surface due to the interaction between the translation product and the second capture substance;
    A detection system comprising:
  9.  前記反応液は、トランスファーRNA、およびアミノ酸分子を含む、
    請求項8に記載の検出システム。
    The reaction solution contains transfer RNA and amino acid molecules,
    9. Detection system according to claim 8.
  10.  前記物理特性は、表面弾性波、周波数、屈折率、および導電率のうち少なくとも1つである、請求項1から9の何れか1項に記載の検出システム。 The detection system according to any one of claims 1 to 9, wherein the physical property is at least one of surface acoustic waves, frequency, refractive index, and electrical conductivity.
  11.  前記反応部は、SAW(Surface Acoustic Wave)、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)のうちのいずれかを利用するセンサである、請求項1から10の何れか1項に記載の検出システム。 Claims 1 to 10, wherein the reaction section is a sensor that uses any one of SAW (Surface Acoustic Wave), QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), or FET (Field Effect Transistor). The detection system according to any one of the above.
  12.  前記反応部の温度を調節可能な温度調節部をさらに備える、
    請求項1から11の何れか1項に記載の検出システム。
    further comprising a temperature adjustment section that can adjust the temperature of the reaction section;
    12. A detection system according to any one of claims 1 to 11.
  13.  所定の配列を有する核酸を増幅させる反応液を収容する反応部であって、前記反応液中で前記核酸の増幅反応を行う増幅部と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部とを有する反応部と、
     前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部と、
    を備えるカートリッジ。
    A reaction section that contains a reaction solution for amplifying a nucleic acid having a predetermined sequence, an amplification section that performs an amplification reaction of the nucleic acid in the reaction solution, and a first capture that can capture the nucleic acid in the reaction solution. a reaction part having a trapping part with a substance disposed on its surface;
    an attachment part for attaching to a detection device capable of detecting a change in the physical property of the surface due to the interaction between the nucleic acid and the first capture substance;
    Cartridge with.
  14.  所定の配列を有する対象核酸を含む液を収容する反応部であって、前記液中の前記対象核酸を捕捉可能な捕捉物質を表面に配した捕捉部を有する反応部と、
     前記対象核酸と前記捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部と、を備え、
     前記捕捉物質は、前記対象核酸の第1末端部の塩基配列と相補的な第1相補的配列を有する第1核酸断片を含む第1捕捉領域と、前記対象核酸の前記第1末端部とは異なる第2末端部の塩基配列と相補的な第2相補的配列を有する第2核酸断片を含む第2捕捉領域とを有し、
     前記捕捉部は、SAW(Surface Acoustic Wave)、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)のうちのいずれかを利用するセンサである、
    カートリッジ。
    a reaction part containing a liquid containing a target nucleic acid having a predetermined sequence, the reaction part having a capture part on the surface of which a capture substance capable of capturing the target nucleic acid in the liquid;
    an attachment part for attachment to a detection device capable of detecting a change in the physical properties of the surface due to the interaction between the target nucleic acid and the capture substance;
    The capture substance has a first capture region including a first nucleic acid fragment having a first complementary sequence complementary to the base sequence of the first end of the target nucleic acid, and the first end of the target nucleic acid. a second capture region comprising a second nucleic acid fragment having a second complementary sequence complementary to a different base sequence at the second end;
    The capturing unit is a sensor that uses one of SAW (Surface Acoustic Wave), QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), or FET (Field Effect Transistor).
    cartridge.
  15.  所定の配列を有する核酸およびリボソームを含む反応液を収容する反応部であって、前記反応液中で前記核酸からの翻訳反応が行われる翻訳部と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部と、を有する反応部と、
     前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出可能な検出装置に取り付けるための取り付け部と、
    を備えるカートリッジ。
    A reaction part containing a reaction solution containing a nucleic acid having a predetermined sequence and a ribosome, a translation part in which a translation reaction from the nucleic acid is performed in the reaction solution, and a translation part capable of capturing translation products in the reaction solution. a reaction section having a capture section with a second capture substance disposed on its surface;
    an attachment for attachment to a detection device capable of detecting changes in physical properties of the surface due to interaction of the translation product and the second capture substance;
    Cartridge with.
  16.  所定の配列を有する核酸を増幅させる反応液中で前記核酸の増幅反応を行う増幅部と、前記反応液中の前記核酸を捕捉可能な第1捕捉物質を表面に配した捕捉部と、を有する反応部に、前記反応液を収容する収容ステップと、
     前記反応部に収容された前記反応液中で前記核酸の増幅反応を行う増幅ステップと、
     前記核酸と前記第1捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出する検出ステップと、
    を含む検出方法。
    It has an amplification section that performs an amplification reaction of the nucleic acid in a reaction solution that amplifies the nucleic acid having a predetermined sequence, and a capture section that has a first capture substance on its surface that can capture the nucleic acid in the reaction solution. a containing step of containing the reaction solution in a reaction section;
    an amplification step of performing an amplification reaction of the nucleic acid in the reaction solution contained in the reaction section;
    a detection step of detecting a change in physical properties of the surface due to the interaction between the nucleic acid and the first capture substance;
    Detection methods including.
  17.  所定の配列を有する核酸およびリボソームを含む反応液中で前記核酸からの翻訳反応が行われる翻訳部と、前記反応液中の翻訳産物を捕捉可能な第2捕捉物質を表面に配した捕捉部と、を有する反応部に、前記反応液を収容する収容ステップと、
     前記反応部に収容された前記反応液中で前記核酸からの翻訳反応を行う翻訳ステップと、
     前記翻訳産物と前記第2捕捉物質との相互作用に起因する前記表面の物理特性の変化を検出する検出ステップと、
    を含む検出方法。
    a translation part in which a translation reaction from the nucleic acid is carried out in a reaction solution containing a nucleic acid having a predetermined sequence and ribosome; a capture part having a second capture substance on its surface capable of capturing translation products in the reaction solution; accommodating the reaction solution in a reaction section having;
    a translation step of performing a translation reaction from the nucleic acid in the reaction solution contained in the reaction section;
    a detection step of detecting a change in physical properties of the surface due to the interaction of the translation product and the second capture substance;
    Detection methods including.
  18.  前記捕捉部は、核酸プローブを有し、
     前記核酸プローブは、捕捉対象となる標的分子と結合する塩基配列を有する核酸プローブであって、
     前記核酸プローブを構成する複数のリン酸エステルのうちの少なくとも一部に、電気的に中性である官能基、または、正電荷を有する官能基が付加されている、請求項1または請求項8に記載の検出システム。
    The capturing section has a nucleic acid probe,
    The nucleic acid probe is a nucleic acid probe having a base sequence that binds to a target molecule to be captured,
    Claim 1 or Claim 8, wherein an electrically neutral functional group or a positively charged functional group is added to at least some of the plurality of phosphoric acid esters constituting the nucleic acid probe. Detection system described in .
  19.  前記官能基は、アルキル基、メトキシ基、エトキシ基、ヒドロキシル基、アルデヒド基、ヒドロキシル基、アルデヒド基、ケトン基、アミノ基およびメルカプト基のうちの少なくとも1つである、
     請求項18に記載の検出システム。
    The functional group is at least one of an alkyl group, a methoxy group, an ethoxy group, a hydroxyl group, an aldehyde group, a hydroxyl group, an aldehyde group, a ketone group, an amino group, and a mercapto group.
    19. Detection system according to claim 18.
  20.  電気的に中性である前記官能基、または、正電荷を有する前記官能基はスペーサーを介して前記リン酸エステルのうちの少なくとも一部に付加されている、
     請求項18または19に記載の検出システム。
    The electrically neutral functional group or the positively charged functional group is added to at least a portion of the phosphoric acid ester via a spacer.
    20. Detection system according to claim 18 or 19.
  21.  前記核酸プローブは、pH6からpH8の範囲の水溶液中において、電気的に中性、または、正の電荷を帯びている、請求項18から20の何れか1項に記載の検出システム。 The detection system according to any one of claims 18 to 20, wherein the nucleic acid probe is electrically neutral or positively charged in an aqueous solution in a pH range of 6 to 8.
  22.  前記捕捉部は、核酸プローブを有し、
     前記核酸プローブは、捕捉対象となる標的分子と結合する塩基配列を有する核酸プローブであって、
     前記核酸プローブを構成する複数のリン酸エステルのうちの少なくとも一部に、陽イオンを配位させた、
     請求項1または請求項8に記載の検出システム。
    The capturing section has a nucleic acid probe,
    The nucleic acid probe is a nucleic acid probe having a base sequence that binds to a target molecule to be captured,
    A cation is coordinated to at least a portion of the plurality of phosphate esters constituting the nucleic acid probe.
    The detection system according to claim 1 or claim 8.
  23.  電気的性質が正電荷である物質が配された固定部に、前記核酸プローブが固定化されているセンサ部を備える、
    請求項18から22の何れか1項に記載の検出システム。
    a sensor part in which the nucleic acid probe is immobilized on a fixing part in which a substance having a positive electrical property is disposed;
    23. Detection system according to any one of claims 18 to 22.
  24.  捕捉対象となる標的分子と結合する塩基配列を有する核酸断片を準備する準備工程と、
     前記核酸断片が備えている複数のリン酸エステルのうちの少なくとも一部に、電気的に中性である官能基、または、正電荷を有する官能基を付加することによって修飾する修飾工程と、を含む、
     核酸プローブの製造方法。
    a preparation step of preparing a nucleic acid fragment having a base sequence that binds to a target molecule to be captured;
    a modification step of modifying at least some of the plurality of phosphate esters included in the nucleic acid fragment by adding an electrically neutral functional group or a positively charged functional group; include,
    Method for producing nucleic acid probes.
  25.  前記標的分子は核酸であり、
     前記準備工程にて準備される前記核酸断片は、前記標的分子である核酸が有する塩基配列と相補的な塩基配列を有する、
     請求項24に記載の核酸プローブの製造方法。
    the target molecule is a nucleic acid;
    The nucleic acid fragment prepared in the preparation step has a base sequence complementary to the base sequence of the nucleic acid that is the target molecule.
    The method for producing a nucleic acid probe according to claim 24.
  26.  請求項24または25に記載の核酸プローブの製造方法によって製造された核酸プローブを、電気的性質が正電荷である物質が配された固定部に固定化する固定化工程を含む、
     バイオセンサの製造方法。
    An immobilization step of immobilizing the nucleic acid probe produced by the method for producing a nucleic acid probe according to claim 24 or 25 on an immobilization part in which a substance having a positive electric charge is disposed.
    Biosensor manufacturing method.
PCT/JP2023/023497 2022-06-28 2023-06-26 Detection system, cartridge, detection method, method for producing nucleic acid probe, and method for producing biosensor WO2024004917A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022103789 2022-06-28
JP2022-103789 2022-06-28
JP2022-172650 2022-10-27
JP2022172650 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024004917A1 true WO2024004917A1 (en) 2024-01-04

Family

ID=89383033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023497 WO2024004917A1 (en) 2022-06-28 2023-06-26 Detection system, cartridge, detection method, method for producing nucleic acid probe, and method for producing biosensor

Country Status (1)

Country Link
WO (1) WO2024004917A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522858A (en) * 2014-04-25 2017-08-17 ディーエヌエーイー グループ ホールディングス エルティーディー Nucleic acid testing system, apparatus and method
JP2017209051A (en) * 2016-05-25 2017-11-30 株式会社ニコン Method for detecting target biomolecule, substrate for detecting target biomolecule, and apparatus for detecting target biomolecule
US20200309773A1 (en) * 2017-10-16 2020-10-01 Inanobio, Inc. Disease proteome protein arrays and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522858A (en) * 2014-04-25 2017-08-17 ディーエヌエーイー グループ ホールディングス エルティーディー Nucleic acid testing system, apparatus and method
JP2017209051A (en) * 2016-05-25 2017-11-30 株式会社ニコン Method for detecting target biomolecule, substrate for detecting target biomolecule, and apparatus for detecting target biomolecule
US20200309773A1 (en) * 2017-10-16 2020-10-01 Inanobio, Inc. Disease proteome protein arrays and uses thereof

Similar Documents

Publication Publication Date Title
Gouvêa Biosensors for health applications
Lim et al. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases
US9835620B2 (en) Multiple-analyte assay device and system
Luong et al. Biosensor technology: technology push versus market pull
US7473551B2 (en) Nano-mechanic microsensors and methods for detecting target analytes
Kawamura et al. Biosensors
Skládal et al. Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus
JPH05500715A (en) Method for assaying biological target complexes on biosensor surfaces
Tombelli Piezoelectric biosensors for medical applications
Parmin et al. Biosensor recognizes the receptor molecules
Poturnayová et al. DNA aptamers in the detection of leukemia cells by the thickness shear mode acoustics method
WO2024004917A1 (en) Detection system, cartridge, detection method, method for producing nucleic acid probe, and method for producing biosensor
JP2024502865A (en) Methods, assays and systems for detecting target analytes
Shlyapnikov et al. Rapid amplification-free microarray-based ultrasensitive detection of DNA
EP3642355A1 (en) Docked aptamer eab biosensors
US20150010900A1 (en) Multiple- analyte assay device and system
Hammou et al. Application of nanodiagnostics in viral infectious diseases
Madrid et al. Biosensors and nanobiosensors
JP2006322717A (en) Sensor chip and its manufacturing method
Davis et al. General introduction to biosensors and recognition receptors
JP4130391B2 (en) SUBJECT EVALUATION DEVICE, SUBJECT EVALUATION METHOD, AND SUBJECT EVALUATION DEVICE MANUFACTURING METHOD
Jain et al. Potential and practical applications of bioelectrochemical sensors
US20190011401A1 (en) Detecting nucleic acids in impure samples with an acoustic wave sensor
KR101262644B1 (en) kit for detecting target DNA comprising thrombin marker
US11293919B2 (en) Apparatus and method for overcoming minimal mass sensitivity limitations in a shear horizontal surface acoustic wave biosensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831359

Country of ref document: EP

Kind code of ref document: A1