WO2024004526A1 - Boron nitride material and application of same - Google Patents

Boron nitride material and application of same Download PDF

Info

Publication number
WO2024004526A1
WO2024004526A1 PCT/JP2023/020740 JP2023020740W WO2024004526A1 WO 2024004526 A1 WO2024004526 A1 WO 2024004526A1 JP 2023020740 W JP2023020740 W JP 2023020740W WO 2024004526 A1 WO2024004526 A1 WO 2024004526A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
nitride material
polymer
group
resin composition
Prior art date
Application number
PCT/JP2023/020740
Other languages
French (fr)
Japanese (ja)
Inventor
穂波 伊延
輝彦 齊藤
鉄平 細川
和輝 会田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004526A1 publication Critical patent/WO2024004526A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to boron nitride materials and applied products thereof.
  • 5G 5th generation mobile communication system
  • 5G uses higher frequency bands to provide faster communication speeds than previous generations. Therefore, high frequency compatible wiring boards are required for electronic devices.
  • the transmission loss in the transmission path of the wiring board depends on the frequency. The higher the signal frequency, the greater the transmission loss. Furthermore, transmission loss depends on dielectric constant and dielectric loss tangent. Therefore, in order to reduce the transmission loss of high-frequency signals, the substrate material constituting the insulating layer of the wiring board is required to have a low dielectric constant and a low dielectric loss tangent. Particularly in high frequency bands, the dielectric loss tangent largely depends on the orientational polarization of organic molecules contained in the substrate material. Therefore, it is required to reduce polar groups such as hydroxyl groups and amino groups contained in the substrate material.
  • hexagonal boron nitride having a thickness in the C-axis direction of 5 nm or more; a polymer attached to the hexagonal boron nitride;
  • a boron nitride material comprising: the solubility parameter of the boron nitride material measured by methanol titration is less than 47.9 MPa 0.5 ; Provides boron nitride materials.
  • the dielectric loss tangent of a boron nitride material under high humidity can be reduced.
  • FIG. 1 is a diagram showing a schematic configuration of a boron nitride material in Embodiment 1.
  • FIG. 2 is a graph showing the relationship between the HSP distance between a polymer and water and the dielectric loss tangent of a boron nitride material during humidification.
  • FIG. 3 is a diagram showing a schematic structure of a resin composition in Embodiment 4.
  • FIG. 4 is a cross-sectional view of a resin-coated film in Embodiment 6.
  • FIG. 5 is a cross-sectional view of the resin-coated metal foil in Embodiment 7.
  • FIG. 6 is a cross-sectional view of a metal-clad laminate in Embodiment 8.
  • FIG. 7 is a cross-sectional view of a wiring board in Embodiment 9.
  • Boron nitride is a material with high thermal conductivity and excellent electrical insulation.
  • boron nitride which has a hexagonal crystal structure, has a layered structure similar to graphite, can be synthesized relatively easily, and has excellent properties such as thermal conductivity, electrical insulation, chemical stability, and heat resistance. It has the following characteristics. Therefore, boron nitride is promising as a filler for resin compositions used in heat dissipation sheets, thermally conductive insulating substrates, and the like.
  • boron nitride has a hydrophilic surface and absorbs moisture under high humidity. Therefore, when boron nitride is used as a filler, the amount of water contained in the insulating substrate increases, and there is a concern that the dielectric loss tangent may deteriorate. Since the C-plane occupies most of the surface area of scale-like hexagonal boron nitride, surface modification of the C-plane to make the C-plane hydrophobic suppresses water adsorption and reduces the dielectric loss tangent. It is particularly effective for
  • the amount of functional groups present on the C-plane of boron nitride particles is extremely small compared to other surfaces.
  • the C-plane of boron nitride is chemically inert. Therefore, it is difficult to form a direct covalent bond between a known surface modifier such as a silane coupling agent and the C-plane of boron nitride to suppress water adsorption to the C-plane.
  • Patent Document 1 discloses surface modification of aggregate-like hexagonal boron nitride with a silane coupling agent having a vinyl group.
  • the silane coupling agent is considered to be chemically bonded to boron nitride by dehydration condensation with hydroxyl groups present on the surface of boron nitride.
  • the amount of hydroxyl groups present on the C-plane of scale-like hexagonal boron nitride is small. Therefore, it is unlikely that a sufficient amount of the silane coupling agent can be adsorbed on the C-plane of boron nitride.
  • the dopamine-containing protein secreted from the byssus gland of the mussel a type of bivalve
  • a natural adhesive that exhibits stable adhesive strength even in seawater.
  • dopamine adheres to the surfaces of various materials under basic conditions and undergoes oxidative polymerization to form a polydopamine film.
  • Non-Patent Document 2 discloses coating the C-plane of boron nitride with polydopamine.
  • water is easily adsorbed on surfaces treated with a hydrophilic surface modifier such as polydopamine.
  • Polydopamine itself also has a large amount of hydroxyl groups. Therefore, when polydopamine is used as a surface modifier for boron nitride, the dielectric loss tangent of boron nitride deteriorates.
  • Non-Patent Document 3 discloses surface modification of the C-plane of boron nitride nanosheets with polystyrene moieties of a block copolymer of polystyrene and PMMA.
  • the thickness of the boron nitride nanosheet in the C-axis direction is only a few nm.
  • the surface area of boron nitride nanosheets per unit mass is several tens to hundreds of times larger than that of ordinary scale-like boron nitride. Therefore, when boron nitride nanosheets are formed, the area where water can be adsorbed increases, and it is expected that hygroscopicity and dielectric loss tangent will deteriorate under high humidity conditions.
  • isolation of boron nitride nanosheets requires complicated procedures and has a low yield, which poses challenges for industrial use.
  • the boron nitride nanosheet has a structure in which scale-like boron nitride is thinly exfoliated along the C-plane.
  • the thickness of the boron nitride nanosheet in the C-axis direction is several nm, which corresponds to a monoatomic layer to several atomic layers.
  • boron nitride nanosheets is thermodynamically unstable compared to flaky boron nitride, which has a thickness of several tens of nanometers to several hundreds of nanometers in the C-axis direction. This is considered to be the reason why organic molecules are easily adsorbed on the surface of boron nitride nanosheets.
  • none of the preceding examples can reduce the hygroscopicity of hexagonal boron nitride under high humidity, nor can it reduce the dielectric loss tangent of boron nitride.
  • the present inventors have conducted intensive studies on polymers that enable surface modification of hexagonal boron nitride. As a result, the present disclosure was completed by discovering that the above problems can be solved by attaching a polymer that can achieve a specific solubility parameter (SP value) to the surface of boron nitride.
  • SP value solubility parameter
  • the boron nitride material according to the first aspect of the present disclosure includes: hexagonal boron nitride having a thickness in the C-axis direction of 5 nm or more; a polymer attached to the hexagonal boron nitride; A boron nitride material comprising: The solubility parameter (SP value) of the boron nitride material measured by methanol titration is less than 47.9 MPa 0.5 .
  • the dielectric loss tangent of a boron nitride material under high humidity can be reduced.
  • the polymer may be attached to the C-plane of the hexagonal boron nitride. Since the polymer is attached to the C-plane of hexagonal boron nitride, a sufficient surface modification effect can be obtained.
  • the polymer may include a polyvinyl aromatic polymer, and the polyvinyl aromatic polymer It may also contain a side chain containing an aromatic ring. Having such a structure allows the polymer to strongly adsorb to the surface of boron nitride.
  • the polymer may include a repeating unit represented by formula (1).
  • n represents a positive integer
  • X is represented by formula (2)
  • any one of R 1 to R 5 in formula (2) is directly connected to the main chain contained in the repeating unit.
  • the other four from R 1 to R 5 independently represent a group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Contains at least one atom selected from Having such a structure allows the polymer to strongly adsorb to the surface of boron nitride.
  • the other four R 1 to R 5 are independently H atoms or hydrocarbon groups. It may be. It is desirable that the other four of R 1 to R 5 be H atoms or hydrocarbon groups from the viewpoint of increasing the hydrophobicity of the polymer.
  • X in formula (1) may be represented by formula (3).
  • Any one of R 11 to R 19 in formula (3) represents a direct bond to the main chain, and the other eight of R 11 to R 19 independently represent H, B, C , N, O, Si, F, P, S, Cl, I and Br. Having such a structure allows the polymer to strongly adsorb to the surface of boron nitride.
  • the other eight of R 11 to R 19 are independently H atoms or hydrocarbon groups. It may be. It is desirable that the other eight of R 11 to R 19 be H atoms or hydrocarbon groups from the viewpoint of increasing the hydrophobicity of the polymer.
  • the polymer may include a repeating unit containing at least one selected from the group consisting of a carbazole skeleton and a fluorene skeleton. Since the repeating unit of the polymer includes at least one selected from the group consisting of a carbazole skeleton and a fluorene skeleton, the polymer can be strongly adsorbed on the surface of boron nitride.
  • the fluorene skeleton may include at least one substituent.
  • the polymer may include a repeating unit containing a polyphenylene ether skeleton. Since the repeating unit of the polymer contains a polyphenylene ether skeleton, the polymer can be strongly adsorbed on the surface of boron nitride.
  • the polyphenylene ether skeleton may include at least one substituent.
  • the filler according to the twelfth aspect of the present disclosure includes the boron nitride material according to any one of the first to eleventh aspects. According to the filler of the present disclosure, the heat resistance of the filler can be improved. Generation of bubbles when heating the filler can also be suppressed.
  • the resin composition according to the thirteenth aspect of the present disclosure includes the filler according to the twelfth aspect. According to the thirteenth aspect, it is possible to provide a resin composition that exhibits a low dielectric loss tangent and has excellent heat resistance.
  • the prepreg according to the fourteenth aspect of the present disclosure includes the resin composition of the thirteenth aspect or a semi-cured product of the resin composition.
  • the resin-coated film according to the fifteenth aspect of the present disclosure is A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition, a support film; It is equipped with
  • the resin-coated metal foil according to the sixteenth aspect of the present disclosure includes: A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition, metal foil and It is equipped with
  • the metal clad laminate according to the seventeenth aspect of the present disclosure includes: an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect; metal foil and It is equipped with
  • an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect; wiring and We are prepared.
  • FIG. 1 is a diagram showing a schematic configuration of a boron nitride material 10 in the first embodiment.
  • Boron nitride material 10 comprises boron nitride 1 and polymer 2.
  • Polymer 2 is attached to boron nitride 1.
  • Boron nitride 1 is hexagonal boron nitride (h-BN). Hexagonal boron nitride is suitable for the boron nitride material 10 of the present disclosure because it can be synthesized relatively easily and has excellent properties such as thermal conductivity, electrical insulation, chemical stability, and heat resistance. .
  • Boron nitride 1 has a particle shape.
  • the shape of the particles of boron nitride 1 is not particularly limited as long as the C-plane to be modified is exposed on the surface. Since the area of the C-plane is large, it is desirable that the shape of the particles of boron nitride 1 is scaly.
  • the thickness of the boron nitride 1 in the C-axis direction is, for example, 5 nm or more.
  • the surface area per unit mass of boron nitride 1 can be reduced. This is advantageous in reducing the amount of moisture adsorbed by boron nitride 1 under high humidity and keeping the dielectric loss tangent of boron nitride material 10 low.
  • the upper limit of the thickness of boron nitride 1 in the C-axis direction is not particularly limited.
  • the thickness of boron nitride 1 in the C-axis direction may be 10 ⁇ m or less.
  • the thickness of boron nitride 1 in the C-axis direction may be 10 nm or more and 10 ⁇ m or less.
  • the thickness of boron nitride 1 in the C-axis direction can be measured using a scanning electron microscope image (SEM image) of boron nitride 1.
  • SEM image scanning electron microscope image
  • the widest plane of hexagonal boron nitride is the C-plane. Therefore, the thickness of the side surface of boron nitride 1 in the SEM image can be regarded as the thickness in the C-axis direction.
  • the average particle size of boron nitride 1 is not particularly limited.
  • the average particle size of boron nitride 1 may be, for example, 0.05 ⁇ m or more and 100 ⁇ m or less, or 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the average particle size of boron nitride particles means the median diameter.
  • the median diameter means the particle diameter (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured using, for example, a laser diffraction measuring device.
  • Polymer 2 is an organic compound that serves as a surface modifier for boron nitride 1. Polymer 2 is attached to the C-plane of boron nitride 1. Since most of the surface area of hexagonal boron nitride is the C-plane, a sufficient surface modification effect can be obtained by adhering the polymer 2 to the C-plane.
  • the polymer 2 may form a film on the C-plane of the boron nitride 1.
  • the polymer 2 may be attached to the entire C-plane or only to a part of the C-plane.
  • the polymer 2 may be attached to a surface other than the C-plane. Modification of the C-plane is effective for improving hygroscopicity, but hygroscopicity can also be improved when both the C-plane and surfaces other than the C-plane are modified.
  • the polymer 2 may be a polymer having an aromatic ring within the repeating unit. Since the C-plane of hexagonal boron nitride is inert, it is not easy to chemically modify the C-plane. In this embodiment, polymer 2 is physically adsorbed onto boron nitride 1. "Physical adsorption" means adsorption mainly by van der Waals forces.
  • the polymer 2 may be physically adsorbed to the C-plane of the boron nitride 1 by ⁇ - ⁇ interaction.
  • the ⁇ - ⁇ interaction that acts on aromatic rings is known to be a particularly strong interaction among van der Waals forces.
  • a sufficient amount of polymer 2 can be attached to the C-plane of boron nitride 1 by van der Waals forces including ⁇ - ⁇ interactions.
  • the HSP (Hansen solubility parameter) distance between the polymer 2 and water is greater than 39.5 MPa 0.5 .
  • the HSP distance is calculated by the atomic group contribution method (Hansen method).
  • a sufficiently large HSP distance between polymer 2 and water means that polymer 2 has high hydrophobicity. Since the polymer 2 has high hydrophobicity, the hygroscopicity of the boron nitride material 10 can be reduced. Thereby, the dielectric loss tangent of the boron nitride material 10 under high humidity can be reduced.
  • the upper limit of the HSP distance between polymer 2 and water is not particularly limited. The upper limit of the HSP distance is, for example, 54.8 MPa 0.5 .
  • a compound containing a highly reactive polar group is used as the surface modifier. Since a compound containing a polar group has high hydrophilicity, the HSP distance between the compound and water is likely to be 39.5 MPa 0.5 or less. Therefore, in surface modification using a hydrophobic compound, surface modification by physical adsorption is more preferable than forming a covalent bond by chemical reaction.
  • Whether or not the amount of polymer 2 attached to boron nitride 1 is sufficient, that is, whether the surface modification is sufficient is determined by the solubility parameter (SP value) of boron nitride material 10 measured by methanol titration method. can. In this embodiment, it is determined that the surface modification is sufficient when the SP value is less than 47.9 MPa 0.5 . When the surface of the boron nitride material is hydrophilic, its SP value is 47.9 MPa 0.5 or more. By sufficiently adhering the polymer 2 to the surface of the boron nitride 1, the surface of the boron nitride material changes to be hydrophobic, and its SP value becomes less than 47.9 MPa 0.5 .
  • SP value solubility parameter
  • the boron nitride material 10 When the SP value is suppressed to less than 47.9 MPa 0.5 , the boron nitride material 10 exhibits a low dielectric loss tangent even under high humidity.
  • the lower limit of the SP value of the boron nitride material 10 is not particularly limited.
  • the lower limit of the SP value of the boron nitride material 10 is, for example, 34.1 MPa 0.5 .
  • the polymer 2 may include a polyvinyl aromatic polymer, and the polyvinyl aromatic polymer may include a side chain containing a heteroaromatic ring. Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
  • Polymer 2 may have a repeating unit represented by formula (1).
  • n represents a positive integer.
  • X is represented by formula (2).
  • Any one of R 1 to R 5 in formula (2) represents a direct bond to the main chain contained in the repeating unit represented by formula (1).
  • the other four R 1 to R 5 are each independently at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I, and Br. including.
  • "The other four from R 1 to R 5 means a site that does not form a bond to the main chain.
  • the main chain is an ethylene skeleton in formula (1). Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
  • the other four R 1 to R 5 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, and a group containing a sulfur atom. , a group containing a silicon atom, a group containing a phosphorus atom, or a group containing a boron atom.
  • halogen atoms include F, Cl, Br and I.
  • hydrocarbon group examples include an aliphatic saturated hydrocarbon group, an alicyclic hydrocarbon group, and an aliphatic unsaturated hydrocarbon group.
  • a halogenated hydrocarbon group means a group in which at least one hydrogen atom contained in the hydrocarbon group is substituted with a halogen atom.
  • the halogenated hydrocarbon group may be a group in which all hydrogen atoms contained in the hydrocarbon group are substituted with halogen atoms.
  • Examples of the halogenated hydrocarbon group include a halogenated alkyl group and a halogenated alkenyl group.
  • the group containing an oxygen atom is, for example, a substituent having at least one selected from the group consisting of a hydroxyl group, a carboxyl group, an aldehyde group, an ether group, an acyl group, and an ester group.
  • the nitrogen atom-containing group is, for example, a substituent having at least one selected from the group consisting of an amino group, an imino group, a cyano group, an azide group, an amide group, a carbamate group, a nitro group, a cyanamide group, an isocyanate group, and an oxime group. It is the basis.
  • Groups containing a sulfur atom include, for example, a thiol group, a sulfide group, a sulfinyl group, a sulfonyl group, a sulfino group, a sulfonic acid group, an acylthio group, a sulfenamide group, a sulfonamide group, a thioamide group, a thiocarbamide group, and a thiocyano group. It is a substituent having at least one member selected from the group consisting of:
  • the group containing a silicon atom is, for example, a substituent having at least one selected from the group consisting of a silyl group and a siloxy group.
  • the group containing a phosphorus atom is, for example, a substituent having at least one selected from the group consisting of a phosphino group and a phosphoryl group.
  • the group containing a boron atom is, for example, a substituent having a boronic acid group.
  • substituent having a boronic acid group include the boronic acid group itself and a hydrocarbon group having a boronic acid group.
  • the other four R 1 to R 5 may be independently H atoms or hydrocarbon groups. H atoms or hydrocarbon groups do not increase the polarity of polymer 2. Therefore, from the viewpoint of increasing the hydrophobicity of the polymer 2, it is desirable that the other four of R 1 to R 5 are H atoms or hydrocarbon groups.
  • hydrocarbon group examples include an aliphatic saturated hydrocarbon group, an alicyclic hydrocarbon group, and an aliphatic unsaturated hydrocarbon group.
  • the aliphatic saturated hydrocarbon group may be an alkyl group.
  • Examples of aliphatic saturated hydrocarbon groups include -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -C(CH 3 ) 3 , -CH2CH ( CH3 ) 2 , -( CH2 ) 3CH3 , -( CH2 ) 4CH3 , -C( CH2CH3 ) ( CH3 ) 2 , -CH2C (CH 3 ) 3 , -(CH 2 ) 5 CH 3 , -(CH 2 ) 6 CH 3 , -(CH 2 ) 7 CH 3 , -(CH 2 ) 8 CH 3 , -(CH 2 ) 9 CH
  • Examples of the alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1 or more and 20 or less, may be 1 or more and 10 or less, or may be 1 or more and 5 or less.
  • the hydrocarbon group may be linear, branched, or cyclic.
  • X may be represented by formula (3). Any one of R 11 to R 19 in formula (3) represents a direct bond to the main chain contained in the repeating unit represented by formula (1).
  • the other eight R 11 to R 19 are each independently at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I, and Br. including. "The other eight from R 11 to R 19 " means sites that do not form a bond to the main chain. Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
  • the other eight R 11 to R 19 are, independently of each other, a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, a group containing a sulfur atom. , a group containing a silicon atom, a group containing a phosphorus atom, or a group containing a boron atom.
  • R 1 to R 5 can be applied to specific examples of R 11 to R 19 .
  • the other eight of R 11 to R 19 may be independently H atoms or hydrocarbon groups. H atoms or hydrocarbon groups do not increase the polarity of polymer 2. Therefore, from the viewpoint of increasing the hydrophobicity of the polymer 2, it is desirable that the other eight atoms from R 11 to R 19 are H atoms or hydrocarbon groups.
  • Polymer 2 may be a polymer represented by formula (4). That is, the polymer 2 may have a structure other than the repeating unit represented by formula (1).
  • n represents a positive integer
  • m represents an integer of 0 or more.
  • X is represented by formula (2) or formula (3).
  • R 6 contains at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
  • R 1 to R 5 can be applied to specific examples of R 6 .
  • R 6 may be an H atom or a hydrocarbon group. H atoms or hydrocarbon groups do not increase the polarity of polymer 2. It is desirable that R 6 be an H atom or a hydrocarbon group from the viewpoint of increasing the hydrophobicity of the polymer 2.
  • m may be zero.
  • the polymer 2 may have a repeating unit containing at least one selected from the group consisting of a carbazole skeleton and a fluorene skeleton.
  • a carbazole skeleton and a fluorene skeleton When polymer 2 has a carbazole skeleton and a fluorene skeleton, it can exhibit strong adhesion to the C-plane of boron nitride 1.
  • the carbazole skeleton and fluorene skeleton may be included in the main chain of the polymer 2, or may be included in the side chain.
  • the carbazole skeleton and the fluorene skeleton may each have at least one substituent. At least one substituent can be a group containing at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Examples of such groups include the groups described above for formula (1).
  • Polymer 2 may have a repeating unit containing a polyphenylene ether skeleton. When having a polyphenylene ether skeleton, the polymer 2 can exhibit strong adhesion to the C-plane of the boron nitride 1.
  • the polyphenylene ether skeleton may be included in the main chain of the polymer 2, or may be included in the side chain.
  • Each polyphenylene ether skeleton may have at least one substituent. At least one substituent can be a group containing at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Examples of such groups include the groups described above for formula (1).
  • the polymer 2 can strongly adsorb to the surface of the boron nitride 1.
  • the HSP distance between the polymer 2 and water be large.
  • the content of polar groups such as hydroxyl groups, carboxyl groups, unsubstituted amino groups, thiol groups, sulfonic acid groups, and silanol groups
  • the HSP distance between the polymer 2 and water can become large.
  • the content of polar groups is small, the dielectric loss tangent of the polymer 2 itself can also be suppressed. Therefore, polymer 2 does not need to have these polar groups. Further, it is desirable that the polymer 2 does not generate these polar groups through reactions such as hydrolysis when absorbing moisture.
  • the molecular weight of polymer 2 is not particularly limited.
  • Polymer 2 has, for example, a number average molecular weight Mn of 100 or more.
  • the upper limit of the number average molecular weight Mn of the polymer 2 is not particularly limited, and is, for example, 500,000.
  • the thermal decomposition temperature and boiling point of the polymer 2 are, for example, 200°C or higher, and may be 250°C or higher.
  • the boron nitride material 10 is used, for example, as a filler in an insulating layer of a wiring board.
  • the generation of bubbles due to evaporation of adsorbed water in the solder reflow process can also be suppressed.
  • the amount of polymer 2 attached to boron nitride 1 is not particularly limited.
  • the ratio of the mass of polymer 2 to the mass of boron nitride 1 is 10% or less.
  • the amount of gas generated during thermal decomposition of the boron nitride material 10 can be suppressed. This is particularly significant when using boron nitride material 10 as a filler.
  • the lower limit of the ratio of the mass of polymer 2 to the mass of boron nitride 1 is not particularly limited. The lower limit of the ratio is, for example, 0.01%.
  • boron nitride material 10 is obtained by mixing a solution containing polymer 2 and boron nitride 1, and filtering, washing, and drying the solid matter.
  • the temperature at which the surface of boron nitride 1 is modified with polymer 2 is not particularly limited as long as it is below the boiling point of the solvent. Surface modification may be performed at room temperature (20°C ⁇ 15°C).
  • the type of solvent is not particularly limited as long as it can dissolve the polymer 2.
  • the amount of polymer 2 used is also not particularly limited.
  • the ratio of the mass of polymer 2 to the mass of boron nitride 1 may be 0.01% or more and 10% or less, or 0.75% or more and 5% or less.
  • the boron nitride material 10 has a configuration that is advantageous in reducing the dielectric loss tangent under high humidity.
  • the ratio of the dielectric loss tangent of the boron nitride material 10 at 1 GHz in an atmosphere with 90% humidity to the dielectric loss tangent of boron nitride 1 at 1 GHz is less than 1. Therefore, the boron nitride material 10 is suitable for applications requiring a low dielectric loss tangent, for example, as a filler for wiring boards.
  • the lower limit of the ratio of the dielectric loss tangent of the boron nitride material 10 to the dielectric loss tangent of the boron nitride 1 is not particularly limited.
  • the lower limit of the ratio is, for example, 0.001.
  • humidity means relative humidity.
  • the boron nitride material 10 has a configuration that is advantageous in reducing the amount of water adsorption.
  • the ratio of the amount of moisture adsorbed by the boron nitride material 10 in an atmosphere with a humidity of 90% to the amount of moisture adsorbed by the boron nitride 1 in an atmosphere with a humidity of 90% is less than 1.
  • the lower limit of the ratio of the amount of moisture adsorbed by the boron nitride material 10 to the amount of moisture adsorbed by the boron nitride 1 is not particularly limited. The lower limit of the ratio is, for example, 0.01.
  • the heat dissipation gap filler according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
  • a heat dissipation gap filler is a filler used to dissipate heat from an electronic component by applying it to an electronic component such as a substrate material to fill air pockets or gaps.
  • the heat dissipation gap filler is a hardening type heat dissipation paste that hardens from a paste form to a sheet form. According to the heat dissipation gap filler according to the present embodiment, the heat resistance of the filler can be improved. Generation of bubbles during heating can also be suppressed.
  • the heat dissipation gap filler according to the present embodiment is produced by, for example, kneading the boron nitride material 10 according to the first embodiment with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or a ceramic resin. It can be manufactured by
  • the filler for thermal grease according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
  • a filler for heat-radiating grease is a filler used for heat-radiating grease.
  • Thermal grease is a non-hardening thermal paste used to dissipate heat from electronic components by applying them to electronic components, such as substrate materials, to fill air pockets or gaps.
  • the heat resistance of the filler can be improved. Generation of bubbles during heating can also be suppressed.
  • the heat dissipation grease filler according to the present embodiment is produced by, for example, kneading the boron nitride material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or ceramic resin. It can be manufactured by
  • FIG. 3 is a diagram showing a schematic configuration of a resin composition 20 in Embodiment 4.
  • the resin composition 20 includes, for example, a filler 22 and a curable resin 24.
  • the filler 22 includes the boron nitride material 10 described in the first embodiment. According to this embodiment, it is possible to provide a resin composition 20 that exhibits a low dielectric loss tangent and has excellent heat resistance. As the filler 22, the boron nitride material 10 alone may be used, or other filler materials such as silica particles may be used in combination with the boron nitride material 10.
  • curable resin 24 examples include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins.
  • epoxy resins cyanate ester compounds
  • maleimide compounds phenol resins
  • acrylic resins acrylic resins
  • polyamide resins polyamideimide resins
  • thermosetting polyimide resins thermosetting polyimide resins
  • polyphenylene ether resins examples include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins.
  • the curable resin 24 one kind or a combination of two or more kinds selected from these can be used.
  • the resin composition 20 may contain other components.
  • Other ingredients include curing agents, flame retardants, ultraviolet absorbers, antioxidants, reaction initiators, silane coupling agents, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, and erasers. Examples include foaming agents, dispersants, leveling agents, brighteners, antistatic agents, polymerization inhibitors, and organic solvents. If necessary, the resin composition 20 can use one type or a combination of two or more types selected from these.
  • the prepreg according to Embodiment 5 includes the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and a fibrous base material.
  • the fibrous base material is present in the matrix of the resin composition 20 or semi-cured material.
  • Prepreg is a composite material of the resin composition 20 and a fibrous base material. According to this embodiment, it is possible to provide a prepreg suitable for high-frequency wiring boards.
  • the semi-cured material refers to a material that is partially cured to the extent that the resin composition 20 can be further cured. That is, the semi-cured material is a material obtained by semi-curing the resin composition 20. For example, when the resin composition 20 is heated, its viscosity gradually decreases. If heating is continued, curing will then begin and its viscosity will gradually increase. In such a case, the semi-cured state includes the state of the resin composition 20 during the period from the time when the viscosity starts to increase until the time when it is completely cured.
  • the fibrous base material known materials used in various electrically insulating material laminates can be used.
  • the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
  • the resin composition 20 is impregnated into the fibrous base material through treatments such as dipping and coating.
  • a pre-cured or semi-cured prepreg according to the present embodiment can be obtained.
  • FIG. 4 is a cross-sectional view of a resin-coated film 30 in Embodiment 6.
  • the resin-coated film 30 includes a resin layer 32 containing the resin composition 20 or a semi-cured product thereof, and a support film 34.
  • a resin-coated film 30 suitable for an insulating layer can be provided.
  • the resin layer 32 is supported by a support film 34.
  • a support film 34 is placed on the surface of the resin layer 32.
  • another layer such as an adhesive layer may be provided between the resin layer 32 and the support film 34.
  • the resin layer 32 contains the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material.
  • the fibrous base material the same material as the fibrous base material of the prepreg can be used.
  • the resin layer 32 hardens and changes into an insulating layer.
  • An example of such an insulating layer is an insulating layer of a wiring board.
  • any support film used for resin-coated films can be used without limitation.
  • the support film 34 include resin films such as polyester films and polyethylene terephthalate films.
  • FIG. 5 is a cross-sectional view of resin-coated metal foil 40 in Embodiment 7.
  • the resin-coated metal foil 40 includes a resin layer 42 containing the resin composition 20 or a semi-cured product thereof, and a metal foil 44.
  • a resin layer 42 is supported by a metal foil 44.
  • a resin-coated metal foil 40 suitable for electronic circuit components such as wiring boards can be provided.
  • a metal foil 44 is placed on the surface of the resin layer 42.
  • another layer such as an adhesive layer may be provided between the resin layer 42 and the metal foil 44.
  • the resin layer 42 contains the resin composition of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material.
  • the fibrous base material the same material as the fibrous base material of the prepreg can be used.
  • the resin layer 42 hardens and changes into an insulating layer.
  • An example of such an insulating layer is an insulating layer of a wiring board.
  • metal foil 44 resin-coated metal foil and metal foil used for metal-clad laminates can be used without limitation.
  • the metal foil include copper foil and aluminum foil.
  • FIG. 6 is a cross-sectional view of a metal-clad laminate 50 in Embodiment 8.
  • Metal-clad laminate 50 includes an insulating layer 52 and at least one metal foil 54 .
  • a metal-clad laminate 50 suitable for a wiring board can be provided.
  • the insulating layer 52 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment.
  • Metal foil 54 is placed on the surface of insulating layer 52. In this embodiment, metal foils 54 are placed on each of the front and back surfaces of the insulating layer 52.
  • the metal-clad laminate 50 is typically manufactured using the prepreg of Embodiment 5.
  • a laminate is formed by stacking 1 to 20 sheets of prepreg.
  • a metal-clad laminate 50 is obtained by placing metal foil on one or both sides of the prepreg laminate and heating and pressurizing the prepreg laminate.
  • the metal foil 54 include copper foil, aluminum foil, and the like.
  • the molding conditions for manufacturing a laminate for electrically insulating materials and a multilayer board can be applied to the molding conditions for manufacturing the metal-clad laminate 50.
  • FIG. 7 is a cross-sectional view of wiring board 60 in the ninth embodiment.
  • Wiring board 60 includes an insulating layer 62 and wiring 64.
  • a wiring board 60 suitable for high frequencies can be provided.
  • the insulating layer 62 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment.
  • the wiring 64 is supported by the insulating layer 62. Specifically, the wiring 64 is arranged on the insulating layer 62. Wiring 64 may be formed by partially removing the metal foil.
  • a wiring board 60 in which wiring 64 forming a circuit is provided on the surface of the insulating layer 62 is obtained. That is, the wiring board 60 is obtained by partially removing the metal foil 54 on the surface of the metal-clad laminate 50 so that a circuit is formed.
  • a new laminate may be formed by laminating the prepreg of Embodiment 5 on at least one surface of the wiring board 60 and applying heat and pressure.
  • a multilayer wiring board can be obtained by patterning the metal foil on the surface of the obtained laminate to form wiring.
  • boron nitride manufactured by Denka, GP grade
  • Example 1 A solution was obtained by dissolving 15 mg of poly(9-vinylcarbazole) represented by formula (5) (manufactured by Aldrich, number average molecular weight Mn 25,000 to 50,000) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 1 was obtained.
  • Example 2 A solution was obtained by dissolving 15 mg of poly(N-ethyl-2-vinylcarbazole) (manufactured by Aldrich) represented by formula (6) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 2 was obtained.
  • Example 3 A solution was obtained by dissolving 15 mg of Poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (LT-A1016, manufactured by Luminescence Technology) represented by formula (7) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 3 was obtained.
  • PFOTBT Poly[2,7-(9,9-di-octyl-fluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3- thiadiazole] (manufactured by Luminescence Technology, LT-S9419) was dissolved in 1 mL of toluene to obtain a solution. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 4 was obtained.
  • Example 5 A solution was obtained by dissolving 15 mg of polyphenylene ether represented by formula (9) (manufactured by SABIC Japan) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 5 was obtained.
  • polyphenylene ether represented by formula (9) manufactured by SABIC Japan
  • the dispersion term ⁇ d , polarity term ⁇ p and hydrogen bond term ⁇ h of the HSP value were calculated from the molecular structure of the polymer.
  • the HSP distance (MPa 0.5 ) between the polymer and water was calculated. 15.5 MPa 0.5 , 16.0 MPa 0.5 and 42.3 MPa 0.5 were used as the dispersion term ⁇ d , polar term ⁇ p and hydrogen bond term ⁇ h of the HSP value of water, respectively.
  • Table 1 The results are shown in Table 1.
  • HSP distance [4( ⁇ d -15.5) 2 +( ⁇ p -16.0) 2 +( ⁇ h -42.3) 2 ] 1/2 ...(A1)
  • Polydopamine used in Comparative Example 3 is known to be a mixture having multiple molecular structures.
  • the HSP distance was calculated assuming that polydopamine has a single structure described in formula (11).
  • Actual polydopamine is known as a highly hydrophilic polymer. Even if polydopamine has a structure other than formula (11), its HSP distance will not be less than 39.5 MPa 0.5 .
  • the HSP distance is used as an index representing the ease of solubility and dispersibility between solvents or organic molecules. Therefore, the HSP distance between water and a polymer can be used as a standard for quantitatively determining the degree of hydrophobicity or hydrophilicity of a polymer. As can be understood from the measurement results described later in Example and Comparative Example 2, a polymer having an HSP distance of more than 39.5 MPa 0.5 has sufficient hydrophobicity to reduce the dielectric loss tangent during humidification of boron nitride. I can judge.
  • the boron nitride materials of Examples and Comparative Examples were humidified by the following method.
  • the boron nitride material was placed in a container with an open lid.
  • the container was placed in a transparent plastic bag along with the hygrometer.
  • the boron nitride material was humidified by flowing air at 25° C. whose humidity was adjusted to 90% into the plastic bag and leaving it in that state for 15 hours.
  • a hygrometer was used to confirm that the humidity inside the plastic bag was maintained at 90% during humidification.
  • the boron nitride material after humidification was taken out from the plastic bag.
  • the dielectric loss tangent of the boron nitride material at a frequency of 1 GHz was measured.
  • a cavity resonator manufactured by AET, MS46122B was used to measure the dielectric loss tangent.
  • the boron nitride material was exposed to outside air at room temperature (25° C.). The measurement was performed 20 minutes after the end of humidification. The results are shown in Table 1.
  • Table 1 the dielectric loss tangent during humidification indicates a value normalized by setting the dielectric loss tangent during humidification of Comparative Example 1 to 1.
  • the dielectric loss tangent of the boron nitride material was normalized by setting the dielectric loss tangent of unmodified boron nitride (Comparative Example 1) to 1. That is, the ratio of the dielectric loss tangent of the boron nitride material to the dielectric loss tangent of unmodified boron nitride was calculated. If the calculated value is less than 1, it can be determined that the dielectric loss tangent is good.
  • the boron nitride materials of the Examples and Comparative Examples were humidified in the manner described above.
  • the amount of moisture adsorbed by the humidified boron nitride material was measured using the Karl Fischer method.
  • a Karl Fischer moisture meter manufactured by Kyoto Electronics Industry Co., Ltd., MKC-610
  • a vaporizer manufactured by Kyoto Electronics Industry Co., Ltd., ADP-611
  • the vaporization temperature was 150°C.
  • the end point was when the drift value reached +0.1 ⁇ g/sec.
  • Nitrogen 200 mL/min
  • the measurement was performed twice, and the average value of the two measurements was used as the result.
  • the boron nitride material was stored in a gas displacement desiccator filled with air with a humidity of 90%, and the boron nitride material was not exposed to outside air until the start of measurement.
  • Table 1 the amount of water adsorption during humidification is a value normalized with the amount of water adsorption during humidification of Comparative Example 1 taken as 1.
  • This measurement was conducted to determine the amount of moisture adsorbed by the boron nitride material during humidification.
  • the moisture adsorption amount of the boron nitride material was standardized by setting the moisture adsorption amount of unmodified boron nitride (Comparative Example 1) during humidification to 1. That is, the ratio of the amount of moisture adsorbed by the boron nitride material to the amount of moisture adsorbed by unmodified boron nitride was calculated. If the calculated value is less than 1, it can be determined that the amount of water adsorption is good.
  • SP values of the boron nitride materials of Examples and Comparative Examples were measured by the method shown below. 50 mL of ion exchange water was placed in a 200 mL beaker, and 50 mg of the boron nitride material was floated on the water surface. Thereafter, the mixture was stirred for 3 minutes using a magnetic stirrer at a rotation speed of 300 rpm to obtain a dispersion.
  • the tip of a buret containing methanol was placed in the dispersion liquid, methanol was added dropwise under stirring, and the amount of methanol added Y (mL) required for all the particles of the boron nitride material to settle into the liquid was measured. .
  • the SP value was calculated by substituting the measured addition amount Y into formula (A2). In this example, 47.9 MPa 0.5 was used as the SP value (literature value) of water. 29.6 MPa 0.5 was used as the SP value (literature value) of methanol. The results are shown in Table 1.
  • Example 1 to 5 the HSP distance between the polymer and water was greater than 39.5 MPa 0.5 .
  • the SP values of the boron nitride materials of Examples 1 to 5 were less than 47.9 MPa 0.5 , and the surfaces of the particles of the boron nitride materials had sufficient hydrophobicity. From this, it can be concluded that in Examples 1 to 5, the surface of boron nitride was sufficiently modified with the polymer.
  • the dielectric loss tangent (ratio to Comparative Example 1) of the boron nitride materials of Examples 1 to 5 was less than 1. In other words, Examples 1 to 5 exhibited lower dielectric loss tangents than hexagonal boron nitride under high humidity.
  • the moisture adsorption amount (ratio to Comparative Example 1) of the boron nitride materials of Examples 1 to 5 was less than 1, which was lower than that of Comparative Examples 1 and 3.
  • FIG. 2 is a graph showing the relationship between the HSP distance between a polymer and water and the dielectric loss tangent of a boron nitride material during humidification.
  • the horizontal axis shows the HSP distance between the polymers used in Examples 1 to 5 and Comparative Example 2 and water.
  • the vertical axis indicates the dielectric loss tangent of the boron nitride materials of Examples 1 to 5 and Comparative Example 2 during humidification.
  • a total of six points in Examples 1 to 5 and Comparative Example 2 were subjected to linear approximation using the least squares method to obtain an approximate straight line shown in FIG.
  • the HSP distance when the dielectric loss tangent during humidification was 1 was calculated from the approximate straight line.
  • the HSP distance when the dielectric loss tangent during humidification was 1 was 39.5 MPa 0.5 . Therefore, it is considered that if the surface of boron nitride is sufficiently modified with a polymer whose HSP distance to water is greater than 39.5 MPa 0.5 , the dielectric loss tangent during humidification can be lowered than before the surface modification.
  • Comparative Example 2 showed a small amount of water adsorption, but a high dielectric loss tangent. It is presumed that the main reason for this result is that there is a discrepancy between the amount of water measured by the Karl Fischer method and the amount of water measured by the dielectric loss tangent. The dielectric loss tangent was measured 20 minutes after the boron nitride material was transferred from an environment with a humidity of 90% to the atmosphere. In other words, "dielectric loss tangent during humidification" represents the dielectric loss tangent in a state where moisture desorption has progressed to some extent. In Examples 1 to 5, moisture desorption progressed sufficiently, but in Comparative Example 2, it is presumed that moisture desorption did not proceed sufficiently.
  • Comparative Example 3 The measured values of Comparative Example 3 were not used to calculate the approximate straight line. This is because the polymer contained in the boron nitride material of Comparative Example 3 is polydopamine. Polydopamine does not have a single molecular structure, making it impossible to accurately calculate the HSP distance, and the large amount of hydroxyl groups contained within its structure directly causes deterioration of the dielectric loss tangent. The data of Comparative Example 3 was judged to be inappropriate for discussing the influence of moisture absorption on the dielectric loss tangent and was therefore excluded.
  • Comparative Example 4 the HSP distance between the polymer (polystyrene) and water was sufficiently large. However, the SP value of the boron nitride material of Comparative Example 4 exceeded 47.9 MP 0.5 . In other words, in Comparative Example 4, sufficient surface modification was not performed.
  • the boron nitride material of the present disclosure exhibits a low dielectric loss tangent even under high humidity, so it is suitable for wiring boards of electronic devices used for large-capacity communications.

Abstract

A boron nitride material (10) according to the present disclosure comprises: a hexagonal boron nitride which has a thickness of 5 nm or more in the c-axis direction; and a polymer (2) which adheres to the hexagonal boron nitride. The solubility parameter of the boron nitride material 10 as determined by a methanol titration method is less than 47.9 MPa0.5. A boron nitride material (10) according to the present disclosure is used in applications such as a filler, a resin composition, a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate and a wiring board.

Description

窒化ホウ素材料およびその応用製品Boron nitride materials and their applied products
 本開示は、窒化ホウ素材料およびその応用製品に関する。 The present disclosure relates to boron nitride materials and applied products thereof.
 近年、エレクトロニクス分野では、第5世代移動通信システム(5G)の運用拡大に向け、電子機器に要求される性能のレベルが上がっている。例えば、これまでの世代よりも通信速度を速くするために、5Gではより高い周波数帯が用いられる。そのため、電子機器には、高周波対応の配線板が求められている。 In recent years, in the electronics field, the level of performance required of electronic devices has been increasing in order to expand the use of the 5th generation mobile communication system (5G). For example, 5G uses higher frequency bands to provide faster communication speeds than previous generations. Therefore, high frequency compatible wiring boards are required for electronic devices.
 配線板の伝送路における伝送損失は、周波数に依存する。信号の周波数が高ければ高いほど伝送損失が増大する。また、伝送損失は、誘電率および誘電正接に依存する。そのため、高周波信号の伝送損失を低減させるべく、配線板の絶縁層を構成する基板材料には、低い誘電率および低い誘電正接を有することが求められる。特に、高周波数帯において、誘電正接は、基板材料に含まれる有機分子の配向分極に大きく依存する。そのため、基板材料に含まれた水酸基およびアミノ基などの極性基を減らすことが求められる。 The transmission loss in the transmission path of the wiring board depends on the frequency. The higher the signal frequency, the greater the transmission loss. Furthermore, transmission loss depends on dielectric constant and dielectric loss tangent. Therefore, in order to reduce the transmission loss of high-frequency signals, the substrate material constituting the insulating layer of the wiring board is required to have a low dielectric constant and a low dielectric loss tangent. Particularly in high frequency bands, the dielectric loss tangent largely depends on the orientational polarization of organic molecules contained in the substrate material. Therefore, it is required to reduce polar groups such as hydroxyl groups and amino groups contained in the substrate material.
 また、5Gのような大容量通信では、高周波数帯を用いるため電波の伝送距離が短い。そのため、電子機器の出力を増大する必要がある。それに加え、高集積度の実現および小型化に伴い、回路の実装密度も高まる。これらの必要性を満たそうとすると、配線板の単位面積あたりの発熱量が増大する。したがって、配線板には、高い放熱性を有することが求められる。配線板の放熱性を高めるために、配線板の絶縁層を構成する基板材料に熱伝導性に優れたフィラーを含有させて、配線板の熱伝導率を高めることが行われている。 Furthermore, in large-capacity communications such as 5G, the transmission distance of radio waves is short because high frequency bands are used. Therefore, it is necessary to increase the output of electronic devices. In addition, with the realization of high integration and miniaturization, the packaging density of circuits will also increase. Attempting to satisfy these needs increases the amount of heat generated per unit area of the wiring board. Therefore, wiring boards are required to have high heat dissipation properties. In order to improve the heat dissipation of a wiring board, a filler having excellent thermal conductivity is included in a substrate material constituting an insulating layer of the wiring board to increase the thermal conductivity of the wiring board.
特許第5530318号公報Patent No. 5530318
 従来技術においては、高湿度下での窒化ホウ素材料の誘電正接を低減することが望まれる。 In the prior art, it is desirable to reduce the dielectric loss tangent of boron nitride materials under high humidity.
 本開示は、
 C軸方向の厚みが5nm以上の六方晶窒化ホウ素と、
 前記六方晶窒化ホウ素に付着したポリマーと、
 を備えた窒化ホウ素材料であって、
 メタノール滴定法によって測定された前記窒化ホウ素材料の溶解度パラメータが47.9MPa0.5未満である、
 窒化ホウ素材料を提供する。
This disclosure:
hexagonal boron nitride having a thickness in the C-axis direction of 5 nm or more;
a polymer attached to the hexagonal boron nitride;
A boron nitride material comprising:
the solubility parameter of the boron nitride material measured by methanol titration is less than 47.9 MPa 0.5 ;
Provides boron nitride materials.
 本開示によれば、高湿度下での窒化ホウ素材料の誘電正接を低減することができる。 According to the present disclosure, the dielectric loss tangent of a boron nitride material under high humidity can be reduced.
図1は、実施の形態1における窒化ホウ素材料の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a boron nitride material in Embodiment 1. 図2は、ポリマーと水との間のHSP距離と加湿時の窒化ホウ素材料の誘電正接との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the HSP distance between a polymer and water and the dielectric loss tangent of a boron nitride material during humidification. 図3は、実施の形態4における樹脂組成物の概略構成を示す図である。FIG. 3 is a diagram showing a schematic structure of a resin composition in Embodiment 4. 図4は、実施の形態6における樹脂付きフィルムの断面図である。FIG. 4 is a cross-sectional view of a resin-coated film in Embodiment 6. 図5は、実施の形態7における樹脂付き金属箔の断面図である。FIG. 5 is a cross-sectional view of the resin-coated metal foil in Embodiment 7. 図6は、実施の形態8における金属張積層板の断面図である。FIG. 6 is a cross-sectional view of a metal-clad laminate in Embodiment 8. 図7は、実施の形態9における配線板の断面図である。FIG. 7 is a cross-sectional view of a wiring board in Embodiment 9.
 (本開示の基礎となった知見)
 窒化ホウ素は、高い熱伝導性および優れた電気絶縁性を備えた材料である。特に、六方晶構造を有する窒化ホウ素は、黒鉛と同様に層状構造を有しており、比較的容易に合成できる、熱伝導性、電気絶縁性、化学的安定性、耐熱性などの特性に優れるといった特徴を有する。そのため、窒化ホウ素は、放熱シート、熱伝導性絶縁基板などに使用される樹脂組成物のフィラーとして有望である。
(Findings that formed the basis of this disclosure)
Boron nitride is a material with high thermal conductivity and excellent electrical insulation. In particular, boron nitride, which has a hexagonal crystal structure, has a layered structure similar to graphite, can be synthesized relatively easily, and has excellent properties such as thermal conductivity, electrical insulation, chemical stability, and heat resistance. It has the following characteristics. Therefore, boron nitride is promising as a filler for resin compositions used in heat dissipation sheets, thermally conductive insulating substrates, and the like.
 しかし、窒化ホウ素は親水性の表面を有し、高湿度下では吸湿する。そのため、窒化ホウ素をフィラーとして用いた際に絶縁基板に含まれる水分量が増加し、誘電正接の悪化が懸念される。鱗片状の六方晶窒化ホウ素はその表面積の大部分をC面が占めているため、C面に対して表面修飾を行ってC面を疎水化することが水の吸着の抑制および誘電正接の低減に特に有効である。 However, boron nitride has a hydrophilic surface and absorbs moisture under high humidity. Therefore, when boron nitride is used as a filler, the amount of water contained in the insulating substrate increases, and there is a concern that the dielectric loss tangent may deteriorate. Since the C-plane occupies most of the surface area of scale-like hexagonal boron nitride, surface modification of the C-plane to make the C-plane hydrophobic suppresses water adsorption and reduces the dielectric loss tangent. It is particularly effective for
 ところが、窒化ホウ素の粒子のC面に存在する官能基の量は他の面と比較して極端に少ない。つまり、窒化ホウ素のC面は化学的に不活性である。そのため、シランカップリング剤などの既知の表面修飾剤と窒化ホウ素のC面との間に直接的な共有結合を形成し、C面に対する水の吸着を抑制することは困難である。 However, the amount of functional groups present on the C-plane of boron nitride particles is extremely small compared to other surfaces. In other words, the C-plane of boron nitride is chemically inert. Therefore, it is difficult to form a direct covalent bond between a known surface modifier such as a silane coupling agent and the C-plane of boron nitride to suppress water adsorption to the C-plane.
 特許文献1は、ビニル基を有するシランカップリング剤でアグリゲート状の六方晶窒化ホウ素を表面改質することを開示している。シランカップリング剤は、窒化ホウ素の表面に存在する水酸基と脱水縮合することによって窒化ホウ素と化学結合していると考えられる。しかし、鱗片状の六方晶窒化ホウ素のC面に存在する水酸基の量は少ない。そのため、十分な量のシランカップリング剤が窒化ホウ素のC面に吸着できるとは考えられない。つまり、特許文献1の方法によれば、C面以外の水酸基を豊富に有する面がシランカップリング剤で修飾されると考えられる。この場合、C面に対する水の吸着を抑える効果は限定的である。また、シランカップリング剤に含まれるシリル基は、加水分解反応によって水酸基を持つシラノール基へと容易に変化する。そのため、シランカップリング剤は、誘電正接の悪化の直接的な原因になりうる。 Patent Document 1 discloses surface modification of aggregate-like hexagonal boron nitride with a silane coupling agent having a vinyl group. The silane coupling agent is considered to be chemically bonded to boron nitride by dehydration condensation with hydroxyl groups present on the surface of boron nitride. However, the amount of hydroxyl groups present on the C-plane of scale-like hexagonal boron nitride is small. Therefore, it is unlikely that a sufficient amount of the silane coupling agent can be adsorbed on the C-plane of boron nitride. In other words, according to the method of Patent Document 1, it is thought that surfaces other than the C-plane that are rich in hydroxyl groups are modified with the silane coupling agent. In this case, the effect of suppressing water adsorption to the C-plane is limited. Moreover, the silyl group contained in the silane coupling agent is easily converted into a silanol group having a hydroxyl group by a hydrolysis reaction. Therefore, the silane coupling agent can be a direct cause of deterioration of the dielectric loss tangent.
 ところで、二枚貝の1種であるムラサキイガイの足糸腺から分泌されるドーパミン含有タンパクは、海水中でも安定な接着力を発揮する天然の接着剤として知られている。非特許文献1によると、ドーパミンは、塩基性条件下で様々な材料の表面に付着して酸化重合し、ポリドーパミン膜を形成する。 Incidentally, the dopamine-containing protein secreted from the byssus gland of the mussel, a type of bivalve, is known as a natural adhesive that exhibits stable adhesive strength even in seawater. According to Non-Patent Document 1, dopamine adheres to the surfaces of various materials under basic conditions and undergoes oxidative polymerization to form a polydopamine film.
 例えば、非特許文献2は、窒化ホウ素のC面をポリドーパミンで被覆することを開示する。しかし、ポリドーパミンのような親水性を有する表面修飾剤で処理された表面には水が吸着しやすい。ポリドーパミン自身も多量の水酸基を有している。そのため、ポリドーパミンを窒化ホウ素の表面修飾剤として使用すると、窒化ホウ素の誘電正接が悪化する。 For example, Non-Patent Document 2 discloses coating the C-plane of boron nitride with polydopamine. However, water is easily adsorbed on surfaces treated with a hydrophilic surface modifier such as polydopamine. Polydopamine itself also has a large amount of hydroxyl groups. Therefore, when polydopamine is used as a surface modifier for boron nitride, the dielectric loss tangent of boron nitride deteriorates.
 非特許文献3は、ポリスチレンとPMMAとのブロック共重合体のポリスチレン部位によって窒化ホウ素ナノシートのC面を表面修飾することを開示する。 Non-Patent Document 3 discloses surface modification of the C-plane of boron nitride nanosheets with polystyrene moieties of a block copolymer of polystyrene and PMMA.
 しかし、窒化ホウ素ナノシートのC軸方向の厚みは数nmにすぎない。単位質量あたりの窒化ホウ素ナノシートの表面積は、通常の鱗片状窒化ホウ素の数十倍から数百倍に達する。そのため、窒化ホウ素のナノシートを形成すると、水が吸着できる面積が増加し、吸湿性の悪化および高湿度下での誘電正接の悪化が予想される。さらに、窒化ホウ素ナノシートの単離は、複雑な手順を必要とするうえ、低収率であり、産業上での利用には課題がある。 However, the thickness of the boron nitride nanosheet in the C-axis direction is only a few nm. The surface area of boron nitride nanosheets per unit mass is several tens to hundreds of times larger than that of ordinary scale-like boron nitride. Therefore, when boron nitride nanosheets are formed, the area where water can be adsorbed increases, and it is expected that hygroscopicity and dielectric loss tangent will deteriorate under high humidity conditions. Furthermore, isolation of boron nitride nanosheets requires complicated procedures and has a low yield, which poses challenges for industrial use.
 また、本発明者らが検討した結果、ナノシートでない鱗片状窒化ホウ素の表面をポリスチレンで十分に修飾できなかった。窒化ホウ素ナノシートは、鱗片状窒化ホウ素をC面に沿って薄く剥離させた構造を有する。C軸方向における窒化ホウ素ナノシートの厚みは数nmであり、これは単原子層から数原子層に相当する。そのため、C軸方向に数10nmから数100nmの厚みを持つ鱗片状窒化ホウ素に比べ、窒化ホウ素ナノシートの構造は熱力学的に不安定である。このことが、窒化ホウ素ナノシートの表面に有機分子が容易に吸着する原因であると考えられる。 Furthermore, as a result of studies conducted by the present inventors, it was not possible to sufficiently modify the surface of flaky boron nitride, which is not a nanosheet, with polystyrene. The boron nitride nanosheet has a structure in which scale-like boron nitride is thinly exfoliated along the C-plane. The thickness of the boron nitride nanosheet in the C-axis direction is several nm, which corresponds to a monoatomic layer to several atomic layers. Therefore, the structure of boron nitride nanosheets is thermodynamically unstable compared to flaky boron nitride, which has a thickness of several tens of nanometers to several hundreds of nanometers in the C-axis direction. This is considered to be the reason why organic molecules are easily adsorbed on the surface of boron nitride nanosheets.
 したがって、いずれの先行例も六方晶窒化ホウ素の高湿度下での吸湿性を低減できず、窒化ホウ素の誘電正接を低減することもできない。 Therefore, none of the preceding examples can reduce the hygroscopicity of hexagonal boron nitride under high humidity, nor can it reduce the dielectric loss tangent of boron nitride.
 本発明者らは、六方晶窒化ホウ素の表面修飾を可能にするポリマーについて鋭意検討を進めた。その結果、特定の溶解度パラメータ(SP値)を達成可能なポリマーを窒化ホウ素の表面に付着させることによって上記課題を解決できることを見出し、本開示を完成させるに至った。 The present inventors have conducted intensive studies on polymers that enable surface modification of hexagonal boron nitride. As a result, the present disclosure was completed by discovering that the above problems can be solved by attaching a polymer that can achieve a specific solubility parameter (SP value) to the surface of boron nitride.
 (本開示に係る一態様の概要)
 本開示の第1態様に係る窒化ホウ素材料は、
 C軸方向の厚みが5nm以上の六方晶窒化ホウ素と、
 前記六方晶窒化ホウ素に付着したポリマーと、
 を備えた窒化ホウ素材料であって、
 メタノール滴定法によって測定された前記窒化ホウ素材料の溶解度パラメータ(SP値)が47.9MPa0.5未満である。
(Summary of one aspect of the present disclosure)
The boron nitride material according to the first aspect of the present disclosure includes:
hexagonal boron nitride having a thickness in the C-axis direction of 5 nm or more;
a polymer attached to the hexagonal boron nitride;
A boron nitride material comprising:
The solubility parameter (SP value) of the boron nitride material measured by methanol titration is less than 47.9 MPa 0.5 .
 本開示によれば、高湿度下での窒化ホウ素材料の誘電正接を低減することができる。 According to the present disclosure, the dielectric loss tangent of a boron nitride material under high humidity can be reduced.
 本開示の第2態様において、例えば、第1態様に係る窒化ホウ素材料では、前記ポリマーは、前記六方晶窒化ホウ素のC面に付着していてもよい。六方晶窒化ホウ素のC面にポリマーが付着していることによって表面修飾の効果が十分に得られる。 In the second aspect of the present disclosure, for example, in the boron nitride material according to the first aspect, the polymer may be attached to the C-plane of the hexagonal boron nitride. Since the polymer is attached to the C-plane of hexagonal boron nitride, a sufficient surface modification effect can be obtained.
 本開示の第3態様において、例えば、第1または第2態様に係る窒化ホウ素材料では、前記ポリマーは、ポリビニル系の芳香族ポリマーを含んでいてもよく、前記ポリビニル系の芳香族ポリマーは、複素芳香環を含む側鎖を含んでいてもよい。このような構造を有することによって、ポリマーは、窒化ホウ素の表面に強く吸着しうる。 In a third aspect of the present disclosure, for example, in the boron nitride material according to the first or second aspect, the polymer may include a polyvinyl aromatic polymer, and the polyvinyl aromatic polymer It may also contain a side chain containing an aromatic ring. Having such a structure allows the polymer to strongly adsorb to the surface of boron nitride.
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る窒化ホウ材料では、前記ポリマーは、式(1)で表される繰り返し単位を含んでいてもよい。式(1)において、nは正の整数を表し、Xは式(2)で表され、式(2)におけるR1からR5のいずれか1つが、前記繰り返し単位に含まれる主鎖に対する直接的な結合手を表し、R1からR5の他の4つは、互いに独立して、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む。このような構造を有することによって、ポリマーは、窒化ホウ素の表面に強く吸着しうる。 In a fourth aspect of the present disclosure, for example, in the boron nitride material according to any one of the first to third aspects, the polymer may include a repeating unit represented by formula (1). In formula (1), n represents a positive integer, X is represented by formula (2), and any one of R 1 to R 5 in formula (2) is directly connected to the main chain contained in the repeating unit. The other four from R 1 to R 5 independently represent a group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Contains at least one atom selected from Having such a structure allows the polymer to strongly adsorb to the surface of boron nitride.
 本開示の第5態様において、例えば、第4態様に係る窒化ホウ素材料では、前記式(2)において、R1からR5の他の4つは、互いに独立して、H原子または炭化水素基であってもよい。R1からR5の他の4つがH原子または炭化水素基であることは、ポリマーの疎水性を高める観点で望ましい。 In the fifth aspect of the present disclosure, for example, in the boron nitride material according to the fourth aspect, in the formula (2), the other four R 1 to R 5 are independently H atoms or hydrocarbon groups. It may be. It is desirable that the other four of R 1 to R 5 be H atoms or hydrocarbon groups from the viewpoint of increasing the hydrophobicity of the polymer.
 本開示の第6態様において、例えば、第4態様に係る窒化ホウ素材料では、前記式(1)において、Xは式(3)で表されてもよい。式(3)におけるR11からR19のいずれか1つが、前記主鎖に対する直接的な結合手を表し、R11からR19の他の8つは、互いに独立して、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む。このような構造を有することによって、ポリマーは、窒化ホウ素の表面に強く吸着しうる。 In the sixth aspect of the present disclosure, for example, in the boron nitride material according to the fourth aspect, X in formula (1) may be represented by formula (3). Any one of R 11 to R 19 in formula (3) represents a direct bond to the main chain, and the other eight of R 11 to R 19 independently represent H, B, C , N, O, Si, F, P, S, Cl, I and Br. Having such a structure allows the polymer to strongly adsorb to the surface of boron nitride.
 本開示の第7態様において、例えば、第6態様に係る窒化ホウ素材料では、前記式(3)において、R11からR19の他の8つは、互いに独立して、H原子または炭化水素基であってもよい。R11からR19の他の8つがH原子または炭化水素基であることは、ポリマーの疎水性を高める観点で望ましい。 In the seventh aspect of the present disclosure, for example, in the boron nitride material according to the sixth aspect, in the formula (3), the other eight of R 11 to R 19 are independently H atoms or hydrocarbon groups. It may be. It is desirable that the other eight of R 11 to R 19 be H atoms or hydrocarbon groups from the viewpoint of increasing the hydrophobicity of the polymer.
 本開示の第8態様において、例えば、第1態様に係る窒化ホウ素材料では、前記ポリマーは、カルバゾール骨格及びフルオレン骨格からなる群より選択される少なくとも1つを含む繰り返し単位を含んでいてもよい。ポリマーの繰り返し単位がカルバゾール骨格及びフルオレン骨格からなる群より選択される少なくとも1つを含むことによって、ポリマーは、窒化ホウ素の表面に強く吸着しうる。 In the eighth aspect of the present disclosure, for example, in the boron nitride material according to the first aspect, the polymer may include a repeating unit containing at least one selected from the group consisting of a carbazole skeleton and a fluorene skeleton. Since the repeating unit of the polymer includes at least one selected from the group consisting of a carbazole skeleton and a fluorene skeleton, the polymer can be strongly adsorbed on the surface of boron nitride.
 本開示の第9態様において、例えば、第8態様に係る窒化ホウ素材料では、前記フルオレン骨格は、少なくとも1つの置換基を含んでいてもよい。 In the ninth aspect of the present disclosure, for example, in the boron nitride material according to the eighth aspect, the fluorene skeleton may include at least one substituent.
 本開示の第10態様において、例えば、第1態様に係る窒化ホウ素材料では、前記ポリマーは、ポリフェニレンエーテル骨格を含む繰り返し単位を含んでいてもよい。ポリマーの繰り返し単位がポリフェニレンエーテル骨格を含むことによって、ポリマーは、窒化ホウ素の表面に強く吸着しうる。 In the tenth aspect of the present disclosure, for example, in the boron nitride material according to the first aspect, the polymer may include a repeating unit containing a polyphenylene ether skeleton. Since the repeating unit of the polymer contains a polyphenylene ether skeleton, the polymer can be strongly adsorbed on the surface of boron nitride.
 本開示の第11態様において、例えば、第10態様に係る窒化ホウ素材料では、前記ポリフェニレンエーテル骨格は、少なくとも1つの置換基を含んでいてもよい。 In the eleventh aspect of the present disclosure, for example, in the boron nitride material according to the tenth aspect, the polyphenylene ether skeleton may include at least one substituent.
 本開示の第12態様に係るフィラーは、第1から第11態様のいずれか1つの窒化ホウ素材料を含む。本開示のフィラーによれば、フィラーの耐熱性を改善できる。フィラーの加熱時の気泡の発生も抑制されうる。 The filler according to the twelfth aspect of the present disclosure includes the boron nitride material according to any one of the first to eleventh aspects. According to the filler of the present disclosure, the heat resistance of the filler can be improved. Generation of bubbles when heating the filler can also be suppressed.
 本開示の第13態様に係る樹脂組成物は、第12態様のフィラーを含む。第13態様によれば、低い誘電正接を示すとともに耐熱性に優れた樹脂組成物を提供できる。 The resin composition according to the thirteenth aspect of the present disclosure includes the filler according to the twelfth aspect. According to the thirteenth aspect, it is possible to provide a resin composition that exhibits a low dielectric loss tangent and has excellent heat resistance.
 本開示の第14態様に係るプリプレグは、第13態様の樹脂組成物または前記樹脂組成物の半硬化物を含む。 The prepreg according to the fourteenth aspect of the present disclosure includes the resin composition of the thirteenth aspect or a semi-cured product of the resin composition.
 本開示の第15態様に係る樹脂付きフィルムは、
 第13態様の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
 支持フィルムと、
 を備えている。
The resin-coated film according to the fifteenth aspect of the present disclosure is
A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition,
a support film;
It is equipped with
 本開示の第16態様に係る樹脂付き金属箔は、
 第13態様の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
 金属箔と、
 を備えている。
The resin-coated metal foil according to the sixteenth aspect of the present disclosure includes:
A resin layer containing the resin composition of the thirteenth aspect or a semi-cured product of the resin composition,
metal foil and
It is equipped with
 本開示の第17態様に係る金属張積層板は、
 第13態様の樹脂組成物の硬化物または第14態様のプリプレグの硬化物を含む絶縁層と、
 金属箔と、
 を備えている。
The metal clad laminate according to the seventeenth aspect of the present disclosure includes:
an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect;
metal foil and
It is equipped with
 本開示の第18態様に係る配線板は、
 第13態様の樹脂組成物の硬化物または第14態様のプリプレグの硬化物を含む絶縁層と、
 配線と、
 備えている。
The wiring board according to the eighteenth aspect of the present disclosure,
an insulating layer comprising a cured product of the resin composition of the thirteenth aspect or a cured product of the prepreg of the fourteenth aspect;
wiring and
We are prepared.
 第14から第18態様によれば、高周波に適した各種応用製品を提供できる。 According to the fourteenth to eighteenth aspects, various applied products suitable for high frequencies can be provided.
 (実施の形態1)
 図1は、実施の形態1における窒化ホウ素材料10の概略構成を示す図である。窒化ホウ素材料10は、窒化ホウ素1およびポリマー2を備えている。ポリマー2は、窒化ホウ素1に付着している。
(Embodiment 1)
FIG. 1 is a diagram showing a schematic configuration of a boron nitride material 10 in the first embodiment. Boron nitride material 10 comprises boron nitride 1 and polymer 2. Polymer 2 is attached to boron nitride 1.
 [窒化ホウ素]
 窒化ホウ素1は、六方晶窒化ホウ素(h-BN)である。六方晶窒化ホウ素は、比較的容易に合成できる、熱伝導性、電気絶縁性、化学的安定性、耐熱性などの性質に優れるといった特徴を有するため、本開示の窒化ホウ素材料10に適している。
[Boron nitride]
Boron nitride 1 is hexagonal boron nitride (h-BN). Hexagonal boron nitride is suitable for the boron nitride material 10 of the present disclosure because it can be synthesized relatively easily and has excellent properties such as thermal conductivity, electrical insulation, chemical stability, and heat resistance. .
 窒化ホウ素1は、粒子の形状を有する。修飾されるC面が表面に露出している限りにおいて、窒化ホウ素1の粒子の形状は特に限定されない。C面の面積が大きいことから、窒化ホウ素1の粒子の形状は鱗片状であることが望ましい。 Boron nitride 1 has a particle shape. The shape of the particles of boron nitride 1 is not particularly limited as long as the C-plane to be modified is exposed on the surface. Since the area of the C-plane is large, it is desirable that the shape of the particles of boron nitride 1 is scaly.
 窒化ホウ素1のC軸方向の厚みは、例えば、5nm以上である。窒化ホウ素1が5nm以上の厚みを有することによって、窒化ホウ素1の単位質量あたりの表面積を下げることができる。このことは、窒化ホウ素1の高湿度下での水分吸着量を低減して、窒化ホウ素材料10の誘電正接を低く保つことに有利である。窒化ホウ素1のC軸方向の厚みの上限は特に限定されない。窒化ホウ素1のC軸方向の厚みは、10μm以下であってもよい。窒化ホウ素1のC軸方向の厚みは、10nm以上10μm以下であってもよい。 The thickness of the boron nitride 1 in the C-axis direction is, for example, 5 nm or more. When boron nitride 1 has a thickness of 5 nm or more, the surface area per unit mass of boron nitride 1 can be reduced. This is advantageous in reducing the amount of moisture adsorbed by boron nitride 1 under high humidity and keeping the dielectric loss tangent of boron nitride material 10 low. The upper limit of the thickness of boron nitride 1 in the C-axis direction is not particularly limited. The thickness of boron nitride 1 in the C-axis direction may be 10 μm or less. The thickness of boron nitride 1 in the C-axis direction may be 10 nm or more and 10 μm or less.
 窒化ホウ素1のC軸方向の厚みは、窒化ホウ素1の走査電子顕微鏡像(SEM像)を用いて測定することができる。六方晶窒化ホウ素の最も広い面がC面である。したがって、SEM像における窒化ホウ素1の側面の厚みをC軸方向の厚みとみなすことができる。 The thickness of boron nitride 1 in the C-axis direction can be measured using a scanning electron microscope image (SEM image) of boron nitride 1. The widest plane of hexagonal boron nitride is the C-plane. Therefore, the thickness of the side surface of boron nitride 1 in the SEM image can be regarded as the thickness in the C-axis direction.
 窒化ホウ素1の平均粒径は、特に限定されない。窒化ホウ素1の平均粒径は、例えば、0.05μm以上かつ100μm以下であってもよく、0.1μm以上かつ50μm以下であってもよい。本開示において、窒化ホウ素粒子の平均粒径は、メジアン径を意味する。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径(d50)を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置により測定される。 The average particle size of boron nitride 1 is not particularly limited. The average particle size of boron nitride 1 may be, for example, 0.05 μm or more and 100 μm or less, or 0.1 μm or more and 50 μm or less. In the present disclosure, the average particle size of boron nitride particles means the median diameter. The median diameter means the particle diameter (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%. The volume-based particle size distribution is measured using, for example, a laser diffraction measuring device.
 [ポリマー]
 ポリマー2は、窒化ホウ素1の表面修飾剤としての役割を果たす有機化合物である。ポリマー2は、窒化ホウ素1のC面に付着している。六方晶窒化ホウ素の表面積の大部分はC面であるため、C面にポリマー2が付着していることによって表面修飾の効果が十分に得られる。
[polymer]
Polymer 2 is an organic compound that serves as a surface modifier for boron nitride 1. Polymer 2 is attached to the C-plane of boron nitride 1. Since most of the surface area of hexagonal boron nitride is the C-plane, a sufficient surface modification effect can be obtained by adhering the polymer 2 to the C-plane.
 ポリマー2は、窒化ホウ素1のC面において被膜を形成していてもよい。ポリマー2は、C面の全体に付着していてもよく、C面の一部にのみ付着していてもよい。C面以外の面にポリマー2が付着していてもよい。吸湿性の改善にはC面の修飾が有効であるが、C面とC面以外の面との両方が修飾されている場合にも吸湿性が改善されうる。 The polymer 2 may form a film on the C-plane of the boron nitride 1. The polymer 2 may be attached to the entire C-plane or only to a part of the C-plane. The polymer 2 may be attached to a surface other than the C-plane. Modification of the C-plane is effective for improving hygroscopicity, but hygroscopicity can also be improved when both the C-plane and surfaces other than the C-plane are modified.
 ポリマー2は、繰り返し単位内に芳香環を有するポリマーでありうる。六方晶窒化ホウ素のC面は不活性であるため、C面を化学修飾することは容易ではない。本実施の形態において、ポリマー2は、窒化ホウ素1に物理吸着している。「物理吸着」は、主にファンデルワールス力によって吸着していることを意味する。 The polymer 2 may be a polymer having an aromatic ring within the repeating unit. Since the C-plane of hexagonal boron nitride is inert, it is not easy to chemically modify the C-plane. In this embodiment, polymer 2 is physically adsorbed onto boron nitride 1. "Physical adsorption" means adsorption mainly by van der Waals forces.
 ポリマー2は、π-π相互作用によって窒化ホウ素1のC面に物理吸着していてもよい。芳香環に働くπ-π相互作用はファンデルワールス力の中でも特に強い相互作用として知られている。π-π相互作用を含むファンデルワールス力によって、十分な量のポリマー2が窒化ホウ素1のC面に付着しうる。 The polymer 2 may be physically adsorbed to the C-plane of the boron nitride 1 by π-π interaction. The π-π interaction that acts on aromatic rings is known to be a particularly strong interaction among van der Waals forces. A sufficient amount of polymer 2 can be attached to the C-plane of boron nitride 1 by van der Waals forces including π-π interactions.
 本実施の形態において、ポリマー2と水との間のHSP(Hansen solubility parameter)距離は39.5MPa0.5より大きい。HSP距離は、原子団寄与法(Hansen法)によって算出される。ポリマー2と水との間のHSP距離が十分に大きいことは、ポリマー2が高い疎水性を有することを意味する。ポリマー2が高い疎水性を有することによって、窒化ホウ素材料10の吸湿性を下げることができる。これにより、高湿度下での窒化ホウ素材料10の誘電正接を低減することができる。ポリマー2と水との間のHSP距離の上限は特に限定されない。HSP距離の上限は、例えば、54.8MPa0.5である。 In this embodiment, the HSP (Hansen solubility parameter) distance between the polymer 2 and water is greater than 39.5 MPa 0.5 . The HSP distance is calculated by the atomic group contribution method (Hansen method). A sufficiently large HSP distance between polymer 2 and water means that polymer 2 has high hydrophobicity. Since the polymer 2 has high hydrophobicity, the hygroscopicity of the boron nitride material 10 can be reduced. Thereby, the dielectric loss tangent of the boron nitride material 10 under high humidity can be reduced. The upper limit of the HSP distance between polymer 2 and water is not particularly limited. The upper limit of the HSP distance is, for example, 54.8 MPa 0.5 .
 一般に、表面修飾剤と窒化ホウ素との間に脱水縮合のような化学反応による共有結合を形成する場合、反応性の高い極性基を含む化合物が表面修飾剤として使用される。極性基を含む化合物は高い親水性を有するため、当該化合物と水との間のHSP距離が39.5MPa0.5以下となりやすい。よって、疎水性化合物を用いた表面修飾においては、化学反応による共有結合を形成するよりも物理吸着による表面修飾が望ましい。 Generally, when forming a covalent bond between a surface modifier and boron nitride through a chemical reaction such as dehydration condensation, a compound containing a highly reactive polar group is used as the surface modifier. Since a compound containing a polar group has high hydrophilicity, the HSP distance between the compound and water is likely to be 39.5 MPa 0.5 or less. Therefore, in surface modification using a hydrophobic compound, surface modification by physical adsorption is more preferable than forming a covalent bond by chemical reaction.
 窒化ホウ素1へのポリマー2の付着量が十分か否か、つまり、表面修飾が十分か否かは、メタノール滴定法によって測定された窒化ホウ素材料10の溶解度パラメータ(Solubility Parameter:SP値)によって判断できる。本実施の形態では、SP値が47.9MPa0.5未満であるとき、表面修飾が十分であると判断する。窒化ホウ素材料の表面が親水性の場合、そのSP値は47.9MPa0.5以上である。ポリマー2が窒化ホウ素1の表面に十分に付着することによって、窒化ホウ素材料の表面が疎水性へと変化してそのSP値が47.9MPa0.5未満となる。SP値が47.9MPa0.5未満に抑制されている場合、窒化ホウ素材料10は、高湿度下でも低い誘電正接を示す。窒化ホウ素材料10のSP値の下限は特に限定されない。窒化ホウ素材料10のSP値の下限は、例えば、34.1MPa0.5である。 Whether or not the amount of polymer 2 attached to boron nitride 1 is sufficient, that is, whether the surface modification is sufficient is determined by the solubility parameter (SP value) of boron nitride material 10 measured by methanol titration method. can. In this embodiment, it is determined that the surface modification is sufficient when the SP value is less than 47.9 MPa 0.5 . When the surface of the boron nitride material is hydrophilic, its SP value is 47.9 MPa 0.5 or more. By sufficiently adhering the polymer 2 to the surface of the boron nitride 1, the surface of the boron nitride material changes to be hydrophobic, and its SP value becomes less than 47.9 MPa 0.5 . When the SP value is suppressed to less than 47.9 MPa 0.5 , the boron nitride material 10 exhibits a low dielectric loss tangent even under high humidity. The lower limit of the SP value of the boron nitride material 10 is not particularly limited. The lower limit of the SP value of the boron nitride material 10 is, for example, 34.1 MPa 0.5 .
 ポリマー2は、ポリビニル系の芳香族ポリマーを含んでいてもよく、ポリビニル系の芳香族ポリマーは、複素芳香環を含む側鎖を含んでいてもよい。このような構造を有することによって、ポリマー2は、窒化ホウ素1の表面に強く吸着しうる。 The polymer 2 may include a polyvinyl aromatic polymer, and the polyvinyl aromatic polymer may include a side chain containing a heteroaromatic ring. Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
 ポリマー2は、式(1)で表される繰り返し単位を有していてもよい。式(1)において、nは正の整数を表す。Xは式(2)で表される。式(2)におけるR1からR5のいずれか1つが、式(1)で表される繰り返し単位に含まれる主鎖に対する直接的な結合手を表す。R1からR5の他の4つは、互いに独立して、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む。「R1からR5の他の4つ」は、主鎖に対する結合手を形成していない部位を意味する。主鎖は、式(1)ではエチレン骨格である。このような構造を有することによって、ポリマー2は、窒化ホウ素1の表面に強く吸着しうる。 Polymer 2 may have a repeating unit represented by formula (1). In formula (1), n represents a positive integer. X is represented by formula (2). Any one of R 1 to R 5 in formula (2) represents a direct bond to the main chain contained in the repeating unit represented by formula (1). The other four R 1 to R 5 are each independently at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I, and Br. including. "The other four from R 1 to R 5 " means a site that does not form a bond to the main chain. The main chain is an ethylene skeleton in formula (1). Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
 R1からR5の他の4つは、互いに独立して、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、酸素原子を含む基、窒素原子を含む基、硫黄原子を含む基、ケイ素原子を含む基、リン原子を含む基、またはホウ素原子を含む基であってもよい。 The other four R 1 to R 5 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, and a group containing a sulfur atom. , a group containing a silicon atom, a group containing a phosphorus atom, or a group containing a boron atom.
 ハロゲン原子としては、F、Cl、BrおよびIが挙げられる。 Examples of halogen atoms include F, Cl, Br and I.
 炭化水素基としては、脂肪族飽和炭化水素基、脂環式炭化水素基、脂肪族不飽和炭化水素基などが挙げられる。 Examples of the hydrocarbon group include an aliphatic saturated hydrocarbon group, an alicyclic hydrocarbon group, and an aliphatic unsaturated hydrocarbon group.
 ハロゲン化炭化水素基とは、炭化水素基に含まれる少なくとも1つの水素原子がハロゲン原子によって置換された基を意味する。ハロゲン化炭化水素基は、炭化水素基に含まれる全ての水素原子がハロゲン原子によって置換された基であってもよい。ハロゲン化炭化水素基としては、ハロゲン化アルキル基、ハロゲン化アルケニル基などが挙げられる。 A halogenated hydrocarbon group means a group in which at least one hydrogen atom contained in the hydrocarbon group is substituted with a halogen atom. The halogenated hydrocarbon group may be a group in which all hydrogen atoms contained in the hydrocarbon group are substituted with halogen atoms. Examples of the halogenated hydrocarbon group include a halogenated alkyl group and a halogenated alkenyl group.
 酸素原子を含む基は、例えば、ヒドロキシル基、カルボキシル基、アルデヒド基、エーテル基、アシル基およびエステル基からなる群より選ばれる少なくとも1つを有する置換基である。 The group containing an oxygen atom is, for example, a substituent having at least one selected from the group consisting of a hydroxyl group, a carboxyl group, an aldehyde group, an ether group, an acyl group, and an ester group.
 窒素原子を含む基は、例えば、アミノ基、イミノ基、シアノ基、アジ基、アミド基、カルバメート基、ニトロ基、シアナミド基、イソシアネート基およびオキシム基からなる群より選ばれる少なくとも1つを有する置換基である。 The nitrogen atom-containing group is, for example, a substituent having at least one selected from the group consisting of an amino group, an imino group, a cyano group, an azide group, an amide group, a carbamate group, a nitro group, a cyanamide group, an isocyanate group, and an oxime group. It is the basis.
 硫黄原子を含む基は、例えば、チオール基、スルフィド基、スルフィニル基、スルホニル基、スルフィノ基、スルホン酸基、アシルチオ基、スルフェンアミド基、スルホンアミド基、チオアミド基、チオカルバミド基およびチオシアノ基からなる群より選ばれる少なくとも1つを有する置換基である。 Groups containing a sulfur atom include, for example, a thiol group, a sulfide group, a sulfinyl group, a sulfonyl group, a sulfino group, a sulfonic acid group, an acylthio group, a sulfenamide group, a sulfonamide group, a thioamide group, a thiocarbamide group, and a thiocyano group. It is a substituent having at least one member selected from the group consisting of:
 ケイ素原子を含む基は、例えば、シリル基およびシロキシ基からなる群より選ばれる少なくとも1つを有する置換基である。 The group containing a silicon atom is, for example, a substituent having at least one selected from the group consisting of a silyl group and a siloxy group.
 リン原子を含む基は、例えば、ホスフィノ基およびホスホリル基からなる群より選ばれる少なくとも1つを有する置換基である。 The group containing a phosphorus atom is, for example, a substituent having at least one selected from the group consisting of a phosphino group and a phosphoryl group.
 ホウ素原子を含む基は、例えば、ボロン酸基を有する置換基である。ボロン酸基を有する置換基としては、例えば、ボロン酸基そのもの、および、ボロン酸基を有する炭化水素基が挙げられる。 The group containing a boron atom is, for example, a substituent having a boronic acid group. Examples of the substituent having a boronic acid group include the boronic acid group itself and a hydrocarbon group having a boronic acid group.
 R1からR5の他の4つは、互いに独立して、H原子または炭化水素基であってもよい。H原子または炭化水素基は、ポリマー2の極性を増加させない。そのため、R1からR5の他の4つがH原子または炭化水素基であることは、ポリマー2の疎水性を高める観点で望ましい。 The other four R 1 to R 5 may be independently H atoms or hydrocarbon groups. H atoms or hydrocarbon groups do not increase the polarity of polymer 2. Therefore, from the viewpoint of increasing the hydrophobicity of the polymer 2, it is desirable that the other four of R 1 to R 5 are H atoms or hydrocarbon groups.
 炭化水素基としては、脂肪族飽和炭化水素基、脂環式炭化水素基、脂肪族不飽和炭化水素基などが挙げられる。脂肪族飽和炭化水素基は、アルキル基であってもよい。脂肪族飽和炭化水素基としては、-CH3、-CH2CH3、-CH2CH2CH3、-CH(CH32、-CH(CH3)CH2CH3、-C(CH33、-CH2CH(CH32、-(CH23CH3、-(CH24CH3、-C(CH2CH3)(CH32、-CH2C(CH33、-(CH25CH3、-(CH26CH3、-(CH27CH3、-(CH28CH3、-(CH29CH3、-(CH210CH3、-(CH211CH3、-(CH212CH3、-(CH213CH3、-(CH214CH3、-(CH215CH3、-(CH216CH3、-(CH217CH3、-(CH218CH3、-(CH219CH3などが挙げられる。脂環式炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基などが挙げられる。脂肪族不飽和炭化水素基としては、-CH=CH2、-C≡CH、-C≡CCH3、-C(CH3)=CH2、-CH=CHCH3、-CH2CH=CH2などが挙げられる。 Examples of the hydrocarbon group include an aliphatic saturated hydrocarbon group, an alicyclic hydrocarbon group, and an aliphatic unsaturated hydrocarbon group. The aliphatic saturated hydrocarbon group may be an alkyl group. Examples of aliphatic saturated hydrocarbon groups include -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -C(CH 3 ) 3 , -CH2CH ( CH3 ) 2 , -( CH2 ) 3CH3 , -( CH2 ) 4CH3 , -C( CH2CH3 ) ( CH3 ) 2 , -CH2C (CH 3 ) 3 , -(CH 2 ) 5 CH 3 , -(CH 2 ) 6 CH 3 , -(CH 2 ) 7 CH 3 , -(CH 2 ) 8 CH 3 , -(CH 2 ) 9 CH 3 , -(CH 2 ) 10 CH 3 , -(CH 2 ) 11 CH 3 , -(CH 2 ) 12 CH 3 , -(CH 2 ) 13 CH 3 , -(CH 2 ) 14 CH 3 , -(CH 2 ) 15 CH 3 , -(CH 2 ) 16 CH 3 , -(CH 2 ) 17 CH 3 , -(CH 2 ) 18 CH 3 , -(CH 2 ) 19 CH 3 and the like. Examples of the alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group. Examples of aliphatic unsaturated hydrocarbon groups include -CH=CH 2 , -C≡CH, -C≡CCH 3 , -C(CH 3 )=CH 2 , -CH=CHCH 3 , -CH 2 CH=CH 2 Examples include.
 炭化水素基の炭素数は、特に限定されず、例えば1以上20以下であり、1以上10以下であってもよく、1以上5以下であってもよい。炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。 The number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1 or more and 20 or less, may be 1 or more and 10 or less, or may be 1 or more and 5 or less. The hydrocarbon group may be linear, branched, or cyclic.
 式(1)において、Xは式(3)で表されてもよい。式(3)におけるR11からR19のいずれか1つが、式(1)で表される繰り返し単位に含まれる主鎖に対する直接的な結合手を表す。R11からR19の他の8つは、互いに独立して、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む。「R11からR19の他の8つ」は、主鎖に対する結合手を形成していない部位を意味する。このような構造を有することによって、ポリマー2は、窒化ホウ素1の表面に強く吸着しうる。 In formula (1), X may be represented by formula (3). Any one of R 11 to R 19 in formula (3) represents a direct bond to the main chain contained in the repeating unit represented by formula (1). The other eight R 11 to R 19 are each independently at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I, and Br. including. "The other eight from R 11 to R 19 " means sites that do not form a bond to the main chain. Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
 R11からR19の他の8つは、互いに独立して、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、酸素原子を含む基、窒素原子を含む基、硫黄原子を含む基、ケイ素原子を含む基、リン原子を含む基、またはホウ素原子を含む基であってもよい。R11からR19の具体例には、R1からR5に関して先に説明した例が適用されうる。 The other eight R 11 to R 19 are, independently of each other, a hydrogen atom, a halogen atom, a hydrocarbon group, a halogenated hydrocarbon group, a group containing an oxygen atom, a group containing a nitrogen atom, a group containing a sulfur atom. , a group containing a silicon atom, a group containing a phosphorus atom, or a group containing a boron atom. The examples explained above regarding R 1 to R 5 can be applied to specific examples of R 11 to R 19 .
 R11からR19の他の8つは、互いに独立して、H原子または炭化水素基であってもよい。H原子または炭化水素基は、ポリマー2の極性を増加させない。そのため、R11からR19の他の8つがH原子または炭化水素基であることは、ポリマー2の疎水性を高める観点で望ましい。 The other eight of R 11 to R 19 may be independently H atoms or hydrocarbon groups. H atoms or hydrocarbon groups do not increase the polarity of polymer 2. Therefore, from the viewpoint of increasing the hydrophobicity of the polymer 2, it is desirable that the other eight atoms from R 11 to R 19 are H atoms or hydrocarbon groups.
 ポリマー2は、式(4)で表されるポリマーであってもよい。つまり、ポリマー2は、式(1)で表される繰り返し単位以外の構造を有していてもよい。式(1)において、nは正の整数を表し、mは0以上の整数を表す。Xは式(2)または式(3)で表される。R6は、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む。このような構造を有することによって、ポリマー2は、窒化ホウ素1の表面に強く吸着しうる。 Polymer 2 may be a polymer represented by formula (4). That is, the polymer 2 may have a structure other than the repeating unit represented by formula (1). In formula (1), n represents a positive integer, and m represents an integer of 0 or more. X is represented by formula (2) or formula (3). R 6 contains at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Having such a structure allows the polymer 2 to strongly adsorb to the surface of the boron nitride 1.
 R6の具体例には、R1からR5に関して先に説明した例が適用されうる。 The examples described above regarding R 1 to R 5 can be applied to specific examples of R 6 .
 R6は、H原子または炭化水素基であってもよい。H原子または炭化水素基は、ポリマー2の極性を増加させない。R6がH原子または炭化水素基であることは、ポリマー2の疎水性を高める観点で望ましい。 R 6 may be an H atom or a hydrocarbon group. H atoms or hydrocarbon groups do not increase the polarity of polymer 2. It is desirable that R 6 be an H atom or a hydrocarbon group from the viewpoint of increasing the hydrophobicity of the polymer 2.
 式(4)において、mはゼロであってもよい。 In formula (4), m may be zero.
 また、ポリマー2は、カルバゾール骨格及びフルオレン骨格からなる群より選択される少なくとも1つを含む繰り返し単位を有していてもよい。カルバゾール骨格及びフルオレン骨格を有する場合、ポリマー2は、窒化ホウ素1のC面への強い付着力を発揮しうる。カルバゾール骨格及びフルオレン骨格は、ポリマー2の主鎖に含まれていてもよく、側鎖に含まれていてもよい。カルバゾール骨格及びフルオレン骨格は、それぞれ、少なくとも1つの置換基を有してもよい。少なくとも1つの置換基は、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む基でありうる。このような基としては、式(1)について先に説明した基が挙げられる。 Furthermore, the polymer 2 may have a repeating unit containing at least one selected from the group consisting of a carbazole skeleton and a fluorene skeleton. When polymer 2 has a carbazole skeleton and a fluorene skeleton, it can exhibit strong adhesion to the C-plane of boron nitride 1. The carbazole skeleton and fluorene skeleton may be included in the main chain of the polymer 2, or may be included in the side chain. The carbazole skeleton and the fluorene skeleton may each have at least one substituent. At least one substituent can be a group containing at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Examples of such groups include the groups described above for formula (1).
 ポリマー2は、ポリフェニレンエーテル骨格を含む繰り返し単位を有していてもよい。ポリフェニレンエーテル骨格を有する場合、ポリマー2は、窒化ホウ素1のC面への強い付着力を発揮しうる。ポリフェニレンエーテル骨格は、ポリマー2の主鎖に含まれていてもよく、側鎖に含まれていてもよい。ポリフェニレンエーテル骨格は、それぞれ、少なくとも1つの置換基を有してもよい。少なくとも1つの置換基は、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む基でありうる。このような基としては、式(1)について先に説明した基が挙げられる。 Polymer 2 may have a repeating unit containing a polyphenylene ether skeleton. When having a polyphenylene ether skeleton, the polymer 2 can exhibit strong adhesion to the C-plane of the boron nitride 1. The polyphenylene ether skeleton may be included in the main chain of the polymer 2, or may be included in the side chain. Each polyphenylene ether skeleton may have at least one substituent. At least one substituent can be a group containing at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I and Br. Examples of such groups include the groups described above for formula (1).
 カルバゾール骨格、フルオレン骨格又はポリフェニレンエーテル骨格を有することによって、ポリマー2は、窒化ホウ素1の表面に強く吸着しうる。 By having a carbazole skeleton, a fluorene skeleton, or a polyphenylene ether skeleton, the polymer 2 can strongly adsorb to the surface of the boron nitride 1.
 なお、窒化ホウ素材料10の吸湿性を下げるためには、ポリマー2と水との間のHSP距離が大きいことが望ましい。水酸基、カルボキシル基、無置換アミノ基、チオール基、スルホン酸基、シラノール基などの極性基の含有量が少ないとき、ポリマー2と水との間のHSP距離が大きくなりうる。また、極性基の含有量が少ないとき、ポリマー2自身の誘電正接も抑制されうる。したがって、ポリマー2がこれらの極性基を有していなくてもよい。また、ポリマー2は、吸湿時に加水分解などの反応によってこれらの極性基を生じさせないことが望ましい。 Note that in order to reduce the hygroscopicity of the boron nitride material 10, it is desirable that the HSP distance between the polymer 2 and water be large. When the content of polar groups such as hydroxyl groups, carboxyl groups, unsubstituted amino groups, thiol groups, sulfonic acid groups, and silanol groups is small, the HSP distance between the polymer 2 and water can become large. Moreover, when the content of polar groups is small, the dielectric loss tangent of the polymer 2 itself can also be suppressed. Therefore, polymer 2 does not need to have these polar groups. Further, it is desirable that the polymer 2 does not generate these polar groups through reactions such as hydrolysis when absorbing moisture.
 ポリマー2の分子量は特に限定されない。ポリマー2は、例えば、100以上の数平均分子量Mnを有する。ポリマー2の数平均分子量Mnの上限は特に限定されず、例えば、500000である。 The molecular weight of polymer 2 is not particularly limited. Polymer 2 has, for example, a number average molecular weight Mn of 100 or more. The upper limit of the number average molecular weight Mn of the polymer 2 is not particularly limited, and is, for example, 500,000.
 ポリマー2の熱分解温度および沸点は、例えば、200℃以上であり、250℃以上であってもよい。窒化ホウ素材料10は、例えば、フィラーとして配線板の絶縁層に用いられる。ポリマー2の熱分解温度が十分に高い場合、配線板の上に電子部品を実装する際の半田リフロー工程においてポリマー2の熱分解または蒸発を抑制できる。これにより、配線板と樹脂層との間に気泡が発生することを防止できる。また、本実施の形態によれば、窒化ホウ素材料10の水分吸着量が抑制されているので、半田リフロー工程における吸着水の蒸発による気泡の発生も抑制されうる。 The thermal decomposition temperature and boiling point of the polymer 2 are, for example, 200°C or higher, and may be 250°C or higher. The boron nitride material 10 is used, for example, as a filler in an insulating layer of a wiring board. When the thermal decomposition temperature of the polymer 2 is sufficiently high, thermal decomposition or evaporation of the polymer 2 can be suppressed in a solder reflow process when electronic components are mounted on a wiring board. This can prevent air bubbles from forming between the wiring board and the resin layer. Furthermore, according to the present embodiment, since the amount of moisture adsorbed by the boron nitride material 10 is suppressed, the generation of bubbles due to evaporation of adsorbed water in the solder reflow process can also be suppressed.
 窒化ホウ素1に対するポリマー2の付着量は特に限定されない。例えば、窒化ホウ素1の質量に対するポリマー2の質量の比率が10%以下である。ポリマー2の付着量を適切に調整することによって、窒化ホウ素材料10の熱分解時に発生するガス量を抑制できる。このことは、窒化ホウ素材料10をフィラーとして使用する場合に特に有意義である。窒化ホウ素1の表面を十分に修飾できる限りにおいて、窒化ホウ素1の質量に対するポリマー2の質量の比率の下限は特に限定されない。比率の下限は、例えば、0.01%である。 The amount of polymer 2 attached to boron nitride 1 is not particularly limited. For example, the ratio of the mass of polymer 2 to the mass of boron nitride 1 is 10% or less. By appropriately adjusting the amount of the polymer 2 attached, the amount of gas generated during thermal decomposition of the boron nitride material 10 can be suppressed. This is particularly significant when using boron nitride material 10 as a filler. As long as the surface of boron nitride 1 can be sufficiently modified, the lower limit of the ratio of the mass of polymer 2 to the mass of boron nitride 1 is not particularly limited. The lower limit of the ratio is, for example, 0.01%.
 ポリマー2による窒化ホウ素1の表面修飾の方法は特に限定されない。例えば、ポリマー2を含む溶液と窒化ホウ素1とを混合し、固形物をろ過、洗浄、乾燥することによって、窒化ホウ素材料10が得られる。 The method of surface modification of boron nitride 1 with polymer 2 is not particularly limited. For example, boron nitride material 10 is obtained by mixing a solution containing polymer 2 and boron nitride 1, and filtering, washing, and drying the solid matter.
 溶媒の沸点を下回る温度である限り、ポリマー2による窒化ホウ素1の表面修飾を行う際の温度は特に限定されない。表面修飾は、常温(20℃±15℃)で行ってもよい。ポリマー2を溶解できる限りにおいて、溶媒の種類も特に限定されない。ポリマー2の使用量も特に限定されない。窒化ホウ素1の質量に対するポリマー2の質量の比は、0.01%以上10%以下であってもよく、0.75%以上5%以下であってもよい。 The temperature at which the surface of boron nitride 1 is modified with polymer 2 is not particularly limited as long as it is below the boiling point of the solvent. Surface modification may be performed at room temperature (20°C±15°C). The type of solvent is not particularly limited as long as it can dissolve the polymer 2. The amount of polymer 2 used is also not particularly limited. The ratio of the mass of polymer 2 to the mass of boron nitride 1 may be 0.01% or more and 10% or less, or 0.75% or more and 5% or less.
 [窒化ホウ素材料]
 窒化ホウ素材料10は、高湿度下での誘電正接の低減に有利な構成を有する。例えば、1GHzでの窒化ホウ素1の誘電正接に対する、湿度90%の大気下かつ1GHzでの窒化ホウ素材料10の誘電正接の比が1未満である。したがって、窒化ホウ素材料10は、低い誘電正接が求められる用途、例えば、配線板のフィラーに適している。窒化ホウ素1の誘電正接に対する窒化ホウ素材料10の誘電正接の比の下限は特に限定されない。当該比の下限は、例えば、0.001である。なお、本明細書において「湿度」は、相対湿度を意味する。
[Boron nitride material]
The boron nitride material 10 has a configuration that is advantageous in reducing the dielectric loss tangent under high humidity. For example, the ratio of the dielectric loss tangent of the boron nitride material 10 at 1 GHz in an atmosphere with 90% humidity to the dielectric loss tangent of boron nitride 1 at 1 GHz is less than 1. Therefore, the boron nitride material 10 is suitable for applications requiring a low dielectric loss tangent, for example, as a filler for wiring boards. The lower limit of the ratio of the dielectric loss tangent of the boron nitride material 10 to the dielectric loss tangent of the boron nitride 1 is not particularly limited. The lower limit of the ratio is, for example, 0.001. Note that in this specification, "humidity" means relative humidity.
 窒化ホウ素材料10は、水分吸着量の低減に有利な構成を有する。例えば、湿度90%の大気下での窒化ホウ素1の水分吸着量に対する、湿度90%の大気下での窒化ホウ素材料10の水分吸着量の比が1未満である。水分吸着量を低減することによって、誘電正接を低減できるとともに、半田リフロー工程における気泡の発生も抑制されうる。窒化ホウ素1の水分吸着量に対する窒化ホウ素材料10の水分吸着量の比の下限値は特に限定されない。当該比の下限は、例えば、0.01である。 The boron nitride material 10 has a configuration that is advantageous in reducing the amount of water adsorption. For example, the ratio of the amount of moisture adsorbed by the boron nitride material 10 in an atmosphere with a humidity of 90% to the amount of moisture adsorbed by the boron nitride 1 in an atmosphere with a humidity of 90% is less than 1. By reducing the amount of water adsorption, the dielectric loss tangent can be reduced, and the generation of bubbles in the solder reflow process can also be suppressed. The lower limit of the ratio of the amount of moisture adsorbed by the boron nitride material 10 to the amount of moisture adsorbed by the boron nitride 1 is not particularly limited. The lower limit of the ratio is, for example, 0.01.
 (実施の形態2)
 本実施の形態に係る放熱ギャップフィラーは、実施の形態1に係る窒化ホウ素材料10を含む。
(Embodiment 2)
The heat dissipation gap filler according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
 本開示において、放熱ギャップフィラーとは、基板材料などの電子部品に塗布して、空気溜まりまたは隙間などを埋めることによって、電子部品から熱を放散するために使用されるフィラーである。放熱ギャップフィラーは、ペースト状からシート状に硬化する硬化型の放熱ペーストである。本実施の形態に係る放熱ギャップフィラーによれば、フィラーの耐熱性を改善できる。加熱時の気泡の発生も抑制されうる。 In the present disclosure, a heat dissipation gap filler is a filler used to dissipate heat from an electronic component by applying it to an electronic component such as a substrate material to fill air pockets or gaps. The heat dissipation gap filler is a hardening type heat dissipation paste that hardens from a paste form to a sheet form. According to the heat dissipation gap filler according to the present embodiment, the heat resistance of the filler can be improved. Generation of bubbles during heating can also be suppressed.
 本実施の形態に係る放熱ギャップフィラーは、例えば、実施の形態1に係る窒化ホウ素材料10と、エポキシ樹脂もしくはシリコーン系樹脂、または、非シリコーン系のアクリル系樹脂もしくはセラミック系樹脂とを混錬することにより製造されうる。 The heat dissipation gap filler according to the present embodiment is produced by, for example, kneading the boron nitride material 10 according to the first embodiment with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or a ceramic resin. It can be manufactured by
 (実施の形態3)
 本実施の形態に係る放熱グリース用フィラーは、実施の形態1に係る窒化ホウ素材料10を含む。
(Embodiment 3)
The filler for thermal grease according to the present embodiment includes the boron nitride material 10 according to the first embodiment.
 本開示において、放熱グリース用フィラーとは、放熱グリースに用いられるフィラーである。放熱グリースは、基板材料などの電子部品に塗布して、空気溜まりまたは隙間などを埋めることによって、電子部品から熱を放散するために使用される非硬化型の放熱ペーストである。本実施の形態に係る放熱グリース用フィラーによれば、フィラーの耐熱性を改善できる。加熱時の気泡の発生も抑制されうる。 In the present disclosure, a filler for heat-radiating grease is a filler used for heat-radiating grease. Thermal grease is a non-hardening thermal paste used to dissipate heat from electronic components by applying them to electronic components, such as substrate materials, to fill air pockets or gaps. According to the filler for thermal grease according to the present embodiment, the heat resistance of the filler can be improved. Generation of bubbles during heating can also be suppressed.
 本実施の形態に係る放熱グリース用フィラーは、例えば、実施の形態1に係る窒化ホウ素材料10と、エポキシ樹脂もしくはシリコーン系樹脂、または非シリコーン系のアクリル系樹脂もしくはセラミック系樹脂とを混錬することにより製造されうる。 The heat dissipation grease filler according to the present embodiment is produced by, for example, kneading the boron nitride material 10 according to Embodiment 1 with an epoxy resin, a silicone resin, or a non-silicone acrylic resin or ceramic resin. It can be manufactured by
 (実施の形態4)
 図3は、実施の形態4における樹脂組成物20の概略構成を示す図である。樹脂組成物20は、例えば、フィラー22および硬化性樹脂24を含む。
(Embodiment 4)
FIG. 3 is a diagram showing a schematic configuration of a resin composition 20 in Embodiment 4. The resin composition 20 includes, for example, a filler 22 and a curable resin 24.
 フィラー22は、実施の形態1で説明した窒化ホウ素材料10を含む。本実施の形態によれば、低い誘電正接を示すとともに耐熱性に優れた樹脂組成物20を提供できる。フィラー22として、窒化ホウ素材料10のみを用いてもよく、シリカ粒子などの他のフィラー用材料を窒化ホウ素材料10と併用してもよい。 The filler 22 includes the boron nitride material 10 described in the first embodiment. According to this embodiment, it is possible to provide a resin composition 20 that exhibits a low dielectric loss tangent and has excellent heat resistance. As the filler 22, the boron nitride material 10 alone may be used, or other filler materials such as silica particles may be used in combination with the boron nitride material 10.
 硬化性樹脂24としては、エポキシ樹脂、シアン酸エステル化合物、マレイミド化合物、フェノール樹脂、アクリル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、熱硬化性ポリイミド樹脂、ポリフェニレンエーテル樹脂などが挙げられる。硬化性樹脂24としては、これらから選ばれる1種または2種以上の組み合わせを使用できる。 Examples of the curable resin 24 include epoxy resins, cyanate ester compounds, maleimide compounds, phenol resins, acrylic resins, polyamide resins, polyamideimide resins, thermosetting polyimide resins, and polyphenylene ether resins. As the curable resin 24, one kind or a combination of two or more kinds selected from these can be used.
 樹脂組成物20は、他の成分を含有していてもよい。他の成分としては、硬化剤、難燃剤、紫外線吸収剤、酸化防止剤、反応開始剤、シランカップリング剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、帯電防止剤、重合禁止剤、有機溶媒などが挙げられる。必要に応じて、樹脂組成物20には、これらから選ばれる1種または2種以上の組み合わせを使用できる。 The resin composition 20 may contain other components. Other ingredients include curing agents, flame retardants, ultraviolet absorbers, antioxidants, reaction initiators, silane coupling agents, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, and erasers. Examples include foaming agents, dispersants, leveling agents, brighteners, antistatic agents, polymerization inhibitors, and organic solvents. If necessary, the resin composition 20 can use one type or a combination of two or more types selected from these.
 (実施の形態5)
 実施の形態5に係るプリプレグは、図3に示す実施の形態4の樹脂組成物20またはその半硬化物と、繊維質基材とを備える。繊維質基材は、樹脂組成物20または半硬化物のマトリクス中に存在する。プリプレグは、樹脂組成物20と繊維質基材との複合材料である。本実施の形態によれば、高周波対応の配線板に適したプリプレグを提供できる。
(Embodiment 5)
The prepreg according to Embodiment 5 includes the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and a fibrous base material. The fibrous base material is present in the matrix of the resin composition 20 or semi-cured material. Prepreg is a composite material of the resin composition 20 and a fibrous base material. According to this embodiment, it is possible to provide a prepreg suitable for high-frequency wiring boards.
 本実施の形態において、半硬化物は、樹脂組成物20をさらに硬化しうる程度に途中まで硬化した状態の材料を意味する。すなわち、半硬化物は、樹脂組成物20を半硬化した状態の材料である。例えば、樹脂組成物20は、加熱すると、その粘度が徐々に低下する。加熱を続けると、その後、硬化が開始し、その粘度が徐々に上昇する。このような場合、半硬化した状態としては、粘度の上昇が始まった時点から完全に硬化する時点までの期間における樹脂組成物20の状態が挙げられる。 In this embodiment, the semi-cured material refers to a material that is partially cured to the extent that the resin composition 20 can be further cured. That is, the semi-cured material is a material obtained by semi-curing the resin composition 20. For example, when the resin composition 20 is heated, its viscosity gradually decreases. If heating is continued, curing will then begin and its viscosity will gradually increase. In such a case, the semi-cured state includes the state of the resin composition 20 during the period from the time when the viscosity starts to increase until the time when it is completely cured.
 繊維質基材としては、各種の電気絶縁材料用積層板に用いられている公知の材料を使用できる。繊維質基材としては、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、リンター紙などが挙げられる。 As the fibrous base material, known materials used in various electrically insulating material laminates can be used. Examples of the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
 樹脂組成物20は、浸漬、塗布などの処理によって繊維質基材に含浸される。樹脂組成物20が含浸された繊維質基材を所定の加熱条件で加熱することによって、本実施の形態に係る硬化前または半硬化状態のプリプレグが得られる。 The resin composition 20 is impregnated into the fibrous base material through treatments such as dipping and coating. By heating the fibrous base material impregnated with the resin composition 20 under predetermined heating conditions, a pre-cured or semi-cured prepreg according to the present embodiment can be obtained.
 (実施の形態6)
 図4は、実施の形態6における樹脂付きフィルム30の断面図である。樹脂付きフィルム30は、樹脂組成物20またはその半硬化物を含む樹脂層32と、支持フィルム34とを備えている。本実施の形態によれば、絶縁層に適した樹脂付きフィルム30を提供できる。樹脂層32が支持フィルム34によって支持されている。図4の例では、樹脂層32の表面上に支持フィルム34が配置されている。ただし、樹脂層32と支持フィルム34との間に粘着層などの他の層が設けられていてもよい。
(Embodiment 6)
FIG. 4 is a cross-sectional view of a resin-coated film 30 in Embodiment 6. The resin-coated film 30 includes a resin layer 32 containing the resin composition 20 or a semi-cured product thereof, and a support film 34. According to this embodiment, a resin-coated film 30 suitable for an insulating layer can be provided. The resin layer 32 is supported by a support film 34. In the example of FIG. 4, a support film 34 is placed on the surface of the resin layer 32. However, another layer such as an adhesive layer may be provided between the resin layer 32 and the support film 34.
 樹脂層32は、図3に示す実施の形態4の樹脂組成物20またはその半硬化物を含み、繊維質基材を含んでいてもよく、含んでいなくてもよい。繊維質基材としては、プリプレグの繊維質基材と同じ材料を使用できる。樹脂層32は、硬化して絶縁層に変化する。そのような絶縁層の例は、配線板の絶縁層である。 The resin layer 32 contains the resin composition 20 of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material. As the fibrous base material, the same material as the fibrous base material of the prepreg can be used. The resin layer 32 hardens and changes into an insulating layer. An example of such an insulating layer is an insulating layer of a wiring board.
 支持フィルム34としては、樹脂付きフィルムに用いられる支持フィルムを限定なく使用できる。支持フィルム34としては、ポリエステルフィルム、ポリエチレンテレフタレートフィルムなどの樹脂フィルムが挙げられる。 As the support film 34, any support film used for resin-coated films can be used without limitation. Examples of the support film 34 include resin films such as polyester films and polyethylene terephthalate films.
 (実施の形態7)
 図5は、実施の形態7における樹脂付き金属箔40の断面図である。樹脂付き金属箔40は、樹脂組成物20またはその半硬化物を含む樹脂層42と、金属箔44とを備える。樹脂層42が金属箔44によって支持されている。本実施の形態によれば、配線板などの電子回路部品に適した樹脂付き金属箔40を提供できる。図5の例では、樹脂層42の表面上に金属箔44が配置されている。ただし、樹脂層42と金属箔44との間に粘着層などの他の層が設けられていてもよい。
(Embodiment 7)
FIG. 5 is a cross-sectional view of resin-coated metal foil 40 in Embodiment 7. The resin-coated metal foil 40 includes a resin layer 42 containing the resin composition 20 or a semi-cured product thereof, and a metal foil 44. A resin layer 42 is supported by a metal foil 44. According to this embodiment, a resin-coated metal foil 40 suitable for electronic circuit components such as wiring boards can be provided. In the example of FIG. 5, a metal foil 44 is placed on the surface of the resin layer 42. However, another layer such as an adhesive layer may be provided between the resin layer 42 and the metal foil 44.
 樹脂層42は、図3に示す実施の形態4の樹脂組成物またはその半硬化物を含み、繊維質基材を含んでいてもよく、含んでいなくてもよい。繊維質基材としては、プリプレグの繊維質基材と同じ材料を使用できる。樹脂層42は、硬化して絶縁層に変化する。そのような絶縁層の例は、配線板の絶縁層である。 The resin layer 42 contains the resin composition of Embodiment 4 shown in FIG. 3 or a semi-cured product thereof, and may or may not contain a fibrous base material. As the fibrous base material, the same material as the fibrous base material of the prepreg can be used. The resin layer 42 hardens and changes into an insulating layer. An example of such an insulating layer is an insulating layer of a wiring board.
 金属箔44としては、樹脂付き金属箔および金属張積層板に用いられる金属箔を限定なく使用できる。金属箔としては、銅箔、アルミニウム箔などが挙げられる。 As the metal foil 44, resin-coated metal foil and metal foil used for metal-clad laminates can be used without limitation. Examples of the metal foil include copper foil and aluminum foil.
 (実施の形態8)
 図6は、実施の形態8における金属張積層板50の断面図である。金属張積層板50は、絶縁層52および少なくとも1つの金属箔54を備えている。本実施の形態によれば、配線板に適した金属張積層板50を提供できる。絶縁層52は、図3に示す実施の形態4の樹脂組成物20の硬化物または実施の形態5のプリプレグの硬化物を含む。金属箔54は、絶縁層52の表面上に配置されている。本実施の形態では、絶縁層52の表面と裏面とのそれぞれに金属箔54が配置されている。
(Embodiment 8)
FIG. 6 is a cross-sectional view of a metal-clad laminate 50 in Embodiment 8. Metal-clad laminate 50 includes an insulating layer 52 and at least one metal foil 54 . According to this embodiment, a metal-clad laminate 50 suitable for a wiring board can be provided. The insulating layer 52 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment. Metal foil 54 is placed on the surface of insulating layer 52. In this embodiment, metal foils 54 are placed on each of the front and back surfaces of the insulating layer 52.
 金属張積層板50は、典型的には、実施の形態5のプリプレグを用いて製造される。例えば、1から20枚のプリプレグを重ね合わせて積層体を形成する。プリプレグの積層体の片面または両面に金属箔を配置し、加熱および加圧することによって金属張積層板50が得られる。金属箔54としては、銅箔、アルミニウム箔などが挙げられる。 The metal-clad laminate 50 is typically manufactured using the prepreg of Embodiment 5. For example, a laminate is formed by stacking 1 to 20 sheets of prepreg. A metal-clad laminate 50 is obtained by placing metal foil on one or both sides of the prepreg laminate and heating and pressurizing the prepreg laminate. Examples of the metal foil 54 include copper foil, aluminum foil, and the like.
 金属張積層板50を製造する際の成形条件には、例えば、電気絶縁材料用積層板および多層板を製造する際の成形条件が適用されうる。 For example, the molding conditions for manufacturing a laminate for electrically insulating materials and a multilayer board can be applied to the molding conditions for manufacturing the metal-clad laminate 50.
 (実施の形態9)
 図7は、実施の形態9における配線板60の断面図である。配線板60は、絶縁層62および配線64を備えている。本実施の形態によれば、高周波に適した配線板60を提供できる。絶縁層62は、図3に示す実施の形態4の樹脂組成物20の硬化物または実施の形態5のプリプレグの硬化物を含む。配線64は、絶縁層62によって支持されている。配線64は、詳細には、絶縁層62の上に配置されている。金属箔を部分的に除去することによって配線64が形成されうる。
(Embodiment 9)
FIG. 7 is a cross-sectional view of wiring board 60 in the ninth embodiment. Wiring board 60 includes an insulating layer 62 and wiring 64. According to this embodiment, a wiring board 60 suitable for high frequencies can be provided. The insulating layer 62 includes a cured product of the resin composition 20 of the fourth embodiment shown in FIG. 3 or a cured product of the prepreg of the fifth embodiment. The wiring 64 is supported by the insulating layer 62. Specifically, the wiring 64 is arranged on the insulating layer 62. Wiring 64 may be formed by partially removing the metal foil.
 図6に示す金属張積層板50の表面の金属箔54をエッチング加工などの方法でパターニングすることによって、絶縁層62の表面上に回路をなす配線64が設けられた配線板60が得られる。すなわち、配線板60は、回路が形成されるように金属張積層板50の表面の金属箔54を部分的に除去することによって得られる。 By patterning the metal foil 54 on the surface of the metal-clad laminate 50 shown in FIG. 6 by a method such as etching, a wiring board 60 in which wiring 64 forming a circuit is provided on the surface of the insulating layer 62 is obtained. That is, the wiring board 60 is obtained by partially removing the metal foil 54 on the surface of the metal-clad laminate 50 so that a circuit is formed.
 配線板60の少なくとも一方の面に実施の形態5のプリプレグを積層させて加熱および加圧することによって新たな積層板を形成してもよい。得られた積層板の表面の金属箔をパターニングして配線を形成すれば、多層の配線板が得られる。 A new laminate may be formed by laminating the prepreg of Embodiment 5 on at least one surface of the wiring board 60 and applying heat and pressure. A multilayer wiring board can be obtained by patterning the metal foil on the surface of the obtained laminate to form wiring.
 以下、実施例および比較例を用いて、本開示の詳細が説明される。なお、本開示は、以下の実施例に限定されない。 Hereinafter, details of the present disclosure will be explained using Examples and Comparative Examples. Note that the present disclosure is not limited to the following examples.
 以下、窒化ホウ素としては鱗片状の六方晶窒化ホウ素(Denka社製、GPグレード)を用いた。 Hereinafter, scaly hexagonal boron nitride (manufactured by Denka, GP grade) was used as boron nitride.
 〔実施例1〕
 式(5)で表されるポリ(9-ビニルカルバゾール)(Aldrich社製、数平均分子量Mn25000から50000)15mgをトルエン1mLに溶解させて溶液を得た。溶液に窒化ホウ素200mgを懸濁させて100℃で一晩攪拌した。窒化ホウ素を吸引濾過で単離後、トルエンで洗浄し、室温で真空乾燥した。これにより、実施例1の窒化ホウ素材料の粉末約200mgを得た。
[Example 1]
A solution was obtained by dissolving 15 mg of poly(9-vinylcarbazole) represented by formula (5) (manufactured by Aldrich, number average molecular weight Mn 25,000 to 50,000) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 1 was obtained.
 〔実施例2〕
 式(6)で表されるポリ(N-エチル-2-ビニルカルバゾール)(Aldrich社製)15mgをトルエン1mLに溶解させて溶液を得た。溶液に窒化ホウ素200mgを懸濁させて100℃で一晩攪拌した。窒化ホウ素を吸引濾過で単離後、トルエンで洗浄し、室温で真空乾燥した。これにより、実施例2の窒化ホウ素材料の粉末約200mgを得た。
[Example 2]
A solution was obtained by dissolving 15 mg of poly(N-ethyl-2-vinylcarbazole) (manufactured by Aldrich) represented by formula (6) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 2 was obtained.
 〔実施例3〕
 式(7)で表されるPoly(9,9-di-n-dodecylfluorenyl-2,7-diyl)(Luminescence Technology社製、LT-A1016)15mgをトルエン1mLに溶解させて溶液を得た。溶液に窒化ホウ素200mgを懸濁させて100℃で一晩攪拌した。窒化ホウ素を吸引濾過で単離後、トルエンで洗浄し、室温で真空乾燥した。これにより、実施例3の窒化ホウ素材料の粉末約200mgを得た。
[Example 3]
A solution was obtained by dissolving 15 mg of Poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (LT-A1016, manufactured by Luminescence Technology) represented by formula (7) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 3 was obtained.
 〔実施例4〕
 式(8)で表されるPFOTBT(Poly[2,7-(9,9-di-octyl-fluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole])(Luminescence Technology社製、LT-S9419)15mgをトルエン1mLに溶解させて溶液を得た。溶液に窒化ホウ素200mgを懸濁させて100℃で一晩攪拌した。窒化ホウ素を吸引濾過で単離後、トルエンで洗浄し、室温で真空乾燥した。これにより、実施例4の窒化ホウ素材料の粉末約200mgを得た。
[Example 4]
PFOTBT (Poly[2,7-(9,9-di-octyl-fluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3- thiadiazole] (manufactured by Luminescence Technology, LT-S9419) was dissolved in 1 mL of toluene to obtain a solution. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 4 was obtained.
 〔実施例5〕
 式(9)で表されるポリフェニレンエーテル(SABICジャパン社製)15mgをトルエン1mLに溶解させて溶液を得た。溶液に窒化ホウ素200mgを懸濁させて100℃で一晩攪拌した。窒化ホウ素を吸引濾過で単離後、トルエンで洗浄し、室温で真空乾燥した。これにより、実施例5の窒化ホウ素材料の粉末約200mgを得た。
[Example 5]
A solution was obtained by dissolving 15 mg of polyphenylene ether represented by formula (9) (manufactured by SABIC Japan) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Example 5 was obtained.
 〔比較例1〕
 六方晶窒化ホウ素(Denka社製、GPグレード)を比較例1の窒化ホウ素としてそのまま用いた。
[Comparative example 1]
Hexagonal boron nitride (manufactured by Denka, GP grade) was used as it was as boron nitride in Comparative Example 1.
 〔比較例2〕
 式(10)で表されるポリ(4-ビニルピリジン)(Aldrich社製、重量平均分子量Mw60000未満)15mgをクロロホルム1mLに溶解させて溶液を得た。溶液に窒化ホウ素200mgを懸濁させて50℃で一晩攪拌した。窒化ホウ素を吸引濾過で単離後、クロロホルムで洗浄し、室温で真空乾燥した。これにより、比較例2の窒化ホウ素材料の粉末約200mgを得た。
[Comparative example 2]
A solution was obtained by dissolving 15 mg of poly(4-vinylpyridine) represented by formula (10) (manufactured by Aldrich, weight average molecular weight Mw less than 60,000) in 1 mL of chloroform. 200 mg of boron nitride was suspended in the solution and stirred at 50°C overnight. Boron nitride was isolated by suction filtration, washed with chloroform, and dried under vacuum at room temperature. As a result, about 200 mg of powder of the boron nitride material of Comparative Example 2 was obtained.
 〔比較例3〕
 Tris-HClでpHを8.5に調整したドーパミン溶液(23mg/mL)に窒化ホウ素を加えた。溶液温度を80℃に設定し、マグネティックスターラーで24時間攪拌してドーパミンの重合反応を進行させてポリドーパミンを形成した。反応後、窒化ホウ素を濾過し、水洗した後、乾燥させた。これにより、比較例3の窒化ホウ素材料の粉末を得た。
[Comparative example 3]
Boron nitride was added to a dopamine solution (23 mg/mL) whose pH was adjusted to 8.5 with Tris-HCl. The solution temperature was set at 80° C., and the solution was stirred using a magnetic stirrer for 24 hours to advance the polymerization reaction of dopamine to form polydopamine. After the reaction, the boron nitride was filtered, washed with water, and then dried. Thereby, a powder of boron nitride material of Comparative Example 3 was obtained.
 〔比較例4〕
 ポリスチレン(Aldrich社製、重量平均分子量Mw35000)15mgをトルエン1mLに溶解させて溶液を得た。溶液に窒化ホウ素200mgを懸濁させて100℃で一晩攪拌した。窒化ホウ素を吸引濾過で単離後、トルエンで洗浄し、室温で真空乾燥した。これにより、比較例4の窒化ホウ素材料の粉末約200mgを得た。
[Comparative example 4]
A solution was obtained by dissolving 15 mg of polystyrene (manufactured by Aldrich, weight average molecular weight Mw 35000) in 1 mL of toluene. 200 mg of boron nitride was suspended in the solution and stirred at 100°C overnight. After isolation of boron nitride by suction filtration, it was washed with toluene and vacuum dried at room temperature. As a result, about 200 mg of powder of the boron nitride material of Comparative Example 4 was obtained.
 <HSP距離の算出>
 実施例および比較例で用いたポリマーと水との間のHSP距離を以下の方法で算出した。
<Calculation of HSP distance>
The HSP distance between the polymer used in Examples and Comparative Examples and water was calculated by the following method.
 原子団寄与法(Hansen法)を使用し、ポリマーの分子構造からHSP値の分散項δd、極性項δpおよび水素結合項δhを算出した。これらの値を数式(A1)に代入することによって、ポリマーと水との間のHSP距離(MPa0.5)を算出した。水のHSP値の分散項δd、極性項δpおよび水素結合項δhとして、それぞれ、15.5MPa0.5、16.0MPa0.5および42.3MPa0.5を用いた。結果を表1に示す。 Using the atomic group contribution method (Hansen method), the dispersion term δ d , polarity term δ p and hydrogen bond term δ h of the HSP value were calculated from the molecular structure of the polymer. By substituting these values into formula (A1), the HSP distance (MPa 0.5 ) between the polymer and water was calculated. 15.5 MPa 0.5 , 16.0 MPa 0.5 and 42.3 MPa 0.5 were used as the dispersion term δ d , polar term δ p and hydrogen bond term δ h of the HSP value of water, respectively. The results are shown in Table 1.
 HSP距離=[4(δd-15.5)2+(δp-16.0)2+(δh-42.3)2]1/2・・・(A1) HSP distance = [4(δ d -15.5) 2 +(δ p -16.0) 2 +(δ h -42.3) 2 ] 1/2 ...(A1)
 比較例3で用いたポリドーパミンは、複数の分子構造を持つ混合物であることが知られている。本明細書では、ポリドーパミンが式(11)に記載した単一の構造を有すると仮定してHSP距離を算出した。実際のポリドーパミンは親水性の高いポリマーとして知られている。ポリドーパミンが式(11)以外の構造を有していたとしても、そのHSP距離は39.5MPa0.5以下にならない。 Polydopamine used in Comparative Example 3 is known to be a mixture having multiple molecular structures. In this specification, the HSP distance was calculated assuming that polydopamine has a single structure described in formula (11). Actual polydopamine is known as a highly hydrophilic polymer. Even if polydopamine has a structure other than formula (11), its HSP distance will not be less than 39.5 MPa 0.5 .
 HSP距離は、溶媒または有機分子間の溶解性および分散性といった馴染みやすさを表す指標として用いられる。そのため、水とポリマーとの間のHSP距離は、ポリマーの疎水性または親水性の度合いを定量的に判断する基準として利用できる。実施例および比較例2の後述の測定結果から理解できるように、39.5MPa0.5を上回るHSP距離を有するポリマーは、窒化ホウ素の加湿時の誘電正接を低減するために充分な疎水性を持つと判断できる。 The HSP distance is used as an index representing the ease of solubility and dispersibility between solvents or organic molecules. Therefore, the HSP distance between water and a polymer can be used as a standard for quantitatively determining the degree of hydrophobicity or hydrophilicity of a polymer. As can be understood from the measurement results described later in Example and Comparative Example 2, a polymer having an HSP distance of more than 39.5 MPa 0.5 has sufficient hydrophobicity to reduce the dielectric loss tangent during humidification of boron nitride. I can judge.
 <加湿時の誘電正接の測定>
 実施例および比較例の窒化ホウ素材料を以下の方法で加湿した。窒化ホウ素材料を蓋の空いた容器に入れた。湿度計とともに透明なビニール袋へ容器を入れた。湿度90%に調整した25℃の空気をこのビニール袋内に流しながら、その状態で15時間放置することによって窒化ホウ素材料の加湿を行った。加湿中のビニール袋内の湿度が90%に保たれていることを湿度計で確認した。加湿後の窒化ホウ素材料をビニール袋から取り出した。
<Measurement of dielectric loss tangent during humidification>
The boron nitride materials of Examples and Comparative Examples were humidified by the following method. The boron nitride material was placed in a container with an open lid. The container was placed in a transparent plastic bag along with the hygrometer. The boron nitride material was humidified by flowing air at 25° C. whose humidity was adjusted to 90% into the plastic bag and leaving it in that state for 15 hours. A hygrometer was used to confirm that the humidity inside the plastic bag was maintained at 90% during humidification. The boron nitride material after humidification was taken out from the plastic bag.
 加湿後、1GHzの周波数における窒化ホウ素材料の誘電正接を測定した。誘電正接の測定には空洞共振器(AET社製、MS46122B)を使用した。加湿終了から誘電正接の測定を開始するまでの期間において、窒化ホウ素材料を室温(25℃)の外気にさらした。測定は、加湿終了時点から20分間が経過した時点で行った。結果を表1に示す。表1において、加湿時の誘電正接は、比較例1の加湿時の誘電正接を1として規格化された値を示す。 After humidification, the dielectric loss tangent of the boron nitride material at a frequency of 1 GHz was measured. A cavity resonator (manufactured by AET, MS46122B) was used to measure the dielectric loss tangent. During the period from the end of humidification to the start of measurement of dielectric loss tangent, the boron nitride material was exposed to outside air at room temperature (25° C.). The measurement was performed 20 minutes after the end of humidification. The results are shown in Table 1. In Table 1, the dielectric loss tangent during humidification indicates a value normalized by setting the dielectric loss tangent during humidification of Comparative Example 1 to 1.
 本測定は、加湿時の誘電正接の良否を判断するために実施した。未修飾の窒化ホウ素(比較例1)の誘電正接を1として窒化ホウ素材料の誘電正接を規格化した。つまり、未修飾の窒化ホウ素の誘電正接に対する窒化ホウ素材料の誘電正接の比を算出した。算出された値が1未満であれば誘電正接は良好であると判断できる。 This measurement was carried out to determine the quality of the dielectric loss tangent during humidification. The dielectric loss tangent of the boron nitride material was normalized by setting the dielectric loss tangent of unmodified boron nitride (Comparative Example 1) to 1. That is, the ratio of the dielectric loss tangent of the boron nitride material to the dielectric loss tangent of unmodified boron nitride was calculated. If the calculated value is less than 1, it can be determined that the dielectric loss tangent is good.
 <水分吸着量の測定>
 実施例および比較例の窒化ホウ素材料を先に説明した方法で加湿した。加湿された窒化ホウ素材料の水分吸着量をカールフィッシャー法で測定した。測定にはカールフィッシャー水分計(京都電子工業社製、MKC-610)および気化装置(京都電子工業社製、ADP-611)を使用した。気化温度は150℃であった。ドリフト値が+0.1μg/secに達した時点を終点とした。キャリアガスには窒素(200mL/min)を用いた。測定は2回行い、2回の平均値を結果として採用した。加湿終了から測定開始までの期間において、湿度90%の空気で満たされたガス置換デシケータ中で窒化ホウ素材料を保管し、測定開始まで窒化ホウ素材料を外気に接触させなかった。結果を表1に示す。表1において、加湿時の水分吸着量は、比較例1の加湿時の水分吸着量を1として規格化された値を示す。
<Measurement of water adsorption amount>
The boron nitride materials of the Examples and Comparative Examples were humidified in the manner described above. The amount of moisture adsorbed by the humidified boron nitride material was measured using the Karl Fischer method. For the measurement, a Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd., MKC-610) and a vaporizer (manufactured by Kyoto Electronics Industry Co., Ltd., ADP-611) were used. The vaporization temperature was 150°C. The end point was when the drift value reached +0.1 μg/sec. Nitrogen (200 mL/min) was used as the carrier gas. The measurement was performed twice, and the average value of the two measurements was used as the result. During the period from the end of humidification to the start of measurement, the boron nitride material was stored in a gas displacement desiccator filled with air with a humidity of 90%, and the boron nitride material was not exposed to outside air until the start of measurement. The results are shown in Table 1. In Table 1, the amount of water adsorption during humidification is a value normalized with the amount of water adsorption during humidification of Comparative Example 1 taken as 1.
 本測定は、加湿時の窒化ホウ素材料の水分吸着量を判断するために実施した。未修飾の窒化ホウ素(比較例1)の加湿時の水分吸着量を1として窒化ホウ素材料の水分吸着量を規格化した。つまり、未修飾の窒化ホウ素の水分吸着量に対する窒化ホウ素材料の水分吸着量の比を算出した。算出された値が1未満であれば水分吸着量は良好であると判断できる。 This measurement was conducted to determine the amount of moisture adsorbed by the boron nitride material during humidification. The moisture adsorption amount of the boron nitride material was standardized by setting the moisture adsorption amount of unmodified boron nitride (Comparative Example 1) during humidification to 1. That is, the ratio of the amount of moisture adsorbed by the boron nitride material to the amount of moisture adsorbed by unmodified boron nitride was calculated. If the calculated value is less than 1, it can be determined that the amount of water adsorption is good.
 <SP値の測定(メタノール滴定法)>
 実施例および比較例の窒化ホウ素材料のSP値を以下に示す方法で測定した。200mLのビーカーにイオン交換水50mLを入れ、その水面に窒化ホウ素材料50mgを浮かべた。その後、300rpmの回転数のマグネットスターラーで3分間攪拌して分散液を得た。メタノールを入れたビュレットの先端を分散液の中に入れ、攪拌下でメタノールを滴下し、窒化ホウ素材料の粒子が全て液中に沈降するまでに要したメタノールの添加量Y(mL)を測定した。測定された添加量Yを数式(A2)に代入することによって、SP値を算出した。本実施例では、水のSP値(文献値)として47.9MPa0.5を用いた。メタノールのSP値(文献値)として29.6MPa0.5を用いた。結果を表1に示す。
<Measurement of SP value (methanol titration method)>
The SP values of the boron nitride materials of Examples and Comparative Examples were measured by the method shown below. 50 mL of ion exchange water was placed in a 200 mL beaker, and 50 mg of the boron nitride material was floated on the water surface. Thereafter, the mixture was stirred for 3 minutes using a magnetic stirrer at a rotation speed of 300 rpm to obtain a dispersion. The tip of a buret containing methanol was placed in the dispersion liquid, methanol was added dropwise under stirring, and the amount of methanol added Y (mL) required for all the particles of the boron nitride material to settle into the liquid was measured. . The SP value was calculated by substituting the measured addition amount Y into formula (A2). In this example, 47.9 MPa 0.5 was used as the SP value (literature value) of water. 29.6 MPa 0.5 was used as the SP value (literature value) of methanol. The results are shown in Table 1.
 SP値=(47.9×50+29.6×Y)/(50+Y)・・・(A2) SP value = (47.9×50+29.6×Y)/(50+Y)...(A2)
 本測定は、実施例および比較例の窒化ホウ素材料の表面が十分に疎水性となっているか否かを判断するために実施した。算出されたSP値が水のSP値である47.9MPa0.5未満であれば疎水性を有すると判断できる。窒化ホウ素に対してポリマーの付着量が不十分な場合、あるいは、ポリマーが親水性の場合には、窒化ホウ素材料の表面の疎水性が不十分であり、SP値が47.9MPa0.5以上となる。 This measurement was carried out to determine whether the surfaces of the boron nitride materials of Examples and Comparative Examples were sufficiently hydrophobic. If the calculated SP value is less than 47.9 MPa 0.5 , which is the SP value of water, it can be determined that the material has hydrophobicity. When the amount of polymer attached to boron nitride is insufficient, or when the polymer is hydrophilic, the surface of the boron nitride material has insufficient hydrophobicity, and the SP value becomes 47.9 MPa 0.5 or more. .
 <500℃における重量減少の測定>
 実施例および比較例の窒化ホウ素材料を室温から500℃まで加熱したときの重量の減少を測定した。測定には熱分析装置(日立ハイテクサイエンス社製、TG/DTA7200)を使用した。窒素雰囲気下で熱重量測定を実施した。室温から500℃までにおける重量の減少量は、ポリマーの吸着量として評価できる。結果を表1に示す。
<Measurement of weight loss at 500°C>
When the boron nitride materials of Examples and Comparative Examples were heated from room temperature to 500° C., the weight loss was measured. A thermal analyzer (TG/DTA7200, manufactured by Hitachi High-Tech Science Co., Ltd.) was used for the measurement. Thermogravimetric measurements were performed under a nitrogen atmosphere. The amount of weight decrease from room temperature to 500° C. can be evaluated as the amount of adsorption of the polymer. The results are shown in Table 1.
 表1に示すように、実施例1から5において、ポリマーと水との間のHSP距離は39.5MPa0.5より大きかった。実施例1から5の窒化ホウ素材料のSP値は47.9MPa0.5未満であり、窒化ホウ素材料の粒子の表面が十分な疎水性を有していた。このことから、実施例1から5においては、ポリマーによる窒化ホウ素の表面修飾が十分になされていたと判断できる。実施例1から5の窒化ホウ素材料の誘電正接(比較例1に対する比)は1未満であった。つまり、実施例1から5は、六方晶窒化ホウ素よりも低い誘電正接を高湿度下で示した。実施例1から5の窒化ホウ素材料の水分吸着量(比較例1に対する比)は1未満であり、比較例1および3の水分吸着量よりも低かった。 As shown in Table 1, in Examples 1 to 5, the HSP distance between the polymer and water was greater than 39.5 MPa 0.5 . The SP values of the boron nitride materials of Examples 1 to 5 were less than 47.9 MPa 0.5 , and the surfaces of the particles of the boron nitride materials had sufficient hydrophobicity. From this, it can be concluded that in Examples 1 to 5, the surface of boron nitride was sufficiently modified with the polymer. The dielectric loss tangent (ratio to Comparative Example 1) of the boron nitride materials of Examples 1 to 5 was less than 1. In other words, Examples 1 to 5 exhibited lower dielectric loss tangents than hexagonal boron nitride under high humidity. The moisture adsorption amount (ratio to Comparative Example 1) of the boron nitride materials of Examples 1 to 5 was less than 1, which was lower than that of Comparative Examples 1 and 3.
 図2は、ポリマーと水との間のHSP距離と加湿時の窒化ホウ素材料の誘電正接との関係を示すグラフである。横軸は、実施例1から5および比較例2で使用したポリマーと水との間のHSP距離を示す。縦軸は、実施例1から5および比較例2の窒化ホウ素材料の加湿時の誘電正接を示す。実施例1から5および比較例2の合計6点について最小二乗法による線形近似を行い、図2に示す近似直線を得た。近似直線は、y = -0.0565x + 3.2323で表され、決定係数R2は、0.7061である。 FIG. 2 is a graph showing the relationship between the HSP distance between a polymer and water and the dielectric loss tangent of a boron nitride material during humidification. The horizontal axis shows the HSP distance between the polymers used in Examples 1 to 5 and Comparative Example 2 and water. The vertical axis indicates the dielectric loss tangent of the boron nitride materials of Examples 1 to 5 and Comparative Example 2 during humidification. A total of six points in Examples 1 to 5 and Comparative Example 2 were subjected to linear approximation using the least squares method to obtain an approximate straight line shown in FIG. The approximate straight line is expressed as y = -0.0565x + 3.2323, and the coefficient of determination R 2 is 0.7061.
 近似直線から加湿時の誘電正接が1のときのHSP距離を算出した。加湿時の誘電正接が1のときのHSP距離は39.5MPa0.5であった。よって、水との間のHSP距離が39.5MPa0.5より大きいポリマーで窒化ホウ素の表面を十分に修飾すれば、表面修飾前よりも加湿時の誘電正接を低下させることができると考えられる。 The HSP distance when the dielectric loss tangent during humidification was 1 was calculated from the approximate straight line. The HSP distance when the dielectric loss tangent during humidification was 1 was 39.5 MPa 0.5 . Therefore, it is considered that if the surface of boron nitride is sufficiently modified with a polymer whose HSP distance to water is greater than 39.5 MPa 0.5 , the dielectric loss tangent during humidification can be lowered than before the surface modification.
 比較例2および比較例3の窒化ホウ素材料に使用したポリマーは、それぞれ、38.7MPa0.5および27.2MPa0.5のHSP距離を有していた。そのため、比較例2および比較例3において、加湿時の誘電正接が六方晶窒化ホウ素(比較例1)の誘電正接を上回ったと考えられる。 The polymers used in the boron nitride materials of Comparative Examples 2 and 3 had HSP distances of 38.7 MPa 0.5 and 27.2 MPa 0.5 , respectively. Therefore, it is considered that in Comparative Examples 2 and 3, the dielectric loss tangent during humidification exceeded the dielectric loss tangent of hexagonal boron nitride (Comparative Example 1).
 比較例2は、少ない水分吸着量を示したが、高い誘電正接を示した。このような結果が得られた理由としては、カールフィッシャー法で測定した際の水分量と誘電正接測定時の水分量との間にずれがあることが主な原因であると推測される。誘電正接は湿度90%の環境から大気下に窒化ホウ素材料を移して20分間経過した後に測定した。つまり、「加湿時の誘電正接」は、ある程度水分の脱着が進んだ状態での誘電正接を表す。実施例1から5では水分の脱着が十分に進んだが、比較例2では水分の脱着が十分に進まなかったと推測される。 Comparative Example 2 showed a small amount of water adsorption, but a high dielectric loss tangent. It is presumed that the main reason for this result is that there is a discrepancy between the amount of water measured by the Karl Fischer method and the amount of water measured by the dielectric loss tangent. The dielectric loss tangent was measured 20 minutes after the boron nitride material was transferred from an environment with a humidity of 90% to the atmosphere. In other words, "dielectric loss tangent during humidification" represents the dielectric loss tangent in a state where moisture desorption has progressed to some extent. In Examples 1 to 5, moisture desorption progressed sufficiently, but in Comparative Example 2, it is presumed that moisture desorption did not proceed sufficiently.
 比較例3の測定値は近似直線の算出には用いなかった。比較例3の窒化ホウ素材料に含まれたポリマーがポリドーパミンだからである。ポリドーパミンは単一の分子構造を持たず正確なHSP距離を算出できないことに加え、その構造内に多量に含まれる水酸基が誘電正接の悪化の直接の原因となる。誘電正接に対する吸湿の影響を論じるのに比較例3のデータは適していないと判断して除外した。 The measured values of Comparative Example 3 were not used to calculate the approximate straight line. This is because the polymer contained in the boron nitride material of Comparative Example 3 is polydopamine. Polydopamine does not have a single molecular structure, making it impossible to accurately calculate the HSP distance, and the large amount of hydroxyl groups contained within its structure directly causes deterioration of the dielectric loss tangent. The data of Comparative Example 3 was judged to be inappropriate for discussing the influence of moisture absorption on the dielectric loss tangent and was therefore excluded.
 比較例4において、ポリマー(ポリスチレン)と水との間のHSP距離は十分に大きかった。しかし、比較例4の窒化ホウ素材料のSP値は47.9MP0.5を超えていた。つまり、比較例4では、十分な表面修飾がなされていなかった。 In Comparative Example 4, the HSP distance between the polymer (polystyrene) and water was sufficiently large. However, the SP value of the boron nitride material of Comparative Example 4 exceeded 47.9 MP 0.5 . In other words, in Comparative Example 4, sufficient surface modification was not performed.
 比較例2から4のポリマーが十分な表面修飾を達成できなかった理由は必ずしも明らかではないが、分子鎖の立体障害、窒化ホウ素へのポリマーの吸着エネルギーの低さなどが影響していると推測される。 The reason why the polymers of Comparative Examples 2 to 4 were not able to achieve sufficient surface modification is not necessarily clear, but it is speculated that steric hindrance of the molecular chain, low adsorption energy of the polymer to boron nitride, etc. had an effect. be done.
 本開示を表現するために、上述において実施形態を通して本開示を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為しうることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を逸脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 Although the present disclosure has been adequately and fully described through the embodiments above to express the present disclosure, those skilled in the art will readily be able to modify and/or improve the above-described embodiments. It should be recognized that Therefore, unless the modification or improvement made by a person skilled in the art does not go beyond the scope of the claims stated in the claims, the modifications or improvements are within the scope of the claims. It is interpreted as encompassing.
 本開示の窒化ホウ素材料は、高湿度下でも低誘電正接を示すため、大容量通信に用いられる電子機器の配線板などに適している。 The boron nitride material of the present disclosure exhibits a low dielectric loss tangent even under high humidity, so it is suitable for wiring boards of electronic devices used for large-capacity communications.
1 窒化ホウ素
2 ポリマー
10 窒化ホウ素材料
20 樹脂組成物
22 フィラー
24 硬化性樹脂
30 樹脂付きフィルム
32 樹脂層
34 支持フィルム
40 樹脂付き金属箔
42 樹脂層
44 金属箔
50 金属張積層板
52 絶縁層
54 金属箔
60 配線板
62 絶縁層
64 配線
1 Boron nitride 2 Polymer 10 Boron nitride material 20 Resin composition 22 Filler 24 Curable resin 30 Resin-coated film 32 Resin layer 34 Support film 40 Resin-coated metal foil 42 Resin layer 44 Metal foil 50 Metal-clad laminate 52 Insulating layer 54 Metal Foil 60 Wiring board 62 Insulating layer 64 Wiring

Claims (18)

  1.  C軸方向の厚みが5nm以上の六方晶窒化ホウ素と、
     前記六方晶窒化ホウ素に付着したポリマーと、
     を備えた窒化ホウ素材料であって、
     メタノール滴定法によって測定された前記窒化ホウ素材料の溶解度パラメータが47.9MPa0.5未満である、
     窒化ホウ素材料。
    hexagonal boron nitride having a thickness in the C-axis direction of 5 nm or more;
    a polymer attached to the hexagonal boron nitride;
    A boron nitride material comprising:
    the solubility parameter of the boron nitride material measured by methanol titration is less than 47.9 MPa 0.5 ;
    Boron nitride material.
  2.  前記ポリマーは、前記六方晶窒化ホウ素のC面に付着している、
     請求項1に記載の窒化ホウ素材料。
    the polymer is attached to the C-plane of the hexagonal boron nitride;
    The boron nitride material according to claim 1.
  3.  前記ポリマーは、ポリビニル系の芳香族ポリマーを含み、
     前記ポリビニル系の芳香族ポリマーは、複素芳香環を含む側鎖を含む、
     請求項1に記載の窒化ホウ素材料。
    The polymer includes a polyvinyl aromatic polymer,
    The polyvinyl aromatic polymer includes a side chain containing a heteroaromatic ring.
    The boron nitride material according to claim 1.
  4.  前記ポリマーは、式(1)で表される繰り返し単位を含み、
     式(1)において、
      nは正の整数を表し、
      Xは式(2)で表され、
      式(2)におけるR1からR5のいずれか1つが、前記繰り返し単位に含まれる主鎖に対する直接的な結合手を表し、
      R1からR5の他の4つは、互いに独立して、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む、
     請求項1に記載の窒化ホウ素材料。
    The polymer includes a repeating unit represented by formula (1),
    In formula (1),
    n represents a positive integer,
    X is represented by formula (2),
    Any one of R 1 to R 5 in formula (2) represents a direct bond to the main chain contained in the repeating unit,
    The other four R 1 to R 5 are each independently at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I, and Br. including,
    The boron nitride material according to claim 1.
  5.  前記式(2)において、R1からR5の他の4つは、互いに独立して、H原子または炭化水素基である、
     請求項4に記載の窒化ホウ素材料。
    In the formula (2), the other four R 1 to R 5 are independently H atoms or hydrocarbon groups,
    The boron nitride material according to claim 4.
  6.  前記式(1)において、
      Xは式(3)で表され、
      式(3)におけるR11からR19のいずれか1つが、前記主鎖に対する直接的な結合手を表し、
      R11からR19の他の8つは、互いに独立して、H、B、C、N、O、Si、F、P、S、Cl、IおよびBrからなる群より選ばれる少なくとも1つの原子を含む、
     請求項4に記載の窒化ホウ素材料。
    In the above formula (1),
    X is represented by formula (3),
    Any one of R 11 to R 19 in formula (3) represents a direct bond to the main chain,
    The other eight R 11 to R 19 are each independently at least one atom selected from the group consisting of H, B, C, N, O, Si, F, P, S, Cl, I, and Br. including,
    The boron nitride material according to claim 4.
  7.  前記式(3)において、R11からR19の他の8つは、互いに独立して、H原子または炭化水素基である、
     請求項6に記載の窒化ホウ素材料。
    In the formula (3), the other eight from R 11 to R 19 are independently H atoms or hydrocarbon groups,
    The boron nitride material according to claim 6.
  8.  前記ポリマーは、カルバゾール骨格及びフルオレン骨格からなる群より選択される少なくとも1つを含む繰り返し単位を含む、
     請求項1に記載の窒化ホウ素材料。
    The polymer includes a repeating unit containing at least one selected from the group consisting of a carbazole skeleton and a fluorene skeleton.
    The boron nitride material according to claim 1.
  9.  前記フルオレン骨格は、少なくとも1つの置換基を含む、
     請求項8に記載の窒化ホウ素材料。
    The fluorene skeleton includes at least one substituent,
    The boron nitride material according to claim 8.
  10.  前記ポリマーは、ポリフェニレンエーテル骨格を含む繰り返し単位を含む、
     請求項1に記載の窒化ホウ素材料。
    The polymer includes a repeating unit containing a polyphenylene ether skeleton,
    The boron nitride material according to claim 1.
  11.  前記ポリフェニレンエーテル骨格は、少なくとも1つの置換基を含む、
     請求項10に記載の窒化ホウ素材料。
    The polyphenylene ether skeleton includes at least one substituent,
    The boron nitride material according to claim 10.
  12.  請求項1に記載の窒化ホウ素材料を含む、
     フィラー。
    comprising the boron nitride material according to claim 1;
    filler.
  13.  請求項12に記載のフィラーを含む、
     樹脂組成物。
    comprising the filler according to claim 12;
    Resin composition.
  14.  請求項13に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む、
     プリプレグ。
    comprising the resin composition according to claim 13 or a semi-cured product of the resin composition,
    prepreg.
  15.  請求項13に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
     支持フィルムと、を備えた、
     樹脂付きフィルム。
    A resin layer comprising the resin composition according to claim 13 or a semi-cured product of the resin composition,
    a support film;
    Film with resin.
  16.  請求項13に記載の樹脂組成物または前記樹脂組成物の半硬化物を含む樹脂層と、
     金属箔と、を備えた、
     樹脂付き金属箔。
    A resin layer comprising the resin composition according to claim 13 or a semi-cured product of the resin composition,
    comprising a metal foil and
    Metal foil with resin.
  17.  請求項13に記載の樹脂組成物の硬化物または請求項14に記載のプリプレグの硬化物を含む絶縁層と、
     金属箔と、を備えた、
     金属張積層板。
    An insulating layer comprising a cured product of the resin composition according to claim 13 or a cured product of the prepreg according to claim 14,
    comprising a metal foil and
    Metal-clad laminate.
  18.  請求項13に記載の樹脂組成物の硬化物または請求項14に記載のプリプレグの硬化物を含む絶縁層と、
     配線と、備えた、
     配線板。
    An insulating layer comprising a cured product of the resin composition according to claim 13 or a cured product of the prepreg according to claim 14,
    Wiring and equipped,
    wiring board.
PCT/JP2023/020740 2022-06-30 2023-06-05 Boron nitride material and application of same WO2024004526A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022106356 2022-06-30
JP2022-106356 2022-06-30
JP2023047266 2023-03-23
JP2023-047266 2023-03-23

Publications (1)

Publication Number Publication Date
WO2024004526A1 true WO2024004526A1 (en) 2024-01-04

Family

ID=89382711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020740 WO2024004526A1 (en) 2022-06-30 2023-06-05 Boron nitride material and application of same

Country Status (1)

Country Link
WO (1) WO2024004526A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257392A (en) * 2005-03-14 2006-09-28 General Electric Co <Ge> Improved boron nitride composition and polymer-based composition blended therewith
WO2017163674A1 (en) * 2016-03-23 2017-09-28 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board, and method for producing prepreg
WO2017195902A1 (en) * 2016-05-13 2017-11-16 日立化成株式会社 Resin composition, prepreg, metal foil with resin, laminate, printed wiring board, and method for producing resin composition
US20180337359A1 (en) * 2017-05-18 2018-11-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Nanoscale light emitting diode, and methods of making same
JP2019527280A (en) * 2016-07-25 2019-09-26 エボニック オイル アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Oil Additives GmbH Polymeric inorganic particles useful as lubricating additives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257392A (en) * 2005-03-14 2006-09-28 General Electric Co <Ge> Improved boron nitride composition and polymer-based composition blended therewith
WO2017163674A1 (en) * 2016-03-23 2017-09-28 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board, and method for producing prepreg
WO2017195902A1 (en) * 2016-05-13 2017-11-16 日立化成株式会社 Resin composition, prepreg, metal foil with resin, laminate, printed wiring board, and method for producing resin composition
JP2019527280A (en) * 2016-07-25 2019-09-26 エボニック オイル アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Oil Additives GmbH Polymeric inorganic particles useful as lubricating additives
US20180337359A1 (en) * 2017-05-18 2018-11-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Nanoscale light emitting diode, and methods of making same

Similar Documents

Publication Publication Date Title
ES2774268T3 (en) Composition of resin and use of it
CN107614608B (en) Thermosetting resin composition for semiconductor encapsulation and prepreg using same
CN103232682B (en) Composition epoxy resin, prepreg, cured article, sheet-like formed body, laminated plate and multi-laminate laminate
US9867287B2 (en) Low dielectric resin composition with phosphorus-containing flame retardant and preparation method and application thereof
JP6116856B2 (en) Substrate insulating layer composition, prepreg and substrate using the same
JP6309264B2 (en) Insulating material, insulating layer composition containing the same, and substrate using the insulating layer composition
TW201425455A (en) Resin composition for printed circuit board, insulating film, prepreg and printed circuit board
JP4872160B2 (en) Resin composition having excellent dielectric properties, varnish produced using the same, varnish production method, prepreg and metal-clad laminate
JP2020506982A (en) Resin composition for semiconductor package, prepreg and metal foil laminate using the same
TW202028329A (en) Resin composition, prepreg including the same, laminated plate including the same, resin-coated metal foil including the same
CN111793209B (en) Slurry composition, cured product of the slurry composition, substrate, film and prepreg using the cured product
Zhang et al. Cyanate ester composites containing surface functionalized BN particles with grafted hyperpolyarylamide exhibiting desirable thermal conductivities and a low dielectric constant
Jin et al. Enhancing high-frequency dielectric and mechanical properties of SiO2/PTFE composites from the interface fluorination
WO2024004526A1 (en) Boron nitride material and application of same
KR20210149030A (en) High-temperature conductive thermosetting resin composition
WO2024004527A1 (en) Composite material, product resulting from applying said composite material, and method for producing composite material
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
WO2024004525A1 (en) Boron nitride material, product with same applied thereto, and method for producing boron nitride material
JP2014189793A (en) Surface-modified inorganic filler, method of preparing the same, buildup film composition for multilayer printed wiring board, and multilayer printed wiring board including the same
Peng et al. Preparation of benzocyclobutene-functionalized organic–inorganic hybrid microspheres and their reduction of permittivity to DVSBCB resin
US20060093805A1 (en) Dielectric constant adjustable resin composition, prepreg and copper clad laminate utilizing the same
WO2010047398A1 (en) Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate
US20210198158A1 (en) Polymer and porous inorganic composite article and methods thereof
WO2024004528A1 (en) Composite material, application product thereof, and composite material manufacturing method
TW202212416A (en) Modified bismaleimide resin, preparing method thereof, prepreg, copper clad laminate and printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830976

Country of ref document: EP

Kind code of ref document: A1