WO2024004813A1 - Urethane-based coating material composition - Google Patents

Urethane-based coating material composition Download PDF

Info

Publication number
WO2024004813A1
WO2024004813A1 PCT/JP2023/023074 JP2023023074W WO2024004813A1 WO 2024004813 A1 WO2024004813 A1 WO 2024004813A1 JP 2023023074 W JP2023023074 W JP 2023023074W WO 2024004813 A1 WO2024004813 A1 WO 2024004813A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
glycerol ester
hydrogen
group
ester polyol
Prior art date
Application number
PCT/JP2023/023074
Other languages
French (fr)
Japanese (ja)
Inventor
肇 菅沼
岳 渡辺
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024004813A1 publication Critical patent/WO2024004813A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to a urethane coating composition using a glycerol ester polyol as a polyol.
  • Urethane paints are widely used because of their high hardness and good gloss.
  • urethane paints have low flexibility and elasticity, insufficient water and chemical resistance, slow curing speed at low temperatures, and skin irritation due to the amine hardener used as a hardener. There are problems such as:
  • the plant-derived polyol disclosed in Patent No. 5398715 is a polyol having secondary hydroxyl groups derived from castor oil, and the polyols having secondary hydroxyl groups are less likely to be polyisocyanate than the polyols having primary hydroxyl groups.
  • Japanese Patent Publication No. 5398715 is a polyol having secondary hydroxyl groups derived from castor oil, and the polyols having secondary hydroxyl groups are less likely to be polyisocyanate than the polyols having primary hydroxyl groups.
  • 2008-504287 discloses a polyol obtained from hydroformylated soybean oil, but soybean oil has a low oleic acid content of 25%, and the reaction with polyisocyanate creates an ideal crosslinked structure. There was a problem that a cured urethane product having the following properties could not be obtained, and the hardness and physical properties were poor.
  • PCT International Publication No. 2021-536501 discloses a polyol having a primary hydroxyl group (methylol group) obtained by hydroformylating and hydrogenating triacylglycerol derived from algae. However, this document does not specifically disclose a urethane coating composition using a polyol having a methylol group.
  • Patent No. 5398715 Special Publication No. 2008-504287 Special Publication No. 2021-536501
  • the present inventors found that by using a specific glycerol ester polyol, the physical properties of the coating film were significantly improved without using reaction accelerators such as amines. They have discovered that this is the case and have completed the present invention.
  • a urethane coating composition containing a glycerol ester polyol and a polyisocyanate The glycerol ester polyol includes a compound represented by the following formula (1), A urethane coating composition, wherein the content of fatty acid residues derived from oleic acid in the glycerol ester polyol is 70 mol% or more based on the total amount of fatty acid residues in the glycerol ester polyol.
  • One of X 1 and X 2 is hydrogen, and the other is a methylol group
  • One of X 3 and X 4 is hydrogen, and the other is a methylol group
  • One of X 5 and X 6 is hydrogen, and the other is a methylol group
  • R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen.
  • the polyisocyanate is diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, modified diphenylmethane diisocyanate, tolylene diisocyanate, an adduct type polyisocyanate consisting of tolylene diisocyanate and a polyhydric alcohol, a nurate type polyisocyanate of tolylene diisocyanate, and tolylene diisocyanate.
  • the urethane-based coating composition according to [1], comprising at least one member selected from the group consisting of allophanate-type polyisocyanates obtained from [4]
  • a urethane coating composition comprising a glycerol ester polyol, a polyol other than the glycerol ester polyol, and a polyisocyanate
  • the glycerol ester polyol includes a compound represented by the following formula (1),
  • the content of fatty acid residues derived from oleic acid in the glycerol ester polyol is 70 mol% or more based on the total amount of fatty acid residues in the glycerol ester polyol,
  • the content of the glycerol ester polyol is 5 to 50% by mass based on the mass of polyols other than the glycerol ester polyol.
  • Urethane paint composition Urethane paint composition.
  • One of X 1 and X 2 is hydrogen, and the other is a methylol group
  • One of X 3 and X 4 is hydrogen, and the other is a methylol group
  • One of X 5 and X 6 is hydrogen, and the other is a methylol group
  • R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen.
  • the polyol other than the glycerol ester polyol is selected from the group consisting of polyether polyol, polyester polyol, polyacrylic polyol, polyepoxy polyol, polyolefin polyol, polycarbonate polyol, partially modified products thereof, and combinations thereof.
  • the polyisocyanate is diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and a nurate obtained by polymerizing one or more of the above diisocyanates (i.e., diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate).
  • uretdione type polyisocyanate obtained by polymerizing one or more of the above diisocyanates, adduct type polyisocyanate obtained from one or more of the above diisocyanates and a polyhydric alcohol, and obtained from one or more of the above diisocyanates and water and/or an amine.
  • [5] comprising at least one selected from the group consisting of buret type polyisocyanate, allophanate type polyisocyanate obtained from one or more of the above diisocyanates and alcohol, polymeric diphenylmethane diisocyanate, and modified diphenylmethane diisocyanate.
  • Urethane paint composition comprising at least one selected from the group consisting of buret type polyisocyanate, allophanate type polyisocyanate obtained from one or more of the above diisocyanates and alcohol, polymeric diphenylmethane diisocyanate, and modified diphenylmethane diisocyanate.
  • the equivalent ratio (isocyanate group/hydroxyl group) of the isocyanate group in the polyisocyanate to the hydroxyl group in the glycerol ester polyol and the polyol other than the glycerol ester polyol is 0.5 to 2.0.
  • the glycerol ester polyol used in the present invention contains a primary hydroxyl group (methylol group), it has high reactivity with isocyanate groups. Furthermore, the proportion of fatty acid residues derived from oleic acid is high, and the molecular structure is highly regular. As a result, the physical properties of the coating composition of the present invention such as drying properties, hardness, adhesion, elastic modulus, and solvent resistance are significantly improved. Furthermore, since the coating composition of the present invention has high reactivity, the amount of reaction accelerators such as highly toxic amines can be reduced, and when bio-derived glycerol ester is used, the amount of petroleum raw materials can be reduced. Can be done.
  • FIG. 1 shows the measurement results of polyol 5 by LC/CAD (liquid chromatography/charged particle detector).
  • the coating composition of the present invention contains a glycerol ester polyol and a polyisocyanate.
  • the coating composition of the present invention may further contain polyols other than glycerol ester polyols.
  • the coating composition of the present invention may be a one-component coating composition or a two-component coating composition.
  • the coating composition may be composed of a base agent containing a glycerol ester polyol and a curing agent containing a polyisocyanate, and may include a glycerol ester polyol and a polyol other than the glycerol ester polyol.
  • the coating composition may be composed of a main agent containing polyisocyanate and a curing agent containing polyisocyanate.
  • the glycerol ester polyol used in the present invention has a methylol group in the molecule. That is, the glycerol ester polyol used in the present invention is represented by the following formula (1).
  • One of X 1 and X 2 is hydrogen, and the other is a methylol group
  • One of X 3 and X 4 is hydrogen, and the other is a methylol group
  • One of X 5 and X 6 is hydrogen, and the other is a methylol group.
  • the glycerol ester polyol used in the present invention may further contain a compound represented by the following formula (2-1) and/or formula (2-2).
  • One of X 1 and X 2 is hydrogen, and the other is a methylol group
  • One of X 3 and X 4 is hydrogen, and the other is a methylol group
  • One of X 5 and X 6 is hydrogen, and the other is a methylol group
  • R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen.
  • R and R' in formula (3) include unsaturated fatty acids (for example, myristoleic acid, palmitoleic acid, sapienoic acid, elaidic acid, vaccenic acid, petroselic acid, eicosenoic (gondoic) acid, paulic acid, gadoleic acid, Erucic acid, brassic acid, nervonic acid, hexadecatrienoic acid, linoleic acid, linolelaidic acid, ⁇ -linolenic acid, pinolenic acid, stearidonic acid, eicosadienoic acid, mead acid, eicosatrienoic acid, ⁇ -linolenic acid, ⁇ - Linolenic acid, dihomo-gamma-linolenic acid, podocarpic acid, arachidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, heneicosapentaen
  • the content of fatty acid residues derived from oleic acid in the glycerol ester polyol is based on the total amount of fatty acid residues in the glycerol ester polyol (i.e., the total amount of fatty acid residues in the glycerol ester polyol is 100 mol). %), preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more.
  • the amount is preferably 80 mol% or more, more preferably 90 mol% or more, based on the total amount of glycerol ester polyol.
  • the glycerol ester used as a raw material for the main ingredient contains at least one carbon-carbon double bond in an unsaturated fatty acid residue.
  • the fatty acid residue is an oleic acid residue.
  • the glycerol ester used in the present invention may contain triacylglycerol and/or diacylglycerol derived from a diolein compound in addition to triolein, depending on the type of raw material used.
  • the content of fatty acid residues derived from oleic acid in the glycerol ester used in the present invention is preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably It is 90 mol% or more.
  • the glycerol ester used in the present invention can be obtained from, for example, triolein, olive oil, high oleic safflower oil, high oleic camellia oil, algae-derived high oleic fat or oil, or a combination of one or more of these, but is not limited thereto.
  • the glycerol ester used as a raw material is preferably derived from non-petroleum.
  • Non-petroleum-derived raw materials include bio-derived raw materials.
  • bio refers to biological resources such as animals, plants, and microorganisms.
  • Microorganisms are a general term for microscopic microorganisms.
  • microorganisms include eukaryotes such as unicellular algae (including microalgae) and eukaryotic fungi (molds and yeast), and prokaryotes such as blue-green algae and bacteria.
  • eukaryotes such as unicellular algae (including microalgae) and eukaryotic fungi (molds and yeast), and prokaryotes such as blue-green algae and bacteria.
  • microalgae one or more of the following genera and species are preferably used to produce glycerol esters: Examples of microalgae include Chlorella species, Pseudochlorella species, Heterochlorella species, Prototheca species, Arthrospira species, Euglena species, Nanochloropsis species, and Phaeoda.
  • Species of the genus ctylum species of the genus Chlamydomonas, Scenedesmus species, Ostreococcus species, Selenastrum species, Haematococcus species, Nitzschia, Dunaliella, Navicula species, Trebouxia species, Pseudotrebou xia species, Vavicula species, Bracteococcus species, Gomphonema species of the genus Watanabea, species of the genus Botryococcus, species of the genus Tetraselmis and species of the genus Isochrysis.
  • yeasts one or more of the following genera and species are preferably used to produce glycerol esters:
  • yeast include Candida species, Cryptococcus species, Debaromyces species, Endomycopsis species, Geotrichum species, Hyphopicia species, Lipomyces species, Pichia species, Rhodospori Rhodotorula, a species of the genus Dium Species of the genus Sporobolomyces, spp. Starmerella, spp. Torulaspora, spp. Trichosporon, spp. Wickerhamomyces, spp. Yarrowia, and spp. Zygoascus.
  • bacteria one or more of the following genera and species are preferably used to produce glycerol esters:
  • bacteria include Flavimonas oryzihabitans, Pseudomonas aeruginosa, species of the genus Morococcus, Rhodobacter sphaeroides, Rhodococcus opacus, Rhodococcus erythropolis, Streptomyces jeddahensis, species of the genus Ochrobactrum, species of the genus Arthrobacter, species of the genus Nocardia, species of the genus Mycobacteria, species of the genus Gordonia. species of the genus Catenisphaera and species of the genus Dietzia.
  • Hydroformylation is, for example, the reaction of glycerol esters with unsaturated fatty acid residues with carbon monoxide and hydrogen, resulting in the addition of formyl (CHO) groups and hydrogen to the carbon-carbon double bonds of unsaturated fatty acid residues.
  • Hydroformylation can be carried out, for example, by pressurizing a reaction vessel containing the glycerol ester and catalyst to about 500 psi to about 1,500 psi with a synthesis gas of carbon monoxide and hydrogen at a temperature of about 40° C. to about 200° C. for about 1 hour to about 100 psi. This can be done by time reaction.
  • Catalysts used for hydroformylation include cobalt-based catalysts (such as cobalt hydridetetracarbonyl catalysts, cobalt phosphine catalysts, cobalt catalysts supplemented with noble metals (e.g. palladium, ruthenium, or platinum)), rhodium-based catalysts (e.g. rhodium phosphine catalyst, acetylacetonato-dicarbonylrhodium(I) (Rh(CO) 2 acac) catalyst, rhodium/cyclohexyldiphenylphosphine (Rh/CHDPP) catalyst, etc.), or any other transition metal-based suitable for hydroformylation.
  • a catalyst etc. can be used.
  • the formyl (CHO) group of the hydroformylated triacylglycerol is reduced to a primary alcohol (methylol group) using hydrogen in the presence of a catalyst.
  • Hydrogenation can be carried out, for example, by reacting at a pressure of about 500 psi to about 1500 psi and a temperature of about 40° C. to about 250° C. for about 1 hour to about 10 hours.
  • catalysts such as Raney nickel (sponge nickel), Urushihara nickel, nickel, palladium, platinum, rhodium, and ruthenium can be used.
  • the urethane coating composition of the present invention contains a glycerol ester polyol represented by the above formula (1) and the above formula (2-1) and/or formula (2-2) in a polyol other than the glycerol ester polyol. It may also be included as a reactive diluent. Reactive diluents have functions such as increasing reactivity and adjusting the balance between elasticity and hardness of the paint.
  • polyols other than glycerol ester polyols include polyether polyols, polyester polyols, polyacrylic polyols, polyepoxy polyols, polyolefin polyols, polycarbonate polyols, partially modified products thereof, and combinations thereof.
  • polyether polyol examples include polymers or copolymers formed by combining ethylene oxide, propylene oxide, butylene oxide, alkylene oxide such as tetrahydrofuran, styrene oxide, and the like. Specific examples include polyoxyethylene diol (polyethylene glycol: PEG), polyoxypropylene diol (polypropylene glycol: PPG), polytetramethylene ether polyol (PTMEG), polyoxypropylene triol, and ethylene oxide/propylene oxide copolymer ( diol), ethylene oxide/propylene oxide copolymer (triol), and the like.
  • polyester polyol examples include condensed polyester polyols, lactone polyester polyols, and the like.
  • Condensed polyester polyols include, for example, low-molecular polyhydric alcohols (ethylene glycol (EG), diethylene glycol, propylene glycol (PG), dipropylene glycol, (1,3- or 1,4-)butanediol, pentanediol, neo low molecular weight polyols such as pentyl glycol, hexanediol, cyclohexanedimethanol, glycerin, 1,1,1-trimethylolpropane (TMP), 1,2,5-hexanetriol, pentaerythritol, sugars such as sorbitol, etc.), Polybasic carboxylic acids (glutaric acid, adipic acid, azelaic acid, fumaric acid, maleic acid, pimelic acid, suberic
  • Polycarbonate polyols include, for example, polyols (1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3-methyl-1 , 5-pentanediol, octanediol, 1,4-butynediol, dipropylene glycol, tripropylene glycol, various saturated or unsaturated glycols such as polytetramethylene ether glycol, 1,4-cyclohexane diglycol, 1, It is a polyol obtained by reacting an alicyclic glycol such as 4-cyclohexanedimethanol with a dialkyl carbonate (dimethyl carbonate, diethyl carbonate, etc.), ethylene carbonate, diphenyl carbonate, etc.
  • Polyacrylic polyols include, for example, a polymerizable acrylic monomer having one or more hydroxyl groups in one molecule and other monomers copolymerizable therewith (for example, other (meth)acrylic acid monomers and/or other monomers). unsaturated monomers).
  • Specific examples of polyacrylic polyols include copolymers of polymerizable acrylic monomers having one or more hydroxyl groups in one molecule and vinyl monomers, polymerizable acrylic monomers and lactones such as ⁇ -caprolacrone and ⁇ -valerolactone. Examples include ring-opening polymerization adducts with.
  • polymerizable acrylic monomers examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and (meth)acrylate.
  • Examples include chloropropyl.
  • vinyl monomers include monoesters of (meth)acrylic acid and glycols having 2 to 10 carbon atoms (hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, etc.), carboxyl group-containing vinyl monomers, and amide.
  • vinyl monomers glycidyl group-containing vinyl monomers, styrene and its derivatives, acrylonitrile, vinyltoluene, vinyl chloride, vinyl acetate, and the like.
  • polyepoxy polyols include diglycidyl compounds (bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hexahydrophthalic acid diglycidyl ether, glycidyl ester, etc.), bisphenol compounds (bisphenol A, bisphenol F, biphenol, etc.), and/or polybasic carboxylic acids (glutaric acid, adipic acid, azelaic acid, fumaric acid, maleic acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, dimer acid, pyromellitic acid, oligomer acid, etc.), and/or polyamines (monomethylamine, monoethylamine, monopropylamine, monobutylamine, etc.
  • polyolefin polyol examples include polyethylene polyol, polypropylene polyol, polybutadiene polyol, hydrogenated polybutadiene polyol, polyisoprene polyol, hydrogenated polyisoprene polyol, and the like.
  • Preferred polyisocyanates for use in the present invention include aromatic polyisocyanates, aliphatic polyisocyanates, alicyclic polyisocyanates, and one of the above polyisocyanates (i.e., aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates).
  • isocyanurate type polyisocyanate obtained by polymerizing one or more of the above polyisocyanates uretdione type polyisocyanate obtained by polymerizing one or more of the above polyisocyanates, an adduct type polyisocyanate obtained from one or more of the above polyisocyanates and a polyhydric alcohol, and one of the above polyisocyanates.
  • uretdione type polyisocyanate obtained by polymerizing one or more of the above polyisocyanates
  • an adduct type polyisocyanate obtained from one or more of the above polyisocyanates and a polyhydric alcohol and one of the above polyisocyanates.
  • aromatic polyisocyanates include tolylene diisocyanate (TDI) [for example, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), etc.], diphenylmethane diisocyanate (MDI) [for example, 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), etc.], 1,4-phenylene diisocyanate, polymethylene polyphenylene Polyisocyanate, xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), triphenylmethane triisocyanate, polymeric diphenylmethane diisocyanate (polymeric
  • aliphatic or alicyclic polyisocyanates examples include hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate (NBDI), transcyclohexane-1,4-diisocyanate, and isophorone diisocyanate (IPDI). , bis(isocyanatomethyl)cyclohexane (H6XDI), dicyclohexylmethane diisocyanate (H12MDI), and the like.
  • the polyisocyanate used in the present invention is more preferably MDI, polymeric MDI, modified MDI, or a combination thereof.
  • the preferred polyisocyanate used in the present invention may be a blocked isocyanate obtained by blocking the polyisocyanate listed above with a blocking agent.
  • Blocking agents are not particularly limited, and include, for example, phenolics (phenol, cresol, xylenol, chlorophenol, ethylphenol, etc.), lactams ( ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -propiolactam, etc.) ), activated methylene (ethyl acetoacetate, acetylacetone, etc.), alcohol (methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, t-butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Ethylene glycol monomethyl ether, ethylene glycol mono-2-ethylhexyl ether,
  • the blending ratio (% by mass) (glycerol ester polyol/other polyol) to the polyol other than the glycerol ester polyol is preferably 5 to 5. It is 50% by mass, more preferably 10 to 40% by mass. If the mass ratio decreases beyond the above-mentioned preferred range, the curability, solvent resistance, chemical resistance, etc. of the coating film tends to decrease, and if it increases beyond the above-mentioned preferred range, the viscosity increases in a short time due to reaction with isocyanate. However, the pot life tends to be shortened.
  • the equivalent ratio of the isocyanate groups of the polyisocyanate to the hydroxyl groups of the polyol (isocyanate groups/hydroxyl groups) is preferably 0.3 to 3.0, more preferably 0.5 to 2.5.
  • the hydroxyl group of the polyol is a hydroxyl group of a glycerol ester polyol.
  • the equivalent ratio of the isocyanate groups of the polyisocyanate to the hydroxyl groups of the polyol (isocyanate groups/hydroxyl groups) is preferably 0.5 to 2.0, more preferably 0. 7 to 1.5.
  • the hydroxyl group of the polyol is a hydroxyl group of a glycerol ester polyol and a polyol other than the glycerol ester polyol.
  • the resulting cured product can have high adhesiveness and high elastic modulus.
  • the equivalent ratio becomes smaller than the above-mentioned preferred range, unreacted hydroxyl groups increase and curability, solvent resistance, chemical resistance, etc. tend to decrease. Furthermore, if the equivalent ratio exceeds the above-mentioned preferred range, the number of unreacted isocyanate groups increases, which tends to reduce the curing speed and appearance of the coating film.
  • the coating composition of the present invention may contain components that are generally added to coating compositions within a range that does not impair the object of the present invention.
  • various additives pigments, dyes, ultraviolet absorbers, light stabilizers, surface conditioners, etc.
  • various solvents aromatic solvents such as toluene, xylene, and their hydrogenated substances, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • Ketone solvents such as ethyl acetate, butyl acetate, isobutyl acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-methoxybutyl acetate, ethyl-3-ethoxypropionate, etc.
  • glycol ether ester solvents such as tetrahydrofuran, dioxane, etc.
  • ether solvents such as tetrahydrofuran, dioxane, etc.
  • a solvent-free coating composition may be obtained by blending a polyol such as a polyether polyol.
  • One embodiment of the coating composition of the present invention is a two-component coating composition composed of a base agent containing a glycerol ester polyol and a curing agent containing a polyisocyanate.
  • Another embodiment of the coating composition of the present invention is a two-component coating composition composed of a main agent containing a glycerol ester polyol and a polyol other than the glycerol ester polyol, and a curing agent containing a polyisocyanate.
  • two-component coating compositions tend to react quickly by mixing the two components, and have higher durability than one-component coating compositions.
  • the above-mentioned additives can be added, for example, to the base resin or when mixing the base resin and the curing agent.
  • the solvent can be added to either the base agent or the curing agent, or both.
  • the above two components are mixed immediately before use and applied.
  • the coating method is not limited, and can be carried out by conventional methods such as spray coating, brush coating, and roller coating. After painting, it may be cured by heating to about 40 to 100°C.
  • One-component coating composition is a one-component coating composition comprising a glycerol ester polyol and a blocked isocyanate. Yet another embodiment of the present invention is a one-component coating composition containing a glycerol ester polyol, a polyol other than the glycerol ester polyol, and a blocked polyisocyanate.
  • One-component coating compositions have advantages such as being able to be stored for a long time and having a long pot life when applied.
  • the coating method is not limited, and the coating can be carried out by a conventional coating method such as spray coating, brush coating, or roll coating.
  • curing and drying can be performed at room temperature, it is possible to improve the performance of the cured coating film by heating and curing preferably at 50 to 210°C, more preferably at 110 to 180°C for 30 minutes to 2 hours.
  • the triglycerol ester used in the present invention has a highly regular content of oleic acid residues of 70 mol% or more.
  • the high regularity of the molecular structure improves the hardness, chemical resistance, drying properties, and other properties of the urethane resin obtained by reacting with polyisocyanate.
  • the resulting urethane resin is flexible and strong.
  • resin polyols polyols such as acrylic resins, epoxy resins, polyester resins, polyether resins, and polycarbonate resins
  • the system After starting stirring and raising the temperature to 90° C., the system was pressurized to 1000 psi with synthesis gas and reacted for 6 hours. After cooling down to room temperature, the synthesis gas was discharged. Next, 50 ml of isopropanol and 10 g of Raney nickel were added, and the inside of the system was replaced with hydrogen gas. After starting stirring and raising the temperature to 110° C., the inside of the system was pressurized to 1000 psi with hydrogen gas and reacted for 5 hours. After the temperature was lowered to room temperature and the gas in the system was discharged, 22 ml of isopropanol was added, mixed with stirring, and purified by filtration.
  • the obtained polyol 1 had a hydroxyl value of 154 mgKOH/g and a viscosity of 1700 mPa ⁇ s.
  • Comparative Synthesis Examples 1 and 2 Synthesis of Comparative Polyols 1 and 2 Comparative polyols 1 and 2 were synthesized in the same manner as Synthesis Example 1, except that the oils and fats listed in Table 3 were used in place of the olive oil in Synthesis Example 1. The results are shown in Table 3.
  • Example 1 Preparation of cured coating film 1 Polyol 1 (100 parts by mass), Burnock D-750-45 as curing agent (tolylene diisocyanate adduct type polyisocyanate manufactured by DIC Corporation, NCO%: 7.9%) (160 parts by mass) was mixed (the amount of curing agent D-750-45 was blended so that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1), and a 6 mil application was applied on a glass plate and a PP plate. After coating, it was dried for two weeks at 25° C. to obtain a cured coating film with a thickness of 70 ⁇ m. Table 4 shows the evaluation results of the obtained coating films.
  • Examples 2 to 7 Preparation of cured coating films 2 to 7
  • the blending amounts of polyol 1 and curing agent (D-750-45) of Example 1 are shown in Table 4.
  • Cured coating films 2 to 6 were obtained in the same manner as in Example 1, except that the amount of the curing agent was blended so that the equivalent ratio of isocyanate group/hydroxyl group was 1.1.
  • the blending amounts of polyol 1 and curing agent (D-750-45) of Example 1 are shown in Table 4. Co., Ltd.) (the curing agent was blended in such a way that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1), and ethyl acetate was added.
  • a cured coating film 7 was obtained.
  • the evaluation results are shown in Table 4.
  • ⁇ Evaluation method of cured coating film> The cured coating films prepared in Examples and Comparative Examples were evaluated according to the following evaluation method.
  • ⁇ Paint film adhesion test>> In accordance with the 100-square grid test (JIS K-5400-8.5), the gap between the cuts is 1 mm, 100 grid grids are made, and cellophane adhesive tape is adhered to the surface of the grid. The number of grid lines remaining on the painted surface was investigated.
  • ⁇ Chemical resistance test>> The felt on which the coating film was formed was immersed in xylene by a method in accordance with JIS A-5209, and the coating film was subjected to a rubbing test 50 times under a load of 500 g.
  • the evaluation was as follows: 1: The coating film peeled off and the base material was exposed, 2: Whitening due to scratches on the coating film, 3: Slight scratches on the coating film, and 4: No change.
  • Comparative Examples 1 to 5 Preparation of comparative cured coating films 1 to 5 The blending amounts of polyol 1 of Example 1 and curing agent (D-750-45) are shown in Table 5. ) Comparative cured coating film 1 was prepared in the same manner as in Example 1 except that the amount of curing agent D-750-45 was blended so that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1. I got ⁇ 5. The evaluation results are shown in Table 5.
  • T-1000 Actocol T-1000 (polypropylene glycol manufactured by Mitsui Chemicals, Inc., hydroxyl value: 164 mgKOH/g)
  • PTMG-650 Polytetramethylene glycol manufactured by Mitsubishi Chemical Corporation, hydroxyl value: 172mgKOH/g)
  • Castor oil Castor oil HS2G-160R (manufactured by Toyokuni Oil Co., Ltd., hydroxyl value: 158mgKOH/g)
  • Example 8 Preparation of cured coating film 8 Acrydic A-801 (acrylic resin polyol manufactured by DIC Corporation, hydroxyl value: 50 mgKOH/g) (100 parts by mass) and polyol 1 (12.5 parts by mass) were mixed. Then, Burnock D-750-45 (67.5 parts by mass) as a hardening agent was added into the polyol mixture, stirred well, and coated on SPCC-SB water-sanded board and PP board with a 6 mil applicator at 25°C. After drying for two weeks, a cured coating film with a thickness of 70 ⁇ m was obtained (the amount of curing agent D-750-45 was blended such that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1). Table 6 shows the evaluation results of the obtained coating film.
  • Example 9 to 15 Preparation of cured coating films 9 to 15
  • the blending amounts of polyol 1 of Example 8, Acridic A-801, and curing agent (D-750-45) are shown in Table 6.
  • Polyol and curing agent Cured coating films 9 to 15 were obtained in the same manner as in Example 8, except that the curing agent was blended in an amount such that the equivalent ratio of isocyanate group/hydroxyl group was 1.1.
  • the evaluation results are shown in Table 6.
  • A-801 Acrydic A-801 (acrylic resin polyol manufactured by DIC Corporation, hydroxyl value: 50 mgKOH/g) H-202: EPICLON H-202-60MT (epoxy resin polyol manufactured by DIC Corporation, hydroxyl value: 120 mgKOH/g, non-volatile content: 60%)
  • D-210 Burnock D-210-80 (polyester polyol manufactured by DIC Corporation, hydroxyl value: 175 mgKOH/g, non-volatile content: 80%)
  • D-750-45 Burnock D-750-45 (tolylene diisocyanate adduct type polyisocyanate manufactured by DIC Corporation, NCO%: 7.9%)
  • DN-902S Burnock DN-902S (isocyanurate type polyisocyanate of hexamethylene diisocyanate manufactured by DIC Corporation, NCO%: 23.3%)
  • T1890E VASTANAT T1890E (isocyanurate type polyisocyanate of

Abstract

The present invention addresses the problem of providing a urethane-based coating material which is obtained using a glycerol ester-based polyol and which yields a coating film having excellent physical properties. The present invention relates to a urethane-based coating material composition which contains a glycerol ester-based polyol and a polyisocyanate. The content of a fatty acid residue derived from oleic acid in the glycerol ester-based polyol is 70 mol% or more relative to the total amount of fatty acid residues in the glycerol ester-based polyol. In addition, this urethane-based coating material composition may further contain a polyol other than the glycerol ester-based polyol. 

Description

ウレタン系塗料組成物Urethane paint composition
 本発明は、ポリオールとしてグリセロールエステル系ポリオールを用いたウレタン系塗料組成物に関する。 The present invention relates to a urethane coating composition using a glycerol ester polyol as a polyol.
 ウレタン系塗料は高硬度で光沢が良好であることから広く使用されている。その反面、ウレタン系塗料は柔軟性や弾性が低く、耐水性や耐薬品性が十分でないこと、また、低温での硬化速度が遅いこと、硬化剤として用いるアミン系硬化剤による皮膚刺激性があること等の問題を有している。 Urethane paints are widely used because of their high hardness and good gloss. On the other hand, urethane paints have low flexibility and elasticity, insufficient water and chemical resistance, slow curing speed at low temperatures, and skin irritation due to the amine hardener used as a hardener. There are problems such as:
 また、二酸化炭素濃度増加に伴う地球温暖化、世界的な異常気象の発生から、塗料用樹脂においても植物由来等のバイオ(非石油)由来の樹脂に対する需要が高まりつつある。しかし、例えば、特許第5398715号に開示されている植物由来のポリオールは、ヒマシ油由来の2級水酸基を有するポリオールであり、2級水酸基を有するポリオールは1級水酸基を有するポリオールに比べ、ポリイソシアネートに対する反応性が低いという問題があった。特表2008-504287号には、ヒドロホルミル化した大豆油から得られたポリオールが開示されているが、大豆油はオレイン酸含有量が25%と低く、ポリイソシアネートとの反応により理想的な架橋構造を有するウレタン硬化物が得られず、硬度や物性において劣るという問題があった。 Furthermore, due to global warming due to increased carbon dioxide concentration and the occurrence of abnormal weather around the world, demand for bio-based (non-petroleum) resins such as plant-based resins is increasing for paint resins. However, for example, the plant-derived polyol disclosed in Patent No. 5398715 is a polyol having secondary hydroxyl groups derived from castor oil, and the polyols having secondary hydroxyl groups are less likely to be polyisocyanate than the polyols having primary hydroxyl groups. There was a problem of low reactivity to Japanese Patent Publication No. 2008-504287 discloses a polyol obtained from hydroformylated soybean oil, but soybean oil has a low oleic acid content of 25%, and the reaction with polyisocyanate creates an ideal crosslinked structure. There was a problem that a cured urethane product having the following properties could not be obtained, and the hardness and physical properties were poor.
 特表2021-536501号には、藻類由来のトリアシルグリセロールをヒドロホルミル化及び水素化した1級水酸基(メチロール基)を有するポリオールが開示されている。しかし、同文献にはメチロール基を有するポリオールを用いたウレタン系塗料組成物は具体的に示されていない。 PCT International Publication No. 2021-536501 discloses a polyol having a primary hydroxyl group (methylol group) obtained by hydroformylating and hydrogenating triacylglycerol derived from algae. However, this document does not specifically disclose a urethane coating composition using a polyol having a methylol group.
特許第5398715号公報Patent No. 5398715 特表2008-504287号公報Special Publication No. 2008-504287 特表2021-536501号公報Special Publication No. 2021-536501
 本発明の目的は、グリセロールエステル系ポリオールを用いた、乾燥性、硬度、付着性、弾性率、耐溶剤性等の塗膜物性に優れたウレタン系塗料を提供することである。本発明の別の目的は、毒性の高いアミン類等の反応促進剤の使用を低減することである。 An object of the present invention is to provide a urethane paint that uses a glycerol ester polyol and has excellent coating film properties such as drying properties, hardness, adhesion, elastic modulus, and solvent resistance. Another object of the present invention is to reduce the use of reaction promoters such as highly toxic amines.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定のグリセロールエステル系ポリオールを用いることにより、アミン類等の反応促進剤を用いることなく、塗膜物性が顕著に向上することを見出し、本発明を完成した。 As a result of intensive research to solve the above problems, the present inventors found that by using a specific glycerol ester polyol, the physical properties of the coating film were significantly improved without using reaction accelerators such as amines. They have discovered that this is the case and have completed the present invention.
 すなわち、本発明は以下の態様を含む。
[1]グリセロールエステル系ポリオールと、ポリイソシアネートを含むウレタン系塗料組成物であって、
 前記グリセロールエステル系ポリオールは、下記式(1)で表される化合物を含み、
 前記グリセロールエステル系ポリオール中のオレイン酸由来の脂肪酸残基の含有量は、前記グリセロールエステル系ポリオール中の脂肪酸残基の総量を基準として70モル%以上である、ウレタン系塗料組成物。
That is, the present invention includes the following aspects.
[1] A urethane coating composition containing a glycerol ester polyol and a polyisocyanate,
The glycerol ester polyol includes a compound represented by the following formula (1),
A urethane coating composition, wherein the content of fatty acid residues derived from oleic acid in the glycerol ester polyol is 70 mol% or more based on the total amount of fatty acid residues in the glycerol ester polyol.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基である。)
[2]前記グリセロールエステル系ポリオールが、下記式(2-1)及び/又は式(2-2)で表される化合物をさらに含む、[1]に記載のウレタン系塗料組成物。
(One of X 1 and X 2 is hydrogen, and the other is a methylol group,
One of X 3 and X 4 is hydrogen, and the other is a methylol group,
One of X 5 and X 6 is hydrogen, and the other is a methylol group. )
[2] The urethane coating composition according to [1], wherein the glycerol ester polyol further contains a compound represented by the following formula (2-1) and/or formula (2-2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 R及びR’は、それぞれ独立して下記式(3)で表される基以外の不飽和脂肪酸もしくは飽和脂肪酸の残基、又は水素である。)
(One of X 1 and X 2 is hydrogen, and the other is a methylol group,
One of X 3 and X 4 is hydrogen, and the other is a methylol group,
One of X 5 and X 6 is hydrogen, and the other is a methylol group,
R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen. )
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(Y及びYの対は、一方が水素で、かつ他方がメチロール基であり、*は結合手である。)
[3]前記ポリイソシアネートが、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、変性ジフェニルメタンジイソシアネート、トリレンジイソシアネート、トリレンジイソシアネートと多価アルコールからなるアダクト型ポリイソシアネート、トリレンジイソシアネートのヌレート型ポリイソシアネート、及びトリレンジイソシアネートとアルコールから得られるアロハネート型ポリイソシアネートからなる群から選択される少なくとも1種を含む、[1]に記載のウレタン系塗料組成物。
[4]前記ポリイソシアネート中のイソシアネート基の前記グリセロールエステル系ポリオール中の水酸基に対する当量比が0.5~2.5である、[1]に記載のウレタン系塗料組成物。
[5]グリセロールエステル系ポリオールと、前記グリセロールエステル系ポリオール以外のポリオールと、ポリイソシアネートとを含むウレタン系塗料組成物であって、
 前記グリセロールエステル系ポリオールは、下記式(1)で表される化合物を含み、
 前記グリセロールエステル系ポリオール中のオレイン酸由来の脂肪酸残基の含有量は、前記グリセロールエステル系ポリオール中の脂肪酸残基の総量を基準として70モル%以上であり、
 前記グリセロールエステル系ポリオールの含有量は、前記グリセロールエステル系ポリオール以外のポリオールの質量を基準にして5~50質量%である、
ウレタン系塗料組成物。
(In the pair of Y 1 and Y 2 , one is hydrogen and the other is a methylol group, and * is a bond.)
[3] The polyisocyanate is diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, modified diphenylmethane diisocyanate, tolylene diisocyanate, an adduct type polyisocyanate consisting of tolylene diisocyanate and a polyhydric alcohol, a nurate type polyisocyanate of tolylene diisocyanate, and tolylene diisocyanate. The urethane-based coating composition according to [1], comprising at least one member selected from the group consisting of allophanate-type polyisocyanates obtained from
[4] The urethane coating composition according to [1], wherein the equivalent ratio of isocyanate groups in the polyisocyanate to hydroxyl groups in the glycerol ester polyol is from 0.5 to 2.5.
[5] A urethane coating composition comprising a glycerol ester polyol, a polyol other than the glycerol ester polyol, and a polyisocyanate,
The glycerol ester polyol includes a compound represented by the following formula (1),
The content of fatty acid residues derived from oleic acid in the glycerol ester polyol is 70 mol% or more based on the total amount of fatty acid residues in the glycerol ester polyol,
The content of the glycerol ester polyol is 5 to 50% by mass based on the mass of polyols other than the glycerol ester polyol.
Urethane paint composition.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基である。)
[6]前記グリセロールエステル系ポリオールが、下記式(2-1)及び/又は式(2-2)で表される化合物をさらに含む、[5]に記載のウレタン系塗料組成物。
(One of X 1 and X 2 is hydrogen, and the other is a methylol group,
One of X 3 and X 4 is hydrogen, and the other is a methylol group,
One of X 5 and X 6 is hydrogen, and the other is a methylol group. )
[6] The urethane coating composition according to [5], wherein the glycerol ester polyol further contains a compound represented by the following formula (2-1) and/or formula (2-2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 R及びR’は、それぞれ独立して下記式(3)で表される基以外の不飽和脂肪酸もしくは飽和脂肪酸の残基、又は水素である。)
(One of X 1 and X 2 is hydrogen, and the other is a methylol group,
One of X 3 and X 4 is hydrogen, and the other is a methylol group,
One of X 5 and X 6 is hydrogen, and the other is a methylol group,
R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen. )
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(Y及びYの対は、一方が水素で、かつ他方がメチロール基であり、*は結合手である。)
[7]前記グリセロールエステル系ポリオール以外のポリオールが、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリルポリオール、ポリエポキシポリオール、ポリオレフィンポリオール、ポリカーボネートポリオール、これらの部分変性物、及びこれらの組み合わせからなる群から選択される、[5]に記載のウレタン系塗料組成物。
[8]前記ポリイソシアネートが、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、前記ジイソシアネート(すなわち、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、及びイソホロンジイソシアネート)の1種以上を重合したヌレート型ポリイソシアネート、前記ジイソシアネートの1種以上を重合したウレトジオン型ポリイソシアネート、前記ジイソシアネートの1種以上と多価アルコールから得られるアダクト型ポリイソシアネート、前記ジイソシアネートの1種以上と水及び/又はアミンから得られるビューレット型ポリイソシアネート、前記ジイソシアネートの1種以上とアルコールから得られるアロハネート型ポリイソシアネート、ポリメリックジフェニルメタンジイソシアネート、及び変性ジフェニルメタンジイソシアネートからなる群から選択される少なくとも1種を含む、[5]に記載のウレタン系塗料組成物。
[9]前記ポリイソシアネート中のイソシアネート基の前記グリセロールエステル系ポリオール及び前記グリセロールエステル系ポリオール以外のポリオール中の水酸基に対する当量比(イソシアネート基/水酸基)が0.5~2.0である、[5]に記載のウレタン系塗料組成物。
(In the pair of Y 1 and Y 2 , one is hydrogen and the other is a methylol group, and * is a bond.)
[7] The polyol other than the glycerol ester polyol is selected from the group consisting of polyether polyol, polyester polyol, polyacrylic polyol, polyepoxy polyol, polyolefin polyol, polycarbonate polyol, partially modified products thereof, and combinations thereof. The urethane coating composition according to [5].
[8] The polyisocyanate is diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and a nurate obtained by polymerizing one or more of the above diisocyanates (i.e., diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate). type polyisocyanate, uretdione type polyisocyanate obtained by polymerizing one or more of the above diisocyanates, adduct type polyisocyanate obtained from one or more of the above diisocyanates and a polyhydric alcohol, and obtained from one or more of the above diisocyanates and water and/or an amine. [5], comprising at least one selected from the group consisting of buret type polyisocyanate, allophanate type polyisocyanate obtained from one or more of the above diisocyanates and alcohol, polymeric diphenylmethane diisocyanate, and modified diphenylmethane diisocyanate. Urethane paint composition.
[9] The equivalent ratio (isocyanate group/hydroxyl group) of the isocyanate group in the polyisocyanate to the hydroxyl group in the glycerol ester polyol and the polyol other than the glycerol ester polyol is 0.5 to 2.0. The urethane coating composition described in ].
 本発明に用いるグリセロールエステル系ポリオールは、1級水酸基(メチロール基)を含むため、イソシアネート基との反応性が高い。また、オレイン酸由来の脂肪酸残基の割合が高く、分子構造の規則性が高い。これにより本発明の塗料組成物は、乾燥性、硬度、付着性、弾性率、耐溶剤性等の物性が顕著に向上する。さらに、本発明の塗料組成物は反応性が高いため、毒性の高いアミン類等の反応促進剤を低減することができ、また、バイオ由来のグリセロールエステルを用いる場合には石油原料を低減することができる。 Since the glycerol ester polyol used in the present invention contains a primary hydroxyl group (methylol group), it has high reactivity with isocyanate groups. Furthermore, the proportion of fatty acid residues derived from oleic acid is high, and the molecular structure is highly regular. As a result, the physical properties of the coating composition of the present invention such as drying properties, hardness, adhesion, elastic modulus, and solvent resistance are significantly improved. Furthermore, since the coating composition of the present invention has high reactivity, the amount of reaction accelerators such as highly toxic amines can be reduced, and when bio-derived glycerol ester is used, the amount of petroleum raw materials can be reduced. Can be done.
図1は、LC/CAD(液体クロマトグラフィー/荷電化粒子検出器)によるポリオール5の測定結果である。FIG. 1 shows the measurement results of polyol 5 by LC/CAD (liquid chromatography/charged particle detector).
 本発明の塗料組成物は、グリセロールエステル系ポリオールとポリイソシアネートを含む。本発明の塗料組成物は、グリセロールエステル系ポリオール以外のポリオールをさらに含んでもよい。また、本発明の塗料組成物は、1液型塗料組成物であっても、2液型塗料組成物であってもよい。2液型塗料組成物の場合は、グリセロールエステル系ポリオールを含む主剤と、ポリイソシアネートを含む硬化剤とから構成される塗料組成物であってよく、グリセロールエステル系ポリオール及びグリセロールエステル系ポリオール以外のポリオールを含む主剤と、ポリイソシアネートを含む硬化剤とから構成される塗料組成物であってよい。 The coating composition of the present invention contains a glycerol ester polyol and a polyisocyanate. The coating composition of the present invention may further contain polyols other than glycerol ester polyols. Further, the coating composition of the present invention may be a one-component coating composition or a two-component coating composition. In the case of a two-component coating composition, the coating composition may be composed of a base agent containing a glycerol ester polyol and a curing agent containing a polyisocyanate, and may include a glycerol ester polyol and a polyol other than the glycerol ester polyol. The coating composition may be composed of a main agent containing polyisocyanate and a curing agent containing polyisocyanate.
<グリセロールエステル系ポリオール>
 本発明に用いるグリセロールエステル系ポリオールは分子内にメチロール基を有する。すなわち、本発明に用いるグリセロールエステル系ポリオールは、下記式(1)で表される。
<Glycerol ester polyol>
The glycerol ester polyol used in the present invention has a methylol group in the molecule. That is, the glycerol ester polyol used in the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基である。)
(One of X 1 and X 2 is hydrogen, and the other is a methylol group,
One of X 3 and X 4 is hydrogen, and the other is a methylol group,
One of X 5 and X 6 is hydrogen, and the other is a methylol group. )
 本発明に用いるグリセロールエステル系ポリオールは、下記式(2-1)及び/又は式(2-2)で表される化合物をさらに含んでもよい。
Figure JPOXMLDOC01-appb-C000014
The glycerol ester polyol used in the present invention may further contain a compound represented by the following formula (2-1) and/or formula (2-2).
Figure JPOXMLDOC01-appb-C000014
(X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 X及びXは、一方が水素で、かつ他方がメチロール基であり、
 R及びR’は、それぞれ独立して下記式(3)で表される基以外の不飽和脂肪酸もしくは飽和脂肪酸の残基、又は水素である。)
(One of X 1 and X 2 is hydrogen, and the other is a methylol group,
One of X 3 and X 4 is hydrogen, and the other is a methylol group,
One of X 5 and X 6 is hydrogen, and the other is a methylol group,
R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen. )
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(Y及びYの対は、一方が水素で、かつ他方がメチロール基であり、*は結合手である。) (In the pair of Y 1 and Y 2 , one is hydrogen and the other is a methylol group, and * is a bond.)
 式(3)中のR及びR’としては、不飽和脂肪酸(例えば、ミリストレイン酸、パルミトレイン酸、サピエン酸、エライジン酸、バクセン酸、ペトロセリン酸、エイコセン(ゴンドイン)酸、パウリン酸、ガドレイン酸、エルカ酸、ブラシジン酸、ネルボン酸、ヘキサデカトリエン酸、リノール酸、リノールエライジン酸、α-リノレン酸、ピノレン酸、ステアリドン酸、エイコサジエン酸、ミード酸、エイコサトリエン酸、α-リノレン酸、γ-リノレン酸、ジホモ-γ-リノレン酸、ポドカルピン酸、アラキドン酸、エイコサテトラエン酸、エイコサペンタエン酸、ヘンエイコサペンタエン酸、ドコサジエン酸、アドレン酸、ドコサペンタエン酸(オズボンド酸)、ドコサヘキサエン酸、ドコサヘキサエン酸、テトラコサテトラエン酸、もしくはテトラコサペンタエン酸)、飽和脂肪酸(例えば、パルミチン酸、ステアリン酸、ラウリン酸、ミリスチン酸、カプロン酸、カプリル酸、カプリン酸、アラキジン酸、ベヘン酸、もしくはリグノセリン)から誘導される脂肪酸残基、又は水素が挙げられるが、R及びR’で表される脂肪酸残基は上記例示したものに限定されない。 R and R' in formula (3) include unsaturated fatty acids (for example, myristoleic acid, palmitoleic acid, sapienoic acid, elaidic acid, vaccenic acid, petroselic acid, eicosenoic (gondoic) acid, paulic acid, gadoleic acid, Erucic acid, brassic acid, nervonic acid, hexadecatrienoic acid, linoleic acid, linolelaidic acid, α-linolenic acid, pinolenic acid, stearidonic acid, eicosadienoic acid, mead acid, eicosatrienoic acid, α-linolenic acid, γ- Linolenic acid, dihomo-gamma-linolenic acid, podocarpic acid, arachidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, heneicosapentaenoic acid, docosadienoic acid, adrenic acid, docosapentaenoic acid (ozbond acid), docosahexaenoic acid, docosahexaenoic acid saturated fatty acids (e.g. palmitic, stearic, lauric, myristic, caproic, caprylic, capric, arachidic, behenic, or lignocerin) ) or hydrogen, but the fatty acid residues represented by R and R' are not limited to those exemplified above.
 グリセロールエステル系ポリオール中のオレイン酸由来の脂肪酸残基の含有量は、該グリセロールエステル系ポリオール中の脂肪酸残基の総量を基準として(すなわち、グリセロールエステル系ポリオール中の脂肪酸残基の総量を100モル%としたときに)、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。また、グリセロールエステル系ポリオール中の上記式(1)で表されるトリアシルグリセロールならびに上記式(2-1)及び/又は式(2-2)で表されるトリアシルグリセロール及び/又はジアシルグリセロールの量は、グリセロールエステル系ポリオールの総量を基準として、好ましくは80モル%以上、より好ましくは90モル%以上である。 The content of fatty acid residues derived from oleic acid in the glycerol ester polyol is based on the total amount of fatty acid residues in the glycerol ester polyol (i.e., the total amount of fatty acid residues in the glycerol ester polyol is 100 mol). %), preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more. In addition, triacylglycerol represented by the above formula (1) and triacylglycerol and/or diacylglycerol represented by the above formula (2-1) and/or formula (2-2) in the glycerol ester polyol. The amount is preferably 80 mol% or more, more preferably 90 mol% or more, based on the total amount of glycerol ester polyol.
<グリセロールエステル系ポリオールの合成>
 原料の不飽和脂肪酸残基を有するグリセロールエステルをヒドロホルミル化、次いで水素化することにより、不飽和脂肪酸残基の炭素-炭素二重結合に1級水酸基(メチロール基)を導入し、グリセロールエステル系ポリオールとする。
<Synthesis of glycerol ester polyol>
By hydroformylating and then hydrogenating the raw material glycerol ester having unsaturated fatty acid residues, a primary hydroxyl group (methylol group) is introduced into the carbon-carbon double bond of the unsaturated fatty acid residue, and a glycerol ester polyol is produced. shall be.
 主剤の原料に用いるグリセロールエステルは、不飽和脂肪酸残基に炭素-炭素二重結合を少なくとも1つ含む。グリセロールエステルは、好ましくは脂肪酸残基がオレイン酸残基である。本発明に用いるグリセロールエステルは使用する原料種により、トリオレイン以外にジオレイン化合物由来のトリアシルグリセロール及び/又はジアシルグリセロールを含んでもよい。本発明に用いるグリセロールエステル中のオレイン酸由来の脂肪酸残基の含有量は、グリセロールエステル中の脂肪酸残基の総量を基準として好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。本発明で用いるグリセロールエステルは、例えば、トリオレイン、オリーブ油、高オレイン酸ベニバナ油、高オレイン酸椿油、藻類由来高オレイン酸油脂、又はこれらの1種以上の組み合わせから得られるが、これらに限定されない。本発明では、原料に用いるグリセロールエステルは好ましくは非石油由来である。非石油由来原料はバイオ由来原料を含む。
 ここでバイオとは、動物、植物、微生物等の生物資源を指す。微生物とは、顕微鏡的微小生物の総称である。本明細書において微生物は、単細胞性の藻類(微細藻類を含む)、真核菌類(カビ、酵母)などの真核生物と、藍藻、細菌などの原核生物を含む。
 微細藻類の中でも、次のうち1以上の属および種が、グリセロールエステルを生産するのに好ましく用いられる。微細藻類として、例えばChlorella属の種、Pseudochlorella属の種、Heterochlorella属の種、Prototheca属の種、Arthrospira属の種、Euglena属の種、Nannochloropsis属の種、Phaeodactylum属の種、Chlamydomonas属の種、Scenedesmus属の種、Ostreococcus属の種、Selenastrum属の種、Haematococcus属の種、Nitzschia、Dunaliella、Navicula属の種、Trebouxia属の種、Pseudotrebouxia属の種、Vavicula属の種、Bracteococcus属の種、Gomphonema属の種、Watanabea属の種、Botryococcus属の種、Tetraselmis属の種およびIsochrysis属の種が挙げられる。
 酵母の中でも、次のうち1以上の属および種が、グリセロールエステルを生産するのに好ましく用いられる。酵母として、例えばCandida属の種、Cryptococcus属の種、Debaromyces属の種、Endomycopsis属の種、Geotrichum属の種、Hyphopichia属の種、Lipomyces属の種、Pichia属の種、Rodosporidium属の種、Rhodotorula属の種、Sporobolomyces属の種、Starmerella属の種、Torulaspora属の種、Trichosporon属の種、Wickerhamomyces属の種、Yarrowia属の種およびZygoascus属の種が挙げられる。
 細菌の中でも、次のうち1以上の属および種が、グリセロールエステルを生産するのに好ましく用いられる。細菌として、例えばFlavimonas oryzihabitans、Pseudomonas aeruginosa、Morococcus属の種、Rhodobacter sphaeroides、Rhodococcus opacus、Rhodococcus erythropolis、Streptomyces jeddahensis、Ochrobactrum属の種、Arthrobacter属の種、Nocardia属の種、Mycobacteria属の種、Gordonia属の種、Catenisphaera属の種およびDietzia属の種が挙げられる。
The glycerol ester used as a raw material for the main ingredient contains at least one carbon-carbon double bond in an unsaturated fatty acid residue. In the glycerol ester, preferably the fatty acid residue is an oleic acid residue. The glycerol ester used in the present invention may contain triacylglycerol and/or diacylglycerol derived from a diolein compound in addition to triolein, depending on the type of raw material used. The content of fatty acid residues derived from oleic acid in the glycerol ester used in the present invention is preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably It is 90 mol% or more. The glycerol ester used in the present invention can be obtained from, for example, triolein, olive oil, high oleic safflower oil, high oleic camellia oil, algae-derived high oleic fat or oil, or a combination of one or more of these, but is not limited thereto. . In the present invention, the glycerol ester used as a raw material is preferably derived from non-petroleum. Non-petroleum-derived raw materials include bio-derived raw materials.
Here, bio refers to biological resources such as animals, plants, and microorganisms. Microorganisms are a general term for microscopic microorganisms. In this specification, microorganisms include eukaryotes such as unicellular algae (including microalgae) and eukaryotic fungi (molds and yeast), and prokaryotes such as blue-green algae and bacteria.
Among microalgae, one or more of the following genera and species are preferably used to produce glycerol esters: Examples of microalgae include Chlorella species, Pseudochlorella species, Heterochlorella species, Prototheca species, Arthrospira species, Euglena species, Nanochloropsis species, and Phaeoda. Species of the genus ctylum, species of the genus Chlamydomonas, Scenedesmus species, Ostreococcus species, Selenastrum species, Haematococcus species, Nitzschia, Dunaliella, Navicula species, Trebouxia species, Pseudotrebou xia species, Vavicula species, Bracteococcus species, Gomphonema species of the genus Watanabea, species of the genus Botryococcus, species of the genus Tetraselmis and species of the genus Isochrysis.
Among yeasts, one or more of the following genera and species are preferably used to produce glycerol esters: Examples of yeast include Candida species, Cryptococcus species, Debaromyces species, Endomycopsis species, Geotrichum species, Hyphopicia species, Lipomyces species, Pichia species, Rhodospori Rhodotorula, a species of the genus Dium Species of the genus Sporobolomyces, spp. Starmerella, spp. Torulaspora, spp. Trichosporon, spp. Wickerhamomyces, spp. Yarrowia, and spp. Zygoascus.
Among the bacteria, one or more of the following genera and species are preferably used to produce glycerol esters: Examples of bacteria include Flavimonas oryzihabitans, Pseudomonas aeruginosa, species of the genus Morococcus, Rhodobacter sphaeroides, Rhodococcus opacus, Rhodococcus erythropolis, Streptomyces jeddahensis, species of the genus Ochrobactrum, species of the genus Arthrobacter, species of the genus Nocardia, species of the genus Mycobacteria, species of the genus Gordonia. species of the genus Catenisphaera and species of the genus Dietzia.
 ヒドロホルミル化は、例えば、不飽和脂肪酸残基を有するグリセロールエステルと一酸化炭素及び水素との反応により、不飽和脂肪酸残基の炭素-炭素二重結合にホルミル(CHO)基と水素の付加をもたらす。ヒドロホルミル化は、例えば、グリセロールエステルと触媒を入れた反応容器を一酸化炭素と水素の合成ガスにより約500psi~約1500psiに加圧し、約40℃~約200℃の温度で約1時間~約10時間反応することにより行うことができる。 Hydroformylation is, for example, the reaction of glycerol esters with unsaturated fatty acid residues with carbon monoxide and hydrogen, resulting in the addition of formyl (CHO) groups and hydrogen to the carbon-carbon double bonds of unsaturated fatty acid residues. . Hydroformylation can be carried out, for example, by pressurizing a reaction vessel containing the glycerol ester and catalyst to about 500 psi to about 1,500 psi with a synthesis gas of carbon monoxide and hydrogen at a temperature of about 40° C. to about 200° C. for about 1 hour to about 100 psi. This can be done by time reaction.
 ヒドロホルミル化に用いる触媒としては、コバルトベースの触媒(ヒドリドテトラカルボニルコバルト触媒、コバルトホスフィン触媒、貴金属(例えば、パラジウム、ルテニウム、又は白金)が補充されたコバルト触媒等)、ロジウムベースの触媒(例えば、ロジウムホスフィン触媒、アセチルアセトナート-ジカルボニルロジウム(I)(Rh(CO)acac)触媒、ロジウム/シクロヘキシルジフェニルホスフィン(Rh/CHDPP)触媒等)、その他ヒドロホルミル化に適した任意の遷移金属ベースの触媒等を用いることができる。 Catalysts used for hydroformylation include cobalt-based catalysts (such as cobalt hydridetetracarbonyl catalysts, cobalt phosphine catalysts, cobalt catalysts supplemented with noble metals (e.g. palladium, ruthenium, or platinum)), rhodium-based catalysts (e.g. rhodium phosphine catalyst, acetylacetonato-dicarbonylrhodium(I) (Rh(CO) 2 acac) catalyst, rhodium/cyclohexyldiphenylphosphine (Rh/CHDPP) catalyst, etc.), or any other transition metal-based suitable for hydroformylation. A catalyst etc. can be used.
 次いでヒドロホルミル化されたトリアシルグリセロールを触媒の存在下、水素によりホルミル(CHO)基を1級アルコール(メチロール基)に還元する。水素化は、例えば、約500psi~約1500psiの圧力で、約40℃~約250℃の温度で約1時間~約10時間反応することにより行うことができる。 Next, the formyl (CHO) group of the hydroformylated triacylglycerol is reduced to a primary alcohol (methylol group) using hydrogen in the presence of a catalyst. Hydrogenation can be carried out, for example, by reacting at a pressure of about 500 psi to about 1500 psi and a temperature of about 40° C. to about 250° C. for about 1 hour to about 10 hours.
 水素化に用いる触媒としては、ラネーニッケル(スポンジニッケル)、漆原ニッケル、ニッケル、パラジウム、白金、ロジウム、ルテニウム等の触媒を用いることができる。 As the catalyst used for hydrogenation, catalysts such as Raney nickel (sponge nickel), Urushihara nickel, nickel, palladium, platinum, rhodium, and ruthenium can be used.
<グリセロールエステル系ポリオール以外のポリオール>
 本発明のウレタン系塗料組成物は、上記式(1)ならびに上記式(2-1)及び/又は式(2-2)で表されるグリセロールエステル系ポリオールを、グリセロールエステル系ポリオール以外のポリオールの反応性稀釈剤として含んでもよい。反応性稀釈剤は反応性の増加、塗料の弾性と硬さの間のバランスの調整等の作用を有する。グリセロールエステル系ポリオール以外のポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリルポリオール、ポリエポキシポリオール、ポリオレフィンポリオール、ポリカーボネートポリオール、これらの部分変性物、これらの組み合わせ等が挙げられる。
<Polyols other than glycerol ester polyols>
The urethane coating composition of the present invention contains a glycerol ester polyol represented by the above formula (1) and the above formula (2-1) and/or formula (2-2) in a polyol other than the glycerol ester polyol. It may also be included as a reactive diluent. Reactive diluents have functions such as increasing reactivity and adjusting the balance between elasticity and hardness of the paint. Examples of polyols other than glycerol ester polyols include polyether polyols, polyester polyols, polyacrylic polyols, polyepoxy polyols, polyolefin polyols, polycarbonate polyols, partially modified products thereof, and combinations thereof.
<<ポリエーテルポリオール>>
 ポリエーテルポリオールとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、テトラヒドロフラン等のアルキレンオキサイド、スチレンオキサイド等を組み合わせてなるポリマー、又は共重合体が挙げられる。具体例としては、ポリオキシエチレンジオール(ポリエチレングリコール:PEG)、ポリオキシプロピレンジオール(ポリプロピレングリコール:PPG)、ポリテトラメチレンエーテルポリオール(PTMEG)、ポリオキシプロピレントリオール、エチレンオキサイド/プロピレンオキサイド共重合体(ジオール)、エチレンオキサイド/プロピレンオキサイド共重合体(トリオール)等が挙げられる。
<<Polyether polyol>>
Examples of the polyether polyol include polymers or copolymers formed by combining ethylene oxide, propylene oxide, butylene oxide, alkylene oxide such as tetrahydrofuran, styrene oxide, and the like. Specific examples include polyoxyethylene diol (polyethylene glycol: PEG), polyoxypropylene diol (polypropylene glycol: PPG), polytetramethylene ether polyol (PTMEG), polyoxypropylene triol, and ethylene oxide/propylene oxide copolymer ( diol), ethylene oxide/propylene oxide copolymer (triol), and the like.
<<ポリエステルポリオール>>
 ポリエステルポリオールとしては、縮合系ポリエステルポリオール、ラクトン系ポリエステルポリオール等が挙げられる。縮合系ポリエステルポリオールは、例えば、低分子多価アルコール(エチレングリコール(EG)、ジエチレングリコール、プロピレングリコール(PG)、ジプロピレングリコール、(1,3-又は1,4-)ブタンジオール、ペンタンジオール、ネオペンチルグリコール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパン(TMP)、1,2,5-ヘキサントリオール、ペンタエリスリトール等の低分子ポリオール、ソルビトール等の糖類等)と、多価塩基性カルボン酸(グルタル酸、アジピン酸、アゼライン酸、フマル酸、マレイン酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、テレフタル酸、イソフタル酸、ダイマー酸、ピロメリット酸、オリゴマー酸等)との反応生成物である。ラクトン系ポリエステルポリオールは、例えば、ε-カプロラクトン、α-メチル-ε-カプロラクトン、ε-メチル-ε-カプロラクトン等のラクトンを開環重合して得られるポリカプロラクトンポリオールである。
<<Polyester polyol>>
Examples of the polyester polyol include condensed polyester polyols, lactone polyester polyols, and the like. Condensed polyester polyols include, for example, low-molecular polyhydric alcohols (ethylene glycol (EG), diethylene glycol, propylene glycol (PG), dipropylene glycol, (1,3- or 1,4-)butanediol, pentanediol, neo low molecular weight polyols such as pentyl glycol, hexanediol, cyclohexanedimethanol, glycerin, 1,1,1-trimethylolpropane (TMP), 1,2,5-hexanetriol, pentaerythritol, sugars such as sorbitol, etc.), Polybasic carboxylic acids (glutaric acid, adipic acid, azelaic acid, fumaric acid, maleic acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, dimer acid, pyromellitic acid, oligomer acid, etc.) ) is a reaction product with The lactone-based polyester polyol is, for example, a polycaprolactone polyol obtained by ring-opening polymerization of a lactone such as ε-caprolactone, α-methyl-ε-caprolactone, and ε-methyl-ε-caprolactone.
<<ポリカーボネートポリオール>>
 ポリカーボネートポリオールは、例えば、ポリオール(1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5-ペンタンジオール、オクタンジオール、1,4-ブチンジオール、ジプロピレングリコール、トリプロピレングリコール、ポリテトラメチレンエーテルグリコール等の飽和もしくは不飽和の各種グリコール類、1,4-シクロヘキサンジグリコール、1,4-シクロヘキサンジメタノール等の脂環族グリコール等)と、ジアルキルカーボネート(ジメチルカーボネート、ジエチルカーボネート等)、エチレンカーボネート、ジフェニルカーボネート等との反応によって得られるポリオールである。
<<Polycarbonate polyol>>
Polycarbonate polyols include, for example, polyols (1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3-methyl-1 , 5-pentanediol, octanediol, 1,4-butynediol, dipropylene glycol, tripropylene glycol, various saturated or unsaturated glycols such as polytetramethylene ether glycol, 1,4-cyclohexane diglycol, 1, It is a polyol obtained by reacting an alicyclic glycol such as 4-cyclohexanedimethanol with a dialkyl carbonate (dimethyl carbonate, diethyl carbonate, etc.), ethylene carbonate, diphenyl carbonate, etc.
<<ポリアクリルポリオール>>
 ポリアクリルポリオールは、例えば、1分子中に1個以上の水酸基を有する重合性アクリルモノマーと、これに共重合可能な他のモノマー(例えば、他の(メタ)アクリル酸系モノマー及び/又は他の不飽和モノマー)を共重合することによって得られる。ポリアクリルポリオールの具体例としては、1分子中に1個以上の水酸基を有する重合性アクリルモノマーとビニルモノマーとの共重合体、重合性アクリルモノマーとε-カプロラクロン、γ-バレロラクトン等のラクトン類との開環重合付加物等が挙げられる。重合性アクリルモノマーとしては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-ヒドロキシペンチル、グリセリンの(メタ)アクリル酸モノエステル、トリメチロールプロパンの(メタ)アクリル酸モノエステル、(メタ)アクリル酸2-ヒドロキシ-3-クロロプロピル等が挙げられる。ビニルモノマーとしては、例えば、(メタ)アクリル酸と炭素数2~10のグリコールとのモノエステル(ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート等)、カルボキシル基含有ビニルモノマー、アマイド系ビニルモノマー、グリシジル基含有ビニルモノマー、スチレン及びその誘導体、アクリロニトリル、ビニルトルエン、塩化ビニル、酢酸ビニル等が挙げられる。
<<Polyacrylic polyol>>
Polyacrylic polyols include, for example, a polymerizable acrylic monomer having one or more hydroxyl groups in one molecule and other monomers copolymerizable therewith (for example, other (meth)acrylic acid monomers and/or other monomers). unsaturated monomers). Specific examples of polyacrylic polyols include copolymers of polymerizable acrylic monomers having one or more hydroxyl groups in one molecule and vinyl monomers, polymerizable acrylic monomers and lactones such as ε-caprolacrone and γ-valerolactone. Examples include ring-opening polymerization adducts with. Examples of polymerizable acrylic monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and (meth)acrylate. 4-hydroxybutyl acrylate, 2-hydroxypentyl (meth)acrylate, (meth)acrylic acid monoester of glycerin, (meth)acrylic acid monoester of trimethylolpropane, 2-hydroxy-3-(meth)acrylate Examples include chloropropyl. Examples of vinyl monomers include monoesters of (meth)acrylic acid and glycols having 2 to 10 carbon atoms (hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, etc.), carboxyl group-containing vinyl monomers, and amide. vinyl monomers, glycidyl group-containing vinyl monomers, styrene and its derivatives, acrylonitrile, vinyltoluene, vinyl chloride, vinyl acetate, and the like.
<<ポリエポキシポリオール>>
 ポリエポキシポリオールとしては、例えば、ジグリシジル化合物(ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル等)と、ビスフェノール化合物(ビスフェノールA、ビスフェノールF、ビフェノール等)、及び/又は多価塩基性カルボン酸(グルタル酸、アジピン酸、アゼライン酸、フマル酸、マレイン酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、テレフタル酸、イソフタル酸、ダイマー酸、ピロメリット酸、オリゴマー酸等)、及び/又はポリアミン(モノメチルアミン、モノエチルアミン、モノプロピルアミン、モノブチルアミン、モノメタノールアミン、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、ジアミノメタン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノポリエチレンオキサイド、ジアミノポリプロピレンオキサイド等)との反応生成物が挙げられる。
<<Polyepoxy polyol>>
Examples of polyepoxy polyols include diglycidyl compounds (bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hexahydrophthalic acid diglycidyl ether, glycidyl ester, etc.), bisphenol compounds (bisphenol A, bisphenol F, biphenol, etc.), and/or polybasic carboxylic acids (glutaric acid, adipic acid, azelaic acid, fumaric acid, maleic acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, dimer acid, pyromellitic acid, oligomer acid, etc.), and/or polyamines (monomethylamine, monoethylamine, monopropylamine, monobutylamine, monomethanolamine, monoethanolamine, monopropanolamine, monobutanolamine, diaminomethane, diaminoethane, diaminopropane, diaminobutane, diaminopolyethylene oxide, diaminopolypropylene oxide, etc.).
<<ポリオレフィンポリオール>>
 ポリオレフィンポリオールとしては、ポリエチレン系ポリオール、ポリプロピレン系ポリオール、ポリブタジエンポリオール、水素添加ポリブタジエンポリオール、ポリイソプレンポリオール、水素添加ポリイソプレンポリオール等が挙げられる。
<<Polyolefin polyol>>
Examples of the polyolefin polyol include polyethylene polyol, polypropylene polyol, polybutadiene polyol, hydrogenated polybutadiene polyol, polyisoprene polyol, hydrogenated polyisoprene polyol, and the like.
<ポリイソシアネート>
 本発明に用いる好ましいポリイソシアネートは、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、前記ポリイソシアネート(すなわち、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、及び脂環族ポリイソシアネート)の1種以上を重合したイソシアヌレート型ポリイソシアネート、前記ポリイソシアネートの1種以上を重合したウレトジオン型ポリイソシアネート、前記ポリイソシアネートの1種以上と多価アルコールから得られるアダクト型ポリイソシアネート、前記ポリイソシアネートの1種以上と水及び/又はアミンから得られるビューレット型ポリイソシアネート、前記ポリイソシアネートの1種以上とアルコールから得られるアロハネート型ポリイソシアネート等であり、これらの2種以上を組み合わせて用いることができる。芳香族ポリイソシアネートとしては、トリレンジイソシアネート(TDI)[例えば、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)等]、ジフェニルメタンジイソシアネート(MDI)[例えば、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)等]、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)、トリフェニルメタントリイソシアネート、ポリメリックジフェニルメタンジイソシアネート(ポリメリックMDI)(ジフェニルメタンジイソシアネートを高分子量化した化合物)等が挙げられる。脂肪族又は脂環式のポリイソシアネートとしては、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアネート(NBDI)、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、ビス(イソシアネートメチル)シクロヘキサン(H6XDI)、ジシクロヘキシルメタンジイソシアネート(H12MDI)等が挙げられる。本発明に用いるポリイソシアネートは、より好ましくはMDI、ポリメリックMDI、変性MDI、又はこれらの組み合わせである。
<Polyisocyanate>
Preferred polyisocyanates for use in the present invention include aromatic polyisocyanates, aliphatic polyisocyanates, alicyclic polyisocyanates, and one of the above polyisocyanates (i.e., aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates). isocyanurate type polyisocyanate obtained by polymerizing one or more of the above polyisocyanates, uretdione type polyisocyanate obtained by polymerizing one or more of the above polyisocyanates, an adduct type polyisocyanate obtained from one or more of the above polyisocyanates and a polyhydric alcohol, and one of the above polyisocyanates. These include biuret-type polyisocyanates obtained from one or more polyisocyanates and water and/or amines, and allophanate-type polyisocyanates obtained from one or more of the polyisocyanates and alcohol, and two or more of these can be used in combination. Examples of aromatic polyisocyanates include tolylene diisocyanate (TDI) [for example, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), etc.], diphenylmethane diisocyanate (MDI) [for example, 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), etc.], 1,4-phenylene diisocyanate, polymethylene polyphenylene Polyisocyanate, xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), triphenylmethane triisocyanate, polymeric diphenylmethane diisocyanate (polymeric MDI) (diphenylmethane) Examples include compounds obtained by increasing the molecular weight of diisocyanate. Examples of aliphatic or alicyclic polyisocyanates include hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate (NBDI), transcyclohexane-1,4-diisocyanate, and isophorone diisocyanate (IPDI). , bis(isocyanatomethyl)cyclohexane (H6XDI), dicyclohexylmethane diisocyanate (H12MDI), and the like. The polyisocyanate used in the present invention is more preferably MDI, polymeric MDI, modified MDI, or a combination thereof.
 本発明に用いる好ましいポリイソシアネートは、上記列挙したポリイソシアネートをブロック剤によって封鎖したブロックイソシアネートであってもよい。ブロック剤としては特に限定されず、例えば、フェノール系(フェノール、クレゾール、キシレノール、クロロフェノール及びエチルフェノール等)、ラクタム系(ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピオラクタム等)、活性メチレン系(アセト酢酸エチル、アセチルアセトン等)、アルコール系(メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、アミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノ2-エチルへキシルエーテル、プロピレングリコールモノメチルエーテル、グリコール酸メチル、グリコール酸ブチル、ジアセトンアルコール、乳酸メチル及び乳酸エチル、フルフリルアルコール等)、オキシム系(ホルムアルドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトオキシム、ジアセチルモノオキシム、シクロヘキサンオキシム等)、メルカプタン系(ブチルメルカプタン、ヘキシルメルカプタン、t-ブチルメルカプタン、チオフェノール、メチルチオフェノール、エチルチオフェノール等)、イミド系(酢酸アミド、ベンズアミド等の酸アミド系、コハク酸イミド及びマレイン酸イミド等)、2級アミン系(イミダゾール、2-エチルイミダゾール等のイミダゾール系、ジメチルアミン、ジエチルアミン、ジブチルアミン等)のブロック剤を用いることができる。 The preferred polyisocyanate used in the present invention may be a blocked isocyanate obtained by blocking the polyisocyanate listed above with a blocking agent. Blocking agents are not particularly limited, and include, for example, phenolics (phenol, cresol, xylenol, chlorophenol, ethylphenol, etc.), lactams (ε-caprolactam, δ-valerolactam, γ-butyrolactam, β-propiolactam, etc.) ), activated methylene (ethyl acetoacetate, acetylacetone, etc.), alcohol (methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, t-butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Ethylene glycol monomethyl ether, ethylene glycol mono-2-ethylhexyl ether, propylene glycol monomethyl ether, methyl glycolate, butyl glycolate, diacetone alcohol, methyl lactate and ethyl lactate, furfuryl alcohol, etc.), oxime series (formaldoxime) , acetaldoxime, acetoxime, methyl ethyl ketoxime, diacetyl monoxime, cyclohexane oxime, etc.), mercaptans (butyl mercaptan, hexyl mercaptan, t-butyl mercaptan, thiophenol, methylthiophenol, ethylthiophenol, etc.), imides (acetate amide, etc.) , acid amide type such as benzamide, succinimide, maleic acid imide, etc.), secondary amine type (imidazole type such as imidazole, 2-ethylimidazole, dimethylamine, diethylamine, dibutylamine, etc.) can be used. can.
 グリセロールエステル系ポリオールを他ポリオールの反応性希釈剤として用いる場合の配合量は、グリセロールエステル系ポリオール以外のポリオールに対する配合比(質量%)(グリセロールエステル系ポリオール/他のポリオール)が、好ましくは5~50質量%であり、より好ましくは10~40質量%である。質量比が上記好ましい範囲を超えて小さくなると塗膜の硬化性、耐溶剤、耐薬品性等が低下する傾向があり、上記好ましい範囲を超えて大きくなると、イソシアネートとの反応により短時間で増粘し、可使時間が短くなる傾向がある。 When the glycerol ester polyol is used as a reactive diluent for other polyols, the blending ratio (% by mass) (glycerol ester polyol/other polyol) to the polyol other than the glycerol ester polyol is preferably 5 to 5. It is 50% by mass, more preferably 10 to 40% by mass. If the mass ratio decreases beyond the above-mentioned preferred range, the curability, solvent resistance, chemical resistance, etc. of the coating film tends to decrease, and if it increases beyond the above-mentioned preferred range, the viscosity increases in a short time due to reaction with isocyanate. However, the pot life tends to be shortened.
 ポリイソシアネートのイソシアネート基のポリオールの水酸基に対する当量比(イソシアネート基/水酸基)は、好ましくは0.3~3.0であり、より好ましくは0.5~2.5である。ここで、上記ポリオールの水酸基はグリセロールエステル系ポリオールの水酸基である。グリセロールエステル系ポリオールを反応性稀釈剤として用いる場合、ポリイソシアネートのイソシアネート基のポリオールの水酸基に対する当量比(イソシアネート基/水酸基)は、好ましくは0.5~2.0であり、より好ましくは0.7~1.5である。ここで、グリセロールエステル系ポリオールを反応性稀釈剤として用いる場合の上記ポリオールの水酸基は、グリセロールエステル系ポリオール及びグリセロールエステル系ポリオール以外のポリオールの水酸基である。イソシアネート基の含有率を上記範囲にすることにより、得られる硬化物は高い付着性と高い弾性率を備えることができる。当量比が上記好ましい範囲を超えて小さくなると未反応の水酸基が増加し硬化性、耐溶剤、耐薬品性等が低下する傾向がある。また、当量比が上記好ましい範囲を超えて大きくなると、未反応のイソシアネート基が増加し、硬化速度及び塗膜外観が低下する傾向がある。 The equivalent ratio of the isocyanate groups of the polyisocyanate to the hydroxyl groups of the polyol (isocyanate groups/hydroxyl groups) is preferably 0.3 to 3.0, more preferably 0.5 to 2.5. Here, the hydroxyl group of the polyol is a hydroxyl group of a glycerol ester polyol. When a glycerol ester polyol is used as a reactive diluent, the equivalent ratio of the isocyanate groups of the polyisocyanate to the hydroxyl groups of the polyol (isocyanate groups/hydroxyl groups) is preferably 0.5 to 2.0, more preferably 0. 7 to 1.5. Here, when a glycerol ester polyol is used as a reactive diluent, the hydroxyl group of the polyol is a hydroxyl group of a glycerol ester polyol and a polyol other than the glycerol ester polyol. By setting the content of isocyanate groups within the above range, the resulting cured product can have high adhesiveness and high elastic modulus. When the equivalent ratio becomes smaller than the above-mentioned preferred range, unreacted hydroxyl groups increase and curability, solvent resistance, chemical resistance, etc. tend to decrease. Furthermore, if the equivalent ratio exceeds the above-mentioned preferred range, the number of unreacted isocyanate groups increases, which tends to reduce the curing speed and appearance of the coating film.
<その他の成分>
 本発明の塗料組成物は、本発明の目的を損なわない範囲で一般に塗料組成物に添加される成分を配合することができる。例えば、各種添加剤(顔料、染料、紫外線吸収剤、光安定剤、表面調整剤等)や各種溶剤(トルエン、キシレン等の芳香族系溶剤及びその水素添加物、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル系溶剤、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネート等のグリコールエーテルエステル系溶剤、テトラヒドロフラン、ジオキサン等のエーテル系溶剤等)を配合することができる。本発明では、ポリエーテルポリオール等のポリオールを配合することにより無溶剤型の塗料組成物としてもよい。
<Other ingredients>
The coating composition of the present invention may contain components that are generally added to coating compositions within a range that does not impair the object of the present invention. For example, various additives (pigments, dyes, ultraviolet absorbers, light stabilizers, surface conditioners, etc.) and various solvents (aromatic solvents such as toluene, xylene, and their hydrogenated substances, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.) Ketone solvents, ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-methoxybutyl acetate, ethyl-3-ethoxypropionate, etc. glycol ether ester solvents, ether solvents such as tetrahydrofuran, dioxane, etc.) can be blended. In the present invention, a solvent-free coating composition may be obtained by blending a polyol such as a polyether polyol.
(実施態様)
<2液型塗料組成物>
 本発明の塗料組成物の1つの実施態様は、グリセロールエステル系ポリオールを含む主剤と、ポリイソシアネートを含む硬化剤とから構成される2液型塗料組成物である。本発明の塗料組成物の別の実施態様は、グリセロールエステル系ポリオール及びグリセロールエステル系ポリオール以外のポリオールを含む主剤と、ポリイソシアネートを含む硬化剤とから構成される2液型塗料組成物である。一般に2液型塗料組成物は、2液を混合することにより速やかに反応が進み、1液型に比べ耐久性が高くなる傾向がある。2液型塗料組成物とする場合、上記添加剤は例えば主剤中に添加するか、主剤と硬化剤を混合する際に添加することができる。溶剤は、主剤もしくは硬化剤のいずれか、又は両方に配合することができる。2液型塗料組成物の場合、上記2成分を使用直前に混合して塗装を行う。塗装方法は限定されず、スプレー塗装、刷毛塗り、ローラー塗装等の通常の方法によって行うことができる。塗装後は40~100℃程度に加熱して硬化してもよい。
(Embodiment)
<Two-component coating composition>
One embodiment of the coating composition of the present invention is a two-component coating composition composed of a base agent containing a glycerol ester polyol and a curing agent containing a polyisocyanate. Another embodiment of the coating composition of the present invention is a two-component coating composition composed of a main agent containing a glycerol ester polyol and a polyol other than the glycerol ester polyol, and a curing agent containing a polyisocyanate. In general, two-component coating compositions tend to react quickly by mixing the two components, and have higher durability than one-component coating compositions. When preparing a two-component coating composition, the above-mentioned additives can be added, for example, to the base resin or when mixing the base resin and the curing agent. The solvent can be added to either the base agent or the curing agent, or both. In the case of a two-component coating composition, the above two components are mixed immediately before use and applied. The coating method is not limited, and can be carried out by conventional methods such as spray coating, brush coating, and roller coating. After painting, it may be cured by heating to about 40 to 100°C.
<1液型塗料組成物>
 本発明のさらに別の実施態様は、グリセロールエステル系ポリオールとブロックイソシアネートを含む1液型塗料組成物である。本発明のさらに別の実施態様は、グリセロールエステル系ポリオール及びグリセロールエステル系ポリオール以外のポリオールとブロックポリイソシアネートを含む1液型塗料組成物である。1液型塗料組成物は長期保存が可能な上、塗装時の塗料組成物の可使時間が長い等のメリットがある。1液型塗料組成物の場合も塗装方法は限定されず、スプレー塗装、刷毛塗り、ロール塗装等通常の塗装方法で塗装を行うことができる。硬化乾燥は常温でも可能だが、好ましくは50~210℃、より好ましくは110~180℃で30分~2時間加熱硬化させることで硬化塗膜の性能を向上させることが可能となる。
<One-component coating composition>
Yet another embodiment of the present invention is a one-component coating composition comprising a glycerol ester polyol and a blocked isocyanate. Yet another embodiment of the present invention is a one-component coating composition containing a glycerol ester polyol, a polyol other than the glycerol ester polyol, and a blocked polyisocyanate. One-component coating compositions have advantages such as being able to be stored for a long time and having a long pot life when applied. In the case of a one-component coating composition, the coating method is not limited, and the coating can be carried out by a conventional coating method such as spray coating, brush coating, or roll coating. Although curing and drying can be performed at room temperature, it is possible to improve the performance of the cured coating film by heating and curing preferably at 50 to 210°C, more preferably at 110 to 180°C for 30 minutes to 2 hours.
<本発明の塗料組成物の特徴>
 本発明に用いるトリグリセロールエステルは、オレイン酸残基の含有率が70モル%以上と規則性が高い。分子構造の規則性が高いことによりポリイソシアネートと反応して得られるウレタン樹脂の硬度、耐薬品性、乾燥性等の性能が向上する。得られるウレタン樹脂は柔軟かつ強靭である。また、樹脂ポリオール(アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂等のポリオール)の反応性希釈剤として用いることにより、塗料組成物の低粘度化が可能であるとともに塗膜性能(乾燥性、付着性、耐薬品性等)の向上を図ることができる。また、低粘度化に伴い揮発性溶剤の使用を低減することが可能である。
<Characteristics of the coating composition of the present invention>
The triglycerol ester used in the present invention has a highly regular content of oleic acid residues of 70 mol% or more. The high regularity of the molecular structure improves the hardness, chemical resistance, drying properties, and other properties of the urethane resin obtained by reacting with polyisocyanate. The resulting urethane resin is flexible and strong. In addition, by using it as a reactive diluent for resin polyols (polyols such as acrylic resins, epoxy resins, polyester resins, polyether resins, and polycarbonate resins), it is possible to lower the viscosity of the coating composition and improve the coating film performance. (drying properties, adhesion properties, chemical resistance, etc.) can be improved. Further, as the viscosity is lowered, it is possible to reduce the use of volatile solvents.
 以下に本発明を実施例によりさらに詳細に説明するが、実施例は本発明を説明するための例示であり、本発明はこれらの実施例に限定されない。 The present invention will be explained in more detail below with reference to Examples, but the Examples are merely illustrative for explaining the present invention, and the present invention is not limited to these Examples.
<グリセロールエステル系ポリオールの合成>
(合成例1)ポリオール1の合成
 温度調節器、ガス封入端子及び撹拌器を備えたステンレス製高圧反応容器にオリーブ油(オレイン酸含有量:75モル%、ヨウ素価:80)100g、触媒として(アセチルアセトナート)ジカルボニウムロジウム(I)(Sigma-Aldrich社製)0.1g、配位子としてトリフェニルホスフィン(東京化成(株)製)0.5gを投入した後に系内を合成ガス(一酸化炭素と水素)に置換した。撹拌を開始し90℃に昇温後、合成ガスで系内を1000psiまで加圧し6時間反応した。常温まで降温した後に合成ガスを排出した。次いでイソプロパノール50ml、ラネーニッケル10gを投入後、系内を水素ガスで置換した。撹拌を開始し110℃に昇温後、系内を水素ガスで1000psiまで加圧し5時間反応した。常温まで降温し系内のガスを排出した後にイソプロパノール22mlを投入し撹拌混合後に濾過精製した。濾液を減圧濃縮後、5%希塩酸20mlを投入し撹拌洗浄後、水相部分を除去、さらにイオン交換水10mlで2回撹拌洗浄し、油相部分を減圧乾燥した。得られたポリオール1は水酸基価:154mgKOH/g、粘度:1700mPa・sであった。
<Synthesis of glycerol ester polyol>
(Synthesis Example 1) Synthesis of Polyol 1 100 g of olive oil (oleic acid content: 75 mol%, iodine value: 80) was placed in a stainless steel high-pressure reaction vessel equipped with a temperature controller, a gas-filled terminal, and a stirrer, and (acetyl After adding 0.1 g of dicarbonium rhodium (I) (manufactured by Sigma-Aldrich) and 0.5 g of triphenylphosphine (manufactured by Tokyo Kasei Co., Ltd.) as a ligand, the system was flushed with synthesis gas (1). (carbon oxide and hydrogen). After starting stirring and raising the temperature to 90° C., the system was pressurized to 1000 psi with synthesis gas and reacted for 6 hours. After cooling down to room temperature, the synthesis gas was discharged. Next, 50 ml of isopropanol and 10 g of Raney nickel were added, and the inside of the system was replaced with hydrogen gas. After starting stirring and raising the temperature to 110° C., the inside of the system was pressurized to 1000 psi with hydrogen gas and reacted for 5 hours. After the temperature was lowered to room temperature and the gas in the system was discharged, 22 ml of isopropanol was added, mixed with stirring, and purified by filtration. After concentrating the filtrate under reduced pressure, 20 ml of 5% diluted hydrochloric acid was added and washed with stirring, the aqueous phase was removed, and the mixture was further washed with 10 ml of ion-exchanged water with stirring twice, and the oil phase was dried under reduced pressure. The obtained polyol 1 had a hydroxyl value of 154 mgKOH/g and a viscosity of 1700 mPa·s.
(合成例2~6)ポリオール2~6の合成
 合成例1のオリーブ油に替えて表1に記載の油脂を用いた以外は合成例1と同様にしてポリオール2~6を合成した(トリオレインはSigma-Aldrich社製の試薬を用いた)。結果を表1に示す。
(Synthesis Examples 2 to 6) Synthesis of Polyols 2 to 6 Polyols 2 to 6 were synthesized in the same manner as Synthesis Example 1 except that the oils and fats listed in Table 1 were used in place of the olive oil in Synthesis Example 1 (triolein was (using reagents manufactured by Sigma-Aldrich). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 合成例1~6で得られたポリオール1~6の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000017
The structures of polyols 1 to 6 obtained in Synthesis Examples 1 to 6 are shown below.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<LC/CADによる分子構造の確認>
 合成例5で調製したポリオール5をLC/CAD(UltiMate3000RS/CoronaVeo(Thermo)(Thermo Fisher Scientific社製))により測定し、分子構造を同定した。
<Confirmation of molecular structure by LC/CAD>
Polyol 5 prepared in Synthesis Example 5 was measured by LC/CAD (UltiMate3000RS/CoronaVeo (Thermo) (manufactured by Thermo Fisher Scientific)) to identify the molecular structure.
(比較合成例1~2)比較ポリオール1~2の合成
 合成例1のオリーブ油に替えて表3に記載の油脂を用いた以外は合成例1と同様にして比較ポリオール1~2を合成した。結果を表3に示す。
(Comparative Synthesis Examples 1 and 2) Synthesis of Comparative Polyols 1 and 2 Comparative polyols 1 and 2 were synthesized in the same manner as Synthesis Example 1, except that the oils and fats listed in Table 3 were used in place of the olive oil in Synthesis Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
(実施例1)硬化塗膜1の調製
 ポリオール1(100質量部)、硬化剤としてバーノックD-750-45(DIC(株)製トリレンジイソシアネートアダクト型ポリイソシアネート、NCO%:7.9%)(160質量部)を混合し(硬化剤D-750-45の配合量はイソシアネート基/水酸基の当量比が1.1となるように配合した。)、ガラス板およびPP板上に6ミルアプリケータで、塗装後25℃で2週間乾燥し、膜厚70μmの硬化塗膜を得た。得られた塗膜の評価結果を表4に示す。
(Example 1) Preparation of cured coating film 1 Polyol 1 (100 parts by mass), Burnock D-750-45 as curing agent (tolylene diisocyanate adduct type polyisocyanate manufactured by DIC Corporation, NCO%: 7.9%) (160 parts by mass) was mixed (the amount of curing agent D-750-45 was blended so that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1), and a 6 mil application was applied on a glass plate and a PP plate. After coating, it was dried for two weeks at 25° C. to obtain a cured coating film with a thickness of 70 μm. Table 4 shows the evaluation results of the obtained coating films.
(実施例2~7)硬化塗膜2~7の調製
 実施例1のポリオール1と硬化剤(D-750-45)の配合量を表4に示すポリオール2~6と硬化剤の配合量(硬化剤の配合量はイソシアネート基/水酸基の当量比が1.1となるように配合した。)とした以外は実施例1と同様にして硬化塗膜2~6を得た。また、実施例1のポリオール1と硬化剤(D-750-45)の配合量を表4に示すポリオール6と硬化剤[コロネート1391:MDI系ポリイソシアネート、NCO%:33.2%(東ソー(株)製)]の配合量(硬化剤の配合量はイソシアネート基/水酸基の当量比が1.1となるように配合した。)とし、酢酸エチルを加えた以外は実施例1と同様にして硬化塗膜7を得た。評価結果を表4に示す。
(Examples 2 to 7) Preparation of cured coating films 2 to 7 The blending amounts of polyol 1 and curing agent (D-750-45) of Example 1 are shown in Table 4. Cured coating films 2 to 6 were obtained in the same manner as in Example 1, except that the amount of the curing agent was blended so that the equivalent ratio of isocyanate group/hydroxyl group was 1.1. In addition, the blending amounts of polyol 1 and curing agent (D-750-45) of Example 1 are shown in Table 4. Co., Ltd.) (the curing agent was blended in such a way that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1), and ethyl acetate was added. A cured coating film 7 was obtained. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
<硬化塗膜の評価方法>
 実施例及び比較例で作製した硬化塗膜について、以下の評価方法に従って硬化塗膜を評価した。
<<塗膜の付着性試験>>
 100マス碁盤目試験(JIS K-5400-8.5)に準拠し、切り傷の隙間間隔を1mmとし、碁盤目を100個作り、その表面にセロハン粘着テープを密着させ、急激に剥がしたときの塗面に残存する碁盤目の数を調べた。
<Evaluation method of cured coating film>
The cured coating films prepared in Examples and Comparative Examples were evaluated according to the following evaluation method.
<<Paint film adhesion test>>
In accordance with the 100-square grid test (JIS K-5400-8.5), the gap between the cuts is 1 mm, 100 grid grids are made, and cellophane adhesive tape is adhered to the surface of the grid. The number of grid lines remaining on the painted surface was investigated.
<<鉛筆硬度試験>>
 JIS K-5600-5-4に準拠した方法により、既知の硬度の鉛筆で塗膜を引っかき、どの硬度の鉛筆で塗膜に傷がつくかによって塗膜の鉛筆硬度を試験した。
<<Pencil hardness test>>
The pencil hardness of the coating film was tested by scratching the coating film with a pencil of known hardness according to a method based on JIS K-5600-5-4, and determining which hardness of pencil scratched the coating film.
<<耐薬品試験>>
 JIS A-5209に準拠した方法により、塗膜を形成したフェルトをキシレンに浸漬し、500gの加重をかけ塗膜を50往復ラビング試験した。評価は、1:塗膜が剥がれ基材の露出、2:塗膜のキズによる白化、3:塗膜に僅かなキズ、4:変化無し、とした。
<<Chemical resistance test>>
The felt on which the coating film was formed was immersed in xylene by a method in accordance with JIS A-5209, and the coating film was subjected to a rubbing test 50 times under a load of 500 g. The evaluation was as follows: 1: The coating film peeled off and the base material was exposed, 2: Whitening due to scratches on the coating film, 3: Slight scratches on the coating film, and 4: No change.
<<乾燥性試験>>
 塗装後の塗膜について指触乾燥性タックが無くなるまでの時間を測定した。
<<Drying test>>
After painting, the time required for the paint film to become dry to the touch and tack free was measured.
<<最大応力・弾性率試験>>
 試験片(5mm×60mm×0.07mm)を作製し、試験片の両端をつかみ具で固定し、引張試験により試験片に静的荷重を加え、最大応力(MPa)、弾性率(MPa)、及び伸度(%)を測定した。
<<Maximum stress/elastic modulus test>>
A test piece (5 mm x 60 mm x 0.07 mm) was prepared, both ends of the test piece were fixed with grips, a static load was applied to the test piece by a tensile test, and the maximum stress (MPa), elastic modulus (MPa), and elongation (%) were measured.
(比較例1~5)比較硬化塗膜1~5の調製
 実施例1のポリオール1と硬化剤(D-750-45)の配合量を表5に示すポリオールと硬化剤(D-750-45)の配合量とした(硬化剤D-750-45の配合量はイソシアネート基/水酸基の当量比が1.1となるように配合した)以外は実施例1と同様にして比較硬化塗膜1~5を得た。評価結果を表5に示す。
(Comparative Examples 1 to 5) Preparation of comparative cured coating films 1 to 5 The blending amounts of polyol 1 of Example 1 and curing agent (D-750-45) are shown in Table 5. ) Comparative cured coating film 1 was prepared in the same manner as in Example 1 except that the amount of curing agent D-750-45 was blended so that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1. I got ~5. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
T-1000:アクトコールT-1000(三井化学(株)製ポリプロピレングリコール、水酸基価:164mgKOH/g)
PTMG-650:三菱ケミカル(株)製ポリテトラメチレングリコール、水酸基価:172mgKOH/g)
ヒマシ油:ヒマシ油 HS2G-160R(豊国製油(株)製、水酸基価:158mgKOH/g)
T-1000: Actocol T-1000 (polypropylene glycol manufactured by Mitsui Chemicals, Inc., hydroxyl value: 164 mgKOH/g)
PTMG-650: Polytetramethylene glycol manufactured by Mitsubishi Chemical Corporation, hydroxyl value: 172mgKOH/g)
Castor oil: Castor oil HS2G-160R (manufactured by Toyokuni Oil Co., Ltd., hydroxyl value: 158mgKOH/g)
(実施例8)硬化塗膜8の調製
 アクリディックA-801(DIC(株)製アクリル樹脂ポリオール、水酸基価:50mgKOH/g)(100質量部)、ポリオール1(12.5質量部)を混合し、次いで硬化剤としてバーノックD-750-45(67.5質量部)をポリオール混合液中に投入後よく撹拌し、SPCC-SB水研ぎ板とPP板上に6ミルアプリケータ塗装後25℃で2週間乾燥し、膜厚70μmの硬化塗膜を得た(硬化剤D-750-45の配合量はイソシアネート基/水酸基の当量比が1.1となるように配合した)。得られた塗膜の評価結果を表6に示す。
(Example 8) Preparation of cured coating film 8 Acrydic A-801 (acrylic resin polyol manufactured by DIC Corporation, hydroxyl value: 50 mgKOH/g) (100 parts by mass) and polyol 1 (12.5 parts by mass) were mixed. Then, Burnock D-750-45 (67.5 parts by mass) as a hardening agent was added into the polyol mixture, stirred well, and coated on SPCC-SB water-sanded board and PP board with a 6 mil applicator at 25°C. After drying for two weeks, a cured coating film with a thickness of 70 μm was obtained (the amount of curing agent D-750-45 was blended such that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1). Table 6 shows the evaluation results of the obtained coating film.
(実施例9~15)硬化塗膜9~15の調製
 実施例8のポリオール1、アクリディックA-801、及び硬化剤(D-750-45)の配合量を表6に示すポリオールと硬化剤の配合量とした(硬化剤の配合量はイソシアネート基/水酸基の当量比が1.1となるように配合した)以外は実施例8と同様にして硬化塗膜9~15を得た。評価結果を表6に示す。
(Examples 9 to 15) Preparation of cured coating films 9 to 15 The blending amounts of polyol 1 of Example 8, Acridic A-801, and curing agent (D-750-45) are shown in Table 6. Polyol and curing agent Cured coating films 9 to 15 were obtained in the same manner as in Example 8, except that the curing agent was blended in an amount such that the equivalent ratio of isocyanate group/hydroxyl group was 1.1. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
A-801:アクリディックA-801(DIC(株)製アクリル樹脂ポリオール、水酸基価:50mgKOH/g)
H-202:EPICLON H-202-60MT(DIC(株)製エポキシ樹脂ポリオール、水酸基価:120mgKOH/g、不揮発分:60%)
D-210:バーノックD-210-80(DIC(株)製ポリエステルポリオール、水酸基価:175mgKOH/g、不揮発分:80%)
D-750-45:バーノックD-750-45(DIC(株)製トリレンジイソシアネートアダクト型ポリイソシアネート、NCO%:7.9%)
DN-902S:バーノック DN-902S(DIC(株)製ヘキサメチレンジイソシアネートのイソシアヌレート型ポリイソシアネート、NCO%:23.3%)
T1890E:VASTANAT T1890E(EVONIK社製イソホロンジイソシアネートのイソシアヌレート型ポリイソシアネート、NCO%:12.3%)
A-801: Acrydic A-801 (acrylic resin polyol manufactured by DIC Corporation, hydroxyl value: 50 mgKOH/g)
H-202: EPICLON H-202-60MT (epoxy resin polyol manufactured by DIC Corporation, hydroxyl value: 120 mgKOH/g, non-volatile content: 60%)
D-210: Burnock D-210-80 (polyester polyol manufactured by DIC Corporation, hydroxyl value: 175 mgKOH/g, non-volatile content: 80%)
D-750-45: Burnock D-750-45 (tolylene diisocyanate adduct type polyisocyanate manufactured by DIC Corporation, NCO%: 7.9%)
DN-902S: Burnock DN-902S (isocyanurate type polyisocyanate of hexamethylene diisocyanate manufactured by DIC Corporation, NCO%: 23.3%)
T1890E: VASTANAT T1890E (isocyanurate type polyisocyanate of isophorone diisocyanate manufactured by EVONIK, NCO%: 12.3%)
(比較例6~10)比較硬化塗膜6~10の調製
 アクリディックA-801、ポリオール1、及び硬化剤(D-750-45)の配合量を表7に示すポリオールと硬化剤(D-750-45)の配合量(硬化剤D-750-45の配合量はイソシアネート基/水酸基の当量比が1.1となるように配合した)とした以外は実施例8と同様にして比較硬化塗膜6~10を得た。評価結果を表7に示す。
(Comparative Examples 6 to 10) Preparation of comparative cured coatings 6 to 10 The blending amounts of Acridic A-801, Polyol 1, and curing agent (D-750-45) are shown in Table 7. Comparative curing was carried out in the same manner as in Example 8, except that the amount of curing agent D-750-45 was blended so that the equivalent ratio of isocyanate groups/hydroxyl groups was 1.1. Coating films 6 to 10 were obtained. The evaluation results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023

Claims (9)

  1.  グリセロールエステル系ポリオールと、ポリイソシアネートとを含むウレタン系塗料組成物であって、
     前記グリセロールエステル系ポリオールは、下記式(1)で表される化合物を含み、
     前記グリセロールエステル系ポリオール中のオレイン酸由来の脂肪酸残基の含有量は、前記グリセロールエステル系ポリオール中の脂肪酸残基の総量を基準として70モル%以上である、ウレタン系塗料組成物。
    Figure JPOXMLDOC01-appb-C000001
    (X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基である。)
    A urethane coating composition containing a glycerol ester polyol and a polyisocyanate,
    The glycerol ester polyol includes a compound represented by the following formula (1),
    A urethane coating composition, wherein the content of fatty acid residues derived from oleic acid in the glycerol ester polyol is 70 mol% or more based on the total amount of fatty acid residues in the glycerol ester polyol.
    Figure JPOXMLDOC01-appb-C000001
    (One of X 1 and X 2 is hydrogen, and the other is a methylol group,
    One of X 3 and X 4 is hydrogen, and the other is a methylol group,
    One of X 5 and X 6 is hydrogen, and the other is a methylol group. )
  2.  前記グリセロールエステル系ポリオールが、下記式(2-1)及び/又は式(2-2)で表される化合物をさらに含む、請求項1に記載のウレタン系塗料組成物。
    Figure JPOXMLDOC01-appb-C000002
    (X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基であり、
     R及びR’は、それぞれ独立して下記式(3)で表される基以外の不飽和脂肪酸もしくは飽和脂肪酸の残基、又は水素である。)
    Figure JPOXMLDOC01-appb-C000003
    (Y及びYの対は、一方が水素で、かつ他方がメチロール基であり、*は結合手である。)
    The urethane coating composition according to claim 1, wherein the glycerol ester polyol further contains a compound represented by the following formula (2-1) and/or formula (2-2).
    Figure JPOXMLDOC01-appb-C000002
    (One of X 1 and X 2 is hydrogen, and the other is a methylol group,
    One of X 3 and X 4 is hydrogen, and the other is a methylol group,
    One of X 5 and X 6 is hydrogen, and the other is a methylol group,
    R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen. )
    Figure JPOXMLDOC01-appb-C000003
    (In the pair of Y 1 and Y 2 , one is hydrogen and the other is a methylol group, and * is a bond.)
  3.  前記ポリイソシアネートが、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、変性ジフェニルメタンジイソシアネート、トリレンジイソシアネート、トリレンジイソシアネートと多価アルコールからなるアダクト型ポリイソシアネート、トリレンジイソシアネートのヌレート型ポリイソシアネート、及びトリレンジイソシアネートとアルコールから得られるアロハネート型ポリイソシアネートからなる群から選択される少なくとも1種を含む、請求項1に記載のウレタン系塗料組成物。 The polyisocyanate is diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, modified diphenylmethane diisocyanate, tolylene diisocyanate, an adduct type polyisocyanate consisting of tolylene diisocyanate and a polyhydric alcohol, a nurate type polyisocyanate of tolylene diisocyanate, and a tolylene diisocyanate and alcohol. The urethane coating composition according to claim 1, comprising at least one selected from the group consisting of the obtained allophanate type polyisocyanates.
  4.  前記ポリイソシアネート中のイソシアネート基の前記グリセロールエステル系ポリオール中の水酸基に対する当量比が0.5~2.5である、請求項1に記載のウレタン系塗料組成物。 The urethane coating composition according to claim 1, wherein the equivalent ratio of isocyanate groups in the polyisocyanate to hydroxyl groups in the glycerol ester polyol is 0.5 to 2.5.
  5.  グリセロールエステル系ポリオールと、前記グリセロールエステル系ポリオール以外のポリオールと、ポリイソシアネートとを含むウレタン系塗料組成物であって、
     前記グリセロールエステル系ポリオールは、下記式(1)で表される化合物を含み、
     前記グリセロールエステル系ポリオール中のオレイン酸由来の脂肪酸残基の含有量は、前記グリセロールエステル系ポリオール中の脂肪酸残基の総量を基準として70モル%以上であり、
     前記グリセロールエステル系ポリオールの含有量は、前記グリセロールエステル系ポリオール以外のポリオールの質量を基準にして5~50質量%である、
    ウレタン系塗料組成物。
    Figure JPOXMLDOC01-appb-C000004
    (X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基である。)
    A urethane coating composition comprising a glycerol ester polyol, a polyol other than the glycerol ester polyol, and a polyisocyanate,
    The glycerol ester polyol includes a compound represented by the following formula (1),
    The content of fatty acid residues derived from oleic acid in the glycerol ester polyol is 70 mol% or more based on the total amount of fatty acid residues in the glycerol ester polyol,
    The content of the glycerol ester polyol is 5 to 50% by mass based on the mass of polyols other than the glycerol ester polyol.
    Urethane paint composition.
    Figure JPOXMLDOC01-appb-C000004
    (One of X 1 and X 2 is hydrogen, and the other is a methylol group,
    One of X 3 and X 4 is hydrogen, and the other is a methylol group,
    One of X 5 and X 6 is hydrogen, and the other is a methylol group. )
  6.  前記グリセロールエステル系ポリオールが、下記式(2-1)及び/又は式(2-2)で表される化合物をさらに含む、請求項5に記載のウレタン系塗料組成物。
    Figure JPOXMLDOC01-appb-C000005
    (X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基であり、
     X及びXは、一方が水素で、かつ他方がメチロール基であり、
     R及びR’は、それぞれ独立して下記式(3)で表される基以外の不飽和脂肪酸もしくは飽和脂肪酸の残基、又は水素である。)
    Figure JPOXMLDOC01-appb-C000006
    (Y及びYの対は、一方が水素で、かつ他方がメチロール基であり、*は結合手である。)
    The urethane coating composition according to claim 5, wherein the glycerol ester polyol further contains a compound represented by the following formula (2-1) and/or formula (2-2).
    Figure JPOXMLDOC01-appb-C000005
    (One of X 1 and X 2 is hydrogen, and the other is a methylol group,
    One of X 3 and X 4 is hydrogen, and the other is a methylol group,
    One of X 5 and X 6 is hydrogen, and the other is a methylol group,
    R and R' are each independently a residue of an unsaturated fatty acid or a saturated fatty acid other than the group represented by the following formula (3), or hydrogen. )
    Figure JPOXMLDOC01-appb-C000006
    (In the pair of Y 1 and Y 2 , one is hydrogen and the other is a methylol group, and * is a bond.)
  7.  前記グリセロールエステル系ポリオール以外のポリオールが、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリルポリオール、ポリエポキシポリオール、ポリオレフィンポリオール、ポリカーボネートポリオール、これらの部分変性物、及びこれらの組み合わせからなる群から選択される、請求項5に記載のウレタン系塗料組成物。 The polyol other than the glycerol ester polyol is selected from the group consisting of polyether polyol, polyester polyol, polyacrylic polyol, polyepoxy polyol, polyolefin polyol, polycarbonate polyol, partially modified products thereof, and combinations thereof. Item 5. Urethane coating composition according to item 5.
  8.  前記ポリイソシアネートが、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、前記ジイソシアネートの1種以上を重合したヌレート型ポリイソシアネート、前記ジイソシアネートの1種以上を重合したウレトジオン型ポリイソシアネート、前記ジイソシアネートの1種以上と多価アルコールから得られるアダクト型ポリイソシアネート、前記ジイソシアネートの1種以上と水及び/又はアミンから得られるビューレット型ポリイソシアネート、前記ジイソシアネートの1種以上とアルコールから得られるアロハネート型ポリイソシアネート、ポリメリックジフェニルメタンジイソシアネート、及び変性ジフェニルメタンジイソシアネートからなる群から選択される少なくとも1種を含む、請求項5に記載のウレタン系塗料組成物。 The polyisocyanate is diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, a nurate type polyisocyanate obtained by polymerizing one or more of the above diisocyanates, a uretdione type polyisocyanate obtained by polymerizing one or more of the above diisocyanates, Adduct type polyisocyanates obtained from one or more of the above diisocyanates and a polyhydric alcohol, biuret type polyisocyanates obtained from one or more of the above diisocyanates and water and/or amines, allophanate type polyisocyanates obtained from one or more of the above diisocyanates and an alcohol. The urethane coating composition according to claim 5, comprising at least one selected from the group consisting of isocyanate, polymeric diphenylmethane diisocyanate, and modified diphenylmethane diisocyanate.
  9.  前記ポリイソシアネート中のイソシアネート基の前記グリセロールエステル系ポリオール及び前記グリセロールエステル系ポリオール以外のポリオール中の水酸基に対する当量比(イソシアネート基/水酸基)が0.5~2.0である、請求項5に記載のウレタン系塗料組成物。 According to claim 5, the equivalent ratio (isocyanate group/hydroxyl group) of the isocyanate group in the polyisocyanate to the hydroxyl group in the glycerol ester polyol and the polyol other than the glycerol ester polyol is 0.5 to 2.0. urethane paint composition.
PCT/JP2023/023074 2022-06-30 2023-06-22 Urethane-based coating material composition WO2024004813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-105911 2022-06-30
JP2022105911 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004813A1 true WO2024004813A1 (en) 2024-01-04

Family

ID=89382931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023074 WO2024004813A1 (en) 2022-06-30 2023-06-22 Urethane-based coating material composition

Country Status (1)

Country Link
WO (1) WO2024004813A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096754A (en) * 2013-01-29 2014-08-06 에이치플러스에코 주식회사 Fast drying and curing type polyurethane coating composition
US20180030196A1 (en) * 2016-07-28 2018-02-01 Soprema Method for manufacturing a polyurethane-modified foam, foam obtained, and uses
JP2021536501A (en) * 2018-08-30 2021-12-27 チェッカースポット, インコーポレイテッド Hydroformylated triglycerides and their use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096754A (en) * 2013-01-29 2014-08-06 에이치플러스에코 주식회사 Fast drying and curing type polyurethane coating composition
US20180030196A1 (en) * 2016-07-28 2018-02-01 Soprema Method for manufacturing a polyurethane-modified foam, foam obtained, and uses
JP2021536501A (en) * 2018-08-30 2021-12-27 チェッカースポット, インコーポレイテッド Hydroformylated triglycerides and their use

Similar Documents

Publication Publication Date Title
JP5317019B2 (en) Low-hardness polyurethane elastomer-forming composition and pressure-sensitive adhesive sheet
US8669301B2 (en) Radiation curable adhesive
JP5715914B2 (en) Ink binder, ink and ink cured product
CA2822527C (en) Radiation curable coating compositions for metal
JP4644537B2 (en) Polyurethane curing polyol composition, polyurethane composition and polyurethane resin
JP2011207953A (en) Coating composition and coating film
JPS62236817A (en) One-component thermosetting resin composition
JPWO2006104094A1 (en) Aqueous polyurethane resin composition and method for producing the same
JPS63301215A (en) One-pack thermosetting resin composition and precoated metal
JP4877432B2 (en) Acrylic-modified urethane urea resin composition and molded product obtained using the same
JP2011105886A (en) Polyisocyanate composition and two-liquid type polyurethane composition
WO2024004813A1 (en) Urethane-based coating material composition
JP5132029B2 (en) Paint composition
JP2000302745A (en) Polyisocyanate composition
JPWO2015115291A1 (en) Polyisocyanate composition, two-component curable polyurethane resin, paint and adhesive
WO2024004715A1 (en) Urethane-based two-component curing adhesive
WO2011069746A1 (en) Reactive compounds on the basis of transesterification
JPH02276878A (en) One pack type polyurethane thermosetting coating composition
JP6878796B2 (en) Fast-curing polyurethane resin composition
JP3293033B2 (en) Polyisocyanate curing agent, resin composition for polyurethane coating using the same
JP3293034B2 (en) Polyisocyanate curing agent, resin composition for polyurethane coating using the curing agent
JPH0726204A (en) Fluorine-containing polyurethane coating composition
JPH06287512A (en) Polyurethane coating material made by using specified curing agent based on polyisocyanate
JP7087552B2 (en) Coating compositions and coatings
JP2021017489A (en) Polyisocyanate composition, coating composition and coated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831257

Country of ref document: EP

Kind code of ref document: A1