WO2024004707A1 - Film-attached glass substrate, and method for producing same - Google Patents

Film-attached glass substrate, and method for producing same Download PDF

Info

Publication number
WO2024004707A1
WO2024004707A1 PCT/JP2023/022373 JP2023022373W WO2024004707A1 WO 2024004707 A1 WO2024004707 A1 WO 2024004707A1 JP 2023022373 W JP2023022373 W JP 2023022373W WO 2024004707 A1 WO2024004707 A1 WO 2024004707A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
glass substrate
glare
glare film
coating
Prior art date
Application number
PCT/JP2023/022373
Other languages
French (fr)
Japanese (ja)
Inventor
利之 梶岡
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022200430A external-priority patent/JP2024006900A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024004707A1 publication Critical patent/WO2024004707A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase

Definitions

  • the present invention relates to a film-coated glass substrate having an anti-glare film and a method for manufacturing the film-coated glass substrate.
  • Patent Document 1 discloses a cover glass that includes a glass plate and an anti-glare layer provided on the glass plate.
  • an anti-glare layer is formed by applying an inorganic paint onto a glass plate by a spray coating method, thereby imparting an anti-glare effect to the cover glass.
  • an inorganic paint As the main components of the above-mentioned inorganic paint, a silica precursor, an alumina precursor, a zirconia precursor, a titania precursor, etc. are used.
  • film-coated glass substrates such as those disclosed in Patent Document 1 are required to have higher anti-glare properties.
  • a method of increasing the thickness of the anti-glare film can be considered.
  • increasing the thickness of the anti-glare film may reduce the scratch resistance.
  • An object of the present invention is to provide a film-coated glass substrate and a method for manufacturing the film-coated glass substrate, which can achieve both high levels of anti-glare properties and scratch resistance.
  • a film-coated glass substrate according to aspect 1 of the present invention includes a glass substrate and an anti-glare film, which is provided on the main surface of the glass substrate and has silicon oxide as a main component, and has a surface of the anti-glare film.
  • the arithmetic mean height Sa is 0.3 ⁇ m or more, and in the pencil hardness test of JIS K5600-5-4:1999, the presence or absence of scratches on the surface of the anti-glare film is determined using a metallurgical microscope at a magnification of 100 times.
  • the anti-glare film is characterized by having a pencil hardness of 7H or higher, as determined by observing the surface of the anti-glare film.
  • the haze of the film-coated glass substrate measured in accordance with JIS K7136:2000 is 30% or more.
  • the strain point of the glass substrate is 550° C. or higher.
  • the ratio between the root mean square height Sq and the minimum autocorrelation length Sal at the surface of the anti-glare film is preferably 0.05 or more.
  • a method for producing a film-coated glass substrate according to aspect 5 of the present invention includes the steps of: forming a coating film having unevenness by applying a coating liquid containing a silica precursor on a glass substrate by a spray coating method; forming an anti-glare film by baking the coating film at a temperature of 500° C. or higher, and forming the anti-glare film so that the arithmetic mean height Sa on the surface of the anti-glare film is 0.3 ⁇ m or higher. It is characterized by the formation of
  • the coating film is fired at a temperature equal to or lower than the strain point of the glass substrate.
  • the strain point of the glass substrate is 550° C. or higher.
  • the present invention it is possible to provide a film-coated glass substrate and a method for manufacturing the film-coated glass substrate, which can achieve both high levels of anti-glare properties and scratch resistance.
  • FIG. 1 is a schematic cross-sectional view showing a film-coated glass substrate according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a film-coated glass substrate according to a second embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a film-coated glass substrate according to a first embodiment of the present invention.
  • the film-coated glass substrate 1 includes a glass substrate 2 and an anti-glare film 3.
  • An anti-glare film 3 is provided on a glass substrate 2.
  • the glass substrate 2 has a substantially rectangular plate shape.
  • the glass substrate 2 may have a substantially disk-like shape, for example, and its shape is not particularly limited.
  • the glass substrate 2 is a glass substrate that transmits at least part of light in the wavelength range of 450 nm to 700 nm. It is preferable that the glass substrate 2 is a transparent glass substrate. In this specification, “transparent” means that the light transmittance in the visible wavelength range of 450 nm to 700 nm is 70% or more.
  • the strain point of the glass substrate 2 is not particularly limited, but is preferably 500°C or higher, more preferably 550°C or higher, even more preferably 560°C or higher, even more preferably 570°C or higher, even more preferably 580°C or higher, and More preferably 590°C or higher, even more preferably 600°C or higher, even more preferably 610°C or higher, even more preferably 620°C or higher, even more preferably 630°C or higher, even more preferably 640°C or higher, even more preferably is 650°C or higher, even more preferably 660°C or higher, particularly preferably 670°C or higher, and most preferably 680°C or higher.
  • the upper limit of the strain point of the glass substrate 2 is not particularly limited, but may be, for example, 1000°C.
  • the strain point of the glass substrate 2 can be measured in accordance with ASTM C336.
  • the strain point of the glass substrate 2 can be determined by a known method (for example, JP-A No. 2002-308643, JP-A No. 2012-041217, JP-A No. 2002-029776, JP-A No. 2006-252828, JP-A No. 2006-252828, 2022-008627, JP-A-08-295530, etc.).
  • alkali-free glass that does not substantially contain alkali metal oxides (for example, 0.1% or less) tends to have a high strain point, and is also difficult to improve scratch resistance and chemical resistance. preferable.
  • the glass used for the glass substrate 2 is not particularly limited, and for example, borosilicate glass, aluminosilicate glass, quartz glass, crystallized glass, etc. can be used. Note that the glass used for the glass substrate 2 is desirably not chemically strengthened glass, since there is a risk that the chemical strengthening will deteriorate if it is fired at a high temperature in the manufacturing process described below.
  • the glass used for the glass substrate 2 can contain, for example, SiO 2 , Al 2 O 3 , B 2 O 3 , alkaline earth metal oxides, alkali metal oxides, SnO 2 and the like.
  • SiO 2 is a component that forms a glass network former (network-forming oxide).
  • the content of SiO 2 can be, for example, 50% to 75% in mass percentage.
  • the strain point of the glass can be further improved.
  • the content of SiO 2 is below the above upper limit, the high temperature viscosity can be lowered, and the meltability of the glass can be further improved.
  • the content of Al 2 O 3 can be, for example, 8% to 25% in mass percentage.
  • the strain point of the glass can be further improved. Further, it is possible to make the glass difficult to undergo phase separation.
  • the content of Al 2 O 3 is below the above upper limit, the liquidus temperature of the glass is unlikely to become high.
  • B 2 O 3 is a component that lowers the high temperature viscosity of glass and improves its meltability.
  • the content of B 2 O 3 can be, for example, 0.01% to 15% in mass percentage.
  • the meltability of the glass can be further improved.
  • the strain point of the glass can be further improved.
  • Alkaline earth metal oxides are components that lower the high temperature viscosity of glass and increase its meltability.
  • alkaline earth metal oxides include MgO, CaO, SrO, BaO, and the like. These may be used alone or in combination.
  • the content of alkaline earth metal oxides (total amount if multiple types are included) is, for example, 0.1% to 20%, 1% to 20%, 5% to 20%, 10% to mass percentage. It is 20%.
  • the meltability of the glass can be further improved.
  • the strain point of the glass can be further improved.
  • the component balance of the glass composition can be made difficult to collapse, and devitrification crystals can be made difficult to precipitate.
  • Alkali metal oxides are components that improve the meltability of glass.
  • the alkali metal oxide include Li 2 O, Na 2 O, K 2 O, and the like. These may be used alone or in combination.
  • the content of alkali metal oxides (total amount when multiple types are included) is preferably 0.01% or more, more preferably 0.02% or more, and even more preferably 0.05% or more in mass percentage. , preferably 24% or less, more preferably 20% or less, even more preferably 10% or less, even more preferably 5% or less, even more preferably 3% or less, even more preferably 1% or less, even more preferably 0 .5% or less, even more preferably 0.3% or less, particularly preferably 0.1% or less.
  • the content of the alkali metal oxide is at least the above lower limit, the meltability of the glass can be further improved.
  • the strain point of the glass can be further improved.
  • SnO 2 is a component that has a good fining effect in a high temperature range and increases the strain point of glass.
  • the content of SnO 2 can be, for example, 0% to 1% in mass percentage.
  • the strain point of the glass can be further improved.
  • the content of SnO 2 is below the above upper limit, devitrification of the glass can be made more difficult to occur.
  • the glass used for the glass substrate 2 contains other components such as ZnO, P 2 O 5 , TiO 2 , Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 . It's okay.
  • One type of other components may be used alone, or a plurality of types may be used in combination.
  • other components can be contained within a range that does not impede the effects of the present invention, and from the viewpoint of raw material cost, the content of other components (total amount if multiple types are included) in mass percentage, Preferably it is 10% or less, more preferably 5% or less.
  • the glass used for the glass substrate 2 is not limited to these, for example, as a glass composition, in mass %, SiO 2 58% to 70%, Al 2 O 3 10% to 19%, B 2 O 3 6.5% to 15%, MgO 0% to 2%, CaO 3% to 12%, BaO 0.1% to 5%, SrO 0% to 4%, BaO + SrO 0.1% to 6%, ZnO 0 % ⁇ 5%, MgO + CaO + BaO + SrO + ZnO 5% ⁇ 15%, Li 2 O + Na 2 O + K 2 O 0% ⁇ 0.5%, ZrO 5% ⁇ 20%, TiO 2 0% ⁇ 5%, P 2 O 5 0% ⁇ 5 % composition, or glass composition, in mass %, SiO 2 55% to 70%, Al 2 O 3 10% to 20%, B 2 O 3 0.1% to 4.5%, MgO 0 % to 1%, CaO 5% to 15%, SrO 0.5% to 5%, BaO 5% to 15%,
  • the thickness of the glass substrate 2 is not particularly limited.
  • the thickness of the glass substrate 2 can be, for example, about 0.1 mm to 5 mm.
  • the glass substrate 2 has a first main surface 2a and a second main surface 2b.
  • the first main surface 2a and the second main surface 2b are opposed to each other.
  • An anti-glare film 3 is provided on the first main surface 2a of the glass substrate 2.
  • the anti-glare film 3 has an uneven structure.
  • the anti-glare film 3 is provided to provide a so-called anti-glare effect that suppresses the reflection of external light.
  • the anti-glare film 3 is a film whose main component is silicon oxide.
  • the above-mentioned “consisting as a main component” means that the component is contained in the film in an amount of 50% by mass or more, preferably 80% by mass or more, and 90% by mass or more. % or more is more preferable. Naturally, the component may be contained in the film in an amount of 100% by mass.
  • the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is 0.3 ⁇ m or more.
  • the arithmetic mean height Sa can be measured in accordance with ISO 25178 using, for example, an optical interference microscope or a laser microscope. Note that the arithmetic mean height Sa of the anti-glare film 3 can be increased by increasing the thickness of the anti-glare film 3.
  • the pencil hardness of the anti-glare film 3 is 7H or higher. Pencil hardness can be evaluated using principles, devices, instruments, and procedures based on the pencil hardness test of JIS K5600-5-4:1999. Specifically, using a pencil "UNI" (manufactured by Mitsubishi Pencil Co., Ltd.), the scratching distance was set to 10 mm, and the presence or absence of scratches of 1 mm or more on the surface 3a of the anti-glare film 3 was determined using a metallurgical microscope at a magnification of 100. This can be done by observing the surface 3a of the anti-glare film 3 with epi-illumination at a magnification of .
  • the film-coated glass substrate 1 of the present embodiment has the above configuration, it can achieve both high levels of anti-glare properties and scratch resistance. Therefore, the film-coated glass substrate 1 of this embodiment can be suitably used as a cover glass in a display such as a mobile phone, a tablet terminal, a television, or a digital signage.
  • the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is 0.3 ⁇ m or more, preferably 0.32 ⁇ m or more, more preferably 0.33 ⁇ m or more, and preferably 0.7 ⁇ m or less, more preferably is 0.5 ⁇ m or less, more preferably 0.45 ⁇ m or less.
  • the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved. Further, when the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is equal to or less than the above upper limit value, peeling of the anti-glare film 3 from the glass substrate 2 can be made even less likely to occur.
  • the pencil hardness of the anti-glare film 3 is 7H or more, preferably 8H or more, and more preferably 9H or more.
  • the scratch resistance of the film-coated glass substrate 1 can be further improved.
  • the upper limit of the pencil hardness of the anti-glare film 3 is not particularly limited, but may be, for example, 10H.
  • the pencil hardness of the anti-glare film 3 can be determined by a method based on the principles, equipment, instruments, and procedures described in the above-mentioned JIS K5600-5-4:1999.
  • the pencil hardness can be set to the maximum hardness at which the incidence of scratches is 30% or less when scratched with a pencil of the same hardness 10 times or more.
  • a plurality of film-coated glass substrates prepared under the same conditions are prepared and the pencil hardness of each is evaluated, and if the obtained pencil hardnesses are different, the median value can be taken as the pencil hardness.
  • the root mean square height Sq at the surface 3a of the anti-glare film 3 is preferably 0.30 ⁇ m or more, more preferably 0.35 ⁇ m or more, still more preferably 0.40 ⁇ m or more, and preferably 0.80 ⁇ m.
  • the thickness is more preferably 0.60 ⁇ m or less, and even more preferably 0.56 ⁇ m or less.
  • the root mean square height Sq on the surface 3a of the anti-glare film 3 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved.
  • peeling of the anti-glare film 3 from the glass substrate 2 can be made even less likely to occur.
  • the minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is preferably 1.5 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, and preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, even more preferably It is 8 ⁇ m or less.
  • the minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved. Further, when the minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is equal to or less than the above upper limit value, glare called sparkle can be further suppressed.
  • the ratio (Sq/Sal) between the root mean square height Sq and the minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is preferably 0.03 or more, more preferably 0.05 or more, and even more preferably It is 0.06 or more, preferably 0.10 or less, more preferably 0.08 or less, and still more preferably 0.07 or less.
  • the ratio (Sq/Sal) is greater than or equal to the above lower limit, the antiglare properties of the film-coated glass substrate 1 can be further improved.
  • the ratio (Sq/Sal) is below the above upper limit value, it is possible to more reliably prevent the haze from becoming too high.
  • the root mean square height Sq and the minimum autocorrelation length Sal can be measured in accordance with ISO 25178, for example. Furthermore, the ratio (Sq/Sal) can be increased by increasing the thickness of the anti-glare film 3.
  • the average thickness of the anti-glare film 3 is not particularly limited, but is preferably 430 nm or more, more preferably 500 nm or more, even more preferably 700 nm or more, preferably 2000 nm or less, more preferably 1500 nm or less, and still more preferably 1000 nm or less. can be designed. Note that the average film thickness of the anti-glare film 3 can be estimated from coating amount per unit area ⁇ liquid coating efficiency ⁇ concentration in terms of solid content/density of the film.
  • the haze of the film-coated glass substrate 1 is preferably 30% or more, more preferably 40% or more, preferably 80% or less, and more preferably 60% or less.
  • the haze of the film-coated glass substrate 1 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved.
  • the haze of the film-coated glass substrate 1 is below the above-mentioned upper limit value, the visibility of the display surface can be further improved when used for a display or the like.
  • the haze of the film-coated glass substrate 1 can be measured, for example, in accordance with JIS K7136:2000. Note that the haze of the film-coated glass substrate 1 can be increased, for example, by increasing the thickness of the anti-glare film 3.
  • the glass substrate 2 is prepared.
  • the glass substrate 2 those mentioned above can be used.
  • the glass substrate 2 may have a functional layer on the surface of the substrate body. Examples of the functional layer include an undercoat layer, an adhesion improving layer, a protective layer, and a colored layer.
  • a coating film having irregularities is formed by applying a coating liquid onto the prepared glass substrate 2 by a spray coating method.
  • the coating liquid contains a silica precursor.
  • the silica precursor can be used, for example, as a matrix forming component when forming an anti-glare film by a spray coating method.
  • the adhesion to the glass substrate 2 can be improved, and the refractive index can be matched with that of the glass substrate 2.
  • silica precursor examples include siloxane polymers.
  • siloxane polymer it is preferable to use silicon alkoxide or a hydrolyzed condensate thereof.
  • silicon alkoxides include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane, which are tetrafunctional silicon alkoxides.
  • the silicon alkoxide may be a trifunctional silicon alkoxide or a bifunctional silicon alkoxide having an organic substituent such as an alkyl group, a vinyl group, a phenyl group, or an epoxy group.
  • silicon alkoxides having an organic substituent include trifunctional silicon alkoxides such as methyltriethoxysilane, methyltrimethoxysilane, vinyltriethoxysilane, and phenyltriethoxysilane, and dimethyl silicone alkoxides. Examples include diethoxysilane and dimethyldimethoxysilane.
  • silicon alkoxides may be used alone or in a mixture of multiple types.
  • the size of the siloxane polymer can be grown by proceeding with the hydrolytic condensation reaction.
  • the size of the siloxane polymer can be, for example, 2 nm to 30 nm in volume average.
  • the content of the silica precursor is, for example, 50% or more, preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, particularly preferably It is 90% or more.
  • the coating liquid may contain an alumina precursor, a zirconia precursor, a titania precursor, or an yttria precursor. These may be used alone or in combination.
  • the coating liquid contains an alumina precursor, a zirconia precursor, a titania precursor, or an yttria precursor, the durability of the film (coating film) can be further improved, and the refractive index of the film (coating film) can be further improved.
  • the refractive index matching between the glass substrate 2 and the glass substrate 2 can be further improved.
  • the content of the alumina precursor, zirconia precursor, titania precursor, or yttria precursor is the mass percentage of the solid content in terms of alumina, zirconia, titania, or yttria, for example. , 0% to 30%.
  • alumina precursor examples include aluminum alkoxides, hydrolyzed condensates of aluminum alkoxides, water-soluble aluminum salts, and aluminum chelates.
  • water-soluble aluminum salts include aluminum nitrate, aluminum chloride, aluminum sulfate, aluminum acetate, aluminum formoacetate, aluminum acetylacetate, and the like.
  • zirconia precursor examples include zirconium alkoxide, a hydrolyzed condensate of zirconium alkoxide, and the like.
  • titania precursor examples include titanium alkoxide, a hydrolyzed condensate of titanium alkoxide, and the like.
  • the coating liquid contains a solvent.
  • the solvent is not particularly limited, and includes water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, and the like. These solvents may be used alone or in combination.
  • Water can be used in the hydrolysis reaction of silicon alkoxide and the like. However, if the water content is too large, the coating film will be more likely to crack due to the high surface tension. Therefore, the water content can be, for example, 3 to 6 in molar ratio to Si atoms.
  • the coating liquid contains a solvent having a boiling point of less than 90°C.
  • the solvent having a boiling point of less than 90°C include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, hexane, and the like.
  • the content of the solvent having a boiling point of less than 90° C. (the total amount if multiple types are included) can be, for example, 30% or more and 90% or less in mass percentage of the entire coating liquid.
  • the coating liquid may contain metal oxide nanoparticles.
  • the solid content (heated residue) in the coating liquid can be, for example, 1% by mass to 5% by mass.
  • the coating liquid When applying the coating liquid, the coating liquid is sprayed onto the glass substrate 2 by a spray coating method.
  • the nozzle used in the spray coating method include a two-fluid nozzle and a one-fluid nozzle, but a two-fluid spray gun using a two-fluid nozzle is preferable.
  • the coating liquid does not contain oxide fine particles, the unevenness of the anti-glare film 3 can be formed even more efficiently. Furthermore, the adhesion between the glass substrate 2 and the anti-glare film 3 can be further improved.
  • the particle size of the coating liquid droplets discharged from the nozzle is usually 0.1 ⁇ m to 100 ⁇ m, preferably 1 ⁇ m to 50 ⁇ m.
  • the particle size of the droplets is equal to or larger than the above lower limit, it is possible to form irregularities that provide a sufficient anti-glare effect in a much shorter time.
  • the particle size of the droplets is less than or equal to the above upper limit, it is possible to further facilitate the formation of appropriate irregularities that provide sufficient anti-glare effect.
  • the particle size of the droplets of the coating liquid can be adjusted as appropriate depending on the type of nozzle, air flow rate, discharge amount, etc.
  • the particle size of the droplet refers to the median diameter on a volume basis measured by a laser diffraction particle size distribution meter.
  • the air flow rate can be, for example, 50 L/min to 300 L/min.
  • the air pressure can be, for example, 0.1 MPa to 0.6 MPa.
  • the gun distance can be, for example, 20 mm or more and 300 mm or less. Note that the gun distance refers to the distance from the gun to the glass substrate 2 that is the object of film formation.
  • the amount of coating liquid applied per unit area is, for example, 50 g/m 2 or more, 80 g/m 2 or more, 100 g/m 2 or more, 200 g/m 2 or less, 180 g/m 2 or less, 160 g/m 2 or less. be able to. Although it depends on the solid content concentration of the coating liquid, when the coating amount of the coating liquid per unit area is large, the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 tends to become large. Furthermore, the thickness of the anti-glare film 3 tends to increase. On the other hand, when the coating amount of the coating liquid per unit area is small, the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 tends to become small. Furthermore, the thickness of the anti-glare film tends to become thinner.
  • the application temperature of the coating liquid can be, for example, 10°C or higher and 80°C or lower.
  • the surface temperature of the glass substrate 2 when applying the coating liquid is, for example, 15° C. to 75° C.
  • the humidity when applying the coating liquid is, for example, 20% to 80%, preferably 50% or more.
  • the drying temperature of the coating liquid is not particularly limited, but can be, for example, 25°C or higher, 100°C or higher, or 450°C or lower, or 400°C or lower.
  • the drying time can be, for example, 10 minutes or more and 600 minutes or less.
  • the coating film is fired at a temperature of 500°C or higher.
  • the anti-glare film 3 can be formed on the glass substrate 2, and the glass substrate 1 with the film can be obtained.
  • the anti-glare film 3 is formed by baking the coating film applied by the spray coating method at a temperature of 500°C or higher, so the resulting film-coated glass substrate 1 It is possible to achieve both high levels of anti-glare properties and scratch resistance.
  • the present inventor has proposed that even when the thickness of the anti-glare film 3 is increased, the coating film applied by the spray coating method can be manufactured using a method of baking at a temperature of 500°C or higher. It has been found that the scratch resistance of the glass substrate 1 can be improved and that both anti-glare properties and scratch resistance can be achieved at a high level.
  • the firing temperature of the coating film is 500°C or higher, preferably 510°C or higher, more preferably 520°C or higher, even more preferably 530°C or higher, even more preferably 540°C or higher, and even more preferably 550°C.
  • the firing temperature In order to evaporate and burn the organic components remaining in the coating film (residual solvent, alkoxy groups, alkyl groups, vinyl groups, epoxy groups, etc. contained in the silica precursor) and make the coating film dense, the firing temperature must be set. The higher the value, the better. It is preferable that the coating film after firing consists of only inorganic components. When the firing temperature of the coating film is equal to or higher than the above lower limit, the scratch resistance of the film-coated glass substrate 1 can be further improved.
  • the upper limit of the firing temperature of the coating film is not particularly limited, but it is preferable that the firing temperature is equal to or lower than the strain point of the glass substrate 2. If the firing temperature exceeds the strain point of the glass substrate 2, distortion will remain in the glass substrate 2 unless it is appropriately annealed, which is undesirable from the viewpoint of manufacturing costs. Therefore, from the viewpoint of further improving manufacturing costs and productivity, the firing temperature of the coating film is preferably below the strain point of the glass substrate 2, more preferably (the strain point of the glass substrate 2 -5°C).
  • strain point of glass substrate 2 -10°C or less
  • strain point of glass substrate 2 -20°C or less
  • strain point of glass substrate 2 -30°C preferably (strain point of glass substrate 2 -30°C)
  • strain point of glass substrate 2 -40°C or lower
  • strain point of glass substrate 2 -50°C or lower
  • strain point of glass substrate 2 -60°C or less
  • strain point of glass substrate 2 -70°C or less
  • strain point of glass substrate 2 -80°C or less.
  • the baking time of the coating film is not particularly limited, but is preferably 10 minutes or more, more preferably 30 minutes or more, and preferably 300 minutes or less, more preferably 200 minutes or less.
  • the coating film can be baked using, for example, a hot air heating device, a contact heating device, or a far infrared heating device.
  • FIG. 2 is a schematic cross-sectional view showing a film-coated glass substrate according to a second embodiment of the present invention.
  • the film-coated glass substrate 21 further includes an anti-reflection film 24 on the anti-glare film 3.
  • the antireflection film 24 is a dielectric multilayer film.
  • the antireflection film 24 is a dielectric multilayer in which a high refractive index film 25 having a relatively high refractive index and a low refractive index film 26 having a relatively low refractive index are alternately laminated in this order. It is a membrane.
  • the antireflection film 24 is a dielectric multilayer film in which a low refractive index film 26 having a relatively low refractive index and a high refractive index film 25 having a relatively high refractive index are alternately laminated in this order. It's okay.
  • the high refractive index film 25 and the low refractive index film 26 are preferably sputtered films. With such a configuration, the adhesion between the high refractive index film 25 and the low refractive index film 26 can be improved.
  • Examples of the material for the high refractive index film 25 include niobium oxide, titanium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silicon nitride, aluminum oxide, and aluminum nitride.
  • Examples of the material for the low refractive index film 26 include silicon oxide, aluminum oxide, magnesium fluoride, and the like.
  • each layer constituting the antireflection film 24 is preferably 1 nm or more and 500 nm or less, more preferably 2 nm or more and 300 nm or less, and even more preferably 5 nm or more and 200 nm or less.
  • the total number of layers constituting the antireflection film 24 is six.
  • the total number of layers constituting the antireflection film 24 is not particularly limited.
  • the total number of layers constituting the antireflection film 24 is preferably two or more layers, and preferably seven layers or less. By keeping it within this range, it is possible to obtain a film that is effective and can be easily formed.
  • the total thickness of the antireflection film 24 is preferably 50 nm or more and 1000 nm or less, more preferably 75 nm or more and 750 nm or less, and even more preferably 100 nm or more and 500 nm or less.
  • the antireflection film 24 can be formed by, for example, a sputtering method, a CVD method, a vacuum evaporation method, or the like. Note that the antireflection film 24 is preferably provided after baking the coating film.
  • the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is 0.3 ⁇ m or more, and the pencil hardness of the anti-glare film 3 is 7H or more. Therefore, the film-covered glass substrate 21 can achieve both high levels of anti-glare properties and scratch resistance.
  • the anti-glare film 3 was provided only on the first main surface 2a side of the glass substrate 2;
  • the anti-glare film 3 may be provided on both sides of the main surface 2b.
  • the anti-reflection film 24 was provided on the anti-glare film 3, but the anti-reflection film 24 may be provided between the glass substrate 2 and the anti-glare film 3. Further, the antireflection film 24 may also be provided on both the first main surface 2a side and the second main surface 2b side of the glass substrate 2.
  • a functional layer may be provided on either or both of the first main surface 2a side and the second main surface 2b side of the glass substrate 2 of the film-coated glass substrates 1 and 21.
  • the functional layer include an antifouling layer, a protective layer, a colored layer, a light-shielding layer, and a decorative layer. Note that these functional layers are preferably provided after firing the coating film.
  • an antifouling layer may be provided on the outermost layer of the film-coated glass substrates 1 and 21.
  • glass substrate A As a glass composition, glass raw materials are prepared and melted so that the content of alkali metal oxides is 0.1% or less by mass percentage, and the glass is formed into a plate shape using an overflow down-draw method to a thickness of 0.5 mm. A glass substrate A was obtained. The strain point of the obtained glass substrate A was 685°C.
  • glass substrate B As glass substrate B, commercially available soda lime glass (strain point: 500°C) was used.
  • coating liquid A For 1 part by mass of tetraethoxysilane (TEOS), 0.4 parts by mass of water, 7.2 parts by mass of denatured ethanol (contains 85.5% by mass of ethanol as a main component, and also includes methanol, etc.), and nitric acid.
  • TEOS tetraethoxysilane
  • denatured ethanol contains 85.5% by mass of ethanol as a main component, and also includes methanol, etc.
  • nitric acid for 1 part by mass of tetraethoxysilane (TEOS), 0.4 parts by mass of water, 7.2 parts by mass of denatured ethanol (contains 85.5% by mass of ethanol as a main component, and also includes methanol, etc.), and nitric acid.
  • the siloxane polymer was mixed and stirred to advance the hydrolysis and condensation reaction of TEOS to grow the size of the siloxane polymer, and the volume average of the size of the
  • the solid content (heated residue) concentration of the obtained coating liquid A was 3.2% by mass in terms of silica.
  • a product manufactured by Malvern Panalytical, product number "Zetasizer Nano S” was used.
  • coating liquid B Preparation of coating liquid B; After aging, 0.055 parts by mass of aluminum nitrate nonahydrate was added to coating liquid A and stirred to obtain coating liquid B.
  • the total solid content (heated residue) concentration of the obtained coating liquid B in terms of silica and alumina was 3.4% by mass.
  • the proportion of solid content in terms of silica was 95% by mass, and the proportion in terms of alumina was 5% by mass.
  • coating liquid C 1 part by mass of tetraethoxysilane (TEOS), 0.4 parts by mass of water, 8.1 parts by mass of isopropyl alcohol, and nitric acid are mixed and stirred to advance the hydrolysis and condensation reaction of TEOS, The size of the siloxane polymer was grown to obtain a coating liquid C in which the volume average size of the siloxane polymer measured by dynamic light scattering measurement was 3.9 nm. Note that nitric acid was adjusted and mixed so that the pH was 4. The solid content (heated residue) concentration of the obtained coating liquid C in terms of silica was 2.9% by mass.
  • TEOS tetraethoxysilane
  • water 8.1 parts by mass of isopropyl alcohol
  • nitric acid was adjusted and mixed so that the pH was 4.
  • the solid content (heated residue) concentration of the obtained coating liquid C in terms of silica was 2.9% by mass.
  • coating liquid D For 1 part by mass of tetraethoxysilane (TEOS), 0.064 parts by mass of methyltriethoxysilane, 0.47 parts by mass of water, denatured ethanol (contains 85.5% by mass of ethanol as the main component, and other parts such as methanol etc.) 8.0 parts by mass (including 1-butanol), 0.93 parts by mass of 1-butanol, and nitric acid are mixed and stirred to proceed with the hydrolysis and condensation reaction of TEOS and methyltriethoxysilane to form a siloxane polymer.
  • a coating liquid D was obtained in which the volume average size of the siloxane polymer measured by dynamic light scattering measurement was 3.9 nm. Note that nitric acid was adjusted and mixed so that the pH was 4. The solid content (heated residue) concentration of the obtained coating liquid D was 2.8% by mass in terms of silica.
  • coating liquid E For 1 part by mass of tetraethoxysilane (TEOS), 0.095 parts by mass of methyltriethoxysilane, 0.48 parts by mass of water, denatured ethanol (contains 85.5% by mass of ethanol as the main component, and other parts such as methanol etc.) 8.5 parts by mass (including 1-butanol), 0.96 parts by mass of 1-butanol, and nitric acid are mixed and stirred to proceed with the hydrolysis and condensation reaction of TEOS and methyltriethoxysilane to form a siloxane polymer.
  • a coating solution E was obtained in which the volume average size of the siloxane polymer measured by dynamic light scattering measurement was 3.9 nm. Note that nitric acid was adjusted and mixed so that the pH was 4. The solid content (heated residue) concentration of the obtained coating liquid E was 2.8% by mass in terms of silica.
  • Example 1 A coating film was formed by spray coating coating liquid A on glass substrate A.
  • the coating amount during spray coating was 116 g/m 2 per unit area. Further, a two-fluid spray gun was used, and the gun distance was 96 mm. The air pressure was 0.16 MPa, and the liquid discharge rate was 0.2 kg/hour.
  • the obtained glass substrate with the coating film was placed in a hot air heating furnace, and the temperature was raised from room temperature to 600°C over 1 hour, and then held at 600°C for 30 minutes. Thereafter, the temperature was lowered to room temperature over 2 hours. Thereby, a film-coated glass substrate having an anti-glare film formed on the glass substrate was obtained.
  • Examples 2 to 9 and Comparative Examples 1 to 5 A glass substrate with a film was prepared in the same manner as in Example 1, except that the types of glass substrate and coating liquid, spray coating conditions (coating amount, air pressure, gun distance), and firing temperature were changed as shown in Table 1 below. I got it.
  • the reflection brightness angle distribution of a line light source was measured in the reflection measurement mode of SMS-1000 (manufactured by Display-Messtechnik & System). From the measured distribution, read the specular reflection brightness Rs, the reflection brightness R(1) and R(-1) that are 0.1° and -0.1° deviated from the specular reflection angle, and calculate Rs/[R(1) and R (-1)] was calculated as the reflection value. The smaller this value, the less reflection and the higher the anti-glare performance. Further, the above measurements were performed at a working distance of 410 mm using a lens with a focal length of 16 mm.
  • an optical interference microscope manufactured by Ryoka System Co., Ltd., "VertScan R5300", version: VS-Measure Version 5.05.0001, CCD camera: SONY HR-571/2, objective lens: 20X, lens barrel : 1XBody, wavelength filter: 530 white, measurement mode: Wave, visual field size: 316.77 ⁇ m x 237.72 ⁇ m, resolution: 640 x 480) to measure the surface height distribution.

Abstract

Provided is a film-attached glass substrate, which can achieve a high level of anti-glare and of scratch resistance. A film-attached glass substrate 1 comprises: a glass substrate 2; and an anti-glare film 3, which is provided on a main surface 2a of the glass substrate 2 and comprises silicon oxide as a primary component. The arithmetic mean height Sa of a surface 3a of the anti-glare film 3 is 0.3 µm or more. In a pencil hardness test specified in JIS K5600-5-4: 1999, when the presence or absence of scratches on the surface 3a of the anti-glare film 3 is assessed by observing the surface 3a of the anti-glare film 3 using a metal microscope at a magnification of 100 times, the pencil hardness is 7H or higher.

Description

膜付きガラス基板及びその製造方法Glass substrate with film and method for manufacturing the same
 本発明は、アンチグレア膜を有する、膜付きガラス基板及び該膜付きガラス基板の製造方法に関する。 The present invention relates to a film-coated glass substrate having an anti-glare film and a method for manufacturing the film-coated glass substrate.
 従来、携帯電話機、タブレット端末、テレビ、あるいはデジタルサイネージ等のディスプレイにおいては、室内照明(蛍光灯等)や、太陽光等の外光により反射像が表示面に映り込むことによって視認性が低下することがある。このような外光による映り込みを抑える処理としては、アンチグレア処理や反射防止処理が知られている。 Conventionally, in displays such as mobile phones, tablet terminals, televisions, and digital signage, visibility deteriorates due to reflected images reflected on the display surface due to indoor lighting (fluorescent lights, etc.) or external light such as sunlight. Sometimes. Anti-glare treatment and anti-reflection treatment are known as treatments for suppressing reflections caused by external light.
 下記の特許文献1には、ガラス板と、ガラス板上に設けられているアンチグレア層とを備える、カバーガラスが開示されている。特許文献1では、ガラス板上に、スプレーコート法により無機塗料を塗布することによってアンチグレア層が形成され、それによってカバーガラスに防眩効果が付与されている。上記無機塗料の主成分としては、シリカ前駆体、アルミナ前駆体、ジルコニア前駆体、チタニア前駆体等が用いられている。 Patent Document 1 below discloses a cover glass that includes a glass plate and an anti-glare layer provided on the glass plate. In Patent Document 1, an anti-glare layer is formed by applying an inorganic paint onto a glass plate by a spray coating method, thereby imparting an anti-glare effect to the cover glass. As the main components of the above-mentioned inorganic paint, a silica precursor, an alumina precursor, a zirconia precursor, a titania precursor, etc. are used.
国際公開第2020/218056号International Publication No. 2020/218056
 近年、特許文献1のような膜付きガラス基板には、より高い防眩性が求められている。この際、防眩性を高めるためには、アンチグレア膜の膜厚を厚くする方法が考えられる。しかしながら、アンチグレア膜の膜厚を厚くすると、耐引っかき性が低下することがある。その結果、長期間の使用により、アンチグレア膜に多数の傷が生じるという問題がある。 In recent years, film-coated glass substrates such as those disclosed in Patent Document 1 are required to have higher anti-glare properties. At this time, in order to improve anti-glare properties, a method of increasing the thickness of the anti-glare film can be considered. However, increasing the thickness of the anti-glare film may reduce the scratch resistance. As a result, there is a problem in that many scratches occur on the anti-glare film due to long-term use.
 本発明の目的は、防眩性と耐引っかき性とを高いレベルで両立することができる、膜付きガラス基板及び該膜付きガラス基板の製造方法を提供することにある。 An object of the present invention is to provide a film-coated glass substrate and a method for manufacturing the film-coated glass substrate, which can achieve both high levels of anti-glare properties and scratch resistance.
 上記課題を解決する膜付きガラス基板及び該膜付きガラス基板の製造方法の各態様について説明する。 Each aspect of a film-coated glass substrate and a method for manufacturing the film-coated glass substrate that solves the above problems will be described.
 本発明の態様1に係る膜付きガラス基板は、ガラス基板と、前記ガラス基板の主面上に設けられており、酸化ケイ素を主成分とする、アンチグレア膜とを備え、前記アンチグレア膜の表面における算術平均高さSaが、0.3μm以上であり、JIS K5600-5-4:1999の鉛筆硬度試験において、前記アンチグレア膜の表面における傷の有無の判定を、金属顕微鏡を用いて100倍の倍率で前記アンチグレア膜の表面を観察することにより行ったときに、鉛筆硬度が7H以上であることを特徴としている。 A film-coated glass substrate according to aspect 1 of the present invention includes a glass substrate and an anti-glare film, which is provided on the main surface of the glass substrate and has silicon oxide as a main component, and has a surface of the anti-glare film. The arithmetic mean height Sa is 0.3 μm or more, and in the pencil hardness test of JIS K5600-5-4:1999, the presence or absence of scratches on the surface of the anti-glare film is determined using a metallurgical microscope at a magnification of 100 times. The anti-glare film is characterized by having a pencil hardness of 7H or higher, as determined by observing the surface of the anti-glare film.
 態様2に係る膜付きガラス基板は、態様1において、前記膜付きガラス基板のJIS K7136:2000に準拠して測定したヘイズが、30%以上であることが好ましい。 In the film-coated glass substrate according to Aspect 2, in Aspect 1, it is preferable that the haze of the film-coated glass substrate measured in accordance with JIS K7136:2000 is 30% or more.
 態様3に係る膜付きガラス基板は、態様1又は2において、前記ガラス基板の歪点が、550℃以上であることが好ましい。 In the film-coated glass substrate according to Aspect 3, in Aspect 1 or 2, it is preferable that the strain point of the glass substrate is 550° C. or higher.
 態様4に係る膜付きガラス基板は、態様1から態様3のいずれか一つの態様において、前記アンチグレア膜の表面における二乗平均平方根高さSqと最小自己相関長さSalとの比(Sq/Sal)が、0.05以上であることが好ましい。 In the film-coated glass substrate according to Aspect 4, in any one of Aspects 1 to 3, the ratio between the root mean square height Sq and the minimum autocorrelation length Sal at the surface of the anti-glare film (Sq/Sal) is preferably 0.05 or more.
 本発明の態様5に係る膜付きガラス基板の製造方法は、ガラス基板上に、スプレーコート法によりシリカ前駆体を含むコーティング液を塗布することによって、凹凸を有するコーティング膜を形成する工程と、前記コーティング膜を500℃以上の温度で焼成することにより、アンチグレア膜を形成する工程とを備え、前記アンチグレア膜の表面における算術平均高さSaが、0.3μm以上となるように、前記アンチグレア膜を形成することを特徴としている。 A method for producing a film-coated glass substrate according to aspect 5 of the present invention includes the steps of: forming a coating film having unevenness by applying a coating liquid containing a silica precursor on a glass substrate by a spray coating method; forming an anti-glare film by baking the coating film at a temperature of 500° C. or higher, and forming the anti-glare film so that the arithmetic mean height Sa on the surface of the anti-glare film is 0.3 μm or higher. It is characterized by the formation of
 態様6に係る膜付きガラス基板の製造方法は、態様5において、前記コーティング膜を焼成するに際し、前記コーティング膜を前記ガラス基板の歪点以下の温度で焼成することが好ましい。 In the method for manufacturing a glass substrate with a film according to Aspect 6, in Aspect 5, when firing the coating film, it is preferable that the coating film is fired at a temperature equal to or lower than the strain point of the glass substrate.
 態様7に係る膜付きガラス基板の製造方法は、態様5又は6において、前記ガラス基板の歪点が、550℃以上であることが好ましい。 In the method for manufacturing a glass substrate with a film according to Aspect 7, in Aspect 5 or 6, it is preferable that the strain point of the glass substrate is 550° C. or higher.
 態様8に係る膜付きガラス基板の製造方法は、態様5から態様7のいずれか一つの態様において、前記シリカ前駆体が、N官能性シリコンアルコキシド(N=2,3,4)及び該N官能性シリコンアルコキシドの加水分解縮合物のうち少なくとも一方を含むことが好ましい。 In the method for producing a glass substrate with a film according to aspect 8, in any one of aspects 5 to 7, the silica precursor is an N-functional silicon alkoxide (N=2, 3, 4) and the N-functional silicon alkoxide. It is preferable that at least one of the hydrolyzed condensates of silicon alkoxides is included.
 本発明によれば、防眩性と耐引っかき性とを高いレベルで両立することができる、膜付きガラス基板及び該膜付きガラス基板の製造方法を提供することができる。 According to the present invention, it is possible to provide a film-coated glass substrate and a method for manufacturing the film-coated glass substrate, which can achieve both high levels of anti-glare properties and scratch resistance.
図1は、本発明の第1の実施形態に係る膜付きガラス基板を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a film-coated glass substrate according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る膜付きガラス基板を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a film-coated glass substrate according to a second embodiment of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely illustrative, and the present invention is not limited to the following embodiments.
 [第1の実施形態]
 (膜付きガラス基板)
 図1は、本発明の第1の実施形態に係る膜付きガラス基板を示す模式的断面図である。図1に示すように、膜付きガラス基板1は、ガラス基板2と、アンチグレア膜3とを備える。ガラス基板2上に、アンチグレア膜3が設けられている。
[First embodiment]
(Glass substrate with film)
FIG. 1 is a schematic cross-sectional view showing a film-coated glass substrate according to a first embodiment of the present invention. As shown in FIG. 1, the film-coated glass substrate 1 includes a glass substrate 2 and an anti-glare film 3. An anti-glare film 3 is provided on a glass substrate 2.
 本実施形態において、ガラス基板2は、略矩形板状の形状を有する。もっとも、ガラス基板2は、例えば、略円板状等の形状を有していてもよく、その形状は特に限定されない。 In this embodiment, the glass substrate 2 has a substantially rectangular plate shape. However, the glass substrate 2 may have a substantially disk-like shape, for example, and its shape is not particularly limited.
 ガラス基板2は、波長450nm~700nmにおける少なくとも一部の光を透過するガラス基板であることが好ましい。ガラス基板2は透明ガラス基板であることが好ましい。なお、本明細書において、「透明」とは、波長450nm~700nmにおける可視波長域の光透過率が70%以上であることをいう。 It is preferable that the glass substrate 2 is a glass substrate that transmits at least part of light in the wavelength range of 450 nm to 700 nm. It is preferable that the glass substrate 2 is a transparent glass substrate. In this specification, "transparent" means that the light transmittance in the visible wavelength range of 450 nm to 700 nm is 70% or more.
 ガラス基板2の歪点は、特に限定されないが、好ましくは500℃以上、より好ましくは550℃以上、さらに好ましくは560℃以上、さらにより好ましくは570℃以上、さらにより好ましくは580℃以上、さらにより好ましくは590℃以上、さらにより好ましくは600℃以上、さらにより好ましくは610℃以上、さらにより好ましくは620℃以上、さらにより好ましくは630℃以上、さらにより好ましくは640℃以上、さらにより好ましくは650℃以上、さらにより好ましくは660℃以上、特に好ましくは670℃以上、最も好ましくは680℃以上である。この場合、後述する製造工程において高温で焼成した場合においても、ガラス基板2の歪みをより一層残り難くすることができ、膜付きガラス基板1の変形をより一層抑制することができる。そのため、膜付きガラス基板1をディスプレイ等に用いたときに視認性をより一層向上させることができる。なお、ガラス基板2の歪点の上限値は、特に限定されないが、例えば、1000℃とすることができる。 The strain point of the glass substrate 2 is not particularly limited, but is preferably 500°C or higher, more preferably 550°C or higher, even more preferably 560°C or higher, even more preferably 570°C or higher, even more preferably 580°C or higher, and More preferably 590°C or higher, even more preferably 600°C or higher, even more preferably 610°C or higher, even more preferably 620°C or higher, even more preferably 630°C or higher, even more preferably 640°C or higher, even more preferably is 650°C or higher, even more preferably 660°C or higher, particularly preferably 670°C or higher, and most preferably 680°C or higher. In this case, even when the glass substrate 2 is fired at a high temperature in the manufacturing process described later, distortion in the glass substrate 2 is less likely to remain, and deformation of the film-covered glass substrate 1 can be further suppressed. Therefore, when the film-coated glass substrate 1 is used for a display or the like, visibility can be further improved. Note that the upper limit of the strain point of the glass substrate 2 is not particularly limited, but may be, for example, 1000°C.
 ガラス基板2の歪点は、ASTM C336に準拠して測定することができる。また、ガラス基板2の歪点は、公知の方法(例えば、特開2002-308643号公報、特開2012-041217号公報、特開2002-029776号公報、特開2006-252828号公報、特開2022-008627号公報、特開平08-295530号公報等)により高めることができる。特に、アルカリ金属酸化物を実質的に含まない(例えば、0.1%以下)無アルカリガラスは、歪点が高くなり易く、また、耐擦傷性及び耐薬品性をより一層向上させる観点からも好ましい。 The strain point of the glass substrate 2 can be measured in accordance with ASTM C336. In addition, the strain point of the glass substrate 2 can be determined by a known method (for example, JP-A No. 2002-308643, JP-A No. 2012-041217, JP-A No. 2002-029776, JP-A No. 2006-252828, JP-A No. 2006-252828, 2022-008627, JP-A-08-295530, etc.). In particular, alkali-free glass that does not substantially contain alkali metal oxides (for example, 0.1% or less) tends to have a high strain point, and is also difficult to improve scratch resistance and chemical resistance. preferable.
 ガラス基板2に用いられるガラスとしては、特に限定されず、例えば、ホウケイ酸ガラス、アルミノシリケートガラス、石英ガラス、結晶化ガラス等を用いることができる。なお、後述する製造工程において高温で焼成した場合に化学強化が劣化する恐れがあることから、ガラス基板2に用いられるガラスは、化学強化ガラスではないことが望ましい。 The glass used for the glass substrate 2 is not particularly limited, and for example, borosilicate glass, aluminosilicate glass, quartz glass, crystallized glass, etc. can be used. Note that the glass used for the glass substrate 2 is desirably not chemically strengthened glass, since there is a risk that the chemical strengthening will deteriorate if it is fired at a high temperature in the manufacturing process described below.
 ガラス基板2に用いられるガラスは、例えば、SiO、Al、B、アルカリ土類金属酸化物、アルカリ金属酸化物、SnO等を含有することができる。 The glass used for the glass substrate 2 can contain, for example, SiO 2 , Al 2 O 3 , B 2 O 3 , alkaline earth metal oxides, alkali metal oxides, SnO 2 and the like.
 SiOは、ガラスのネットワークフォーマー(網目形成酸化物)を形成する成分である。SiOの含有量は、例えば、質量百分率で、50%~75%とすることができる。SiOの含有量が上記下限値以上である場合、ガラスの歪点をより一層向上させることができる。一方、SiOの含有量が上記上限値以下である場合、高温粘度を低めることができ、ガラスの溶融性をより一層向上させることができる。 SiO 2 is a component that forms a glass network former (network-forming oxide). The content of SiO 2 can be, for example, 50% to 75% in mass percentage. When the content of SiO 2 is at least the above lower limit, the strain point of the glass can be further improved. On the other hand, when the content of SiO 2 is below the above upper limit, the high temperature viscosity can be lowered, and the meltability of the glass can be further improved.
 Alの含有量は、例えば、質量百分率で、8%~25%とすることができる。Alの含有量が上記下限値以上である場合、ガラスの歪点をより一層向上させることができる。また、ガラスを分相し難くすることができる。一方、Alの含有量が上記上限値以下である場合、ガラスの液相温度が高くなり難い。 The content of Al 2 O 3 can be, for example, 8% to 25% in mass percentage. When the content of Al 2 O 3 is at least the above lower limit, the strain point of the glass can be further improved. Further, it is possible to make the glass difficult to undergo phase separation. On the other hand, when the content of Al 2 O 3 is below the above upper limit, the liquidus temperature of the glass is unlikely to become high.
 Bは、ガラスの高温粘性を下げて溶融性を向上させる成分である。Bの含有量は、例えば、質量百分率で、0.01%~15%とすることができる。Bの含有量が上記下限値以上である場合、ガラスの溶融性をより一層向上させることができる。一方、Bの含有量が上記上限値以下である場合、ガラスの歪点をより一層向上させることができる。 B 2 O 3 is a component that lowers the high temperature viscosity of glass and improves its meltability. The content of B 2 O 3 can be, for example, 0.01% to 15% in mass percentage. When the content of B 2 O 3 is at least the above lower limit, the meltability of the glass can be further improved. On the other hand, when the content of B 2 O 3 is below the above upper limit, the strain point of the glass can be further improved.
 アルカリ土類金属酸化物は、ガラスの高温粘性を下げて溶融性を高める成分である。アルカリ土類金属酸化物としては、例えば、MgO、CaO、SrO、BaO等が挙げられる。これらは、1種を単独で用いてもよく、複数種を併用してもよい。アルカリ土類金属酸化物の含有量(複数種を含む場合は合量)は、例えば、質量百分率で、0.1%~20%、1%~20%、5%~20%、10%~20%である。アルカリ土類金属酸化物の含有量が上記下限値以上である場合、ガラスの溶融性をより一層向上させることができる。一方、アルカリ土類金属酸化物の含有量が上記上限値以下である場合、ガラスの歪点をより一層向上させることができる。また、ガラス組成の成分バランスを崩れ難くすることができ、失透結晶を析出し難くすることができる。 Alkaline earth metal oxides are components that lower the high temperature viscosity of glass and increase its meltability. Examples of alkaline earth metal oxides include MgO, CaO, SrO, BaO, and the like. These may be used alone or in combination. The content of alkaline earth metal oxides (total amount if multiple types are included) is, for example, 0.1% to 20%, 1% to 20%, 5% to 20%, 10% to mass percentage. It is 20%. When the content of the alkaline earth metal oxide is at least the above lower limit, the meltability of the glass can be further improved. On the other hand, when the content of the alkaline earth metal oxide is below the above upper limit, the strain point of the glass can be further improved. Moreover, the component balance of the glass composition can be made difficult to collapse, and devitrification crystals can be made difficult to precipitate.
 アルカリ金属酸化物は、ガラスの溶融性を高める成分である。アルカリ金属酸化物としては、例えば、LiO、NaO、KO等が挙げられる。これらは、1種を単独で用いてもよく、複数種を併用してもよい。アルカリ金属酸化物の含有量(複数種を含む場合は合量)は、質量百分率で、好ましくは0.01%以上、より好ましくは0.02%以上、さらに好ましくは0.05%以上であり、好ましくは24%以下、より好ましくは20%以下、さらに好ましくは10%以下、さらにより好ましくは5%以下、さらにより好ましくは3%以下、さらにより好ましくは1%以下、さらにより好ましくは0.5%以下、さらにより好ましくは0.3%以下、特に好ましくは0.1%以下である。アルカリ金属酸化物の含有量が上記下限値以上である場合、ガラスの溶融性をより一層向上させることができる。一方、アルカリ金属酸化物の含有量が上記上限値以下である場合、ガラスの歪点をより一層向上させることができる。 Alkali metal oxides are components that improve the meltability of glass. Examples of the alkali metal oxide include Li 2 O, Na 2 O, K 2 O, and the like. These may be used alone or in combination. The content of alkali metal oxides (total amount when multiple types are included) is preferably 0.01% or more, more preferably 0.02% or more, and even more preferably 0.05% or more in mass percentage. , preferably 24% or less, more preferably 20% or less, even more preferably 10% or less, even more preferably 5% or less, even more preferably 3% or less, even more preferably 1% or less, even more preferably 0 .5% or less, even more preferably 0.3% or less, particularly preferably 0.1% or less. When the content of the alkali metal oxide is at least the above lower limit, the meltability of the glass can be further improved. On the other hand, when the content of the alkali metal oxide is below the above upper limit, the strain point of the glass can be further improved.
 SnOは、高温域で良好な清澄作用を有し、ガラスの歪点を高める成分である。SnOの含有量は、例えば、質量百分率で、0%~1%とすることができる。SnOの含有量が上記下限値以上である場合、ガラスの歪点をより一層向上させることができる。一方、SnOの含有量が上記上限値以下である場合、ガラスの失透をより生じ難くすることができる。 SnO 2 is a component that has a good fining effect in a high temperature range and increases the strain point of glass. The content of SnO 2 can be, for example, 0% to 1% in mass percentage. When the content of SnO 2 is at least the above lower limit, the strain point of the glass can be further improved. On the other hand, when the content of SnO 2 is below the above upper limit, devitrification of the glass can be made more difficult to occur.
 ガラス基板2に用いられるガラスは、上記成分以外にも、例えば、ZnO、P、TiO、Y、Nb、La等の他の成分を含有していてもよい。他の成分は、1種を単独で用いてもよく、複数種を併用してもよい。なお、他の成分は、本発明の効果を阻害しない範囲で含有することができ、原料コストの観点から、他の成分の含有量(複数種を含む場合は合量)は、質量百分率で、好ましくは10%以下、より好ましくは5%以下である。 In addition to the above-mentioned components, the glass used for the glass substrate 2 contains other components such as ZnO, P 2 O 5 , TiO 2 , Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 . It's okay. One type of other components may be used alone, or a plurality of types may be used in combination. In addition, other components can be contained within a range that does not impede the effects of the present invention, and from the viewpoint of raw material cost, the content of other components (total amount if multiple types are included) in mass percentage, Preferably it is 10% or less, more preferably 5% or less.
 ガラス基板2に用いられるガラスとして、これらに限定される訳ではないが、例えば、ガラス組成として、質量%で、SiO 58%~70%、Al 10%~19%、B 6.5%~15%、MgO 0%~2%、CaO 3%~12%、BaO 0.1%~5%、SrO 0%~4%、BaO+SrO 0.1%~6%、ZnO 0%~5%、MgO+CaO+BaO+SrO+ZnO 5%~15%、LiO+NaO+KO 0%~0.5%、ZrO 5%~20%、TiO 0%~5%、P 0%~5%の組成を有するガラスや、ガラス組成として、質量%で、SiO 55%~70%、Al 10%~20%、B 0.1%~4.5%、MgO 0%~1%、CaO 5%~15%、SrO 0.5%~5%、BaO 5%~15%、LiO+NaO+KO 0%~0.5%を含有するガラスを挙げることができる。 Although the glass used for the glass substrate 2 is not limited to these, for example, as a glass composition, in mass %, SiO 2 58% to 70%, Al 2 O 3 10% to 19%, B 2 O 3 6.5% to 15%, MgO 0% to 2%, CaO 3% to 12%, BaO 0.1% to 5%, SrO 0% to 4%, BaO + SrO 0.1% to 6%, ZnO 0 % ~ 5%, MgO + CaO + BaO + SrO + ZnO 5% ~ 15%, Li 2 O + Na 2 O + K 2 O 0% ~ 0.5%, ZrO 5% ~ 20%, TiO 2 0% ~ 5%, P 2 O 5 0% ~ 5 % composition, or glass composition, in mass %, SiO 2 55% to 70%, Al 2 O 3 10% to 20%, B 2 O 3 0.1% to 4.5%, MgO 0 % to 1%, CaO 5% to 15%, SrO 0.5% to 5%, BaO 5% to 15%, Li 2 O + Na 2 O + K 2 O 0% to 0.5%. can.
 ガラス基板2の厚みは、特に限定されない。ガラス基板2の厚みは、例えば、0.1mm~5mm程度とすることができる。 The thickness of the glass substrate 2 is not particularly limited. The thickness of the glass substrate 2 can be, for example, about 0.1 mm to 5 mm.
 ガラス基板2は、第1の主面2a及び第2の主面2bを有する。第1の主面2a及び第2の主面2bは、対向し合っている。ガラス基板2の第1の主面2a上には、アンチグレア膜3が設けられている。 The glass substrate 2 has a first main surface 2a and a second main surface 2b. The first main surface 2a and the second main surface 2b are opposed to each other. An anti-glare film 3 is provided on the first main surface 2a of the glass substrate 2.
 アンチグレア膜3は、凹凸構造を有する。アンチグレア膜3は、外光の映り込み等を抑制する、いわゆる防眩効果を付与するために設けられている。アンチグレア膜3は、酸化ケイ素を主成分とする膜である。 The anti-glare film 3 has an uneven structure. The anti-glare film 3 is provided to provide a so-called anti-glare effect that suppresses the reflection of external light. The anti-glare film 3 is a film whose main component is silicon oxide.
 なお、本明細書において、上記「主成分とする」は、膜中にその成分が50質量%以上含まれていることを意味し、その成分が80質量%以上含まれることが好ましく、90質量%以上含まれることがより好ましい。当然ながら、膜中に、その成分が100質量%含まれていてもよい。 In addition, in this specification, the above-mentioned "consisting as a main component" means that the component is contained in the film in an amount of 50% by mass or more, preferably 80% by mass or more, and 90% by mass or more. % or more is more preferable. Naturally, the component may be contained in the film in an amount of 100% by mass.
 アンチグレア膜3の表面3aにおける算術平均高さSaは、0.3μm以上である。算術平均高さSaは、例えば、光干渉型顕微鏡やレーザー顕微鏡を用いて、ISO 25178に準拠して測定することができる。なお、アンチグレア膜3の算術平均高さSaは、アンチグレア膜3の膜厚を厚くすることにより、大きくすることができる。 The arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is 0.3 μm or more. The arithmetic mean height Sa can be measured in accordance with ISO 25178 using, for example, an optical interference microscope or a laser microscope. Note that the arithmetic mean height Sa of the anti-glare film 3 can be increased by increasing the thickness of the anti-glare film 3.
 また、アンチグレア膜3の鉛筆硬度は、7H以上である。鉛筆硬度は、JIS K5600-5-4:1999の鉛筆硬度試験に準拠した原理、装置及び器具、手順で評価できる。具体的には、鉛筆として「ユニ」(三菱鉛筆株式会社製)を用い、ひっかき距離を10mmとし、アンチグレア膜3の表面3aにおける1mm以上の傷の有無の判定を、金属顕微鏡を用いて100倍の倍率でアンチグレア膜3の表面3aを落射照明で観察することにより行うことができる。 Furthermore, the pencil hardness of the anti-glare film 3 is 7H or higher. Pencil hardness can be evaluated using principles, devices, instruments, and procedures based on the pencil hardness test of JIS K5600-5-4:1999. Specifically, using a pencil "UNI" (manufactured by Mitsubishi Pencil Co., Ltd.), the scratching distance was set to 10 mm, and the presence or absence of scratches of 1 mm or more on the surface 3a of the anti-glare film 3 was determined using a metallurgical microscope at a magnification of 100. This can be done by observing the surface 3a of the anti-glare film 3 with epi-illumination at a magnification of .
 本実施形態の膜付きガラス基板1は、上記の構成を備えるので、防眩性と耐引っかき性とを高いレベルで両立することができる。そのため、本実施形態の膜付きガラス基板1は、携帯電話機、タブレット端末、テレビ、あるいはデジタルサイネージ等のディスプレイにおけるカバーガラス等に好適に用いることができる。 Since the film-coated glass substrate 1 of the present embodiment has the above configuration, it can achieve both high levels of anti-glare properties and scratch resistance. Therefore, the film-coated glass substrate 1 of this embodiment can be suitably used as a cover glass in a display such as a mobile phone, a tablet terminal, a television, or a digital signage.
 本実施形態においては、アンチグレア膜3の表面3aにおける算術平均高さSaが0.3μm以上、好ましくは0.32μm以上、より好ましくは0.33μm以上であり、好ましくは0.7μm以下、より好ましくは0.5μm以下、さらに好ましくは0.45μm以下である。アンチグレア膜3の表面3aにおける算術平均高さSaが上記下限値以上である場合、膜付きガラス基板1の防眩性をより一層向上させることができる。また、アンチグレア膜3の表面3aにおける算術平均高さSaが上記上限値以下である場合、アンチグレア膜3のガラス基板2からの剥離をより一層生じ難くすることができる。 In this embodiment, the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is 0.3 μm or more, preferably 0.32 μm or more, more preferably 0.33 μm or more, and preferably 0.7 μm or less, more preferably is 0.5 μm or less, more preferably 0.45 μm or less. When the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved. Further, when the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is equal to or less than the above upper limit value, peeling of the anti-glare film 3 from the glass substrate 2 can be made even less likely to occur.
 また、アンチグレア膜3の鉛筆硬度は、7H以上、好ましくは8H以上、より好ましくは9H以上である。アンチグレア膜3の鉛筆硬度が上記下限値以上である場合、膜付きガラス基板1の耐引っかき性をより一層向上させることができる。なお、アンチグレア膜3の鉛筆硬度の上限値は、特に限定されないが、例えば、10Hとすることができる。 Further, the pencil hardness of the anti-glare film 3 is 7H or more, preferably 8H or more, and more preferably 9H or more. When the pencil hardness of the anti-glare film 3 is greater than or equal to the above lower limit, the scratch resistance of the film-coated glass substrate 1 can be further improved. Note that the upper limit of the pencil hardness of the anti-glare film 3 is not particularly limited, but may be, for example, 10H.
 また、アンチグレア膜3の鉛筆硬度は、上記したJIS K5600-5-4:1999に記載の原理、装置及び器具、手順に準拠した方法で行うことができる。鉛筆硬度は、同一硬度の鉛筆で10回以上ひっかきを行い、傷の発生率が30%以下となる最大の硬度とすることができる。なお、同一条件で作製した複数枚の膜付きガラス基板を用意して各々の鉛筆硬度を評価し、得られる鉛筆硬度が異なる場合は、その中央値を鉛筆硬度とすることができる。 Furthermore, the pencil hardness of the anti-glare film 3 can be determined by a method based on the principles, equipment, instruments, and procedures described in the above-mentioned JIS K5600-5-4:1999. The pencil hardness can be set to the maximum hardness at which the incidence of scratches is 30% or less when scratched with a pencil of the same hardness 10 times or more. Note that a plurality of film-coated glass substrates prepared under the same conditions are prepared and the pencil hardness of each is evaluated, and if the obtained pencil hardnesses are different, the median value can be taken as the pencil hardness.
 本実施形態において、アンチグレア膜3の表面3aにおける二乗平均平方根高さSqは、好ましくは0.30μm以上、より好ましくは0.35μm以上、さらに好ましくは0.40μm以上であり、好ましくは0.80μm以下、より好ましくは0.60μm以下、さらに好ましくは0.56μm以下である。アンチグレア膜3の表面3aにおける二乗平均平方根高さSqが上記下限値以上である場合、膜付きガラス基板1の防眩性をより一層向上させることができる。また、アンチグレア膜3の表面3aにおける二乗平均平方根高さSqが上記上限値以下である場合、アンチグレア膜3のガラス基板2からの剥離をより一層生じ難くすることができる。 In this embodiment, the root mean square height Sq at the surface 3a of the anti-glare film 3 is preferably 0.30 μm or more, more preferably 0.35 μm or more, still more preferably 0.40 μm or more, and preferably 0.80 μm. The thickness is more preferably 0.60 μm or less, and even more preferably 0.56 μm or less. When the root mean square height Sq on the surface 3a of the anti-glare film 3 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved. Moreover, when the root mean square height Sq of the surface 3a of the anti-glare film 3 is equal to or less than the above upper limit value, peeling of the anti-glare film 3 from the glass substrate 2 can be made even less likely to occur.
 アンチグレア膜3の表面3aにおける最小自己相関長さSalは、好ましくは1.5μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは8μm以下である。アンチグレア膜3の表面3aにおける最小自己相関長さSalが上記下限値以上である場合、膜付きガラス基板1の防眩性をより一層向上させることができる。また、アンチグレア膜3の表面3aにおける最小自己相関長さSalが上記上限値以下である場合、スパークルと呼ばれるぎらつきをより一層抑制することができる。 The minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is preferably 1.5 μm or more, more preferably 3 μm or more, even more preferably 5 μm or more, and preferably 30 μm or less, more preferably 20 μm or less, even more preferably It is 8 μm or less. When the minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved. Further, when the minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is equal to or less than the above upper limit value, glare called sparkle can be further suppressed.
 また、アンチグレア膜3の表面3aにおける二乗平均平方根高さSqと最小自己相関長さSalとの比(Sq/Sal)は、好ましくは0.03以上、より好ましくは0.05以上、さらに好ましくは0.06以上であり、好ましくは0.10以下、より好ましくは0.08以下、さらに好ましくは0.07以下である。比(Sq/Sal)が上記下限値以上である場合、膜付きガラス基板1の防眩性をより一層向上させることができる。また、比(Sq/Sal)が上記上限値以下である場合、ヘイズが高くなりすぎることをより一層確実に防止することができる。 Further, the ratio (Sq/Sal) between the root mean square height Sq and the minimum autocorrelation length Sal on the surface 3a of the anti-glare film 3 is preferably 0.03 or more, more preferably 0.05 or more, and even more preferably It is 0.06 or more, preferably 0.10 or less, more preferably 0.08 or less, and still more preferably 0.07 or less. When the ratio (Sq/Sal) is greater than or equal to the above lower limit, the antiglare properties of the film-coated glass substrate 1 can be further improved. Moreover, when the ratio (Sq/Sal) is below the above upper limit value, it is possible to more reliably prevent the haze from becoming too high.
 なお、二乗平均平方根高さSq及び最小自己相関長さSalは、例えば、ISO 25178に準拠して測定することができる。また、比(Sq/Sal)は、アンチグレア膜3の膜厚を厚くすることにより、大きくすることができる。 Note that the root mean square height Sq and the minimum autocorrelation length Sal can be measured in accordance with ISO 25178, for example. Furthermore, the ratio (Sq/Sal) can be increased by increasing the thickness of the anti-glare film 3.
 アンチグレア膜3の平均膜厚は、特に限定されないが、好ましくは430nm以上、より好ましくは500nm以上、さらに好ましくは700nm以上、好ましくは2000nm以下、より好ましくは1500nm以下、さらに好ましくは1000nm以下となるように設計することができる。なお、アンチグレア膜3の平均膜厚は、単位面積あたりの塗布量×液塗着効率×固形分換算濃度/膜の密度から見積もることができる。 The average thickness of the anti-glare film 3 is not particularly limited, but is preferably 430 nm or more, more preferably 500 nm or more, even more preferably 700 nm or more, preferably 2000 nm or less, more preferably 1500 nm or less, and still more preferably 1000 nm or less. can be designed. Note that the average film thickness of the anti-glare film 3 can be estimated from coating amount per unit area×liquid coating efficiency×concentration in terms of solid content/density of the film.
 本実施形態において、膜付きガラス基板1のヘイズは、好ましくは30%以上、より好ましくは40%以上、好ましくは80%以下、より好ましくは60%以下である。膜付きガラス基板1のヘイズが上記下限値以上である場合、膜付きガラス基板1の防眩性をより一層向上させることができる。また、膜付きガラス基板1のヘイズが上記上限値以下である場合、ディスプレイ等に用いたときに、表示面の視認性をより一層高めることができる。 In this embodiment, the haze of the film-coated glass substrate 1 is preferably 30% or more, more preferably 40% or more, preferably 80% or less, and more preferably 60% or less. When the haze of the film-coated glass substrate 1 is greater than or equal to the above lower limit, the anti-glare properties of the film-coated glass substrate 1 can be further improved. Moreover, when the haze of the film-coated glass substrate 1 is below the above-mentioned upper limit value, the visibility of the display surface can be further improved when used for a display or the like.
 膜付きガラス基板1のヘイズは、例えば、JIS K7136:2000に準拠して測定することができる。なお、膜付きガラス基板1のヘイズは、例えば、アンチグレア膜3の膜厚を厚くすることにより、大きくすることができる。 The haze of the film-coated glass substrate 1 can be measured, for example, in accordance with JIS K7136:2000. Note that the haze of the film-coated glass substrate 1 can be increased, for example, by increasing the thickness of the anti-glare film 3.
 以下、本発明の膜付きガラス基板の製造方法の一例について説明する。 Hereinafter, an example of the method for manufacturing a film-coated glass substrate of the present invention will be described.
 (膜付きガラス基板の製造方法)
 本実施形態の膜付きガラス基板1の製造方法では、まず、ガラス基板2を用意する。ガラス基板2としては、上述したものを用いることができる。また、ガラス基板2は、基板本体の表面に機能層を有するものであってもよい。機能層としては、アンダーコート層、密着改善層、保護層、着色層等が挙げられる。
(Method for manufacturing glass substrate with film)
In the method for manufacturing the film-covered glass substrate 1 of this embodiment, first, the glass substrate 2 is prepared. As the glass substrate 2, those mentioned above can be used. Further, the glass substrate 2 may have a functional layer on the surface of the substrate body. Examples of the functional layer include an undercoat layer, an adhesion improving layer, a protective layer, and a colored layer.
 次に、用意したガラス基板2上に、スプレーコート法によりコーティング液を塗布することによって、凹凸を有するコーティング膜を形成する。 Next, a coating film having irregularities is formed by applying a coating liquid onto the prepared glass substrate 2 by a spray coating method.
 コーティング液は、シリカ前駆体を含む。シリカ前駆体は、例えば、スプレーコート法によりアンチグレア膜を形成する際のマトリックス形成成分として用いることができる。コーティング液がシリカ前駆体を含有することにより、ガラス基板2との密着性を高めることができ、ガラス基板2との屈折率を整合させることができる。 The coating liquid contains a silica precursor. The silica precursor can be used, for example, as a matrix forming component when forming an anti-glare film by a spray coating method. By containing the silica precursor in the coating liquid, the adhesion to the glass substrate 2 can be improved, and the refractive index can be matched with that of the glass substrate 2.
 シリカ前駆体としては、例えば、シロキサン重合体が挙げられる。シロキサン重合体としては、シリコンアルコキシドや、その加水分解縮合物を用いることが好ましい。また、シリコンアルコキシドが、N官能性シリコンアルコキシド(N=2,3,4)及びその加水分解縮合物のうち少なくとも一方を含むことが好ましい。このようなシリコンアルコキシドとしては、例えば、4官能性シリコンアルコキシドである、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が挙げられる。 Examples of the silica precursor include siloxane polymers. As the siloxane polymer, it is preferable to use silicon alkoxide or a hydrolyzed condensate thereof. Moreover, it is preferable that the silicon alkoxide contains at least one of an N-functional silicon alkoxide (N=2, 3, 4) and a hydrolyzed condensate thereof. Examples of such silicon alkoxides include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane, which are tetrafunctional silicon alkoxides.
 また、シリコンアルコキシドは、アルキル基、ビニル基、フェニル基、又はエポキシ基等の有機置換基を有する3官能性シリコンアルコキシドまたは2官能性シリコンアルコキシドであってもよい。有機置換基を有するシリコンアルコキシドとしては、例えば、3官能性シリコンアルコキシドである、メチルトリエトキシシラン、メチルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシランや、2官能性シリコンアルコキシドである、ジメチルジエトキシシラン、ジメチルジメトキシシラン等が挙げられる。このような有機置換基を有する場合、形成されるコーティング膜の応力を低減することができ、焼成時の昇温過程で亀裂が発生することをより一層抑制することができる。 Furthermore, the silicon alkoxide may be a trifunctional silicon alkoxide or a bifunctional silicon alkoxide having an organic substituent such as an alkyl group, a vinyl group, a phenyl group, or an epoxy group. Examples of silicon alkoxides having an organic substituent include trifunctional silicon alkoxides such as methyltriethoxysilane, methyltrimethoxysilane, vinyltriethoxysilane, and phenyltriethoxysilane, and dimethyl silicone alkoxides. Examples include diethoxysilane and dimethyldimethoxysilane. When such an organic substituent is present, the stress of the coating film to be formed can be reduced, and the occurrence of cracks during the heating process during firing can be further suppressed.
 これらのシリコンアルコキシドは、1種のみを使用してもよく、複数種を混合して使用してもよい。 These silicon alkoxides may be used alone or in a mixture of multiple types.
 シロキサン重合体は、加水分解縮合反応を進めることにより、サイズを成長させることができる。シロキサン重合体のサイズは、例えば、体積平均で2nm~30nmとすることができる。 The size of the siloxane polymer can be grown by proceeding with the hydrolytic condensation reaction. The size of the siloxane polymer can be, for example, 2 nm to 30 nm in volume average.
 シリカ前駆体の含有量は、固形分に占めるシリカ換算の質量百分率で、例えば、50%以上であり、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上、特に好ましくは90%以上である。 The content of the silica precursor is, for example, 50% or more, preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, particularly preferably It is 90% or more.
 コーティング液は、アルミナ前駆体、ジルコニア前駆体、チタニア前駆体、又はイットリア前駆体を含んでいてもよい。これらは、1種を単独で用いてもよく、複数種を併用してもよい。コーティング液が、アルミナ前駆体、ジルコニア前駆体、チタニア前駆体、又はイットリア前駆体を含有する場合、被膜(コーティング膜)の耐久性をより一層向上させることができ、被膜(コーティング膜)の屈折率とガラス基板2との屈折率の整合性をより一層向上させることができる。 The coating liquid may contain an alumina precursor, a zirconia precursor, a titania precursor, or an yttria precursor. These may be used alone or in combination. When the coating liquid contains an alumina precursor, a zirconia precursor, a titania precursor, or an yttria precursor, the durability of the film (coating film) can be further improved, and the refractive index of the film (coating film) can be further improved. The refractive index matching between the glass substrate 2 and the glass substrate 2 can be further improved.
 アルミナ前駆体、ジルコニア前駆体、チタニア前駆体、又はイットリア前駆体の含有量(複数種を含む場合は合量)は、固形分に占めるアルミナ、ジルコニア、チタニア、又はイットリア換算の質量百分率で、例えば、0%~30%とすることができる。 The content of the alumina precursor, zirconia precursor, titania precursor, or yttria precursor (total amount if multiple types are included) is the mass percentage of the solid content in terms of alumina, zirconia, titania, or yttria, for example. , 0% to 30%.
 アルミナ前駆体としては、例えば、アルミニウムアルコキシド、アルミニウムアルコキシドの加水分解縮合物、水溶性アルミニウム塩、アルミニウムキレート等が挙げられる。水溶性アルミニウム塩としては、例えば、硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム、酢酸アルミニウム、アルミニウムホルモアセテート、アルミニウムアセチルアセテート等が挙げられる。 Examples of the alumina precursor include aluminum alkoxides, hydrolyzed condensates of aluminum alkoxides, water-soluble aluminum salts, and aluminum chelates. Examples of water-soluble aluminum salts include aluminum nitrate, aluminum chloride, aluminum sulfate, aluminum acetate, aluminum formoacetate, aluminum acetylacetate, and the like.
 ジルコニア前駆体としては、例えば、ジルコニウムアルコキシド、ジルコニウムアルコキシドの加水分解縮合物等が挙げられる。チタニア前駆体としては、例えば、チタンアルコキシド、チタンアルコキシドの加水分解縮合物等が挙げられる。 Examples of the zirconia precursor include zirconium alkoxide, a hydrolyzed condensate of zirconium alkoxide, and the like. Examples of the titania precursor include titanium alkoxide, a hydrolyzed condensate of titanium alkoxide, and the like.
 コーティング液は、溶媒を含んでいる。溶媒としては、特に限定されず、水、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類等が挙げられる。これらの溶媒は、1種を単独で用いてもよく、複数種を併用してもよい。 The coating liquid contains a solvent. The solvent is not particularly limited, and includes water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, and the like. These solvents may be used alone or in combination.
 水は、シリコンアルコキシド等の加水分解反応に用いることができる。もっとも、水の含有量が多すぎると、表面張力が高いことから、コーティング膜に亀裂が生じ易くなる。そのため、水の含有量は、Si原子に対するモル比で、例えば、3~6とすることができる。 Water can be used in the hydrolysis reaction of silicon alkoxide and the like. However, if the water content is too large, the coating film will be more likely to crack due to the high surface tension. Therefore, the water content can be, for example, 3 to 6 in molar ratio to Si atoms.
 また、コーティング液をより一層乾燥し易くする観点から、コーティング液は、沸点が90℃未満の溶媒を含有することが好ましい。沸点が90℃未満の溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、ヘキサン等が挙げられる。沸点が90℃未満の溶媒の含有量(複数種を含む場合は合量)は、コーティング液全体に占める質量百分率で、例えば、30%以上、90%以下とすることができる。 Furthermore, from the viewpoint of making the coating liquid easier to dry, it is preferable that the coating liquid contains a solvent having a boiling point of less than 90°C. Examples of the solvent having a boiling point of less than 90°C include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, hexane, and the like. The content of the solvent having a boiling point of less than 90° C. (the total amount if multiple types are included) can be, for example, 30% or more and 90% or less in mass percentage of the entire coating liquid.
 コーティング液は、金属酸化物のナノ粒子を含んでいてもよい。 The coating liquid may contain metal oxide nanoparticles.
 コーティング液における固形分の含有量(加熱残分)は、例えば、1質量%~5質量%とすることができる。 The solid content (heated residue) in the coating liquid can be, for example, 1% by mass to 5% by mass.
 コーティング液を塗布するに際しては、スプレーコート法により、コーティング液を、ガラス基板2に吹き付ける。スプレーコート法に用いるノズルとしては、2流体ノズル、1流体ノズル等が挙げられるが、2流体ノズルを用いた2流体スプレーガンであることが好ましい。この場合、コーティング液が酸化物微粒子を含まなくても、より一層効率よくアンチグレア膜3の凹凸を形成することができる。また、ガラス基板2とアンチグレア膜3との密着性をより一層高めることができる。 When applying the coating liquid, the coating liquid is sprayed onto the glass substrate 2 by a spray coating method. Examples of the nozzle used in the spray coating method include a two-fluid nozzle and a one-fluid nozzle, but a two-fluid spray gun using a two-fluid nozzle is preferable. In this case, even if the coating liquid does not contain oxide fine particles, the unevenness of the anti-glare film 3 can be formed even more efficiently. Furthermore, the adhesion between the glass substrate 2 and the anti-glare film 3 can be further improved.
 ノズルから吐出されるコーティング液の液滴の粒径は、通常、0.1μm~100μmであり、1μm~50μmであることが好ましい。液滴の粒径が上記下限値以上である場合、防眩効果が充分に発揮される凹凸をより一層短時間で形成することができる。液滴の粒径が上記上限値以下である場合、防眩効果が十分に発揮される適度な凹凸をより一層形成し易くすることができる。なお、コーティング液の液滴の粒径は、ノズルの種類、エアー流量、吐出量等により適宜、調整できる。例えば、2流体ノズルでは、エアー流量が高くなるほど液滴は小さくなり、また、吐出量が多くなるほど液滴は大きくなる。なお、液滴の粒径は、レーザー回折式粒度分布計によって測定される体積基準でのメディアン径のことをいうものとする。エアー流量は、例えば50L/分~300L/分とすることができる。また、エアー圧力は、例えば、0.1MPa~0.6MPaとすることができる。 The particle size of the coating liquid droplets discharged from the nozzle is usually 0.1 μm to 100 μm, preferably 1 μm to 50 μm. When the particle size of the droplets is equal to or larger than the above lower limit, it is possible to form irregularities that provide a sufficient anti-glare effect in a much shorter time. When the particle size of the droplets is less than or equal to the above upper limit, it is possible to further facilitate the formation of appropriate irregularities that provide sufficient anti-glare effect. Note that the particle size of the droplets of the coating liquid can be adjusted as appropriate depending on the type of nozzle, air flow rate, discharge amount, etc. For example, in a two-fluid nozzle, the higher the air flow rate, the smaller the droplets, and the higher the ejection amount, the larger the droplets. Note that the particle size of the droplet refers to the median diameter on a volume basis measured by a laser diffraction particle size distribution meter. The air flow rate can be, for example, 50 L/min to 300 L/min. Further, the air pressure can be, for example, 0.1 MPa to 0.6 MPa.
 ガン距離は、例えば、20mm以上、300mm以下とすることができる。なお、ガン距離とは、ガンから成膜対象であるガラス基板2までの距離のことをいうものとする。 The gun distance can be, for example, 20 mm or more and 300 mm or less. Note that the gun distance refers to the distance from the gun to the glass substrate 2 that is the object of film formation.
 コーティング液の単位面積あたりの塗布量は、例えば、50g/m以上、80g/m以上、100g/m以上、200g/m以下、180g/m以下、160g/m以下とすることができる。コーティング液の固形分濃度にもよるが、コーティング液の単位面積あたりの塗布量が多いと、アンチグレア膜3の表面3aにおける算術平均高さSaが大きくなる傾向がある。また、アンチグレア膜3の膜厚が厚くなる傾向がある。一方、コーティング液の単位面積あたりの塗布量が少ないと、アンチグレア膜3の表面3aにおける算術平均高さSaが小さくなる傾向がある。また、アンチグレア膜の膜厚が薄くなる傾向がある。 The amount of coating liquid applied per unit area is, for example, 50 g/m 2 or more, 80 g/m 2 or more, 100 g/m 2 or more, 200 g/m 2 or less, 180 g/m 2 or less, 160 g/m 2 or less. be able to. Although it depends on the solid content concentration of the coating liquid, when the coating amount of the coating liquid per unit area is large, the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 tends to become large. Furthermore, the thickness of the anti-glare film 3 tends to increase. On the other hand, when the coating amount of the coating liquid per unit area is small, the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 tends to become small. Furthermore, the thickness of the anti-glare film tends to become thinner.
 コーティング液の塗布温度は、例えば、10℃以上、80℃以下とすることができる。 The application temperature of the coating liquid can be, for example, 10°C or higher and 80°C or lower.
 また、コーティング液を塗布する際のガラス基板2の表面温度は、例えば、15℃~75℃であることが好ましい。また、コーティング液を塗布する際の湿度は、例えば、20%~80%であり、50%以上であることが好ましい。 Furthermore, it is preferable that the surface temperature of the glass substrate 2 when applying the coating liquid is, for example, 15° C. to 75° C. Further, the humidity when applying the coating liquid is, for example, 20% to 80%, preferably 50% or more.
 コーティング液の乾燥温度は、特に限定されるものではないが、例えば、25℃以上、100℃以上、また、450℃以下、400℃以下とすることができる。乾燥時間は、例えば、10分以上、600分以下とすることができる。 The drying temperature of the coating liquid is not particularly limited, but can be, for example, 25°C or higher, 100°C or higher, or 450°C or lower, or 400°C or lower. The drying time can be, for example, 10 minutes or more and 600 minutes or less.
 次に、コーティング膜を500℃以上の温度で焼成する。それによって、ガラス基板2上に、アンチグレア膜3を形成し、膜付きガラス基板1を得ることができる。 Next, the coating film is fired at a temperature of 500°C or higher. Thereby, the anti-glare film 3 can be formed on the glass substrate 2, and the glass substrate 1 with the film can be obtained.
 本実施形態の膜付きガラス基板1の製造方法では、スプレーコート法で塗布されたコーティング膜を500℃以上の温度で焼成することにより、アンチグレア膜3を形成するので、得られる膜付きガラス基板1の防眩性と耐引っかき性とを高いレベルで両立することができる。 In the method for manufacturing the film-coated glass substrate 1 of the present embodiment, the anti-glare film 3 is formed by baking the coating film applied by the spray coating method at a temperature of 500°C or higher, so the resulting film-coated glass substrate 1 It is possible to achieve both high levels of anti-glare properties and scratch resistance.
 従来、防眩性を高めることを目的として、アンチグレア膜の膜厚を厚くすると、耐引っかき性が低下することがあった。その結果、長期間の使用により、アンチグレア膜に多数の傷が生じるという問題があった。 Conventionally, when increasing the thickness of an anti-glare film with the aim of increasing anti-glare properties, scratch resistance has sometimes been reduced. As a result, there has been a problem in that the anti-glare film has many scratches due to long-term use.
 これに対して、本発明者は、アンチグレア膜3の膜厚を厚くした場合においても、スプレーコート法で塗布されたコーティング膜を500℃以上の温度で焼成する方法で製造することにより、膜付きガラス基板1の耐引っかき性を高めることができ、防眩性と耐引っかき性とを高いレベルで両立できることを見出した。 In contrast, the present inventor has proposed that even when the thickness of the anti-glare film 3 is increased, the coating film applied by the spray coating method can be manufactured using a method of baking at a temperature of 500°C or higher. It has been found that the scratch resistance of the glass substrate 1 can be improved and that both anti-glare properties and scratch resistance can be achieved at a high level.
 本実施形態において、コーティング膜の焼成温度は、500℃以上、好ましくは510℃以上、より好ましくは520℃以上、さらに好ましくは530℃以上、さらにより好ましくは540℃以上、さらにより好ましくは550℃以上、さらにより好ましくは560℃以上、さらにより好ましくは570℃以上、さらにより好ましくは580℃以上、さらにより好ましくは590℃以上、さらにより好ましくは600℃以上、さらにより好ましくは610℃以上、さらにより好ましくは620℃以上、さらにより好ましくは630℃以上、さらにより好ましくは640℃以上、特に好ましくは650℃以上である。コーティング膜に残留した有機成分(残留溶媒や、シリカ前駆体に含まれるアルコキシ基、アルキル基、ビニル基、エポキシ基等)を蒸発、燃焼させ、コーティング膜を密にするためには、焼成温度が高いほど好ましい。焼成後のコーティング膜は無機成分のみからなることが好ましい。コーティング膜の焼成温度が上記下限値以上である場合、膜付きガラス基板1の耐引っかき性をより一層高めることができる。 In this embodiment, the firing temperature of the coating film is 500°C or higher, preferably 510°C or higher, more preferably 520°C or higher, even more preferably 530°C or higher, even more preferably 540°C or higher, and even more preferably 550°C. Above, even more preferably 560°C or higher, even more preferably 570°C or higher, even more preferably 580°C or higher, even more preferably 590°C or higher, even more preferably 600°C or higher, even more preferably 610°C or higher, Still more preferably 620°C or higher, even more preferably 630°C or higher, even more preferably 640°C or higher, particularly preferably 650°C or higher. In order to evaporate and burn the organic components remaining in the coating film (residual solvent, alkoxy groups, alkyl groups, vinyl groups, epoxy groups, etc. contained in the silica precursor) and make the coating film dense, the firing temperature must be set. The higher the value, the better. It is preferable that the coating film after firing consists of only inorganic components. When the firing temperature of the coating film is equal to or higher than the above lower limit, the scratch resistance of the film-coated glass substrate 1 can be further improved.
 一方、コーティング膜の焼成温度の上限値は、特に限定されないが、焼成温度はガラス基板2の歪点以下であることが好ましい。焼成温度がガラス基板2の歪点を超えると、適切に徐冷しないとガラス基板2に歪みが残ることになり、製造コストの観点から好ましくない。そのため、製造コストや生産性をより一層向上させる観点からは、コーティング膜の焼成温度は、ガラス基板2の歪点以下であることが好ましく、より好ましくは(ガラス基板2の歪点-5℃)以下、さらに好ましくは(ガラス基板2の歪点-10℃)以下、さらにより好ましくは(ガラス基板2の歪点-20℃)以下、さらにより好ましくは(ガラス基板2の歪点-30℃)以下、さらにより好ましくは(ガラス基板2の歪点-40℃)以下、さらにより好ましくは(ガラス基板2の歪点-50℃)以下、さらにより好ましくは(ガラス基板2の歪点-60℃)以下、さらにより好ましくは(ガラス基板2の歪点-70℃)以下、特に好ましくは(ガラス基板2の歪点-80℃)以下である。 On the other hand, the upper limit of the firing temperature of the coating film is not particularly limited, but it is preferable that the firing temperature is equal to or lower than the strain point of the glass substrate 2. If the firing temperature exceeds the strain point of the glass substrate 2, distortion will remain in the glass substrate 2 unless it is appropriately annealed, which is undesirable from the viewpoint of manufacturing costs. Therefore, from the viewpoint of further improving manufacturing costs and productivity, the firing temperature of the coating film is preferably below the strain point of the glass substrate 2, more preferably (the strain point of the glass substrate 2 -5°C). Hereinafter, more preferably (strain point of glass substrate 2 -10°C) or less, still more preferably (strain point of glass substrate 2 -20°C) or less, still more preferably (strain point of glass substrate 2 -30°C) Below, even more preferably (strain point of glass substrate 2 -40°C) or lower, still more preferably (strain point of glass substrate 2 -50°C) or lower, even more preferably (strain point of glass substrate 2 -60°C) ) or less, still more preferably (strain point of glass substrate 2 -70°C) or less, particularly preferably (strain point of glass substrate 2 -80°C) or less.
 コーティング膜の焼成時間は、特に限定されないが、好ましくは10分以上、より好ましくは30分以上であり、好ましくは300分以下、より好ましくは200分以下である。 The baking time of the coating film is not particularly limited, but is preferably 10 minutes or more, more preferably 30 minutes or more, and preferably 300 minutes or less, more preferably 200 minutes or less.
 コーティング膜の焼成は、例えば、熱風式加熱装置、接触式加熱装置、遠赤外線式加熱装置で行うことができる。 The coating film can be baked using, for example, a hot air heating device, a contact heating device, or a far infrared heating device.
 [第2の実施形態]
 図2は、本発明の第2の実施形態に係る膜付きガラス基板を示す模式的断面図である。膜付きガラス基板21は、アンチグレア膜3の上にさらに反射防止膜24が設けられている。
[Second embodiment]
FIG. 2 is a schematic cross-sectional view showing a film-coated glass substrate according to a second embodiment of the present invention. The film-coated glass substrate 21 further includes an anti-reflection film 24 on the anti-glare film 3.
 反射防止膜24は、誘電体多層膜であることが好ましい。この場合、膜付きガラス基板21をディスプレイ等に用いたときに、画像鮮明度をより一層向上させることができる。本実施形態において、反射防止膜24は、相対的に屈折率が高い高屈折率膜25と、相対的に屈折率が低い低屈折率膜26とが、この順に交互に積層された誘電体多層膜である。なお、反射防止膜24は、相対的に屈折率が低い低屈折率膜26と、相対的に屈折率が高い高屈折率膜25とが、この順に交互に積層された誘電体多層膜であってもよい。なお、高屈折率膜25及び低屈折率膜26は、スパッタ膜であることが好ましい。このような構成にすることにより、高屈折率膜25及び低屈折率膜26の密着性を高めることができる。 Preferably, the antireflection film 24 is a dielectric multilayer film. In this case, when the film-covered glass substrate 21 is used for a display or the like, image clarity can be further improved. In this embodiment, the antireflection film 24 is a dielectric multilayer in which a high refractive index film 25 having a relatively high refractive index and a low refractive index film 26 having a relatively low refractive index are alternately laminated in this order. It is a membrane. The antireflection film 24 is a dielectric multilayer film in which a low refractive index film 26 having a relatively low refractive index and a high refractive index film 25 having a relatively high refractive index are alternately laminated in this order. It's okay. Note that the high refractive index film 25 and the low refractive index film 26 are preferably sputtered films. With such a configuration, the adhesion between the high refractive index film 25 and the low refractive index film 26 can be improved.
 高屈折率膜25の材料としては、例えば、酸化ニオブ、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、窒化ケイ素、酸化アルミニウム、窒化アルミニウム等が挙げられる。 Examples of the material for the high refractive index film 25 include niobium oxide, titanium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silicon nitride, aluminum oxide, and aluminum nitride.
 低屈折率膜26の材料としては、例えば、酸化ケイ素、酸化アルミニウム、フッ化マグネシウム等が挙げられる。 Examples of the material for the low refractive index film 26 include silicon oxide, aluminum oxide, magnesium fluoride, and the like.
 反射防止膜24を構成する各層の膜厚は、1nm以上、500nm以下であることが好ましく、2nm以上、300nm以下であることがより好ましく、5nm以上、200nm以下であることがさらに好ましい。 The thickness of each layer constituting the antireflection film 24 is preferably 1 nm or more and 500 nm or less, more preferably 2 nm or more and 300 nm or less, and even more preferably 5 nm or more and 200 nm or less.
 本実施形態において、反射防止膜24を構成する層の総数は、6層である。もっとも、本発明において、反射防止膜24を構成する層の総数は、特に限定されない。反射防止膜24を構成する層の総数は、好ましくは2層以上、好ましくは7層以下である。このような範囲内にすることにより、効果的で、かつ簡易に形成可能な膜にすることができる。 In this embodiment, the total number of layers constituting the antireflection film 24 is six. However, in the present invention, the total number of layers constituting the antireflection film 24 is not particularly limited. The total number of layers constituting the antireflection film 24 is preferably two or more layers, and preferably seven layers or less. By keeping it within this range, it is possible to obtain a film that is effective and can be easily formed.
 反射防止膜24の全体の膜厚は、50nm以上、1000nm以下であることが好ましく、75nm以上、750nm以下であることがより好ましく、100nm以上、500nm以下であることがさらに好ましい。 The total thickness of the antireflection film 24 is preferably 50 nm or more and 1000 nm or less, more preferably 75 nm or more and 750 nm or less, and even more preferably 100 nm or more and 500 nm or less.
 反射防止膜24は、例えば、スパッタリング法、CVD法、又は真空蒸着法等により形成することができる。なお、反射防止膜24は、コーティング膜の焼成後に設けることが好ましい。 The antireflection film 24 can be formed by, for example, a sputtering method, a CVD method, a vacuum evaporation method, or the like. Note that the antireflection film 24 is preferably provided after baking the coating film.
 その他の点は、第1の実施形態と同様である。 Other points are similar to the first embodiment.
 本実施形態の膜付きガラス基板21においても、アンチグレア膜3の表面3aにおける算術平均高さSaが、0.3μm以上であり、アンチグレア膜3の鉛筆硬度が7H以上である。そのため、膜付きガラス基板21では、防眩性と耐引っかき性とを高いレベルで両立することができる。 Also in the film-covered glass substrate 21 of this embodiment, the arithmetic mean height Sa at the surface 3a of the anti-glare film 3 is 0.3 μm or more, and the pencil hardness of the anti-glare film 3 is 7H or more. Therefore, the film-covered glass substrate 21 can achieve both high levels of anti-glare properties and scratch resistance.
 なお、第1及び第2の実施形態では、ガラス基板2の第1の主面2a側にのみアンチグレア膜3が設けられていたが、ガラス基板2の第1の主面2a側及び第2の主面2b側の双方にアンチグレア膜3が設けられていてもよい。 Note that in the first and second embodiments, the anti-glare film 3 was provided only on the first main surface 2a side of the glass substrate 2; The anti-glare film 3 may be provided on both sides of the main surface 2b.
 また、第2の実施形態では、アンチグレア膜3の上に反射防止膜24が設けられていたが、ガラス基板2とアンチグレア膜3との間に反射防止膜24が設けられていてもよい。また、反射防止膜24も、ガラス基板2の第1の主面2a側及び第2の主面2b側の双方に設けられていてもよい。 Further, in the second embodiment, the anti-reflection film 24 was provided on the anti-glare film 3, but the anti-reflection film 24 may be provided between the glass substrate 2 and the anti-glare film 3. Further, the antireflection film 24 may also be provided on both the first main surface 2a side and the second main surface 2b side of the glass substrate 2.
 さらに、膜付きガラス基板1,21のガラス基板2の第1の主面2a側及び第2の主面2b側のいずれか一方又は双方に、機能層を設けてもよい。機能層としては、防汚層、保護層、着色層、遮光層、装飾層などが挙げられる。なお、これらの機能層は、コーティング膜の焼成後に設けることが好ましい。 Furthermore, a functional layer may be provided on either or both of the first main surface 2a side and the second main surface 2b side of the glass substrate 2 of the film-coated glass substrates 1 and 21. Examples of the functional layer include an antifouling layer, a protective layer, a colored layer, a light-shielding layer, and a decorative layer. Note that these functional layers are preferably provided after firing the coating film.
 また、膜付きガラス基板1,21の最外側層には、防汚層が設けられていてもよい。 Furthermore, an antifouling layer may be provided on the outermost layer of the film-coated glass substrates 1 and 21.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is not limited to the following examples in any way, and can be implemented with appropriate modifications within the scope of the gist.
 ガラス基板Aの用意;
 ガラス組成として、アルカリ金属酸化物の含有量が質量百分率で0.1%以下となるようにガラス原料を調合及び溶融し、オーバーフローダウンドロー法を用いて板状に成形して厚さ0.5mmのガラス基板Aを得た。得られたガラス基板Aの歪点は、685℃であった。
Preparation of glass substrate A;
As a glass composition, glass raw materials are prepared and melted so that the content of alkali metal oxides is 0.1% or less by mass percentage, and the glass is formed into a plate shape using an overflow down-draw method to a thickness of 0.5 mm. A glass substrate A was obtained. The strain point of the obtained glass substrate A was 685°C.
 ガラス基板Bの用意;
 ガラス基板Bとして、市販のソーダ石灰ガラス(歪点:500℃)を用いた。
Preparation of glass substrate B;
As glass substrate B, commercially available soda lime glass (strain point: 500°C) was used.
 コーティング液Aの調製;
 テトラエトキシシラン(TEOS)1質量部に対し、水0.4質量部と、変性エタノール(エタノールを主成分として85.5質量パーセント含み、他にメタノールなどを含む)7.2質量部と、硝酸とを混合して撹拌し、TEOSの加水分解及び縮合反応を進めさせて、シロキサン重合体のサイズを成長させ、動的光散乱測定で測定されるシロキサン重合体のサイズの体積平均が4.0nmであるコーティング液Aを得た。なお、硝酸は、pH=4となるように調整して混合した。得られたコーティング液Aのシリカ換算の固形分(加熱残分)濃度は、3.2質量%であった。なお、動的光散乱法により散乱光強度を測定するに際しては、マルバーンパナリティカル社製、品番「ゼータサイザーナノS」を用いた。
Preparation of coating liquid A;
For 1 part by mass of tetraethoxysilane (TEOS), 0.4 parts by mass of water, 7.2 parts by mass of denatured ethanol (contains 85.5% by mass of ethanol as a main component, and also includes methanol, etc.), and nitric acid. The siloxane polymer was mixed and stirred to advance the hydrolysis and condensation reaction of TEOS to grow the size of the siloxane polymer, and the volume average of the size of the siloxane polymer measured by dynamic light scattering measurement was 4.0 nm. A coating liquid A was obtained. Note that nitric acid was adjusted and mixed so that the pH was 4. The solid content (heated residue) concentration of the obtained coating liquid A was 3.2% by mass in terms of silica. In addition, when measuring the scattered light intensity by the dynamic light scattering method, a product manufactured by Malvern Panalytical, product number "Zetasizer Nano S" was used.
 コーティング液Bの調製;
 コーティング液Aにおいて、熟成後に硝酸アルミニウム・九水和物を0.055質量部加えて、撹拌し、コーティング液Bを得た。なお、得られたコーティング液Bのシリカ換算及びアルミナ換算の固形分(加熱残分)濃度の合計は、3.4質量%であった。また、固形分に占めるシリカ換算の割合は95質量%であり、アルミナ換算の割合は5質量%であった。
Preparation of coating liquid B;
After aging, 0.055 parts by mass of aluminum nitrate nonahydrate was added to coating liquid A and stirred to obtain coating liquid B. The total solid content (heated residue) concentration of the obtained coating liquid B in terms of silica and alumina was 3.4% by mass. Moreover, the proportion of solid content in terms of silica was 95% by mass, and the proportion in terms of alumina was 5% by mass.
 コーティング液Cの調製;
 テトラエトキシシラン(TEOS)1質量部に対し、水0.4質量部と、イソプロピルアルコール8.1質量部と、硝酸とを混合して撹拌し、TEOSの加水分解及び縮合反応を進めさせて、シロキサン重合体のサイズを成長させ、動的光散乱測定で測定されるシロキサン重合体のサイズの体積平均が3.9nmであるコーティング液Cを得た。なお、硝酸は、pH=4となるように調整して混合した。得られたコーティング液Cのシリカ換算の固形分(加熱残分)濃度は、2.9質量%であった。
Preparation of coating liquid C;
1 part by mass of tetraethoxysilane (TEOS), 0.4 parts by mass of water, 8.1 parts by mass of isopropyl alcohol, and nitric acid are mixed and stirred to advance the hydrolysis and condensation reaction of TEOS, The size of the siloxane polymer was grown to obtain a coating liquid C in which the volume average size of the siloxane polymer measured by dynamic light scattering measurement was 3.9 nm. Note that nitric acid was adjusted and mixed so that the pH was 4. The solid content (heated residue) concentration of the obtained coating liquid C in terms of silica was 2.9% by mass.
 コーティング液Dの調製;
 テトラエトキシシラン(TEOS)1質量部に対し、メチルトリエトキシシラン0.064質量部と、水0.47質量部と、変性エタノール(エタノールを主成分として85.5質量パーセント含み、他にメタノールなどを含む)8.0質量部と、1-ブタノール0.93質量部と、硝酸とを混合して撹拌し、TEOSおよびメチルトリエトキシシランの加水分解及び縮合反応を進めさせて、シロキサン重合体のサイズを成長させ、動的光散乱測定で測定されるシロキサン重合体のサイズの体積平均が3.9nmであるコーティング液Dを得た。なお、硝酸は、pH=4となるように調整して混合した。得られたコーティング液Dのシリカ換算の固形分(加熱残分)濃度は、2.8質量%であった。
Preparation of coating liquid D;
For 1 part by mass of tetraethoxysilane (TEOS), 0.064 parts by mass of methyltriethoxysilane, 0.47 parts by mass of water, denatured ethanol (contains 85.5% by mass of ethanol as the main component, and other parts such as methanol etc.) 8.0 parts by mass (including 1-butanol), 0.93 parts by mass of 1-butanol, and nitric acid are mixed and stirred to proceed with the hydrolysis and condensation reaction of TEOS and methyltriethoxysilane to form a siloxane polymer. A coating liquid D was obtained in which the volume average size of the siloxane polymer measured by dynamic light scattering measurement was 3.9 nm. Note that nitric acid was adjusted and mixed so that the pH was 4. The solid content (heated residue) concentration of the obtained coating liquid D was 2.8% by mass in terms of silica.
 コーティング液Eの調製;
 テトラエトキシシラン(TEOS)1質量部に対し、メチルトリエトキシシラン0.095質量部と、水0.48質量部と、変性エタノール(エタノールを主成分として85.5質量パーセント含み、他にメタノールなどを含む)8.5質量部と、1-ブタノール0.96質量部と、硝酸とを混合して撹拌し、TEOSおよびメチルトリエトキシシランの加水分解及び縮合反応を進めさせて、シロキサン重合体のサイズを成長させ、動的光散乱測定で測定されるシロキサン重合体のサイズの体積平均が3.9nmであるコーティング液Eを得た。なお、硝酸は、pH=4となるように調整して混合した。得られたコーティング液Eのシリカ換算の固形分(加熱残分)濃度は、2.8質量%であった。
Preparation of coating liquid E;
For 1 part by mass of tetraethoxysilane (TEOS), 0.095 parts by mass of methyltriethoxysilane, 0.48 parts by mass of water, denatured ethanol (contains 85.5% by mass of ethanol as the main component, and other parts such as methanol etc.) 8.5 parts by mass (including 1-butanol), 0.96 parts by mass of 1-butanol, and nitric acid are mixed and stirred to proceed with the hydrolysis and condensation reaction of TEOS and methyltriethoxysilane to form a siloxane polymer. A coating solution E was obtained in which the volume average size of the siloxane polymer measured by dynamic light scattering measurement was 3.9 nm. Note that nitric acid was adjusted and mixed so that the pH was 4. The solid content (heated residue) concentration of the obtained coating liquid E was 2.8% by mass in terms of silica.
 (実施例1)
 ガラス基板A上にコーティング液Aをスプレーコートすることにより、コーティング膜を形成した。なお、スプレーコートの際の塗布量は単位面積あたり116g/mとした。また、2流体スプレーガンを用い、ガン距離は96mmとした。エアー圧力は、0.16MPaとし、液の吐出量は0.2kg/時とした。
(Example 1)
A coating film was formed by spray coating coating liquid A on glass substrate A. The coating amount during spray coating was 116 g/m 2 per unit area. Further, a two-fluid spray gun was used, and the gun distance was 96 mm. The air pressure was 0.16 MPa, and the liquid discharge rate was 0.2 kg/hour.
 次に、得られたコーティング膜付きガラス基板を熱風式加熱炉に入れ、室温から600℃まで1時間かけて昇温させた後、600℃にて30分間保持した。しかる後、2時間かけて室温まで降温させた。それによって、ガラス基板の上にアンチグレア膜が形成されてなる膜付きガラス基板を得た。 Next, the obtained glass substrate with the coating film was placed in a hot air heating furnace, and the temperature was raised from room temperature to 600°C over 1 hour, and then held at 600°C for 30 minutes. Thereafter, the temperature was lowered to room temperature over 2 hours. Thereby, a film-coated glass substrate having an anti-glare film formed on the glass substrate was obtained.
 (実施例2~9及び比較例1~5)
 ガラス基板及びコーティング液の種類、スプレーコートの条件(塗布量、エアー圧力、ガン距離)、焼成温度を下記の表1のように変更したこと以外は、実施例1と同様にして膜付きガラス基板を得た。
(Examples 2 to 9 and Comparative Examples 1 to 5)
A glass substrate with a film was prepared in the same manner as in Example 1, except that the types of glass substrate and coating liquid, spray coating conditions (coating amount, air pressure, gun distance), and firing temperature were changed as shown in Table 1 below. I got it.
 [評価]
 (グロス、ヘイズ、及びスパークルの評価)
 実施例1~9及び比較例1~5で得られた膜付きガラス基板について、光沢度の指標となるグロス、白濁度の指標となるヘイズ、ぎらつきの指標となるスパークルを測定した。グロスは、JIS Z 8741:1997に基づいて、膜付きガラス基板における入射角度60°の光沢度を、Microgloss(60°)(BYK社製)を用いて測定した。ヘイズは、JIS K 7136:2000に基づいて、NDH-5000(日本電色社製)を用いて測定した。スパークルは、SMS-1000(Display-Messtechnik&Systeme社製)を用いて、スパークル測定モードにより測定した。
[evaluation]
(Evaluation of gloss, haze, and sparkle)
The film-coated glass substrates obtained in Examples 1 to 9 and Comparative Examples 1 to 5 were measured for gloss, which is an indicator of glossiness, haze, which is an indicator of white turbidity, and sparkle, which is an indicator of glare. The gloss was measured based on JIS Z 8741:1997 using Microgloss (60°) (manufactured by BYK) at an incident angle of 60° on a glass substrate with a film. Haze was measured using NDH-5000 (manufactured by Nippon Denshoku Co., Ltd.) based on JIS K 7136:2000. Sparkle was measured using SMS-1000 (manufactured by Display-Messtechnik & System) in sparkle measurement mode.
 (映り込みの評価)
 実施例1~9及び比較例1~5で得られた膜付きガラス基板について、SMS-1000(Display-Messtechnik&Systeme社製)の反射測定モードにて、ライン光源の反射輝度角度分布を測定した。測定した分布より、正反射輝度Rs、正反射角より0.1°、-0.1°ずれた反射輝度R(1)、R(-1)を読み取り、Rs/[R(1)とR(-1)の算術平均]の比を計算して映り込みの値とした。この値が小さいほど、映り込みが少なく、防眩性能が高いことを表す。また、上記の測定は、焦点距離16mmのレンズを用い、作動距離410mmで行った。
(Evaluation of reflection)
Regarding the film-coated glass substrates obtained in Examples 1 to 9 and Comparative Examples 1 to 5, the reflection brightness angle distribution of a line light source was measured in the reflection measurement mode of SMS-1000 (manufactured by Display-Messtechnik & System). From the measured distribution, read the specular reflection brightness Rs, the reflection brightness R(1) and R(-1) that are 0.1° and -0.1° deviated from the specular reflection angle, and calculate Rs/[R(1) and R (-1)] was calculated as the reflection value. The smaller this value, the less reflection and the higher the anti-glare performance. Further, the above measurements were performed at a working distance of 410 mm using a lens with a focal length of 16 mm.
 (鉛筆硬度の評価)
 実施例1~9及び比較例1~5で得られた膜付きガラス基板について、鉛筆硬度の評価を行った。具体的には、JIS K5600-5-4:1999に記載の鉛筆硬度試験の荷重、速度にて硬度7Hの鉛筆(三菱鉛筆株式会社製、「ユニ」)で10mmの距離を引っかいた後、鉛筆の粉をふき取った。傷の発生の有無の判定は、圧痕を金属顕微鏡の落射照明にて、100倍の倍率で観察し、1mm以上の傷が生じているかどうかを確認して行った。10回引っかくことを繰り返し、傷発生率が30%以下であるときを〇とし、傷発生率が30%よりも大きいときを×として評価した。また、他の硬度の鉛筆でも同様の試験を行い、傷発生率が30%以下となる最大の硬度を鉛筆硬度とした。なお、鉛筆は1回引っかくたびにJIS K5600-5-4:1999に記載の手順で研磨紙を用いて鉛筆を削り、評価に用いた。
(Evaluation of pencil hardness)
The film-coated glass substrates obtained in Examples 1 to 9 and Comparative Examples 1 to 5 were evaluated for pencil hardness. Specifically, after scratching a distance of 10 mm with a pencil with a hardness of 7H (manufactured by Mitsubishi Pencil Co., Ltd., "Uni") at the load and speed of the pencil hardness test described in JIS K5600-5-4:1999, I wiped off the powder. The presence or absence of scratches was determined by observing the indentation under epi-illumination of a metallurgical microscope at a magnification of 100 times, and checking whether scratches of 1 mm or more had occurred. Scratching was repeated 10 times, and the evaluation was made as ``Good'' when the scratch incidence rate was 30% or less, and as × when the scratch incidence rate was greater than 30%. Similar tests were also conducted using pencils with other hardnesses, and the maximum hardness at which the scratch rate was 30% or less was defined as the pencil hardness. Each time the pencil was scratched, it was sharpened using abrasive paper according to the procedure described in JIS K5600-5-4:1999, and used for evaluation.
 (表面粗さの評価)
 実施例1~9及び比較例1~5で得られた膜付きガラス基板について、ISO 25178に準拠し、表面粗さの評価を行った。
(Evaluation of surface roughness)
The surface roughness of the film-coated glass substrates obtained in Examples 1 to 9 and Comparative Examples 1 to 5 was evaluated in accordance with ISO 25178.
 具体的には、光干渉型顕微鏡(菱化システム社製、「VertScan R5300」、バージョン:VS-Measure Version 5.05.0001、CCDカメラ:SONY HR-571/2、対物レンズ:20X、鏡筒:1XBody、波長フィルタ:530white、測定モード:Wave、視野サイズ:316.77μm×237.72μm、解像度:640×480)を用い、表面の高さ分布を測定した。なお、測定した高さ分布から、解析ソフトVS-Viewer Version 5.05.0001を用いて、BadPixelを補間後、1次面補正し、算術平均高さSa、二乗平均平方根高さSq、最小自己相関長さSal(自己相関関数が0.2に減衰する距離)を算出した。なお、測定を容易にするため、測定前にサンプル表面にアルミニウムを膜厚100nm成膜した。成膜はスパッタリングで行った。 Specifically, an optical interference microscope (manufactured by Ryoka System Co., Ltd., "VertScan R5300", version: VS-Measure Version 5.05.0001, CCD camera: SONY HR-571/2, objective lens: 20X, lens barrel : 1XBody, wavelength filter: 530 white, measurement mode: Wave, visual field size: 316.77 μm x 237.72 μm, resolution: 640 x 480) to measure the surface height distribution. In addition, from the measured height distribution, after interpolating BadPixel using analysis software VS-Viewer Version 5.05.0001, linear surface correction is performed, and arithmetic mean height Sa, root mean square height Sq, and minimum self The correlation length Sal (distance at which the autocorrelation function attenuates to 0.2) was calculated. In order to facilitate the measurement, a 100 nm thick aluminum film was formed on the sample surface before the measurement. Film formation was performed by sputtering.
 結果を下記の表1及び表2に示す。 The results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (像のゆがみの評価)
 アンチグレア膜を形成した面とは反対の面に対して、蛍光灯などのライン状の照明を映り込ませて、その像を観察した。実施例1~6,8,9、比較例1~5においては、膜付きガラス基板の全面で像のゆがみは見られなかったが、実施例7においては、膜付きガラス基板に像のゆがみが見られる箇所が一部あった。実施例1~6,8,9、比較例1~5においては、焼成温度より基板Aの歪点が高かったために、ひずみの残留が小さかったと考えられる。
(Evaluation of image distortion)
Line-shaped lighting such as a fluorescent lamp was reflected on the surface opposite to the surface on which the anti-glare film was formed, and the image was observed. In Examples 1 to 6, 8, and 9 and Comparative Examples 1 to 5, no image distortion was observed on the entire surface of the film-coated glass substrate, but in Example 7, image distortion was observed on the film-coated glass substrate. There were some places you could see. In Examples 1 to 6, 8, and 9 and Comparative Examples 1 to 5, it is considered that residual strain was small because the strain point of substrate A was higher than the firing temperature.
 (亀裂の評価)
 アンチグレア膜の表面を金属顕微鏡の落射照明にて、100倍の倍率で観察したところ、実施例2,3,6において、一部に亀裂が見られることがあった。一方で、これらと比べて塗布量が少なかった実施例1,4,5,7や、焼成温度が低かった比較例1~5、メチルトリエトキシシランを使用した実施例8,9においては、亀裂の発生が抑えられていた。特に実施例8,9では、塗布量が多く焼成温度が高いにも関わらず亀裂の発生を抑えられており、映り込みと硬度をより高いレベルで両立できたといえる。
(Evaluation of cracks)
When the surface of the anti-glare film was observed under epi-illumination of a metallurgical microscope at a magnification of 100 times, cracks were observed in some parts in Examples 2, 3, and 6. On the other hand, in Examples 1, 4, 5, and 7 where the coating amount was smaller than these, Comparative Examples 1 to 5 where the firing temperature was low, and Examples 8 and 9 where methyltriethoxysilane was used, cracks were not observed. The occurrence of was suppressed. In particular, in Examples 8 and 9, the occurrence of cracks was suppressed despite the large coating amount and high firing temperature, and it can be said that both reflection and hardness were achieved at a higher level.
1,21…膜付きガラス基板
2…ガラス基板
2a,2b…第1,第2の主面
3…アンチグレア膜
3a…表面
24…反射防止膜
25…高屈折率膜
26…低屈折率膜
1, 21...Glass substrate with film 2... Glass substrate 2a, 2b...First and second main surfaces 3...Anti-glare film 3a...Surface 24...Anti-reflection film 25...High refractive index film 26...Low refractive index film

Claims (8)

  1.  ガラス基板と、
     前記ガラス基板の主面上に設けられており、酸化ケイ素を主成分とする、アンチグレア膜と、
    を備え、
     前記アンチグレア膜の表面における算術平均高さSaが、0.3μm以上であり、
     JIS K5600-5-4:1999の鉛筆硬度試験において、前記アンチグレア膜の表面における傷の有無の判定を、金属顕微鏡を用いて100倍の倍率で前記アンチグレア膜の表面を観察することにより行ったときに、鉛筆硬度が7H以上である、膜付きガラス基板。
    a glass substrate;
    an anti-glare film provided on the main surface of the glass substrate and containing silicon oxide as a main component;
    Equipped with
    The arithmetic mean height Sa on the surface of the anti-glare film is 0.3 μm or more,
    In the JIS K5600-5-4: 1999 pencil hardness test, the presence or absence of scratches on the surface of the anti-glare film was determined by observing the surface of the anti-glare film at 100x magnification using a metallurgical microscope. A glass substrate with a film having a pencil hardness of 7H or more.
  2.  JIS K7136:2000に準拠して測定したヘイズが、30%以上である、請求項1に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1, wherein the haze measured in accordance with JIS K7136:2000 is 30% or more.
  3.  前記ガラス基板の歪点が、550℃以上である、請求項1又は2に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1 or 2, wherein the glass substrate has a strain point of 550°C or higher.
  4.  前記アンチグレア膜の表面における二乗平均平方根高さSqと最小自己相関長さSalとの比(Sq/Sal)が、0.05以上である、請求項1又は2に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1 or 2, wherein the ratio (Sq/Sal) between the root mean square height Sq and the minimum autocorrelation length Sal on the surface of the anti-glare film is 0.05 or more.
  5.  ガラス基板上に、スプレーコート法によりシリカ前駆体を含むコーティング液を塗布することによって、凹凸を有するコーティング膜を形成する工程と、
     前記コーティング膜を500℃以上の温度で焼成することにより、アンチグレア膜を形成する工程と、
    を備え、
     前記アンチグレア膜の表面における算術平均高さSaが、0.3μm以上となるように、前記アンチグレア膜を形成する、膜付きガラス基板の製造方法。
    forming a coating film having unevenness by applying a coating liquid containing a silica precursor on a glass substrate by a spray coating method;
    forming an anti-glare film by baking the coating film at a temperature of 500°C or higher;
    Equipped with
    A method for manufacturing a glass substrate with a film, comprising forming the anti-glare film so that the arithmetic mean height Sa on the surface of the anti-glare film is 0.3 μm or more.
  6.  前記コーティング膜を焼成するに際し、前記コーティング膜を前記ガラス基板の歪点以下の温度で焼成する、請求項5に記載の膜付きガラス基板の製造方法。 The method for manufacturing a glass substrate with a film according to claim 5, wherein when firing the coating film, the coating film is fired at a temperature equal to or lower than the strain point of the glass substrate.
  7.  前記ガラス基板の歪点が、550℃以上である、請求項5又は6に記載の膜付きガラス基板の製造方法。 The method for manufacturing a film-coated glass substrate according to claim 5 or 6, wherein the glass substrate has a strain point of 550°C or higher.
  8.  前記シリカ前駆体が、N官能性シリコンアルコキシド(N=2,3,4)及び該N官能性シリコンアルコキシドの加水分解縮合物のうち少なくとも一方を含む、請求項5又は6に記載の膜付きガラス基板の製造方法。 The film-coated glass according to claim 5 or 6, wherein the silica precursor contains at least one of an N-functional silicon alkoxide (N=2, 3, 4) and a hydrolyzed condensate of the N-functional silicon alkoxide. Substrate manufacturing method.
PCT/JP2023/022373 2022-06-30 2023-06-16 Film-attached glass substrate, and method for producing same WO2024004707A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-106090 2022-06-30
JP2022106090 2022-06-30
JP2022-200430 2022-12-15
JP2022200430A JP2024006900A (en) 2022-06-30 2022-12-15 Glass substrate with coating and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2024004707A1 true WO2024004707A1 (en) 2024-01-04

Family

ID=89382121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022373 WO2024004707A1 (en) 2022-06-30 2023-06-16 Film-attached glass substrate, and method for producing same

Country Status (1)

Country Link
WO (1) WO2024004707A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596745A (en) * 1984-05-04 1986-06-24 Cotek Company Non-glare coating
JP2016153914A (en) * 2014-03-14 2016-08-25 日本電気硝子株式会社 Cover member for displays, and manufacturing method for the same
WO2017057564A1 (en) * 2015-09-30 2017-04-06 旭硝子株式会社 Video projection structure and video projection method
JP2021182137A (en) * 2020-05-15 2021-11-25 大日本印刷株式会社 Anti-glare film and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596745A (en) * 1984-05-04 1986-06-24 Cotek Company Non-glare coating
JP2016153914A (en) * 2014-03-14 2016-08-25 日本電気硝子株式会社 Cover member for displays, and manufacturing method for the same
WO2017057564A1 (en) * 2015-09-30 2017-04-06 旭硝子株式会社 Video projection structure and video projection method
JP2021182137A (en) * 2020-05-15 2021-11-25 大日本印刷株式会社 Anti-glare film and image display device

Similar Documents

Publication Publication Date Title
US11772125B2 (en) Antiglare film-coated substrate, antiglare film forming liquid composition, and method of producing antiglare film-coated substrate
JP6399237B2 (en) Bent substrate with film, method for manufacturing the same, and image display device
US10211237B2 (en) Transparent substrate and process for producing it
TW201606357A (en) Substrate with anti-glare film and article thereof
JP6696486B2 (en) Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
CN103582617A (en) Substrate element for coating with an easy-to-clean coating
WO2015186753A1 (en) Chemically toughened glass plate with function film, method for producing same, and article
CN111936895B (en) Article with anti-glare surface
US20160326047A1 (en) Glass sheet with anti-glare function for solar cells
WO2015163330A1 (en) Anti-glare-layer substrate and article
US20170291392A1 (en) Article having low reflection film
JP2016041481A (en) Transparent base material with antiglare antireflection film, and article
WO2019044994A1 (en) Transparent article
US20200055771A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
WO2024004707A1 (en) Film-attached glass substrate, and method for producing same
JP2024006900A (en) Glass substrate with coating and manufacturing method thereof
WO2019138751A1 (en) Image display device
TW202411173A (en) Coated glass substrate and manufacturing method thereof
JPH0781977A (en) Anti-reflection coating and production thereof
JP6164120B2 (en) Base material and article with antireflection film
WO2020218056A1 (en) Cover glass and digital signage
WO2022014650A1 (en) Glass substrate with silica film
WO2022024744A1 (en) Cover glass
WO2018154915A1 (en) Non-transparent film attached member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831154

Country of ref document: EP

Kind code of ref document: A1