WO2024004470A1 - Control circuit for converter circuit and control method for converter circuit - Google Patents

Control circuit for converter circuit and control method for converter circuit Download PDF

Info

Publication number
WO2024004470A1
WO2024004470A1 PCT/JP2023/019633 JP2023019633W WO2024004470A1 WO 2024004470 A1 WO2024004470 A1 WO 2024004470A1 JP 2023019633 W JP2023019633 W JP 2023019633W WO 2024004470 A1 WO2024004470 A1 WO 2024004470A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch element
converter
reference potential
value
Prior art date
Application number
PCT/JP2023/019633
Other languages
French (fr)
Japanese (ja)
Inventor
和憲 木寺
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004470A1 publication Critical patent/WO2024004470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a control circuit for a converter circuit that converts an input voltage into a desired voltage and outputs it, and a method for controlling the converter circuit.
  • Patent Document 1 discloses a DC-DC converter that converts DC power between an input electric wire and an output electric wire.
  • the present invention provides a control circuit for a converter circuit that can be easily controlled with a desired reactor current even when the converter circuit is controlled at a relatively high frequency.
  • a control circuit for a converter circuit includes a reactor, a first switch element and a second switch element connected to the reactor, and alternately switches the first switch element and the second switch element.
  • This is a control circuit for a converter circuit that converts an input voltage into a desired voltage and outputs it by turning it on and off.
  • the control circuit includes a first comparator, a first peak hold circuit, a first A/D conversion section, a first control section, and a first D/A conversion section.
  • the first comparator turns on/off each of the first switch element and the second switch element by comparing a detection voltage obtained by detecting a reactor current flowing through the reactor with a first reference potential.
  • a first switching signal for switching off is output.
  • the first peak hold circuit holds a first peak value that is either a maximum value or a minimum value of the detected voltage.
  • the first A/D converter performs A/D conversion on the first peak value held by the first peak hold circuit.
  • the first control section determines a digital value of the first reference potential based on the voltage output from the first A/D conversion section.
  • the first D/A converter performs D/A conversion on the digital value of the first reference potential determined by the first controller, and outputs the digital value as the first reference potential to the first comparator.
  • a method for controlling a converter circuit includes a reactor, and a first switch element and a second switch element connected to the reactor, and wherein the first switch element and the second switch element are alternately switched.
  • This is a method of controlling a converter circuit that converts an input voltage into a desired voltage and outputs it by turning it on and off.
  • each of the first switch element and the second switch element is turned on/off by comparing a detection voltage obtained by detecting a reactor current flowing through the reactor with a first reference potential.
  • a first switching signal for switching is output.
  • a first peak value that is either a maximum value or a minimum value of the detected voltage is held.
  • the held first peak value is A/D converted.
  • a digital value of the first reference potential is determined based on the A/D converted voltage.
  • the determined digital value of the first reference potential is subjected to D/A conversion, and is set as the first reference potential.
  • the control circuit for the converter circuit of the present invention has the advantage that even when controlling the converter circuit at a relatively high frequency, it is easy to control with a desired reactor current.
  • FIG. 1 is a circuit diagram showing the configuration of a converter circuit and a basic control circuit.
  • FIG. 2 is a waveform diagram when the converter circuit operates as a boost chopper.
  • FIG. 3 is a circuit diagram showing the configuration of the control circuit of the converter circuit according to the embodiment.
  • FIG. 4 is a waveform diagram of the detected voltage.
  • FIG. 5 is an output waveform diagram of the peak hold circuit.
  • FIG. 6 is a circuit diagram showing the configuration of a control circuit of a converter circuit according to a first modification of the embodiment.
  • FIG. 7 is a circuit diagram showing the configuration of a control circuit of a converter circuit according to a second modification of the embodiment.
  • FIG. 1 is a circuit diagram showing the configuration of a converter circuit 200 and a basic control circuit 20.
  • the converter circuit 200 is a synchronous rectification bidirectional converter circuit. As shown in FIG. 1, in the converter circuit 200, the power supply 3 is connected between the first high potential terminal P11 and the first low potential terminal P12, and the power supply 3 is connected between the second high potential terminal P21 and the second low potential terminal P22. When a load 4 is connected between them, a step-up chopper operation is performed to step up the input voltage supplied from the power supply 3 and output it to the load 4, thereby functioning as a step-up converter circuit. Further, in the converter circuit 200, a load 4 is connected between the first high potential terminal P11 and the first low potential terminal P12, and a power supply 3 is connected between the second high potential terminal P21 and the second low potential terminal P22. When connected, it performs a step-down chopper operation that steps down the input voltage supplied from the power supply 3 and outputs it to the load 4, and functions as a step-down converter circuit.
  • the potential of the first low potential terminal P12 is lower than the potential of the first high potential terminal P11, and the potential of the second low potential terminal P22 is lower than the potential of the second high potential terminal P21. Further, the first low potential terminal P12 and the second low potential terminal P22 are connected and have the same potential.
  • the converter circuit 200 includes a first capacitor C1, a second capacitor C2, a reactor L1, a first switch element S1, a second switch element S2, a first gate resistor Rg1, a second gate resistor Rg2, and a second capacitor C2. 1 drive circuit 11, a second drive circuit 12, and a current detector 5.
  • Converter circuit 200 is controlled by basic control circuit 20 .
  • the first capacitor C1 is connected between the first high potential terminal P11 and the first low potential terminal P12. Further, the second capacitor C2 is connected between the second high potential terminal P21 and the second low potential terminal P22.
  • the first capacitor C1 and the second capacitor C2 are both aluminum electrolytic capacitors, for example.
  • the reactor L1 has a first end (the left end in FIG. 1) connected to the first high potential terminal P11, and a second end (the right end in FIG. 1) the connection point between the first switch element S1 and the second switch element S2. It is connected to the.
  • the first switch element S1 and the second switch element S2 are both transistors such as normally-off type MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), and are connected in series.
  • the drain of the first switch element S1 is connected to the second high potential terminal P21, and the source of the second switch element S2 is connected to the first low potential terminal P12 and the second low potential terminal P22. Further, the source of the first switching element S1 and the drain of the second switching element S2 are connected to the second end of the reactor L1. Further, the gate of the first switch element S1 is connected to the first drive circuit 11 via the first gate resistor Rg1, and the gate of the second switch element S2 is connected to the second drive circuit 11 via the second gate resistor Rg2. It is connected to circuit 12.
  • both the first switch element S1 and the second switch element S2 are not limited to MOSFETs, and may be other transistors such as IGBTs (Insulated Gate Bipolar Transistors) or GaN (Gallium Nitride) transistors.
  • the first drive circuit 11 receives a first control signal Sig10 from the basic control circuit 20 and sends a first drive signal for applying a drive voltage to the gate of the first switch element S1 via the first gate resistor Rg1. This is a circuit that outputs Sig11.
  • the first control signal Sig10 is a signal that instructs to turn on or turn off the first switch element S1. That is, the first drive circuit 11 receives the first control signal Sig10 from the basic control circuit 20 and outputs the first drive signal Sig11, thereby driving the first switch element S1.
  • the gate capacitance (input capacitance) of the first switch element S1 is charged, thereby turning on the first switch element S1.
  • the first drive signal Sig11 is at a high level
  • the gate capacitance (input capacitance) of the first switch element S1 is charged, thereby turning on the first switch element S1.
  • the first drive signal Sig11 is at a low level
  • the charges accumulated in the gate capacitance of the first switch element S1 are discharged, thereby turning off the first switch element S1.
  • the second drive circuit 12 receives a second control signal Sig20 from the basic control circuit 20 and sends a second drive signal for applying a drive voltage to the gate of the second switch element S2 via the second gate resistor Rg2. This is an IC that outputs Sig21.
  • the second control signal Sig20 is a signal that instructs to turn on or turn off the second switch element S2. That is, the second drive circuit 12 receives the second control signal Sig20 from the basic control circuit 20 and drives the second switch element S2.
  • the gate capacitance (input capacitance) of the second switch element S2 is charged, thereby turning on the second switch element S2.
  • the second drive signal Sig21 is at a high level
  • the gate capacitance (input capacitance) of the second switch element S2 is charged, thereby turning on the second switch element S2.
  • the second drive signal Sig21 is at a low level
  • the charges accumulated in the gate capacitance of the second switch element S2 are discharged, thereby turning off the second switch element S2.
  • the current detector 5 detects the reactor current IL, which is the current flowing through the reactor L1.
  • the detection result of the current detector 5 is output to the basic control circuit 20 as a detection voltage Vd corresponding to the detected reactor current IL.
  • the basic control circuit 20 is realized, for example, by a microcomputer, but may also be realized by a processor or a dedicated circuit.
  • the functions of the basic control circuit 20 are realized by hardware such as a microcomputer or processor constituting the basic control circuit 20 executing a computer program (software) stored in a memory.
  • the basic control circuit 20 boosts the input voltage by alternately turning on the first switch element S1 and the second switch element S2. Furthermore, when the converter circuit 200 operates as a step-down chopper, the basic control circuit 20 steps down the input voltage by alternately turning on the first switch element S1 and the second switch element S2. In either case, the basic control circuit 20 controls the first switch element S1 and the second switch element S2 by PWM (Pulse Width Modulation) control. That is, the basic control circuit 20 adjusts the input voltage by adjusting the duty ratio of each of the first control signal Sig10 outputted to the first drive circuit 11 and the second control signal Sig20 outputted to the second drive circuit 12. Step up or step down the voltage to the desired output voltage.
  • PWM Pulse Width Modulation
  • the basic control circuit 20 calculates the average value of the detected voltage Vd (in other words, the average value of the reactor current IL), and sets the first value so that the calculated average value of the detected voltage Vd becomes the target value.
  • the duty ratio of each of the control signal Sig10 and the second control signal Sig20 is adjusted.
  • the target value is appropriately set depending on the desired output voltage.
  • FIG. 2 is a waveform diagram when converter circuit 200 operates as a boost chopper.
  • "IL” indicates a reactor current flowing through reactor L1.
  • "S1" indicates the drive voltage applied to the gate of the first switch element S1
  • “S2” indicates the drive voltage applied to the gate of the second switch element S2.
  • “H” indicates that the drive voltage is at a high level and the switch element is in the on state
  • “L” indicates that the drive voltage is at a low level and the switch element is in the on state. is in the off state.
  • description is omitted about the dead time when both the 1st switch element S1 and the 2nd switch element S2 are turned off.
  • the converter circuit 200 controls the reactor current IL by alternately turning on and off the first switch element S1 and the second switch element S2 by the basic control circuit 20, and the input Converts the voltage to the desired voltage and outputs it.
  • on/off of the first switch element S1 and the second switch element S2 is controlled based on the average value of the reactor current IL. Therefore, even if the reactor current IL suddenly changes, for example, it is not possible to control the on/off of the first switch element S1 and the second switch element S2 based on the instantaneous value of the reactor current IL. control that follows. As described above, unless control can be performed to follow the steep changes in reactor current IL, it is impossible to perform control such as suppressing, for example, an excessive current momentarily flowing through reactor L1.
  • the instantaneous value of the reactor current IL is acquired with a delay from the timing when the reactor current IL reaches its peak, which makes it impossible to perform control that follows steep changes in the reactor current IL.
  • the instantaneous value of the reactor current IL is acquired with a delay from the timing when the reactor current IL reaches its peak, which makes it impossible to perform control that follows steep changes in the reactor current IL.
  • FIG. 3 is a circuit diagram showing the configuration of the control circuit 2 of the converter circuit according to the embodiment.
  • illustration of the converter circuit is omitted except for the current detector 5.
  • the converter circuit to be controlled by the control circuit 2 is the same as the converter circuit 200 that performs a step-up chopper operation, so a description thereof will be omitted here.
  • the control circuit 2 includes a first control circuit 21, a second control circuit 22, a first comparator 61, a second comparator 62, a first peak hold circuit 71, and a second control circuit 21.
  • a peak hold circuit 72 is provided.
  • the first comparator 61 generates a first switching signal Sig1 for switching on/off of each of the first switching element S1 and the second switching element S2 by comparing the detection voltage Vd and the first reference potential DA1. Output.
  • the first switching signal Sig1 is a signal for turning off the second switching element S2 and turning on the first switching element S1.
  • the first comparator 61 outputs the first switching signal Sig1 when the detection voltage Vd exceeds the first reference potential DA1.
  • the detection voltage Vd is obtained by detecting the reactor current IL flowing through the reactor L1 with the current detector 5.
  • FIG. 4 is a waveform diagram of the detection voltage Vd.
  • "DA1" indicates the first reference potential DA1
  • "DA2" indicates the second reference potential DA2 (described later).
  • the current detector 5 converts the detected value of the reactor current IL into a level-shifted voltage signal so that the detected voltage Vd is approximately within the range between the first reference potential DA1 and the second reference potential DA2. , outputs the detection voltage Vd.
  • the second comparator 62 generates a second switching signal Sig2 for switching on/off of each of the first switching element S1 and the second switching element S2 by comparing the detection voltage Vd and the second reference potential DA2. Output.
  • the second switching signal Sig2 is a signal for turning off the first switching element S1 and turning on the second switching element S2.
  • the second comparator 62 outputs the second switching signal Sig2 when the detection voltage Vd becomes lower than the second reference potential DA2.
  • the first peak hold circuit 71 holds a first peak value that is either the maximum value or the minimum value of the detection voltage Vd. In the embodiment, the first peak hold circuit 71 holds the first peak value, which is the maximum value of the detection voltage Vd. In other words, it can be said that the first peak hold circuit 71 holds the maximum peak value of the reactor current IL.
  • the first peak hold circuit 71 is reset by the first reset signal Re1. That is, when the first reset signal Re1 is input while the first peak hold circuit 71 is holding the first peak value, it releases the holding of the first peak value.
  • the first reset signal Re1 is the second switching signal Sig2 output by the second comparator 62. Therefore, the first peak hold circuit 71 is reset by the second switching signal Sig2.
  • the second peak hold circuit 72 holds a second peak value, which is different from the first peak value, of the maximum value and the minimum value of the detection voltage Vd.
  • the second peak hold circuit 72 holds the second peak value, which is the minimum value of the detection voltage Vd. In other words, it can be said that the second peak hold circuit 72 holds the minimum peak value of the reactor current IL.
  • the second peak hold circuit 72 is reset by the second reset signal Re2. That is, when the second reset signal Re2 is input while the second peak hold circuit 72 is holding the second peak value, it releases the holding of the second peak value.
  • the second reset signal Re2 is the first switching signal Sig1 output by the first comparator 61. Therefore, the second peak hold circuit 72 is reset by the first switching signal Sig1.
  • FIG. 5 is an output waveform diagram of the peak hold circuits (first peak hold circuit 71 and second peak hold circuit 72).
  • V1 indicates the output voltage of the first peak hold circuit 71
  • V2 indicates the output voltage of the second peak hold circuit 72.
  • the second switching signal Sig2 that is, the first reset signal Re1
  • the first peak hold circuit 71 is reset.
  • the input timing of the second switching signal Sig2 is approximately the same as the timing at which the detection voltage Vd reaches the minimum value, in other words, the reactor current IL reaches the minimum peak value.
  • the output voltage V2 of the second peak hold circuit 72 reaches the minimum value (that is, second peak value).
  • the first switching signal Sig1 that is, the second reset signal Re2
  • the second peak hold circuit 72 is reset.
  • the input timing of the first switching signal Sig1 is approximately the same as the timing at which the detection voltage Vd reaches its maximum value, in other words, the reactor current IL reaches its maximum peak value.
  • the first control circuit 21 is realized, for example, by a microcomputer, but may also be realized by a processor or a dedicated circuit.
  • the functions of the first control circuit 21 are realized by hardware such as a microcomputer or processor constituting the first control circuit 21 executing a computer program (software) stored in a memory.
  • the first control circuit 21 includes a control section 210, an A/D conversion section 211, a first D/A (Digital to Analog) conversion section 212, and a second D/A conversion section 213.
  • the A/D converter 211 obtains the output voltage of the first peak hold circuit 71 by A/D converting it. Further, the A/D converter 211 obtains the output voltage of the second peak hold circuit 72 by A/D converting it.
  • the sampling rate of the A/D converter 211 is such that sampling is possible during the period in which the first peak hold circuit 71 and the second peak hold circuit 72 respectively hold the first peak value and the second peak value. It's speed.
  • the A/D converter 211 functions as a first A/D converter that A/D converts the first peak value held by the first peak hold circuit 71. Further, the A/D converter 211 functions as a second A/D converter that A/D converts the second peak value held by the second peak hold circuit 72.
  • the A/D converter 211 converts the output voltage of the first peak hold circuit 71 into an A/D converter to obtain a first voltage value, and the output voltage of the second peak hold circuit 72 into an A/D converter converts the output voltage into a second voltage value. , are individually output to the control unit 210.
  • the control unit 210 determines the digital value of the first reference potential DA1 based on the first voltage value output by the A/D conversion unit 211. That is, the control section 210 functions as a first control section that determines the digital value of the first reference potential DA1 based on the voltage output by the first A/D conversion section. Further, the control unit 210 determines the digital value of the second reference potential DA2 based on the second voltage value output by the A/D conversion unit 211. That is, the control section 210 functions as a second control section that determines the digital value of the second reference potential DA2 based on the voltage output by the second A/D conversion section.
  • the control unit 210 controls the first voltage value, that is, the first peak value held by the first peak hold circuit 71, and the second voltage value, that is, the second peak value held by the second peak hold circuit 72.
  • the maximum peak value and the minimum peak value of the reactor current IL are referred to by referring to.
  • the control unit 210 adjusts the digital value of the first reference potential DA1 and the second reference potential DA2 so that the reactor current IL has a desired magnitude based on the maximum peak value and minimum peak value of the reactor current IL. Determine the digital value.
  • the first D/A conversion unit 212 performs D/A conversion on the digital value of the first reference potential DA1 determined by the control unit 210 (first control unit), and converts the digital value of the first reference potential DA1, which is an analog value, to the first comparator. Output to 61.
  • the second D/A conversion unit 213 performs D/A conversion on the digital value of the second reference potential DA2 determined by the control unit 210 (second control unit), and converts the digital value of the second reference potential DA2, which is an analog value, to the second comparator. Output to 62.
  • the second control circuit 22 is realized, for example, by a microcomputer, but may also be realized by a processor or a dedicated circuit.
  • the functions of the second control circuit 22 are realized by hardware such as a microcomputer or processor constituting the second control circuit 22 executing a computer program (software) stored in a memory.
  • the second control circuit 22 outputs a first control signal Sig10 and a second control signal Sig20 based on the first switching signal Sig1 output from the first comparator 61. Specifically, when the first switching signal Sig1 is input, the second control circuit 22 turns off the second switch element S2 by outputting the second control signal Sig20 at a low level. Thereafter, after counting the dead time, the second control circuit 22 turns on the first switch element S1 by outputting the first control signal Sig10 at a high level.
  • the second control circuit 22 outputs the first control signal Sig10 and the second control signal Sig20 based on the second switching signal Sig2 output from the second comparator 62. Specifically, when the second switching signal Sig2 is input, the second control circuit 22 turns off the first switch element S1 by outputting the first control signal Sig10 at a low level. Thereafter, after counting the dead time, the second control circuit 22 turns on the second switch element S2 by outputting a high-level second control signal Sig20.
  • the first peak hold circuit 71 holds the first peak value, which is either the maximum value or the minimum value of the detection voltage Vd. Therefore, the A/D converter 211 (first A/D converter) performs A/D conversion on the first peak value held by the first peak hold circuit 71, thereby increasing the maximum peak value and the minimum value of the reactor current IL. It is possible to obtain either one of the peak values indirectly.
  • the control circuit 2 according to the embodiment even if the sampling speed is not high enough to allow the first A/D converter to follow a steep change in the reactor current IL, the maximum peak value and the minimum peak value of the reactor current IL can be It is possible to control the reactor current IL with reference to either one of them. Therefore, the control circuit 2 according to the embodiment has the advantage that even when controlling the converter circuit 200 at a relatively high frequency, it is easy to control with a desired reactor current IL.
  • the second peak hold circuit 72 holds a second peak value, which is different from the first peak value, of the maximum value and the minimum value of the detection voltage Vd. Therefore, the A/D converter 211 (the first A/D converter and the second A/D converter) receives the first peak value held by the first peak hold circuit 71 and the first peak value held by the second peak hold circuit 72. By A/D converting the second peak values, it is possible to indirectly obtain both the maximum peak value and the minimum peak value of the reactor current IL.
  • the control circuit 2 in the control circuit 2 according to the embodiment, even if the sampling speed of both the first A/D converter and the second A/D converter is not high enough to follow a steep change in the reactor current IL, the reactor current It is possible to control the reactor current IL with reference to both the maximum peak value and minimum peak value of IL. For this reason, the control circuit 2 according to the embodiment has the advantage that even when controlling the converter circuit 200 at a relatively high frequency, it is easy to control with a desired reactor current IL with higher accuracy.
  • FIG. 6 is a circuit diagram showing the configuration of a control circuit 2A (hereinafter simply referred to as "control circuit 2A") of a converter circuit according to a first modification of the embodiment.
  • control circuit 2A outputs the second switching signal Sig2 instead of including the second comparator 62, the second peak hold circuit 72, and the second D/A converter 213.
  • the control circuit 2 is different from the control circuit 2 according to the embodiment in that it includes a signal output section 214 that outputs a signal.
  • the signal output unit 214 calculates the average value of the detected voltage Vd (in other words, the average value of the reactor current IL), and outputs the second switching signal Sig2 when the calculated average value of the detected voltage Vd reaches the target value. .
  • the control circuit 2A controls the reactor current IL by referring to only one of the maximum peak value and the minimum peak value (here, only the maximum peak value) of the reactor current IL. ing.
  • the reactor current IL is also controlled by referring to either the maximum peak value or the minimum peak value of the reactor current IL, so even when controlling the converter circuit 200 at a relatively high frequency, the desired This has the advantage of being easy to control with the reactor current IL.
  • the control circuit 2A includes a signal output that outputs the second switching signal Sig2 instead of including the second comparator 62, the second peak hold circuit 72, and the second D/A converter 213. 214, but is not limited thereto.
  • the control circuit 2A may include a signal output section that outputs the first switching signal Sig1 instead of including the first comparator 61, the first peak hold circuit 71, and the first D/A conversion section 212.
  • the signal output section may be configured to calculate the average value of the detected voltages Vd, and output the first switching signal Sig1 when the calculated average value of the detected voltages Vd reaches a target value.
  • FIG. 7 is a circuit diagram showing the configuration of a control circuit 2B (hereinafter simply referred to as "control circuit 2B") of a converter circuit according to a second modification of the embodiment.
  • control circuit 2B hereinafter simply referred to as "control circuit 2B"
  • the control circuit 2B according to this modification example further includes a differential amplifier 8 and a third D/A converter 215. It differs from
  • the difference amplifier 8 amplifies the difference between the third reference potential DA3, which is input to the first comparator 61 and is higher than the first reference potential DA1, and the detection voltage Vd, and outputs the amplified difference to the first comparator 61. That is, in this modification, the output voltage Vd' of the differential amplifier 8 is input to the first comparator 61 instead of the detection voltage Vd.
  • the output voltage Vd' is not the detection voltage Vd itself, but is a voltage that changes depending on the magnitude of the detection voltage Vd, and is a voltage that corresponds to the detection voltage Vd.
  • the third D/A converter 215 performs D/A conversion on the digital value of the third reference potential DA3 determined based on the digital value of the first reference potential DA1 determined by the controller 210 (first controller), and converts it into an analog It is output to the differential amplifier 8 as the third reference potential DA3.
  • the control circuit 2B according to this modification has an advantage in that the resolution for controlling the reactor current IL can be increased by increasing the resolution of the detection voltage Vd input to the control circuit 2B.
  • the resolution of the D/A converter is lower than that of the A/D converter.
  • the resolution of the A/D converter is 12 bits
  • the resolution of the D/A converter may be 8 bits. In this way, when the resolution of the D/A converter is lower than that of the A/D converter, there is a problem that the resolution of the control circuit for controlling the reactor current IL is limited to the resolution of the D/A converter. be.
  • the above problem is solved by using the differential amplifier 8.
  • the resolution of the first D/A converter 212 and the third D/A converter 215 is 0.1V.
  • the reactor in response to a change smaller than 0.1V in the detection voltage Vd. Current IL cannot be controlled.
  • the first comparator 61 compares the detected voltage Vd' obtained by amplifying the difference between the detected voltage Vd and the third reference potential DA3 with the difference amplifier 8 and the first reference potential DA1. do. Therefore, in this modification, even if the first reference potential DA1 can only be changed in increments of 0.1V at the minimum, the reactor current IL is controlled in response to a change in the detection voltage Vd that is smaller than 0.1V. It is possible to do this.
  • the description will be made assuming that the first reference potential DA1 is 0.1V, the third reference potential DA3 is 1V, the gain of the differential amplifier 8 is 4 times, and the detection voltage Vd is 1.025V.
  • the control circuit 2B has a configuration including the differential amplifier 8 at the front stage of the first comparator 61, but the configuration is not limited to this.
  • the control circuit 2B may include a differential amplifier at the front stage of the second comparator 62 instead of the first comparator 61.
  • the difference amplifier amplifies the difference between the fourth reference potential higher than the second reference potential DA2 input to the second comparator 62 and the detection voltage Vd, and outputs the difference to the second comparator 62. It is sufficient if it is configured.
  • the control section 21 may include a fourth D/A conversion section that outputs the fourth reference potential instead of the third D/A conversion section 215.
  • control circuit 2B is also applicable to the control circuit 2 according to the embodiment. That is, in the control circuit 2 according to the embodiment, not only the differential amplifier 8 may be provided before the first comparator 61, but also a differential amplifier may be provided before the second comparator 62. In this case, the control unit 21 may further include not only the third D/A converter 215 but also a fourth D/A converter.
  • control section 210 serves as both the first control section and the second control section, but is not limited thereto.
  • first control section and the second control section may be mutually independent circuits.
  • the A/D converter 211 also serves as the first A/D converter and the second A/D converter, but the invention is not limited thereto.
  • the first A/D converter and the second A/D converter may be mutually independent circuits.
  • the current detector 5 is placed before the reactor L1, but the present invention is not limited thereto.
  • the current detector 5 may be placed after the reactor L1.
  • the number of current detectors 5 may be two, and one may be connected in series to the 1st switch element S1, and the other may be connected in series to the 2nd switch element S2.
  • one current detector 5 indirectly detects the reactor current IL by detecting the current flowing through the first switch element S1, and the other current detector 5 detects the current flowing through the second switch element S2. By detecting , the reactor current IL is indirectly detected.
  • the converter circuit 200 is a bidirectional converter circuit, but is not limited to this.
  • converter circuit 200 may be a step-up converter circuit or a step-down converter circuit.
  • the converter circuit 200 is a half-bridge switching converter circuit having the first switch element S1 and the second switch element S2, but is not limited to this.
  • the converter circuit 200 may be a full-bridge switching converter circuit configured by connecting two series-connected switching elements in parallel to each other.
  • the control circuit 2 controls to alternately turn on/off a pair of switch elements corresponding to the first switch element S1 and another pair of switch elements corresponding to the second switch element S2. do it.
  • the control circuits 2, 2A, 2B of the converter circuit 200 include the reactor L1, and the first switch element S1 and the second switch element connected to the reactor L1, This is a control circuit for a converter circuit 200 that converts an input voltage into a desired voltage and outputs the desired voltage by alternately turning on and off the first switch element S1 and the second switch element S2.
  • the control circuits 2, 2A, and 2B include a first comparator 61, a first peak hold circuit 71, a first A/D conversion section (A/D conversion section 211), and a first control section (control section 210). , a first D/A converter 212.
  • the first comparator 61 compares the detection voltage Vd obtained by detecting the reactor current IL flowing through the reactor L1 with the first reference potential DA1, thereby determining whether each of the first switch element S1 and the second switch element S2 A first switching signal Sig1 for switching on/off is output.
  • the first peak hold circuit 71 holds a first peak value that is either the maximum value or the minimum value of the detection voltage Vd.
  • the first A/D converter A/D converts the first peak value held by the first peak hold circuit 71.
  • the first control section determines the digital value of the first reference potential DA1 based on the voltage output by the first A/D conversion section.
  • the first D/A conversion section 212 performs D/A conversion on the digital value of the first reference potential DA1 determined by the first control section, and outputs it to the first comparator 61 as the first reference potential DA1.
  • the control circuit 2 of the converter circuit 200 includes the second comparator 62, the second peak hold circuit 72, and the second A/D conversion section (A/D conversion section 211), a second control section (control section 210), and a second D/A conversion section 213.
  • the second comparator 62 generates a second switching signal Sig2 for switching on/off of each of the first switching element S1 and the second switching element S2 by comparing the detection voltage Vd and the second reference potential DA2. Output.
  • the second peak hold circuit 72 holds a second peak value different from the first peak value of the maximum value and the minimum value of the detection voltage Vd.
  • the second A/D converter performs A/D conversion on the second peak value held by the second peak hold circuit 72.
  • the second control unit determines the digital value of the second reference potential DA2 based on the voltage output from the second A/D converter.
  • the second D/A conversion section 213 performs D/A conversion on the digital value of the second reference potential DA2 determined by the second control section, and outputs it to the second comparator 62 as the second reference potential DA2.
  • the first peak hold circuit 71 is reset by the second switching signal Sig2
  • the second peak hold circuit 72 is reset by the second switching signal Sig2. It is reset by the switching signal Sig1.
  • the first peak hold circuit 71 can be reset at an appropriate timing in synchronization with the on/off timing of the first switch element S1 and the second switch element S2.
  • control circuit 2B of the converter circuit 200 further includes a differential amplifier 8 in any one of the first to third aspects.
  • the difference amplifier 8 amplifies the difference between the third reference potential DA3, which is higher than the first reference potential DA1 input to the first comparator 61, and the detection voltage Vd, and outputs the amplified difference to the first comparator 61.
  • a control method for a converter circuit 200 includes a reactor L1, a first switch element S1 and a second switch element connected to the reactor L1, and a first switch element S1 and a second switch element connected to the reactor L1.
  • This is a method of controlling the converter circuit 200 that converts an input voltage into a desired voltage and outputs the desired voltage by alternately turning on and off the element S2.
  • each of the first switch element S1 and the second switch element S2 is turned on/off by comparing the detection voltage Vd obtained by detecting the reactor current IL flowing through the reactor L1 with the first reference potential DA1.
  • a first switching signal Sig1 for switching off is output.
  • the first peak value which is either the maximum value or the minimum value of the detection voltage Vd, is held.
  • the held first peak value is A/D converted.
  • the digital value of the first reference potential DA1 is determined based on the first A/D converted voltage.
  • the determined digital value of the first reference potential DA1 is subjected to D/A conversion and is set as the first reference potential DA1.
  • Control circuit 200 Converter circuit 210 Control section (first control section, second control section) 211 A/D converter (first A/D converter, second A/D converter) 212 1st D/A converter 213 2nd D/A converter 5 Current detector 61 1st comparator 62 2nd comparator 71 1st peak hold circuit 72 2nd peak hold circuit 8 Difference amplifier DA1 1st reference potential DA2 2nd 2 reference potential DA3 3rd reference potential IL Reactor current L1 Reactor S1 1st switch element S2 2nd switch element Sig1 1st switching signal Sig2 2nd switching signal Vd Detection voltage

Abstract

A control circuit (2) comprises: a first comparator (61), a first peak hold circuit (71), a first A/D conversion unit, a first control unit, and a first D/A conversion unit (212). The first comparator (61) outputs a first switching signal (Sig1) by comparing a detection voltage (Vd) and a first reference potential (DA1). The first peak hold circuit (71) holds a first peak value that is either the maximum value or the minimum value of the detection voltage (Vd). The first A/D conversion unit performs A/D conversion on the first peak value. The first control unit determines a digital value of the first reference potential (DA1) on the basis of the voltage output by the first A/D conversion unit. The first D/A conversion unit (212) performs D/A conversion on the digital value of the first reference potential (DA1), and outputs the converted value as the first reference potential (DA1) to the first comparator (61).

Description

コンバータ回路の制御回路、及びコンバータ回路の制御方法Converter circuit control circuit and converter circuit control method
 本発明は、入力電圧を所望の電圧に変換して出力するコンバータ回路の制御回路、及びコンバータ回路の制御方法に関する。 The present invention relates to a control circuit for a converter circuit that converts an input voltage into a desired voltage and outputs it, and a method for controlling the converter circuit.
 特許文献1には、入力電線と出力電線との間で直流電力を変換するDC-DC変換器が開示されている。 Patent Document 1 discloses a DC-DC converter that converts DC power between an input electric wire and an output electric wire.
特開2018-057203号公報JP 2018-057203 Publication
 本発明は、比較的高い周波数でコンバータ回路を制御する場合においても、所望のリアクトル電流で制御しやすいコンバータ回路の制御回路等を提供する。 The present invention provides a control circuit for a converter circuit that can be easily controlled with a desired reactor current even when the converter circuit is controlled at a relatively high frequency.
 本発明の一態様に係るコンバータ回路の制御回路は、リアクトルと、前記リアクトルに接続される第1スイッチ素子及び第2スイッチ素子とを有し、前記第1スイッチ素子及び第2スイッチ素子を交互にオン/オフすることで入力電圧を所望の電圧に変換して出力するコンバータ回路の制御回路である。前記制御回路は、第1比較器と、第1ピークホールド回路と、第1A/D変換部と、第1制御部と、第1D/A変換部と、を備える。前記第1比較器は、前記リアクトルを流れるリアクトル電流を検出することで得られる検出電圧と第1基準電位とを比較することにより、前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを切り替えるための第1切替信号を出力する。前記第1ピークホールド回路は、前記検出電圧の最大値及び最小値のうちのいずれか一方である第1ピーク値を保持する。前記第1A/D変換部は、前記第1ピークホールド回路が保持する前記第1ピーク値をA/D変換する。前記第1制御部は、前記第1A/D変換部が出力する電圧に基づいて前記第1基準電位のディジタル値を決定する。前記第1D/A変換部は、前記第1制御部で決定した前記第1基準電位のディジタル値をD/A変換し、前記第1基準電位として前記第1比較器へ出力する。 A control circuit for a converter circuit according to one aspect of the present invention includes a reactor, a first switch element and a second switch element connected to the reactor, and alternately switches the first switch element and the second switch element. This is a control circuit for a converter circuit that converts an input voltage into a desired voltage and outputs it by turning it on and off. The control circuit includes a first comparator, a first peak hold circuit, a first A/D conversion section, a first control section, and a first D/A conversion section. The first comparator turns on/off each of the first switch element and the second switch element by comparing a detection voltage obtained by detecting a reactor current flowing through the reactor with a first reference potential. A first switching signal for switching off is output. The first peak hold circuit holds a first peak value that is either a maximum value or a minimum value of the detected voltage. The first A/D converter performs A/D conversion on the first peak value held by the first peak hold circuit. The first control section determines a digital value of the first reference potential based on the voltage output from the first A/D conversion section. The first D/A converter performs D/A conversion on the digital value of the first reference potential determined by the first controller, and outputs the digital value as the first reference potential to the first comparator.
 本発明の一態様に係るコンバータ回路の制御方法は、リアクトルと、前記リアクトルに接続される第1スイッチ素子及び第2スイッチ素子とを有し、前記第1スイッチ素子及び第2スイッチ素子を交互にオン/オフすることで入力電圧を所望の電圧に変換して出力するコンバータ回路の制御方法である。前記制御方法では、前記リアクトルを流れるリアクトル電流を検出することで得られる検出電圧と第1基準電位とを比較することにより、前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを切り替えるための第1切替信号を出力する。前記制御方法では、前記検出電圧の最大値及び最小値のうちのいずれか一方である第1ピーク値を保持する。前記制御方法では、保持した前記第1ピーク値をA/D変換する。前記制御方法では、A/D変換した電圧に基づいて前記第1基準電位のディジタル値を決定する。前記制御方法では、決定した前記第1基準電位のディジタル値をD/A変換し、前記第1基準電位とする。 A method for controlling a converter circuit according to one aspect of the present invention includes a reactor, and a first switch element and a second switch element connected to the reactor, and wherein the first switch element and the second switch element are alternately switched. This is a method of controlling a converter circuit that converts an input voltage into a desired voltage and outputs it by turning it on and off. In the control method, each of the first switch element and the second switch element is turned on/off by comparing a detection voltage obtained by detecting a reactor current flowing through the reactor with a first reference potential. A first switching signal for switching is output. In the control method, a first peak value that is either a maximum value or a minimum value of the detected voltage is held. In the control method, the held first peak value is A/D converted. In the control method, a digital value of the first reference potential is determined based on the A/D converted voltage. In the control method, the determined digital value of the first reference potential is subjected to D/A conversion, and is set as the first reference potential.
 本発明のコンバータ回路の制御回路等は、比較的高い周波数でコンバータ回路を制御する場合においても、所望のリアクトル電流で制御しやすい、という利点がある。 The control circuit for the converter circuit of the present invention has the advantage that even when controlling the converter circuit at a relatively high frequency, it is easy to control with a desired reactor current.
図1は、コンバータ回路及び基本形の制御回路の構成を示す回路図である。FIG. 1 is a circuit diagram showing the configuration of a converter circuit and a basic control circuit. 図2は、コンバータ回路が昇圧チョッパ動作する場合における波形図である。FIG. 2 is a waveform diagram when the converter circuit operates as a boost chopper. 図3は、実施の形態に係るコンバータ回路の制御回路の構成を示す回路図である。FIG. 3 is a circuit diagram showing the configuration of the control circuit of the converter circuit according to the embodiment. 図4は、検出電圧の波形図である。FIG. 4 is a waveform diagram of the detected voltage. 図5は、ピークホールド回路の出力波形図である。FIG. 5 is an output waveform diagram of the peak hold circuit. 図6は、実施の形態の第1変形例に係るコンバータ回路の制御回路の構成を示す回路図である。FIG. 6 is a circuit diagram showing the configuration of a control circuit of a converter circuit according to a first modification of the embodiment. 図7は、実施の形態の第2変形例に係るコンバータ回路の制御回路の構成を示す回路図である。FIG. 7 is a circuit diagram showing the configuration of a control circuit of a converter circuit according to a second modification of the embodiment.
 (実施の形態)
 [1.技術背景]
 まず、実施の形態に係るコンバータ回路の制御回路を発明するに至った技術背景について、図1に示すコンバータ回路200及び基本形の制御回路20を用いて説明する。図1は、コンバータ回路200及び基本形の制御回路20の構成を示す回路図である。
(Embodiment)
[1. Technical background]
First, the technical background that led to the invention of a control circuit for a converter circuit according to an embodiment will be explained using a converter circuit 200 and a basic control circuit 20 shown in FIG. FIG. 1 is a circuit diagram showing the configuration of a converter circuit 200 and a basic control circuit 20.
 コンバータ回路200は、同期整流方式の双方向コンバータ回路である。コンバータ回路200は、図1に示すように、第1高電位端子P11と第1低電位端子P12との間に電源3が接続され、第2高電位端子P21と第2低電位端子P22との間に負荷4が接続されている場合、電源3から供給される入力電圧を昇圧して負荷4へ出力する昇圧チョッパ動作を行い、昇圧コンバータ回路として機能する。また、コンバータ回路200は、第1高電位端子P11と第1低電位端子P12との間に負荷4が接続され、第2高電位端子P21と第2低電位端子P22との間に電源3が接続されている場合、電源3から供給される入力電圧を降圧して負荷4へ出力する降圧チョッパ動作を行い、降圧コンバータ回路として機能する。 The converter circuit 200 is a synchronous rectification bidirectional converter circuit. As shown in FIG. 1, in the converter circuit 200, the power supply 3 is connected between the first high potential terminal P11 and the first low potential terminal P12, and the power supply 3 is connected between the second high potential terminal P21 and the second low potential terminal P22. When a load 4 is connected between them, a step-up chopper operation is performed to step up the input voltage supplied from the power supply 3 and output it to the load 4, thereby functioning as a step-up converter circuit. Further, in the converter circuit 200, a load 4 is connected between the first high potential terminal P11 and the first low potential terminal P12, and a power supply 3 is connected between the second high potential terminal P21 and the second low potential terminal P22. When connected, it performs a step-down chopper operation that steps down the input voltage supplied from the power supply 3 and outputs it to the load 4, and functions as a step-down converter circuit.
 第1低電位端子P12の電位は、第1高電位端子P11の電位よりも低く、第2低電位端子P22の電位は、第2高電位端子P21の電位よりも低い。また、第1低電位端子P12と第2低電位端子P22とは接続されており、同電位である。 The potential of the first low potential terminal P12 is lower than the potential of the first high potential terminal P11, and the potential of the second low potential terminal P22 is lower than the potential of the second high potential terminal P21. Further, the first low potential terminal P12 and the second low potential terminal P22 are connected and have the same potential.
 コンバータ回路200は、第1コンデンサC1と、第2コンデンサC2と、リアクトルL1と、第1スイッチ素子S1と、第2スイッチ素子S2と、第1ゲート抵抗Rg1と、第2ゲート抵抗Rg2と、第1駆動回路11と、第2駆動回路12と、電流検出器5と、を備えている。コンバータ回路200は、基本形の制御回路20により制御される。 The converter circuit 200 includes a first capacitor C1, a second capacitor C2, a reactor L1, a first switch element S1, a second switch element S2, a first gate resistor Rg1, a second gate resistor Rg2, and a second capacitor C2. 1 drive circuit 11, a second drive circuit 12, and a current detector 5. Converter circuit 200 is controlled by basic control circuit 20 .
 第1コンデンサC1は、第1高電位端子P11と第1低電位端子P12との間に接続されている。また、第2コンデンサC2は、第2高電位端子P21と第2低電位端子P22との間に接続されている。第1コンデンサC1及び第2コンデンサC2は、例えばいずれもアルミ電解コンデンサである。 The first capacitor C1 is connected between the first high potential terminal P11 and the first low potential terminal P12. Further, the second capacitor C2 is connected between the second high potential terminal P21 and the second low potential terminal P22. The first capacitor C1 and the second capacitor C2 are both aluminum electrolytic capacitors, for example.
 リアクトルL1は、第1端(図1における左端)が第1高電位端子P11に接続されており、第2端(図1における右端)が第1スイッチ素子S1及び第2スイッチ素子S2の接続点に接続されている。 The reactor L1 has a first end (the left end in FIG. 1) connected to the first high potential terminal P11, and a second end (the right end in FIG. 1) the connection point between the first switch element S1 and the second switch element S2. It is connected to the.
 第1スイッチ素子S1及び第2スイッチ素子S2は、いずれもノーマリーオフ型のMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等のトランジスタであって、直列に接続されている。第1スイッチ素子S1のドレインは、第2高電位端子P21に接続されており、第2スイッチ素子S2のソースは、第1低電位端子P12及び第2低電位端子P22に接続されている。また、第1スイッチ素子S1のソース及び第2スイッチ素子S2のドレインは、リアクトルL1の第2端に接続されている。また、第1スイッチ素子S1のゲートは、第1ゲート抵抗Rg1を介して第1駆動回路11に接続されており、第2スイッチ素子S2のゲートは、第2ゲート抵抗Rg2を介して第2駆動回路12に接続されている。 The first switch element S1 and the second switch element S2 are both transistors such as normally-off type MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), and are connected in series. The drain of the first switch element S1 is connected to the second high potential terminal P21, and the source of the second switch element S2 is connected to the first low potential terminal P12 and the second low potential terminal P22. Further, the source of the first switching element S1 and the drain of the second switching element S2 are connected to the second end of the reactor L1. Further, the gate of the first switch element S1 is connected to the first drive circuit 11 via the first gate resistor Rg1, and the gate of the second switch element S2 is connected to the second drive circuit 11 via the second gate resistor Rg2. It is connected to circuit 12.
 なお、第1スイッチ素子S1及び第2スイッチ素子S2は、いずれもMOSFETに限らず、例えばIGBT(Insulated Gate Bipolar Transistor)、又はGaN(窒化ガリウム)トランジスタ等の他のトランジスタであってもよい。 Note that both the first switch element S1 and the second switch element S2 are not limited to MOSFETs, and may be other transistors such as IGBTs (Insulated Gate Bipolar Transistors) or GaN (Gallium Nitride) transistors.
 第1駆動回路11は、基本形の制御回路20からの第1制御信号Sig10を受けて、第1ゲート抵抗Rg1を介して第1スイッチ素子S1のゲートに駆動電圧を印加するための第1駆動信号Sig11を出力する回路である。第1制御信号Sig10は、第1スイッチ素子S1のターンオン又はターンオフを指示する信号である。つまり、第1駆動回路11は、基本形の制御回路20からの第1制御信号Sig10を受けて第1駆動信号Sig11を出力することにより、第1スイッチ素子S1を駆動させる。 The first drive circuit 11 receives a first control signal Sig10 from the basic control circuit 20 and sends a first drive signal for applying a drive voltage to the gate of the first switch element S1 via the first gate resistor Rg1. This is a circuit that outputs Sig11. The first control signal Sig10 is a signal that instructs to turn on or turn off the first switch element S1. That is, the first drive circuit 11 receives the first control signal Sig10 from the basic control circuit 20 and outputs the first drive signal Sig11, thereby driving the first switch element S1.
 具体的には、第1駆動信号Sig11がハイレベルである場合、第1スイッチ素子S1のゲート容量(入力容量)が充電されることで、第1スイッチ素子S1がターンオンする。一方、第1駆動信号Sig11がローレベルである場合、第1スイッチ素子S1のゲート容量に蓄積された電荷が放電されることで、第1スイッチ素子S1がターンオフする。 Specifically, when the first drive signal Sig11 is at a high level, the gate capacitance (input capacitance) of the first switch element S1 is charged, thereby turning on the first switch element S1. On the other hand, when the first drive signal Sig11 is at a low level, the charges accumulated in the gate capacitance of the first switch element S1 are discharged, thereby turning off the first switch element S1.
 第2駆動回路12は、基本形の制御回路20からの第2制御信号Sig20を受けて、第2ゲート抵抗Rg2を介して第2スイッチ素子S2のゲートに駆動電圧を印加するための第2駆動信号Sig21を出力するICである。第2制御信号Sig20は、第2スイッチ素子S2のターンオン又はターンオフを指示する信号である。つまり、第2駆動回路12は、基本形の制御回路20からの第2制御信号Sig20を受けて、第2スイッチ素子S2を駆動させる。 The second drive circuit 12 receives a second control signal Sig20 from the basic control circuit 20 and sends a second drive signal for applying a drive voltage to the gate of the second switch element S2 via the second gate resistor Rg2. This is an IC that outputs Sig21. The second control signal Sig20 is a signal that instructs to turn on or turn off the second switch element S2. That is, the second drive circuit 12 receives the second control signal Sig20 from the basic control circuit 20 and drives the second switch element S2.
 具体的には、第2駆動信号Sig21がハイレベルである場合、第2スイッチ素子S2のゲート容量(入力容量)が充電されることで、第2スイッチ素子S2がターンオンする。一方、第2駆動信号Sig21がローレベルである場合、第2スイッチ素子S2のゲート容量に蓄積された電荷が放電されることで、第2スイッチ素子S2がターンオフする。 Specifically, when the second drive signal Sig21 is at a high level, the gate capacitance (input capacitance) of the second switch element S2 is charged, thereby turning on the second switch element S2. On the other hand, when the second drive signal Sig21 is at a low level, the charges accumulated in the gate capacitance of the second switch element S2 are discharged, thereby turning off the second switch element S2.
 電流検出器5は、リアクトルL1を流れる電流であるリアクトル電流ILを検出する。電流検出器5の検出結果は、検出したリアクトル電流ILに応じた検出電圧Vdとして基本形の制御回路20へ出力される。 The current detector 5 detects the reactor current IL, which is the current flowing through the reactor L1. The detection result of the current detector 5 is output to the basic control circuit 20 as a detection voltage Vd corresponding to the detected reactor current IL.
 基本形の制御回路20は、例えばマイクロコンピュータによって実現されるが、プロセッサ又は専用回路によって実現されてもよい。基本形の制御回路20の機能は、基本形の制御回路20を構成するマイクロコンピュータ又はプロセッサ等のハードウェアがメモリに記憶されたコンピュータプログラム(ソフトウェア)を実行することによって実現される。 The basic control circuit 20 is realized, for example, by a microcomputer, but may also be realized by a processor or a dedicated circuit. The functions of the basic control circuit 20 are realized by hardware such as a microcomputer or processor constituting the basic control circuit 20 executing a computer program (software) stored in a memory.
 基本形の制御回路20は、コンバータ回路200が昇圧チョッパ動作する場合、第1スイッチ素子S1及び第2スイッチ素子S2を交互にターンオンすることで、入力電圧を昇圧させる。また、基本形の制御回路20は、コンバータ回路200が降圧チョッパ動作する場合、第1スイッチ素子S1及び第2スイッチ素子S2を交互にターンオンすることで、入力電圧を降圧させる。いずれの場合においても、基本形の制御回路20は、PWM(Pulse Width Modulation)制御により、第1スイッチ素子S1及び第2スイッチ素子S2を制御する。すなわち、基本形の制御回路20は、第1駆動回路11へ出力する第1制御信号Sig10、及び第2駆動回路12へ出力する第2制御信号Sig20の各々のデューティ比を調整することにより、入力電圧を所望の出力電圧へ昇圧又は降圧させる。 When the converter circuit 200 operates as a boost chopper, the basic control circuit 20 boosts the input voltage by alternately turning on the first switch element S1 and the second switch element S2. Furthermore, when the converter circuit 200 operates as a step-down chopper, the basic control circuit 20 steps down the input voltage by alternately turning on the first switch element S1 and the second switch element S2. In either case, the basic control circuit 20 controls the first switch element S1 and the second switch element S2 by PWM (Pulse Width Modulation) control. That is, the basic control circuit 20 adjusts the input voltage by adjusting the duty ratio of each of the first control signal Sig10 outputted to the first drive circuit 11 and the second control signal Sig20 outputted to the second drive circuit 12. Step up or step down the voltage to the desired output voltage.
 具体的には、基本形の制御回路20は、検出電圧Vdの平均値(言い換えれば、リアクトル電流ILの平均値)を演算し、演算した検出電圧Vdの平均値が目標値となるように第1制御信号Sig10及び第2制御信号Sig20の各々のデューティ比を調整する。目標値は、所望の出力電圧に応じて適宜設定される。 Specifically, the basic control circuit 20 calculates the average value of the detected voltage Vd (in other words, the average value of the reactor current IL), and sets the first value so that the calculated average value of the detected voltage Vd becomes the target value. The duty ratio of each of the control signal Sig10 and the second control signal Sig20 is adjusted. The target value is appropriately set depending on the desired output voltage.
 図2は、コンバータ回路200が昇圧チョッパ動作する場合における波形図である。図2において、「IL」はリアクトルL1に流れるリアクトル電流を示す。また、図2において、「S1」は第1スイッチ素子S1のゲートに印加される駆動電圧を示し、「S2」は第2スイッチ素子S2のゲートに印加される駆動電圧を示す。「S1」及び「S2」の各々において、「H」は駆動電圧がハイレベルであって、スイッチ素子がオン状態にあることを示し、「L」は駆動電圧がローレベルであって、スイッチ素子がオフ状態にあることを示す。なお、図2においては、第1スイッチ素子S1及び第2スイッチ素子S2の両方がオフとなるデッドタイムについては記載を省略している。 FIG. 2 is a waveform diagram when converter circuit 200 operates as a boost chopper. In FIG. 2, "IL" indicates a reactor current flowing through reactor L1. Moreover, in FIG. 2, "S1" indicates the drive voltage applied to the gate of the first switch element S1, and "S2" indicates the drive voltage applied to the gate of the second switch element S2. In each of "S1" and "S2", "H" indicates that the drive voltage is at a high level and the switch element is in the on state, and "L" indicates that the drive voltage is at a low level and the switch element is in the on state. is in the off state. In addition, in FIG. 2, description is omitted about the dead time when both the 1st switch element S1 and the 2nd switch element S2 are turned off.
 図1及び図2に示すように、コンバータ回路200は、基本形の制御回路20により第1スイッチ素子S1及び第2スイッチ素子S2が交互にオン/オフすることで、リアクトル電流ILが制御され、入力電圧を所望の電圧に変換して出力する。 As shown in FIGS. 1 and 2, the converter circuit 200 controls the reactor current IL by alternately turning on and off the first switch element S1 and the second switch element S2 by the basic control circuit 20, and the input Converts the voltage to the desired voltage and outputs it.
 ところで、近年では、コンバータ回路におけるリアクトルの小型化が望まれている。そして、リアクトルの小型化を図る手段として、例えば100kHz以上の比較的高い周波数でコンバータ回路をスイッチング制御することが考えられる。このようにスイッチング制御すれば、リアクトルに要求されるインダクタンスの大きさが小さくて済むからである。 Incidentally, in recent years, there has been a desire for smaller reactors in converter circuits. As a means of reducing the size of the reactor, it is conceivable to control the switching of the converter circuit at a relatively high frequency of, for example, 100 kHz or more. This is because if switching control is performed in this manner, the inductance required for the reactor can be reduced.
 しかしながら、上述のように比較的高い周波数でコンバータ回路をスイッチング制御した場合、リアクトル電流の変化が速くなる(急峻になる)ので、所望のピーク電流となるようにリアクトル電流を制御することが難しくなる、という問題が生じる。 However, when switching the converter circuit at a relatively high frequency as described above, the reactor current changes quickly (becomes steep), making it difficult to control the reactor current to the desired peak current. , a problem arises.
 例えば、上述の基本形の制御回路20では、リアクトル電流ILの平均値に基づいて、第1スイッチ素子S1及び第2スイッチ素子S2のオン/オフを制御している。したがって、例えばリアクトル電流ILが急峻に変化したとしても、リアクトル電流ILの瞬時値に基づいて第1スイッチ素子S1及び第2スイッチ素子S2のオン/オフを制御できないので、リアクトル電流ILの急峻な変化に追従した制御ができない。このように、リアクトル電流ILの急峻な変化に追従した制御ができなければ、例えばリアクトルL1に瞬間的に流れる過大な電流を抑制するといった制御が行えない。 For example, in the basic control circuit 20 described above, on/off of the first switch element S1 and the second switch element S2 is controlled based on the average value of the reactor current IL. Therefore, even if the reactor current IL suddenly changes, for example, it is not possible to control the on/off of the first switch element S1 and the second switch element S2 based on the instantaneous value of the reactor current IL. control that follows. As described above, unless control can be performed to follow the steep changes in reactor current IL, it is impossible to perform control such as suppressing, for example, an excessive current momentarily flowing through reactor L1.
 ここで、リアクトル電流ILの瞬時値に基づいて第1スイッチ素子S1及び第2スイッチ素子S2を制御することが考えられる。しかしながら、例えばマイクロコンピュータのようにコンバータ回路の制御回路として用いられる一般的な制御回路が有するA/D(Analog to Digital)変換部では、リアクトル電流ILの急峻な変化に追従できる程にはサンプリング速度が大きくない。 Here, it is conceivable to control the first switch element S1 and the second switch element S2 based on the instantaneous value of the reactor current IL. However, in the A/D (Analog to Digital) conversion section of a general control circuit used as a control circuit of a converter circuit, such as a microcomputer, the sampling speed is not fast enough to follow the steep changes in the reactor current IL. is not large.
 このため、このような制御回路では、例えばリアクトル電流ILがピークに達したタイミングから遅れてリアクトル電流ILの瞬時値を取得することになり、やはりリアクトル電流ILの急峻な変化に追従した制御ができず、所望のリアクトル電流ILで制御できない、という問題がある。 For this reason, in such a control circuit, for example, the instantaneous value of the reactor current IL is acquired with a delay from the timing when the reactor current IL reaches its peak, which makes it impossible to perform control that follows steep changes in the reactor current IL. First, there is a problem in that it cannot be controlled with a desired reactor current IL.
 以上を鑑み、発明者は本開示を創作するに至った。 In view of the above, the inventors came to create the present disclosure.
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be specifically described with reference to the drawings. Note that the embodiments described below are all inclusive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, order of steps, etc. shown in the following embodiments are merely examples, and do not limit the present invention. Further, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims will be described as arbitrary constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略又は簡略化される場合がある。 Note that each figure is a schematic diagram and is not necessarily strictly illustrated. Further, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
 [2.構成]
 以下、実施の形態に係るコンバータ回路の制御回路2(以下、単に「制御回路2」ともいう)について図3を用いて説明する。図3は、実施の形態に係るコンバータ回路の制御回路2の構成を示す回路図である。図3では、電流検出器5を除いてコンバータ回路の図示を省略している。また、実施の形態では、制御回路2の制御対象であるコンバータ回路は、昇圧チョッパ動作を行うコンバータ回路200と同じであるので、ここでは説明を省略する。
[2. composition]
Hereinafter, the control circuit 2 (hereinafter also simply referred to as "control circuit 2") of the converter circuit according to the embodiment will be described using FIG. 3. FIG. 3 is a circuit diagram showing the configuration of the control circuit 2 of the converter circuit according to the embodiment. In FIG. 3, illustration of the converter circuit is omitted except for the current detector 5. Furthermore, in the embodiment, the converter circuit to be controlled by the control circuit 2 is the same as the converter circuit 200 that performs a step-up chopper operation, so a description thereof will be omitted here.
 制御回路2は、図3に示すように、第1制御回路21と、第2制御回路22と、第1比較器61と、第2比較器62と、第1ピークホールド回路71と、第2ピークホールド回路72と、を備えている。 As shown in FIG. 3, the control circuit 2 includes a first control circuit 21, a second control circuit 22, a first comparator 61, a second comparator 62, a first peak hold circuit 71, and a second control circuit 21. A peak hold circuit 72 is provided.
 第1比較器61は、検出電圧Vdと第1基準電位DA1とを比較することにより、第1スイッチ素子S1及び第2スイッチ素子S2の各々のオン/オフを切り替えるための第1切替信号Sig1を出力する。ここでは、第1切替信号Sig1は、第2スイッチ素子S2をターンオフさせ、第1スイッチ素子S1をターンオンさせるための信号である。具体的には、第1比較器61は、検出電圧Vdが第1基準電位DA1を上回ると、第1切替信号Sig1を出力する。 The first comparator 61 generates a first switching signal Sig1 for switching on/off of each of the first switching element S1 and the second switching element S2 by comparing the detection voltage Vd and the first reference potential DA1. Output. Here, the first switching signal Sig1 is a signal for turning off the second switching element S2 and turning on the first switching element S1. Specifically, the first comparator 61 outputs the first switching signal Sig1 when the detection voltage Vd exceeds the first reference potential DA1.
 ここで、検出電圧Vdは、リアクトルL1を流れるリアクトル電流ILを電流検出器5で検出することで得られる。図4は、検出電圧Vdの波形図である。図5において、「DA1」は第1基準電位DA1を示し、「DA2」は第2基準電位DA2(後述する)を示す。電流検出器5は、検出電圧Vdが第1基準電位DA1と第2基準電位DA2との間の範囲内に概ね収まるように、リアクトル電流ILの検出値をレベルシフトした電圧信号に変換することで、検出電圧Vdを出力する。 Here, the detection voltage Vd is obtained by detecting the reactor current IL flowing through the reactor L1 with the current detector 5. FIG. 4 is a waveform diagram of the detection voltage Vd. In FIG. 5, "DA1" indicates the first reference potential DA1, and "DA2" indicates the second reference potential DA2 (described later). The current detector 5 converts the detected value of the reactor current IL into a level-shifted voltage signal so that the detected voltage Vd is approximately within the range between the first reference potential DA1 and the second reference potential DA2. , outputs the detection voltage Vd.
 第2比較器62は、検出電圧Vdと第2基準電位DA2とを比較することにより、第1スイッチ素子S1及び第2スイッチ素子S2の各々のオン/オフを切り替えるための第2切替信号Sig2を出力する。ここでは、第2切替信号Sig2は、第1スイッチ素子S1をターンオフさせ、第2スイッチ素子S2をターンオンさせるための信号である。具体的には、第2比較器62は、検出電圧Vdが第2基準電位DA2を下回ると、第2切替信号Sig2を出力する。 The second comparator 62 generates a second switching signal Sig2 for switching on/off of each of the first switching element S1 and the second switching element S2 by comparing the detection voltage Vd and the second reference potential DA2. Output. Here, the second switching signal Sig2 is a signal for turning off the first switching element S1 and turning on the second switching element S2. Specifically, the second comparator 62 outputs the second switching signal Sig2 when the detection voltage Vd becomes lower than the second reference potential DA2.
 第1ピークホールド回路71は、検出電圧Vdの最大値及び最小値のうちのいずれか一方である第1ピーク値を保持する。実施の形態では、第1ピークホールド回路71は、検出電圧Vdの最大値である第1ピーク値を保持する。つまり、第1ピークホールド回路71は、リアクトル電流ILの最大ピーク値を保持する、と言える。 The first peak hold circuit 71 holds a first peak value that is either the maximum value or the minimum value of the detection voltage Vd. In the embodiment, the first peak hold circuit 71 holds the first peak value, which is the maximum value of the detection voltage Vd. In other words, it can be said that the first peak hold circuit 71 holds the maximum peak value of the reactor current IL.
 第1ピークホールド回路71は、第1リセット信号Re1によりリセットされる。つまり、第1ピークホールド回路71は、第1ピーク値を保持している状態において第1リセット信号Re1が入力されると、第1ピーク値の保持を解除する。実施の形態では、第1リセット信号Re1は、第2比較器62が出力する第2切替信号Sig2である。したがって、第1ピークホールド回路71は、第2切替信号Sig2によりリセットされる。 The first peak hold circuit 71 is reset by the first reset signal Re1. That is, when the first reset signal Re1 is input while the first peak hold circuit 71 is holding the first peak value, it releases the holding of the first peak value. In the embodiment, the first reset signal Re1 is the second switching signal Sig2 output by the second comparator 62. Therefore, the first peak hold circuit 71 is reset by the second switching signal Sig2.
 第2ピークホールド回路72は、検出電圧Vdの最大値及び最小値のうちの第1ピーク値とは異なる第2ピーク値を保持する。実施の形態では、第2ピークホールド回路72は、検出電圧Vdの最小値である第2ピーク値を保持する。つまり、第2ピークホールド回路72は、リアクトル電流ILの最小ピーク値を保持する、と言える。 The second peak hold circuit 72 holds a second peak value, which is different from the first peak value, of the maximum value and the minimum value of the detection voltage Vd. In the embodiment, the second peak hold circuit 72 holds the second peak value, which is the minimum value of the detection voltage Vd. In other words, it can be said that the second peak hold circuit 72 holds the minimum peak value of the reactor current IL.
 第2ピークホールド回路72は、第2リセット信号Re2によりリセットされる。つまり、第2ピークホールド回路72は、第2ピーク値を保持している状態において第2リセット信号Re2が入力されると、第2ピーク値の保持を解除する。実施の形態では、第2リセット信号Re2は、第1比較器61が出力する第1切替信号Sig1である。したがって、第2ピークホールド回路72は、第1切替信号Sig1によりリセットされる。 The second peak hold circuit 72 is reset by the second reset signal Re2. That is, when the second reset signal Re2 is input while the second peak hold circuit 72 is holding the second peak value, it releases the holding of the second peak value. In the embodiment, the second reset signal Re2 is the first switching signal Sig1 output by the first comparator 61. Therefore, the second peak hold circuit 72 is reset by the first switching signal Sig1.
 図5は、ピークホールド回路(第1ピークホールド回路71及び第2ピークホールド回路72)の出力波形図である。図5において、「V1」は第1ピークホールド回路71の出力電圧を示し、「V2」は第2ピークホールド回路72の出力電圧を示す。 FIG. 5 is an output waveform diagram of the peak hold circuits (first peak hold circuit 71 and second peak hold circuit 72). In FIG. 5, "V1" indicates the output voltage of the first peak hold circuit 71, and "V2" indicates the output voltage of the second peak hold circuit 72.
 図5に示すように、時刻t1で検出電圧Vdが最大値、言い換えればリアクトル電流ILが最大ピーク値に達すると、第1ピークホールド回路71の出力電圧V1は、当該最大値(つまり、第1ピーク値)で保持される。その後、時刻t2において第2切替信号Sig2(つまり、第1リセット信号Re1)が第1ピークホールド回路71に入力されると、第1ピークホールド回路71がリセットされる。第2切替信号Sig2の入力タイミングは、検出電圧Vdが最小値、言い換えればリアクトル電流ILが最小ピーク値に達するタイミングと概ね同じである。 As shown in FIG. 5, when the detection voltage Vd reaches the maximum value at time t1, in other words, the reactor current IL reaches the maximum peak value, the output voltage V1 of the first peak hold circuit 71 reaches the maximum value (that is, the first peak value). Thereafter, when the second switching signal Sig2 (that is, the first reset signal Re1) is input to the first peak hold circuit 71 at time t2, the first peak hold circuit 71 is reset. The input timing of the second switching signal Sig2 is approximately the same as the timing at which the detection voltage Vd reaches the minimum value, in other words, the reactor current IL reaches the minimum peak value.
 また、図5に示すように、時刻t2で検出電圧Vdが最小値、言い換えればリアクトル電流ILが最小ピーク値に達すると、第2ピークホールド回路72の出力電圧V2は、当該最小値(つまり、第2ピーク値)で保持される。その後、時刻t3において第1切替信号Sig1(つまり、第2リセット信号Re2)が第2ピークホールド回路72に入力されると、第2ピークホールド回路72がリセットされる。第1切替信号Sig1の入力タイミングは、検出電圧Vdが最大値、言い換えればリアクトル電流ILが最大ピーク値に達するタイミングと概ね同じである。 Further, as shown in FIG. 5, when the detected voltage Vd reaches the minimum value at time t2, in other words, the reactor current IL reaches the minimum peak value, the output voltage V2 of the second peak hold circuit 72 reaches the minimum value (that is, second peak value). Thereafter, when the first switching signal Sig1 (that is, the second reset signal Re2) is input to the second peak hold circuit 72 at time t3, the second peak hold circuit 72 is reset. The input timing of the first switching signal Sig1 is approximately the same as the timing at which the detection voltage Vd reaches its maximum value, in other words, the reactor current IL reaches its maximum peak value.
 第1制御回路21は、例えばマイクロコンピュータによって実現されるが、プロセッサ又は専用回路によって実現されてもよい。第1制御回路21の機能は、第1制御回路21を構成するマイクロコンピュータ又はプロセッサ等のハードウェアがメモリに記憶されたコンピュータプログラム(ソフトウェア)を実行することによって実現される。 The first control circuit 21 is realized, for example, by a microcomputer, but may also be realized by a processor or a dedicated circuit. The functions of the first control circuit 21 are realized by hardware such as a microcomputer or processor constituting the first control circuit 21 executing a computer program (software) stored in a memory.
 第1制御回路21は、制御部210と、A/D変換部211と、第1D/A(Digital to Analog)変換部212と、第2D/A変換部213と、を備える。 The first control circuit 21 includes a control section 210, an A/D conversion section 211, a first D/A (Digital to Analog) conversion section 212, and a second D/A conversion section 213.
 A/D変換部211は、第1ピークホールド回路71の出力電圧をA/D変換して取得する。また、A/D変換部211は、第2ピークホールド回路72の出力電圧をA/D変換して取得する。ここで、A/D変換部211のサンプリング速度は、第1ピークホールド回路71及び第2ピークホールド回路72がそれぞれ第1ピーク値及び第2ピーク値を保持している期間においてサンプリング可能な程度の速度である。 The A/D converter 211 obtains the output voltage of the first peak hold circuit 71 by A/D converting it. Further, the A/D converter 211 obtains the output voltage of the second peak hold circuit 72 by A/D converting it. Here, the sampling rate of the A/D converter 211 is such that sampling is possible during the period in which the first peak hold circuit 71 and the second peak hold circuit 72 respectively hold the first peak value and the second peak value. It's speed.
 したがって、A/D変換部211は、第1ピークホールド回路71が保持する第1ピーク値をA/D変換する第1A/D変換部として機能する。また、A/D変換部211は、第2ピークホールド回路72が保持する第2ピーク値をA/D変換する第2A/D変換部として機能する。A/D変換部211は、第1ピークホールド回路71の出力電圧をA/D変換した第1電圧値と、第2ピークホールド回路72の出力電圧をA/D変換した第2電圧値とを、個別に制御部210に出力する。 Therefore, the A/D converter 211 functions as a first A/D converter that A/D converts the first peak value held by the first peak hold circuit 71. Further, the A/D converter 211 functions as a second A/D converter that A/D converts the second peak value held by the second peak hold circuit 72. The A/D converter 211 converts the output voltage of the first peak hold circuit 71 into an A/D converter to obtain a first voltage value, and the output voltage of the second peak hold circuit 72 into an A/D converter converts the output voltage into a second voltage value. , are individually output to the control unit 210.
 制御部210は、A/D変換部211が出力する第1電圧値に基づいて第1基準電位DA1のディジタル値を決定する。つまり、制御部210は、第1A/D変換部が出力する電圧に基づいて第1基準電位DA1のディジタル値を決定する第1制御部として機能する。また、制御部210は、A/D変換部211が出力する第2電圧値に基づいて第2基準電位DA2のディジタル値を決定する。つまり、制御部210は、第2A/D変換部が出力する電圧に基づいて第2基準電位DA2のディジタル値を決定する第2制御部として機能する。 The control unit 210 determines the digital value of the first reference potential DA1 based on the first voltage value output by the A/D conversion unit 211. That is, the control section 210 functions as a first control section that determines the digital value of the first reference potential DA1 based on the voltage output by the first A/D conversion section. Further, the control unit 210 determines the digital value of the second reference potential DA2 based on the second voltage value output by the A/D conversion unit 211. That is, the control section 210 functions as a second control section that determines the digital value of the second reference potential DA2 based on the voltage output by the second A/D conversion section.
 具体的には、制御部210は、第1電圧値、つまり第1ピークホールド回路71が保持する第1ピーク値と、第2電圧値、つまり第2ピークホールド回路72が保持する第2ピーク値とを参照することにより、リアクトル電流ILの最大ピーク値及び最小ピーク値を参照する。これにより、制御部210は、リアクトル電流ILの最大ピーク値及び最小ピーク値に基づいて、リアクトル電流ILが所望の大きさとなるように、第1基準電位DA1のディジタル値及び第2基準電位DA2のディジタル値を決定する。 Specifically, the control unit 210 controls the first voltage value, that is, the first peak value held by the first peak hold circuit 71, and the second voltage value, that is, the second peak value held by the second peak hold circuit 72. The maximum peak value and the minimum peak value of the reactor current IL are referred to by referring to. Thereby, the control unit 210 adjusts the digital value of the first reference potential DA1 and the second reference potential DA2 so that the reactor current IL has a desired magnitude based on the maximum peak value and minimum peak value of the reactor current IL. Determine the digital value.
 第1D/A変換部212は、制御部210(第1制御部)で決定した第1基準電位DA1のディジタル値をD/A変換し、アナログ値である第1基準電位DA1として第1比較器61へ出力する。 The first D/A conversion unit 212 performs D/A conversion on the digital value of the first reference potential DA1 determined by the control unit 210 (first control unit), and converts the digital value of the first reference potential DA1, which is an analog value, to the first comparator. Output to 61.
 第2D/A変換部213は、制御部210(第2制御部)で決定した第2基準電位DA2のディジタル値をD/A変換し、アナログ値である第2基準電位DA2として第2比較器62へ出力する。 The second D/A conversion unit 213 performs D/A conversion on the digital value of the second reference potential DA2 determined by the control unit 210 (second control unit), and converts the digital value of the second reference potential DA2, which is an analog value, to the second comparator. Output to 62.
 第2制御回路22は、例えばマイクロコンピュータによって実現されるが、プロセッサ又は専用回路によって実現されてもよい。第2制御回路22の機能は、第2制御回路22を構成するマイクロコンピュータ又はプロセッサ等のハードウェアがメモリに記憶されたコンピュータプログラム(ソフトウェア)を実行することによって実現される。 The second control circuit 22 is realized, for example, by a microcomputer, but may also be realized by a processor or a dedicated circuit. The functions of the second control circuit 22 are realized by hardware such as a microcomputer or processor constituting the second control circuit 22 executing a computer program (software) stored in a memory.
 第2制御回路22は、第1比較器61から出力される第1切替信号Sig1に基づいて、第1制御信号Sig10及び第2制御信号Sig20を出力する。具体的には、第2制御回路22は、第1切替信号Sig1が入力されると、ローレベルの第2制御信号Sig20を出力することにより第2スイッチ素子S2をターンオフさせる。その後、デッドタイムをカウントした後に、第2制御回路22は、ハイレベルの第1制御信号Sig10を出力することにより第1スイッチ素子S1をターンオンさせる。 The second control circuit 22 outputs a first control signal Sig10 and a second control signal Sig20 based on the first switching signal Sig1 output from the first comparator 61. Specifically, when the first switching signal Sig1 is input, the second control circuit 22 turns off the second switch element S2 by outputting the second control signal Sig20 at a low level. Thereafter, after counting the dead time, the second control circuit 22 turns on the first switch element S1 by outputting the first control signal Sig10 at a high level.
 また、第2制御回路22は、第2比較器62から出力される第2切替信号Sig2に基づいて、第1制御信号Sig10及び第2制御信号Sig20を出力する。具体的には、第2制御回路22は、第2切替信号Sig2が入力されると、ローレベルの第1制御信号Sig10を出力することにより第1スイッチ素子S1をターンオフさせる。その後、デッドタイムをカウントした後に、第2制御回路22は、ハイレベルの第2制御信号Sig20を出力することにより第2スイッチ素子S2をターンオンさせる。 Further, the second control circuit 22 outputs the first control signal Sig10 and the second control signal Sig20 based on the second switching signal Sig2 output from the second comparator 62. Specifically, when the second switching signal Sig2 is input, the second control circuit 22 turns off the first switch element S1 by outputting the first control signal Sig10 at a low level. Thereafter, after counting the dead time, the second control circuit 22 turns on the second switch element S2 by outputting a high-level second control signal Sig20.
 なお、第1制御信号Sig1及び第2制御信号Sig2の各々において、ハイレベルとローレベルとは逆であってもよい。 Note that in each of the first control signal Sig1 and the second control signal Sig2, the high level and low level may be reversed.
 [利点]
 上述のように、実施の形態に係る制御回路2では、第1ピークホールド回路71により、検出電圧Vdの最大値及び最小値のうちのいずれか一方である第1ピーク値を保持している。このため、A/D変換部211(第1A/D変換部)は、第1ピークホールド回路71が保持する第1ピーク値をA/D変換することで、リアクトル電流ILの最大ピーク値及び最小ピーク値のうちのいずれか一方を間接的に取得することが可能である。
[advantage]
As described above, in the control circuit 2 according to the embodiment, the first peak hold circuit 71 holds the first peak value, which is either the maximum value or the minimum value of the detection voltage Vd. Therefore, the A/D converter 211 (first A/D converter) performs A/D conversion on the first peak value held by the first peak hold circuit 71, thereby increasing the maximum peak value and the minimum value of the reactor current IL. It is possible to obtain either one of the peak values indirectly.
 つまり、実施の形態に係る制御回路2では、第1A/D変換部がリアクトル電流ILの急峻な変化に追従できる程にサンプリング速度が大きくなくても、リアクトル電流ILの最大ピーク値及び最小ピーク値のうちのいずれか一方を参照してリアクトル電流ILを制御することが可能である。このため、実施の形態に係る制御回路2では、比較的高い周波数でコンバータ回路200を制御する場合においても、所望のリアクトル電流ILで制御しやすい、という利点がある。 In other words, in the control circuit 2 according to the embodiment, even if the sampling speed is not high enough to allow the first A/D converter to follow a steep change in the reactor current IL, the maximum peak value and the minimum peak value of the reactor current IL can be It is possible to control the reactor current IL with reference to either one of them. Therefore, the control circuit 2 according to the embodiment has the advantage that even when controlling the converter circuit 200 at a relatively high frequency, it is easy to control with a desired reactor current IL.
 また、実施の形態に係る制御回路2では、第2ピークホールド回路72により、検出電圧Vdの最大値及び最小値のうちの第1ピーク値とは異なる第2ピーク値を保持している。このため、A/D変換部211(第1A/D変換部及び第2A/D変換部)は、第1ピークホールド回路71が保持する第1ピーク値、及び第2ピークホールド回路72が保持する第2ピーク値をそれぞれA/D変換することで、リアクトル電流ILの最大ピーク値及び最小ピーク値の両方を間接的に取得することが可能である。 Furthermore, in the control circuit 2 according to the embodiment, the second peak hold circuit 72 holds a second peak value, which is different from the first peak value, of the maximum value and the minimum value of the detection voltage Vd. Therefore, the A/D converter 211 (the first A/D converter and the second A/D converter) receives the first peak value held by the first peak hold circuit 71 and the first peak value held by the second peak hold circuit 72. By A/D converting the second peak values, it is possible to indirectly obtain both the maximum peak value and the minimum peak value of the reactor current IL.
 つまり、実施の形態に係る制御回路2では、第1A/D変換部及び第2A/D変換部の両方がリアクトル電流ILの急峻な変化に追従できる程にサンプリング速度が大きくなくても、リアクトル電流ILの最大ピーク値及び最小ピーク値の両方を参照してリアクトル電流ILを制御することが可能である。このため、実施の形態に係る制御回路2では、比較的高い周波数でコンバータ回路200を制御する場合においても、更に精度よく所望のリアクトル電流ILで制御しやすい、という利点がある。 In other words, in the control circuit 2 according to the embodiment, even if the sampling speed of both the first A/D converter and the second A/D converter is not high enough to follow a steep change in the reactor current IL, the reactor current It is possible to control the reactor current IL with reference to both the maximum peak value and minimum peak value of IL. For this reason, the control circuit 2 according to the embodiment has the advantage that even when controlling the converter circuit 200 at a relatively high frequency, it is easy to control with a desired reactor current IL with higher accuracy.
 (変形例)
 以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではない。以下、実施の形態の変形例について列挙する。
(Modified example)
Although the embodiments have been described above, the present invention is not limited to the above embodiments. Modifications of the embodiment will be listed below.
 (第1変形例)
 図6は、実施の形態の第1変形例に係るコンバータ回路の制御回路2A(以下、単に「制御回路2A」という)の構成を示す回路図である。本変形例に係る制御回路2Aは、図6に示すように、第2比較器62、第2ピークホールド回路72、及び第2D/A変換部213を備える代わりに、第2切替信号Sig2を出力する信号出力部214を備えている点で、実施の形態に係る制御回路2と相違する。
(First modification)
FIG. 6 is a circuit diagram showing the configuration of a control circuit 2A (hereinafter simply referred to as "control circuit 2A") of a converter circuit according to a first modification of the embodiment. As shown in FIG. 6, the control circuit 2A according to this modification outputs the second switching signal Sig2 instead of including the second comparator 62, the second peak hold circuit 72, and the second D/A converter 213. The control circuit 2 is different from the control circuit 2 according to the embodiment in that it includes a signal output section 214 that outputs a signal.
 信号出力部214は、検出電圧Vdの平均値(言い換えれば、リアクトル電流ILの平均値)を演算し、演算した検出電圧Vdの平均値が目標値に達すると、第2切替信号Sig2を出力する。 The signal output unit 214 calculates the average value of the detected voltage Vd (in other words, the average value of the reactor current IL), and outputs the second switching signal Sig2 when the calculated average value of the detected voltage Vd reaches the target value. .
 つまり、本変形例では、制御回路2Aは、リアクトル電流ILの最大ピーク値及び最小ピーク値のうちのいずれか一方のみ(ここでは、最大ピーク値のみ)を参照して、リアクトル電流ILを制御している。本変形例でも、リアクトル電流ILの最大ピーク値及び最小ピーク値のいずれか一方を参照してリアクトル電流ILを制御しているので、比較的高い周波数でコンバータ回路200を制御する場合においても、所望のリアクトル電流ILで制御しやすい、という利点がある。 That is, in this modification, the control circuit 2A controls the reactor current IL by referring to only one of the maximum peak value and the minimum peak value (here, only the maximum peak value) of the reactor current IL. ing. In this modification, the reactor current IL is also controlled by referring to either the maximum peak value or the minimum peak value of the reactor current IL, so even when controlling the converter circuit 200 at a relatively high frequency, the desired This has the advantage of being easy to control with the reactor current IL.
 なお、図6に示す例では、制御回路2Aは、第2比較器62、第2ピークホールド回路72、及び第2D/A変換部213を備える代わりに、第2切替信号Sig2を出力する信号出力部214を備えているが、これに限られない。例えば、制御回路2Aは、第1比較器61、第1ピークホールド回路71、及び第1D/A変換部212を備える代わりに、第1切替信号Sig1を出力する信号出力部を備えていてもよい。この場合、信号出力部は、検出電圧Vdの平均値を演算し、演算した検出電圧Vdの平均値が目標値に達すると、第1切替信号Sig1を出力するように構成されていればよい。 Note that in the example shown in FIG. 6, the control circuit 2A includes a signal output that outputs the second switching signal Sig2 instead of including the second comparator 62, the second peak hold circuit 72, and the second D/A converter 213. 214, but is not limited thereto. For example, the control circuit 2A may include a signal output section that outputs the first switching signal Sig1 instead of including the first comparator 61, the first peak hold circuit 71, and the first D/A conversion section 212. . In this case, the signal output section may be configured to calculate the average value of the detected voltages Vd, and output the first switching signal Sig1 when the calculated average value of the detected voltages Vd reaches a target value.
 (第2変形例)
 図7は、実施の形態の第2変形例に係るコンバータ回路の制御回路2B(以下、単に「制御回路2B」という)の構成を示す回路図である。本変形例に係る制御回路2Bは、図7に示すように、差分増幅器8と、第3D/A変換部215と、を更に備える点で、実施の形態の第1変形例に係る制御回路2Aと相違する。
(Second modification)
FIG. 7 is a circuit diagram showing the configuration of a control circuit 2B (hereinafter simply referred to as "control circuit 2B") of a converter circuit according to a second modification of the embodiment. As shown in FIG. 7, the control circuit 2B according to this modification example further includes a differential amplifier 8 and a third D/A converter 215. It differs from
 差分増幅器8は、第1比較器61に入力される第1基準電位DA1よりも高い第3基準電位DA3と、検出電圧Vdとの差分を増幅し、第1比較器61に出力する。つまり、本変形例では、第1比較器61には、検出電圧Vdが入力される代わりに、差分増幅器8の出力電圧Vd′が入力される。出力電圧Vd′は、検出電圧Vdそのものではないが、検出電圧Vdの大きさに応じて変化する電圧であり、検出電圧Vdに応じた電圧である。 The difference amplifier 8 amplifies the difference between the third reference potential DA3, which is input to the first comparator 61 and is higher than the first reference potential DA1, and the detection voltage Vd, and outputs the amplified difference to the first comparator 61. That is, in this modification, the output voltage Vd' of the differential amplifier 8 is input to the first comparator 61 instead of the detection voltage Vd. The output voltage Vd' is not the detection voltage Vd itself, but is a voltage that changes depending on the magnitude of the detection voltage Vd, and is a voltage that corresponds to the detection voltage Vd.
 第3D/A変換部215は、制御部210(第1制御部)で決定した第1基準電位DA1のディジタル値に基づいて定められる第3基準電位DA3のディジタル値をD/A変換し、アナログ値である第3基準電位DA3として差分増幅器8へ出力する。 The third D/A converter 215 performs D/A conversion on the digital value of the third reference potential DA3 determined based on the digital value of the first reference potential DA1 determined by the controller 210 (first controller), and converts it into an analog It is output to the differential amplifier 8 as the third reference potential DA3.
 本変形例に係る制御回路2Bは、制御回路2Bに入力される検出電圧Vdの分解能を上げることで、リアクトル電流ILを制御する分解能を上げることができる、という利点がある。以下、上記の利点について具体的に説明する。 The control circuit 2B according to this modification has an advantage in that the resolution for controlling the reactor current IL can be increased by increasing the resolution of the detection voltage Vd input to the control circuit 2B. The above advantages will be specifically explained below.
 一般に、コンバータ回路の制御回路に用いられるマイクロコンピュータ等では、D/A変換部の分解能は、A/D変換部の分解能よりも低い。例えば、A/D変換部の分解能が12ビットであるのに対して、D/A変換部の分解能が8ビットである場合がある。このようにD/A変換部の分解能がA/D変換部の分解能よりも低い場合、制御回路によるリアクトル電流ILの制御の分解能がD/A変換部の分解能に制限されてしまう、という問題がある。 In general, in a microcomputer or the like used in a control circuit of a converter circuit, the resolution of the D/A converter is lower than that of the A/D converter. For example, while the resolution of the A/D converter is 12 bits, the resolution of the D/A converter may be 8 bits. In this way, when the resolution of the D/A converter is lower than that of the A/D converter, there is a problem that the resolution of the control circuit for controlling the reactor current IL is limited to the resolution of the D/A converter. be.
 そこで、本変形例に係る制御回路2Bでは、差分増幅器8を用いることで、上記の問題を解消している。具体例として、第1D/A変換部212及び第3D/A変換部215の分解能が0.1Vであることとして説明する。ここで、第1変形例に係る制御回路2Aでは、第1基準電位DA1を最小でも0.1V刻みでしか変化させることができないため、検出電圧Vdの0.1Vよりも小さい変化に応じたリアクトル電流ILの制御を行うことができない。 Therefore, in the control circuit 2B according to this modification, the above problem is solved by using the differential amplifier 8. As a specific example, a description will be given assuming that the resolution of the first D/A converter 212 and the third D/A converter 215 is 0.1V. Here, in the control circuit 2A according to the first modification, since the first reference potential DA1 can only be changed in increments of 0.1V at the minimum, the reactor in response to a change smaller than 0.1V in the detection voltage Vd. Current IL cannot be controlled.
 一方、本変形例に係る制御回路2Bでは、検出電圧Vdと第3基準電位DA3との差分を差分増幅器8で増幅した検出電圧Vd′と第1基準電位DA1とを第1比較器61で比較する。このため、本変形例では、第1基準電位DA1を最小でも0.1V刻みでしか変化させることができなくても、検出電圧Vdの0.1Vよりも小さい変化に応じたリアクトル電流ILの制御を行うことが可能である。 On the other hand, in the control circuit 2B according to the present modification, the first comparator 61 compares the detected voltage Vd' obtained by amplifying the difference between the detected voltage Vd and the third reference potential DA3 with the difference amplifier 8 and the first reference potential DA1. do. Therefore, in this modification, even if the first reference potential DA1 can only be changed in increments of 0.1V at the minimum, the reactor current IL is controlled in response to a change in the detection voltage Vd that is smaller than 0.1V. It is possible to do this.
 例えば、第1基準電位DA1を0.1V、第3基準電位DA3を1V、差分増幅器8のゲインを4倍とし、検出電圧Vdが1.025Vであることとして説明する。この場合、差分増幅器8の出力電圧Vd′は、Vd′=(1.025-1)×4=0.1Vとなる。このため、本変形例に係る制御回路2Bでは、第1比較器61で出力電圧Vd′と第1基準電位DA1とを比較することにより、検出電圧Vdが0.1Vよりも小さい変化であっても、差分増幅器8のゲインに応じて倍化された分解能でリアクトル電流ILの制御を行うことが可能である。 For example, the description will be made assuming that the first reference potential DA1 is 0.1V, the third reference potential DA3 is 1V, the gain of the differential amplifier 8 is 4 times, and the detection voltage Vd is 1.025V. In this case, the output voltage Vd' of the differential amplifier 8 is Vd'=(1.025-1)×4=0.1V. Therefore, in the control circuit 2B according to the present modification, the first comparator 61 compares the output voltage Vd' and the first reference potential DA1 to detect a change in the detected voltage Vd that is smaller than 0.1V. Also, it is possible to control the reactor current IL with a resolution doubled according to the gain of the differential amplifier 8.
 なお、図7に示す例では、制御回路2Bは、第1比較器61の前段に差分増幅器8を備える構成であるが、これに限られない。例えば、制御回路2Bは、第1比較器61の代わりに、第2比較器62の前段に差分増幅器を備えていてもよい。この場合、差分増幅器は、第2比較器62に入力される第2基準電位DA2よりも高い第4基準電位と、検出電圧Vdとの差分を増幅し、第2比較器62に出力するように構成されていればよい。また、この場合、制御部21は、第3D/A変換部215の代わりに、第4基準電位を出力する第4D/A変換部を備えていればよい。 Note that in the example shown in FIG. 7, the control circuit 2B has a configuration including the differential amplifier 8 at the front stage of the first comparator 61, but the configuration is not limited to this. For example, the control circuit 2B may include a differential amplifier at the front stage of the second comparator 62 instead of the first comparator 61. In this case, the difference amplifier amplifies the difference between the fourth reference potential higher than the second reference potential DA2 input to the second comparator 62 and the detection voltage Vd, and outputs the difference to the second comparator 62. It is sufficient if it is configured. Further, in this case, the control section 21 may include a fourth D/A conversion section that outputs the fourth reference potential instead of the third D/A conversion section 215.
 また、例えば制御回路2Bの構成は、実施の形態に係る制御回路2にも適用可能である。すなわち、実施の形態に係る制御回路2において、第1比較器61の前段に差分増幅器8を備えるのみならず、第2比較器62の前段にも差分増幅器を備えていてもよい。この場合、制御部21は、第3D/A変換部215のみならず、第4D/A変換部を更に備えていればよい。 Further, for example, the configuration of the control circuit 2B is also applicable to the control circuit 2 according to the embodiment. That is, in the control circuit 2 according to the embodiment, not only the differential amplifier 8 may be provided before the first comparator 61, but also a differential amplifier may be provided before the second comparator 62. In this case, the control unit 21 may further include not only the third D/A converter 215 but also a fourth D/A converter.
 (その他の変形例)
 上記実施の形態において、制御部210は、第1制御部及び第2制御部を兼ねているが、これに限られない。例えば、第1制御部及び第2制御部は、互いに独立した回路であってもよい。
(Other variations)
In the embodiment described above, the control section 210 serves as both the first control section and the second control section, but is not limited thereto. For example, the first control section and the second control section may be mutually independent circuits.
 上記実施の形態において、A/D変換部211は、第1A/D変換部及び第2A/D変換部を兼ねているが、これに限られない。例えば、第1A/D変換部及び第2A/D変換部は、互いに独立した回路であってもよい。 In the above embodiment, the A/D converter 211 also serves as the first A/D converter and the second A/D converter, but the invention is not limited thereto. For example, the first A/D converter and the second A/D converter may be mutually independent circuits.
 上記実施の形態において、電流検出器5は、リアクトルL1の前段に配置されているが、これに限られない。例えば、電流検出器5は、リアクトルL1の後段に配置されていてもよい。また、電流検出器5は、2つであって、一方が第1スイッチ素子S1に直列に接続され、他方が第2スイッチ素子S2に直列に接続されていてもよい。この場合、一方の電流検出器5は、第1スイッチ素子S1を流れる電流を検出することにより間接的にリアクトル電流ILを検出し、他方の電流検出器5は、第2スイッチ素子S2を流れる電流を検出することにより間接的にリアクトル電流ILを検出することになる。 In the above embodiment, the current detector 5 is placed before the reactor L1, but the present invention is not limited thereto. For example, the current detector 5 may be placed after the reactor L1. Moreover, the number of current detectors 5 may be two, and one may be connected in series to the 1st switch element S1, and the other may be connected in series to the 2nd switch element S2. In this case, one current detector 5 indirectly detects the reactor current IL by detecting the current flowing through the first switch element S1, and the other current detector 5 detects the current flowing through the second switch element S2. By detecting , the reactor current IL is indirectly detected.
 上記実施の形態において、コンバータ回路200は双方向コンバータ回路であるが、これに限られない。例えば、コンバータ回路200は、昇圧コンバータ回路であってもよいし、降圧コンバータ回路であってもよい。 In the above embodiment, the converter circuit 200 is a bidirectional converter circuit, but is not limited to this. For example, converter circuit 200 may be a step-up converter circuit or a step-down converter circuit.
 上記実施の形態において、コンバータ回路200は、第1スイッチ素子S1及び第2スイッチ素子S2を有するハーフブリッジ型のスイッチングコンバータ回路であるが、これに限られない。例えば、コンバータ回路200は、直列に接続された2つのスイッチ素子を1つのアームとして2つのアームを並列に接続して構成されるフルブリッジ型のスイッチングコンバータ回路であってもよい。この場合も、制御回路2は、第1スイッチ素子S1に対応する1対のスイッチ素子と、第2スイッチ素子S2に対応する他の1対のスイッチ素子とを交互にオン/オフするように制御すればよい。 In the above embodiment, the converter circuit 200 is a half-bridge switching converter circuit having the first switch element S1 and the second switch element S2, but is not limited to this. For example, the converter circuit 200 may be a full-bridge switching converter circuit configured by connecting two series-connected switching elements in parallel to each other. In this case as well, the control circuit 2 controls to alternately turn on/off a pair of switch elements corresponding to the first switch element S1 and another pair of switch elements corresponding to the second switch element S2. do it.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 Other embodiments may be obtained by making various modifications to each embodiment that those skilled in the art can think of, or by arbitrarily combining the components and functions of each embodiment without departing from the spirit of the present invention. The present invention also includes such forms.
 (まとめ)
 以上述べたように、第1の態様に係るコンバータ回路200の制御回路2,2A,2Bは、リアクトルL1と、リアクトルL1に接続される第1スイッチ素子S1及び第2スイッチ素子とを有し、第1スイッチ素子S1及び第2スイッチ素子S2を交互にオン/オフすることで入力電圧を所望の電圧に変換して出力するコンバータ回路200の制御回路である。制御回路2,2A,2Bは、第1比較器61と、第1ピークホールド回路71と、第1A/D変換部(A/D変換部211)と、第1制御部(制御部210)と、第1D/A変換部212と、を備える。第1比較器61は、リアクトルL1を流れるリアクトル電流ILを検出することで得られる検出電圧Vdと第1基準電位DA1とを比較することにより、第1スイッチ素子S1及び第2スイッチ素子S2の各々のオン/オフを切り替えるための第1切替信号Sig1を出力する。第1ピークホールド回路71は、検出電圧Vdの最大値及び最小値のうちのいずれか一方である第1ピーク値を保持する。第1A/D変換部は、第1ピークホールド回路71が保持する第1ピーク値をA/D変換する。第1制御部は、第1A/D変換部が出力する電圧に基づいて第1基準電位DA1のディジタル値を決定する。第1D/A変換部212は、第1制御部で決定した第1基準電位DA1のディジタル値をD/A変換し、第1基準電位DA1として第1比較器61へ出力する。
(summary)
As described above, the control circuits 2, 2A, 2B of the converter circuit 200 according to the first aspect include the reactor L1, and the first switch element S1 and the second switch element connected to the reactor L1, This is a control circuit for a converter circuit 200 that converts an input voltage into a desired voltage and outputs the desired voltage by alternately turning on and off the first switch element S1 and the second switch element S2. The control circuits 2, 2A, and 2B include a first comparator 61, a first peak hold circuit 71, a first A/D conversion section (A/D conversion section 211), and a first control section (control section 210). , a first D/A converter 212. The first comparator 61 compares the detection voltage Vd obtained by detecting the reactor current IL flowing through the reactor L1 with the first reference potential DA1, thereby determining whether each of the first switch element S1 and the second switch element S2 A first switching signal Sig1 for switching on/off is output. The first peak hold circuit 71 holds a first peak value that is either the maximum value or the minimum value of the detection voltage Vd. The first A/D converter A/D converts the first peak value held by the first peak hold circuit 71. The first control section determines the digital value of the first reference potential DA1 based on the voltage output by the first A/D conversion section. The first D/A conversion section 212 performs D/A conversion on the digital value of the first reference potential DA1 determined by the first control section, and outputs it to the first comparator 61 as the first reference potential DA1.
 これによれば、比較的高い周波数でコンバータ回路200を制御する場合においても、所望のリアクトル電流ILで制御しやすい、という利点がある。 According to this, there is an advantage that even when controlling converter circuit 200 at a relatively high frequency, it is easy to control with a desired reactor current IL.
 また、第2の態様に係るコンバータ回路200の制御回路2は、第1の態様において、第2比較器62と、第2ピークホールド回路72と、第2A/D変換部(A/D変換部211)と、第2制御部(制御部210)と、第2D/A変換部213と、を更に備える。第2比較器62は、検出電圧Vdと第2基準電位DA2とを比較することにより、第1スイッチ素子S1及び第2スイッチ素子S2の各々のオン/オフを切り替えるための第2切替信号Sig2を出力する。第2ピークホールド回路72は、検出電圧Vdの最大値及び最小値のうちの第1ピーク値とは異なる第2ピーク値を保持する。第2A/D変換部は、第2ピークホールド回路72が保持する第2ピーク値をA/D変換する。第2制御部は、第2A/D変換部器が出力する電圧に基づいて第2基準電位DA2のディジタル値を決定する。第2D/A変換部213は、第2制御部で決定した第2基準電位DA2のディジタル値をD/A変換し、第2基準電位DA2として第2比較器62へ出力する。 Further, in the first aspect, the control circuit 2 of the converter circuit 200 according to the second aspect includes the second comparator 62, the second peak hold circuit 72, and the second A/D conversion section (A/D conversion section 211), a second control section (control section 210), and a second D/A conversion section 213. The second comparator 62 generates a second switching signal Sig2 for switching on/off of each of the first switching element S1 and the second switching element S2 by comparing the detection voltage Vd and the second reference potential DA2. Output. The second peak hold circuit 72 holds a second peak value different from the first peak value of the maximum value and the minimum value of the detection voltage Vd. The second A/D converter performs A/D conversion on the second peak value held by the second peak hold circuit 72. The second control unit determines the digital value of the second reference potential DA2 based on the voltage output from the second A/D converter. The second D/A conversion section 213 performs D/A conversion on the digital value of the second reference potential DA2 determined by the second control section, and outputs it to the second comparator 62 as the second reference potential DA2.
 これによれば、比較的高い周波数でコンバータ回路200を制御する場合においても、更に精度よく所望のリアクトル電流ILで制御しやすい、という利点がある。 According to this, even when controlling the converter circuit 200 at a relatively high frequency, there is an advantage that it is easier to control with a desired reactor current IL with higher accuracy.
 また、第3の態様に係るコンバータ回路200の制御回路2は、第2の態様において、第1ピークホールド回路71は、第2切替信号Sig2によりリセットされ、第2ピークホールド回路72は、第1切替信号Sig1によりリセットされる。 Further, in the control circuit 2 of the converter circuit 200 according to the third aspect, in the second aspect, the first peak hold circuit 71 is reset by the second switching signal Sig2, and the second peak hold circuit 72 is reset by the second switching signal Sig2. It is reset by the switching signal Sig1.
 これによれば、第1スイッチ素子S1及び第2スイッチ素子S2のオン/オフのタイミングに同期して第1ピークホールド回路71を適切なタイミングでリセットすることができる、という利点がある。 According to this, there is an advantage that the first peak hold circuit 71 can be reset at an appropriate timing in synchronization with the on/off timing of the first switch element S1 and the second switch element S2.
 また、第4の態様に係るコンバータ回路200の制御回路2Bは、第1~第3のいずれかの態様において、差分増幅器8を更に備える。差分増幅器8は、第1比較器61に入力される第1基準電位DA1よりも高い第3基準電位DA3と、検出電圧Vdとの差分を増幅し、第1比較器61に出力する。 Furthermore, the control circuit 2B of the converter circuit 200 according to the fourth aspect further includes a differential amplifier 8 in any one of the first to third aspects. The difference amplifier 8 amplifies the difference between the third reference potential DA3, which is higher than the first reference potential DA1 input to the first comparator 61, and the detection voltage Vd, and outputs the amplified difference to the first comparator 61.
 これによれば、制御回路2Bに入力される検出電圧Vdの分解能を上げることで、リアクトル電流ILを制御する分解能を上げることができる、という利点がある。 According to this, there is an advantage that by increasing the resolution of the detection voltage Vd input to the control circuit 2B, the resolution of controlling the reactor current IL can be increased.
 また、第5の態様に係るコンバータ回路200の制御方法は、リアクトルL1と、リアクトルL1に接続される第1スイッチ素子S1及び第2スイッチ素子とを有し、第1スイッチ素子S1及び第2スイッチ素子S2を交互にオン/オフすることで入力電圧を所望の電圧に変換して出力するコンバータ回路200の制御方法である。制御方法では、リアクトルL1を流れるリアクトル電流ILを検出することで得られる検出電圧Vdと第1基準電位DA1とを比較することにより、第1スイッチ素子S1及び第2スイッチ素子S2の各々のオン/オフを切り替えるための第1切替信号Sig1を出力する。制御方法では、検出電圧Vdの最大値及び最小値のうちのいずれか一方である第1ピーク値を保持する。制御方法では、保持した第1ピーク値をA/D変換する。制御方法では、第1A/D変換した電圧に基づいて第1基準電位DA1のディジタル値を決定する。制御方法では、決定した第1基準電位DA1のディジタル値をD/A変換し、第1基準電位DA1とする。 Further, a control method for a converter circuit 200 according to a fifth aspect includes a reactor L1, a first switch element S1 and a second switch element connected to the reactor L1, and a first switch element S1 and a second switch element connected to the reactor L1. This is a method of controlling the converter circuit 200 that converts an input voltage into a desired voltage and outputs the desired voltage by alternately turning on and off the element S2. In the control method, each of the first switch element S1 and the second switch element S2 is turned on/off by comparing the detection voltage Vd obtained by detecting the reactor current IL flowing through the reactor L1 with the first reference potential DA1. A first switching signal Sig1 for switching off is output. In the control method, the first peak value, which is either the maximum value or the minimum value of the detection voltage Vd, is held. In the control method, the held first peak value is A/D converted. In the control method, the digital value of the first reference potential DA1 is determined based on the first A/D converted voltage. In the control method, the determined digital value of the first reference potential DA1 is subjected to D/A conversion and is set as the first reference potential DA1.
 これによれば、比較的高い周波数でコンバータ回路200を制御する場合においても、所望のリアクトル電流ILで制御しやすい、という利点がある。 According to this, there is an advantage that even when controlling the converter circuit 200 at a relatively high frequency, it is easy to control with a desired reactor current IL.
 2、2A、2B 制御回路
 200 コンバータ回路
 210 制御部(第1制御部、第2制御部)
 211 A/D変換部(第1A/D変換部、第2A/D変換部)
 212 第1D/A変換部
 213 第2D/A変換部
 5 電流検出器
 61 第1比較器
 62 第2比較器
 71 第1ピークホールド回路
 72 第2ピークホールド回路
 8 差分増幅器
 DA1 第1基準電位
 DA2 第2基準電位
 DA3 第3基準電位
 IL リアクトル電流
 L1 リアクトル
 S1 第1スイッチ素子
 S2 第2スイッチ素子
 Sig1 第1切替信号
 Sig2 第2切替信号
 Vd 検出電圧
2, 2A, 2B Control circuit 200 Converter circuit 210 Control section (first control section, second control section)
211 A/D converter (first A/D converter, second A/D converter)
212 1st D/A converter 213 2nd D/A converter 5 Current detector 61 1st comparator 62 2nd comparator 71 1st peak hold circuit 72 2nd peak hold circuit 8 Difference amplifier DA1 1st reference potential DA2 2nd 2 reference potential DA3 3rd reference potential IL Reactor current L1 Reactor S1 1st switch element S2 2nd switch element Sig1 1st switching signal Sig2 2nd switching signal Vd Detection voltage

Claims (5)

  1.  リアクトルと、前記リアクトルに接続される第1スイッチ素子及び第2スイッチ素子とを有し、前記第1スイッチ素子及び第2スイッチ素子を交互にオン/オフすることで入力電圧を所望の電圧に変換して出力するコンバータ回路の制御回路であって、
     前記リアクトルを流れるリアクトル電流を検出することで得られる検出電圧と第1基準電位とを比較することにより、前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを切り替えるための第1切替信号を出力する第1比較器と、
     前記検出電圧の最大値及び最小値のうちのいずれか一方である第1ピーク値を保持する第1ピークホールド回路と、
     前記第1ピークホールド回路が保持する前記第1ピーク値をA/D変換する第1A/D変換部と、
     前記第1A/D変換部が出力する電圧に基づいて前記第1基準電位のディジタル値を決定する第1制御部と、
     前記第1制御部で決定した前記第1基準電位のディジタル値をD/A変換し、前記第1基準電位として前記第1比較器へ出力する第1D/A変換部と、を備える、
     コンバータ回路の制御回路。
    It has a reactor and a first switch element and a second switch element connected to the reactor, and converts the input voltage into a desired voltage by alternately turning on and off the first switch element and the second switch element. A control circuit for a converter circuit that outputs a
    A first switch for switching on/off of each of the first switch element and the second switch element by comparing a detection voltage obtained by detecting a reactor current flowing through the reactor with a first reference potential. a first comparator that outputs a switching signal;
    a first peak hold circuit that holds a first peak value that is either the maximum value or the minimum value of the detected voltage;
    a first A/D converter that A/D converts the first peak value held by the first peak hold circuit;
    a first control unit that determines a digital value of the first reference potential based on the voltage output by the first A/D conversion unit;
    a first D/A converter that performs D/A conversion on a digital value of the first reference potential determined by the first controller and outputs the digital value as the first reference potential to the first comparator;
    Control circuit for converter circuit.
  2.  前記検出電圧と第2基準電位とを比較することにより、前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを切り替えるための第2切替信号を出力する第2比較器と、
     前記検出電圧の最大値及び最小値のうちの前記第1ピーク値とは異なる第2ピーク値を保持する第2ピークホールド回路と、
     前記第2ピークホールド回路が保持する前記第2ピーク値をA/D変換する第2A/D変換部と、
     前記第2A/D変換部器が出力する電圧に基づいて前記第2基準電位のディジタル値を決定する第2制御部と、
     前記第2制御部で決定した前記第2基準電位のディジタル値をD/A変換し、前記第2基準電位として前記第2比較器へ出力する第2D/A変換部と、を更に備える、
     請求項1に記載のコンバータ回路の制御回路。
    a second comparator that outputs a second switching signal for switching on/off of each of the first switching element and the second switching element by comparing the detected voltage and a second reference potential;
    a second peak hold circuit that holds a second peak value different from the first peak value among the maximum value and minimum value of the detected voltage;
    a second A/D converter that A/D converts the second peak value held by the second peak hold circuit;
    a second control unit that determines a digital value of the second reference potential based on the voltage output by the second A/D conversion unit;
    further comprising a second D/A converter that performs D/A conversion on the digital value of the second reference potential determined by the second controller and outputs the digital value as the second reference potential to the second comparator;
    A control circuit for a converter circuit according to claim 1.
  3.  前記第1ピークホールド回路は、前記第2切替信号によりリセットされ、
     前記第2ピークホールド回路は、前記第1切替信号によりリセットされる、
     請求項2に記載のコンバータ回路の制御回路。
    The first peak hold circuit is reset by the second switching signal,
    the second peak hold circuit is reset by the first switching signal;
    A control circuit for a converter circuit according to claim 2.
  4.  前記第1比較器に入力される前記第1基準電位よりも高い第3基準電位と、前記検出電圧との差分を増幅し、前記第1比較器に出力する差分増幅器を更に備える、
     請求項1又は2に記載のコンバータ回路の制御回路。
    further comprising a difference amplifier that amplifies a difference between a third reference potential higher than the first reference potential input to the first comparator and the detected voltage and outputs the amplified difference to the first comparator;
    A control circuit for a converter circuit according to claim 1 or 2.
  5.  リアクトルと、前記リアクトルに接続される第1スイッチ素子及び第2スイッチ素子とを有し、前記第1スイッチ素子及び第2スイッチ素子を交互にオン/オフすることで入力電圧を所望の電圧に変換して出力するコンバータ回路の制御方法であって、
     前記リアクトルを流れるリアクトル電流を検出することで得られる検出電圧と第1基準電位とを比較することにより、前記第1スイッチ素子及び前記第2スイッチ素子の各々のオン/オフを切り替えるための第1切替信号を出力し、
     前記検出電圧の最大値及び最小値のうちのいずれか一方である第1ピーク値を保持し、
     保持した前記第1ピーク値をA/D変換し、
     A/D変換した電圧に基づいて前記第1基準電位のディジタル値を決定し、
     決定した前記第1基準電位のディジタル値をD/A変換し、前記第1基準電位とする、
     コンバータ回路の制御方法。
    It has a reactor and a first switch element and a second switch element connected to the reactor, and converts the input voltage into a desired voltage by alternately turning on and off the first switch element and the second switch element. A method for controlling a converter circuit that outputs
    A first switch for switching on/off of each of the first switch element and the second switch element by comparing a detection voltage obtained by detecting a reactor current flowing through the reactor with a first reference potential. Outputs the switching signal,
    holding a first peak value that is either the maximum value or the minimum value of the detection voltage;
    A/D converting the held first peak value,
    determining a digital value of the first reference potential based on the A/D converted voltage;
    D/A converting the determined digital value of the first reference potential, and setting it as the first reference potential;
    Control method of converter circuit.
PCT/JP2023/019633 2022-06-30 2023-05-26 Control circuit for converter circuit and control method for converter circuit WO2024004470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022106630 2022-06-30
JP2022-106630 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004470A1 true WO2024004470A1 (en) 2024-01-04

Family

ID=89382718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019633 WO2024004470A1 (en) 2022-06-30 2023-05-26 Control circuit for converter circuit and control method for converter circuit

Country Status (1)

Country Link
WO (1) WO2024004470A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136604A (en) * 2008-11-04 2010-06-17 Fuji Electric Systems Co Ltd Switching power supply apparatus
JP2013132198A (en) * 2011-11-22 2013-07-04 Panasonic Corp Lighting control device and lighting apparatus using the same
WO2019146641A1 (en) * 2018-01-29 2019-08-01 ローム株式会社 Light-emitting element drive control device and light-emitting element drive circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136604A (en) * 2008-11-04 2010-06-17 Fuji Electric Systems Co Ltd Switching power supply apparatus
JP2013132198A (en) * 2011-11-22 2013-07-04 Panasonic Corp Lighting control device and lighting apparatus using the same
WO2019146641A1 (en) * 2018-01-29 2019-08-01 ローム株式会社 Light-emitting element drive control device and light-emitting element drive circuit device

Similar Documents

Publication Publication Date Title
US8299770B2 (en) Threshold voltage monitoring and control in synchronous power converters
US6958592B2 (en) Adaptive delay control circuit for switched mode power supply
CN102185501B (en) Adaptive synchronous rectification control circuit
US8513926B2 (en) Power factor correction circuit and driving method thereof
US11929742B2 (en) Method and device for switching an electronic component on or off
US9882475B2 (en) PWM calculation after light load to high load transition
JP2002199708A (en) Dc-dc converter
WO2017073182A1 (en) Multiphase converter
JP2009118650A (en) Power converter
WO2011111298A1 (en) Digital amplifier
TWI483531B (en) Power converter and operating method thereof
JP6702209B2 (en) Power converter
TWI538373B (en) Switched power converter and method for controlling the same
JP2021013259A (en) Gate drive device and power conversion device
US9130474B2 (en) Power transforming apparatus with digital control unit
US20180234016A1 (en) Adaptive Control Method for Generating Non Overlapping Time in Output Devices
WO2024004470A1 (en) Control circuit for converter circuit and control method for converter circuit
JP5167733B2 (en) Boost DC / DC converter
TW201251290A (en) Buck DC-DC converter
US11777399B2 (en) Power drive circuit and method of controlling the same
US10601321B2 (en) DC-DC converting controller for reducing transmission delay error during zero-current detection and operating method thereof
CN111208343B (en) Self-calibration zero-crossing detection comparator
WO2024004469A1 (en) Converter circuit
US10797580B1 (en) Detection circuit, switching regulator having the same and control method
US11545889B2 (en) Deadtime optimization for GaN half-bridge and full-bridge switch topologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830921

Country of ref document: EP

Kind code of ref document: A1