WO2024004663A1 - Composite material, articles made using same, and method for producing composite material - Google Patents

Composite material, articles made using same, and method for producing composite material Download PDF

Info

Publication number
WO2024004663A1
WO2024004663A1 PCT/JP2023/022181 JP2023022181W WO2024004663A1 WO 2024004663 A1 WO2024004663 A1 WO 2024004663A1 JP 2023022181 W JP2023022181 W JP 2023022181W WO 2024004663 A1 WO2024004663 A1 WO 2024004663A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
composite material
containing polymer
metal
material according
Prior art date
Application number
PCT/JP2023/022181
Other languages
French (fr)
Japanese (ja)
Inventor
勇輝 小原
輝彦 齊藤
貴裕 濱田
泰礼 西口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004663A1 publication Critical patent/WO2024004663A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to a composite material, an applied product thereof, and a method for manufacturing the composite material.
  • Patent Document 1 describes a resin composition for forming an insulating film containing a metal-organic structure and a curable resin.
  • Patent Document 2 describes organosilicon compounds used in rubber compositions.
  • Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 disclose methods for chemically modifying the surface of a metal-organic structure.
  • the present disclosure aims to improve the chemical stability of materials containing metal-organic frameworks.
  • the composite material of the present disclosure includes: a metal-organic structure; A silicon-containing polymer.
  • the silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
  • the chemical stability of a material containing a metal-organic framework can be improved.
  • FIG. 1 is a diagram showing a schematic configuration of a composite material in Embodiment 1.
  • FIG. 2 is a flowchart illustrating an example of a method for manufacturing a composite material according to the first embodiment.
  • FIG. 3 is a diagram showing a schematic structure of a resin composition in Embodiment 3.
  • FIG. 4 is a cross-sectional view of a resin-coated film in Embodiment 5.
  • FIG. 5 is a cross-sectional view of the resin-coated metal foil in Embodiment 6.
  • FIG. 6 is a cross-sectional view of a metal-clad laminate in Embodiment 7.
  • FIG. 7 is a cross-sectional view of a wiring board in Embodiment 8.
  • FIG. 1 is a diagram showing a schematic configuration of a composite material in Embodiment 1.
  • FIG. 2 is a flowchart illustrating an example of a method for manufacturing a composite material according to the first embodiment.
  • FIG. 3 is a diagram showing a schematic structure
  • FIG. 8 is a diagram showing the infrared absorption spectrum of the composite material of Example 1 and the infrared absorption spectrum of ZIF-8.
  • FIG. 9 is a diagram showing an O1sXPS spectrum of the composite material of Example 1.
  • FIG. 10 is a diagram showing the O1sXPS spectrum of ZIF-8.
  • FIG. 11 is a diagram showing an X-ray diffraction pattern of particles synthesized in Example 2 and an X-ray diffraction simulation pattern of UiO-67.
  • Transmission loss in a transmission path depends on frequency, and increases as the signal frequency increases. Transmission loss depends on the dielectric constant and dielectric loss tangent of the insulating layer. Therefore, in order to reduce the transmission loss of high-frequency signals, materials including the substrate material and the sealing material constituting the insulating layer are required to have a low dielectric constant and a low dielectric loss tangent.
  • the transmission distance of radio waves is short because high frequency bands are used. Therefore, it is necessary to increase the output of electronic devices.
  • the packaging density of circuits will also increase. Attempting to satisfy these needs increases the amount of heat generated per unit area of the wiring board. Therefore, wiring boards are required to have high heat dissipation properties.
  • the substrate material that makes up the insulating layer of wiring boards contains fillers with excellent thermal conductivity to increase the thermal conductivity of wiring boards. There is.
  • MOF metal organic frameworks
  • PCP porous coordination polymer
  • MOF is a crystalline porous material composed of metal ions or metal clusters and crosslinkable ligands.
  • MOF is a material with a particularly low dielectric constant.
  • MOF has a low dielectric constant required for antenna substrates for communication base stations, etc., and can satisfy a dielectric constant of 2.0 or less in high frequency bands ranging from GHz to THz, for example. It is. Additionally, MOFs can also have lower dielectric loss tangents through appropriate selection of crystal structure.
  • Patent Document 1 describes a resin composition for forming an insulating film containing an MOF and a curable resin.
  • MOF has a negative coefficient of thermal expansion, similar to inorganic fillers such as silica particles that are commonly used as fillers for insulating layers. Additionally, MOF has a high porosity compared to other porous materials, so it has a low dielectric constant. Furthermore, MOFs can also have lower dielectric loss tangents by appropriate selection of the crystal structure.
  • a wiring board is exposed to an alkaline solution and an etching solution during the process of mounting electronic components on the wiring board.
  • the material of the insulating layer changes in quality due to exposure to these chemical solutions, the dielectric constant and dielectric loss tangent of the insulating layer change.
  • changes in relative dielectric constant and dielectric loss tangent during the mounting process cause problems such as worsening of transmission loss and generation of signal noise due to mismatch in impedance matching.
  • deterioration of the material of the insulating layer causes a decrease in the mechanical strength of the insulating layer, volatilization of generated by-products, etc., leading to dimensional changes in the wiring board.
  • the molded product containing the sealant must not change in quality under high temperature and high humidity conditions. Therefore, the filler of the insulating layer is required to have resistance to chemical solutions and water vapor, that is, chemical stability. Chemical stability specifically refers to base resistance, acid resistance and moisture resistance.
  • MOF has a three-dimensional porous structure constructed by self-assembly of metal ions or metal clusters and crosslinking ligands, the structure is easily altered by bases or acids.
  • the chemical stability decreases. The decrease in chemical stability is particularly noticeable in MOFs with structures with high porosity.
  • Non-Patent Document 1 a dense polydopamine layer is formed on the surface of the MOF by polymerizing dopamine molecules on the surface of the MOF, and fluorinated alkylthiol molecules are further bonded to the polydopamine layer by a Michael addition reaction. It is stated that Non-Patent Document 1 states that this improves the acid resistance and base resistance of MOF. Furthermore, in Non-Patent Document 2, various two-layer polymers were formed on the surface of MOF by coating the surface of MOF with a polyacrylate polymer having a polymerization initiation point and further polymerizing in the presence of the polyacrylate polymer. It is stated that. Non-Patent Document 2 states that this improves the acid resistance and base resistance of MOF.
  • Non-Patent Document 1 and Non-Patent Document 2 may result in an increase in relative dielectric constant and dielectric loss tangent.
  • monomer components or oligomer components easily enter the voids of the MOF during the polymerization reaction. When the polymerization reaction progresses inside the voids of the MOF, the voids are closed and the relative dielectric constant and dielectric loss tangent increase. Intrusion of monomer components or oligomer components into the voids is particularly noticeable in MOFs having a structure with a high porosity.
  • Non-Patent Document 3 discloses that by reacting a molecule having a phosphate site at the end of an alkyl chain with MOF and bonding the metal site on the surface of the MOF with the phosphate site of the alkyl chain, the outside of the MOF is It is described that the surface was coated with alkyl chains.
  • Non-Patent Document 3 states that as a result, the MOF achieved high water repellency while maintaining porosity. It is also stated that high resistance to acidic and basic aqueous solutions was obtained. However, according to studies conducted by the present inventors, it was found that the chemical modification method described in Non-Patent Document 3 has insufficient chemical stability.
  • Patent Document 2 discloses an organosilicon compound having a specific configuration. Patent Document 2 describes that when the organosilicon compound is added to a rubber composition, the hysteresis loss of the cured product is significantly reduced. However, Patent Document 2 does not describe or suggest that the surface of the filler is modified with the organosilicon compound and that the chemical stability of the filler is thereby increased.
  • the present inventors have conducted extensive research into improving the chemical stability of materials containing metal-organic frameworks (MOFs). As a result, we came up with the composite material of the present disclosure.
  • MOFs metal-organic frameworks
  • a composite material according to a first aspect of the present disclosure includes a metal-organic framework and a silicon-containing polymer.
  • the silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be improved.
  • the silicon-containing polymer may be attached to the surface of the metal-organic structure. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be further improved.
  • the metal-organic structure may include a metal oxide cluster. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be improved.
  • the metal oxide cluster may include a Zr oxide cluster. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be improved.
  • the silicon-containing polymer may include a first side chain containing a silicon atom and an oxygen atom. Often, it may be bonded to the metal-organic framework via the silicon atom and the oxygen atom. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be further improved. Furthermore, it becomes possible to form a composite of a material containing a metal-organic structure with another compound without impairing the chemical stability of the material containing the metal-organic structure.
  • the silicon-containing polymer contains a functional group represented by -SiR 3-n (OX) n .
  • OX a functional group represented by -SiR 3-n (OX) n .
  • n is an integer of 1 to 3
  • At least one of X is a moiety bonded to the metal-organic structure.
  • R represents a hydrocarbon group having 1 to 10 carbon atoms.
  • the silicon-containing polymer is selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds.
  • the second side chain may include at least one side chain.
  • the second side chain may consist only of a chain structure. According to the above configuration, when a composite material is used as a filler, the heat dissipation properties of the filler are improved.
  • the main chain may include the butadiene unit. According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
  • the main chain may include a copolymer containing the styrene unit and the butadiene unit. According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
  • the silicon-containing polymer may be represented by the following formula (1) containing a plurality of repeating units.
  • a and d represent a number greater than or equal to
  • b and c represent a number greater than
  • R 1 to R 5 independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, It represents an atom or -CH 3 , and the order of the plurality of repeating units is arbitrary. According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
  • the metal organic framework may include UiO-67. According to the above configuration, excellent dielectric properties are achieved.
  • the filler according to the fourteenth aspect of the present disclosure includes the composite material according to any one of the first to thirteenth aspects. According to the above configuration, a filler with improved chemical stability can be provided.
  • the resin composition according to the fifteenth aspect of the present disclosure includes the filler according to the fourteenth aspect. According to the fifteenth aspect, it is possible to provide a resin composition that exhibits a low dielectric loss tangent and has excellent heat resistance.
  • the prepreg according to the 16th aspect of the present disclosure includes the resin composition of the 15th aspect or a semi-cured product of the resin composition.
  • the resin-coated film according to the seventeenth aspect of the present disclosure is A resin layer comprising the resin composition of the fifteenth aspect or a semi-cured product of the resin composition; a support film; It is equipped with
  • the resin-coated metal foil according to the eighteenth aspect of the present disclosure includes: A resin layer comprising the resin composition of the fifteenth aspect or a semi-cured product of the resin composition; metal foil and It is equipped with
  • the metal clad laminate according to the nineteenth aspect of the present disclosure includes: An insulating layer comprising a cured product of the resin composition of the fifteenth aspect or a cured product of the prepreg of the sixteenth aspect; metal foil and It is equipped with
  • An insulating layer comprising a cured product of the resin composition of the fifteenth aspect or a cured product of the prepreg of the sixteenth aspect; wiring and We are prepared.
  • a method for manufacturing a composite material according to a twenty-first aspect of the present disclosure includes attaching a silicon-containing polymer to a metal-organic framework.
  • the silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units. According to the above configuration, a material containing a metal-organic structure with improved chemical stability can be manufactured.
  • the metal-organic structure may include a metal oxide cluster. According to the above configuration, the chemical stability of the material containing the metal-organic structure is improved.
  • the number average molecular weight of the silicon-containing polymer may be 1200 or more. According to the above configuration, the chemical stability of the material containing the metal-organic structure is improved.
  • Embodiment 1 Embodiment 1 will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 is a diagram showing a schematic configuration of a composite material 10 in the first embodiment.
  • the composite material 10 includes a metal organic framework 1 (hereinafter referred to as "MOF 1") and a silicon-containing polymer 2.
  • Silicon-containing polymer 2 contains silicon atoms.
  • the silicon-containing polymer 2 includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
  • the silicon-containing polymer 2 may be attached to the surface of the MOF 1.
  • the silicon-containing polymer 2 may cover at least a portion of the surface of the MOF 1.
  • the silicon-containing polymer 2 may cover the entire surface of the MOF 1, or may cover only a portion of the surface of the MOF 1.
  • the silicon-containing polymer 2 is a low polar polymer.
  • the silicon-containing polymer 2 can suppress water molecules, acids, and bases from reaching the MOF 1 better than silicon-containing low-molecular-weight compounds such as alkylsilanes. Acids are, for example, protons or oxonium ions.
  • the base is, for example, a hydroxide ion. Therefore, the composite material 10 has particularly excellent base resistance and acid resistance when the silicon-containing polymer 2 is attached to the surface of the MOF 1. That is, the composite material 10 has high chemical stability.
  • "silicon-containing low molecular compound” means an organosilicon compound with a molecular weight of less than 1,200.
  • the silicon-containing polymer 2 hardly penetrates into the pores of the MOF 1.
  • the main skeleton of the main chain of silicon-containing polymer 2 is a hydrocarbon group, and like the polydopamine and polyacrylate polymers used in Non-patent Document 1 and Non-patent Document 2, it has many polar functional groups. do not have. Therefore, according to the composite material 10, increases in relative dielectric constant and dielectric loss tangent are also suppressed. In this way, in the composite material 10, an increase in relative dielectric constant and dielectric loss tangent is suppressed, and an improvement in chemical stability is realized.
  • MOF 1 may include one selected from the group consisting of metal oxide clusters and zeolite-like imidazolate structures (hereinafter referred to as "ZIF").
  • MOF1 may include metal oxide clusters.
  • the metal oxide cluster include a metal oxide cluster containing a structural unit represented by the composition formula M 6 O x (OH) 8-x .
  • M is a tetravalent group 4 element.
  • M is, for example, Zr, Hf or Ce.
  • the saturated coordination number is 12.
  • M may be Zr. That is, the metal oxide cluster may be a Zr oxide cluster.
  • Such crosslinking ligands of metal oxide clusters include, for example, carboxylate groups (-COO) and hydroxyl groups (-OH).
  • MOF1 may have a Zr oxide cluster and a crosslinkable ligand containing a carboxylate group.
  • zirconium-based MOFs are also called Zr-MOFs.
  • the Zr oxide cluster includes a structural unit represented by the composition formula Zr 6 O x (OH) 8-x (0 ⁇ x ⁇ 8).
  • Two or more and twelve or more crosslinkable ligands containing at least two or more carboxylate groups may be bonded to such a Zr oxide cluster.
  • Zr-MOF having the above structure is derived from the strong bond of Zr(IV)-O, has high chemical stability and high thermal stability, and has high porosity. Therefore, Zr-MOF is particularly useful. Examples of Zr-MOF include UiO-66, UiO-67, UiO-68, NU-1000, NU-1103, MOF-808, PCN-224, DUT-52, BUT-30, MIL-140, etc. .
  • the Zr-MOF may be, for example, UiO-67.
  • UiO-67 is constructed from a Zr oxide cluster containing a structural unit represented by the composition formula Zr 6 O 4 (OH) 4 and 4,4'-biphenyldicarboxylate, which is a crosslinking ligand.
  • UiO-67 is represented by the composition formula Zr 6 O 4 (OH) 4 (bpdc) 6 .
  • bpdc represents 4,4'-biphenyldicarboxylate.
  • UiO-67 has a helium-equivalent porosity of 68% calculated using the RASPA package (https://iraspa.org/) (see Non-Patent Document 4), and has a low dielectric constant and a low dielectric loss tangent. There is expected.
  • Zr-MOF particles may be used as the MOF1.
  • the shape of the Zr-MOF particles is not particularly limited.
  • the shape of the Zr-MOF particles may be, for example, scaly, spherical, ellipsoidal, rod-like, or amorphous.
  • the average particle size of the Zr-MOF particles is not particularly limited.
  • the average particle diameter of the Zr-MOF particles may be, for example, 0.01 ⁇ m or more and 100 ⁇ m or less, or 0.05 ⁇ m or more and 50 ⁇ m or less.
  • the average particle size of Zr-MOF particles means the median diameter.
  • the median diameter means the particle diameter (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured using, for example, a laser diffraction measuring device.
  • MOF1 may include ZIF.
  • MOF1 may be a ZIF.
  • ZIF is a general term for MOFs having a three-dimensional crystal structure similar to zeolites.
  • ZIF has a tetrahedral four-coordinate (tetrahedral: Td) central metal ion and a crosslinking ligand containing an imidazolate, and is constructed by a metal-imidazolate-metal coordination bond.
  • the central metal ion include Zn 2+ and Co 2+ .
  • ZIF is useful because it has high thermal stability and high porosity.
  • ZIF include ZIF-4, ZIF-7, ZIF-8, ZIF-12, ZIF-67, ZIF-90, ZIF-412, and the like.
  • ZIF may include Zn 2+ and a crosslinkable ligand including imidazolate.
  • ZIF may be, for example, ZIF-8.
  • ZIF-8 is represented by the composition formula Zn II (2-MeIm) 2 .
  • 2-MeIm represents 2-methylimidazolate.
  • ZIF-8 has a sodalite crystal structure in which Zn 2+ is crosslinked with 2-methylimidazolate, which is a ligand, and has high thermal stability and high chemical stability.
  • ZIF-8 has a helium-equivalent porosity of 48% calculated using the RASPA package (https://iraspa.org/) (see Non-Patent Document 5), and has a low dielectric constant and a low dielectric loss tangent. There is expected.
  • ZIF particles may be used as the MOF1.
  • the shape of the ZIF particles is not particularly limited.
  • the shape of the ZIF particles may be, for example, scaly, spherical, ellipsoidal, rod-like, or amorphous.
  • the average particle size of ZIF particles is not particularly limited.
  • the average particle size of the ZIF particles may be, for example, 0.01 ⁇ m or more and 100 ⁇ m or less, or 0.05 ⁇ m or more and 50 ⁇ m or less. In this disclosure, the average particle size of ZIF particles means the median size.
  • Silicon-containing polymer 2 contains silicon atoms.
  • the silicon-containing polymer 2 further includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
  • the silicon-containing polymer 2 can suppress the access of water molecules, acids, and bases compared to silicon-containing low-molecular compounds such as alkylsilanes. Acids are, for example, protons and oxonium ions.
  • the base is, for example, a hydroxide ion.
  • the silicon-containing polymer 2 can suppress the adsorption of moisture in the atmosphere.
  • the silicon-containing polymer 2 itself is less likely to evaporate by heating than silicon-containing low-molecular compounds such as alkylsilanes. Therefore, the silicon-containing polymer 2 is also useful from the viewpoint of heat resistance.
  • the silicon-containing polymer 2 may include side chains branching from the main chain. Silicon-containing polymer 2 may include multiple side chains.
  • the main chain may include a first main chain made up of carbon atoms bonded to each other.
  • the silicon-containing polymer 2 may include a side chain containing a silicon atom together with the first main chain.
  • the silicon-containing polymer 2 may include a first side chain containing a silicon atom and an oxygen atom. Silicon-containing polymer 2 may be bonded to MOF 1 via silicon atoms and oxygen atoms. More specifically, silicon-containing polymer 2 may include oxygen atoms bonded to silicon atoms and MOF 1.
  • the manner in which the silicon-containing polymer 2 is bonded to the MOF 1 via silicon atoms and oxygen atoms is assumed as follows.
  • a metal ion or a metal cluster has a predetermined number of sites capable of coordination, and a crosslinking ligand is bonded to each of these sites capable of coordination.
  • at least one site to which a crosslinking ligand is not bonded remains among the coordination possible sites possessed by the metal ion or metal cluster.
  • the coordination possible sites exposed on the surface of MOF1 are Lewis acidic, and bond with, for example, Lewis basic oxygen atoms. That is, it is expected that an MO bond exists between the surface of MOF1 and the oxygen atom.
  • M represents a metal atom. Therefore, in the composite material 10, at least one MO bond is expected to be formed between the silicon-containing polymer 2 and the MOF1. Furthermore, it is known that some of the remaining coordination sites have a hydroxyl group (-OH) bonded to them (see, for example, Non-Patent Document 6 and Non-Patent Document 7). That is, it is expected that M--OH bonds exist on the surface of MOF1. It is known that the M--OH bond forms a M--O--Si bond by, for example, a silane coupling reaction.
  • -OH hydroxyl group
  • the silicon-containing polymer 2 is bonded to the MOF 1 due to the formation of at least one MOF-Si bond between the silicon-containing polymer 2 and the MOF 1. Ru. It is also expected that the M-OH bond on the surface of MOF1 forms an M-OH-O hydrogen bond with the oxygen atom of the silicon-containing polymer. Therefore, in the composite material 10, it is expected that the silicon-containing polymer 2 is bonded to the MOF 1 by forming at least one or more M-OH-O bond between the silicon-containing polymer 2 and the MOF 1. .
  • MOF1 is a Zr-MOF
  • a Zr coordination site or a Zr-OH bond exists on the surface of MOF1. Therefore, in this case, at least one Zr-O bond, Zr-O-Si bond, or Zr-OH-O bond is formed between the silicon-containing polymer 2 and the Zr-MOF. It is expected that polymer 2 is attached to the Zr-MOF.
  • the Zr-MOF is UiO-67
  • bpdc ligands are bonded to all (for example, 12) coordination possible sites of the Zr oxide cluster on the surface of UiO-67. Therefore, there are the least number of coordination possible sites to which no crosslinking ligand is bonded, or Zr--OH sites to which a hydroxyl group is bonded.
  • the silicon-containing polymer 2 is bonded to the surface of the MOF 1
  • the Zr-MOF is UiO-67
  • silicon-containing polymer 2 on the surface can form a Zr-O bond, Zr-O-Si bond, or Zr-OH-O bond with the silicon-containing polymer 2 through these sites. It is considered possible to obtain immobilized UiO-67.
  • MOF1 is ZIF-8
  • Zn coordination sites or Zn--OH bonds are present on the surface of ZIF-8. Therefore, in this case, at least one Zn-O bond, Zn-O-Si bond, or Zn-OH-O bond is formed between the silicon-containing polymer 2 and ZIF-8, so that the silicon-containing Polymer 2 is expected to be attached to ZIF-8.
  • the silicon-containing polymer 2 when the silicon-containing polymer 2 is immobilized on the surface of the MOF 1 by bonding, it becomes possible to form a composite with other compounds without impairing chemical stability.
  • a process of dissolving it in a predetermined solvent for kneading or a process of mechanical dispersion treatment is required.
  • the silicon-containing polymer 2 is immobilized on the MOF 1 by bonding, a state in which the silicon-containing polymer 2 is not present on the surface of the MOF 1 in the obtained resin composition can be avoided even after such a step.
  • the surface of the MOF 1 is always covered with a low polarity polymer, which increases the dispersibility in a predetermined solvent.
  • a non-polar solvent is, for example, toluene. This improves the dispersibility of the composite material 10 in the resin composition, so that effects such as, for example, improvement in the mechanical properties of the resin composition and suppression of variations in dielectric properties in the resin composition can be expected.
  • the silicon-containing polymer 2 may contain a functional group represented by -SiR 3-n (OX) n .
  • n is an integer from 1 to 3
  • X is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a bond bonded to MOF1, or a bond to a silicon atom other than the silicon atom of the above functional group. represents a joint that is
  • the bonding portion X can also be represented by a single bond (-).
  • a hydrocarbon group having 1 to 10 carbon atoms is, for example, an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms. At least one of X is a bonding portion that is bonded to MOF1.
  • R represents a hydrocarbon group having 1 to 10 carbon atoms.
  • the silicon-containing polymer 2 having such a configuration is immobilized on the surface of the MOF 1 via MO--O--Si bonds. Therefore, the surface of MOF 1 is more densely covered with silicon-containing polymer 2, so that the chemical stability of composite material 10 is further improved.
  • R may be an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may have a linear, cyclic, or branched structure.
  • alkyl groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group.
  • aryl group having 6 to 10 carbon atoms examples include phenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, and the like.
  • the silicon-containing polymer 2 contains a functional group represented by -SiR 3-n (OX) n , and X contains a bond bonding to another silicon atom
  • the silicon-containing polymer 2 contains a functional group represented by -SiR 3-n (OX) n.
  • the silicon-containing polymer 2 may include a second main chain composed of siloxane units.
  • the silicon-containing polymer 2 having such a structure may have a network structure in which siloxane units (Si--O--Si) are spread out in a network.
  • the silicon-containing polymer 2 may include a second side chain containing at least one selected from the group consisting of a carbon-carbon double bond and a carbon-carbon triple bond.
  • the carbon-carbon double bond or the carbon-carbon triple bond reacts with the reactive residue of the resin contained in the insulating layer to form a bond, so that the adhesiveness between the composite material 10 and the resin is improved.
  • Improves sex This reduces the thermal resistance at the interface between the composite material 10 and the resin, and improves the thermal conductivity of the insulating layer. As a result, the heat dissipation of the wiring board is improved.
  • Examples of the group containing a carbon-carbon double bond include a vinyl group, a methallyl group, an acryloyl group, and the like.
  • the silicon-containing polymer 2 may have one type selected from these, or may have two or more types. From the viewpoint of easy reactivity, the group containing a carbon-carbon double bond is preferably a vinyl group.
  • Examples of the reactive residue of the resin contained in the insulating layer include a vinyl group, a methallyl group, an acryloyl group, and the like.
  • Examples of the group containing a carbon-carbon triple bond include an ethynyl group and a propargyl group.
  • the silicon-containing polymer 2 may have one type selected from these, or may have two or more types.
  • Examples of the reactive residue of the resin contained in the insulating layer include an ethynyl group and a propargyl group. At least one selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds may be located at the end of the second side chain.
  • the second side chain may consist only of a chain structure.
  • the silicon-containing polymer 2 may further include side chains other than the first side chain and the second side chain.
  • the side chains other than the first side chain and the second side chain may have, for example, a cyclic structure.
  • the cyclic structure of the side chain is, for example, an aryl group.
  • the main chain of the silicon-containing polymer 2 may include a butadiene unit. According to the above configuration, the chemical stability of the composite material 10 is further improved.
  • the main chain of the silicon-containing polymer 2 may include a copolymer containing styrene units and butadiene units. According to the above configuration, the chemical stability of the composite material 10 is further improved.
  • the silicon-containing polymer 2 may be represented by the following formula (1) containing multiple repeating units. According to such a configuration, the chemical stability of the composite material 10 is further improved.
  • a and d represent a number greater than or equal to 0, b and c represent a number greater than 0, and R 1 to R 5 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, or a bromine atom. Represents an atom or -CH 3 .
  • R 1 to R 5 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, or a bromine atom.
  • the functional group represented by -SiR 3-n (OX) n is as explained above.
  • the bond shown by the wavy line means either trans or cis, or a mixture of both.
  • the silicon-containing polymer 2 may satisfy 0 ⁇ a ⁇ 500, 1 ⁇ b ⁇ 500, 1 ⁇ c ⁇ 500, 0 ⁇ d ⁇ 500, and 5 ⁇ a ⁇ 300, 5 The following may be satisfied: ⁇ b ⁇ 300, 1 ⁇ c ⁇ 100, and 5 ⁇ d ⁇ 300.
  • the silicon-containing polymer 2 may satisfy 5 ⁇ a ⁇ 100, 5 ⁇ b ⁇ 100, 1 ⁇ c ⁇ 80, 5 ⁇ d ⁇ 100, and 5 ⁇ a ⁇ 20, 5 ⁇ b ⁇ 50, 1 ⁇ c ⁇ 60, and 5 ⁇ d ⁇ 40.
  • c represents the repeating number of butadiene units having silicon and oxygen in their side chains.
  • (b+c+d) represents the total of a butadiene unit having a repeating number b, a butadiene unit having a repeating number c, and a butadiene unit having a repeating number d.
  • the silicon-containing polymer 2 may satisfy 0.15 ⁇ c/(b+c+d) in the above formula (1). In other words, in the above formula (1), the value calculated by 100 ⁇ c/(b+c+d) ⁇ may be 15% or more. According to the above configuration, the chemical stability of the composite material 10 is further improved.
  • the value calculated by 100 ⁇ c/(b+c+d) ⁇ may be 17% or more.
  • the upper limit of the value calculated by 100 ⁇ c/(b+c+d) ⁇ is, for example, 80%.
  • the value calculated by 100 ⁇ c/(b+c+d) ⁇ is not particularly limited as long as it is within a range that can exhibit desired chemical stability and dielectric properties.
  • FIG. 2 is a flowchart illustrating an example of a method for manufacturing the composite material 10 in the first embodiment.
  • the method for manufacturing composite material 10 includes attaching silicon-containing polymer 2 to the surface of MOF 1 (step S1).
  • the silicon-containing polymer 2 includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
  • step S1 the silicon-containing polymer 2 may be bonded to the surface of the MOF 1 via silicon atoms and oxygen atoms.
  • MOF 1 may include one selected from the group consisting of metal oxide clusters and ZIF. MOF1 may include metal oxide clusters.
  • the silicon-containing polymer 2 represented by the above formula (1) is represented by the following formula (2) before being bonded to the MOF 1.
  • R 6 and R 7 independently represent a hydrocarbon group having 1 to 10 carbon atoms.
  • m represents an integer from 1 to 3.
  • a and d represent a number greater than or equal to 0, and
  • b and c represent a number greater than 0.
  • R 6 and R 7 may independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 10 carbon atoms are as described for the functional group represented by -SiR 3-n (OX) n .
  • the alkyl group having 1 to 10 carbon atoms is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • R 6 and R 7 are preferably linear alkyl groups, more preferably methyl or ethyl groups, independently of each other.
  • the dielectric loss tangent In a high frequency band ranging from GHz to THz, the dielectric loss tangent largely depends on the orientational polarization of organic molecules contained in the material of the wiring board. Therefore, the hydroxyl groups present on the surface of MOF 1 can increase the dielectric loss tangent.
  • the silicon-containing polymer represented by the above formula (2) the silicon-containing polymer acts on the hydroxyl groups present on the surface of the MOF 1, thereby bonding to the surface of the MOF 1.
  • the silicon-containing polymer 2 after bonding is represented by the above formula (1).
  • the composite material 10 the number of hydroxyl groups present on the surface of the MOF 1 is reduced due to the bonding of the silicon-containing polymer 2, so that an effect of suppressing an increase in the dielectric loss tangent can be expected.
  • the silicon-containing polymer represented by the above formula (2) can be obtained through the reaction shown in the scheme below. Specifically, a styrene-butadiene copolymer represented by the following formula (3) and an organosilicon compound represented by the following formula (4) are combined in the presence of a platinum compound-containing catalyst, preferably a platinum compound-containing catalyst and an assistant. Hydrosilylation occurs in the presence of a catalyst. Thereby, a silicon-containing polymer represented by the above formula (2) can be obtained.
  • the styrene-butadiene copolymer represented by the above formula (3) can be synthesized by a known method such as emulsion polymerization or solution polymerization using butadiene and styrene as raw material monomers.
  • the styrene-butadiene copolymer represented by the above formula (3) can also be obtained as a commercial product.
  • Commercially available products include, for example, Ricon 100, Ricon 181, Ricon 184 (all manufactured by Clay Valley), L-SBR-820, L-SBR-841 (all manufactured by Kuraray), 1,2-SBS (all manufactured by Nippon Soda). (manufactured by), etc.
  • organosilicon compound represented by the above formula (4) examples include trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane.
  • the silylation rate calculated by 100 x ⁇ c/(b+c+d) ⁇ is the same as the silylation rate calculated by 100 x ⁇ c/(b+c+d) ⁇ in the above equation (1). It can be considered as
  • the number average molecular weight of the silicon-containing polymer may be 1200 or more, or 5000 or more. According to the above configuration, the density of the coating with the silicon-containing polymer 2 is improved, so that the chemical stability of the composite material 10 is improved.
  • the upper limit of the number average molecular weight of the silicon-containing polymer before bonding to the surface of MOF 1 is not particularly limited.
  • the upper limit of the number average molecular weight of the silicon-containing polymer before bonding to the surface of MOF 1 is, for example, 10,000 or less. Note that in the present disclosure, the number average molecular weight is a polystyrene-equivalent number average molecular weight calculated using gel permeation chromatography (GPC).
  • silicon-containing polymer 2 may be bonded to the surface of MOF 1.
  • silicon-containing polymer 2 can be bonded to the surface of MOF 1 by the following reaction.
  • O in -SiR 3-n (OX) n is bonded to M or M-OH. do.
  • the silicon-containing polymer represented by the above formula (2) is hydrolyzed to form a silanol group (Si-OH). is generated.
  • the silanol groups are partially bonded by dehydration condensation with the hydroxyl groups present on the surface of MOF1.
  • a metal-oxygen-silicon bond (MO-Si bond) formed by dehydration condensation is formed between the silicon-containing polymer and the surface of MOF1.
  • MO-Si bond metal-oxygen-silicon bond
  • dehydration condensation between the silicon-containing polymers 2 can be promoted by heat treatment or addition of an acid or a base.
  • the silicon-containing polymers 2 are continuously bonded to each other via siloxane bonds (Si--O--Si).
  • the thickness of the layer of silicon-containing polymer 2 can also be controlled.
  • the thickness of the layer of the silicon-containing polymer 2 should be selected under appropriate conditions depending on the properties of the MOF 1, the required dielectric properties and chemical stability, and further depending on the properties of the resin of the insulating layer.
  • the filler according to the present embodiment contains the composite material 10 according to the first embodiment.
  • the filler according to this embodiment may be a filler for forming an insulating layer.
  • the filler for forming an insulating layer is a filler that is mixed with a resin component and used as an insulating material for a wiring board, a sealing material in an IC chip, or the like.
  • the filler according to this embodiment is used as a filler for forming an insulating layer, it is possible to improve chemical stability while suppressing increases in relative dielectric constant and dielectric loss tangent.
  • the filler according to this embodiment is manufactured by, for example, kneading the composite material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or ceramic resin. sell.
  • FIG. 3 is a diagram showing a schematic configuration of a resin composition 20 in Embodiment 3.
  • the resin composition 20 includes, for example, a filler 22 and a curable resin 24.
  • the filler 22 includes the composite material 10 described in Embodiment 1. According to this embodiment, it is possible to provide a resin composition 20 that exhibits a low dielectric loss tangent and has excellent heat resistance. As the filler 22, only the composite material 10 may be used, or other filler materials such as silica particles may be used in combination with the composite material 10.
  • curable resin 24 examples include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins.
  • epoxy resins cyanate ester compounds
  • maleimide compounds phenol resins
  • acrylic resins acrylic resins
  • polyamide resins polyamideimide resins
  • thermosetting polyimide resins thermosetting polyimide resins
  • polyphenylene ether resins examples include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins.
  • the curable resin 24 one kind or a combination of two or more kinds selected from these can be used.
  • the resin composition 20 may contain other components.
  • Other ingredients include curing agents, flame retardants, ultraviolet absorbers, antioxidants, reaction initiators, silane coupling agents, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, and erasers.
  • Examples include foaming agents, dispersants, leveling agents, brighteners, antistatic agents, polymerization inhibitors, and organic solvents.
  • one type or a combination of two or more types selected from these can be used as necessary.
  • the prepreg according to Embodiment 4 includes the resin composition 20 of Embodiment 3 shown in FIG. 3 or a semi-cured product thereof, and a fibrous base material.
  • the fibrous base material is present in the matrix of the resin composition 20 or semi-cured material.
  • Prepreg is a composite material of the resin composition 20 and a fibrous base material. According to this embodiment, it is possible to provide a prepreg suitable for high-frequency wiring boards.
  • the semi-cured material refers to a material that is partially cured to the extent that the resin composition 20 can be further cured. That is, the semi-cured material is a material obtained by semi-curing the resin composition 20. For example, when the resin composition 20 is heated, its viscosity gradually decreases. If heating is continued, curing will then begin and its viscosity will gradually increase. In such a case, the semi-cured state includes the state of the resin composition 20 during the period from the time when the viscosity starts to increase until the time when it is completely cured.
  • the fibrous base material known materials used in various electrically insulating material laminates can be used.
  • the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
  • the resin composition 20 is impregnated into the fibrous base material through treatments such as dipping and coating.
  • a pre-cured or semi-cured prepreg according to the present embodiment can be obtained.
  • FIG. 4 is a cross-sectional view of a resin-coated film 30 in Embodiment 5.
  • the resin-coated film 30 includes a resin layer 32 containing the resin composition 20 or a semi-cured product thereof, and a support film 34.
  • a resin-coated film 30 suitable for an insulating layer can be provided.
  • the resin layer 32 is supported by a support film 34.
  • a support film 34 is placed on the surface of the resin layer 32.
  • another layer such as an adhesive layer may be provided between the resin layer 32 and the support film 34.
  • the resin layer 32 contains the resin composition 20 of Embodiment 3 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material.
  • the fibrous base material the same material as the fibrous base material of the prepreg can be used.
  • the resin layer 32 hardens and changes into an insulating layer.
  • An example of such an insulating layer is an insulating layer of a wiring board.
  • any support film used for resin-coated films can be used without limitation.
  • the support film 34 include resin films such as polyester films and polyethylene terephthalate films.
  • FIG. 5 is a cross-sectional view of resin-coated metal foil 40 in Embodiment 6.
  • the resin-coated metal foil 40 includes a resin layer 42 containing the resin composition 20 or a semi-cured product thereof, and a metal foil 44.
  • a resin layer 42 is supported by a metal foil 44.
  • a resin-coated metal foil 40 suitable for electronic circuit components such as wiring boards can be provided.
  • a metal foil 44 is placed on the surface of the resin layer 42.
  • another layer such as an adhesive layer may be provided between the resin layer 42 and the metal foil 44.
  • the resin layer 42 contains the resin composition of Embodiment 3 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material.
  • the fibrous base material the same material as the fibrous base material of the prepreg can be used.
  • the resin layer 42 hardens and changes into an insulating layer.
  • An example of such an insulating layer is an insulating layer of a wiring board.
  • metal foil 44 resin-coated metal foil and metal foil used for metal-clad laminates can be used without limitation.
  • the metal foil include copper foil and aluminum foil.
  • FIG. 6 is a cross-sectional view of a metal-clad laminate 50 in Embodiment 7.
  • Metal-clad laminate 50 includes an insulating layer 52 and at least one metal foil 54 .
  • a metal-clad laminate 50 suitable for a wiring board can be provided.
  • the insulating layer 52 includes a cured product of the resin composition 20 of the third embodiment shown in FIG. 3 or a cured product of the prepreg of the fourth embodiment.
  • Metal foil 54 is placed on the surface of insulating layer 52. In this embodiment, metal foils 54 are placed on each of the front and back surfaces of the insulating layer 52.
  • the metal-clad laminate 50 is typically manufactured using the prepreg of Embodiment 4.
  • a laminate is formed by stacking 1 to 20 sheets of prepreg.
  • a metal-clad laminate 50 is obtained by placing metal foil on one or both sides of the prepreg laminate and heating and pressurizing the prepreg laminate.
  • the metal foil 54 include copper foil, aluminum foil, and the like.
  • the molding conditions for manufacturing a laminate for electrically insulating materials and a multilayer board can be applied to the molding conditions for manufacturing the metal-clad laminate 50.
  • FIG. 7 is a cross-sectional view of wiring board 60 in Embodiment 8.
  • Wiring board 60 includes an insulating layer 62 and wiring 64. According to this embodiment, a wiring board 60 suitable for high frequencies can be provided.
  • the insulating layer 62 includes a cured product of the resin composition 20 of the third embodiment shown in FIG. 3 or a cured product of the prepreg of the fourth embodiment.
  • the wiring 64 is supported by the insulating layer 62. Specifically, the wiring 64 is arranged on the insulating layer 62. Wiring 64 may be formed by partially removing the metal foil.
  • a wiring board 60 in which wiring 64 forming a circuit is provided on the surface of the insulating layer 62 is obtained. That is, the wiring board 60 is obtained by partially removing the metal foil 54 on the surface of the metal-clad laminate 50 so that a circuit is formed.
  • a new laminate may be formed by laminating the prepreg of Embodiment 4 on at least one surface of the wiring board 60 and applying heat and pressure.
  • a multilayer wiring board can be obtained by patterning the metal foil on the surface of the obtained laminate to form wiring.
  • MOF Metal-organic framework
  • a styrene-butadiene copolymer represented by the above formula (3) manufactured by Nippon Soda Co., Ltd., product number: 1,2-SBS
  • an organosilicon compound represented by the above formula (4) manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: 1,2-
  • the silylation rate was confirmed by calculating the ratio of the end to which the functional group represented by --SiR 2 3-m (OR 1 ) m was introduced and the end to which the functional group was not introduced.
  • the number average molecular weight of the silicon-containing polymer was calculated to be 5900 by GPC measurement (manufactured by Tosoh Corporation, HLC-8320GPC).
  • FIG. 8 shows the infrared absorption spectrum of the composite material of Example 1 and the infrared absorption spectrum of ZIF-8.
  • the horizontal axis indicates wave number (cm -1 ), and the vertical axis indicates transmittance (%). Note that since FIG. 8 is a diagram for comparing trends of two infrared absorption spectra, the scale on the vertical axis is omitted.
  • a peak P derived from the bending vibration of the vinyl group was observed, which confirmed the presence of silicon-containing polymer on the surface of ZIF-8. Ta.
  • FIG. 9 shows the O1sXPS spectrum of the composite material of Example 1.
  • FIG. 10 shows the O1sXPS spectrum of ZIF-8.
  • the horizontal axis indicates binding energy (eV), and the vertical axis indicates intensity in arbitrary units.
  • peak separation of the O1sXPS spectrum of the composite material of Example 1 confirmed Si--O--Zn bonds and Si--O--Si bonds. From these results, it was confirmed that in the composite material of Example 1, the silicon-containing polymer was immobilized on the surface of ZIF-8 via bonds including Zn--O--Si bonds.
  • a membrane of Example 1 containing 40 vol % of the composite material particles of Example 1 was produced by the following method. Note that the density of the composite material particles was 0.921 g/cm 3 , and the density of all other constituent elements was 1 g/cm 3 .
  • Example 1 a paste-like solid from which the solvent had been removed was obtained.
  • the paste-like solid was pressed for 5 minutes at 150° C. and 10 MPa, and subsequently pressed for 5 minutes at 190° C. and 10 MPa to harden it.
  • the film of Example 1 was obtained by evacuation at 200° C. for 12 hours.
  • the thickness of the film in Example 1 was 0.273 mm. The thickness of the film was measured at five arbitrary points on the film, and was determined as the average value of the measured values.
  • Example 1 As the MOF, the ZIF-8 particles used in Example 1 (manufactured by Aldrich, product name: Basolite Z1200) were used. In Comparative Example 1, a composite material was synthesized using polydopamine instead of the silicon-containing polymer. Dopamine has recently attracted attention as a natural adhesive that strongly binds to the surface of inorganic fillers. 4.2 g of trishydroxymethylaminomethane was dissolved in 100 mL of deionized water, and then hydrochloric acid was added to obtain a Tris buffer solution adjusted to pH 7.
  • Example 2 As the MOF, the ZIF-8 particles used in Example 1 (manufactured by Aldrich, product name: Basolite Z1200) were used.
  • Comparative Example 2 a composite material was synthesized using 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-503) instead of the silicon-containing polymer.
  • 3-methacryloxypropyltrimethoxysilane is one of the common silane coupling agents made of a silicon-containing low-molecular compound. Surface modification was carried out in the same manner as in Example 1, except that the silicon-containing polymer was changed to 3-methacryloxypropyltrimethoxysilane.
  • a membrane of Comparative Example 2 was produced in the same manner as in Example 1, except that the composite material particles of Comparative Example 2 were used as the composite material particles.
  • the thickness of the film of Comparative Example 2 was 0.268 mm.
  • Comparative example 3 As the particles of Comparative Example 3, the ZIF-8 particles (manufactured by Aldrich, product name: Basolite Z1200) used in Example 1 were used as they were.
  • a membrane of Comparative Example 3 was produced in the same manner as in Example 1, except that ZIF-8 particles of Comparative Example 3 were used as composite material particles.
  • the thickness of the film of Comparative Example 3 was 0.260 mm.
  • Example 1 The dielectric properties and chemical stability of each particle obtained in Example 1 and Comparative Examples 1 to 3 described above were evaluated before and after surface modification based on the method described below.
  • the filling factor of the sample tube was determined from the mass of the particles, the bulk volume occupied by the particles in the sample tube, and the true density of each particle.
  • the true density of ZIF-8 the density calculated from the crystal structure (0.921 g/cm 3 ) was used.
  • the true density of the particles after surface modification was determined from the following formulas (X1) and (Y1).
  • the porosity of ZIF-8 was 50%. The results are shown in Table 1. If the dielectric constant after surface modification was 2.00 or less and the dielectric loss tangent was 0.003 or less, it was determined that the dielectric properties were not deteriorated by surface modification.
  • etching solution a cupric chloride solution (HCl concentration: 2.5 mol/liter: containing CuCl 2 , H 2 O 2 , and H 2 O), which is commonly used in the patterning process of copper plates, was used.
  • a film cut into 4 cm x 4 cm was soaked in the etching solution for 80 hours at room temperature. Thereafter, the membrane was washed several times with water and vacuumed at 40° C. for 30 minutes. Thereby, a film after etching treatment was obtained.
  • Example 1 As shown in Table 1, in Example 1, there was almost no change in the dielectric constant before and after the etching treatment, and excellent chemical stability was exhibited. This is believed to be because in Example 1, the etching treatment caused almost no change in the structure of ZIF-8.
  • Comparative Example 1 the relative dielectric constant and dielectric loss tangent increased due to surface modification, and the dielectric properties deteriorated. This is thought to be because a polymerization reaction progressed inside the pores of ZIF-8 during surface modification, resulting in occlusion of the pores, and also because hydroxyl groups (-OH) present in large amounts in the dopamine skeleton were exposed on the surface. .
  • Comparative Example 2 although the deterioration of dielectric properties due to surface modification was somewhat alleviated compared to Comparative Example 1, the relative dielectric constant changed due to the etching treatment, similar to Comparative Example 3 without a surface modification layer. This is considered to be because, in Comparative Example 2, the structure of ZIF-8 collapsed due to the etching process, particles were eluted into the etching solution, and voids increased.
  • FIG. 11 shows an example of the X-ray diffraction pattern of the particles synthesized in Example 2 and an X-ray diffraction simulation pattern of UiO-67 predicted from the crystal structure.
  • the horizontal axis shows the diffraction angle (2 ⁇ )
  • the vertical axis shows the X-ray intensity. Note that since FIG. 11 is a diagram for comparing trends of two X-ray diffraction patterns, the scale on the vertical axis is omitted. Since the trends of the X-ray diffraction patterns of both particles were similar, it was determined that the crystal structure of the particles synthesized in Example 2 was UiO-67.
  • Silicon-containing polymer The silicon-containing polymer synthesized in Example 1 was used as the silicon-containing polymer.
  • ⁇ Comparative example 5 ⁇ UiO-67 synthesized in Example 1 was used as the MOF.
  • a composite material was synthesized using 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-503) instead of the silicon-containing polymer.
  • 3-methacryloxypropyltrimethoxysilane is one of the common silane coupling agents made of a silicon-containing low-molecular compound. Surface modification was carried out in the same manner as in Example 2, except that the silicon-containing polymer was changed to 3-methacryloxypropyltrimethoxysilane.
  • Example 2 The dielectric properties and chemical stability of each particle obtained in Example 2 and Comparative Examples 4 to 6 described above were evaluated before and after surface modification based on the method described below.
  • the filling factor of the sample tube was calculated from the true density of UiO-67, and the relative dielectric constant and dielectric loss tangent of the particles were calculated.
  • the dielectric constant and dielectric loss tangent of the particles were calculated by converting the actually measured values by the filling factor of the sample tube.
  • the filling factor of the sample tube was determined from the mass of the particles, the bulk volume occupied by the particles in the sample tube, and the true density of each particle.
  • the density calculated from the crystal structure (0.708 g/cm 3 ) was used as the true density of UiO-67.
  • the true density of the particles after surface modification was determined from the following formulas (X2) and (Y1).
  • the etching process was performed under the following conditions.
  • a cupric chloride solution (HCl concentration 2.5 mol/liter: containing CuCl 2 , H 2 O 2 , and H 2 O) was used. 5 mL of etching solution was impregnated with 1 g of particles for 1 minute and stirred. Thereafter, the particles were washed with water and filtered to obtain etched particles.
  • Example 2 the voids were relatively maintained, and increases in the relative dielectric constant and dielectric loss tangent after surface modification were suppressed.
  • Example 2 As shown in Table 2, in Example 2, the voids were relatively maintained even after the etching treatment, and increases in the relative permittivity and dielectric loss tangent were suppressed. That is, the composite material of Example 2 had improved chemical stability.
  • Comparative Example 4 the relative dielectric constant and dielectric loss tangent increased due to surface modification. This is thought to be because a polymerization reaction progressed inside the pores of UiO-67 during surface modification, resulting in occlusion of the pores, and also because hydroxyl groups (-OH) present in large amounts in the dopamine skeleton were exposed on the surface. .
  • Comparative Example 5 although the increase in relative permittivity and dielectric loss tangent due to surface modification is suppressed compared to Comparative Example 4, the increase in relative permittivity and dielectric loss tangent due to the etching treatment is suppressed as compared to Comparative Example 6 without a surface modification layer. has increased significantly. This is considered to be because in Comparative Example 5, the three-dimensional porous structure of UiO-67 progressed to collapse due to the etching process.
  • ZIF-8 is used as the MOF, but instead of ZIF-8, for example, ZIF-4, ZIF-7, ZIF-12, ZIF-67, ZIF-90, or ZIF- Even when ZIF such as No. 412 is used, it is presumed that chemical stability is improved while suppressing increases in relative dielectric constant and dielectric loss tangent.
  • UiO-67 is used as the MOF, but instead of UiO-67, for example, UiO-66, UiO-68, NU-1000, NU-1103, MOF-808, PCN-224
  • Zr-MOF such as , DUT-52, BUT-30, or MIL-140
  • the composite material of the present disclosure achieves improved chemical stability while suppressing increases in relative dielectric constant and dielectric loss tangent by including MOF and silicon-containing polymer.
  • the composite material of the present disclosure can realize a filler with excellent dielectric properties and chemical stability, so it is suitable for applications such as wiring boards of electronic devices used for large-capacity communications.
  • Metal-organic structure Silicon-containing polymer 10
  • Composite material 20
  • Resin composition 22
  • Filler 24
  • Curable resin 30
  • Resin-coated film 32
  • Resin layer 34
  • Support film 40
  • Resin-coated metal foil 42
  • Resin layer 44
  • Metal foil 50
  • Metal-clad laminate 52
  • Insulation Layer 54
  • Metal foil 60
  • Wiring board 62
  • Insulating layer 64 64 Wiring

Abstract

A composite material according to the present disclosure comprises a metal-organic framework and a silicon-containing polymer. The silicon-containing polymer contains a main chain including at least one unit selected from the group consisting of a styrene unit, a butadiene unit, an ethylene unit, a cyclo-olefin unit, and a silicon-containing olefin unit. Furthermore, the silicon-containing polymer contains a functional group represented by, for example, -SiR3-n(OX)n, wherein n is an integer from 1 to 3, X represents an hydrogen atom, a hydrocarbon group having a carbon number from 1 to 10, a moiety bound to a metal-organic framework, or a moiety bound to a silicon atom other than the silicon atom of the functional group, at least one of the X being a moiety bound to a metal-organic framework, and R represents a hydrocarbon group having a carbon number from 1 to 10.

Description

複合材料、その応用製品、および複合材料の製造方法Composite materials, their applied products, and composite material manufacturing methods
 本開示は、複合材料、その応用製品、および複合材料の製造方法に関する。 The present disclosure relates to a composite material, an applied product thereof, and a method for manufacturing the composite material.
 特許文献1には、金属有機構造体と硬化性樹脂とを含有する絶縁膜形成用樹脂組成物が記載されている。特許文献2には、ゴム組成物に用いられる有機ケイ素化合物が記載されている。非特許文献1、非特許文献2および非特許文献3には、金属有機構造体の表面を化学修飾する方法が開示されている。 Patent Document 1 describes a resin composition for forming an insulating film containing a metal-organic structure and a curable resin. Patent Document 2 describes organosilicon compounds used in rubber compositions. Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 disclose methods for chemically modifying the surface of a metal-organic structure.
特開2018-80327号公報Japanese Patent Application Publication No. 2018-80327 特開2016-191040号公報Japanese Patent Application Publication No. 2016-191040
 本開示は、金属有機構造体を含む材料の化学的安定性を向上させることを目的とする。 The present disclosure aims to improve the chemical stability of materials containing metal-organic frameworks.
 本開示の複合材料は、
 金属有機構造体と、
 ケイ素含有ポリマーと、を備える。
 前記ケイ素含有ポリマーは、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む。
The composite material of the present disclosure includes:
a metal-organic structure;
A silicon-containing polymer.
The silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
 本開示によれば、金属有機構造体を含む材料の化学的安定性を向上させることができる。 According to the present disclosure, the chemical stability of a material containing a metal-organic framework can be improved.
図1は、実施の形態1における複合材料の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a composite material in Embodiment 1. 図2は、実施の形態1における複合材料の製造方法の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a method for manufacturing a composite material according to the first embodiment. 図3は、実施の形態3における樹脂組成物の概略構成を示す図である。FIG. 3 is a diagram showing a schematic structure of a resin composition in Embodiment 3. 図4は、実施の形態5における樹脂付きフィルムの断面図である。FIG. 4 is a cross-sectional view of a resin-coated film in Embodiment 5. 図5は、実施の形態6における樹脂付き金属箔の断面図である。FIG. 5 is a cross-sectional view of the resin-coated metal foil in Embodiment 6. 図6は、実施の形態7における金属張積層板の断面図である。FIG. 6 is a cross-sectional view of a metal-clad laminate in Embodiment 7. 図7は、実施の形態8における配線板の断面図である。FIG. 7 is a cross-sectional view of a wiring board in Embodiment 8. 図8は、実施例1の複合材料の赤外吸収スペクトルおよびZIF-8の赤外吸収スペクトルを示す図である。FIG. 8 is a diagram showing the infrared absorption spectrum of the composite material of Example 1 and the infrared absorption spectrum of ZIF-8. 図9は、実施例1の複合材料のO1sXPSスペクトルを示す図である。FIG. 9 is a diagram showing an O1sXPS spectrum of the composite material of Example 1. 図10は、ZIF-8のO1sXPSスペクトルを示す図である。FIG. 10 is a diagram showing the O1sXPS spectrum of ZIF-8. 図11は、実施例2で合成された粒子のX線回折パターン、およびUiO-67のX線回折シミュレーションパターンを示す図である。FIG. 11 is a diagram showing an X-ray diffraction pattern of particles synthesized in Example 2 and an X-ray diffraction simulation pattern of UiO-67.
 (本開示の基礎となった知見)
 近年、エレクトロニクス分野では、第5世代移動通信システム(5G)の運用拡大に向け、電子機器に要求される性能のレベルが上がっている。例えば、これまでの世代よりも通信速度を速くするために、5Gではより高い周波数帯が用いられる。そのため、電子機器には、高周波対応の電子部材が求められている。
(Findings that formed the basis of this disclosure)
In recent years, in the electronics field, the level of performance required of electronic devices has been rising as the use of fifth-generation mobile communication systems (5G) expands. For example, 5G uses higher frequency bands to provide faster communication speeds than previous generations. Therefore, electronic devices are required to have electronic components that can handle high frequencies.
 伝送路における伝送損失は、周波数に依存し、信号の周波数が高ければ高いほど増大する。伝送損失は、絶縁層の比誘電率および誘電正接に依存する。そのため、高周波信号の伝送損失を低減させるべく、絶縁層を構成する基板材料および封止材料を含む材料には、低い比誘電率および低い誘電正接を有することが求められる。 Transmission loss in a transmission path depends on frequency, and increases as the signal frequency increases. Transmission loss depends on the dielectric constant and dielectric loss tangent of the insulating layer. Therefore, in order to reduce the transmission loss of high-frequency signals, materials including the substrate material and the sealing material constituting the insulating layer are required to have a low dielectric constant and a low dielectric loss tangent.
 また、5Gのような大容量通信では、高周波数帯を用いるため電波の伝送距離が短い。このため、電子機器の出力を増大する必要がある。それに加え、高集積度の実現および小型化に伴い、回路の実装密度も高まる。これらの必要性を満たそうとすると、配線板の単位面積あたりの発熱量が増大する。したがって、配線板には、高い放熱性を有することが求められる。配線板の放熱性を高めるために、配線板の絶縁層を構成する基板材料に熱伝導性に優れたフィラー(充填剤)を含有させて、配線板の熱伝導率を高めることが行われている。 Furthermore, in large-capacity communications such as 5G, the transmission distance of radio waves is short because high frequency bands are used. Therefore, it is necessary to increase the output of electronic devices. In addition, with the realization of high integration and miniaturization, the packaging density of circuits will also increase. Attempting to satisfy these needs increases the amount of heat generated per unit area of the wiring board. Therefore, wiring boards are required to have high heat dissipation properties. In order to improve the heat dissipation of wiring boards, the substrate material that makes up the insulating layer of wiring boards contains fillers with excellent thermal conductivity to increase the thermal conductivity of wiring boards. There is.
 近年、金属有機構造体(Metal Organic Framework:MOF)は、絶縁層のフィラーとして注目されている。MOFは、多孔性配位高分子(Porous Coordination Polymer:PCP)またはナノポーラス金属錯体とも呼ばれる、絶縁性の材料である。MOFは、金属イオンまたは金属クラスターと架橋性配位子とから構成されている結晶性の多孔質材料である。MOFは特に比誘電率が低い材料である。MOFは、通信基地局用のアンテナ基板等において求められるレベルの低い比誘電率を有し、例えば、周波数がGHzからTHzにわたる高周波数帯において、2.0以下の比誘電率を満たすことが可能である。また、MOFは、結晶構造の適切な選択によって誘電正接を低下させることも可能である。そのため、MOFは、各種通信用途の配線板の絶縁層のフィラーとして注目されている。例えば、特許文献1には、MOFと硬化性樹脂とを含有する絶縁膜形成用樹脂組成物が記載されている。MOFは、絶縁層のフィラーとして一般的なシリカ粒子などの無機フィラーと同じように、負の熱膨張率を有する。また、MOFは、他の多孔質材料と比べて空隙率が大きいため、低い比誘電率を有する。さらに、MOFは、結晶構造の適切な選択によって誘電正接を低下させることも可能である。 In recent years, metal organic frameworks (MOFs) have attracted attention as fillers for insulating layers. MOF is an insulating material, also called porous coordination polymer (PCP) or nanoporous metal complex. MOF is a crystalline porous material composed of metal ions or metal clusters and crosslinkable ligands. MOF is a material with a particularly low dielectric constant. MOF has a low dielectric constant required for antenna substrates for communication base stations, etc., and can satisfy a dielectric constant of 2.0 or less in high frequency bands ranging from GHz to THz, for example. It is. Additionally, MOFs can also have lower dielectric loss tangents through appropriate selection of crystal structure. Therefore, MOF is attracting attention as a filler for insulating layers of wiring boards for various communications applications. For example, Patent Document 1 describes a resin composition for forming an insulating film containing an MOF and a curable resin. MOF has a negative coefficient of thermal expansion, similar to inorganic fillers such as silica particles that are commonly used as fillers for insulating layers. Additionally, MOF has a high porosity compared to other porous materials, so it has a low dielectric constant. Furthermore, MOFs can also have lower dielectric loss tangents by appropriate selection of the crystal structure.
 ところで、配線板は、配線板上に電子部品を実装する過程において、アルカリ液およびエッチング液に曝される。これらの薬液に曝されることにより絶縁層の材料が変質すると、絶縁層の比誘電率および誘電正接が変化する。配線板において、実装過程中における比誘電率および誘電正接の変化は、伝送損失の悪化、インピーダンス整合の不一致による信号ノイズの発生等の不具合を引き起こす。加えて、絶縁層の材料の変質は、絶縁層の機械強度の低下、生成した副生成物の揮発等を引き起こし、配線板の寸法変化を招く。また、封止材を含む成形品は、高温高湿下において変質してはならない。そのため、絶縁層のフィラーには、薬液および水蒸気に対する耐性、すなわち、化学的安定性が求められる。化学的安定性とは、具体的には、塩基耐性、酸耐性および耐湿性である。 By the way, a wiring board is exposed to an alkaline solution and an etching solution during the process of mounting electronic components on the wiring board. When the material of the insulating layer changes in quality due to exposure to these chemical solutions, the dielectric constant and dielectric loss tangent of the insulating layer change. In wiring boards, changes in relative dielectric constant and dielectric loss tangent during the mounting process cause problems such as worsening of transmission loss and generation of signal noise due to mismatch in impedance matching. In addition, deterioration of the material of the insulating layer causes a decrease in the mechanical strength of the insulating layer, volatilization of generated by-products, etc., leading to dimensional changes in the wiring board. Furthermore, the molded product containing the sealant must not change in quality under high temperature and high humidity conditions. Therefore, the filler of the insulating layer is required to have resistance to chemical solutions and water vapor, that is, chemical stability. Chemical stability specifically refers to base resistance, acid resistance and moisture resistance.
 しかし、MOFは、金属イオンまたは金属クラスターと架橋性配位子との自己集合により構築される三次元多孔性構造を有するため、塩基または酸によって構造が変質しやすい。MOFの構造が変質し、空隙が消失すると、化学的安定性が低下する。化学的安定性の低下は、空隙率が大きい構造を有するMOFにおいて特に顕著である。 However, since MOF has a three-dimensional porous structure constructed by self-assembly of metal ions or metal clusters and crosslinking ligands, the structure is easily altered by bases or acids. When the structure of the MOF changes and voids disappear, the chemical stability decreases. The decrease in chemical stability is particularly noticeable in MOFs with structures with high porosity.
 MOFの化学的安定性を向上させるために、MOFの表面を化学修飾する方法が提案されている。例えば、非特許文献1には、ドーパミン分子をMOFの表面で重合させることにより、MOFの表面に密なポリドーパミン層を形成し、さらにフッ化アルキルチオール分子をマイケル付加反応によってポリドーパミン層に結合させることが記載されている。非特許文献1には、これにより、MOFの酸耐性および塩基耐性が向上したと記載されている。また、非特許文献2には、重合開始点を有するポリアクリレートポリマーでMOFの表面を被覆し、さらにポリアクリレートポリマーの存在下で重合させることにより、種々の二層ポリマーをMOFの表面に形成したことが記載されている。非特許文献2には、これにより、MOFの酸耐性および塩基耐性が向上したと記載されている。 In order to improve the chemical stability of MOF, methods of chemically modifying the surface of MOF have been proposed. For example, in Non-Patent Document 1, a dense polydopamine layer is formed on the surface of the MOF by polymerizing dopamine molecules on the surface of the MOF, and fluorinated alkylthiol molecules are further bonded to the polydopamine layer by a Michael addition reaction. It is stated that Non-Patent Document 1 states that this improves the acid resistance and base resistance of MOF. Furthermore, in Non-Patent Document 2, various two-layer polymers were formed on the surface of MOF by coating the surface of MOF with a polyacrylate polymer having a polymerization initiation point and further polymerizing in the presence of the polyacrylate polymer. It is stated that. Non-Patent Document 2 states that this improves the acid resistance and base resistance of MOF.
 しかし、ポリドーパミンおよびポリアクリレートポリマーは多くの極性官能基を有するため、非特許文献1および非特許文献2に記載された化学修飾方法では、比誘電率および誘電正接の上昇を招くおそれがある。また、非特許文献1および非特許文献2に記載された化学修飾方法では、重合反応の際にモノマー成分またはオリゴマー成分がMOFの空隙内部に侵入しやすい。MOFの空隙内部で重合反応が進行すると、空隙が閉塞し、比誘電率および誘電正接が上昇する。モノマー成分またはオリゴマー成分の空隙内部への侵入は、空隙率が大きい構造を有するMOFにおいて特に顕著である。 However, since polydopamine and polyacrylate polymers have many polar functional groups, the chemical modification methods described in Non-Patent Document 1 and Non-Patent Document 2 may result in an increase in relative dielectric constant and dielectric loss tangent. Furthermore, in the chemical modification methods described in Non-Patent Document 1 and Non-Patent Document 2, monomer components or oligomer components easily enter the voids of the MOF during the polymerization reaction. When the polymerization reaction progresses inside the voids of the MOF, the voids are closed and the relative dielectric constant and dielectric loss tangent increase. Intrusion of monomer components or oligomer components into the voids is particularly noticeable in MOFs having a structure with a high porosity.
 分子レベルでMOFの表面を化学修飾する方法も提案されている。例えば、非特許文献3には、アルキル鎖の末端にリン酸部位を有する分子とMOFとを反応させ、MOFの表面の金属部位とアルキル鎖のリン酸部位とを結合させることにより、MOFの外表面をアルキル鎖で被覆したことが記載されている。非特許文献3には、これにより、MOFは多孔性を維持しながら、高い撥水性を得たと記載されている。また、酸性水溶液および塩基性水溶液に対する高い耐性も得られたと記載されている。しかし、本発明者らの検討によると、非特許文献3に記載された化学修飾方法では、化学的安定性が不十分であることが判明した。 A method of chemically modifying the surface of MOF at the molecular level has also been proposed. For example, Non-Patent Document 3 discloses that by reacting a molecule having a phosphate site at the end of an alkyl chain with MOF and bonding the metal site on the surface of the MOF with the phosphate site of the alkyl chain, the outside of the MOF is It is described that the surface was coated with alkyl chains. Non-Patent Document 3 states that as a result, the MOF achieved high water repellency while maintaining porosity. It is also stated that high resistance to acidic and basic aqueous solutions was obtained. However, according to studies conducted by the present inventors, it was found that the chemical modification method described in Non-Patent Document 3 has insufficient chemical stability.
 ここで、特許文献2には、特定の構成を有する有機ケイ素化合物が開示されている。特許文献2には、当該有機ケイ素化合物をゴム組成物に添加した場合にその硬化物のヒステリシスロスを大幅に低下させること等が記載されている。しかし、特許文献2には、当該有機ケイ素化合物でフィラーの表面を修飾すること、これによりフィラーの化学的安定性が上がることについては記載も示唆もされていない。 Here, Patent Document 2 discloses an organosilicon compound having a specific configuration. Patent Document 2 describes that when the organosilicon compound is added to a rubber composition, the hysteresis loss of the cured product is significantly reduced. However, Patent Document 2 does not describe or suggest that the surface of the filler is modified with the organosilicon compound and that the chemical stability of the filler is thereby increased.
 本発明者らは、金属有機構造体(MOF)を含む材料の化学的安定性の向上について鋭意研究した。その結果、本開示の複合材料を想到するに至った。 The present inventors have conducted extensive research into improving the chemical stability of materials containing metal-organic frameworks (MOFs). As a result, we came up with the composite material of the present disclosure.
 (本開示に係る一態様の概要)
 本開示の第1態様に係る複合材料は、金属有機構造体と、ケイ素含有ポリマーと、を備える。前記ケイ素含有ポリマーは、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む。以上の構成によれば、金属有機構造体を含む材料の化学的安定性を向上させることができる。
(Summary of one aspect of the present disclosure)
A composite material according to a first aspect of the present disclosure includes a metal-organic framework and a silicon-containing polymer. The silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be improved.
 本開示の第2態様において、例えば、第1態様に係る複合材料では、前記ケイ素含有ポリマーは、前記金属有機構造体の表面に付着していてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性をより向上できる。 In the second aspect of the present disclosure, for example, in the composite material according to the first aspect, the silicon-containing polymer may be attached to the surface of the metal-organic structure. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be further improved.
 本開示の第3態様において、例えば、第1または第2態様に係る複合材料では、前記金属有機構造体は、金属酸化物クラスターを含んでいてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性を向上させることができる。 In the third aspect of the present disclosure, for example, in the composite material according to the first or second aspect, the metal-organic structure may include a metal oxide cluster. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be improved.
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る複合材料では、前記金属酸化物クラスターは、Zr酸化物クラスターを含んでいてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性を向上させることができる。 In the fourth aspect of the present disclosure, for example, in the composite material according to any one of the first to third aspects, the metal oxide cluster may include a Zr oxide cluster. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be improved.
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る複合材料では、前記ケイ素含有ポリマーは、ケイ素原子および酸素原子を含む第1の側鎖を含んでいてもよく、前記ケイ素原子および前記酸素原子を介して前記金属有機構造体に結合していてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性をより向上できる。また、金属有機構造体を含む材料の化学的安定性を損なうことなく、金属有機構造体を含む材料と他の化合物とのコンポジット化も可能となる。 In a fifth aspect of the present disclosure, for example, in the composite material according to any one of the first to fourth aspects, the silicon-containing polymer may include a first side chain containing a silicon atom and an oxygen atom. Often, it may be bonded to the metal-organic framework via the silicon atom and the oxygen atom. According to the above configuration, the chemical stability of the material containing the metal-organic structure can be further improved. Furthermore, it becomes possible to form a composite of a material containing a metal-organic structure with another compound without impairing the chemical stability of the material containing the metal-organic structure.
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る複合材料では、前記ケイ素含有ポリマーは、-SiR3-n(OX)nで示される官能基を含んでいてもよい。ここで、nは1から3の整数であり、Xは、水素原子、炭素数1から10の炭化水素基、前記金属有機構造体と結合している部分、または前記官能基のケイ素原子以外のケイ素原子と結合している部分を表す。Xのうちの少なくとも1つは、前記金属有機構造体と結合している部分である。Rは炭素数1から10の炭化水素基を表す。以上の構成によれば、金属有機構造体を含む材料の化学的安定性がより向上する。 In a sixth aspect of the present disclosure, for example, in the composite material according to any one of the first to fifth aspects, the silicon-containing polymer contains a functional group represented by -SiR 3-n (OX) n . You can stay there. Here, n is an integer of 1 to 3, and Represents a part that is bonded to a silicon atom. At least one of X is a moiety bonded to the metal-organic structure. R represents a hydrocarbon group having 1 to 10 carbon atoms. According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る複合材料では、前記ケイ素含有ポリマーは、炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つを含む第2の側鎖を含んでいてもよい。以上の構成によれば、複合材料をフィラーとして用いた場合に、フィラーの放熱性が向上する。 In a seventh aspect of the present disclosure, for example, in the composite material according to any one of the first to sixth aspects, the silicon-containing polymer is selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds. The second side chain may include at least one side chain. According to the above configuration, when a composite material is used as a filler, the heat dissipation properties of the filler are improved.
 本開示の第8態様において、例えば、第7態様に係る複合材料では、前記第2の側鎖は、鎖状構造のみからなっていてもよい。以上の構成によれば、複合材料をフィラーとして用いた場合に、フィラーの放熱性が向上する。 In the eighth aspect of the present disclosure, for example, in the composite material according to the seventh aspect, the second side chain may consist only of a chain structure. According to the above configuration, when a composite material is used as a filler, the heat dissipation properties of the filler are improved.
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る複合材料では、前記主鎖は、前記ブタジエン単位を含んでいてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性がより向上する。 In the ninth aspect of the present disclosure, for example, in the composite material according to any one of the first to eighth aspects, the main chain may include the butadiene unit. According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
 本開示の第10態様において、例えば、第9態様に係る複合材料では、前記主鎖は、前記スチレン単位および前記ブタジエン単位を含むコポリマーを含んでいてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性がより向上する。 In the tenth aspect of the present disclosure, for example, in the composite material according to the ninth aspect, the main chain may include a copolymer containing the styrene unit and the butadiene unit. According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
 本開示の第11態様において、例えば、第6態様に係る複合材料では、前記ケイ素含有ポリマーは、複数の繰り返し単位を含む下記式(1)で表されてもよい。
 前記式(1)において、aおよびdは0以上の数を表し、bおよびcは0より大きい数を表し、R1からR5は互いに独立して、水素原子、フッ素原子、塩素原子、臭素原子または-CH3を表し、前記複数の繰り返し単位の順序は任意である。以上の構成によれば、金属有機構造体を含む材料の化学的安定性がより向上する。
In the eleventh aspect of the present disclosure, for example, in the composite material according to the sixth aspect, the silicon-containing polymer may be represented by the following formula (1) containing a plurality of repeating units.
In the formula (1), a and d represent a number greater than or equal to 0, b and c represent a number greater than 0, and R 1 to R 5 independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, It represents an atom or -CH 3 , and the order of the plurality of repeating units is arbitrary. According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
 本開示の第12態様において、例えば、第11態様に係る複合材料では、前記式(1)において、0.15≦c/(b+c+d)を満たしてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性がより一層向上する。 In the twelfth aspect of the present disclosure, for example, in the composite material according to the eleventh aspect, 0.15≦c/(b+c+d) may be satisfied in the formula (1). According to the above configuration, the chemical stability of the material containing the metal-organic structure is further improved.
 本開示の第13態様において、例えば、第1から第12態様のいずれか1つに係る複合材料では、前記金属有機構造体は、UiO-67を含んでいてもよい。以上の構成によれば、優れた誘電特性が実現される。 In a thirteenth aspect of the present disclosure, for example, in the composite material according to any one of the first to twelfth aspects, the metal organic framework may include UiO-67. According to the above configuration, excellent dielectric properties are achieved.
 本開示の第14態様に係るフィラーは、第1から第13態様のいずれか1つに係る複合材料を含む。以上の構成によれば、化学的安定性が向上したフィラーを提供できる。 The filler according to the fourteenth aspect of the present disclosure includes the composite material according to any one of the first to thirteenth aspects. According to the above configuration, a filler with improved chemical stability can be provided.
 本開示の第15態様に係る樹脂組成物は、第14態様のフィラーを含む。第15態様によれば、低い誘電正接を示すとともに耐熱性に優れた樹脂組成物を提供できる。 The resin composition according to the fifteenth aspect of the present disclosure includes the filler according to the fourteenth aspect. According to the fifteenth aspect, it is possible to provide a resin composition that exhibits a low dielectric loss tangent and has excellent heat resistance.
 本開示の第16態様に係るプリプレグは、第15態様の樹脂組成物または前記樹脂組成物の半硬化物を含む。 The prepreg according to the 16th aspect of the present disclosure includes the resin composition of the 15th aspect or a semi-cured product of the resin composition.
 本開示の第17態様に係る樹脂付きフィルムは、
 第15態様の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
 支持フィルムと、
 を備えている。
The resin-coated film according to the seventeenth aspect of the present disclosure is
A resin layer comprising the resin composition of the fifteenth aspect or a semi-cured product of the resin composition;
a support film;
It is equipped with
 本開示の第18態様に係る樹脂付き金属箔は、
 第15態様の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
 金属箔と、
 を備えている。
The resin-coated metal foil according to the eighteenth aspect of the present disclosure includes:
A resin layer comprising the resin composition of the fifteenth aspect or a semi-cured product of the resin composition;
metal foil and
It is equipped with
 本開示の第19態様に係る金属張積層板は、
 第15態様の樹脂組成物の硬化物または第16態様のプリプレグの硬化物を含む絶縁層と、
 金属箔と、
 を備えている。
The metal clad laminate according to the nineteenth aspect of the present disclosure includes:
An insulating layer comprising a cured product of the resin composition of the fifteenth aspect or a cured product of the prepreg of the sixteenth aspect;
metal foil and
It is equipped with
 本開示の第20態様に係る配線板は、
 第15態様の樹脂組成物の硬化物または第16態様のプリプレグの硬化物を含む絶縁層と、
 配線と、
 備えている。
The wiring board according to the 20th aspect of the present disclosure,
An insulating layer comprising a cured product of the resin composition of the fifteenth aspect or a cured product of the prepreg of the sixteenth aspect;
wiring and
We are prepared.
 第16から第20態様によれば、高周波に適した各種応用製品を提供できる。 According to the 16th to 20th aspects, various applied products suitable for high frequencies can be provided.
 本開示の第21態様に係る複合材料の製造方法は、金属有機構造体にケイ素含有ポリマーを付着させることを含む。前記ケイ素含有ポリマーは、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む。以上の構成によれば、化学的安定性が向上した金属有機構造体を含む材料を製造することができる。 A method for manufacturing a composite material according to a twenty-first aspect of the present disclosure includes attaching a silicon-containing polymer to a metal-organic framework. The silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units. According to the above configuration, a material containing a metal-organic structure with improved chemical stability can be manufactured.
 本開示の第22態様において、例えば、第21態様に係る複合材料の製造方法では、前記金属有機構造体は、金属酸化物クラスターを含んでいてもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性が向上する。 In the twenty-second aspect of the present disclosure, for example, in the method for manufacturing a composite material according to the twenty-first aspect, the metal-organic structure may include a metal oxide cluster. According to the above configuration, the chemical stability of the material containing the metal-organic structure is improved.
 本開示の第23態様において、例えば、第21または第22態様に係る複合材料の製造方法では、前記ケイ素含有ポリマーの数平均分子量は、1200以上であってもよい。以上の構成によれば、金属有機構造体を含む材料の化学的安定性が向上する。 In the twenty-third aspect of the present disclosure, for example, in the method for manufacturing a composite material according to the twenty-first or twenty-second aspect, the number average molecular weight of the silicon-containing polymer may be 1200 or more. According to the above configuration, the chemical stability of the material containing the metal-organic structure is improved.
 以下、本開示の実施の形態が、図面を参照しながら説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (実施の形態1)
 以下、図1および図2を用いて、実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 will be described below with reference to FIGS. 1 and 2.
 [複合材料]
 図1は、実施の形態1における複合材料10の概略構成を示す図である。複合材料10は、金属有機構造体1(以下「MOF1」という)、およびケイ素含有ポリマー2を備える。ケイ素含有ポリマー2はケイ素原子を含む。ケイ素含有ポリマー2は、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む。
[Composite material]
FIG. 1 is a diagram showing a schematic configuration of a composite material 10 in the first embodiment. The composite material 10 includes a metal organic framework 1 (hereinafter referred to as "MOF 1") and a silicon-containing polymer 2. Silicon-containing polymer 2 contains silicon atoms. The silicon-containing polymer 2 includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
 ケイ素含有ポリマー2は、MOF1の表面に付着していてもよい。ケイ素含有ポリマー2は、MOF1の表面の少なくとも一部を被覆していてもよい。ケイ素含有ポリマー2は、MOF1の表面の全体を被覆していてもよく、MOF1の表面の一部のみを被覆していてもよい。 The silicon-containing polymer 2 may be attached to the surface of the MOF 1. The silicon-containing polymer 2 may cover at least a portion of the surface of the MOF 1. The silicon-containing polymer 2 may cover the entire surface of the MOF 1, or may cover only a portion of the surface of the MOF 1.
 ケイ素含有ポリマー2は、低極性のポリマーである。ケイ素含有ポリマー2は、アルキルシランなどのケイ素含有低分子化合物と比べて、水分子、酸、および塩基がMOF1に到達することを抑制できる。酸は、例えば、プロトンまたはオキソニウムイオンである。塩基は、例えば、水酸化物イオンである。そのため、複合材料10は、MOF1の表面にケイ素含有ポリマー2が付着している場合、特に塩基耐性および酸耐性に優れている。すなわち、複合材料10は、高い化学的安定性を有する。なお、本開示において、「ケイ素含有低分子化合物」とは、分子量が1200未満の有機ケイ素化合物を意味する。 The silicon-containing polymer 2 is a low polar polymer. The silicon-containing polymer 2 can suppress water molecules, acids, and bases from reaching the MOF 1 better than silicon-containing low-molecular-weight compounds such as alkylsilanes. Acids are, for example, protons or oxonium ions. The base is, for example, a hydroxide ion. Therefore, the composite material 10 has particularly excellent base resistance and acid resistance when the silicon-containing polymer 2 is attached to the surface of the MOF 1. That is, the composite material 10 has high chemical stability. In addition, in this disclosure, "silicon-containing low molecular compound" means an organosilicon compound with a molecular weight of less than 1,200.
 ケイ素含有ポリマー2は、MOF1の細孔内部へ侵入しにくい。また、ケイ素含有ポリマー2の主鎖の主骨格は炭化水素基であり、非特許文献1および非特許文献2で使用されたポリドーパミンおよびポリアクリレートポリマーのように、多くの極性官能基を有さない。そのため、複合材料10によれば、比誘電率および誘電正接の上昇も抑制される。このように、複合材料10では、比誘電率および誘電正接の上昇が抑制されつつ化学的安定性の向上が実現している。 The silicon-containing polymer 2 hardly penetrates into the pores of the MOF 1. In addition, the main skeleton of the main chain of silicon-containing polymer 2 is a hydrocarbon group, and like the polydopamine and polyacrylate polymers used in Non-patent Document 1 and Non-patent Document 2, it has many polar functional groups. do not have. Therefore, according to the composite material 10, increases in relative dielectric constant and dielectric loss tangent are also suppressed. In this way, in the composite material 10, an increase in relative dielectric constant and dielectric loss tangent is suppressed, and an improvement in chemical stability is realized.
 [金属有機構造体(MOF)]
 MOF1は、金属酸化物クラスターおよびゼオライト様イミダゾレート構造体(以下「ZIF」という)からなる群から選択される1つを含んでいてもよい。
[Metal-organic framework (MOF)]
MOF 1 may include one selected from the group consisting of metal oxide clusters and zeolite-like imidazolate structures (hereinafter referred to as "ZIF").
 MOF1は、金属酸化物クラスターを含んでいてもよい。金属酸化物クラスターとして、例えば、M6x(OH)8-xの組成式で表される構造単位を含む金属酸化物クラスターが挙げられる。Mは、4価の第4族元素である。Mは、例えば、Zr、HfまたはCeである。飽和配位数は12である。MはZrであってもよい。すなわち、金属酸化物クラスターは、Zr酸化物クラスターであってもよい。このような金属酸化物クラスターの架橋性配位子は、例えば、カルボキシレート基(-COO)、水酸基(-OH)を含む。 MOF1 may include metal oxide clusters. Examples of the metal oxide cluster include a metal oxide cluster containing a structural unit represented by the composition formula M 6 O x (OH) 8-x . M is a tetravalent group 4 element. M is, for example, Zr, Hf or Ce. The saturated coordination number is 12. M may be Zr. That is, the metal oxide cluster may be a Zr oxide cluster. Such crosslinking ligands of metal oxide clusters include, for example, carboxylate groups (-COO) and hydroxyl groups (-OH).
 MOF1は、Zr酸化物クラスターと、カルボキシレート基を含む架橋性配位子とを有していてもよい。このようなジルコニウムをベースとしたMOFは、Zr-MOFとも呼ばれる。Zr-MOFにおいて、Zr酸化物クラスターは、Zr6x(OH)8-x(0≦x≦8)の組成式で表される構造単位を含む。このようなZr酸化物クラスターに対し、少なくとも2つ以上のカルボキシレート基を含む架橋性配位子が2個以上12個以下結合していてもよい。上記構造を有するZr-MOFは、Zr(IV)-Oの強固な結合に由来し、高い化学的安定性および高い熱安定性を有するとともに、高い空隙率を有する。そのため、Zr-MOFは、特に有用である。Zr-MOFとして、例えば、UiO-66、UiO-67、UiO-68、NU-1000、NU-1103、MOF-808、PCN-224、DUT-52、BUT-30、MIL-140等が挙げられる。 MOF1 may have a Zr oxide cluster and a crosslinkable ligand containing a carboxylate group. Such zirconium-based MOFs are also called Zr-MOFs. In Zr-MOF, the Zr oxide cluster includes a structural unit represented by the composition formula Zr 6 O x (OH) 8-x (0≦x≦8). Two or more and twelve or more crosslinkable ligands containing at least two or more carboxylate groups may be bonded to such a Zr oxide cluster. Zr-MOF having the above structure is derived from the strong bond of Zr(IV)-O, has high chemical stability and high thermal stability, and has high porosity. Therefore, Zr-MOF is particularly useful. Examples of Zr-MOF include UiO-66, UiO-67, UiO-68, NU-1000, NU-1103, MOF-808, PCN-224, DUT-52, BUT-30, MIL-140, etc. .
 Zr-MOFは、例えば、UiO-67であってもよい。UiO-67は、Zr64(OH)4の組成式で表される構造単位を含むZr酸化物クラスターと架橋性配位子である4,4'―ビフェニルジカルボキシレートとから構築される。UiO-67は、Zr64(OH)4(bpdc)6の組成式で表される。ここで、bpdcは4,4'―ビフェニルジカルボキシレートを表す。UiO-67は、RASPAパッケージ(https://iraspa.org/)において計算されるヘリウム換算の空隙率が68%であり(非特許文献4参照)、低い比誘電率および低い誘電正接を有することが期待される。 The Zr-MOF may be, for example, UiO-67. UiO-67 is constructed from a Zr oxide cluster containing a structural unit represented by the composition formula Zr 6 O 4 (OH) 4 and 4,4'-biphenyldicarboxylate, which is a crosslinking ligand. . UiO-67 is represented by the composition formula Zr 6 O 4 (OH) 4 (bpdc) 6 . Here, bpdc represents 4,4'-biphenyldicarboxylate. UiO-67 has a helium-equivalent porosity of 68% calculated using the RASPA package (https://iraspa.org/) (see Non-Patent Document 4), and has a low dielectric constant and a low dielectric loss tangent. There is expected.
 MOF1として、Zr-MOF粒子を使用してもよい。Zr-MOF粒子の形状は、特に限定されない。Zr-MOF粒子の形状は、例えば、鱗片状、球状、楕円球状、ロッド状などであってもよく、無定形であってもよい。Zr-MOF粒子の平均粒径は、特に限定されない。Zr-MOF粒子の平均粒径は、例えば、0.01μm以上かつ100μm以下であってもよく、0.05μm以上かつ50μm以下であってもよい。本開示において、Zr-MOF粒子の平均粒径は、メジアン径を意味する。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径(d50)を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置により測定される。 Zr-MOF particles may be used as the MOF1. The shape of the Zr-MOF particles is not particularly limited. The shape of the Zr-MOF particles may be, for example, scaly, spherical, ellipsoidal, rod-like, or amorphous. The average particle size of the Zr-MOF particles is not particularly limited. The average particle diameter of the Zr-MOF particles may be, for example, 0.01 μm or more and 100 μm or less, or 0.05 μm or more and 50 μm or less. In the present disclosure, the average particle size of Zr-MOF particles means the median diameter. The median diameter means the particle diameter (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%. The volume-based particle size distribution is measured using, for example, a laser diffraction measuring device.
 MOF1は、ZIFを含んでいてもよい。MOF1は、ZIFであってもよい。ZIFは、ゼオライトに類似した三次元結晶構造を有するMOFの総称である。ZIFは、正四面体型4配位(テトラヘドラル:Td)の中心金属イオンとイミダゾレートを含む架橋性配位子とを有し、金属-イミダゾレート-金属の配位結合によって構築される。中心金属イオンとして、例えば、Zn2+、Co2+が挙げられる。ZIFは、高い熱安定性および高い空隙率を有するため、有用である。ZIFとして、例えば、ZIF-4、ZIF-7、ZIF-8、ZIF-12、ZIF-67、ZIF-90、ZIF-412等が挙げられる。ZIFは、Zn2+とイミダゾレートを含む架橋性配位子とを含んでいてもよい。 MOF1 may include ZIF. MOF1 may be a ZIF. ZIF is a general term for MOFs having a three-dimensional crystal structure similar to zeolites. ZIF has a tetrahedral four-coordinate (tetrahedral: Td) central metal ion and a crosslinking ligand containing an imidazolate, and is constructed by a metal-imidazolate-metal coordination bond. Examples of the central metal ion include Zn 2+ and Co 2+ . ZIF is useful because it has high thermal stability and high porosity. Examples of ZIF include ZIF-4, ZIF-7, ZIF-8, ZIF-12, ZIF-67, ZIF-90, ZIF-412, and the like. ZIF may include Zn 2+ and a crosslinkable ligand including imidazolate.
 ZIFは、例えば、ZIF-8であってもよい。ZIF-8は、ZnII(2-MeIm)2の組成式で表される。ここで、2-MeImは、2-メチルイミダゾレートを表す。ZIF-8は、Zn2+に配位子である2-メチルイミダゾレートが架橋したソーダライト型の結晶構造を有し、高い熱安定性および高い化学的安定性を有する。ZIF-8は、RASPAパッケージ(https://iraspa.org/)において計算されるヘリウム換算の空隙率が48%であり(非特許文献5参照)、低い比誘電率および低い誘電正接を有することが期待される。 ZIF may be, for example, ZIF-8. ZIF-8 is represented by the composition formula Zn II (2-MeIm) 2 . Here, 2-MeIm represents 2-methylimidazolate. ZIF-8 has a sodalite crystal structure in which Zn 2+ is crosslinked with 2-methylimidazolate, which is a ligand, and has high thermal stability and high chemical stability. ZIF-8 has a helium-equivalent porosity of 48% calculated using the RASPA package (https://iraspa.org/) (see Non-Patent Document 5), and has a low dielectric constant and a low dielectric loss tangent. There is expected.
 MOF1として、ZIF粒子を使用してもよい。ZIF粒子の形状は、特に限定されない。ZIF粒子の形状は、例えば、鱗片状、球状、楕円球状、ロッド状などであってもよく、無定形であってもよい。ZIF粒子の平均粒径は、特に限定されない。ZIF粒子の平均粒径は、例えば、0.01μm以上かつ100μm以下であってもよく、0.05μm以上かつ50μm以下であってもよい。本開示において、ZIF粒子の平均粒径は、メジアン径を意味する。 ZIF particles may be used as the MOF1. The shape of the ZIF particles is not particularly limited. The shape of the ZIF particles may be, for example, scaly, spherical, ellipsoidal, rod-like, or amorphous. The average particle size of ZIF particles is not particularly limited. The average particle size of the ZIF particles may be, for example, 0.01 μm or more and 100 μm or less, or 0.05 μm or more and 50 μm or less. In this disclosure, the average particle size of ZIF particles means the median size.
 [ケイ素含有ポリマー]
 ケイ素含有ポリマー2は、ケイ素原子を含む。ケイ素含有ポリマー2はさらに、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む。ケイ素含有ポリマー2は、アルキルシランなどのケイ素含有低分子化合物と比べて、水分子、酸、および塩基のアクセスを抑制できる。酸は、例えば、プロトン、オキソニウムイオンである。塩基は、例えば、水酸化物イオンである。また、ケイ素含有ポリマー2は、構造上の特徴から、大気中の水分の吸着を抑制できる。加えて、ケイ素含有ポリマー2は、アルキルシランなどのケイ素含有低分子化合物と比べて、加熱によってそれ自体が蒸発しにくい。そのため、ケイ素含有ポリマー2は、耐熱性の観点でも有用である。
[Silicon-containing polymer]
Silicon-containing polymer 2 contains silicon atoms. The silicon-containing polymer 2 further includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units. The silicon-containing polymer 2 can suppress the access of water molecules, acids, and bases compared to silicon-containing low-molecular compounds such as alkylsilanes. Acids are, for example, protons and oxonium ions. The base is, for example, a hydroxide ion. Further, due to its structural characteristics, the silicon-containing polymer 2 can suppress the adsorption of moisture in the atmosphere. In addition, the silicon-containing polymer 2 itself is less likely to evaporate by heating than silicon-containing low-molecular compounds such as alkylsilanes. Therefore, the silicon-containing polymer 2 is also useful from the viewpoint of heat resistance.
 ケイ素含有ポリマー2は、上記主鎖に加えて、主鎖から枝分かれしている側鎖を含んでいてもよい。ケイ素含有ポリマー2は、複数の側鎖を含んでいてもよい。主鎖は、互いに結合した炭素原子により構成された第1の主鎖を含んでいてもよい。ケイ素含有ポリマー2は、第1の主鎖と共にケイ素原子を含む側鎖を含んでいてもよい。 In addition to the main chain, the silicon-containing polymer 2 may include side chains branching from the main chain. Silicon-containing polymer 2 may include multiple side chains. The main chain may include a first main chain made up of carbon atoms bonded to each other. The silicon-containing polymer 2 may include a side chain containing a silicon atom together with the first main chain.
 ケイ素含有ポリマー2は、ケイ素原子および酸素原子を含む第1の側鎖を含んでいてもよい。ケイ素含有ポリマー2は、ケイ素原子および酸素原子を介してMOF1に結合していてもよい。より具体的には、ケイ素含有ポリマー2には、ケイ素原子とMOF1とに結合する酸素原子が含まれていてもよい。 The silicon-containing polymer 2 may include a first side chain containing a silicon atom and an oxygen atom. Silicon-containing polymer 2 may be bonded to MOF 1 via silicon atoms and oxygen atoms. More specifically, silicon-containing polymer 2 may include oxygen atoms bonded to silicon atoms and MOF 1.
 ケイ素含有ポリマー2が、ケイ素原子および酸素原子を介してMOF1に結合する態様は、次のように想定される。通常、MOF1の内部では、金属イオンまたは金属クラスターが所定の数の配位可能なサイトを有し、これらの配位可能サイトのそれぞれに、架橋性配位子が結合している。一方、MOF1の表面では、金属イオンまたは金属クラスターが有する配位可能サイトのうち、架橋性配位子が結合していないサイトが少なくとも一つ以上残存している。MOF1の表面に露出した配位可能サイトはルイス酸性であり、例えばルイス塩基性の酸素原子と結合する。すなわち、MOF1の表面と酸素原子の間にはM-O結合が存在していると予想される。Mは金属原子を表す。よって、複合材料10では、ケイ素含有ポリマー2とMOF1との間に少なくとも一つ以上のM-O結合が形成されると予想される。また、残存する配位可能サイトには、水酸基(-OH)が結合しているものがあることが知られている(例えば、非特許文献6および非特許文献7参照)。すなわち、MOF1の表面には、M-OH結合が存在していると予想される。M-OH結合は、例えばシランカップリング反応により、M-O-Si結合を形成することが知られている。以上より、複合材料10では、ケイ素含有ポリマー2とMOF1との間に少なくとも一つ以上のM-O-Si結合が形成されることにより、ケイ素含有ポリマー2がMOF1に結合していると予想される。また、MOF1の表面のM-OH結合は、ケイ素含有ポリマーの酸素原子と、M-OH-Oの水素結合を形成することも予想される。よって、複合材料10では、ケイ素含有ポリマー2とMOF1との間に少なくとも一つ以上のM-OH-O結合が形成されることにより、ケイ素含有ポリマー2がMOF1に結合していると予想される。 The manner in which the silicon-containing polymer 2 is bonded to the MOF 1 via silicon atoms and oxygen atoms is assumed as follows. Usually, inside the MOF 1, a metal ion or a metal cluster has a predetermined number of sites capable of coordination, and a crosslinking ligand is bonded to each of these sites capable of coordination. On the other hand, on the surface of MOF 1, at least one site to which a crosslinking ligand is not bonded remains among the coordination possible sites possessed by the metal ion or metal cluster. The coordination possible sites exposed on the surface of MOF1 are Lewis acidic, and bond with, for example, Lewis basic oxygen atoms. That is, it is expected that an MO bond exists between the surface of MOF1 and the oxygen atom. M represents a metal atom. Therefore, in the composite material 10, at least one MO bond is expected to be formed between the silicon-containing polymer 2 and the MOF1. Furthermore, it is known that some of the remaining coordination sites have a hydroxyl group (-OH) bonded to them (see, for example, Non-Patent Document 6 and Non-Patent Document 7). That is, it is expected that M--OH bonds exist on the surface of MOF1. It is known that the M--OH bond forms a M--O--Si bond by, for example, a silane coupling reaction. From the above, it is predicted that in the composite material 10, the silicon-containing polymer 2 is bonded to the MOF 1 due to the formation of at least one MOF-Si bond between the silicon-containing polymer 2 and the MOF 1. Ru. It is also expected that the M-OH bond on the surface of MOF1 forms an M-OH-O hydrogen bond with the oxygen atom of the silicon-containing polymer. Therefore, in the composite material 10, it is expected that the silicon-containing polymer 2 is bonded to the MOF 1 by forming at least one or more M-OH-O bond between the silicon-containing polymer 2 and the MOF 1. .
 例えば、MOF1がZr-MOFである場合、MOF1の表面には、Zrの配位可能サイト、またはZr-OH結合が存在していると予想される。したがって、この場合、ケイ素含有ポリマー2とZr-MOFとの間に少なくとも一つ以上のZr-O結合、Zr-O-Si結合、またはZr-OH-O結合が形成されることにより、ケイ素含有ポリマー2がZr-MOFに結合していると予想される。 For example, when MOF1 is a Zr-MOF, it is expected that a Zr coordination site or a Zr-OH bond exists on the surface of MOF1. Therefore, in this case, at least one Zr-O bond, Zr-O-Si bond, or Zr-OH-O bond is formed between the silicon-containing polymer 2 and the Zr-MOF. It is expected that polymer 2 is attached to the Zr-MOF.
 なお、Zr-MOFがUiO-67である場合には、UiO-67の表面において、Zr酸化物クラスターの配位可能サイトの全て(例えば、12個)にbpdc配位子が結合している。そのため、架橋性配位子が結合していない配位可能サイト、または水酸基が結合しているZr-OHのサイト、が最も少ない。しかし、MOF1の表面にケイ素含有ポリマー2が結合していることから、Zr-MOFがUiO-67である場合には、UiO-67の表面にもZrの配位可能サイトまたはZr-OHサイトが存在し、これらのサイトを介してケイ素含有ポリマー2とZr-O結合、Zr-O-Si結合、またはZr-OH-O結合を形成することが可能であるため、ケイ素含有ポリマー2が表面に固定化されたUiO-67を得ることが可能と考えられる。 Note that when the Zr-MOF is UiO-67, bpdc ligands are bonded to all (for example, 12) coordination possible sites of the Zr oxide cluster on the surface of UiO-67. Therefore, there are the least number of coordination possible sites to which no crosslinking ligand is bonded, or Zr--OH sites to which a hydroxyl group is bonded. However, since the silicon-containing polymer 2 is bonded to the surface of the MOF 1, if the Zr-MOF is UiO-67, there are also Zr coordination sites or Zr-OH sites on the surface of UiO-67. silicon-containing polymer 2 on the surface, and can form a Zr-O bond, Zr-O-Si bond, or Zr-OH-O bond with the silicon-containing polymer 2 through these sites. It is considered possible to obtain immobilized UiO-67.
 例えば、MOF1がZIF-8である場合、ZIF-8の表面には、Znの配位可能サイトまたはZn-OH結合が存在していると予想される。したがって、この場合、ケイ素含有ポリマー2とZIF-8との間に少なくとも一つ以上のZn-O結合、Zn-O-Si結合、またはZn-OH-O結合が形成されることにより、ケイ素含有ポリマー2がZIF-8に結合していると予想される。 For example, when MOF1 is ZIF-8, it is expected that Zn coordination sites or Zn--OH bonds are present on the surface of ZIF-8. Therefore, in this case, at least one Zn-O bond, Zn-O-Si bond, or Zn-OH-O bond is formed between the silicon-containing polymer 2 and ZIF-8, so that the silicon-containing Polymer 2 is expected to be attached to ZIF-8.
 複合材料10において、ケイ素含有ポリマー2が、MOF1の表面に結合により固定化されていると、化学的安定性を損なうことなく、他の化合物とのコンポジット化も可能となる。例えば、複合材料10および他の化合物を含む樹脂組成物を得るには、混錬のために所定の溶媒に溶解させる工程、または機械的な分散処理の工程が必要となる。ケイ素含有ポリマー2がMOF1に結合により固定化されていると、このような工程を経ても、得られた樹脂組成物においてケイ素含有ポリマー2がMOF1の表面に存在しない状態が回避される。MOF1、ケイ素含有ポリマー2、および他の化合物を含む樹脂組成物を一段階の工程で形成する場合にも、得られた樹脂組成物においてケイ素含有ポリマー2がMOF1の表面に存在しない状態が回避される。このように、ケイ素含有ポリマー2が、MOF1の表面に結合により固定化されていると、樹脂組成物の状態においても、想定される化学的安定性が発現される。 In the composite material 10, when the silicon-containing polymer 2 is immobilized on the surface of the MOF 1 by bonding, it becomes possible to form a composite with other compounds without impairing chemical stability. For example, in order to obtain a resin composition containing the composite material 10 and other compounds, a process of dissolving it in a predetermined solvent for kneading or a process of mechanical dispersion treatment is required. When the silicon-containing polymer 2 is immobilized on the MOF 1 by bonding, a state in which the silicon-containing polymer 2 is not present on the surface of the MOF 1 in the obtained resin composition can be avoided even after such a step. Even when forming a resin composition containing MOF 1, silicon-containing polymer 2, and other compounds in a one-step process, a state in which silicon-containing polymer 2 is not present on the surface of MOF 1 in the resulting resin composition can be avoided. Ru. In this way, when the silicon-containing polymer 2 is immobilized on the surface of the MOF 1 by bonding, the expected chemical stability is exhibited even in the state of the resin composition.
 また、複合材料10において、ケイ素含有ポリマー2が、MOF1の表面に結合により固定化されていると、MOF1の表面が低極性のポリマーで常に覆われていることによる所定の溶媒中での分散性の向上も期待できる。特に、非極性溶媒中において、分散性が向上する。非極性溶媒は、例えば、トルエンである。これにより、樹脂組成物における複合材料10の分散性が向上するので、例えば、樹脂組成物の機械特性の向上、および樹脂組成物における誘電特性のばらつきの抑制といった効果も期待できる。 In addition, in the composite material 10, when the silicon-containing polymer 2 is immobilized on the surface of the MOF 1 by bonding, the surface of the MOF 1 is always covered with a low polarity polymer, which increases the dispersibility in a predetermined solvent. We can also expect an improvement in In particular, dispersibility is improved in nonpolar solvents. A non-polar solvent is, for example, toluene. This improves the dispersibility of the composite material 10 in the resin composition, so that effects such as, for example, improvement in the mechanical properties of the resin composition and suppression of variations in dielectric properties in the resin composition can be expected.
 ケイ素含有ポリマー2は、-SiR3-n(OX)nで示される官能基を含んでいてもよい。ここで、nは1から3の整数であり、Xは水素原子、炭素数1から10の炭化水素基、MOF1と結合している結合部、または上記官能基のケイ素原子以外のケイ素原子と結合している結合部を表す。結合部であるXは、単結合(-)で示すこともできる。炭素数1から10の炭化水素基は、例えば、炭素数1から10、特に1から3のアルキル基である。Xのうちの少なくとも1つはMOF1と結合している結合部である。Rは炭素数1から10の炭化水素基を表す。このような構成を有するケイ素含有ポリマー2は、MOF1の表面にM-O-Si結合を介して固定化される。したがって、MOF1の表面がより密にケイ素含有ポリマー2で覆われるため、複合材料10の化学的安定性がより向上する。 The silicon-containing polymer 2 may contain a functional group represented by -SiR 3-n (OX) n . Here, n is an integer from 1 to 3, and X is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a bond bonded to MOF1, or a bond to a silicon atom other than the silicon atom of the above functional group. represents a joint that is The bonding portion X can also be represented by a single bond (-). A hydrocarbon group having 1 to 10 carbon atoms is, for example, an alkyl group having 1 to 10 carbon atoms, especially 1 to 3 carbon atoms. At least one of X is a bonding portion that is bonded to MOF1. R represents a hydrocarbon group having 1 to 10 carbon atoms. The silicon-containing polymer 2 having such a configuration is immobilized on the surface of the MOF 1 via MO--O--Si bonds. Therefore, the surface of MOF 1 is more densely covered with silicon-containing polymer 2, so that the chemical stability of composite material 10 is further improved.
 -SiR3-n(OX)nで示される官能基において、Rは炭素数1から10のアルキル基、または炭素数6から10のアリール基であってもよい。 In the functional group represented by -SiR 3-n (OX) n , R may be an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
 炭素数1から10のアルキル基は、直鎖状、環状、分枝状のいずれの構造を有していてもよい。炭素数1から10のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。炭素数6から10のアリール基としては、フェニル基、α-ナフチル基、β-ナフチル基等が挙げられる。 The alkyl group having 1 to 10 carbon atoms may have a linear, cyclic, or branched structure. Examples of alkyl groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group. group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like. Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, α-naphthyl group, β-naphthyl group, and the like.
 ケイ素含有ポリマー2が、-SiR3-n(OX)nで示される官能基を含み、かつXが、別のケイ素原子と結合している結合部を含む場合、ケイ素含有ポリマー2は、Si-O-Siで表されるシロキサン単位を含む。ケイ素含有ポリマー2は、シロキサン単位により構成された第2の主鎖を含んでいてもよい。このような構成を有するケイ素含有ポリマー2は、シロキサン単位(Si-O-Si)が網目状に広がったネットワーク構造を有しうる。 When the silicon-containing polymer 2 contains a functional group represented by -SiR 3-n (OX) n , and X contains a bond bonding to another silicon atom, the silicon-containing polymer 2 contains a functional group represented by -SiR 3-n (OX) n. Contains siloxane units represented by O-Si. The silicon-containing polymer 2 may include a second main chain composed of siloxane units. The silicon-containing polymer 2 having such a structure may have a network structure in which siloxane units (Si--O--Si) are spread out in a network.
 ケイ素含有ポリマー2は、炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つを含む第2の側鎖を含んでいてもよい。このような構造によれば、炭素-炭素二重結合または炭素-炭素三重結合が絶縁層に含まれる樹脂の反応性残基と反応して結合を形成するので、複合材料10と樹脂との密着性が向上する。これにより、複合材料10と樹脂との界面の熱抵抗が減少し、絶縁層の熱伝導性が向上する。ひいては、配線板の放熱性が向上する。炭素-炭素二重結合を含む基としては、例えば、ビニル基、メタリル基、アクリロイル基等が挙げられる。ケイ素含有ポリマー2は、これらから選ばれる1種を有していてもよく、2種以上を有していてもよい。易反応性の観点から、炭素-炭素二重結合を含む基は、ビニル基であることが望ましい。絶縁層に含まれる樹脂の反応性残基としては、ビニル基、メタリル基、アクリロイル基等が挙げられる。炭素-炭素三重結合を含む基としては、例えば、エチニル基、プロパルギル基等が挙げられる。ケイ素含有ポリマー2は、これらから選ばれる1種を有していてもよく、2種以上を有していてもよい。絶縁層に含まれる樹脂の反応性残基としては、エチニル基、プロパルギル基等が挙げられる。炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つは、第2の側鎖の末端に位置していてもよい。第2の側鎖は、鎖状構造のみからなっていてもよい。 The silicon-containing polymer 2 may include a second side chain containing at least one selected from the group consisting of a carbon-carbon double bond and a carbon-carbon triple bond. According to such a structure, the carbon-carbon double bond or the carbon-carbon triple bond reacts with the reactive residue of the resin contained in the insulating layer to form a bond, so that the adhesiveness between the composite material 10 and the resin is improved. Improves sex. This reduces the thermal resistance at the interface between the composite material 10 and the resin, and improves the thermal conductivity of the insulating layer. As a result, the heat dissipation of the wiring board is improved. Examples of the group containing a carbon-carbon double bond include a vinyl group, a methallyl group, an acryloyl group, and the like. The silicon-containing polymer 2 may have one type selected from these, or may have two or more types. From the viewpoint of easy reactivity, the group containing a carbon-carbon double bond is preferably a vinyl group. Examples of the reactive residue of the resin contained in the insulating layer include a vinyl group, a methallyl group, an acryloyl group, and the like. Examples of the group containing a carbon-carbon triple bond include an ethynyl group and a propargyl group. The silicon-containing polymer 2 may have one type selected from these, or may have two or more types. Examples of the reactive residue of the resin contained in the insulating layer include an ethynyl group and a propargyl group. At least one selected from the group consisting of carbon-carbon double bonds and carbon-carbon triple bonds may be located at the end of the second side chain. The second side chain may consist only of a chain structure.
 なお、酸化による劣化を回避する観点からは、ケイ素含有ポリマー2の内部に存在する炭素-炭素二重結合および炭素-炭素三重結合の含有割合は少ないことが望ましい。 Note that from the viewpoint of avoiding deterioration due to oxidation, it is desirable that the content of carbon-carbon double bonds and carbon-carbon triple bonds present inside the silicon-containing polymer 2 is small.
 ケイ素含有ポリマー2は、第1の側鎖および第2の側鎖以外の側鎖をさらに含んでいてもよい。第1の側鎖および第2の側鎖以外の側鎖は、例えば、環状構造を有していてもよい。側鎖の環状構造は、例えば、アリール基である。 The silicon-containing polymer 2 may further include side chains other than the first side chain and the second side chain. The side chains other than the first side chain and the second side chain may have, for example, a cyclic structure. The cyclic structure of the side chain is, for example, an aryl group.
 ケイ素含有ポリマー2の主鎖は、ブタジエン単位を含んでいてもよい。以上の構成によれば、複合材料10の化学的安定性がより向上する。 The main chain of the silicon-containing polymer 2 may include a butadiene unit. According to the above configuration, the chemical stability of the composite material 10 is further improved.
 ケイ素含有ポリマー2の主鎖は、スチレン単位およびブタジエン単位を含むコポリマーを含んでいてもよい。以上の構成によれば、複合材料10の化学的安定性がより向上する。 The main chain of the silicon-containing polymer 2 may include a copolymer containing styrene units and butadiene units. According to the above configuration, the chemical stability of the composite material 10 is further improved.
 ケイ素含有ポリマー2は、複数の繰り返し単位を含む下記式(1)で表されてもよい。このような構成によれば、複合材料10の化学的安定性がより向上する。 The silicon-containing polymer 2 may be represented by the following formula (1) containing multiple repeating units. According to such a configuration, the chemical stability of the composite material 10 is further improved.
 上記式(1)において、aおよびdは0以上の数を表し、bおよびcは0より大きい数を表し、R1からR5は互いに独立して、水素原子、フッ素原子、塩素原子、臭素原子または-CH3を表す。ただし、前記複数の繰り返し単位の順序は任意である。-SiR3-n(OX)nで示される官能基は、上記で説明した通りである。なお、上記式(1)のd部分において、波線で示される結合は、トランスもしくはシスのいずれか、または両者の混合物を意味している。 In the above formula (1), a and d represent a number greater than or equal to 0, b and c represent a number greater than 0, and R 1 to R 5 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, or a bromine atom. Represents an atom or -CH 3 . However, the order of the plurality of repeating units is arbitrary. The functional group represented by -SiR 3-n (OX) n is as explained above. In addition, in the d part of the above formula (1), the bond shown by the wavy line means either trans or cis, or a mixture of both.
 ケイ素含有ポリマー2は、上記式(1)において、0≦a≦500、1≦b≦500、1≦c≦500、0≦d≦500、を満たしてもよく、5≦a≦300、5≦b≦300、1≦c≦100、5≦d≦300、を満たしてもよい。 In the above formula (1), the silicon-containing polymer 2 may satisfy 0≦a≦500, 1≦b≦500, 1≦c≦500, 0≦d≦500, and 5≦a≦300, 5 The following may be satisfied: ≦b≦300, 1≦c≦100, and 5≦d≦300.
 ケイ素含有ポリマー2は、上記式(1)において、5≦a≦100、5≦b≦100、1≦c≦80、5≦d≦100、を満たしてもよく、5≦a≦20、5≦b≦50、1≦c≦60、5≦d≦40、を満たしてもよい。 In the above formula (1), the silicon-containing polymer 2 may satisfy 5≦a≦100, 5≦b≦100, 1≦c≦80, 5≦d≦100, and 5≦a≦20, 5 ≦b≦50, 1≦c≦60, and 5≦d≦40.
 上記式(1)において、cは、ケイ素および酸素を側鎖に有するブタジエン単位の繰り返し数を表す。(b+c+d)は、繰り返し数bを有するブタジエン単位と、繰り返し数cを有するブタジエン単位と、繰り返し数dを有するブタジエン単位の合計を表す。ケイ素含有ポリマー2は、上記式(1)において、0.15≦c/(b+c+d)を満たしてもよい。言い換えると、上記式(1)において、100×{c/(b+c+d)}により算出される値は、15%以上であってもよい。以上の構成によれば、複合材料10の化学的安定性がより一層向上する。上記式(1)において、100×{c/(b+c+d)}により算出される値は、17%以上であってもよい。100×{c/(b+c+d)}により算出される値の上限は、例えば、80%である。ただし、所望の化学的安定性および誘電特性を発現しうる範囲であれば、100×{c/(b+c+d)}により算出される値は、特に限定されるものではない。 In the above formula (1), c represents the repeating number of butadiene units having silicon and oxygen in their side chains. (b+c+d) represents the total of a butadiene unit having a repeating number b, a butadiene unit having a repeating number c, and a butadiene unit having a repeating number d. The silicon-containing polymer 2 may satisfy 0.15≦c/(b+c+d) in the above formula (1). In other words, in the above formula (1), the value calculated by 100×{c/(b+c+d)} may be 15% or more. According to the above configuration, the chemical stability of the composite material 10 is further improved. In the above formula (1), the value calculated by 100×{c/(b+c+d)} may be 17% or more. The upper limit of the value calculated by 100×{c/(b+c+d)} is, for example, 80%. However, the value calculated by 100×{c/(b+c+d)} is not particularly limited as long as it is within a range that can exhibit desired chemical stability and dielectric properties.
 [複合材料の製造方法]
 次に、上述した複合材料の製造方法について説明する。
[Method for manufacturing composite material]
Next, a method for manufacturing the above-mentioned composite material will be explained.
 図2は、実施の形態1における複合材料10の製造方法の一例を示すフローチャートである。複合材料10の製造方法は、MOF1の表面にケイ素含有ポリマー2を付着させること(ステップS1)を含む。ケイ素含有ポリマー2は、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む。 FIG. 2 is a flowchart illustrating an example of a method for manufacturing the composite material 10 in the first embodiment. The method for manufacturing composite material 10 includes attaching silicon-containing polymer 2 to the surface of MOF 1 (step S1). The silicon-containing polymer 2 includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
 ステップS1において、ケイ素原子および酸素原子を介してMOF1の表面にケイ素含有ポリマー2を結合させてもよい。 In step S1, the silicon-containing polymer 2 may be bonded to the surface of the MOF 1 via silicon atoms and oxygen atoms.
 MOF1は、金属酸化物クラスターおよびZIFからなる群から選択される1つを含んでいてもよい。MOF1は、金属酸化物クラスターを含んでいてもよい。 MOF 1 may include one selected from the group consisting of metal oxide clusters and ZIF. MOF1 may include metal oxide clusters.
 ここで、上記式(1)で表されるケイ素含有ポリマー2は、MOF1に結合する前の状態では、下記式(2)で表される。 Here, the silicon-containing polymer 2 represented by the above formula (1) is represented by the following formula (2) before being bonded to the MOF 1.
 上記式(2)において、R6およびR7は、互いに独立して、炭素数1から10の炭化水素基を表す。mは1から3の整数を表す。aおよびdは0以上の数を表し、bおよびcは0より大きい数を表す。 In the above formula (2), R 6 and R 7 independently represent a hydrocarbon group having 1 to 10 carbon atoms. m represents an integer from 1 to 3. a and d represent a number greater than or equal to 0, and b and c represent a number greater than 0.
 上記式(2)において、R6およびR7は、互いに独立して、炭素数1から10のアルキル基、または炭素数6から10のアリール基を表してもよい。 In the above formula (2), R 6 and R 7 may independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
 炭素数1から10のアルキル基および炭素数6から10のアリール基は、-SiR3-n(OX)nで示される官能基について説明した通りである。ただし、上記式(2)において、炭素数1から10のアルキル基としては、炭素数1から5のアルキル基が望ましく、炭素数1から3のアルキル基がより望ましい。R6およびR7としては、互いに独立して、直鎖のアルキル基が望ましく、メチル基またはエチル基がより望ましい。 The alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 10 carbon atoms are as described for the functional group represented by -SiR 3-n (OX) n . However, in the above formula (2), the alkyl group having 1 to 10 carbon atoms is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms. R 6 and R 7 are preferably linear alkyl groups, more preferably methyl or ethyl groups, independently of each other.
 周波数がGHzからTHzにわたる高周波数帯において、誘電正接は、配線板の材料に含まれる有機分子の配向分極に大きく依存する。そのため、MOF1の表面に存在する水酸基は、誘電正接を上昇させうる。しかし、上記式(2)で表されるケイ素含有ポリマーは、MOF1の表面に存在する水酸基にケイ素含有ポリマーが作用し、これにより、MOF1の表面に結合する。結合後のケイ素含有ポリマー2は、上記式(1)で表される。複合材料10では、ケイ素含有ポリマー2の結合により、MOF1の表面に存在する水酸基の数が減らされているので、誘電正接の上昇を抑制する効果も期待できる。 In a high frequency band ranging from GHz to THz, the dielectric loss tangent largely depends on the orientational polarization of organic molecules contained in the material of the wiring board. Therefore, the hydroxyl groups present on the surface of MOF 1 can increase the dielectric loss tangent. However, in the silicon-containing polymer represented by the above formula (2), the silicon-containing polymer acts on the hydroxyl groups present on the surface of the MOF 1, thereby bonding to the surface of the MOF 1. The silicon-containing polymer 2 after bonding is represented by the above formula (1). In the composite material 10, the number of hydroxyl groups present on the surface of the MOF 1 is reduced due to the bonding of the silicon-containing polymer 2, so that an effect of suppressing an increase in the dielectric loss tangent can be expected.
 上記式(2)で表されるケイ素含有ポリマーは、下記スキームに示される反応を経て得ることができる。具体的には、下記式(3)で表されるスチレンブタジエンコポリマーと、下記式(4)で表される有機ケイ素化合物とを白金化合物含有触媒の存在下で、望ましくは白金化合物含有触媒および助触媒の存在下で、ヒドロシリル化する。これにより、上記式(2)で表されるケイ素含有ポリマーを得ることができる。 The silicon-containing polymer represented by the above formula (2) can be obtained through the reaction shown in the scheme below. Specifically, a styrene-butadiene copolymer represented by the following formula (3) and an organosilicon compound represented by the following formula (4) are combined in the presence of a platinum compound-containing catalyst, preferably a platinum compound-containing catalyst and an assistant. Hydrosilylation occurs in the presence of a catalyst. Thereby, a silicon-containing polymer represented by the above formula (2) can be obtained.
 上記式(3)で表されるスチレンブタジエンコポリマーは、ブタジエンとスチレンとを原料モノマーとし、乳化重合または溶液重合等の公知の方法により合成することができる。上記式(3)で表されるスチレンブタジエンコポリマーは、市販品として入手することもできる。市販品として、例えば、Ricon100、Ricon181、Ricon184(以上、クレイバレー社製)、L-SBR-820、L-SBR-841(以上、クラレ社製)、1,2-SBS(以上、日本曹達社製)等が挙げられる。 The styrene-butadiene copolymer represented by the above formula (3) can be synthesized by a known method such as emulsion polymerization or solution polymerization using butadiene and styrene as raw material monomers. The styrene-butadiene copolymer represented by the above formula (3) can also be obtained as a commercial product. Commercially available products include, for example, Ricon 100, Ricon 181, Ricon 184 (all manufactured by Clay Valley), L-SBR-820, L-SBR-841 (all manufactured by Kuraray), 1,2-SBS (all manufactured by Nippon Soda). (manufactured by), etc.
 上記式(4)で表される有機ケイ素化合物として、例えば、トリメトキシシラン、メチルジメトキシシラン、ジメチルメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン等が挙げられる。 Examples of the organosilicon compound represented by the above formula (4) include trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane.
 なお、ケイ素含有ポリマーがMOF1の表面へ結合する前と後とで、cの値は維持される。すなわち、上記式(2)におけるcの値と上記式(1)におけるcの値とは等しい。そのため、上記式(2)において、100×{c/(b+c+d)}により算出されるシリル化率は、上記式(1)において、100×{c/(b+c+d)}により算出されるシリル化率とみなしうる。 Note that the value of c is maintained before and after the silicon-containing polymer is bonded to the surface of MOF1. That is, the value of c in the above equation (2) and the value of c in the above equation (1) are equal. Therefore, in the above equation (2), the silylation rate calculated by 100 x {c/(b+c+d)} is the same as the silylation rate calculated by 100 x {c/(b+c+d)} in the above equation (1). It can be considered as
 MOF1の表面に結合する前の状態において、ケイ素含有ポリマーの数平均分子量は、1200以上であってもよく、5000以上であってもよい。以上の構成によれば、ケイ素含有ポリマー2によって被覆される密度が向上するため、複合材料10の化学的安定性が向上する。MOF1の表面に結合する前のケイ素含有ポリマーの数平均分子量の上限は、特に限定されない。MOF1の表面に結合する前のケイ素含有ポリマーの数平均分子量の上限は、例えば、10000以下である。なお、本開示において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて算出されるポリスチレン換算の数平均分子量である。 In the state before bonding to the surface of MOF 1, the number average molecular weight of the silicon-containing polymer may be 1200 or more, or 5000 or more. According to the above configuration, the density of the coating with the silicon-containing polymer 2 is improved, so that the chemical stability of the composite material 10 is improved. The upper limit of the number average molecular weight of the silicon-containing polymer before bonding to the surface of MOF 1 is not particularly limited. The upper limit of the number average molecular weight of the silicon-containing polymer before bonding to the surface of MOF 1 is, for example, 10,000 or less. Note that in the present disclosure, the number average molecular weight is a polystyrene-equivalent number average molecular weight calculated using gel permeation chromatography (GPC).
 ステップS1において、MOF1の表面にケイ素含有ポリマー2を結合させてもよい。例えば、MOF1の表面へ結合する前のケイ素含有ポリマーが上記式(2)で表される場合、以下の反応によりMOF1の表面にケイ素含有ポリマー2を結合させることができる。MOF1の表面とケイ素含有ポリマー2がM-O結合、またはM-OH-O結合を介して結合される場合は、-SiR3-n(OX)n中のOがMまたはM-OHと結合する。MOF1の表面とケイ素含有ポリマー2がM-O-Si結合を介して結合される場合は、まず、上記式(2)で表されるケイ素含有ポリマーが加水分解し、シラノール基(Si-OH)が生成する。次に、シラノール基は、部分的にMOF1の表面に存在する水酸基との脱水縮合により結合する。このとき、ケイ素含有ポリマーとMOF1の表面との間には、脱水縮合により形成された金属-酸素-ケイ素結合(M-O-Si結合)が形成される。その結果、ケイ素含有ポリマー2がMOF1の表面に結合により固定化される。さらに、加熱処理または酸もしくは塩基の添加により、ケイ素含有ポリマー2間での脱水縮合を促進させることもできる。その結果、シロキサン結合(Si-O-Si)を介して、ケイ素含有ポリマー2同士が連続的に結合する。このようにすることで、ケイ素含有ポリマー2の層の厚みを制御することもできる。ケイ素含有ポリマー2の層の厚みは、MOF1の性質に応じて、または要求される誘電特性および化学的安定性に応じて、さらには絶縁層の樹脂の性質に応じて、適切な条件を選定すればよい。 In step S1, silicon-containing polymer 2 may be bonded to the surface of MOF 1. For example, when the silicon-containing polymer before bonding to the surface of MOF 1 is represented by the above formula (2), silicon-containing polymer 2 can be bonded to the surface of MOF 1 by the following reaction. When the surface of MOF 1 and the silicon-containing polymer 2 are bonded via an M-O bond or a M-OH-O bond, O in -SiR 3-n (OX) n is bonded to M or M-OH. do. When the surface of MOF 1 and the silicon-containing polymer 2 are bonded via an M-O-Si bond, first, the silicon-containing polymer represented by the above formula (2) is hydrolyzed to form a silanol group (Si-OH). is generated. Next, the silanol groups are partially bonded by dehydration condensation with the hydroxyl groups present on the surface of MOF1. At this time, a metal-oxygen-silicon bond (MO-Si bond) formed by dehydration condensation is formed between the silicon-containing polymer and the surface of MOF1. As a result, the silicon-containing polymer 2 is immobilized on the surface of the MOF 1 by bonding. Furthermore, dehydration condensation between the silicon-containing polymers 2 can be promoted by heat treatment or addition of an acid or a base. As a result, the silicon-containing polymers 2 are continuously bonded to each other via siloxane bonds (Si--O--Si). By doing so, the thickness of the layer of silicon-containing polymer 2 can also be controlled. The thickness of the layer of the silicon-containing polymer 2 should be selected under appropriate conditions depending on the properties of the MOF 1, the required dielectric properties and chemical stability, and further depending on the properties of the resin of the insulating layer. Bye.
 (実施の形態2)
 本実施形態に係るフィラーは、実施の形態1における複合材料10を含有する。
(Embodiment 2)
The filler according to the present embodiment contains the composite material 10 according to the first embodiment.
 本実施形態に係るフィラーは、絶縁層形成用フィラーであってもよい。本開示において、絶縁層形成用フィラーとは、配線板の絶縁材料またはICチップ中の封止材料等として、樹脂成分に混ぜて使用されるフィラーである。本実施形態に係るフィラーは、絶縁層形成用フィラーとして用いられた場合に比誘電率および誘電正接の上昇を抑制しつつ化学的安定性を向上できる。 The filler according to this embodiment may be a filler for forming an insulating layer. In the present disclosure, the filler for forming an insulating layer is a filler that is mixed with a resin component and used as an insulating material for a wiring board, a sealing material in an IC chip, or the like. When the filler according to this embodiment is used as a filler for forming an insulating layer, it is possible to improve chemical stability while suppressing increases in relative dielectric constant and dielectric loss tangent.
 本実施形態に係るフィラーは、例えば、実施の形態1に係る複合材料10と、エポキシ樹脂もしくはシリコーン系樹脂、または、非シリコーン系のアクリル系樹脂もしくはセラミック系樹脂とを混錬することにより製造されうる。 The filler according to this embodiment is manufactured by, for example, kneading the composite material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or ceramic resin. sell.
 (実施の形態3)
 図3は、実施の形態3における樹脂組成物20の概略構成を示す図である。樹脂組成物20は、例えば、フィラー22および硬化性樹脂24を含む。
(Embodiment 3)
FIG. 3 is a diagram showing a schematic configuration of a resin composition 20 in Embodiment 3. The resin composition 20 includes, for example, a filler 22 and a curable resin 24.
 フィラー22は、実施の形態1で説明した複合材料10を含む。本実施の形態によれば、低い誘電正接を示すとともに耐熱性に優れた樹脂組成物20を提供できる。フィラー22として、複合材料10のみを用いてもよく、シリカ粒子などの他のフィラー用材料を複合材料10と併用してもよい。 The filler 22 includes the composite material 10 described in Embodiment 1. According to this embodiment, it is possible to provide a resin composition 20 that exhibits a low dielectric loss tangent and has excellent heat resistance. As the filler 22, only the composite material 10 may be used, or other filler materials such as silica particles may be used in combination with the composite material 10.
 硬化性樹脂24としては、エポキシ樹脂、シアン酸エステル化合物、マレイミド化合物、フェノール樹脂、アクリル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、熱硬化性ポリイミド樹脂、ポリフェニレンエーテル樹脂などが挙げられる。硬化性樹脂24としては、これらから選ばれる1種または2種以上の組み合わせを使用できる。 Examples of the curable resin 24 include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins. As the curable resin 24, one kind or a combination of two or more kinds selected from these can be used.
 樹脂組成物20は、他の成分を含有していてもよい。他の成分としては、硬化剤、難燃剤、紫外線吸収剤、酸化防止剤、反応開始剤、シランカップリング剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、帯電防止剤、重合禁止剤、有機溶媒などが挙げられる。他の成分としては、必要に応じて、これらから選ばれる1種または2種以上の組み合わせを使用できる。 The resin composition 20 may contain other components. Other ingredients include curing agents, flame retardants, ultraviolet absorbers, antioxidants, reaction initiators, silane coupling agents, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, and erasers. Examples include foaming agents, dispersants, leveling agents, brighteners, antistatic agents, polymerization inhibitors, and organic solvents. As other components, one type or a combination of two or more types selected from these can be used as necessary.
 (実施の形態4)
 実施の形態4に係るプリプレグは、図3に示す実施の形態3の樹脂組成物20またはその半硬化物と、繊維質基材とを備える。繊維質基材は、樹脂組成物20または半硬化物のマトリクス中に存在する。プリプレグは、樹脂組成物20と繊維質基材との複合材料である。本実施の形態によれば、高周波対応の配線板に適したプリプレグを提供できる。
(Embodiment 4)
The prepreg according to Embodiment 4 includes the resin composition 20 of Embodiment 3 shown in FIG. 3 or a semi-cured product thereof, and a fibrous base material. The fibrous base material is present in the matrix of the resin composition 20 or semi-cured material. Prepreg is a composite material of the resin composition 20 and a fibrous base material. According to this embodiment, it is possible to provide a prepreg suitable for high-frequency wiring boards.
 本実施の形態において、半硬化物は、樹脂組成物20をさらに硬化しうる程度に途中まで硬化した状態の材料を意味する。すなわち、半硬化物は、樹脂組成物20を半硬化した状態の材料である。例えば、樹脂組成物20は、加熱すると、その粘度が徐々に低下する。加熱を続けると、その後、硬化が開始し、その粘度が徐々に上昇する。このような場合、半硬化した状態としては、粘度の上昇が始まった時点から完全に硬化する時点までの期間における樹脂組成物20の状態が挙げられる。 In this embodiment, the semi-cured material refers to a material that is partially cured to the extent that the resin composition 20 can be further cured. That is, the semi-cured material is a material obtained by semi-curing the resin composition 20. For example, when the resin composition 20 is heated, its viscosity gradually decreases. If heating is continued, curing will then begin and its viscosity will gradually increase. In such a case, the semi-cured state includes the state of the resin composition 20 during the period from the time when the viscosity starts to increase until the time when it is completely cured.
 繊維質基材としては、各種の電気絶縁材料用積層板に用いられている公知の材料を使用できる。繊維質基材としては、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、リンター紙などが挙げられる。 As the fibrous base material, known materials used in various electrically insulating material laminates can be used. Examples of the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
 樹脂組成物20は、浸漬、塗布などの処理によって繊維質基材に含浸される。樹脂組成物20が含浸された繊維質基材を所定の加熱条件で加熱することによって、本実施の形態に係る硬化前または半硬化状態のプリプレグが得られる。 The resin composition 20 is impregnated into the fibrous base material through treatments such as dipping and coating. By heating the fibrous base material impregnated with the resin composition 20 under predetermined heating conditions, a pre-cured or semi-cured prepreg according to the present embodiment can be obtained.
 (実施の形態5)
 図4は、実施の形態5における樹脂付きフィルム30の断面図である。樹脂付きフィルム30は、樹脂組成物20またはその半硬化物を含む樹脂層32と、支持フィルム34とを備えている。本実施の形態によれば、絶縁層に適した樹脂付きフィルム30を提供できる。樹脂層32が支持フィルム34によって支持されている。図4の例では、樹脂層32の表面上に支持フィルム34が配置されている。ただし、樹脂層32と支持フィルム34との間に粘着層などの他の層が設けられていてもよい。
(Embodiment 5)
FIG. 4 is a cross-sectional view of a resin-coated film 30 in Embodiment 5. The resin-coated film 30 includes a resin layer 32 containing the resin composition 20 or a semi-cured product thereof, and a support film 34. According to this embodiment, a resin-coated film 30 suitable for an insulating layer can be provided. The resin layer 32 is supported by a support film 34. In the example of FIG. 4, a support film 34 is placed on the surface of the resin layer 32. However, another layer such as an adhesive layer may be provided between the resin layer 32 and the support film 34.
 樹脂層32は、図3に示す実施の形態3の樹脂組成物20またはその半硬化物を含み、繊維質基材を含んでいてもよく、含んでいなくてもよい。繊維質基材としては、プリプレグの繊維質基材と同じ材料を使用できる。樹脂層32は、硬化して絶縁層に変化する。そのような絶縁層の例は、配線板の絶縁層である。 The resin layer 32 contains the resin composition 20 of Embodiment 3 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material. As the fibrous base material, the same material as the fibrous base material of the prepreg can be used. The resin layer 32 hardens and changes into an insulating layer. An example of such an insulating layer is an insulating layer of a wiring board.
 支持フィルム34としては、樹脂付きフィルムに用いられる支持フィルムを限定なく使用できる。支持フィルム34としては、ポリエステルフィルム、ポリエチレンテレフタレートフィルムなどの樹脂フィルムが挙げられる。 As the support film 34, any support film used for resin-coated films can be used without limitation. Examples of the support film 34 include resin films such as polyester films and polyethylene terephthalate films.
 (実施の形態6)
 図5は、実施の形態6における樹脂付き金属箔40の断面図である。樹脂付き金属箔40は、樹脂組成物20またはその半硬化物を含む樹脂層42と、金属箔44とを備える。樹脂層42が金属箔44によって支持されている。本実施の形態によれば、配線板などの電子回路部品に適した樹脂付き金属箔40を提供できる。図5の例では、樹脂層42の表面上に金属箔44が配置されている。ただし、樹脂層42と金属箔44との間に粘着層などの他の層が設けられていてもよい。
(Embodiment 6)
FIG. 5 is a cross-sectional view of resin-coated metal foil 40 in Embodiment 6. The resin-coated metal foil 40 includes a resin layer 42 containing the resin composition 20 or a semi-cured product thereof, and a metal foil 44. A resin layer 42 is supported by a metal foil 44. According to this embodiment, a resin-coated metal foil 40 suitable for electronic circuit components such as wiring boards can be provided. In the example of FIG. 5, a metal foil 44 is placed on the surface of the resin layer 42. However, another layer such as an adhesive layer may be provided between the resin layer 42 and the metal foil 44.
 樹脂層42は、図3に示す実施の形態3の樹脂組成物またはその半硬化物を含み、繊維質基材を含んでいてもよく、含んでいなくてもよい。繊維質基材としては、プリプレグの繊維質基材と同じ材料を使用できる。樹脂層42は、硬化して絶縁層に変化する。そのような絶縁層の例は、配線板の絶縁層である。 The resin layer 42 contains the resin composition of Embodiment 3 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material. As the fibrous base material, the same material as the fibrous base material of the prepreg can be used. The resin layer 42 hardens and changes into an insulating layer. An example of such an insulating layer is an insulating layer of a wiring board.
 金属箔44としては、樹脂付き金属箔および金属張積層板に用いられる金属箔を限定なく使用できる。金属箔としては、銅箔、アルミニウム箔などが挙げられる。 As the metal foil 44, resin-coated metal foil and metal foil used for metal-clad laminates can be used without limitation. Examples of the metal foil include copper foil and aluminum foil.
 (実施の形態7)
 図6は、実施の形態7における金属張積層板50の断面図である。金属張積層板50は、絶縁層52および少なくとも1つの金属箔54を備えている。本実施の形態によれば、配線板に適した金属張積層板50を提供できる。絶縁層52は、図3に示す実施の形態3の樹脂組成物20の硬化物または実施の形態4のプリプレグの硬化物を含む。金属箔54は、絶縁層52の表面上に配置されている。本実施の形態では、絶縁層52の表面と裏面とのそれぞれに金属箔54が配置されている。
(Embodiment 7)
FIG. 6 is a cross-sectional view of a metal-clad laminate 50 in Embodiment 7. Metal-clad laminate 50 includes an insulating layer 52 and at least one metal foil 54 . According to this embodiment, a metal-clad laminate 50 suitable for a wiring board can be provided. The insulating layer 52 includes a cured product of the resin composition 20 of the third embodiment shown in FIG. 3 or a cured product of the prepreg of the fourth embodiment. Metal foil 54 is placed on the surface of insulating layer 52. In this embodiment, metal foils 54 are placed on each of the front and back surfaces of the insulating layer 52.
 金属張積層板50は、典型的には、実施の形態4のプリプレグを用いて製造される。例えば、1から20枚のプリプレグを重ね合わせて積層体を形成する。プリプレグの積層体の片面または両面に金属箔を配置し、加熱および加圧することによって金属張積層板50が得られる。金属箔54としては、銅箔、アルミニウム箔などが挙げられる。 The metal-clad laminate 50 is typically manufactured using the prepreg of Embodiment 4. For example, a laminate is formed by stacking 1 to 20 sheets of prepreg. A metal-clad laminate 50 is obtained by placing metal foil on one or both sides of the prepreg laminate and heating and pressurizing the prepreg laminate. Examples of the metal foil 54 include copper foil, aluminum foil, and the like.
 金属張積層板50を製造する際の成形条件には、例えば、電気絶縁材料用積層板および多層板を製造する際の成形条件が適用されうる。 For example, the molding conditions for manufacturing a laminate for electrically insulating materials and a multilayer board can be applied to the molding conditions for manufacturing the metal-clad laminate 50.
 (実施の形態8)
 図7は、実施の形態8における配線板60の断面図である。配線板60は、絶縁層62および配線64を備えている。本実施の形態によれば、高周波に適した配線板60を提供できる。絶縁層62は、図3に示す実施の形態3の樹脂組成物20の硬化物または実施の形態4のプリプレグの硬化物を含む。配線64は、絶縁層62によって支持されている。配線64は、詳細には、絶縁層62の上に配置されている。金属箔を部分的に除去することによって配線64が形成されうる。
(Embodiment 8)
FIG. 7 is a cross-sectional view of wiring board 60 in Embodiment 8. Wiring board 60 includes an insulating layer 62 and wiring 64. According to this embodiment, a wiring board 60 suitable for high frequencies can be provided. The insulating layer 62 includes a cured product of the resin composition 20 of the third embodiment shown in FIG. 3 or a cured product of the prepreg of the fourth embodiment. The wiring 64 is supported by the insulating layer 62. Specifically, the wiring 64 is arranged on the insulating layer 62. Wiring 64 may be formed by partially removing the metal foil.
 図6に示す金属張積層板50の表面の金属箔54をエッチング加工などの方法でパターニングすることによって、絶縁層62の表面上に回路をなす配線64が設けられた配線板60が得られる。すなわち、配線板60は、回路が形成されるように金属張積層板50の表面の金属箔54を部分的に除去することによって得られる。 By patterning the metal foil 54 on the surface of the metal-clad laminate 50 shown in FIG. 6 by a method such as etching, a wiring board 60 in which wiring 64 forming a circuit is provided on the surface of the insulating layer 62 is obtained. That is, the wiring board 60 is obtained by partially removing the metal foil 54 on the surface of the metal-clad laminate 50 so that a circuit is formed.
 配線板60の少なくとも一方の面に実施の形態4のプリプレグを積層させて加熱および加圧することによって新たな積層板を形成してもよい。得られた積層板の表面の金属箔をパターニングして配線を形成すれば、多層の配線板が得られる。 A new laminate may be formed by laminating the prepreg of Embodiment 4 on at least one surface of the wiring board 60 and applying heat and pressure. A multilayer wiring board can be obtained by patterning the metal foil on the surface of the obtained laminate to form wiring.
 以下に実施例を示し、本開示を具体的に説明する。実施例は、本開示を説明するものであり、制限を加えるものではない。 Examples are shown below to specifically explain the present disclosure. The examples are illustrative of the disclosure and are not limiting.
 ≪実施例1≫
 [金属有機構造体(MOF)]
 MOFとして、ZIF-8粒子(Aldrich社製、製品名:BasoliteZ1200)を用いた。
≪Example 1≫
[Metal-organic framework (MOF)]
As the MOF, ZIF-8 particles (manufactured by Aldrich, product name: Basolite Z1200) were used.
 [ケイ素含有ポリマーの合成]
 ケイ素ポリマーとして、上記式(2)で表されるケイ素含有ポリマーを合成した。具体的には、上記式(3)で表されるスチレンブタジエンコポリマー(日本曹達社製、品番:1,2-SBS)と、上記式(4)で表される有機ケイ素化合物(東京化成工業社製、品番:T0135、m=3、R6=H)とを、白金触媒の存在下でヒドロシリル化した。これにより、上記式(2)で表される実施例1のケイ素含有ポリマーを得た。得られたケイ素含有ポリマーの組成は、1H核磁気共鳴(NMR)測定(600MHz)から得られたプロファイルにおいて、各官能基に相当するピークの積分値の比から決定した。NMR装置として、JEOL社製のJNM ECZ600Rを使用した。その結果、実施例1のケイ素含有ポリマーは、上記式(2)において、a=10、b=61、c=13、d=0、m=3、R6=メチル基(-CH3)を満たしていた。実施例1のケイ素含有ポリマーのシリル化率は、17.6%であった。なお、シリル化率は、-SiR2 3-m(OR1mで示される官能基の導入された末端と導入されていない末端の比率を算出することによって確認した。ケイ素含有ポリマーの数平均分子量は、GPC測定(東ソー社製、HLC-8320GPC)により、5900と算出された。
[Synthesis of silicon-containing polymer]
A silicon-containing polymer represented by the above formula (2) was synthesized as a silicon polymer. Specifically, a styrene-butadiene copolymer represented by the above formula (3) (manufactured by Nippon Soda Co., Ltd., product number: 1,2-SBS) and an organosilicon compound represented by the above formula (4) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number: 1,2-SBS) (product number: T0135, m=3, R 6 =H) was hydrosilylated in the presence of a platinum catalyst. Thereby, the silicon-containing polymer of Example 1 represented by the above formula (2) was obtained. The composition of the obtained silicon-containing polymer was determined from the ratio of the integral values of the peaks corresponding to each functional group in the profile obtained from 1 H nuclear magnetic resonance (NMR) measurement (600 MHz). JNM ECZ600R manufactured by JEOL was used as an NMR apparatus. As a result, the silicon-containing polymer of Example 1 has a=10, b=61, c=13, d=0, m=3, R 6 =methyl group (-CH 3 ) in the above formula (2). It was fulfilling. The silylation rate of the silicon-containing polymer of Example 1 was 17.6%. The silylation rate was confirmed by calculating the ratio of the end to which the functional group represented by --SiR 2 3-m (OR 1 ) m was introduced and the end to which the functional group was not introduced. The number average molecular weight of the silicon-containing polymer was calculated to be 5900 by GPC measurement (manufactured by Tosoh Corporation, HLC-8320GPC).
 [複合材料の合成]
 5mLのトルエンに2.5gのケイ素含有ポリマーを溶かし、第1溶液を得た。次に、20mLのトルエン中に2gのZIF-8粒子を添加し、超音波洗浄機を用いて粒子を分散させ、第2溶液を得た。第2溶液をマグネティックスターラーで攪拌しながら、先に調整した第1溶液を加え、室温で12時間攪拌した。その後、濾過により粉末を得た。得られた粉末にトルエンを加えて、超音波分散を行った後、遠心分離により上澄み液を除いた。上記洗浄操作を3回繰り返した後、大気中で乾燥させた。これにより、実施例1の複合材料粒子を得た。
[Synthesis of composite materials]
A first solution was obtained by dissolving 2.5 g of silicon-containing polymer in 5 mL of toluene. Next, 2 g of ZIF-8 particles were added to 20 mL of toluene, and the particles were dispersed using an ultrasonic cleaner to obtain a second solution. While stirring the second solution with a magnetic stirrer, the previously prepared first solution was added, and the mixture was stirred at room temperature for 12 hours. Thereafter, a powder was obtained by filtration. After adding toluene to the obtained powder and performing ultrasonic dispersion, the supernatant liquid was removed by centrifugation. After repeating the above washing operation three times, it was dried in the air. As a result, composite material particles of Example 1 were obtained.
 [ケイ素含有ポリマーの結合の確認]
 実施例1の複合材料においてケイ素含有ポリマーがZIF-8の表面に結合していることは、複合材料の赤外吸収スペクトルおよびO1sXPSスペクトルによって確認した。赤外吸収スペクトルは、フーリエ変換赤外分光分析(FT-IR)の拡散反射法によって得た。
[Confirmation of bonding of silicon-containing polymer]
It was confirmed by the infrared absorption spectrum and O1sXPS spectrum of the composite material that the silicon-containing polymer was bonded to the surface of ZIF-8 in the composite material of Example 1. Infrared absorption spectra were obtained by the diffuse reflection method of Fourier transform infrared spectroscopy (FT-IR).
 図8に、実施例1の複合材料の赤外吸収スペクトルおよびZIF-8の赤外吸収スペクトルを示す。図8において、横軸は波数(cm-1)を示し、縦軸は透過率(%)を示す。なお、図8は、2つの赤外吸収スペクトルの傾向を比較するための図であるので、縦軸の目盛は省略している。図8に示すように、実施例1の複合材料において、ビニル基の変角振動に由来するピークPが観測されていることから、ZIF-8の表面にケイ素含有ポリマーが存在することが確認された。 FIG. 8 shows the infrared absorption spectrum of the composite material of Example 1 and the infrared absorption spectrum of ZIF-8. In FIG. 8, the horizontal axis indicates wave number (cm -1 ), and the vertical axis indicates transmittance (%). Note that since FIG. 8 is a diagram for comparing trends of two infrared absorption spectra, the scale on the vertical axis is omitted. As shown in FIG. 8, in the composite material of Example 1, a peak P derived from the bending vibration of the vinyl group was observed, which confirmed the presence of silicon-containing polymer on the surface of ZIF-8. Ta.
 図9に、実施例1の複合材料のO1sXPSスペクトルを示す。図10に、ZIF-8のO1sXPSスペクトルを示す。図9および図10において、横軸は結合エネルギー(eV)を示し、縦軸は任意単位で強度を示す。図9に示すように、実施例1の複合材料のO1sXPSスペクトルのピーク分離により、Si-O-Zn結合、およびSi-O-Si結合が確認できた。これらの結果から、実施例1の複合材料では、ケイ素含有ポリマーがZn-O-Si結合を含む結合を介してZIF-8の表面に固定化されていることが確認された。 FIG. 9 shows the O1sXPS spectrum of the composite material of Example 1. FIG. 10 shows the O1sXPS spectrum of ZIF-8. In FIGS. 9 and 10, the horizontal axis indicates binding energy (eV), and the vertical axis indicates intensity in arbitrary units. As shown in FIG. 9, peak separation of the O1sXPS spectrum of the composite material of Example 1 confirmed Si--O--Zn bonds and Si--O--Si bonds. From these results, it was confirmed that in the composite material of Example 1, the silicon-containing polymer was immobilized on the surface of ZIF-8 via bonds including Zn--O--Si bonds.
 [複合材料を含む膜の作製]
 以下の方法で、実施例1の複合材料粒子を40Vol%含む実施例1の膜を作製した。なお、複合材料粒子の密度は0.921g/cm3とし、それ以外の構成要素の密度は全て1g/cm3とした。まず、5mLのトルエンに、樹脂の主成分としての0.7950gの反応型低分子量(分子量2400)ポリフェニレンエーテル、架橋助剤としての0.0900gのシアヌル酸アリル誘導体(四国化成社製、製品名:L-DAIC)、重合開始剤としての0.0150gの過酸化ジクミル、0.5526gの実施例1の複合材料粒子をこの順番で加えて、混合物を得た。超音波洗浄機を用いて混合物を3分間分散した後、マグネティックスターラーで30分間攪拌し、懸濁液を得た。90℃、1時間の条件で懸濁液を加熱し、続けて110℃、3分間の条件で真空引きを複数回繰り返した。これにより、溶媒を除去したペースト状の固体を得た。ペースト状の固体を150℃、10MPaの条件で5分間プレスした後、続けて190℃、10MPaの条件で5分間プレスし、硬化させた。その後、200℃で12時間真空引きすることにより、実施例1の膜を得た。実施例1の膜の厚みは、0.273mmであった。なお、膜の厚みは、膜の任意の5点について測定し、測定値の平均値として求めた。
[Preparation of membrane containing composite material]
A membrane of Example 1 containing 40 vol % of the composite material particles of Example 1 was produced by the following method. Note that the density of the composite material particles was 0.921 g/cm 3 , and the density of all other constituent elements was 1 g/cm 3 . First, 0.7950 g of reactive low molecular weight (molecular weight 2400) polyphenylene ether as the main component of the resin and 0.0900 g of allyl cyanurate derivative (manufactured by Shikoku Kasei Co., Ltd., product name: L-DAIC), 0.0150 g of dicumyl peroxide as a polymerization initiator, and 0.5526 g of the composite material particles of Example 1 were added in this order to obtain a mixture. The mixture was dispersed for 3 minutes using an ultrasonic cleaner, and then stirred for 30 minutes using a magnetic stirrer to obtain a suspension. The suspension was heated at 90° C. for 1 hour, and then vacuumed at 110° C. for 3 minutes several times. As a result, a paste-like solid from which the solvent had been removed was obtained. The paste-like solid was pressed for 5 minutes at 150° C. and 10 MPa, and subsequently pressed for 5 minutes at 190° C. and 10 MPa to harden it. Thereafter, the film of Example 1 was obtained by evacuation at 200° C. for 12 hours. The thickness of the film in Example 1 was 0.273 mm. The thickness of the film was measured at five arbitrary points on the film, and was determined as the average value of the measured values.
 ≪比較例1≫
 MOFとして、実施例1で用いたZIF-8粒子(Aldrich社製、製品名:BasoliteZ1200)を用いた。比較例1では、ケイ素含有ポリマーに変えて、ポリドーパミンを用いて複合材料の合成を行った。ドーパミンは、無機フィラー表面に強く結合する天然の接着剤として近年注目されている。100mLの脱イオン水中に、4.2gのトリスヒドロキシメチルアミノメタンを溶かし、次いで塩酸を加え、pH7に調整したトリス緩衝液を得た。次に、3gのZIF-8粒子をトリス緩衝液に添加し、マグネティックスターラーで攪拌しながら、2.25gのドーパミン塩酸塩を添加し、80℃で20時間攪拌した。その後、濾過により粉末を得た。得られた粉末に脱イオン水を加えて、超音波分散を行った後、遠心分離により上澄み液を除いた。上記洗浄操作を3回繰り返した後、大気中で乾燥させることで、比較例1の複合材料粒子を得た。粉末の色が白色からドーパミン層に特徴的な灰色に変化したことから、ZIF-8粉末の表面にドーパミン層が修飾されたことを確認した。
≪Comparative example 1≫
As the MOF, the ZIF-8 particles used in Example 1 (manufactured by Aldrich, product name: Basolite Z1200) were used. In Comparative Example 1, a composite material was synthesized using polydopamine instead of the silicon-containing polymer. Dopamine has recently attracted attention as a natural adhesive that strongly binds to the surface of inorganic fillers. 4.2 g of trishydroxymethylaminomethane was dissolved in 100 mL of deionized water, and then hydrochloric acid was added to obtain a Tris buffer solution adjusted to pH 7. Next, 3 g of ZIF-8 particles were added to the Tris buffer solution, and while stirring with a magnetic stirrer, 2.25 g of dopamine hydrochloride was added and stirred at 80° C. for 20 hours. Thereafter, a powder was obtained by filtration. After adding deionized water to the obtained powder and performing ultrasonic dispersion, the supernatant liquid was removed by centrifugation. After repeating the above washing operation three times, the composite material particles of Comparative Example 1 were obtained by drying in the air. Since the color of the powder changed from white to gray, which is characteristic of a dopamine layer, it was confirmed that the surface of the ZIF-8 powder was modified with a dopamine layer.
 ≪比較例2≫
 MOFとして、実施例1で用いたZIF-8粒子(Aldrich社製、製品名:BasoliteZ1200)を用いた。比較例2では、ケイ素含有ポリマーに変えて、3-メタクリロキシプロピルトリメトキシシラン(信越化学社製、製品名:KBM-503)を用いて複合材料の合成を行った。3-メタクリロキシプロピルトリメトキシシランは、ケイ素含有低分子化合物からなる一般的なシランカップリング剤の一つである。ケイ素含有ポリマーを3-メタクリロキシプロピルトリメトキシシランに変更したことを除いて実施例1と同じ方法により、表面修飾を行った。
≪Comparative example 2≫
As the MOF, the ZIF-8 particles used in Example 1 (manufactured by Aldrich, product name: Basolite Z1200) were used. In Comparative Example 2, a composite material was synthesized using 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-503) instead of the silicon-containing polymer. 3-methacryloxypropyltrimethoxysilane is one of the common silane coupling agents made of a silicon-containing low-molecular compound. Surface modification was carried out in the same manner as in Example 1, except that the silicon-containing polymer was changed to 3-methacryloxypropyltrimethoxysilane.
 複合材料粒子として、比較例2の複合材料粒子を用いたことを除いて、実施例1と同じ方法により、比較例2の膜を作製した。比較例2の膜の厚みは、0.268mmであった。 A membrane of Comparative Example 2 was produced in the same manner as in Example 1, except that the composite material particles of Comparative Example 2 were used as the composite material particles. The thickness of the film of Comparative Example 2 was 0.268 mm.
 ≪比較例3≫
 比較例3の粒子として、実施例1で用いたZIF-8粒子(Aldrich社製、製品名:BasoliteZ1200)をそのまま用いた。
≪Comparative example 3≫
As the particles of Comparative Example 3, the ZIF-8 particles (manufactured by Aldrich, product name: Basolite Z1200) used in Example 1 were used as they were.
 複合材料粒子として、比較例3のZIF-8粒子を用いたことを除いて、実施例1と同じ方法により、比較例3の膜を作製した。比較例3の膜の厚みは、0.260mmであった。 A membrane of Comparative Example 3 was produced in the same manner as in Example 1, except that ZIF-8 particles of Comparative Example 3 were used as composite material particles. The thickness of the film of Comparative Example 3 was 0.260 mm.
 上述した実施例1および比較例1から3で得られた各粒子について、以下に記載の方法に基づき、表面修飾前後における誘電特性および化学的安定性を評価した。 The dielectric properties and chemical stability of each particle obtained in Example 1 and Comparative Examples 1 to 3 described above were evaluated before and after surface modification based on the method described below.
 [表面修飾前後における粒子の細孔容積の評価]
 77Kにおける窒素吸着測定により、表面修飾前後のZIF-8粒子の相対圧0.99における細孔容積を測定した。窒素吸着測定装置として、マイクロトラック・ベル社製のBELSORP MINI Xを使用した。測定に際し、真空下(10Pa以下)、200℃、1時間の条件で粒子に前処理を行った。結果を表1に示す。
[Evaluation of pore volume of particles before and after surface modification]
The pore volume at a relative pressure of 0.99 of the ZIF-8 particles before and after surface modification was measured by nitrogen adsorption measurement at 77K. BELSORP MINI X manufactured by Microtrac Bell was used as a nitrogen adsorption measuring device. During the measurement, the particles were pretreated under the conditions of vacuum (10 Pa or less), 200° C., and 1 hour. The results are shown in Table 1.
 [表面修飾前後における粒子の誘電特性の評価]
 1GHzの周波数における空洞共振法により、表面修飾前後のZIF-8粒子の比誘電率および誘電正接を測定した。空洞共振機として、AET社製のMS46122Bを使用した。測定に際し、真空下(10Pa以下)、200℃、1時間の条件で粒子に前処理を行った。その後、大気下で測定を行った。ZIF-8の真密度からサンプル管の充填率を計算し、粒子の比誘電率および誘電正接を算出した。粒子の比誘電率および比誘電正接は、実測された値をサンプル管の充填率で換算することで算出した。サンプル管の充填率は、粒子の質量、サンプル管において粒子が占めるかさ体積、および各粒子の真密度から決定した。ZIF-8の真密度として、結晶構造から算出される密度(0.921g/cm3)を用いた。表面修飾後の粒子の真密度は、下記式(X1)および(Y1)から決定した。ZIF-8の空隙率は50%とした。結果を表1に示す。表面修飾後の比誘電率が2.00以下、誘電正接が0.003以下であれば、表面修飾により誘電特性が悪化していないと判断した。
 表面修飾後の粒子の真密度=(ZIF-8の結晶構造から算出される密度)÷((ZIF-8の空隙率×0.01)×(空隙維持率)×0.01)・・・式(X1)
 空隙維持率=(表面修飾後の粒子の細孔容積)÷(表面修飾前の粒子の細孔容積)・・・式(Y1)
[Evaluation of dielectric properties of particles before and after surface modification]
The relative dielectric constant and dielectric loss tangent of the ZIF-8 particles before and after surface modification were measured by a cavity resonance method at a frequency of 1 GHz. MS46122B manufactured by AET was used as the cavity resonator. During the measurement, the particles were pretreated under the conditions of vacuum (10 Pa or less), 200° C., and 1 hour. Thereafter, measurements were performed in the atmosphere. The filling factor of the sample tube was calculated from the true density of ZIF-8, and the relative dielectric constant and dielectric loss tangent of the particles were calculated. The dielectric constant and dielectric loss tangent of the particles were calculated by converting the actually measured values by the filling factor of the sample tube. The filling factor of the sample tube was determined from the mass of the particles, the bulk volume occupied by the particles in the sample tube, and the true density of each particle. As the true density of ZIF-8, the density calculated from the crystal structure (0.921 g/cm 3 ) was used. The true density of the particles after surface modification was determined from the following formulas (X1) and (Y1). The porosity of ZIF-8 was 50%. The results are shown in Table 1. If the dielectric constant after surface modification was 2.00 or less and the dielectric loss tangent was 0.003 or less, it was determined that the dielectric properties were not deteriorated by surface modification.
True density of particles after surface modification = (density calculated from the crystal structure of ZIF-8) ÷ ((porosity of ZIF-8 x 0.01) x (porosity maintenance rate) x 0.01)... Formula (X1)
Void maintenance rate = (pore volume of particles after surface modification) ÷ (pore volume of particles before surface modification)...Equation (Y1)
 [エッチング処理前後における膜の化学的安定性の評価]
 40GHzの周波数における空洞共振法により、エッチング処理前後の複合材料粒子を含む膜の比誘電率を測定した。空洞共振機として、AET社製のMS46122Bを使用した。結果を表1に示す。エッチング処理前後の比誘電率の変化量の絶対値が0.02以下であれば、配線板の絶縁層として当該膜を適用した場合に、設計上の支障をきたさない程度の十分な化学的安定性を有していると判断した。なお、0.02以下は、測定装置の誤差範囲内(±0.02)でもある。エッチング処理は、以下の条件で行った。エッチング液として、銅板のパターニング処理時に一般的に用いられる塩化第二銅溶液(HCl濃度2.5mol/リットル:CuCl2、H22、H2Oを含む)を用いた。エッチング液に対し、4cm×4cmにカットした膜を室温で80時間含浸した。その後、水で膜を複数回洗浄して、40℃、30分間の条件で真空引きした。これにより、エッチング処理後の膜を得た。
[Evaluation of chemical stability of film before and after etching treatment]
The dielectric constant of the film containing composite material particles before and after etching was measured by cavity resonance method at a frequency of 40 GHz. MS46122B manufactured by AET was used as the cavity resonator. The results are shown in Table 1. If the absolute value of the change in relative dielectric constant before and after etching treatment is 0.02 or less, the film is chemically stable enough to not cause design problems when applied as an insulating layer of a wiring board. It was determined that the person has sex. Note that 0.02 or less is also within the error range of the measuring device (±0.02). The etching process was performed under the following conditions. As the etching solution, a cupric chloride solution (HCl concentration: 2.5 mol/liter: containing CuCl 2 , H 2 O 2 , and H 2 O), which is commonly used in the patterning process of copper plates, was used. A film cut into 4 cm x 4 cm was soaked in the etching solution for 80 hours at room temperature. Thereafter, the membrane was washed several times with water and vacuumed at 40° C. for 30 minutes. Thereby, a film after etching treatment was obtained.
 ≪考察≫
 表1に示されるように、実施例1では、表面修飾後における比誘電率および誘電正接の悪化が見られず、優れた誘電特性を示した。
≪Consideration≫
As shown in Table 1, in Example 1, no deterioration of the dielectric constant and dielectric loss tangent was observed after surface modification, and excellent dielectric properties were exhibited.
 表1に示されるように、実施例1では、エッチング処理前後で比誘電率にほとんど変化が見られず、優れた化学的安定性を示した。実施例1では、エッチング処理によりZIF-8の構造の変化がほとんど生じなかったためと考えられる。 As shown in Table 1, in Example 1, there was almost no change in the dielectric constant before and after the etching treatment, and excellent chemical stability was exhibited. This is believed to be because in Example 1, the etching treatment caused almost no change in the structure of ZIF-8.
 一方、比較例1では、表面修飾により比誘電率および誘電正接が上昇し、誘電特性が悪化した。これは、表面修飾の際にZIF-8の空隙内部で重合反応が進行し、空隙の閉塞が生じたため、および、ドーパミン骨格に多量に存在する水酸基(-OH)が表面に露出したためと考えられる。比較例2では、表面修飾による誘電特性の悪化は比較例1に比べてやや緩和されているものの、表面修飾層なしの比較例3と同様に、エッチング処理により比誘電率が変化した。これは、比較例2では、エッチング処理によりZIF-8の構造が崩壊し、粒子がエッチング液に溶出し、空隙が増加したためと考えられる。 On the other hand, in Comparative Example 1, the relative dielectric constant and dielectric loss tangent increased due to surface modification, and the dielectric properties deteriorated. This is thought to be because a polymerization reaction progressed inside the pores of ZIF-8 during surface modification, resulting in occlusion of the pores, and also because hydroxyl groups (-OH) present in large amounts in the dopamine skeleton were exposed on the surface. . In Comparative Example 2, although the deterioration of dielectric properties due to surface modification was somewhat alleviated compared to Comparative Example 1, the relative dielectric constant changed due to the etching treatment, similar to Comparative Example 3 without a surface modification layer. This is considered to be because, in Comparative Example 2, the structure of ZIF-8 collapsed due to the etching process, particles were eluted into the etching solution, and voids increased.
 ≪実施例2≫
 [金属有機構造体(MOF)の合成]
 MOFとして、UiO-67を用いた。UiO-67粒子は、非特許文献8に記載のサンプルC-3BAのUiO-67と同じ合成方法により合成した。合成した粒子がUiO-67の構造を有していることは、粉末X線回折測定によって確認した。粉末X線回折測定装置として、リガク社製のRINT2000を使用した。粉末X線回折におけるX線源としてCu-Kα線(λ=1.541Å)を用いた。図11に、実施例2で合成された粒子のX線回折パターンの一例、および結晶構造から予測されるUiO-67のX線回折シミュレーションパターンを並べて示す。図11において、横軸は回折角度(2θ)を示し、縦軸はX線強度を示す。なお、図11は、2つのX線回折パターンの傾向を比較するための図であるので、縦軸の目盛は省略している。両者のX線回折パターンの傾向が類似していることから、実施例2で合成した粒子の結晶構造がUiO-67であると判断した。
≪Example 2≫
[Synthesis of metal-organic framework (MOF)]
UiO-67 was used as the MOF. UiO-67 particles were synthesized by the same synthesis method as UiO-67 of sample C-3BA described in Non-Patent Document 8. It was confirmed by powder X-ray diffraction measurement that the synthesized particles had the structure of UiO-67. RINT2000 manufactured by Rigaku Co., Ltd. was used as a powder X-ray diffraction measuring device. Cu-Kα radiation (λ=1.541 Å) was used as an X-ray source in powder X-ray diffraction. FIG. 11 shows an example of the X-ray diffraction pattern of the particles synthesized in Example 2 and an X-ray diffraction simulation pattern of UiO-67 predicted from the crystal structure. In FIG. 11, the horizontal axis shows the diffraction angle (2θ), and the vertical axis shows the X-ray intensity. Note that since FIG. 11 is a diagram for comparing trends of two X-ray diffraction patterns, the scale on the vertical axis is omitted. Since the trends of the X-ray diffraction patterns of both particles were similar, it was determined that the crystal structure of the particles synthesized in Example 2 was UiO-67.
 [ケイ素含有ポリマー]
 ケイ素含有ポリマーとして、実施例1で合成したケイ素含有ポリマーを用いた。
[Silicon-containing polymer]
The silicon-containing polymer synthesized in Example 1 was used as the silicon-containing polymer.
 [複合材料の合成]
 5mLのトルエンに1gのケイ素含有ポリマーを溶かし、第1溶液を得た。次に、30mLのトルエン中に3gのUiO-67粒子を添加し、超音波洗浄機を用いて粒子を分散させ、第2溶液を得た。第2溶液をマグネティックスターラーで攪拌しながら、先に調整した第1溶液を加え、室温で12時間攪拌した。その後、濾過により粉末を得た。得られた粉末にトルエンを加えて、超音波分散を行った後、遠心分離により上澄み液を除いた。上記洗浄操作を3回繰り返した後、大気中で乾燥させた。これにより、実施例2の複合材料粒子を得た。
[Synthesis of composite materials]
A first solution was obtained by dissolving 1 g of silicon-containing polymer in 5 mL of toluene. Next, 3 g of UiO-67 particles were added to 30 mL of toluene, and the particles were dispersed using an ultrasonic cleaner to obtain a second solution. While stirring the second solution with a magnetic stirrer, the previously prepared first solution was added, and the mixture was stirred at room temperature for 12 hours. Thereafter, a powder was obtained by filtration. After adding toluene to the obtained powder and performing ultrasonic dispersion, the supernatant liquid was removed by centrifugation. After repeating the above washing operation three times, it was dried in the air. As a result, composite material particles of Example 2 were obtained.
 [ケイ素含有ポリマーの結合の確認]
 実施例1の複合材料においてケイ素含有ポリマーがMOF(ZIF-8)の表面に結合していることが確認されたことから、実施例2の複合材料においても、同様の結合形式により、ケイ素含有ポリマーがMOF(UiO-67)の表面に結合していることが推測された。
[Confirmation of bonding of silicon-containing polymer]
Since it was confirmed that the silicon-containing polymer was bonded to the surface of MOF (ZIF-8) in the composite material of Example 1, the silicon-containing polymer was bonded to the surface of the MOF (ZIF-8) in the composite material of Example 2 as well. It was speculated that this bonded to the surface of MOF (UiO-67).
 ≪比較例4≫
 MOFとして、実施例2で合成したUiO-67を用いた。比較例4では、ケイ素含有ポリマーに変えて、ポリドーパミンを用いて複合材料の合成を行った。ドーパミンは、無機フィラー表面に強く結合する天然の接着剤として近年注目されている。ドーパミンがMOFの表面で自己酸化重合することにより、ポリドーパミン膜が形成されることが知られている。100mLの脱イオン水中に、4.2gのトリスヒドロキシメチルアミノメタンを溶かし、次いで塩酸を加え、pH=7に調整したトリス緩衝液を得た。次に、3gのUiO-67粒子をトリス緩衝液に添加し、マグネティックスターラーで攪拌しながら、2.25gのドーパミン塩酸塩を添加し、80℃で20時間攪拌した。その後、濾過により粉末を得た。得られた粉末に脱イオン水を加えて、超音波分散を行った後、遠心分離により上澄み液を除いた。上記洗浄操作を3回繰り返した後、大気中で乾燥させることで、比較例1の複合材料粒子を得た。粉末の色が白色からドーパミン層に特徴的な灰色に変化したことから、UiO-67粉末の表面にドーパミン層が修飾されたことを確認した。
≪Comparative example 4≫
UiO-67 synthesized in Example 2 was used as the MOF. In Comparative Example 4, a composite material was synthesized using polydopamine instead of the silicon-containing polymer. Dopamine has recently attracted attention as a natural adhesive that strongly binds to the surface of inorganic fillers. It is known that a polydopamine film is formed by self-oxidative polymerization of dopamine on the surface of a MOF. 4.2 g of trishydroxymethylaminomethane was dissolved in 100 mL of deionized water, and then hydrochloric acid was added to obtain a Tris buffer solution adjusted to pH=7. Next, 3 g of UiO-67 particles were added to the Tris buffer, and while stirring with a magnetic stirrer, 2.25 g of dopamine hydrochloride was added and stirred at 80° C. for 20 hours. Thereafter, a powder was obtained by filtration. After adding deionized water to the obtained powder and performing ultrasonic dispersion, the supernatant liquid was removed by centrifugation. After repeating the above washing operation three times, the composite material particles of Comparative Example 1 were obtained by drying in the air. Since the color of the powder changed from white to gray, which is characteristic of a dopamine layer, it was confirmed that the surface of the UiO-67 powder was modified with a dopamine layer.
 ≪比較例5≫
 MOFとして、実施例1で合成したUiO-67を用いた。比較例5では、ケイ素含有ポリマーに変えて、3-メタクリロキシプロピルトリメトキシシラン(信越化学社製、製品名:KBM-503)を用いて複合材料の合成を行った。3-メタクリロキシプロピルトリメトキシシランは、ケイ素含有低分子化合物からなる一般的なシランカップリング剤の一つである。ケイ素含有ポリマーを3-メタクリロキシプロピルトリメトキシシランに変更したことを除いて実施例2と同じ方法により、表面修飾を行った。
≪Comparative example 5≫
UiO-67 synthesized in Example 1 was used as the MOF. In Comparative Example 5, a composite material was synthesized using 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-503) instead of the silicon-containing polymer. 3-methacryloxypropyltrimethoxysilane is one of the common silane coupling agents made of a silicon-containing low-molecular compound. Surface modification was carried out in the same manner as in Example 2, except that the silicon-containing polymer was changed to 3-methacryloxypropyltrimethoxysilane.
 ≪比較例6≫
 比較例6の粒子として、実施例2で合成したUiO-67をそのまま用いた。
≪Comparative example 6≫
As the particles of Comparative Example 6, UiO-67 synthesized in Example 2 was used as it was.
 上述した実施例2および比較例4から6で得られた各粒子について、以下に記載の方法に基づき、表面修飾前後における誘電特性および化学的安定性を評価した。 The dielectric properties and chemical stability of each particle obtained in Example 2 and Comparative Examples 4 to 6 described above were evaluated before and after surface modification based on the method described below.
 [表面修飾前後における粒子の誘電特性の評価]
 以下の3つの方法により、実施例および比較例について、表面修飾前後のUiO-67粒子の誘電特性を評価した。
[Evaluation of dielectric properties of particles before and after surface modification]
The dielectric properties of UiO-67 particles before and after surface modification were evaluated for Examples and Comparative Examples using the following three methods.
 [表面修飾前後における粒子の細孔容積の評価]
 77Kにおける窒素吸着測定により、表面修飾前後のUiO-67粒子の相対圧0.99における細孔容積を測定した。窒素吸着測定装置として、マイクロトラック・ベル社製のBELSORP MINI Xを使用した。測定に際し、真空下(10Pa以下)、150℃、5時間の条件で粒子に前処理を行った。結果を表2に示す。
[Evaluation of pore volume of particles before and after surface modification]
The pore volume of the UiO-67 particles before and after surface modification at a relative pressure of 0.99 was measured by nitrogen adsorption measurement at 77K. BELSORP MINI X manufactured by Microtrac Bell was used as a nitrogen adsorption measuring device. During the measurement, the particles were pretreated under vacuum (10 Pa or less) at 150° C. for 5 hours. The results are shown in Table 2.
 [表面修飾前後における粒子の誘電特性の評価]
 1GHzの周波数における空洞共振法により、表面修飾前後のUiO-67粒子の比誘電率および誘電正接を測定した。UiO-67粒子が大気中の水分を吸着することにより、比誘電率および誘電正接の値に影響が出る可能性を考慮して、比誘電率および誘電正接の測定はN2雰囲気下で粉末形態にて行った。空洞共振機として、AET社製のMS46122Bを使用した。測定に際し、真空下(10Pa以下)、150℃、5時間の条件で粒子に前処理を行った。その後、大気暴露させることなく、N2雰囲気下でサンプル管に粒子を充填し、測定を行った。UiO-67の真密度からサンプル管の充填率を計算し、粒子の比誘電率および誘電正接を算出した。粒子の比誘電率および比誘電正接は、実測された値をサンプル管の充填率で換算することで算出した。サンプル管の充填率は、粒子の質量、サンプル管において粒子が占めるかさ体積、および各粒子の真密度から決定した。UiO-67の真密度として、結晶構造から算出される密度(0.708g/cm3)を用いた。表面修飾後の粒子の真密度は、下記式(X2)および(Y1)から決定した。UiO-67の空隙率は68%とした。結果を表2に示す。表面修飾後の比誘電率が2.00以下、誘電正接が0.002以下であれば、表面修飾により誘電特性が悪化していないと判断した。
 表面修飾後の粒子の真密度=(UiO-67の結晶構造から算出される密度)÷((UiO-67の空隙率×0.01)×(空隙維持率)×0.01)・・・式(X2)
 空隙維持率=(表面修飾後の粒子の細孔容積)÷(表面修飾前の粒子の細孔容積)・・・式(Y1)
[Evaluation of dielectric properties of particles before and after surface modification]
The relative dielectric constant and dielectric loss tangent of the UiO-67 particles before and after surface modification were measured by a cavity resonance method at a frequency of 1 GHz. Considering the possibility that UiO-67 particles adsorb moisture in the atmosphere, which may affect the values of the dielectric constant and dielectric loss tangent, measurements of the dielectric constant and dielectric loss tangent were carried out in powder form under an N2 atmosphere. I went there. MS46122B manufactured by AET was used as the cavity resonator. During the measurement, the particles were pretreated under vacuum (10 Pa or less) at 150° C. for 5 hours. Thereafter, the sample tube was filled with particles under an N 2 atmosphere without being exposed to the atmosphere, and measurements were performed. The filling factor of the sample tube was calculated from the true density of UiO-67, and the relative dielectric constant and dielectric loss tangent of the particles were calculated. The dielectric constant and dielectric loss tangent of the particles were calculated by converting the actually measured values by the filling factor of the sample tube. The filling factor of the sample tube was determined from the mass of the particles, the bulk volume occupied by the particles in the sample tube, and the true density of each particle. The density calculated from the crystal structure (0.708 g/cm 3 ) was used as the true density of UiO-67. The true density of the particles after surface modification was determined from the following formulas (X2) and (Y1). The porosity of UiO-67 was 68%. The results are shown in Table 2. If the dielectric constant after surface modification was 2.00 or less and the dielectric loss tangent was 0.002 or less, it was determined that the dielectric properties were not deteriorated by the surface modification.
True density of particles after surface modification = (density calculated from the crystal structure of UiO-67) ÷ ((porosity of UiO-67 x 0.01) x (porosity maintenance rate) x 0.01)... Formula (X2)
Void maintenance rate = (pore volume of particles after surface modification) ÷ (pore volume of particles before surface modification)...Equation (Y1)
 [エッチング処理後における粒子の化学的安定性の評価]
 以下の3つの方法により、実施例2および比較例4から6について、エッチング処理後の複合材料粒子の化学的安定性を評価した。
[Evaluation of chemical stability of particles after etching treatment]
The chemical stability of the composite material particles after the etching process was evaluated for Example 2 and Comparative Examples 4 to 6 using the following three methods.
 [エッチング処理後における粒子の細孔容積の評価]
 上述した77Kにおける窒素吸着測定により、エッチング処理後の複合材料粒子の細孔容積を測定した。結果を表1に示す。エッチング処理は、以下の条件で行った。エッチング液として、銅板のパターニング処理時に一般的に用いられる塩化第二銅溶液(HCl濃度2.5M:CuCl2、H22、H2Oを含む)を用いた。5mLのエッチング液に対し、1gの粒子を1分間含浸し、攪拌した。その後、水で洗浄し、ろ過することによりエッチング処理後の粒子を得た。
[Evaluation of pore volume of particles after etching treatment]
The pore volume of the composite material particles after the etching treatment was measured by nitrogen adsorption measurement at 77K as described above. The results are shown in Table 1. The etching process was performed under the following conditions. As the etching solution, a cupric chloride solution (HCl concentration: 2.5M: containing CuCl 2 , H 2 O 2 , and H 2 O), which is commonly used in patterning processing of copper plates, was used. 5 mL of etching solution was impregnated with 1 g of particles for 1 minute and stirred. Thereafter, the particles were washed with water and filtered to obtain etched particles.
 [エッチング処理後における粒子の誘電特性の評価]
 上述した1GHzの周波数における空洞共振法により、エッチング処理後の複合材料粒子の比誘電率および誘電正接を測定した。粒子の比誘電率および誘電正接は、実測された値をサンプル管の充填率で換算することで算出した。サンプル管の充填率は、粒子の質量、サンプル管において粒子が占めるかさ体積、および各粒子の真密度から決定した。エッチング処理後の粒子の真密度は、次の式(X3)および(Y2)から決定した。結果を表2に示す。エッチング処理後の比誘電率が2.00以下、誘電正接が0.002以下であれば、絶縁層用の低誘電フィラーとして適用可能な程度の低い比誘電率を維持していると判断した。
 エッチング処理後の粒子の真密度=(表面修飾後の粒子の真密度)÷((UiO-67の空隙率×0.01)×(空隙維持率)×0.01)・・・式(X3)
 空隙維持率=(表面修飾後の粒子の細孔容積)÷(エッチング処理後の粒子の細孔容積)・・・式(Y2)
[Evaluation of dielectric properties of particles after etching treatment]
The dielectric constant and dielectric loss tangent of the composite material particles after the etching treatment were measured by the cavity resonance method at a frequency of 1 GHz as described above. The relative permittivity and dielectric loss tangent of the particles were calculated by converting the actually measured values by the filling factor of the sample tube. The filling factor of the sample tube was determined from the mass of the particles, the bulk volume occupied by the particles in the sample tube, and the true density of each particle. The true density of the particles after the etching process was determined from the following equations (X3) and (Y2). The results are shown in Table 2. If the dielectric constant after etching treatment was 2.00 or less and the dielectric loss tangent was 0.002 or less, it was determined that the dielectric constant was maintained low enough to be applicable as a low dielectric filler for an insulating layer.
True density of particles after etching treatment = (true density of particles after surface modification) ÷ ((porosity of UiO-67 x 0.01) x (porosity maintenance rate) x 0.01)...Equation (X3 )
Void maintenance rate = (pore volume of particles after surface modification) ÷ (pore volume of particles after etching treatment)...Equation (Y2)
 エッチング処理は、以下の条件で行った。エッチング液として、塩化第二銅溶液(HCl濃度2.5mol/リットル:CuCl2、H22、H2Oを含む)を用いた。5mLのエッチング液に対し、1gの粒子を1分間含浸し、攪拌した。その後、水で洗浄し、ろ過することによりエッチング処理後の粒子を得た。 The etching process was performed under the following conditions. As the etching solution, a cupric chloride solution (HCl concentration 2.5 mol/liter: containing CuCl 2 , H 2 O 2 , and H 2 O) was used. 5 mL of etching solution was impregnated with 1 g of particles for 1 minute and stirred. Thereafter, the particles were washed with water and filtered to obtain etched particles.
 ≪考察≫
 表2に示されるように、実施例2では、空隙が比較的維持され、表面修飾後の比誘電率および誘電正接の上昇が抑制されていた。
≪Consideration≫
As shown in Table 2, in Example 2, the voids were relatively maintained, and increases in the relative dielectric constant and dielectric loss tangent after surface modification were suppressed.
 表2に示されるように、実施例2では、エッチング処理後も空隙が比較的維持され、比誘電率および誘電正接の上昇が抑制されていた。すなわち、実施例2の複合材料では、化学的安定性が向上していた。 As shown in Table 2, in Example 2, the voids were relatively maintained even after the etching treatment, and increases in the relative permittivity and dielectric loss tangent were suppressed. That is, the composite material of Example 2 had improved chemical stability.
 一方、比較例4では、表面修飾により比誘電率および誘電正接が上昇した。これは、表面修飾の際にUiO-67の空隙内部で重合反応が進行し、空隙の閉塞が生じたため、および、ドーパミン骨格に多量に存在する水酸基(-OH)が表面に露出したためと考えられる。比較例5では、表面修飾による比誘電率および誘電正接の上昇は比較例4に比べて抑制されているものの、表面修飾層なしの比較例6と同様に、エッチング処理により比誘電率および誘電正接が大きく上昇した。これは、比較例5では、エッチング処理によりUiO-67の三次元多孔性構造の崩壊が進んだためと考えられる。 On the other hand, in Comparative Example 4, the relative dielectric constant and dielectric loss tangent increased due to surface modification. This is thought to be because a polymerization reaction progressed inside the pores of UiO-67 during surface modification, resulting in occlusion of the pores, and also because hydroxyl groups (-OH) present in large amounts in the dopamine skeleton were exposed on the surface. . In Comparative Example 5, although the increase in relative permittivity and dielectric loss tangent due to surface modification is suppressed compared to Comparative Example 4, the increase in relative permittivity and dielectric loss tangent due to the etching treatment is suppressed as compared to Comparative Example 6 without a surface modification layer. has increased significantly. This is considered to be because in Comparative Example 5, the three-dimensional porous structure of UiO-67 progressed to collapse due to the etching process.
 上述したように、実施例1および実施例2の複合材料では、比誘電率および誘電正接の上昇が抑制されつつ化学的安定性が向上していた。したがって、このような複合材料をフィラーとして用いることで、樹脂組成物が低い比誘電率および誘電正接を有するとともに、エッチング処理によるMOFの三次元多孔性構造の変質が抑制されることが予想される。結果として、配線板の絶縁層として実装可能な製品を提供することが可能となる。 As described above, in the composite materials of Examples 1 and 2, chemical stability was improved while suppressing increases in relative permittivity and dielectric loss tangent. Therefore, by using such a composite material as a filler, it is expected that the resin composition will have a low dielectric constant and dielectric loss tangent, and that the alteration of the three-dimensional porous structure of the MOF due to etching treatment will be suppressed. . As a result, it is possible to provide a product that can be mounted as an insulating layer on a wiring board.
 なお、実施例1では、MOFとしてZIF-8を用いているが、ZIF-8に代えて、例えば、ZIF-4、ZIF-7、ZIF-12、ZIF-67、ZIF-90、またはZIF-412等のZIFを用いた場合でも、同様に比誘電率および誘電正接の上昇が抑制されつつ化学的安定性が向上することが推測される。また、実施例2では、MOFとしてUiO-67を用いているが、UiO-67に代えて、例えば、UiO-66、UiO-68、NU-1000、NU-1103、MOF-808、PCN-224、DUT-52、BUT-30、またはMIL-140等のZr-MOFを用いた場合でも、同様に比誘電率および誘電正接の上昇が抑制されつつ化学的安定性が向上することが推測される。本開示の複合材料は、MOFとケイ素含有ポリマーとを含むことにより、比誘電率および誘電正接の上昇を抑制しつつ化学的安定性の向上を実現したものだからである。 In Example 1, ZIF-8 is used as the MOF, but instead of ZIF-8, for example, ZIF-4, ZIF-7, ZIF-12, ZIF-67, ZIF-90, or ZIF- Even when ZIF such as No. 412 is used, it is presumed that chemical stability is improved while suppressing increases in relative dielectric constant and dielectric loss tangent. Further, in Example 2, UiO-67 is used as the MOF, but instead of UiO-67, for example, UiO-66, UiO-68, NU-1000, NU-1103, MOF-808, PCN-224 Even when Zr-MOF such as , DUT-52, BUT-30, or MIL-140 is used, it is presumed that chemical stability is improved while suppressing increases in relative dielectric constant and dielectric loss tangent. . This is because the composite material of the present disclosure achieves improved chemical stability while suppressing increases in relative dielectric constant and dielectric loss tangent by including MOF and silicon-containing polymer.
 本開示を表現するために、上述において実施形態を通して本開示を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為しうることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を逸脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 Although the present disclosure has been adequately and fully described through the embodiments above to express the present disclosure, those skilled in the art will readily be able to modify and/or improve the above-described embodiments. should be recognized as such. Therefore, unless the modification or improvement made by a person skilled in the art does not go beyond the scope of the claims stated in the claims, the modifications or improvements are within the scope of the claims. It is interpreted as encompassing.
 本開示の複合材料は、誘電特性および化学的安定性に優れたフィラーを実現できるため、大容量通信に用いられる電子機器の配線板などの用途に適している。 The composite material of the present disclosure can realize a filler with excellent dielectric properties and chemical stability, so it is suitable for applications such as wiring boards of electronic devices used for large-capacity communications.
1 金属有機構造体
2 ケイ素含有ポリマー
10 複合材料
20 樹脂組成物
22 フィラー
24 硬化性樹脂
30 樹脂付きフィルム
32 樹脂層
34 支持フィルム
40 樹脂付き金属箔
42 樹脂層
44 金属箔
50 金属張積層板
52 絶縁層
54 金属箔
60 配線板
62 絶縁層
64 配線
1 Metal-organic structure 2 Silicon-containing polymer 10 Composite material 20 Resin composition 22 Filler 24 Curable resin 30 Resin-coated film 32 Resin layer 34 Support film 40 Resin-coated metal foil 42 Resin layer 44 Metal foil 50 Metal-clad laminate 52 Insulation Layer 54 Metal foil 60 Wiring board 62 Insulating layer 64 Wiring

Claims (23)

  1.  金属有機構造体と、
     ケイ素含有ポリマーと、を備え、
     前記ケイ素含有ポリマーは、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む、
     複合材料。
    a metal-organic structure;
    a silicon-containing polymer;
    The silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
    Composite material.
  2.  前記ケイ素含有ポリマーは、前記金属有機構造体の表面に付着している、
     請求項1に記載の複合材料。
    the silicon-containing polymer is attached to the surface of the metal-organic structure;
    Composite material according to claim 1.
  3.  前記金属有機構造体は、金属酸化物クラスターを含む、
     請求項1に記載の複合材料。
    The metal-organic framework includes metal oxide clusters.
    Composite material according to claim 1.
  4.  前記金属酸化物クラスターは、Zr酸化物クラスターを含む、
     請求項3に記載の複合材料。
    The metal oxide cluster includes a Zr oxide cluster.
    Composite material according to claim 3.
  5.  前記ケイ素含有ポリマーは、ケイ素原子および酸素原子を含む第1の側鎖を含むと共に、前記ケイ素原子および前記酸素原子を介して前記金属有機構造体に結合している、
     請求項1に記載の複合材料。
    The silicon-containing polymer includes a first side chain containing a silicon atom and an oxygen atom, and is bonded to the metal-organic framework via the silicon atom and the oxygen atom.
    Composite material according to claim 1.
  6.  前記ケイ素含有ポリマーは、-SiR3-n(OX)nで示される官能基を含み、
     nは1から3の整数であり、
     Xは、水素原子、炭素数1から10の炭化水素基、前記金属有機構造体と結合している部分、または前記官能基のケイ素原子以外のケイ素原子と結合している部分を表し、
     Xのうちの少なくとも1つは、前記金属有機構造体と結合している部分であり、
     Rは炭素数1から10の炭化水素基を表す、
     請求項1に記載の複合材料。
    The silicon-containing polymer contains a functional group represented by -SiR 3-n (OX) n ,
    n is an integer from 1 to 3,
    X represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a moiety bonded to the metal-organic structure, or a moiety bonded to a silicon atom other than the silicon atom of the functional group,
    At least one of X is a moiety bonded to the metal organic structure,
    R represents a hydrocarbon group having 1 to 10 carbon atoms,
    Composite material according to claim 1.
  7.  前記ケイ素含有ポリマーは、炭素-炭素二重結合および炭素-炭素三重結合からなる群から選ばれる少なくとも1つを含む第2の側鎖を含む、
     請求項1に記載の複合材料。
    The silicon-containing polymer includes a second side chain containing at least one selected from the group consisting of a carbon-carbon double bond and a carbon-carbon triple bond.
    Composite material according to claim 1.
  8.  前記第2の側鎖は、鎖状構造のみからなる、
     請求項7に記載の複合材料。
    The second side chain consists of only a chain structure,
    Composite material according to claim 7.
  9.  前記主鎖は、前記ブタジエン単位を含む、
     請求項1に記載の複合材料。
    the main chain includes the butadiene unit,
    Composite material according to claim 1.
  10.  前記主鎖は、前記スチレン単位および前記ブタジエン単位を含むコポリマーを含む、
     請求項9に記載の複合材料。
    the main chain comprises a copolymer comprising the styrene units and the butadiene units;
    Composite material according to claim 9.
  11.  前記ケイ素含有ポリマーは、複数の繰り返し単位を含む下記式(1)で表される、
     請求項6に記載の複合材料。
     前記式(1)において、
      aおよびdは0以上の数を表し、
      bおよびcは0より大きい数を表し、
      R1からR5は互いに独立して、水素原子、フッ素原子、塩素原子、臭素原子または-CH3を表し、
      前記複数の繰り返し単位の順序は任意である。
    The silicon-containing polymer is represented by the following formula (1) containing a plurality of repeating units,
    Composite material according to claim 6.
    In the above formula (1),
    a and d represent a number of 0 or more,
    b and c represent numbers greater than 0,
    R 1 to R 5 independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or -CH 3 ,
    The order of the plurality of repeating units is arbitrary.
  12.  前記式(1)において、0.15≦c/(b+c+d)を満たす、
     請求項11に記載の複合材料。
    In the formula (1), 0.15≦c/(b+c+d) is satisfied,
    Composite material according to claim 11.
  13.  前記金属有機構造体は、UiO-67を含む、
     請求項1に記載の複合材料。
    The metal-organic framework includes UiO-67.
    Composite material according to claim 1.
  14.  請求項1に記載の複合材料を含む、
     フィラー。
    Comprising the composite material according to claim 1.
    filler.
  15.  請求項14に記載のフィラーを含む、
     樹脂組成物。
    Comprising the filler according to claim 14,
    Resin composition.
  16.  請求項15に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む、
     プリプレグ。
    comprising the resin composition according to claim 15 or a semi-cured product of the resin composition,
    prepreg.
  17.  請求項15に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
     支持フィルムと、を備えた、
     樹脂付きフィルム。
    A resin layer comprising the resin composition according to claim 15 or a semi-cured product of the resin composition,
    a support film;
    Film with resin.
  18.  請求項15に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
     金属箔と、を備えた、
     樹脂付き金属箔。
    A resin layer comprising the resin composition according to claim 15 or a semi-cured product of the resin composition,
    comprising a metal foil and
    Metal foil with resin.
  19.  請求項15に記載の樹脂組成物の硬化物または請求項16に記載のプリプレグの硬化物を含む絶縁層と、
     金属箔と、を備えた、
     金属張積層板。
    An insulating layer comprising a cured product of the resin composition according to claim 15 or a cured product of the prepreg according to claim 16,
    comprising a metal foil and
    Metal-clad laminate.
  20.  請求項15に記載の樹脂組成物の硬化物または請求項16に記載のプリプレグの硬化物を含む絶縁層と、
     配線と、備えた、
     配線板。
    An insulating layer comprising a cured product of the resin composition according to claim 15 or a cured product of the prepreg according to claim 16,
    Wiring and equipped,
    wiring board.
  21.  金属有機構造体にケイ素含有ポリマーを付着させることを含み、
     前記ケイ素含有ポリマーは、スチレン単位、ブタジエン単位、エチレン単位、シクロオレフィン単位、およびフッ素含有オレフィン単位からなる群から選択される少なくとも1つを含む主鎖を含む、
     複合材料の製造方法。
    depositing a silicon-containing polymer on the metal-organic framework;
    The silicon-containing polymer includes a main chain containing at least one selected from the group consisting of styrene units, butadiene units, ethylene units, cycloolefin units, and fluorine-containing olefin units.
    Method of manufacturing composite materials.
  22.  前記金属有機構造体は、金属酸化物クラスターを含む、
     請求項21に記載の複合材料の製造方法。
    The metal-organic framework includes metal oxide clusters.
    A method for manufacturing a composite material according to claim 21.
  23.  前記ケイ素含有ポリマーの数平均分子量は、1200以上である、
     請求項21に記載の複合材料の製造方法。
    The number average molecular weight of the silicon-containing polymer is 1200 or more,
    A method for manufacturing a composite material according to claim 21.
PCT/JP2023/022181 2022-06-30 2023-06-15 Composite material, articles made using same, and method for producing composite material WO2024004663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022106359 2022-06-30
JP2022-106359 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004663A1 true WO2024004663A1 (en) 2024-01-04

Family

ID=89382094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022181 WO2024004663A1 (en) 2022-06-30 2023-06-15 Composite material, articles made using same, and method for producing composite material

Country Status (1)

Country Link
WO (1) WO2024004663A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501862A (en) * 2013-12-16 2017-01-19 サビック グローバル テクノロジーズ ビー.ブイ. Treated mixed matrix polymer membrane
WO2018062504A1 (en) * 2016-09-30 2018-04-05 国立研究開発法人科学技術振興機構 Composite material, gas adsorbent and method for producing composite material
JP2019088499A (en) * 2017-11-15 2019-06-13 大原パラヂウム化学株式会社 Deodorant for life smell
WO2020208007A1 (en) * 2019-04-12 2020-10-15 Shell Internationale Research Maatschappij B.V. A polymer coated metal-organic framework
CN113943488A (en) * 2021-08-31 2022-01-18 暨南大学 Composite material based on polytetrafluoroethylene-coated MOFs material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501862A (en) * 2013-12-16 2017-01-19 サビック グローバル テクノロジーズ ビー.ブイ. Treated mixed matrix polymer membrane
WO2018062504A1 (en) * 2016-09-30 2018-04-05 国立研究開発法人科学技術振興機構 Composite material, gas adsorbent and method for producing composite material
JP2019088499A (en) * 2017-11-15 2019-06-13 大原パラヂウム化学株式会社 Deodorant for life smell
WO2020208007A1 (en) * 2019-04-12 2020-10-15 Shell Internationale Research Maatschappij B.V. A polymer coated metal-organic framework
CN113943488A (en) * 2021-08-31 2022-01-18 暨南大学 Composite material based on polytetrafluoroethylene-coated MOFs material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6536993B2 (en) Metal-clad laminate and method of manufacturing the same, metal foil with resin, and printed wiring board
JP7316569B2 (en) Prepregs, metal-clad laminates, and wiring boards
JP3771160B2 (en) Curable polyphenylene ether resin, composition thereof, and method for producing the resin
JP6216043B2 (en) Resin composition and its application to high-frequency circuit boards
CN111630076B (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal foil-clad laminate, and wiring board
JP7113271B2 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
CN111148781A (en) Prepreg, metal foil-clad laminate, and wiring board
JPWO2019130735A1 (en) Polyphenylene ether resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board
CN112020523A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
WO2019065942A1 (en) Prepreg, and metal-clad laminated board and wiring substrate obtained using same
CN114402032A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
CN114430752A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
US20070191540A1 (en) Low dielectric loss resin, resin composition, and the manufacturing method of low dielectric loss resin
WO2022014582A1 (en) Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2024004663A1 (en) Composite material, articles made using same, and method for producing composite material
WO2022014584A1 (en) Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2024004664A1 (en) Composite material, articles made using same, and method for producing composite material
WO2021024924A1 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded layered sheet, and wiring board
WO2021060178A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
US20220159830A1 (en) Prepreg, metal-clad laminate, and wiring board
WO2021010432A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP7378090B2 (en) Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and wiring boards
WO2024004525A1 (en) Boron nitride material, product with same applied thereto, and method for producing boron nitride material
JP6994660B2 (en) Metal-clad laminate and printed wiring board
WO2024004527A1 (en) Composite material, product resulting from applying said composite material, and method for producing composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831111

Country of ref document: EP

Kind code of ref document: A1