WO2024004903A1 - Prediction device, prediction method, and prediction program - Google Patents

Prediction device, prediction method, and prediction program Download PDF

Info

Publication number
WO2024004903A1
WO2024004903A1 PCT/JP2023/023474 JP2023023474W WO2024004903A1 WO 2024004903 A1 WO2024004903 A1 WO 2024004903A1 JP 2023023474 W JP2023023474 W JP 2023023474W WO 2024004903 A1 WO2024004903 A1 WO 2024004903A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
prediction
time series
predicted value
series data
Prior art date
Application number
PCT/JP2023/023474
Other languages
French (fr)
Japanese (ja)
Inventor
慶 間島
憲明 八幡
琢史 ▲柳▼澤
良平 福間
晴彦 貴島
祥之 白石
吉伸 河原
宙人 山下
Original Assignee
国立研究開発法人量子科学技術研究開発機構
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構, 国立大学法人大阪大学 filed Critical 国立研究開発法人量子科学技術研究開発機構
Publication of WO2024004903A1 publication Critical patent/WO2024004903A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/37Intracranial electroencephalography [IC-EEG], e.g. electrocorticography [ECoG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to, for example, a prediction device, a prediction method, and a prediction program that analyze multidimensional time series data regarding a predetermined event and predict the event from the multidimensional time series data.
  • Non-Patent Document 1 Non-Patent Document 1
  • the present invention aims to provide a prediction device, a prediction method, and a prediction program that can make predictions from multidimensional time series data at high speed and with high accuracy.
  • the present invention includes a data acquisition unit that acquires multidimensional time series data regarding a predetermined event, a decomposition unit that decomposes the multidimensional time series data into matrix data by dynamic mode decomposition, and a feature amount that is calculated from the matrix data. a second acquisition means for calculating a predicted value from the feature amount and a weight calculated in advance based on a kernel method; and a prediction means for predicting the event from the predicted value.
  • the present invention is characterized by a prediction device, a prediction method, and a prediction program.
  • the present invention it is possible to provide a prediction device, a prediction method, and a prediction program that can make predictions from multidimensional time-series data at high speed and with high accuracy.
  • FIG. 4 is an explanatory diagram of motion type classification in the basic technology of the present invention.
  • FIG. 1 is a block diagram showing an example of the configuration of a prediction device according to the present invention.
  • FIG. 2 is a block diagram showing an example of the configuration of a data acquisition section and a result output section of the present embodiment.
  • 5 is a flowchart of prediction processing according to the present invention. A graph showing the relationship between the number of sample data and calculation time in prediction processing. A graph showing the relationship between the number of sample data and calculation time in preprocessing.
  • basic technology a technology (hereinafter referred to as “basic technology”) has been proposed that combines multidimensional time series data regarding a predetermined event with a machine learning algorithm to predict an event from the multidimensional time series data.
  • BMI Brain-Machine Interface
  • BMI predicts or infers (decodes) the movements and instructions that a person conjures up from a person's brain signals, and visualizes brain information, communicates intentions, or operates devices.
  • BMI can be measured by computers, robots (e.g., assist robots powered by electric actuators or artificial muscles attached to the human body), or communication devices based on movements (instructions) predicted from brain signals.
  • Robot-operated BMI that controls external devices such as devices that can display messages or output artificial voices, and visual BMI that converts information obtained from brain signals into visualized image data and presents it. There is.
  • a robot-operated BMI Even people with physical disabilities can operate external devices by imagining (imagining) body movements in their brains.
  • imaging imaging
  • the robot-operated BMI acquires brain signals when the patient is recalling hand movements, This brain signal is decoded to obtain brain activity patterns (brain information) that indicate the content of the movement the patient is recalling, and electrical signals based on the brain information are sent to assist robots (such as artificial arms) that can be controlled by artificial nerves.
  • assist robots such as artificial arms
  • the assist robot executes the motion that the patient has imagined.
  • dynamic mode decomposition is applied to brain wave data output from multiple electrodes used to detect brain signals (brain waves), and the resulting output data is processed using the Grassmann kernel.
  • a technique has been proposed in which the intention of movement (motion) is read out by inputting it into a kernel machine using
  • FIG. 1 is an explanatory diagram of motion type classification in the basic technology of the present invention (cited from Non-Patent Document 1).
  • FIG. 2 is a flowchart of the basic technology of the present invention.
  • ECG electroencephalogram
  • Table 1 shows data such as age, paralysis information, and diagnosis for each of the 11 subjects who participated in the experiment.
  • the age range of the subjects was 13 to 66 years old, and the gender of the subjects was 4 females and 7 males.
  • five of the subjects had different degrees of motor dysfunction and sensory impairment in the upper limbs due to stroke, but these subjects had damage to the sensorimotor cortex, a history of surgery to the motor cortex, or a history of surgery within the sensorimotor cortex. No brain tumor was detected.
  • no motor dysfunction or sensory disorder was observed in 6 patients who exhibited epilepsy symptoms. All participants or their guardians consented to participate in this study with approval from the Ethics Committee of Osaka University Hospital.
  • EEG signal Brain wave data (ECoG signal) was recorded at 1 kHz using an EEG-1200 system (manufactured by Nihon Kohden Industries, Ltd.). Subdural electrodes were placed in the sensorimotor cortex based on clinical need. For each subject, 15-60 electrodes (channels) were implanted. All ECoG signals obtained from each subdural electrode were obtained by subtracting the average of the signals of all subdural electrodes at each time point. This is a common method used to calculate average references (Kubanek et al. 2012 *2). *2: Kubanek J, Miller K J, Ojemann J G, Wolpaw J R and Schalk G 2009 Decoding flexion of individual fingers using electrocorticographic signals in humans J. Neural Eng.6 066001
  • channels with severe noise were identified from each channel, and channels with severe noise were excluded from the analysis (in this example, three channels of subject 7 and one channel of subject 10 were removed). ).
  • each of the motion types M1 to M3 is one of motions such as grasping the hand, opening the hand, grasping with the hand, and raising the thumb of the hand, and different motions are assigned to each motion type.
  • brain wave data EoG signal
  • step S1 brain wave data (ECoG signal) as multidimensional time series data
  • step S2 ECoG signal
  • Dynamic mode decomposition can perform dimension reduction by extracting low-dimensional bases called dynamic modes from high-dimensional time series data. Assuming that the value of the multidimensional ECoG signal at time t is x(t), in dynamic mode decomposition, the signal is approximated as shown in [Equation 1] below.
  • Y is a complex-valued matrix of size D ⁇ P
  • is a complex-valued diagonal matrix of size P ⁇ P
  • z is a P-dimensional complex vector.
  • D represents the number of electrodes of the ECoG signal (number of dimensions of multidimensional time series data)
  • P represents the number of low-dimensional bases (dynamic modes) assumed by the analyst.
  • Y, ⁇ , and z suitable for approximating the given data are calculated based on the given multidimensional time series data x(t).
  • a general algorithm using singular value decomposition was adopted for the calculation, and Y, ⁇ , and z were calculated from the ECoG signal (S execute ) during exercise movement (Rowley et al.
  • step S2 the ECoG signal is decomposed into matrix data by dynamic mode decomposition using the method described above.
  • a Grassmann kernel is calculated from the matrix data obtained in step S2 (step S3).
  • One matrix Y can be obtained by applying dynamic mode decomposition to the ECoG signal accompanying one exercise movement (one trial).
  • the similarity between the ECoG signals of two different trials is evaluated by inputting a pair of corresponding matrices Y to the Grassmann kernel and using the calculated value (Hamm et al. . 2016 *5).
  • *5 Hamm J and Lee D D 2008 Grassmann discriminant analysis: a unifying view on subspace-based learning Proc. 25th Int. Conf. on Machine Learning pp 376-83
  • each column of the matrices Y 1 and Y 2 forms a D-dimensional vector, and represents how much each mode in the dynamic mode decomposition is mixed with which electrode.
  • the degree of similarity between matrices Y 1 and Y 2 is defined as the degree of overlap between the subspace spanned by the P vectors that make up the matrix Y 1 and the subspace spanned by the P vectors that make up the matrix Y 2 . is evaluated using the following formula [Math. 2].
  • Y 1 + and Y 2 + are complex conjugate transposes of Y 1 and Y 2
  • tr( ⁇ ) is a function that returns a trace of an input matrix.
  • daggerfu cannot be written in the text, it is written as " + " (the same applies hereafter).
  • the norm on the second side in the equation represents the Frobenius norm for the matrix.
  • step S3 the Grassmann kernel is calculated using the method described above. Subsequently, the kernel machine calculates the predicted value of the motion type (step S4), outputs the prediction result (step S5), and ends the prediction process.
  • step S4 and step S5 motion types were classified by support vector machine (SVM) using a Grassmann kernel. Furthermore, in this example, the classifier used was one trained individually for each subject by SVM.
  • SVM support vector machine
  • Classification accuracy was evaluated by 10-fold nested cross-validation.
  • the regularization parameters (cost parameters) of the SVM were optimized in the inner loop of nested cross-validation.
  • Classification accuracy was defined by calculating the recall rate for each motor movement type and averaging the values across the three motor movements.
  • the trained kernel machine is given in the form of [Equation 3] below.
  • y is the predicted value of the motion type returned by the kernel machine
  • the function f is a function specified by the algorithm of the kernel machine
  • N is the number of samples of training data.
  • the real number ⁇ n (n 1,...,N)
  • b is a parameter calculated by the kernel machine training algorithm
  • the function k ( ⁇ , ⁇ ) is the Grassmann kernel
  • Y n ⁇ C D ⁇ P is the training data
  • Y test ⁇ C D ⁇ P is the output obtained by subjecting the ECoG signal serving as test data to dynamic mode decomposition.
  • the prediction accuracy (prediction correct answer rate) when predicting movement types from brain wave data was 79%, and the frequency power feature value using fast Fourier transform (FFT) was found to be 79%.
  • the prediction accuracy was significantly improved (67%). That is, by using the basic technology, it is possible to improve the prediction accuracy when predicting an event (in this embodiment, a motion type) from multidimensional time series data, compared to other conventional methods.
  • the present inventor conducted extensive research in order to shorten the calculation time to obtain the predicted value y. Then, he invented a calculation method that has an accuracy comparable to or higher than that of the basic technology and can significantly shorten calculation time, and invented a prediction device, a prediction method, and a prediction program using this calculation method.
  • W is a K-dimensional vector and is a linear weight in the feature space after nonlinear transformation in the kernel method.
  • This weight W includes processing equivalent to the repetitive calculation part in the original kernel machine, and can be calculated in advance before the multidimensional time series data (test data) Y test to be predicted is given. .
  • vec(YY + ) is a function that returns a column vector in which the elements of a given matrix are arranged vertically.
  • ⁇ (Y) in [Equation 7] is a feature amount.
  • FIG. 3 is a block diagram showing an example of the configuration of the prediction device 1.
  • the prediction device 1 is composed of a general-purpose computer (terminal), and is a prediction device (estimation device) for predicting (estimating) an event from multidimensional time series data regarding a predetermined event according to a trained model using AI/machine learning technology. equipment).
  • the prediction device 1 includes an input section 2, a display section 3, a data acquisition section 4, a result output section 5, a control section 6, and an auxiliary storage section 7.
  • Each of the input section 2, display section 3, data acquisition section 4, result output section 5, and auxiliary storage section 7 is connected to the control section 6.
  • the control unit 6 includes a calculation unit 61 and a main storage unit 62, and executes various calculations and control operations in the prediction device 1.
  • the calculation unit 61 is a calculation processing unit including a CPU, an MPU, or the like.
  • the main storage unit 62 includes RAM (DRAM), ROM, and the like.
  • the RAM is used as a work area and a buffer area for the calculation unit 61.
  • the ROM stores a startup program for the prediction device 1, default values for various information, and the like.
  • the input unit 2 includes an input member that receives operational input from the user of the prediction device 1, and an input detection circuit interposed between the input member and the control unit 6.
  • the input member is, for example, a touch panel and/or a hardware operation button or operation key.
  • any type of touch panel can be used, such as a capacitive type, an electromagnetic induction type, a resistive film type, an infrared type, etc.
  • the input detection circuit outputs an operation signal or operation data to the control unit 6 according to the operation of each input member.
  • the display section 3 includes a display and a display control circuit interposed between the display and the control section 6.
  • the display for example, an LCD (liquid crystal display) or an organic EL display can be used.
  • the display control circuit includes a GPU, VRAM, and the like. Under instructions from the control unit 6, the GPU generates display image data in the VRAM for displaying various screens on the display using image generation data stored in the RAM, and displays the generated display image data on the display. Output to.
  • the data acquisition unit 4 acquires multidimensional time series data (multidimensional series signals) regarding a predetermined event.
  • Multidimensional time series data is time series data with a number of dimensions D of 2 or more, such as data reflecting brain nerve activity such as brain waves (brain signals), joint position data, acoustic data, and behavioral data of collective organisms such as human flow. be.
  • the result output unit 5 outputs data (output data) corresponding to the prediction result (event) predicted (estimated) from the acquired multidimensional time series data. If the output data is visualized data, it can be output as image data and displayed on the display unit 3 or an external display device. Further, when the output data is operation data for operating an output device such as a computer or a robot (for example, an external device connected to the prediction device 1), it can be output to the output device as the operation data.
  • FIG. 4 is a block diagram showing an example of the configuration of the data acquisition section 4 and the result output section 5.
  • the example shown in FIG. 4 shows an example of the configuration of the data acquisition section 4 and the result output section 5 when the multidimensional time series data is electroencephalogram data (brain signals).
  • a brain signal measurement unit (brain signal measurement device) 41 is connected to the data acquisition unit 4.
  • an output device 51 is connected to the result output section 5 .
  • the brain signal measurement unit 41 is any device that can measure brain signals indicating the state of human brain activity.
  • a scalp electroencephalograph that measures brain waves by attaching a plurality of electrodes to the scalp can be used.
  • an intracranial electroencephalograph may be used in which electrodes are placed directly on the brain surface to measure cortical electroencephalograms.
  • a magnetic resonance imaging device or a near-infrared spectroscopy device may be used as the brain signal measurement unit 41.
  • a magnetoencephalograph can be used as the brain signal measuring section 41.
  • a magnetoencephalograph is equipped with a plurality of superconducting quantum interference devices (SQUIDs), and measures and acquires brain magnetic field signals at a plurality of positions as brain signals.
  • SQUIDs superconducting quantum interference devices
  • the brain signal measurement unit 41 includes a measurement unit 42, an amplification unit 43, and an analog-digital (hereinafter referred to as A/D in the figures) conversion unit (A/D converter) 44.
  • A/D analog-digital conversion unit
  • the measurement unit 42 is a sensor that reads brain signals from a living body, and outputs an analog signal according to the brain signals.
  • an appropriate sensor is used depending on the type of the brain signal measurement section 41 exemplified above.
  • an electrode can be used as the measurement section 42
  • a SQUID can be used as the measurement section 42.
  • the amplification section 43 amplifies the analog signal output by the measurement section 42.
  • it is realized by an amplifier circuit equipped with an operational amplifier.
  • the A/D converter 44 converts the analog signal amplified by the amplifier 43 into a digital signal (digital value).
  • the A/D converter 44 is realized by, for example, an electronic circuit such as an analog-to-digital converter circuit.
  • the brain signals measured by the brain signal measurement section 41 are output to the data acquisition section 4.
  • predetermined signal processing may be performed in the brain signal measurement section 41 as necessary. For example, noise may be reduced using a noise filter, or may be narrowed down to only signals in a specific frequency band using a bandpass filter.
  • the output device 51 is an output device (operating device) such as a computer or a robot. Output data (data of the event indicated by the predicted value) output from the result output unit 5 is input to the output device 51, and the output device 51 performs appropriate output (operation in this embodiment) according to the output data. For example, if the output device 51 is a robot, it operates according to output data. Further, if the output device 51 is an intention communication device, it outputs the intention according to the output data (displays a message, outputs an artificial voice, etc.). Furthermore, in the case of visual type BMI, the output device 51 is a display device (the display unit 3 or an external display device, etc.), and an image is displayed on the output device 51 according to output data. Note that the prediction device 1 and the output device 51 may be configured as separate devices, or the prediction device 1 and the output device 51 may be configured as one (such as a robot incorporating the prediction device 1).
  • the auxiliary storage unit 7 is configured with other nonvolatile memories such as HDD, SSD, flash memory, and EEPROM, and is used by the control unit 6 (calculation unit 61) to control the operation of the prediction device 1. Stores programs and various data. Various data stored in the auxiliary storage section 7 are developed (read) in the main storage section 62 as needed.
  • the auxiliary storage unit 7 includes at least a main processing program 71 for executing various operations of the prediction device 1, a decomposition program 72 for decomposing multidimensional time series data into matrix data by dynamic mode decomposition, and a decomposition program 72 for decomposing the multidimensional time series data into matrix data by dynamic mode decomposition.
  • a feature amount acquisition program 73 that acquires the amount
  • a predicted value acquisition program 74 that acquires the predicted value from the feature amount and the weight W (weight calculated (operated) in advance based on the kernel method)
  • sample data for prediction e.g., a prediction data management program 75 that manages preset weights W, data (prediction data) necessary for prediction processing of various arithmetic expressions, etc., and predicts events related to multidimensional time series data from predicted values.
  • Prediction program 76 and the like are stored.
  • the auxiliary storage unit 7 stores prediction data 77 necessary for prediction processing, prediction data 78 that is data of an event indicated by a predicted value, and the like.
  • the prediction data 77 includes data such as calculation formulas and algorithms for acquiring feature quantities from matrix data, and data such as calculation formulas and algorithms for acquiring predicted values from feature quantities and weights W. , data such as arithmetic expressions (including weight W data) and algorithms for predicting events related to multidimensional time series data from predicted values. ⁇ Prediction processing flow>
  • FIG. 5 is a flowchart of the prediction method of the present invention.
  • the control unit 6 when the control unit 6 starts the prediction process, it reads the data of the weight W calculated in advance based on the kernel method (step S11), and reads the data of the weight W calculated in advance based on the kernel method (step S11), and reads the data of the weight W calculated in advance based on the kernel method (step S11). signal) (step S12), and decomposes the multidimensional time series data into matrix data by dynamic mode decomposition (step S13).
  • step S12 and step S13 are the same as the processing contents of step S1 and step S2 of the basic technology described above, so a detailed explanation will be omitted.
  • step S14 feature quantities are calculated from the matrix data obtained by dynamic mode decomposition.
  • step S14 the feature amount is calculated from the matrix data using the above-mentioned [Equation 7].
  • step S15 a predicted value is calculated from the weight W and the feature amount obtained in step S14 (step S15), an event is predicted from the predicted value by linear discrimination or linear regression (step S16), and the prediction result is output (step S15). S17), the prediction process ends.
  • step S15 a predicted value is calculated using [Equation 5] described above.
  • FIG. 6 is a graph showing the relationship between the number N of sample data and calculation time in prediction processing. Note that the basic technology 2 in FIG. 6 is an optimization of the basic technology method described above.
  • the prediction accuracy rate was the same accuracy as the basic technology (79%). Met.
  • the basic technology is superior to other methods in terms of prediction accuracy, and the prediction method of the present invention can significantly reduce calculation time while achieving predictions equivalent to the basic technology. It is. That is, by using the prediction method of the present invention, an event can be predicted at high speed (almost in real time) and with high accuracy from multidimensional time series data regarding a predetermined event.
  • the predicted value is calculated using [Equation 5] (predicted value calculation condition), which includes the weight W corresponding to the repeated calculation part in the kernel method used in the basic technology.
  • FIG. 7 is a graph showing the relationship between the number N of sample data and calculation time in preprocessing using linear SVM (L2-SVM) as a machine learning algorithm.
  • the prediction results output from the machine learning algorithm of this example are equivalent to those of the basic technology.
  • FIG. 7 it is possible to shorten the training time (calculation time for training the machine learning algorithm) while constructing a prediction model that is equivalent in basic technology and prediction accuracy. Even if the number N of sample data increases, the increase in training time can be suppressed, and training can be performed using a larger amount of training data than in the past within a realistic amount of time.
  • the present invention has improved versatility compared to the basic technology, and can be combined with various machine learning algorithms even when applied to BMI.
  • the present invention is applicable to various fields other than BMI, including the examples described below.
  • the prediction device of the present invention corresponds to the prediction device 1 of the above embodiment
  • the data acquisition means corresponds to the data acquisition section 4
  • the decomposition means corresponds to the decomposition program 72 and the control section 6 that operates according to the same.
  • the first acquisition means corresponds to the feature value acquisition program 73 and the control unit 6 that operates according to this
  • the second acquisition means corresponds to the predicted value acquisition program 74 and the control unit 6 that operates according to this
  • the prediction means corresponds to the prediction program 76 and the control unit 6 that operates according to the prediction program 76
  • [Math. 1] corresponds to [Math. 5]
  • [Math. 2] corresponds to [Math. 7].
  • the present invention is not limited to this, and various other embodiments are possible. Further, the specific configurations mentioned in the above-described embodiments are merely examples, and can be changed as appropriate depending on the actual product.
  • the multidimensional time series data is electroencephalogram data, but the multidimensional time series data is not limited to electroencephalogram data.
  • the multidimensional time-series data may be data representing the movement state of a group of organisms, such as the flow of people, such as joint position data, acoustic data, etc.
  • multiple joint position data (position data of shoulders, elbows, knees, etc.) of an exercising person changes over time, so it can be treated as multidimensional time-series data.
  • the prediction device 1 stores sample data of human postures, decomposes time-varying joint position data into dynamic modes, calculates feature quantities, and calculates predicted values.
  • a human posture can be predicted (estimated) by performing a series of processes (steps S11 to S17) of the present invention including the following. For example, it can be used to analyze human motion during exercise.
  • the data acquisition section 4 is connected to a device (such as an image analysis device or a three-dimensional coordinate measurement device) that acquires human joint position data
  • the result output section 5 is connected to a display device or a computer for motion analysis. etc. are connected.
  • acoustic data in which the output of multiple different frequency bands changes over time can also be treated as multidimensional time-series data.
  • the prediction device 1 stores sample data of normal sounds given in advance (normal sounds), and performs short-time Fourier transform on the acquired acoustic data.
  • a series of processes according to the present invention are performed on the spectrogram, and the degree of abnormality can be evaluated by comparison with normal sounds (for example, using one-class SVM). Thereby, it is possible to predict (determine) whether the acquired acoustic data is normal or abnormal. For example, it is possible to detect an abnormality in a machine based on the sound of the machine in operation.
  • the data acquisition section 4 is connected to a device (for example, a microphone) that acquires acoustic data (converts sound into an electrical signal), and the result output section 5 is connected to a display device, a computer for acoustic analysis, etc.
  • a safety device for a machine in operation for example, a device for stopping the machine when an abnormality is detected is connected.
  • data that records temporal changes in the number of living things such as humans observed in a certain place (the number of specific living things existing in a certain space or area) over a given period of time is also multidimensional. It can be treated as series data.
  • the prediction device 1 stores sample data during normal times given in advance, performs a series of processes according to the present invention on the obtained data such as the flow of people, and determines the degree of abnormality by comparing with the data during normal times. Evaluation (eg, using a one-class SVM) can be performed. Thereby, it is possible to predict (determine) whether the acquired data such as the flow of people is normal or abnormal.
  • the data acquisition unit 4 is connected to a device that acquires data such as the flow of people (a camera that photographs the observation target location or a human detection sensor that detects the number of living things such as humans existing at the observation target location), and the result is
  • a display device, a computer for analyzing the flow of people, etc. are connected to the output unit 5.
  • resting brain activity data of multiple brain regions measured by an MRI (magnetic resonance imaging) device can also be treated as multidimensional time series data.
  • the prediction device 1 uses pre-given sample data of mental illnesses and sample data for each severity level as training data, performs a series of processes according to the present invention on the acquired resting brain activity data, and uses the training data as training data. and evaluation based on machine learning algorithms (eg, using linear SVM, L1-SVM, logistic regression, forward correlation analysis, neural networks, etc.). This makes it possible to predict (judge) in real time whether a subject has a mental illness and the severity of the mental illness from the acquired resting brain activity data, and in turn, to perform brain information feedback control in real time using the prediction results.
  • the data acquisition unit 4 is connected to an MRI apparatus that acquires resting brain activity data
  • the result output unit 5 is connected to a display device or the like.
  • each of the feature quantities and the predicted value is obtained using an arithmetic expression when obtaining the feature quantity from the matrix data and when obtaining the predicted value from the feature quantity.
  • the conditions for acquiring feature quantities from matrix data (feature quantity acquisition conditions) and the conditions for acquiring predicted values from feature quantities (predicted value acquisition conditions) may be in a table format created from past calculation results, or It can also be configured as an AI technology based on the calculation results.
  • vec(YY + ) in [Equation 7] is a vector in which all the elements of the matrix (YY + ) are arranged vertically, but some elements of the matrix (YY + ) You may also use
  • the present invention is not only provided as a prediction device, but also as a method and program for detecting an event using the prediction device, and a non-temporary (non-transient) tangible storage medium storing the program. can be provided.
  • This invention can be used in industries where multidimensional time series data regarding a predetermined event is analyzed and events are predicted from the multidimensional time series data.

Abstract

Provided are a prediction device, a prediction method, and a prediction program that can make predictions from multidimensional time series data at high speed and with high accuracy. A prediction device 1, which analyzes multidimensional time series data regarding a predetermined event, and predicts events from the multidimensional time series data, includes a predictive means for acquiring multidimensional time series data, decomposes the multidimensional time series data into matrix data using dynamic mode decomposition, acquires features from the matrix data, acquires predicted values from the features and weights calculated in advance on the basis of the kernel method, and predicts events from the predicted values.

Description

予測装置、予測方法、および予測プログラムPrediction device, prediction method, and prediction program
 この発明は、たとえば、所定の事象に関する多次元時系列データを分析して当該多次元時系列データから事象を予測するような予測装置、予測方法、および予測プログラムに関する。 The present invention relates to, for example, a prediction device, a prediction method, and a prediction program that analyze multidimensional time series data regarding a predetermined event and predict the event from the multidimensional time series data.
 近年、多次元時系列データを機械学習アルゴリズムと組み合わせて多次元時系列データに関する事象を予測する技術が提案されている。このような予測方法として、多次元時系列データとしての脳波データに動的モード分解を適用し得られた出力データを、グラスマンカーネルを用いたカーネルマシンに入力し、運動(動作)の意図を読み出す(脳波データから脳情報を読み出す)方法が提案されている(非特許文献1)。 In recent years, technology has been proposed that combines multidimensional time series data with machine learning algorithms to predict events related to multidimensional time series data. As such a prediction method, the output data obtained by applying dynamic mode decomposition to brain wave data as multidimensional time series data is input into a kernel machine using a Grassmann kernel, and the intention of movement (movement) is calculated. A reading method (reading brain information from brain wave data) has been proposed (Non-Patent Document 1).
 上記のような予測方法では、カーネルマシン特有の性質として、推論(予測)時に同様の演算を訓練データ(サンプルデータ)の数だけ繰り返す必要があり、予測にかかる演算時間がサンプルデータの数に比例して長くなってしまう。このため、サンプルデータの数が多い方が予測精度を高めることができる反面、サンプルデータの数を多くすると演算時間が長くなってしまうという課題があった。 In the prediction method described above, a characteristic peculiar to kernel machines is that during inference (prediction), it is necessary to repeat similar operations for the number of training data (sample data), and the calculation time required for prediction is proportional to the number of sample data. It becomes long. For this reason, although the prediction accuracy can be improved by increasing the number of sample data, there is a problem in that increasing the number of sample data increases the computation time.
 この発明は、上述の問題に鑑みて、多次元時系列データから高速かつ高精度で予測することができる予測装置、予測方法、および予測プログラムを提供することを目的とする。 In view of the above problems, the present invention aims to provide a prediction device, a prediction method, and a prediction program that can make predictions from multidimensional time series data at high speed and with high accuracy.
 この発明は、所定の事象に関する多次元時系列データを取得するデータ取得手段と、前記多次元時系列データを動的モード分解により行列データに分解する分解手段と、前記行列データから特徴量を演算する第1取得手段と、前記特徴量、およびカーネル法に基づいて事前に計算されたウエイトから予測値を演算する第2取得手段と、前記予測値から前記事象を予測する予測手段を備えた予測装置、予測方法、および予測プログラムであることを特徴とする。 The present invention includes a data acquisition unit that acquires multidimensional time series data regarding a predetermined event, a decomposition unit that decomposes the multidimensional time series data into matrix data by dynamic mode decomposition, and a feature amount that is calculated from the matrix data. a second acquisition means for calculating a predicted value from the feature amount and a weight calculated in advance based on a kernel method; and a prediction means for predicting the event from the predicted value. The present invention is characterized by a prediction device, a prediction method, and a prediction program.
 この発明により、多次元時系列データから高速かつ高精度で予測することができる予測装置、予測方法、および予測プログラムを提供できる。 According to the present invention, it is possible to provide a prediction device, a prediction method, and a prediction program that can make predictions from multidimensional time-series data at high speed and with high accuracy.
本発明の基礎技術における動作タイプ分類の説明図。FIG. 4 is an explanatory diagram of motion type classification in the basic technology of the present invention. 本発明の基礎技術のフローチャート。Flowchart of the basic technology of the present invention. 本発明の予測装置の構成の一例を示すブロック図。FIG. 1 is a block diagram showing an example of the configuration of a prediction device according to the present invention. 本実施例のデータ取得部および結果出力部の構成の一例を示すブロック図。FIG. 2 is a block diagram showing an example of the configuration of a data acquisition section and a result output section of the present embodiment. 本発明の予測処理のフローチャート。5 is a flowchart of prediction processing according to the present invention. 予測処理におけるサンプルデータの数と演算時間との関係を示すグラフ。A graph showing the relationship between the number of sample data and calculation time in prediction processing. 事前処理におけるサンプルデータの数と演算時間との関係を示すグラフ。A graph showing the relationship between the number of sample data and calculation time in preprocessing.
 以下、この発明の一実施形態について説明する。
<本発明の基礎技術>
An embodiment of the present invention will be described below.
<Basic technology of the present invention>
 近年、所定の事象に関する多次元時系列データを機械学習アルゴリズムと組み合わせて当該多次元時系列データから事象を予測する技術(以下、「基礎技術」という。)が提案されている。 In recent years, a technology (hereinafter referred to as "basic technology") has been proposed that combines multidimensional time series data regarding a predetermined event with a machine learning algorithm to predict an event from the multidimensional time series data.
 このような基礎技術は、たとえばBMI(Brain-Machine  Interface)に適用することができる。BMIは、人間の脳信号からその人間が想起した動きや指示を予測または推定(復号化)し、脳情報の可視化、意思の伝達、または機器の操作などを行う。具体的には、BMIとしては、脳信号から予測された動き(指示)に基づいてコンピュータ、ロボット(たとえば人体に装着される電動アクチュエーターや人工筋肉などの動力を用いたアシストロボット)または意思伝達装置(たとえばメッセージの表示や人工音声の出力が可能な装置)などの外部機器を制御するロボット操作型BMIや、脳信号から得られた情報を可視化した画像データに変換して提示する視覚型BMI等がある。 Such basic technology can be applied to, for example, BMI (Brain-Machine Interface). BMI predicts or infers (decodes) the movements and instructions that a person conjures up from a person's brain signals, and visualizes brain information, communicates intentions, or operates devices. Specifically, BMI can be measured by computers, robots (e.g., assist robots powered by electric actuators or artificial muscles attached to the human body), or communication devices based on movements (instructions) predicted from brain signals. Robot-operated BMI that controls external devices such as devices that can display messages or output artificial voices, and visual BMI that converts information obtained from brain signals into visualized image data and presents it. There is.
 たとえば、ロボット操作型BMIでは、身体が不自由な人でも体の動きを脳で想起(イメージ)することで外部機器を操作することができる。具体的には、手を動かすことができない人(患者)にロボット操作型BMIを適用したとすると、ロボット操作型BMIは、患者が手の運動を想起している時の脳信号を取得し、この脳信号を解読して、患者が想起した運動の内容を示す脳活動のパターン(脳情報)を取得し、脳情報に基づく電気信号を人工神経制御が可能なアシストロボット(たとえば義手など)に送信して、患者が想起した運動をこのアシストロボットに実行させる、というものである。 For example, with a robot-operated BMI, even people with physical disabilities can operate external devices by imagining (imagining) body movements in their brains. Specifically, if a robot-operated BMI is applied to a person (patient) who cannot move their hands, the robot-operated BMI acquires brain signals when the patient is recalling hand movements, This brain signal is decoded to obtain brain activity patterns (brain information) that indicate the content of the movement the patient is recalling, and electrical signals based on the brain information are sent to assist robots (such as artificial arms) that can be controlled by artificial nerves. The assist robot then executes the motion that the patient has imagined.
 基礎技術をBMIに適用した具体例としては、脳信号(脳波)の検出に用いられる複数の電極から出力される脳波データに動的モード分解を適用し、得られた出力データを、グラスマンカーネルを用いたカーネルマシンに入力し、運動(動作)の意図を読み出す技術が提案されている(非特許文献1)。 As a specific example of applying basic technology to BMI, dynamic mode decomposition is applied to brain wave data output from multiple electrodes used to detect brain signals (brain waves), and the resulting output data is processed using the Grassmann kernel. A technique has been proposed in which the intention of movement (motion) is read out by inputting it into a kernel machine using
 図1は本発明の基礎技術における動作タイプ分類の説明図である(非特許文献1より引用)。図2は本発明の基礎技術のフローチャートである。以下、本発明の説明の前に、基礎技術について説明する。特に、多次元時系列データの一例として硬膜下電極を装着した麻痺患者(以下、「被験者」という。)11人分の脳波データ(皮質脳波(Electrocorticogram:ECoG)信号)を取り上げ、これに対する実施例(実験例)を示しながら、基礎技術および本発明の内容を説明する。 FIG. 1 is an explanatory diagram of motion type classification in the basic technology of the present invention (cited from Non-Patent Document 1). FIG. 2 is a flowchart of the basic technology of the present invention. Hereinafter, before explaining the present invention, basic technology will be explained. In particular, we took electroencephalogram data (electrocorticogram (ECoG) signals) of 11 paralyzed patients (hereinafter referred to as "subjects") who were fitted with subdural electrodes as an example of multidimensional time-series data, and implemented the following. The basic technology and the content of the present invention will be explained while showing examples (experimental examples).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1は、実験に参加した被験者11人のそれぞれの年齢や麻痺に関する情報、診断等のデータを示している。被験者の年齢範囲は13~66歳であり、被験者の性別は、女性4例、男性7例である。また、被験者のうち5例は、脳卒中による上肢の運動機能障害および感覚障害の程度が異なっていたが、これらの被験者には、感覚運動皮質の損傷、運動皮質に対する手術歴、ないし感覚運動皮質内の脳腫瘍は認められなかった。また、被験者のうち、てんかん症状を示す患者6例には運動機能障害または感覚障害は認められなかった。参加者またはその保護者は全員、大阪大学病院の倫理委員会の承認を得て本試験に参加することに同意した。なお、本実施例の被験者11例のうち8例は過去の研究に参加した被験者と同じである(Yanagisawa et al. 2012 ※1)。※1:Yanagisawa T, Hirata M, Saitoh Y, Kishima H, Matsushita K,Goto T, Fukuma R, Yokoi H, Kamitani Y and Yoshimine T 2012 Electrocorticographic control of a prosthetic arm in paralyzed patients Ann. Neurol. 71 353-61 Table 1 shows data such as age, paralysis information, and diagnosis for each of the 11 subjects who participated in the experiment. The age range of the subjects was 13 to 66 years old, and the gender of the subjects was 4 females and 7 males. In addition, five of the subjects had different degrees of motor dysfunction and sensory impairment in the upper limbs due to stroke, but these subjects had damage to the sensorimotor cortex, a history of surgery to the motor cortex, or a history of surgery within the sensorimotor cortex. No brain tumor was detected. Furthermore, among the subjects, no motor dysfunction or sensory disorder was observed in 6 patients who exhibited epilepsy symptoms. All participants or their guardians consented to participate in this study with approval from the Ethics Committee of Osaka University Hospital. Note that 8 of the 11 subjects in this example were the same as those who participated in the past study (Yanagisawa et al. 2012 *1). *1: Yanagisawa T, Hirata M, Saitoh Y, Kishima H, Matsushita K, Goto T, Fukuma R, Yokoi H, Kamitani Y and Yoshimine T 2012 Electrocorticographic control of a prosthetic arm in paralyzed patients Ann. Neurol. 71 353-6 1
 脳波データ(ECoG信号)は、EEG-1200システム(日本光電工業株式会社製)によって1kHzで記録した。硬膜下電極は、臨床的必要性に基づいて感覚運動皮質に配置された。各被験者に対して、15~60個の電極(チャネル)が埋め込まれた。そして、各硬膜下電極から取得される全てのECoG信号は、各時点でのすべての硬膜下電極の信号の平均を差し引いたものとした。これは、平均参照を演算するために用いられている一般的な手法である(Kubanek et al. 2012 ※2)。※2:Kubanek J, Miller K J, Ojemann J G, Wolpaw J R and Schalk G 2009 Decoding flexion of individual fingers using electrocorticographic signals in humans J. Neural Eng.6 066001 Brain wave data (ECoG signal) was recorded at 1 kHz using an EEG-1200 system (manufactured by Nihon Kohden Industries, Ltd.). Subdural electrodes were placed in the sensorimotor cortex based on clinical need. For each subject, 15-60 electrodes (channels) were implanted. All ECoG signals obtained from each subdural electrode were obtained by subtracting the average of the signals of all subdural electrodes at each time point. This is a common method used to calculate average references (Kubanek et al. 2012 *2). *2: Kubanek J, Miller K J, Ojemann J G, Wolpaw J R and Schalk G 2009 Decoding flexion of individual fingers using electrocorticographic signals in humans J. Neural Eng.6 066001
 また、各チャネルの中から重度のノイズを含むチャネルを特定し、重度のノイズのあるチャネルは分析から除外した(本実施例では被験者7の3つのチャネルと被験者10の1つのチャネルが削除された)。 In addition, channels with severe noise were identified from each channel, and channels with severe noise were excluded from the analysis (in this example, three channels of subject 7 and one channel of subject 10 were removed). ).
 そして、図1に示すように、本実施例では3種類の動作タイプM1~M3を被験者に行わせ、その間の脳波データを計測した。動作タイプM1~M3のそれぞれは、手を握る、手を開く、手でつかむ、手の親指を立てる等の動作のいずれかであり、それぞれ互いに異なる動作が割り当てられる。 As shown in FIG. 1, in this example, the subject performed three types of motions M1 to M3, and brain wave data during those motions was measured. Each of the motion types M1 to M3 is one of motions such as grasping the hand, opening the hand, grasping with the hand, and raising the thumb of the hand, and different motions are assigned to each motion type.
 実験では、被験者に3つの動作M1~M3のうちのいずれかを指示(動作指示)し、音の合図を3回送り、3回目の音の合図の後に被験者が指示された動作を行うようにした。動作指示は、被験者の前に置かれたディスプレイを用いて伝達した。この動作指示を受け、動作を行い、完了するまでの一連の流れを1試行と呼ぶ。M1~M3の各動作につき、約30~100試行が実施された。 In the experiment, the subject was instructed to perform one of three movements M1 to M3 (action instructions), a sound cue was sent three times, and after the third sound cue, the subject performed the instructed movement. did. Movement instructions were communicated using a display placed in front of the subject. The series of steps from receiving this movement instruction to performing the movement and completing it is called one trial. Approximately 30 to 100 trials were performed for each movement M1 to M3.
 また、本実験では、3回目の音の合図が実行されてから0.5秒後のECoG信号(Sexecute)、および最初(1回目)の音の合図の1.0秒前のECoG信号(Snorm)を使用した。ECoG信号の異なる試行間でのベースライン値の変動を差し引くために、各試行において、Snormを参照しながらSexecuteの正規化を行った。正規化の手法は非特許文献1に従った。以下、正規化後のSexecuteを入力に被験者の行っている運動の動作タイプを識別(予測)する方法を基礎技術に沿って説明する。 In addition, in this experiment, the ECoG signal (S execute ) 0.5 seconds after the third sound cue was executed, and the ECoG signal ( S execute ) 1.0 seconds before the first (first) sound cue. S norm ) was used. In order to subtract the variation in the baseline value between different trials of the ECoG signal, S execute was normalized with reference to S norm in each trial. The normalization method was in accordance with Non-Patent Document 1. Hereinafter, a method for identifying (predicting) the type of exercise performed by a subject using the normalized S execute as input will be explained in accordance with the basic technology.
 図2に示すように、基礎技術では、予測処理を開始すると、上記のような方法で多次元時系列データとしての脳波データ(ECoG信号)を取得し(ステップS1)、ECoG信号を動的モード分解(Dynamic Mode Decomposition)により行列データに分解する(ステップS2)。 As shown in FIG. 2, in the basic technology, when prediction processing is started, brain wave data (ECoG signal) as multidimensional time series data is acquired using the method described above (step S1), and the ECoG signal is converted into a dynamic mode. It is decomposed into matrix data by dynamic mode decomposition (step S2).
 以下、ステップS2(動的モード分解)の内容について簡単に説明する。動的モード分解は、高次元時系列データから動的モードと呼ばれる低次元基底を抽出して次元削減を行うことができる。時刻tでの多次元ECoG信号の値をx(t)として、動的モード分解ではその信号を以下の[数1]のように近似する。 Hereinafter, the contents of step S2 (dynamic mode decomposition) will be briefly explained. Dynamic mode decomposition can perform dimension reduction by extracting low-dimensional bases called dynamic modes from high-dimensional time series data. Assuming that the value of the multidimensional ECoG signal at time t is x(t), in dynamic mode decomposition, the signal is approximated as shown in [Equation 1] below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、YはサイズD×Pの複素数値行列、ΩはサイズP×Pの複素数値対角行列、zはP次元複素数ベクトルである。DはECoG信号の電極数(多次元時系列データの次元数)、Pは解析者が仮定する低次元基底(動的モード)の数を表す。動的モード分解では与えられた多次元時系列データx(t)をもとに、与えられたデータを近似するのに適したY、Ω、zを算出する。本実施例では、その算出に特異値分解を用いる一般的なアルゴリズムを採用し、運動動作中のECoG信号(Sexecute)からY、Ω、zの算出を行った(Rowley et al. 2009 ※3、Schmid 2010 ※4)。※3:  Rowley C W, Mezic I, Bagheri S, Schlatter P and Henningson D S 2009. 641 115-27 ※4: Schmid P 2010 Dynamic mode decomposition of numerical and experimental data J. Fluid Mech. 656 5-28 
 なお、本実施例では、動的モードの数Pは300とした。
Here, Y is a complex-valued matrix of size D×P, Ω is a complex-valued diagonal matrix of size P×P, and z is a P-dimensional complex vector. D represents the number of electrodes of the ECoG signal (number of dimensions of multidimensional time series data), and P represents the number of low-dimensional bases (dynamic modes) assumed by the analyst. In dynamic mode decomposition, Y, Ω, and z suitable for approximating the given data are calculated based on the given multidimensional time series data x(t). In this example, a general algorithm using singular value decomposition was adopted for the calculation, and Y, Ω, and z were calculated from the ECoG signal (S execute ) during exercise movement (Rowley et al. 2009 *3 , Schmid 2010 *4). *3: Rowley C W, Mezic I, Bagheri S, Schlatter P and Henningson D S 2009. 641 115-27 *4: Schmid P 2010 Dynamic mode decomposition of numerical and experimental data J. Fluid Mech. 656 5-28
In this embodiment, the number P of dynamic modes is 300.
 以上のように、ステップS2では、上記のような方法で、ECoG信号を動的モード分解により行列データに分解する。続いて、ステップS2で得られた行列データからグラスマンカーネルを演算する(ステップS3)。 As described above, in step S2, the ECoG signal is decomposed into matrix data by dynamic mode decomposition using the method described above. Next, a Grassmann kernel is calculated from the matrix data obtained in step S2 (step S3).
 以下、ステップS3の内容を説明する。1回の運動動作(1試行)に伴うECoG信号に動的モード分解を適用することで、行列Yを一つ得ることができる。ステップS4においてカーネルマシンを用いる前処理として、異なる2試行のECoG信号の類似度を、対応する行列Yのペアをグラスマンカーネルに入力し、算出された値を用いることで評価する(Hamm et al. 2016 ※5)。※5: Hamm J and Lee D D 2008 Grassmann discriminant analysis: a unifying view on subspace-based learning Proc. 25th Int. Conf. on Machine Learning pp 376-83 Hereinafter, the contents of step S3 will be explained. One matrix Y can be obtained by applying dynamic mode decomposition to the ECoG signal accompanying one exercise movement (one trial). As preprocessing using the kernel machine in step S4, the similarity between the ECoG signals of two different trials is evaluated by inputting a pair of corresponding matrices Y to the Grassmann kernel and using the calculated value (Hamm et al. . 2016 *5). *5: Hamm J and Lee D D 2008 Grassmann discriminant analysis: a unifying view on subspace-based learning Proc. 25th Int. Conf. on Machine Learning pp 376-83
 まず、サイズD×Pの2つの行列Y、Yがあるとする。行列Y、Yの各列はD次元のベクトルを成し、動的モード分解における各モードがどの電極にどの程度混合されているかを表している。グラスマンカーネルでは、行列YとYの類似度を、行列Yを構成するP本のベクトルの張る部分空間と、行列Yを構成するP本のベクトルの張る部分空間との重複度を以下の式[数2]で評価する。 First, assume that there are two matrices Y 1 and Y 2 of size D×P. Each column of the matrices Y 1 and Y 2 forms a D-dimensional vector, and represents how much each mode in the dynamic mode decomposition is mixed with which electrode. In the Grassmann kernel, the degree of similarity between matrices Y 1 and Y 2 is defined as the degree of overlap between the subspace spanned by the P vectors that make up the matrix Y 1 and the subspace spanned by the P vectors that make up the matrix Y 2 . is evaluated using the following formula [Math. 2].
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 ここで、Y ,Y は、Y,Yの複素共役転置であり、tr(・)は入力された行列に対し、そのトレースを返す関数である。なお、短剣府は文中に記載できないため「」と表記している(以下同じ)。式中第二辺のノルムは行列に対するフロベニウスノルムを表す。 Here, Y 1 + and Y 2 + are complex conjugate transposes of Y 1 and Y 2 , and tr(·) is a function that returns a trace of an input matrix. In addition, because daggerfu cannot be written in the text, it is written as " + " (the same applies hereafter). The norm on the second side in the equation represents the Frobenius norm for the matrix.
 ステップS3では、上記のような方法でグラスマンカーネルを演算する。続いて、カーネルマシンにより動作タイプの予測値を演算し(ステップS4)、予測結果を出力し、(ステップS5)、予測処理を終了する。 In step S3, the Grassmann kernel is calculated using the method described above. Subsequently, the kernel machine calculates the predicted value of the motion type (step S4), outputs the prediction result (step S5), and ends the prediction process.
 以下、ステップS4およびステップS5の内容を説明する。本実施例では、グラスマンカーネルを使用したサポートベクトルマシン(SVM)によって動作タイプを分類した。また、本実施例では、分類器は、SVMによって被験者ごとに個別にトレーニングされたものを使用した。 Hereinafter, the contents of step S4 and step S5 will be explained. In this example, motion types were classified by support vector machine (SVM) using a Grassmann kernel. Furthermore, in this example, the classifier used was one trained individually for each subject by SVM.
 分類精度は、10分割ネスト交差検証によって評価した。SVMの正則化パラメータ(コストパラメータ)は、ネスト交差検証の内側のループにおいて最適化された。分類精度は各運動動作タイプに対するリコール率を計算し、その値を3つの運動動作間で平均することで定義した。訓練済みのカーネルマシンは以下の[数3]の形で与えられる。
Figure JPOXMLDOC01-appb-M000006
Classification accuracy was evaluated by 10-fold nested cross-validation. The regularization parameters (cost parameters) of the SVM were optimized in the inner loop of nested cross-validation. Classification accuracy was defined by calculating the recall rate for each motor movement type and averaging the values across the three motor movements. The trained kernel machine is given in the form of [Equation 3] below.
Figure JPOXMLDOC01-appb-M000006
 ここで、yはカーネルマシンが返す運動タイプの予測値であり、関数fはカーネルマシンのアルゴリズムによって指定される関数、Nは訓練データのサンプル数である。実数α(n=1,・・・,N),bはカーネルマシンの訓練アルゴリズムにより演算されるパラメータ、関数k(・,・)はグラスマンカーネル、Y∈CD×Pは訓練データのn番目サンプルのECoG信号に動的モード分解をかけて得られた出力、Ytest∈CD×PはテストデータとなるECoG信号の動的モード分解をかけて得られた出力である。 Here, y is the predicted value of the motion type returned by the kernel machine, the function f is a function specified by the algorithm of the kernel machine, and N is the number of samples of training data. The real number α n (n=1,...,N), b is a parameter calculated by the kernel machine training algorithm, the function k (・,・) is the Grassmann kernel, Y n ∈C D×P is the training data The output obtained by subjecting the ECoG signal of the n-th sample to dynamic mode decomposition, Y test εC D×P is the output obtained by subjecting the ECoG signal serving as test data to dynamic mode decomposition.
 このような基礎技術を用いた実験によれば、脳波データから動作タイプを予測した場合の予測精度(予測正答率)は79%であり、高速フーリエ変換(FFT)を用いた周波数パワーの特徴量による予測精度(67%)よりも大幅に向上した。すなわち、基礎技術を用いることによって、従来から存在する他の方法よりも、多次元時系列データから事象(本実施例では動作タイプ)を予測する際の予測精度を向上させることができる。 According to experiments using such basic technology, the prediction accuracy (prediction correct answer rate) when predicting movement types from brain wave data was 79%, and the frequency power feature value using fast Fourier transform (FFT) was found to be 79%. The prediction accuracy was significantly improved (67%). That is, by using the basic technology, it is possible to improve the prediction accuracy when predicting an event (in this embodiment, a motion type) from multidimensional time series data, compared to other conventional methods.
 しかしながら、基礎技術で用いられるグラスマンカーネルの算出は、演算に時間がかかり、現実的な設定である多次元時系列データの次元数(本実施例では電極の数)D=100,動的モード分解のモード数P=300の場合、0.1秒程度を要する。基礎技術で予測を行う場合、予測値yを得るためにこの演算をN回(サンプルデータの数だけ)繰り返さなければならず、たとえば、N=100の場合は10秒程度を要することになる。すなわち、基礎技術では、サンプルデータの数が多い方が予測精度を高めることができる反面、サンプルデータの数を多くすると演算開始から演算終了までに要する時間(演算時間)が長くなってしまうという課題があった。また、基礎技術では前提としてカーネルマシンを想定しており、カーネルマシンではない機械学習アルゴリズムと組み合わせることができないという課題もあった。
<本発明の予測方法>
However, calculation of the Grassmann kernel used in the basic technology takes a long time to calculate, and the realistic setting is the number of dimensions of multidimensional time series data (number of electrodes in this example) D = 100, dynamic mode. When the number of decomposition modes P=300, it takes about 0.1 seconds. When making a prediction using the basic technology, this calculation must be repeated N times (as many times as the number of sample data) to obtain the predicted value y, and for example, if N=100, it will take about 10 seconds. In other words, with basic technology, a large number of sample data can improve prediction accuracy, but on the other hand, increasing the number of sample data increases the time required from the start of the calculation to the end of the calculation (computation time). was there. Another issue was that the basic technology assumes a kernel machine, and cannot be combined with machine learning algorithms that are not kernel machines.
<Prediction method of the present invention>
 本発明者は、予測値yを得るための演算時間を短縮するべく、鋭意研究を行った。そして、基礎技術と同程度の精度かこれよりも高精度で、かつ大幅に演算時間を短縮できる演算方法を発明し、この演算方法を利用した予測装置、予測方法、および予測プログラムを発明した。 The present inventor conducted extensive research in order to shorten the calculation time to obtain the predicted value y. Then, he invented a calculation method that has an accuracy comparable to or higher than that of the basic technology and can significantly shorten calculation time, and invented a prediction device, a prediction method, and a prediction program using this calculation method.
 以下、本発明の予測方法について説明する。上述の基礎技術の課題は、グラスマンカーネルk(Y,Y)に対し、以下の性質を満たす非線型写像φ(Y)(CD×P→C(Cは複素数,Kは自然数))を構築できれば、解決することができる。上記[数3]に[数4]を代入することにより、[数3]は[数5]のように変形できるからである。また、[数5]中の「W」は、[数6]のように表現される。 The prediction method of the present invention will be explained below. The problem with the basic technology described above is that for Grassmann kernel k(Y 1 , Y 2 ), a nonlinear mapping φ(Y)(C D×P →C K (C is a complex number, K is a natural number) satisfies the following property. )), we can solve the problem. This is because by substituting [Math. 4] into [Math. 3] above, [Math. 3] can be transformed into [Math. 5]. Further, "W" in [Math. 5] is expressed as in [Math. 6].
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、WはK次元のベクトルであり、カーネル法における非線形変換後の特徴空間における線形ウエイトである。このウエイトWは、元のカーネルマシンにおける繰り返し演算部分に相当する処理を含んでおり、予測対象となる多次元時系列データ(テストデータ)Ytestが与えられる前に事前に演算を済ませることができる。 Here, W is a K-dimensional vector and is a linear weight in the feature space after nonlinear transformation in the kernel method. This weight W includes processing equivalent to the repetitive calculation part in the original kernel machine, and can be calculated in advance before the multidimensional time series data (test data) Y test to be predicted is given. .
 このため、[数5]で予測値を演算することによって、[数3]におけるグラスマンカーネルの演算をサンプルデータの数Nの数だけ繰り返す工程を省くことができ、演算量をサンプルデータの数Nの多寡に関係なく、一定に抑えることができる。 Therefore, by calculating the predicted value using [Equation 5], it is possible to omit the step of repeating the Grassmann kernel calculation in [Equation 3] for the number of sample data N, and the amount of calculation can be reduced by the number of sample data N. Regardless of the amount of N, it can be kept constant.
 以下、[数4]を満たす非線型写像φ(Y)の構成方法を示す。一般に出力されるベクトルの次元数Kとして無限大を許容した場合、任意の正定値カーネルに対しそのような非線型写像φ(Y)が存在することは過去の研究によって示されていた(Mercer 1909 ※6)。※6:Mercer, Philosophical Transactions of the Royal Society A, 1909 Hereinafter, a method of constructing the nonlinear mapping φ(Y) that satisfies [Equation 4] will be described. In general, past research has shown that such a nonlinear mapping φ(Y) exists for any positive definite kernel if the number of dimensions K of the output vector is allowed to be infinite (Mercer 1909 *6). *6: Mercer, Philosophical Transactions of the Royal Society A, 1909
 しかしながら、非線型写像φ(Y)の出力先となるベクトル空間の次元数Kを有限の値に抑えつつ、[数4]を満たし、具体的に構成する方法は現時点では知られていない。その方法は以下の[数7]で与えられる。 However, at present, there is no known method for specifically configuring the vector space that satisfies [Equation 4] while suppressing the number of dimensions K of the vector space to which the nonlinear mapping φ(Y) is output to a finite value. The method is given by [Equation 7] below.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、vec(YY)は与えられた行列の要素を縦に並べた列ベクトルを返す関数である。また、[数7]におけるφ(Y)が特徴量である。この構成方法によって、具体的に[数4]を満たす有限次元の非線型写像φ(Y)が得られた。このとき、非線型写像φ(Y)の出力先となるベクトル空間の次元数Kの値は多次元時系列データの次元数Dの2乗となる。もし非線型写像φ(Y)の出力先となるベクトル空間の次元数Kが無限の場合は計算機で[数4]および[数5]の演算を行うことはできず、無限の演算時間を要することになるが、本発明の方法では非線型写像φ(Y)の出力先となるベクトル空間の次元数Kの値を有限に抑えることができる。
 次に、この発明の一実施形態として、上述した演算方法を用いた実施例を図面とともに説明する。
<ハードウェア構成>
Here, vec(YY + ) is a function that returns a column vector in which the elements of a given matrix are arranged vertically. Further, φ(Y) in [Equation 7] is a feature amount. By this construction method, a finite-dimensional nonlinear mapping φ(Y) specifically satisfying [Equation 4] was obtained. At this time, the value of the number of dimensions K of the vector space to which the nonlinear mapping φ(Y) is output is the square of the number of dimensions D of the multidimensional time series data. If the number of dimensions K of the vector space to which the nonlinear mapping φ(Y) is output is infinite, the calculations in [Equation 4] and [Equation 5] cannot be performed on a computer, and an infinite amount of calculation time is required. However, in the method of the present invention, the value of the number of dimensions K of the vector space to which the nonlinear mapping φ(Y) is output can be suppressed to a finite value.
Next, as an embodiment of the present invention, an example using the above-mentioned calculation method will be described with reference to the drawings.
<Hardware configuration>
 図3は、予測装置1の構成の一例を示すブロック図である。予測装置1は、汎用のコンピュータ(端末)で構成され、AI・機械学習技術を利用した学習済モデルに従って所定の事象に関する多次元時系列データから事象を予測(推定)するための予測装置(推定装置)である。 FIG. 3 is a block diagram showing an example of the configuration of the prediction device 1. The prediction device 1 is composed of a general-purpose computer (terminal), and is a prediction device (estimation device) for predicting (estimating) an event from multidimensional time series data regarding a predetermined event according to a trained model using AI/machine learning technology. equipment).
 図3に示すように、予測装置1は、入力部2と、表示部3と、データ取得部4と、結果出力部5と、制御部6と、補助記憶部7とを備える。入力部2、表示部3、データ取得部4、結果出力部5、および補助記憶部7のそれぞれは、制御部6に接続される。 As shown in FIG. 3, the prediction device 1 includes an input section 2, a display section 3, a data acquisition section 4, a result output section 5, a control section 6, and an auxiliary storage section 7. Each of the input section 2, display section 3, data acquisition section 4, result output section 5, and auxiliary storage section 7 is connected to the control section 6.
 制御部6は、演算部61および主記憶部62を含み、予測装置1における各種演算および制御動作を実行する。演算部61は、CPUまたはMPUなどを含む演算処理部である。主記憶部62は、RAM(DRAM)およびROMなどを含む。RAMは、演算部61のワーク領域およびバッファ領域として用いられる。ROMは、予測装置1の起動プログラムや各種情報についてのデフォルト値等を記憶する。 The control unit 6 includes a calculation unit 61 and a main storage unit 62, and executes various calculations and control operations in the prediction device 1. The calculation unit 61 is a calculation processing unit including a CPU, an MPU, or the like. The main storage unit 62 includes RAM (DRAM), ROM, and the like. The RAM is used as a work area and a buffer area for the calculation unit 61. The ROM stores a startup program for the prediction device 1, default values for various information, and the like.
 入力部2は、予測装置1の使用者の操作入力を受け付ける入力部材と、入力部材および制御部6との間に介在する入力検出回路を含む。入力部材は、たとえばタッチパネルまたは/およびハードウェアの操作ボタンないし操作キーである。タッチパネルとしては、静電容量方式、電磁誘導方式、抵抗膜方式、赤外線方式など、任意の方式のものを用いることができる。入力検出回路は、各入力部材の操作に応じた操作信号ないし操作データを制御部6に出力する。 The input unit 2 includes an input member that receives operational input from the user of the prediction device 1, and an input detection circuit interposed between the input member and the control unit 6. The input member is, for example, a touch panel and/or a hardware operation button or operation key. As the touch panel, any type of touch panel can be used, such as a capacitive type, an electromagnetic induction type, a resistive film type, an infrared type, etc. The input detection circuit outputs an operation signal or operation data to the control unit 6 according to the operation of each input member.
 表示部3は、ディスプレイと、ディスプレイおよび制御部6の間に介在する表示制御回路を含む。ディスプレイとしては、たとえばLCD(液晶ディスプレイ)または有機ELディスプレイなどを用いることができる。表示制御回路は、GPUおよびVRAMなどを含む。制御部6の指示の下、GPUは、RAMに記憶された画像生成用のデータを用いてディスプレイに種々の画面を表示するための表示画像データをVRAMに生成し、生成した表示画像データをディスプレイに出力する。 The display section 3 includes a display and a display control circuit interposed between the display and the control section 6. As the display, for example, an LCD (liquid crystal display) or an organic EL display can be used. The display control circuit includes a GPU, VRAM, and the like. Under instructions from the control unit 6, the GPU generates display image data in the VRAM for displaying various screens on the display using image generation data stored in the RAM, and displays the generated display image data on the display. Output to.
 データ取得部4は、所定の事象に関する多次元時系列データ(多次元系列信号)を取得する。多次元時系列データは、脳波等の脳神経活動を反映するデータ(脳信号)、関節位置データ、音響データ、人流等の集団生物の行動データなど、2以上の次元数Dを有する時系列データである。 The data acquisition unit 4 acquires multidimensional time series data (multidimensional series signals) regarding a predetermined event. Multidimensional time series data is time series data with a number of dimensions D of 2 or more, such as data reflecting brain nerve activity such as brain waves (brain signals), joint position data, acoustic data, and behavioral data of collective organisms such as human flow. be.
 結果出力部5は、取得した多次元時系列データから予測(推定)された予測結果(事象)に対応するデータ(出力データ)を出力する。出力データが可視化されたデータであれば、画像データとして出力し、表示部3または外部の表示装置等に出力データを表示させることができる。また、出力データがコンピュータやロボットなどの出力機器(たとえば予測装置1に接続された外部機器)を操作するための操作データである場合には、操作データとして出力機器に出力することができる。 The result output unit 5 outputs data (output data) corresponding to the prediction result (event) predicted (estimated) from the acquired multidimensional time series data. If the output data is visualized data, it can be output as image data and displayed on the display unit 3 or an external display device. Further, when the output data is operation data for operating an output device such as a computer or a robot (for example, an external device connected to the prediction device 1), it can be output to the output device as the operation data.
 以下、本実施例では、予測装置1をBMIに適用した例を説明する。図4はデータ取得部4および結果出力部5の構成の一例を示すブロック図である。図4に示す例は、多次元時系列データが脳波データ(脳信号)である場合のデータ取得部4および結果出力部5の構成の一例を示している。図4に示すように、データ取得部4には、脳信号計測部(脳信号計測装置)41が接続されている。また、結果出力部5には、出力装置51が接続されている。 Hereinafter, in this embodiment, an example in which the prediction device 1 is applied to BMI will be described. FIG. 4 is a block diagram showing an example of the configuration of the data acquisition section 4 and the result output section 5. As shown in FIG. The example shown in FIG. 4 shows an example of the configuration of the data acquisition section 4 and the result output section 5 when the multidimensional time series data is electroencephalogram data (brain signals). As shown in FIG. 4, a brain signal measurement unit (brain signal measurement device) 41 is connected to the data acquisition unit 4. Furthermore, an output device 51 is connected to the result output section 5 .
 脳信号計測部41は、人間の脳活動の状態を示す脳信号を計測することができる任意の装置である。脳信号計測部41としては、たとえば頭皮上に複数の電極を貼付して脳波を計測する頭皮脳波計を用いることができる。また、電極を脳表上へ直接留置して皮質脳波を計測する頭蓋内脳波計が用いられてもよい。さらに別の例としては、脳信号計測部41として磁気共鳴画像装置又は近赤外線スペクトロスコピー装置が用いられてもよい。また、脳信号計測部41としては、脳磁計を用いることができる。脳磁計は、複数の超電導量子干渉計(SQUID:superconducting quantum interference device)を備え、複数の位置における脳磁界信号を脳信号として測定し取得する。 The brain signal measurement unit 41 is any device that can measure brain signals indicating the state of human brain activity. As the brain signal measurement unit 41, for example, a scalp electroencephalograph that measures brain waves by attaching a plurality of electrodes to the scalp can be used. Alternatively, an intracranial electroencephalograph may be used in which electrodes are placed directly on the brain surface to measure cortical electroencephalograms. As yet another example, a magnetic resonance imaging device or a near-infrared spectroscopy device may be used as the brain signal measurement unit 41. Further, as the brain signal measuring section 41, a magnetoencephalograph can be used. A magnetoencephalograph is equipped with a plurality of superconducting quantum interference devices (SQUIDs), and measures and acquires brain magnetic field signals at a plurality of positions as brain signals.
 脳信号計測部41は、計測部42、増幅部43、及びアナログ-デジタル(analog-degital、以下、及び図ではA/Dと表記)変換部(A/D変換器)44を備える。 The brain signal measurement unit 41 includes a measurement unit 42, an amplification unit 43, and an analog-digital (hereinafter referred to as A/D in the figures) conversion unit (A/D converter) 44.
 計測部42は、脳信号を生体から読み取るセンサであり、脳信号に応じたアナログ信号を出力する。計測部42としては、上記に例示した脳信号計測部41の形式に応じて適宜のセンサが用いられる。たとえば脳波計であれば計測部42として電極を用いることができ、脳磁計であれば計測部42としてSQUIDを用いることができる。増幅部43は、計測部42が出力したアナログ信号を増幅する。たとえばオペアンプを備える増幅回路などで実現される。A/D変換部44は、増幅部43で増幅されたアナログ信号をデジタル信号(デジタル値)に変換する。A/D変換部44は、たとえばアナログ-デジタル変換回路等の電子回路で実現される。 The measurement unit 42 is a sensor that reads brain signals from a living body, and outputs an analog signal according to the brain signals. As the measurement section 42, an appropriate sensor is used depending on the type of the brain signal measurement section 41 exemplified above. For example, in the case of an electroencephalogram, an electrode can be used as the measurement section 42, and in the case of a magnetoencephalogram, a SQUID can be used as the measurement section 42. The amplification section 43 amplifies the analog signal output by the measurement section 42. For example, it is realized by an amplifier circuit equipped with an operational amplifier. The A/D converter 44 converts the analog signal amplified by the amplifier 43 into a digital signal (digital value). The A/D converter 44 is realized by, for example, an electronic circuit such as an analog-to-digital converter circuit.
 脳信号計測部41で計測された脳信号は、データ取得部4へ出力される。なお、データ取得部4へ出力される前に必要に応じて脳信号計測部41において所定の信号処理がなされてもよい。たとえばノイズフィルタを用いてノイズが低減されてもよいし、バンドパスフィルタを用いて特定の周波数帯域の信号のみに絞られてもよい。 The brain signals measured by the brain signal measurement section 41 are output to the data acquisition section 4. Note that, before being output to the data acquisition section 4, predetermined signal processing may be performed in the brain signal measurement section 41 as necessary. For example, noise may be reduced using a noise filter, or may be narrowed down to only signals in a specific frequency band using a bandpass filter.
 出力装置51は、コンピュータやロボットなどの出力機器(動作器機)である。出力装置51には、結果出力部5から出力される出力データ(予測値が示す事象のデータ)が入力され、出力装置51は、出力データに従って適宜の出力(本実施例では動作)を行う。たとえば、出力装置51がロボットであれば、出力データに従って動作する。また、出力装置51が意思伝達装置であれば、出力データに従って意思を発出する(メッセージの表示や人工音声の出力などを行う)。さらに、視覚型BMIであれば、出力装置51が表示装置(表示部3または外部の表示装置等)であり、出力データに従って出力装置51に画像を表示する。なお、予測装置1と出力装置51は別の機器として構成されてもよいし、予測装置1と出力装置51が一体となった構成(予測装置1を組み込んだロボット等)でもよい。 The output device 51 is an output device (operating device) such as a computer or a robot. Output data (data of the event indicated by the predicted value) output from the result output unit 5 is input to the output device 51, and the output device 51 performs appropriate output (operation in this embodiment) according to the output data. For example, if the output device 51 is a robot, it operates according to output data. Further, if the output device 51 is an intention communication device, it outputs the intention according to the output data (displays a message, outputs an artificial voice, etc.). Furthermore, in the case of visual type BMI, the output device 51 is a display device (the display unit 3 or an external display device, etc.), and an image is displayed on the output device 51 according to output data. Note that the prediction device 1 and the output device 51 may be configured as separate devices, or the prediction device 1 and the output device 51 may be configured as one (such as a robot incorporating the prediction device 1).
 図3に戻って、補助記憶部7は、HDD、SSD、フラッシュメモリ、EEPROMなどの他の不揮発性メモリで構成され、制御部6(演算部61)が予測装置1の動作を制御するためのプログラムおよび各種データなどを記憶する。補助記憶部7に記憶されている各種データは、必要に応じて主記憶部62に展開される(読み出される)。 Returning to FIG. 3, the auxiliary storage unit 7 is configured with other nonvolatile memories such as HDD, SSD, flash memory, and EEPROM, and is used by the control unit 6 (calculation unit 61) to control the operation of the prediction device 1. Stores programs and various data. Various data stored in the auxiliary storage section 7 are developed (read) in the main storage section 62 as needed.
 補助記憶部7は、少なくとも、予測装置1の各種動作を実行するためのメイン処理プログラム71と、多次元時系列データを動的モード分解により行列データに分解する分解プログラム72と、行列データから特徴量を取得する特徴量取得プログラム73と、特徴量とウエイトW(カーネル法に基づいて事前に計算(演算)されたウエイト)から予測値を取得する予測値取得プログラム74と、予測用のサンプルデータ、事前に設定されるウエイトW、および各種演算式の予測処理に必要なデータ(予測用データ)等を管理する予測用データ管理プログラム75と、予測値から多次元時系列データに関する事象を予測する予測プログラム76等を記憶する。 The auxiliary storage unit 7 includes at least a main processing program 71 for executing various operations of the prediction device 1, a decomposition program 72 for decomposing multidimensional time series data into matrix data by dynamic mode decomposition, and a decomposition program 72 for decomposing the multidimensional time series data into matrix data by dynamic mode decomposition. A feature amount acquisition program 73 that acquires the amount, a predicted value acquisition program 74 that acquires the predicted value from the feature amount and the weight W (weight calculated (operated) in advance based on the kernel method), and sample data for prediction. , a prediction data management program 75 that manages preset weights W, data (prediction data) necessary for prediction processing of various arithmetic expressions, etc., and predicts events related to multidimensional time series data from predicted values. Prediction program 76 and the like are stored.
 また、補助記憶部7は、予測処理に必要な予測用データ77と、予測値が示す事象のデータである予測データ78等を記憶する。本実施例では、予測用データ77には、行列データから特徴量を取得するための演算式やアルゴリズム等のデータ、特徴量およびウエイトWから予測値を取得するための演算式やアルゴリズム等のデータ、予測値から多次元時系列データに関する事象を予測するための演算式(ウエイトWのデータを含む)やアルゴリズム等のデータ等が含まれる。
<予測処理フロー>
Further, the auxiliary storage unit 7 stores prediction data 77 necessary for prediction processing, prediction data 78 that is data of an event indicated by a predicted value, and the like. In this embodiment, the prediction data 77 includes data such as calculation formulas and algorithms for acquiring feature quantities from matrix data, and data such as calculation formulas and algorithms for acquiring predicted values from feature quantities and weights W. , data such as arithmetic expressions (including weight W data) and algorithms for predicting events related to multidimensional time series data from predicted values.
<Prediction processing flow>
 このように構成された予測装置1では、制御部6が上記の各プログラムに従って多次元時系列データから事象を予測するための予測処理を行う。図5は本発明の予測方法のフローチャートである。図5に示すように、制御部6は、予測処理を開始すると、カーネル法に基づいて事前に演算されたウエイトWのデータを読み出し(ステップS11)、多次元時系列データ(本実施例ではECoG信号)を取得し(ステップS12)、多次元時系列データを動的モード分解により行列データに分解する(ステップS13)。なお、ステップS12およびステップS13のそれぞれの処理内容は、上述した基礎技術のステップS1およびステップS2のそれぞれの処理内容と同様であるので詳しい説明を省略する。 In the prediction device 1 configured in this manner, the control unit 6 performs prediction processing for predicting events from multidimensional time series data according to each of the programs described above. FIG. 5 is a flowchart of the prediction method of the present invention. As shown in FIG. 5, when the control unit 6 starts the prediction process, it reads the data of the weight W calculated in advance based on the kernel method (step S11), and reads the data of the weight W calculated in advance based on the kernel method (step S11), and reads the data of the weight W calculated in advance based on the kernel method (step S11). signal) (step S12), and decomposes the multidimensional time series data into matrix data by dynamic mode decomposition (step S13). Note that the processing contents of step S12 and step S13 are the same as the processing contents of step S1 and step S2 of the basic technology described above, so a detailed explanation will be omitted.
 続いて、動的モード分解により得られた行列データから特徴量を演算する(ステップS14)。ステップS14では、上述した[数7]により行列データから特徴量が演算される。 Next, feature quantities are calculated from the matrix data obtained by dynamic mode decomposition (step S14). In step S14, the feature amount is calculated from the matrix data using the above-mentioned [Equation 7].
 続いて、ウエイトWおよびステップS14で得られた特徴量から予測値を演算し(ステップS15)、線形判別または線形回帰によって予測値から事象を予測し(ステップS16)、予測結果を出力し(ステップS17)、予測処理を終了する。ステップS15では、上述した[数5]により予測値が演算される。 Next, a predicted value is calculated from the weight W and the feature amount obtained in step S14 (step S15), an event is predicted from the predicted value by linear discrimination or linear regression (step S16), and the prediction result is output (step S15). S17), the prediction process ends. In step S15, a predicted value is calculated using [Equation 5] described above.
 図6は予測処理におけるサンプルデータの数Nと演算時間との関係を示すグラフである。なお、図6における基礎技術2は、上述した基礎技術の方法を最適化したものである。 FIG. 6 is a graph showing the relationship between the number N of sample data and calculation time in prediction processing. Note that the basic technology 2 in FIG. 6 is an optimization of the basic technology method described above.
 実際に、本発明の予測方法を用いて現実的な状況における計算機実験(多次元時系列データの次元数D=100,動的モード分解のモード数P=300)を行ったところ、グラスマンカーネル(数2)の1回の演算時間は0.01秒程度であった。また、上述のとおり、基礎技術ではサンプルデータの数Nに比例して、予測にかかる演算時間が伸びてしまう(上記計算機実験と同じ条件であれば10秒程度)という問題があった。これに対し、本発明の予測方法では[数5]による1回の内積計算だけで済むため、図6に示すように、本発明の演算方法ではサンプルデータの数Nが増加したとしてもほぼ一定に抑えることができる。 In fact, when we conducted a computer experiment in a realistic situation using the prediction method of the present invention (number of dimensions of multidimensional time series data D = 100, number of modes of dynamic mode decomposition P = 300), we found that the Grassmann kernel The time required for one calculation of (Equation 2) was approximately 0.01 seconds. Furthermore, as described above, the basic technology has a problem in that the calculation time required for prediction increases in proportion to the number N of sample data (about 10 seconds under the same conditions as the computer experiment described above). On the other hand, the prediction method of the present invention requires only one inner product calculation using [Equation 5], so as shown in FIG. can be suppressed to
 また、基礎技術で用いたデータと同じ脳波データ(11人の脳波データ)を用いた場合の本発明の予測方法の予測精度を評価した結果、予測正答率は基礎技術と同じ精度(79%)であった。上述のように、基礎技術は予測精度の観点では他の方法よりも優れているものであり、本発明の予測方法は基礎技術と同等の予測を実現しつつ、演算時間を大幅に短縮できるものである。すなわち、本発明の予測方法を用いることによって、所定の事象に関する多次元時系列データから、高速(ほぼリアルタイム)かつ高精度で事象を予測することができる。 In addition, as a result of evaluating the prediction accuracy of the prediction method of the present invention when using the same brain wave data as the data used in the basic technology (brain wave data of 11 people), the prediction accuracy rate was the same accuracy as the basic technology (79%). Met. As mentioned above, the basic technology is superior to other methods in terms of prediction accuracy, and the prediction method of the present invention can significantly reduce calculation time while achieving predictions equivalent to the basic technology. It is. That is, by using the prediction method of the present invention, an event can be predicted at high speed (almost in real time) and with high accuracy from multidimensional time series data regarding a predetermined event.
 特に、本発明の予測方法では、基礎技術で用いられたカーネル法における繰り返し演算部分に相当するウエイトWを含む[数5](予測値演算条件)を用いて予測値を演算するようにしたため、演算の高速化を実現することができた。また、非線型写像φ(Y)の出力先となるベクトル空間の次元数Kを有限の値に抑えつつ、[数4]を満たし、具体的に構成する[数7](特徴量演算条件)を発明したからこそ、本発明の予測方法が実現されたものである。 In particular, in the prediction method of the present invention, the predicted value is calculated using [Equation 5] (predicted value calculation condition), which includes the weight W corresponding to the repeated calculation part in the kernel method used in the basic technology. We were able to achieve faster calculations. In addition, while suppressing the number of dimensions K of the vector space that is the output destination of the nonlinear mapping φ(Y) to a finite value, it satisfies [Equation 4] and specifically configures [Equation 7] (feature calculation conditions). The prediction method of the present invention was realized precisely because of the invention.
 さらに、[数5]の形はφ(Ytest)を特徴量ベクトルとして用いた形となっているため、単一有限次元の特徴量ベクトルを入力として仮定する任意の機械学習アルゴリズムと組み合わせることができる。たとえば、[数7]によって得られた特徴量ベクトルにスパース正則化付き機械学習アルゴリズム(L1-SVM)を用いた結果、予測正答率は82%であり、基礎技術よりもさらに予測精度が向上した。また、任意の機械学習アルゴリズムと組み合わせられることから、事前処理(チューニング処理、訓練)にかかる演算時間を短縮することもできる。図7は機械学習アルゴリズムとして線形SVM(L2-SVM)を用い、事前処理におけるサンプルデータの数Nと演算時間との関係を示したグラフである。[数4]の関係があるため、本例の機械学習アルゴリズムから出力される予測結果は基礎技術のものと同等となる。図7に示すように、基礎技術と予測精度において同等な予測モデルを構築しつつ、訓練時間(機械学習アルゴリズムの訓練のための演算時間)を短縮することができる。サンプルデータの数Nが増加したとしても訓練時間の増加を抑制することができ、現実的な時間内において従来より多くの量の訓練データを用いての訓練が可能となる。このように、本発明は基礎技術に比べて汎用性も向上しており、BMIに適用する場合でも様々な機械学習アルゴリズムと組み合わせることができる。また、本発明はBMI以外にも、以下に述べる例を含む様々な分野に応用可能である。 Furthermore, since the form of [Equation 5] uses φ(Y test ) as the feature vector, it can be combined with any machine learning algorithm that assumes a single finite-dimensional feature vector as an input. can. For example, as a result of using a machine learning algorithm with sparse regularization (L1-SVM) on the feature vector obtained by [Equation 7], the prediction accuracy rate was 82%, and the prediction accuracy was further improved than the basic technology. . Furthermore, since it can be combined with any machine learning algorithm, the calculation time required for pre-processing (tuning processing, training) can be reduced. FIG. 7 is a graph showing the relationship between the number N of sample data and calculation time in preprocessing using linear SVM (L2-SVM) as a machine learning algorithm. Because of the relationship expressed in [Equation 4], the prediction results output from the machine learning algorithm of this example are equivalent to those of the basic technology. As shown in FIG. 7, it is possible to shorten the training time (calculation time for training the machine learning algorithm) while constructing a prediction model that is equivalent in basic technology and prediction accuracy. Even if the number N of sample data increases, the increase in training time can be suppressed, and training can be performed using a larger amount of training data than in the past within a realistic amount of time. In this way, the present invention has improved versatility compared to the basic technology, and can be combined with various machine learning algorithms even when applied to BMI. Moreover, the present invention is applicable to various fields other than BMI, including the examples described below.
 この発明の予測装置は上記実施形態の予測装置1に対応し、以下同様に、データ取得手段はデータ取得部4に対応し、分解手段は、分解プログラム72およびこれに従って動作する制御部6に対応し、第1取得手段は、特徴量取得プログラム73およびこれに従って動作する制御部6に対応し、第2取得手段は、予測値取得プログラム74およびこれに従って動作する制御部6に対応し、予測手段は、予測プログラム76およびこれに従って動作する制御部6に対応し、[数1]は[数5]に対応し、[数2]は[数7]に対応するが、この発明は本実施形態に限られず他の様々な実施形態とすることができる。また、上述の実施形態で挙げた具体的な構成等は一例であり、実際の製品に応じて適宜変更することが可能である。 The prediction device of the present invention corresponds to the prediction device 1 of the above embodiment, the data acquisition means corresponds to the data acquisition section 4, and the decomposition means corresponds to the decomposition program 72 and the control section 6 that operates according to the same. However, the first acquisition means corresponds to the feature value acquisition program 73 and the control unit 6 that operates according to this, and the second acquisition means corresponds to the predicted value acquisition program 74 and the control unit 6 that operates according to this, and the prediction means corresponds to the prediction program 76 and the control unit 6 that operates according to the prediction program 76, [Math. 1] corresponds to [Math. 5], and [Math. 2] corresponds to [Math. 7]. However, the present invention is not limited to this, and various other embodiments are possible. Further, the specific configurations mentioned in the above-described embodiments are merely examples, and can be changed as appropriate depending on the actual product.
 たとえば、上述の実施形態では、多次元時系列データが脳波データである場合を例に挙げて説明したが、多次元時系列データは脳波データに限定されない。たとえば、多次元時系列データは、関節位置データ、音響データ等、人流など集団生物の運動状態を表すデータであってもよい。 For example, in the above-described embodiment, the multidimensional time series data is electroencephalogram data, but the multidimensional time series data is not limited to electroencephalogram data. For example, the multidimensional time-series data may be data representing the movement state of a group of organisms, such as the flow of people, such as joint position data, acoustic data, etc.
 具体的には、運動する人間の複数の関節位置データ(肩、肘、膝等の位置データ)は時間変化するため、多次元時系列データとして扱うことができる。この場合、予測装置1は、人間の姿勢(ポーズ)のサンプルデータを記憶しておき、時間変化する複数の関節位置データを動的モード分解し、特徴量を演算し、予測値を演算することを含む本発明の一連の処理(ステップS11~S17)を行うことによって、人間の姿勢を予測(推定)することができる。たとえば、運動中の人間の動作の解析等に用いることができる。この場合、データ取得部4には、人間の関節位置データを取得する装置(画像解析装置や3次元座標測定装置など)が接続され、結果出力部5には、表示装置や動作解析用のコンピュータなどが接続される。 Specifically, multiple joint position data (position data of shoulders, elbows, knees, etc.) of an exercising person changes over time, so it can be treated as multidimensional time-series data. In this case, the prediction device 1 stores sample data of human postures, decomposes time-varying joint position data into dynamic modes, calculates feature quantities, and calculates predicted values. A human posture can be predicted (estimated) by performing a series of processes (steps S11 to S17) of the present invention including the following. For example, it can be used to analyze human motion during exercise. In this case, the data acquisition section 4 is connected to a device (such as an image analysis device or a three-dimensional coordinate measurement device) that acquires human joint position data, and the result output section 5 is connected to a display device or a computer for motion analysis. etc. are connected.
 また、複数の異なる周波数帯の出力が時間変化する音響データも多次元時系列データとして扱うことができる。この場合、予測装置1は、あらかじめ与えられた正常時の音(正常音)のサンプルデータを記憶しておき、取得した音響データに短時間フーリエ変換(short time Fourier transform)をかけて得られたスペクトログラムに対し本発明の一連の処理を行い、正常音との比較による異常度の評価(たとえばone-class SVMを使用する)を行うことができる。これにより、取得した音響データが正常か、異常かを予測(判断)することができる。たとえば、動作中の機械の音に基づいて、当該機械の異常検知を行うことができる。この場合、データ取得部4には、音響データを取得する(音を電気信号に変換する)装置(たとえばマイクロフォンなど)が接続され、結果出力部5には、表示装置、音響解析用のコンピュータや動作中の機械の安全装置(たとえば異常が検知された場合に当該機械を停止させるための装置)などが接続される。 Furthermore, acoustic data in which the output of multiple different frequency bands changes over time can also be treated as multidimensional time-series data. In this case, the prediction device 1 stores sample data of normal sounds given in advance (normal sounds), and performs short-time Fourier transform on the acquired acoustic data. A series of processes according to the present invention are performed on the spectrogram, and the degree of abnormality can be evaluated by comparison with normal sounds (for example, using one-class SVM). Thereby, it is possible to predict (determine) whether the acquired acoustic data is normal or abnormal. For example, it is possible to detect an abnormality in a machine based on the sound of the machine in operation. In this case, the data acquisition section 4 is connected to a device (for example, a microphone) that acquires acoustic data (converts sound into an electrical signal), and the result output section 5 is connected to a display device, a computer for acoustic analysis, etc. A safety device for a machine in operation (for example, a device for stopping the machine when an abnormality is detected) is connected.
 さらに、或る場所において観測されるヒト等の生物の数(或る空間または領域に存在する特定の生物の数)の時間変化を所定時間の間記録したデータ(人流等データ)も多次元時系列データとして扱うことができる。この場合、予測装置1は、あらかじめ与えられた正常時のサンプルデータを記憶しておき、取得した人流等データに対し本発明の一連の処理を行い、正常時のデータとの比較による異常度の評価(たとえばone-class SVMを使用する)を行うことができる。これにより、取得した人流等データが正常か、異常かを予測(判断)することができる。この場合、データ取得部4には、人流等データを取得する装置(観測対象場所を撮影するカメラまたは観測対象場所に存在するヒト等の生物の数を検出する人検出センサ)が接続され、結果出力部5には、表示装置、人流等解析用のコンピュータなどが接続される。 Furthermore, data that records temporal changes in the number of living things such as humans observed in a certain place (the number of specific living things existing in a certain space or area) over a given period of time (data such as human flow data) is also multidimensional. It can be treated as series data. In this case, the prediction device 1 stores sample data during normal times given in advance, performs a series of processes according to the present invention on the obtained data such as the flow of people, and determines the degree of abnormality by comparing with the data during normal times. Evaluation (eg, using a one-class SVM) can be performed. Thereby, it is possible to predict (determine) whether the acquired data such as the flow of people is normal or abnormal. In this case, the data acquisition unit 4 is connected to a device that acquires data such as the flow of people (a camera that photographs the observation target location or a human detection sensor that detects the number of living things such as humans existing at the observation target location), and the result is A display device, a computer for analyzing the flow of people, etc. are connected to the output unit 5.
 さらに、MRI(magnetic resonance imaging)装置によって計測した複数の脳部位の安静時脳活動データも多次元時系列データとして扱うことができる。この場合、予測装置1は、あらかじめ与えられた精神疾患のサンプルデータや重症度毎のサンプルデータを訓練データとして用い、取得した安静時脳活動データに対し本発明の一連の処理を行い、訓練データと機械学習アルゴリズムに基づく評価(たとえば線形SVMやL1-SVM、ロジスティック回帰、正順相関分析、ニューラルネットワークなどを使用する)を行うことができる。これにより、取得した安静時脳活動データから被験者が精神疾患かどうかや精神疾患の重症度をリアルタイム予測(判断)することができ、ひいては予測結果を用いてリアルタイムで脳情報フィードバック制御を行うことができる。この場合、データ取得部4には、安静時脳活動データを取得するMRI装置が接続され、結果出力部5には、表示装置などが接続される。 Furthermore, resting brain activity data of multiple brain regions measured by an MRI (magnetic resonance imaging) device can also be treated as multidimensional time series data. In this case, the prediction device 1 uses pre-given sample data of mental illnesses and sample data for each severity level as training data, performs a series of processes according to the present invention on the acquired resting brain activity data, and uses the training data as training data. and evaluation based on machine learning algorithms (eg, using linear SVM, L1-SVM, logistic regression, forward correlation analysis, neural networks, etc.). This makes it possible to predict (judge) in real time whether a subject has a mental illness and the severity of the mental illness from the acquired resting brain activity data, and in turn, to perform brain information feedback control in real time using the prediction results. can. In this case, the data acquisition unit 4 is connected to an MRI apparatus that acquires resting brain activity data, and the result output unit 5 is connected to a display device or the like.
 また、上述の実施形態では、行列データから特徴量を取得するときおよび特徴量から予測値を取得するときのそれぞれにおいて演算式により特徴量および予測値のそれぞれを取得するようにしたが、これに限定されない。たとえば、行列データから特徴量を取得する条件(特徴量取得条件)および特徴量から予測値を取得する条件(予測値取得条件)は、過去の演算結果から作成した表形式としてもよいし、過去の演算結果からAI技術として構成することもできる。さらに、上述の実施形態では、[数7]におけるvec(YY)は行列(YY)の全ての要素を縦に並べてベクトルとしたものであるが、行列(YY)の一部の要素を使用するようにしてもよい。 Furthermore, in the above-described embodiment, each of the feature quantities and the predicted value is obtained using an arithmetic expression when obtaining the feature quantity from the matrix data and when obtaining the predicted value from the feature quantity. Not limited. For example, the conditions for acquiring feature quantities from matrix data (feature quantity acquisition conditions) and the conditions for acquiring predicted values from feature quantities (predicted value acquisition conditions) may be in a table format created from past calculation results, or It can also be configured as an AI technology based on the calculation results. Furthermore, in the above embodiment, vec(YY + ) in [Equation 7] is a vector in which all the elements of the matrix (YY + ) are arranged vertically, but some elements of the matrix (YY + ) You may also use
 また、本発明は、予測装置として提供するだけでなく、予測装置を用いて事象を検出する方法、プログラム、およびプログラムを記憶した非一時的な(非一過性の)有形の記憶媒体としても提供することができる。 Further, the present invention is not only provided as a prediction device, but also as a method and program for detecting an event using the prediction device, and a non-temporary (non-transient) tangible storage medium storing the program. can be provided.
 この発明は、所定の事象に関する多次元時系列データを分析して当該多次元時系列データから事象を予測するような産業に利用することができる。 This invention can be used in industries where multidimensional time series data regarding a predetermined event is analyzed and events are predicted from the multidimensional time series data.
1…予測装置
4…データ取得部
5…結果出力部
6…制御部
61…演算部
62…主記憶部
7…補助記憶部
72…分解プログラム
73…特徴量取得プログラム
75…予測値取得プログラム
76…予測プログラム
1...Prediction device 4...Data acquisition unit 5...Result output unit 6...Control unit 61...Calculation unit 62...Main storage unit 7...Auxiliary storage unit 72...Decomposition program 73...Feature amount acquisition program 75...Predicted value acquisition program 76... Prediction program

Claims (8)

  1.  所定の事象に関する多次元時系列データを取得するデータ取得手段と、
    前記多次元時系列データを動的モード分解により行列データに分解する分解手段と、
    前記行列データから特徴量を取得する第1取得手段と、
    前記特徴量、およびカーネル法に基づいて事前に計算されたウエイトから予測値を取得する第2取得手段と、
    前記予測値から前記事象を予測する予測手段を備えた
    予測装置。
    a data acquisition means for acquiring multidimensional time series data regarding a predetermined event;
    decomposition means for decomposing the multidimensional time series data into matrix data by dynamic mode decomposition;
    a first acquisition means for acquiring feature quantities from the matrix data;
    a second acquisition means for acquiring a predicted value from the feature amount and a weight calculated in advance based on a kernel method;
    A prediction device comprising prediction means for predicting the event from the predicted value.
  2.  前記ウエイトは、カーネル法における非線形変換後の特徴空間における線形ウエイトである
    請求項1記載の予測装置。
    The prediction device according to claim 1, wherein the weight is a linear weight in a feature space after nonlinear transformation in a kernel method.
  3.  前記第1取得手段は、前記第2取得手段において前記特徴量から前記予測値を演算するための予測値演算条件を満たす有限次元の非線形写像を構成した特徴量演算条件に従って前記行列データから前記特徴量を演算する
    請求項1または2記載の予測装置。
    The first acquisition means calculates the feature from the matrix data according to a feature calculation condition that constitutes a finite-dimensional nonlinear mapping that satisfies the predicted value calculation condition for calculating the predicted value from the feature in the second acquisition means. The prediction device according to claim 1 or 2, which calculates a quantity.
  4.  前記多次元時系列データは、脳波の検出に用いられる複数の電極のそれぞれから出力される脳波データであり、
    前記予測手段は、前記脳波データから取得された前記予測値に基づいて前記事象をリアルタイム予測する
    請求項3記載の予測装置。
    The multidimensional time series data is brain wave data output from each of a plurality of electrodes used for detecting brain waves,
    The prediction device according to claim 3, wherein the prediction means predicts the event in real time based on the predicted value obtained from the brain wave data.
  5.  前記第2取得手段は、次の[数1]を用いた演算により前記予測値を取得する
    請求項3記載の予測装置。
    Figure JPOXMLDOC01-appb-M000001
    4. The prediction device according to claim 3, wherein the second acquisition means acquires the predicted value by calculation using the following [Equation 1].
    Figure JPOXMLDOC01-appb-M000001
  6.  前記第1取得手段は、次の[数2]を用いた演算により前記特徴量を取得する
    請求項5記載の予測装置。
    Figure JPOXMLDOC01-appb-M000002
    6. The prediction device according to claim 5, wherein the first acquisition means acquires the feature amount by calculation using the following [Equation 2].
    Figure JPOXMLDOC01-appb-M000002
  7.  所定の事象に関する多次元時系列データを取得し、
    前記多次元時系列データを動的モード分解により行列データに分解し、
    前記行列データから特徴量を取得し、
    前記特徴量、およびカーネル法に基づいて事前に計算されたウエイトから予測値を取得し、
    前記予測値から前記事象を予測する
    予測方法。
    Obtain multidimensional time series data regarding a predetermined event,
    Decomposing the multidimensional time series data into matrix data by dynamic mode decomposition,
    Obtain features from the matrix data,
    Obtaining a predicted value from the feature amounts and weights calculated in advance based on the kernel method,
    A prediction method for predicting the event from the predicted value.
  8.  コンピュータを、
    所定の事象に関する多次元時系列データを取得するデータ取得手段と、
    前記多次元時系列データを動的モード分解により行列データに分解する分解手段と、
    前記行列データから特徴量を取得する第1取得手段と、
    前記特徴量、およびカーネル法に基づいて事前に計算されたウエイトから予測値を取得する第2取得手段と、
    前記予測値から前記事象を予測する予測手段として機能させる
    予測プログラム。
    computer,
    a data acquisition means for acquiring multidimensional time series data regarding a predetermined event;
    decomposition means for decomposing the multidimensional time series data into matrix data by dynamic mode decomposition;
    a first acquisition means for acquiring feature quantities from the matrix data;
    a second acquisition means for acquiring a predicted value from the feature amount and a weight calculated in advance based on a kernel method;
    A prediction program that functions as a prediction means for predicting the event from the predicted value.
PCT/JP2023/023474 2022-06-29 2023-06-26 Prediction device, prediction method, and prediction program WO2024004903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-105077 2022-06-29
JP2022105077A JP2024006994A (en) 2022-06-29 2022-06-29 Prediction device, prediction method, and prediction program

Publications (1)

Publication Number Publication Date
WO2024004903A1 true WO2024004903A1 (en) 2024-01-04

Family

ID=89383002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023474 WO2024004903A1 (en) 2022-06-29 2023-06-26 Prediction device, prediction method, and prediction program

Country Status (2)

Country Link
JP (1) JP2024006994A (en)
WO (1) WO2024004903A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198870A (en) * 2017-05-29 2018-12-20 国立研究開発法人理化学研究所 Evaluation device, evaluation method, program, and information recording media

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198870A (en) * 2017-05-29 2018-12-20 国立研究開発法人理化学研究所 Evaluation device, evaluation method, program, and information recording media

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJII, Keisuke et al. Koopman Spectral Kernels for Comparing Complex Dynamics: Application to Multiagent Sport Plays. Lecture Notes in Computer Science [online]. 30 December 2017, [retrieved on 29 August 2023], Retrieved from the Internet: <URL: https://link.springer.com/chapter/10.1007/978-3-319-71273-4_11> *

Also Published As

Publication number Publication date
JP2024006994A (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US8280503B2 (en) EMG measured during controlled hand movement for biometric analysis, medical diagnosis and related analysis
Bethel et al. Survey of psychophysiology measurements applied to human-robot interaction
US9155487B2 (en) Method and apparatus for biometric analysis using EEG and EMG signals
Ak et al. Motor imagery EEG signal classification using image processing technique over GoogLeNet deep learning algorithm for controlling the robot manipulator
Supratak et al. Survey on feature extraction and applications of biosignals
JP5252432B2 (en) Finger joint angle estimation device
Long et al. A scoping review on monitoring mental health using smart wearable devices
Hussain et al. Quantifying the dynamics of electroencephalographic (EEG) signals to distinguish alcoholic and non-alcoholic subjects using an MSE based Kd tree algorithm
Agrawal et al. Early stress detection and analysis using EEG signals in machine learning framework
Vijayvargiya et al. Hybrid deep learning approaches for sEMG signal-based lower limb activity recognition
Ahamad System architecture for brain-computer interface based on machine learning and internet of things
WO2024004903A1 (en) Prediction device, prediction method, and prediction program
Alemán-Soler et al. Biometric approach based on physiological human signals
Kinase et al. Estimating mood variation from MPF of EMG during walking
Chen et al. Bispectrum-based sEMG multi-domain joint feature extraction for upper limb motion classification
Ao et al. Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks
Antony et al. A review on efficient EEG pattern recognition using machine learning and deep learning methods and its application
Suhaimi et al. Analysis of High-Density Surface Electromyogram (HD-sEMG) signal for thumb posture classification from extrinsic forearm muscles
Yalçın et al. Artifacts mitigation in sensors for spasticity assessment
Sidorov et al. Monitoring the characteristics of human emotional reactions based on the analysis of attractors reconstructed according to EEG patterns
Eliades et al. Applying Conformal Prediction to control an exoskeleton
Gillani et al. Prediction of perceived stress scores using low-channel electroencephalography headband
Arkhipov et al. Study of the Force-Moment Sensing System of a Manipulative Robot in Contact Situations with Tenzoalgometry of Soft Biological Tissues
Gardner et al. EMG based simultaneous wrist motion prediction using reinforcement learning
Baloch et al. Development of an embedded device for stroke prediction via artificial intelligence-based algorithms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831345

Country of ref document: EP

Kind code of ref document: A1