WO2024004422A1 - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator Download PDF

Info

Publication number
WO2024004422A1
WO2024004422A1 PCT/JP2023/018540 JP2023018540W WO2024004422A1 WO 2024004422 A1 WO2024004422 A1 WO 2024004422A1 JP 2023018540 W JP2023018540 W JP 2023018540W WO 2024004422 A1 WO2024004422 A1 WO 2024004422A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold head
flexible line
working gas
mounting flange
cryogenic refrigerator
Prior art date
Application number
PCT/JP2023/018540
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 森江
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2024004422A1 publication Critical patent/WO2024004422A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to a cryogenic refrigerator.
  • cryocooler When a thermal switch of the type described above is on (i.e. when the cryocooler is thermally connected to the object to be cooled), the cryocooler can be rigidly fixed to the cryostat, whereas when the thermal switch is off (i.e., the cryocooler is temporarily disconnected from the object to be cooled), the cryocooler may be supported by the cryostat with low stiffness, for example due to the flexibility of the bellows. It tends to happen.
  • One exemplary objective of certain embodiments of the present invention is to protect cryogenic refrigerators from unexpected external forces.
  • a cryogenic refrigerator can be protected from unexpected external forces.
  • FIG. 1 is a diagram schematically showing a cryogenic device 10 according to an embodiment.
  • cryogenic device 10 may be utilized as a cryogenic liquid storage device. Therefore, the cryogenic apparatus 10 includes a vacuum container 20 for storing, for example, liquid hydrogen or other cryogenic liquid 12, and a vacuum container 20 for storing liquid hydrogen or other cryogenic liquid 12, and the cryogenic liquid 12 to be stored at its liquefaction temperature (in the case of liquid hydrogen, about -253°C). 20K)) or lower.
  • the vacuum container 20 includes an outer tank 22 and an inner tank 24.
  • a vacuum insulation layer 26 is formed between the outer tank 22 and the inner tank 24.
  • the outer chamber 22 is configured to separate the vacuum insulation layer 26 from the surrounding environment of the cryogenic device 10 (eg, a room temperature, atmospheric pressure environment).
  • the inner tank 24 is configured to separate its internal volume from the vacuum insulation layer 26.
  • Cryogenic liquid 12 is contained in inner tank 24 .
  • the outer tank 22 and the inner tank 24 are formed of a metallic material, such as stainless steel, or other suitable high-strength material to withstand pressure differences between the inside and outside.
  • a heat insulating structure 28 including a heat insulating support 28a and a heat insulating layer 28b may be arranged on the vacuum heat insulating layer 26.
  • the heat insulating support 28a is made of a hard material with heat insulating properties, such as fiber-reinforced plastic, and is configured to support the inner tank 24 on the outer tank 22.
  • the insulation layer 28b may include multilayer insulation (MLI).
  • the insulation structure 28 may include granular or other forms of insulation (eg, granular perlite) filled into the vacuum insulation layer 26.
  • the inner tank 24 includes a recondensing section 30 provided on the tank wall.
  • the recondensing section 30 is cooled from outside the inner tank 24 by the cryogenic refrigerator 100.
  • the recondensing section 30 has a heat transfer surface 30a that is exposed outside the inner tank 24 and comes into contact with the cryogenic refrigerator 100.
  • the recondensing section 30 may have fin-like protrusions or irregularities inside the inner tank 24 to increase the surface area that comes into contact with the cryogenic liquid 12 or the vaporized cryogenic liquid 12 .
  • the recondensing section 30 is formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal.
  • the cryogenic refrigerator 100 includes a compressor 102, a cold head 104 that can be mounted on a vacuum vessel 20, and a cold head 104 coupled to the vacuum vessel 20 to allow movement of the cold head 104 with respect to the vacuum vessel 20. and a cold head mount 106 configured.
  • the cryogenic refrigerator 100 is a single-stage GM refrigerator. Therefore, the cold head 104 includes a cooling stage 104a, a cylinder 104b, a drive section 104c, and a cold head flange 104d.
  • the cooling stage 104a is formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal.
  • the cooling stage 104a is cooled to a desired cryogenic temperature, such as a temperature range below the liquefaction temperature of the cryogenic liquid 12.
  • Cylinder 104b connects cooling stage 104a to cold head flange 104d.
  • a displacer (not shown) for controlling the volume of the working gas expansion space adjacent to the cooling stage 104a is disposed within the cylinder 104b so as to be movable in the axial direction of the cylinder 104b (in the vertical direction in FIG. 1). ing.
  • Cylinder 104b and cold head flange 104d are typically formed of a suitable metallic material, such as stainless steel.
  • the drive portion 104c is attached to the cold head flange 104d on the opposite side from the cylinder 104b.
  • the outer tank 22 of the vacuum container 20 is provided with a mounting port 32 for mounting the cold head 104 onto the vacuum container 20.
  • the cold head 104 is inserted into the vacuum vessel 20 through the mounting port 32 and is removably attached to the mounting port 32 via the cold head mount 106 .
  • the cold head 104 is attached to the vacuum vessel 20 such that the cooling stage 104a is placed on the vacuum insulation layer 26 inside the vacuum vessel 20, and the drive unit 104c is placed outside the vacuum vessel 20.
  • the cold head mount 106 also includes a drive source 106c that is mounted on the cold head mount 106 and configured to move the cold head 104 relative to the vacuum vessel 20.
  • the drive source 106c may be configured to move the cold head 104 using appropriate power such as pneumatics, hydraulic pressure, an electric motor, or an electromagnet, or may be operable to move the cold head 104 manually. There may be.
  • the drive source 106c is installed on the mounting flange 106a, and is connected to the cold head flange 104d so as to move the cold head flange 104d in the direction of expansion and contraction of the airtight partition wall 106b. Therefore, by operating the drive source 106c, the cold head flange 104d can be moved relative to the mounting flange 106a while expanding and contracting the airtight partition wall 106b. In the example shown in FIG. 1, the drive source 106c can move the cold head flange 104d up and down with respect to the mounting flange 106a (that is, the cold head 104 with respect to the vacuum vessel 20).
  • the cold head mount 106 can act as a thermal switch that thermally connects or disconnects the cold head 104 to the inner vessel 24 of the vacuum vessel 20, which is a storage tank for the cryogenic liquid 12.
  • a solid line indicates a state in which the thermal switch is on
  • a broken line indicates a state in which the thermal switch is off.
  • the cooling stage 104a of the cold head 104 contacts the heat transfer surface 30a of the recondensing section 30 of the inner tank 24. Thereby, the cooling stage 104a can cool the recondensing section 30 to the liquefaction temperature of the cryogenic liquid 12, retain the cryogenic liquid 12 in the inner tank 24, and recondense the vaporized cryogenic liquid 12. be able to.
  • the cooling stage 104a separates from the heat transfer surface 30a of the recondensing section 30. Since the cooling stage 104a is disposed on the vacuum insulation layer 26, thermal contact between the cooling stage 104a and the recondensing section 30 is broken. At this time, the cold head 104 does not cool the inner tank 24.
  • Such a thermal switch is advantageous in improving the energy saving performance of the cryogenic device 10.
  • the cold head 104 remains in contact with the inner tank 24 of the vacuum vessel 20, the cold head 104 becomes a heat transfer path from the surrounding environment of the cryogenic apparatus 10 to the inner tank 24, and transfers heat to the cryogenic liquid 12.
  • Undesired heat intrusion can occur.
  • such intruding heat can be cut off by separating the cold head 104 from the inner tank 24 using a thermal switch when stopping the cryogenic refrigerator 100.
  • the cryogenic device 10 may be provided with a sensor 34 that detects a physical quantity of the cryogenic liquid 12.
  • the drive source 106c may be configured to receive an output signal from the sensor 34 indicative of the detected physical quantity of the cryogenic liquid 12 and move the cold head 104 based on the detected physical quantity of the cryogenic liquid 12. good.
  • the sensor 34 may be arranged in the inner tank 24 of the vacuum container 20 and configured to measure the internal pressure of the inner tank 24.
  • the vapor pressure of cryogenic liquid 12 in inner tank 24 is measured by sensor 34 .
  • the drive source 106c compares the measured pressure with a pressure threshold, turns on the thermal switch when the measured pressure exceeds the pressure threshold, and turns off the thermal switch when the measured pressure is below the pressure threshold. It may work like this. In this way, the internal pressure of the inner tank 24 can be maintained at an appropriate pressure corresponding to the pressure threshold.
  • the sensor 34 may be configured to measure the temperature of the cryogenic liquid 12.
  • the sensor 34 may be arranged within the inner tank 24 or installed in the recondensation section 30 of the inner tank 24 .
  • the drive source 106c compares the measured temperature with a temperature threshold, turns on the thermal switch when the measured temperature exceeds the temperature threshold, and turns off the thermal switch when the measured temperature is below the temperature threshold. It may work like this. In this way, the cryogenic liquid 12 can be maintained at a suitable temperature corresponding to a temperature threshold.
  • the cryogenic refrigerator 100 also includes a flexible line 108 connected to the cold head 104 outside the vacuum container 20, and a flexible line holder configured to hold the flexible line 108 fixedly with respect to the vacuum container 20. 110.
  • a flexible line 108 connects the drive portion 104c of the cold head 104 to an external element located outside the vacuum vessel 20 (eg, the compressor 102).
  • a flexible line holder 110 is secured to the mounting flange 106a of the cold head mount 106 and holds the flexible line 108 on its way from the cold head 104 to an external element.
  • the flexible line holder 110 corresponds to a relay point for fixing the flexible line 108 to the vacuum container 20.
  • Compressor 102 may be located remotely from coldhead 104 and vacuum vessel 20, such as in a separate room or compartment from the room or compartment in which coldhead 104 and vacuum vessel 20 are installed.
  • the length of the flexible line 108 may be, for example, 10 m or more. Since the flexible line holder 110 is fixed to the mounting flange 106a, the end of the flexible line 108 on the cold head 104 side (for example, the end of the flexible line 108 that is within 10% or 5% of the total length of the flexible line 108) 1) to hold the flexible line 108.
  • Flexible line 108 in this embodiment is a working gas line for supplying working gas to or exhausting working gas from cold head 104 , more specifically gas supply line 112 and gas recovery line 114 .
  • the gas supply line 112 connects the working gas discharge port 102a of the compressor 102 to the high pressure port 116a of the cold head 104
  • the gas recovery line 114 connects the working gas intake port 102b of the compressor 102 to the low pressure port 116b of the cold head 104. Connect to.
  • the working gas of the cryogenic refrigerator 100 is supplied from the compressor 102 to the cold head 104 through the gas supply line 112, and is recovered from the cold head 104 to the compressor 102 through the gas recovery line 114.
  • the pressure of the working gas in the gas supply line 112 and the pressure of the working gas in the gas recovery line 114 are both significantly higher than atmospheric pressure and can be referred to as a first high pressure and a second high pressure, respectively.
  • the first high pressure and the second high pressure are also simply referred to as high pressure and low pressure, respectively.
  • the high pressure is for example 2-3 MPa.
  • the low pressure is, for example, 0.5 to 1.5 MPa, for example about 0.8 MPa.
  • the flexible line holder 110 may include a working gas line holder that holds such a working gas line.
  • the flexible line holder 110 may have a first holder that holds the gas supply line 112 and a second holder that holds the gas recovery line 114, and these two holders may be fixed to the mounting flange 106a.
  • the flexible line holder 110 may be rigidly secured to the mounting flange 106a, for example, by screwing, welding, or other suitable securing means.
  • the two holders may be arranged side by side on the mounting flange 106a, may be arranged on the mounting flange 106a so as to sandwich the drive portion 104c, or may be arranged at any other arbitrary location on the mounting flange 106a. It's okay.
  • the flexible line holder 110 is attached to the upper surface of the mounting flange 106a, but it may be attached to the lower surface of the mounting flange 106a or other parts.
  • the gas supply line 112 includes a first portion 112a extending from the high pressure port 116a of the cold head 104 and a second portion 112b extending from the working gas discharge port 102a of the compressor 102.
  • the flexible line holder 110 may be configured as an intermediate joint with an internal flow path through which the working gas of the cryogenic refrigerator 100 can flow.
  • the first holder may be a first intermediate joint having a first internal flow path.
  • the first portion 112a of the gas supply line 112 is connected at one end to the first holder and at the other end to the high pressure port 116a.
  • the second portion 112b of the gas supply line 112 is connected at one end to the first holder and at the other end to the working gas discharge port 102a. In this way, the high-pressure working gas discharged from the working gas discharge port 102a flows into the cold head 104 through the second portion 112b, the first holder, and the first portion 112a.
  • gas recovery line 114 includes a first portion 114a extending from low pressure port 116b of cold head 104 and a second portion 114b extending from working gas intake port 102b of compressor 102.
  • the flexible line holder 110 may be configured as an intermediate joint with an internal flow path through which the working gas of the cryogenic refrigerator 100 can flow.
  • the second holder may be a second intermediate joint having a second internal flow path.
  • the first portion 114a of the gas recovery line 114 is connected at one end to the second holder and at the other end to the low pressure port 116b.
  • the second portion 114b of the gas recovery line 114 is connected at one end to the second holder and at the other end to the working gas intake port 102b.
  • the gas supply line 112 and the gas recovery line 114 may be flexible piping such as flexible hoses. Gas supply line 112 and gas recovery line 114 may also be removable from compressor 102, cold head 104, and flexible line 108, for convenient replacement due to wear and tear, for example.
  • FIG. 2 is a diagram schematically showing a working gas line of a cryogenic refrigerator according to a comparative example.
  • cryogenic refrigerator 200 includes a compressor 202 and a cold head 204.
  • Compressor 202 and cold head 204 are connected by flexible hose 206.
  • the cold head 204 is mounted on the vacuum container 20 so that it can move (elevate and lower) relative to the vacuum container 20.
  • the cold head 204 can operate as a thermal switch that thermally connects or disconnects the cold head 204 from the object to be cooled 208 by raising and lowering the cold head 204 .
  • FIG. 2 shows a state in which the thermal switch is off, that is, the cold head 204 is separated from the object 208 to be cooled.
  • a worker passing near the cryogenic refrigerator 200 may get his or her foot 210 caught on the flexible hose 206 and trip.
  • the flexible hose 206 is instantly pulled strongly by the hooked leg 210, and a strong lateral load 212 may be applied to the cold head 204.
  • the lateral load 212 is applied to the cryogenic refrigerator as shown by the black arrow 214 and the dashed line in FIG. This may disturb the position and attitude of the cryogenic refrigerator 200, and in some cases may cause the cryogenic refrigerator 200 to collide with surrounding structures such as the vacuum container 20 and the object to be cooled 208. As a result, the cryogenic refrigerator 200 and surrounding structures may be damaged.
  • the flexible line 108 is fixedly held with respect to the vacuum vessel 20 by the flexible line holder 110.
  • the second portions of the flexible line 108 for example, 112b, 114b
  • the tensile force acting on the second portion is only received by the mounting flange 106a to which the flexible line holder 110 is fixed and the vacuum vessel 20. This tensile force is not directly transmitted to the cold head 104, and it is expected that the position and posture of the cold head 104 can be maintained even when the heat switch is off. In this way, cryogenic refrigerator 100 can be protected from unexpected external forces.
  • FIG. 3 is a diagram schematically illustrating exemplary electrical connections that may be applied to the cryogenic refrigerator 100 shown in FIG. 1.
  • the flexible line 108 may be a power supply cable for supplying power to the cold head 104.
  • a power supply cable connects a power source 118 located outside the vacuum vessel 20 to a drive portion 104c of the coldhead 104 (eg, the coldhead drive motor 104e shown in FIG. 1).
  • compressor 102 may be used as power source 118.
  • the flexible line holder 110 may be a cable holder that is fixed to the mounting flange 106a and holds the power supply cable.
  • flexible line holder 110 is attached to attachment flange 106a so as to pass through attachment flange 106a.
  • the power supply cable can be guided from one surface (for example, the top surface) of the mounting flange 106a to the opposite surface (for example, the bottom surface).
  • the degree of freedom in arranging the power supply cable can be increased compared to the case where the power supply cable is routed only on the upper surface side of the mounting flange 106a.
  • the cryogenic refrigerator 100 can be protected from unexpected external forces in the same way as the embodiment described with reference to FIGS. 1 and 2. That is, even if an unexpected external force acts on the second portion of the flexible line 108 extending from the flexible line holder 110 to the power source 118, this external force will not be received by the mounting flange 106a to which the flexible line holder 110 is fixed and the vacuum vessel 20. Can be done. The negative influence on the cold head 104 due to external force can be reduced.
  • the flexible line holder 110 of the type that passes through the mounting flange 106a as described above may be used as the holder for the working gas line described with reference to FIG. 1.
  • FIG. 4 is a diagram schematically showing an exemplary drive source that can be applied to the cryogenic refrigerator 100 shown in FIG. 1.
  • the drive source 106c is attached to a plate-shaped support 120 placed above the cold head 104.
  • the drive source 106c includes a movable piston 122 that penetrates the support body 120 and projects downward.
  • a plurality of (for example, four) guide rods 124 are erected on the mounting flange 106a so as to surround the cold head 104, and a support 120 is fixed to the tips of the guide rods 124.
  • the guide rod 124 passes through the cold head flange 104d in the vertical direction, and the cold head flange 104d is movable in the vertical direction along the guide rod 124.
  • a movable frame 126 including a support column 126a and a movable plate 126b is installed on the cold head flange 104d.
  • the support column 126a is erected on the cold head flange 104d, and a movable plate 126b is fixed to the support column 126a so as to bridge the ends of the support column 126a.
  • the lower end of the movable piston 122 is fixed to the movable plate 126b.
  • the cold head flange 104d can also move up and down via the movable frame 126. At this time, the cold head flange 104d moves up and down along the guide rod 124 while the airtight partition wall 106b expands and contracts. In this manner, drive source 106c can provide movement of cold head 104 relative to vacuum vessel 20.
  • the cryogenic refrigerator 100 includes another flexible line 128 connected to the drive source 106c, and another flexible line holder 130 configured to fixedly hold the other flexible line 128 with respect to the vacuum container 20.
  • the drive source 106c may be, for example, an air cylinder, and in that case, the flexible line 128 may be a compressed air line for supplying and discharging compressed air to the drive source 106c.
  • the flexible line holder 130 may be a holder that is fixed to the mounting flange 106a and holds a compressed air line.
  • cryogenic refrigerator 100 can be protected from unexpected external forces. That is, even if an unexpected external force acts on the second portion of the flexible line 128 extending from the flexible line holder 130 to the compressed air source 132, the mounting flange 106a to which the flexible line holder 130 is fixed and the vacuum vessel 20 absorb this external force. Can receive. The negative influence on the cold head 104 due to external force can be reduced.
  • the working gas line holder may be a suitable fixture such as a hose clamp for holding the working gas line, and such a fixture may be secured to the mounting flange 106a.
  • the working gas line does not need to be divided by the holder (the working gas line does not need to be divided into a first part and a second part, and may be a single flexible hose).
  • cryogenic refrigerator 100 may be a two-stage GM refrigerator.
  • cryogenic refrigerator 100 may provide cryogenic cooling of about 4K or less
  • cryogenic liquid 12 may be liquid helium.
  • cryogenic refrigerator 100 may be a pulse tube refrigerator, a Stirling refrigerator, or other type of cryogenic refrigerator.
  • cryogenic device 10 is a storage device for the cryogenic liquid 12
  • cryogenic device 10 may be a superconducting device
  • cryogenic refrigerator 100 may be used to cool a superconducting coil placed within vacuum vessel 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

A cryogenic refrigerator (100) includes: a cold head (104) that can be mounted on a vacuum container (20); a cold head mount (106) that is configured to couple the cold head (104) with the vacuum container (20) so as to allow movement of the cold head (104) with respect to the vacuum container (20); a flexible line (108) that is connected to the cold head 104 outside the vacuum container (20); and a flexible line holder (110) that is configured to hold the flexible line (108) in a fixed manner with respect to the vacuum container (20).

Description

極低温冷凍機cryogenic refrigerator
 本発明は、極低温冷凍機に関する。 The present invention relates to a cryogenic refrigerator.
 ギフォード・マクマホン(Gifford-McMahon;GM)冷凍機に代表される極低温冷凍機は、たとえば超伝導機器の冷却、液体ヘリウムなど極低温液体の凝縮など、さまざまな冷却対象に極低温冷却を提供するために、よく利用されている。従来、こうした極低温冷凍機をベローズを介してクライオスタットに設置し、ベローズの伸縮を伴う極低温冷凍機の上下動を利用して、極低温冷凍機をクライオスタット内の冷却対象と熱的に接続しまたは切り離す熱スイッチを実現することが知られている。 Cryogenic refrigerators, such as the Gifford-McMahon (GM) refrigerator, provide cryogenic cooling for a variety of cooling purposes, such as cooling superconducting equipment and condensing cryogenic liquids such as liquid helium. It is often used for this purpose. Conventionally, such a cryogenic refrigerator was installed in a cryostat via a bellows, and the vertical movement of the cryogenic refrigerator accompanied by the expansion and contraction of the bellows was used to thermally connect the cryogenic refrigerator to the object to be cooled inside the cryostat. Or it is known to realize a disconnecting thermal switch.
特開2016-211803号公報Japanese Patent Application Publication No. 2016-211803
 上述の形式の熱スイッチがオンのとき(つまり極低温冷凍機が冷却対象と熱接続されているとき)には極低温冷凍機はクライオスタットに剛に固定されうるのに対して、熱スイッチがオフとされている(つまり極低温冷凍機が冷却対象から一時的に切り離されている)ときには、極低温冷凍機は、例えばベローズの柔軟性に起因して、低い剛性でクライオスタットに支持されることになりがちである。 When a thermal switch of the type described above is on (i.e. when the cryocooler is thermally connected to the object to be cooled), the cryocooler can be rigidly fixed to the cryostat, whereas when the thermal switch is off (i.e., the cryocooler is temporarily disconnected from the object to be cooled), the cryocooler may be supported by the cryostat with low stiffness, for example due to the flexibility of the bellows. It tends to happen.
 極低温冷凍機を現場で動作させる際には、作動ガスの給排のためのフレキシブルホースや給電のためのケーブルなど、さまざまな配管や配線が極低温冷凍機に接続され、極低温冷凍機の周りに延びている。このような極低温冷凍機の一般的なセットアップにおいて想定されるリスクの一つとして、例えば極低温冷凍機の近くを通る作業者がこれら配管類に足を引っ掛けてつまずいた場合など、極低温冷凍機に配管類から不測の大きな外力が働く可能性が懸念される。こうした不測の外力は、とくに、熱スイッチがオフのとき、問題を引き起こしうる。外力によって極低温冷凍機の位置、姿勢が乱され、周囲の構造と干渉、衝突し、最悪の場合、極低温冷凍機やその支持構造が破損することになるかもしれない。 When operating a cryogenic refrigerator on site, various piping and wiring, such as flexible hoses for supplying and discharging working gas and cables for power supply, are connected to the cryogenic refrigerator. extends around. One of the risks that can be assumed in a typical setup of such a cryocooler is that a worker passing by the cryocooler may trip over these pipes. There are concerns that unexpected large external forces may be applied to the machine from the piping. These unexpected external forces can cause problems, especially when the thermal switch is off. External forces may disturb the position and orientation of the cryogenic refrigerator, causing interference or collision with surrounding structures, and in the worst case scenario, the cryogenic refrigerator or its supporting structure may be damaged.
 本発明のある態様の例示的な目的のひとつは、予期せぬ外力から極低温冷凍機を保護することにある。 One exemplary objective of certain embodiments of the present invention is to protect cryogenic refrigerators from unexpected external forces.
 本発明のある態様によると、極低温冷凍機は、真空容器に搭載可能なコールドヘッドと、真空容器に対するコールドヘッドの移動を許容するようにコールドヘッドを真空容器に連結するように構成されるコールドヘッドマウントと、真空容器の外でコールドヘッドに接続されるフレキシブルラインと、真空容器に対して固定的にフレキシブルラインを保持するように構成されるフレキシブルラインホルダと、を備える。 According to an aspect of the invention, a cryogenic refrigerator includes a cold head mountable in a vacuum vessel and a cold head configured to couple the cold head to the vacuum vessel to allow movement of the cold head relative to the vacuum vessel. The apparatus includes a head mount, a flexible line connected to the cold head outside the vacuum vessel, and a flexible line holder configured to hold the flexible line fixedly with respect to the vacuum vessel.
 本発明によれば、予期せぬ外力から極低温冷凍機を保護することができる。 According to the present invention, a cryogenic refrigerator can be protected from unexpected external forces.
実施の形態に係る極低温装置を概略的に示す図である。FIG. 1 is a diagram schematically showing a cryogenic device according to an embodiment. 比較例に係る極低温冷凍機の作動ガスラインを概略的に示す図である。FIG. 3 is a diagram schematically showing a working gas line of a cryogenic refrigerator according to a comparative example. 図1に示される極低温冷凍機に適用しうる例示的な電気接続を概略的に示す図である。2 schematically illustrates exemplary electrical connections applicable to the cryogenic refrigerator shown in FIG. 1; FIG. 図1に示される極低温冷凍機に適用しうる例示的な駆動源を概略的に示す図である。2 is a diagram schematically illustrating an exemplary drive source that may be applied to the cryogenic refrigerator shown in FIG. 1; FIG.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and overlapping explanations will be omitted as appropriate. The scale and shape of each part shown in the drawings are set for convenience to facilitate explanation, and should not be interpreted in a limited manner unless otherwise stated. The embodiments are merely illustrative and do not limit the scope of the present invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1は、実施の形態に係る極低温装置10を概略的に示す図である。この実施の形態では、極低温装置10は、極低温液体貯蔵装置として利用されうる。そこで、極低温装置10は、例えば液体水素またはそのほかの極低温液体12を貯蔵するための真空容器20と、貯蔵される極低温液体12をその液化温度(液体水素の場合、約-253℃(20K))以下の極低温に冷却するための極低温冷凍機100とを備える。 FIG. 1 is a diagram schematically showing a cryogenic device 10 according to an embodiment. In this embodiment, cryogenic device 10 may be utilized as a cryogenic liquid storage device. Therefore, the cryogenic apparatus 10 includes a vacuum container 20 for storing, for example, liquid hydrogen or other cryogenic liquid 12, and a vacuum container 20 for storing liquid hydrogen or other cryogenic liquid 12, and the cryogenic liquid 12 to be stored at its liquefaction temperature (in the case of liquid hydrogen, about -253°C). 20K)) or lower.
 真空容器20は、外槽22および内槽24を備える。外槽22と内槽24との間には真空断熱層26が形成される。外槽22は、極低温装置10の周囲環境(例えば、室温大気圧環境)から真空断熱層26を隔てるように構成される。また、内槽24は、その内部容積を真空断熱層26から隔てるように構成される。極低温液体12は、内槽24に収容される。外槽22および内槽24は、内外の圧力差に耐えるように、例えばステンレス鋼などの金属材料またはその他の適する高強度材料で形成される。 The vacuum container 20 includes an outer tank 22 and an inner tank 24. A vacuum insulation layer 26 is formed between the outer tank 22 and the inner tank 24. The outer chamber 22 is configured to separate the vacuum insulation layer 26 from the surrounding environment of the cryogenic device 10 (eg, a room temperature, atmospheric pressure environment). Additionally, the inner tank 24 is configured to separate its internal volume from the vacuum insulation layer 26. Cryogenic liquid 12 is contained in inner tank 24 . The outer tank 22 and the inner tank 24 are formed of a metallic material, such as stainless steel, or other suitable high-strength material to withstand pressure differences between the inside and outside.
 真空断熱層26には、断熱支持体28aおよび断熱層28bを含む断熱構造28が配置されてもよい。断熱支持体28aは、例えば繊維強化プラスチックなどの断熱性をもつ硬質材料から形成され、内槽24を外槽22に支持するように構成される。断熱層28bは、多層断熱材(multilayer insulation(MLI))を備えてもよい。断熱層28bとともにまたはそれに代えて、断熱構造28は、真空断熱層26に充填された粒状またはその他の形状の断熱材(例えば、粒状のパーライト)を含んでもよい。 A heat insulating structure 28 including a heat insulating support 28a and a heat insulating layer 28b may be arranged on the vacuum heat insulating layer 26. The heat insulating support 28a is made of a hard material with heat insulating properties, such as fiber-reinforced plastic, and is configured to support the inner tank 24 on the outer tank 22. The insulation layer 28b may include multilayer insulation (MLI). In addition to or in place of the insulation layer 28b, the insulation structure 28 may include granular or other forms of insulation (eg, granular perlite) filled into the vacuum insulation layer 26.
 内槽24は、その槽壁に設けられた再凝縮部30を備える。再凝縮部30は、極低温冷凍機100によって内槽24の外から冷却される。再凝縮部30は、内槽24の外側に露出され、極低温冷凍機100と接触する伝熱面30aを有する。再凝縮部30は、極低温液体12又は気化した極低温液体12と接触する表面積を増やすためにフィン状の突起または凹凸を内槽24の内部に有してもよい。再凝縮部30は、例えば純銅(例えば、無酸素銅、タフピッチ銅など)、または他の高熱伝導金属で形成される。 The inner tank 24 includes a recondensing section 30 provided on the tank wall. The recondensing section 30 is cooled from outside the inner tank 24 by the cryogenic refrigerator 100. The recondensing section 30 has a heat transfer surface 30a that is exposed outside the inner tank 24 and comes into contact with the cryogenic refrigerator 100. The recondensing section 30 may have fin-like protrusions or irregularities inside the inner tank 24 to increase the surface area that comes into contact with the cryogenic liquid 12 or the vaporized cryogenic liquid 12 . The recondensing section 30 is formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal.
 極低温冷凍機100は、圧縮機102と、真空容器20に搭載可能なコールドヘッド104と、真空容器20に対するコールドヘッド104の移動を許容するようにコールドヘッド104を真空容器20に連結するように構成されるコールドヘッドマウント106とを備える。 The cryogenic refrigerator 100 includes a compressor 102, a cold head 104 that can be mounted on a vacuum vessel 20, and a cold head 104 coupled to the vacuum vessel 20 to allow movement of the cold head 104 with respect to the vacuum vessel 20. and a cold head mount 106 configured.
 圧縮機102は、極低温冷凍機100の作動ガスをコールドヘッド104から回収し、回収した作動ガスを昇圧して、再び作動ガスをコールドヘッド104に供給するよう構成されている。コールドヘッド104は、膨張機または冷凍機とも称される。圧縮機102とコールドヘッド104により極低温冷凍機100の冷凍サイクルが構成され、それにより極低温冷凍機100は極低温冷却を提供する。作動ガスは、冷媒ガスとも称され、通例はヘリウムガスであるが、適切な他のガスが用いられてもよい。 The compressor 102 is configured to recover the working gas of the cryogenic refrigerator 100 from the cold head 104, increase the pressure of the recovered working gas, and supply the working gas to the cold head 104 again. Cold head 104 is also referred to as an expander or a refrigerator. Compressor 102 and cold head 104 constitute a refrigeration cycle for cryogenic refrigerator 100, whereby cryogenic refrigerator 100 provides cryogenic cooling. The working gas, also referred to as refrigerant gas, is typically helium gas, although other suitable gases may be used.
 極低温冷凍機100は、この実施の形態では、単段式のGM冷凍機である。従って、コールドヘッド104は、冷却ステージ104a、シリンダ104b、駆動部104c、およびコールドヘッドフランジ104dを備える。冷却ステージ104aは、例えば純銅(例えば、無酸素銅、タフピッチ銅など)、または他の高熱伝導金属で形成される。極低温冷凍機100の運転中、冷却ステージ104aは、所望の極低温、例えば極低温液体12の液化温度以下の温度範囲に冷却される。極低温液体12が液体水素の場合、冷却ステージ104aは、例えば、10Kから30Kの温度範囲に含まれる冷却温度(例えば、20K±1K、または20K±2K、または20K±5Kなど、20K付近の冷却温度)に冷却される。 In this embodiment, the cryogenic refrigerator 100 is a single-stage GM refrigerator. Therefore, the cold head 104 includes a cooling stage 104a, a cylinder 104b, a drive section 104c, and a cold head flange 104d. The cooling stage 104a is formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal. During operation of the cryogenic refrigerator 100, the cooling stage 104a is cooled to a desired cryogenic temperature, such as a temperature range below the liquefaction temperature of the cryogenic liquid 12. When the cryogenic liquid 12 is liquid hydrogen, the cooling stage 104a is, for example, at a cooling temperature within the temperature range of 10K to 30K (for example, cooling around 20K, such as 20K±1K, 20K±2K, or 20K±5K). temperature).
 シリンダ104bは、冷却ステージ104aをコールドヘッドフランジ104dに接続する。シリンダ104b内には、冷却ステージ104aに隣接する作動ガスの膨張空間の容積を制御するためのディスプレーサ(図示せず)が、シリンダ104bの軸方向(図1において上下方向)に移動可能に配置されている。シリンダ104bおよびコールドヘッドフランジ104dは通例、例えばステンレス鋼など適宜の金属材料で形成される。駆動部104cは、シリンダ104bとは反対側でコールドヘッドフランジ104dに取り付けられている。駆動部104cには、シリンダ104b内のディスプレーサを駆動するための例えば電気モータなどのコールドヘッド駆動モータ104e、およびシリンダ104b内の膨張空間の作動ガス圧力を制御するための例えばロータリーバルブなどの圧力制御機構(図示せず)が設けられている。 Cylinder 104b connects cooling stage 104a to cold head flange 104d. A displacer (not shown) for controlling the volume of the working gas expansion space adjacent to the cooling stage 104a is disposed within the cylinder 104b so as to be movable in the axial direction of the cylinder 104b (in the vertical direction in FIG. 1). ing. Cylinder 104b and cold head flange 104d are typically formed of a suitable metallic material, such as stainless steel. The drive portion 104c is attached to the cold head flange 104d on the opposite side from the cylinder 104b. The drive unit 104c includes a cold head drive motor 104e, such as an electric motor, for driving the displacer in the cylinder 104b, and a pressure control, such as a rotary valve, for controlling the working gas pressure in the expansion space in the cylinder 104b. A mechanism (not shown) is provided.
 図1に示されるように、真空容器20の外槽22には、コールドヘッド104を真空容器20に装着するための装着口32が設けられている。装着の際、コールドヘッド104は、装着口32から真空容器20内に挿入され、コールドヘッドマウント106を介して装着口32に取り外し可能に取り付けられる。コールドヘッド104は、冷却ステージ104aが真空容器20内の真空断熱層26に配置され、駆動部104cが真空容器20の外に配置されるようにして、真空容器20に装着される。 As shown in FIG. 1, the outer tank 22 of the vacuum container 20 is provided with a mounting port 32 for mounting the cold head 104 onto the vacuum container 20. During mounting, the cold head 104 is inserted into the vacuum vessel 20 through the mounting port 32 and is removably attached to the mounting port 32 via the cold head mount 106 . The cold head 104 is attached to the vacuum vessel 20 such that the cooling stage 104a is placed on the vacuum insulation layer 26 inside the vacuum vessel 20, and the drive unit 104c is placed outside the vacuum vessel 20.
 一例として、装着口32は、真空容器20の天板または上部に形成されている。コールドヘッド104は、その中心軸を鉛直方向に一致させるようにして真空容器20に設置される。しかし、装着口32の位置およびコールドヘッド104の取付姿勢はこれに限られない。例えば、装着口32は、真空容器20の底板または下部に形成されてもよい。コールドヘッド104は、所望される姿勢で設置可能であり、中心軸を斜め方向または水平方向に一致させるようにして真空容器20に設置されてもよい。 As an example, the mounting port 32 is formed on the top plate or upper part of the vacuum container 20. The cold head 104 is installed in the vacuum container 20 so that its central axis coincides with the vertical direction. However, the position of the mounting port 32 and the mounting posture of the cold head 104 are not limited to this. For example, the mounting port 32 may be formed in the bottom plate or lower part of the vacuum container 20. The cold head 104 can be installed in any desired posture, and may be installed in the vacuum vessel 20 with its central axis aligned diagonally or horizontally.
 コールドヘッドマウント106は、真空容器20に取付可能な取付フランジ106aと、コールドヘッド104を取付フランジ106aに接続する伸縮可能な気密隔壁106bとを備える。取付フランジ106aは、例えばボルトなどの締結部材を用いて、またはそのほか適宜の固定手段により、真空容器20の装着口32に固定される。なお取付フランジ106aは、図示のように真空容器20に直接固定されることに代えて、連結部材を介して真空容器20に固定されてもよい。伸縮可能な気密隔壁106bは、例えばベローズであり、コールドヘッドフランジ104dを取付フランジ106aに接続する。従って、取付フランジ106a、気密隔壁106b、およびコールドヘッドフランジ104dによって装着口32が塞がれ、真空容器20の気密性が保持される。 The cold head mount 106 includes a mounting flange 106a that can be attached to the vacuum vessel 20, and an expandable and contractible airtight partition wall 106b that connects the cold head 104 to the mounting flange 106a. The mounting flange 106a is fixed to the mounting port 32 of the vacuum container 20 using a fastening member such as a bolt, or by other suitable fixing means. Note that the mounting flange 106a may be fixed to the vacuum vessel 20 via a connecting member instead of being directly fixed to the vacuum vessel 20 as illustrated. A retractable airtight bulkhead 106b, for example a bellows, connects the cold head flange 104d to the mounting flange 106a. Therefore, the mounting port 32 is closed by the mounting flange 106a, the airtight partition wall 106b, and the cold head flange 104d, and the airtightness of the vacuum container 20 is maintained.
 取付フランジ106aは中心部に開口を有し、伸縮可能な気密隔壁106bは筒状に形成されている。コールドヘッド104のシリンダ104bは、コールドヘッドフランジ104dから伸縮可能な気密隔壁106b内および取付フランジ106aの開口を通じて真空容器20内へと延びている。 The mounting flange 106a has an opening in the center, and the expandable and retractable airtight partition wall 106b is formed in a cylindrical shape. The cylinder 104b of the cold head 104 extends from the cold head flange 104d into the vacuum vessel 20 through an expandable airtight bulkhead 106b and an opening in the mounting flange 106a.
 また、コールドヘッドマウント106は、コールドヘッドマウント106に搭載され、コールドヘッド104を真空容器20に対して移動させるように構成される駆動源106cを備える。駆動源106cは、空圧、油圧、電動モーター、電磁石など適宜の動力を用いてコールドヘッド104を移動させるように構成されてもよく、あるいは、手動によりコールドヘッド104を移動させるように動作可能であってもよい。 The cold head mount 106 also includes a drive source 106c that is mounted on the cold head mount 106 and configured to move the cold head 104 relative to the vacuum vessel 20. The drive source 106c may be configured to move the cold head 104 using appropriate power such as pneumatics, hydraulic pressure, an electric motor, or an electromagnet, or may be operable to move the cold head 104 manually. There may be.
 駆動源106cは、取付フランジ106a上に設置され、気密隔壁106bの伸縮方向にコールドヘッドフランジ104dを移動させるようにコールドヘッドフランジ104dと連結されている。従って、駆動源106cを作動させることにより、気密隔壁106bを伸縮させながらコールドヘッドフランジ104dを取付フランジ106aに対して移動させることができる。図1に示される例では、駆動源106cは、取付フランジ106aに対してコールドヘッドフランジ104dを(つまり、真空容器20に対してコールドヘッド104を)上下に昇降させることができる。 The drive source 106c is installed on the mounting flange 106a, and is connected to the cold head flange 104d so as to move the cold head flange 104d in the direction of expansion and contraction of the airtight partition wall 106b. Therefore, by operating the drive source 106c, the cold head flange 104d can be moved relative to the mounting flange 106a while expanding and contracting the airtight partition wall 106b. In the example shown in FIG. 1, the drive source 106c can move the cold head flange 104d up and down with respect to the mounting flange 106a (that is, the cold head 104 with respect to the vacuum vessel 20).
 このようにして、コールドヘッドマウント106は、極低温液体12の貯蔵タンクである真空容器20の内槽24にコールドヘッド104を熱的に接続しまたは切り離す熱スイッチとして動作することができる。図1には、この熱スイッチがオンの状態を実線で示し、熱スイッチがオフの状態を破線で示している。熱スイッチがオンのとき、コールドヘッド104の冷却ステージ104aが内槽24の再凝縮部30の伝熱面30aと接触する。これにより、冷却ステージ104aは、極低温液体12の液化温度に再凝縮部30を冷却することができ、内槽24に極低温液体12を保持するとともに、気化した極低温液体12を再凝縮することができる。一方、駆動源106cの作動によりコールドヘッド104が持ち上げられると、冷却ステージ104aは再凝縮部30の伝熱面30aから離れる。冷却ステージ104aは真空断熱層26に配置されているので、冷却ステージ104aと再凝縮部30の熱接触は解除される。このとき、コールドヘッド104は内槽24を冷却しない。 In this manner, the cold head mount 106 can act as a thermal switch that thermally connects or disconnects the cold head 104 to the inner vessel 24 of the vacuum vessel 20, which is a storage tank for the cryogenic liquid 12. In FIG. 1, a solid line indicates a state in which the thermal switch is on, and a broken line indicates a state in which the thermal switch is off. When the thermal switch is on, the cooling stage 104a of the cold head 104 contacts the heat transfer surface 30a of the recondensing section 30 of the inner tank 24. Thereby, the cooling stage 104a can cool the recondensing section 30 to the liquefaction temperature of the cryogenic liquid 12, retain the cryogenic liquid 12 in the inner tank 24, and recondense the vaporized cryogenic liquid 12. be able to. On the other hand, when the cold head 104 is lifted by the operation of the drive source 106c, the cooling stage 104a separates from the heat transfer surface 30a of the recondensing section 30. Since the cooling stage 104a is disposed on the vacuum insulation layer 26, thermal contact between the cooling stage 104a and the recondensing section 30 is broken. At this time, the cold head 104 does not cool the inner tank 24.
 こうした熱スイッチは、極低温装置10の省エネルギー性の向上に有利である。極低温冷凍機100の例示的な運用として、真空容器20が十分に冷却された状態では極低温冷凍機100の冷却運転を停止することが考えられる。このとき、コールドヘッド104が真空容器20の内槽24と接触したままであったとすると、コールドヘッド104が極低温装置10の周囲環境から内槽24への伝熱経路となり、極低温液体12への望まれない熱侵入が生じうる。これに対して、極低温冷凍機100を停止する際に、熱スイッチを利用してコールドヘッド104を内槽24から切り離すことにより、このような侵入熱を遮断することができる。 Such a thermal switch is advantageous in improving the energy saving performance of the cryogenic device 10. As an exemplary operation of the cryogenic refrigerator 100, it is possible to stop the cooling operation of the cryogenic refrigerator 100 when the vacuum container 20 is sufficiently cooled. At this time, if the cold head 104 remains in contact with the inner tank 24 of the vacuum vessel 20, the cold head 104 becomes a heat transfer path from the surrounding environment of the cryogenic apparatus 10 to the inner tank 24, and transfers heat to the cryogenic liquid 12. Undesired heat intrusion can occur. On the other hand, such intruding heat can be cut off by separating the cold head 104 from the inner tank 24 using a thermal switch when stopping the cryogenic refrigerator 100.
 熱スイッチの切り替えのために、極低温装置10には、極低温液体12の物理量を検出するセンサ34が設けられてもよい。駆動源106cは、検出された極低温液体12の物理量を示すセンサ34からの出力信号を受信し、検出された極低温液体12の物理量に基づいてコールドヘッド104を移動させるように構成されてもよい。 For switching the thermal switch, the cryogenic device 10 may be provided with a sensor 34 that detects a physical quantity of the cryogenic liquid 12. The drive source 106c may be configured to receive an output signal from the sensor 34 indicative of the detected physical quantity of the cryogenic liquid 12 and move the cold head 104 based on the detected physical quantity of the cryogenic liquid 12. good.
 例えば、センサ34は、真空容器20の内槽24に配置され、内槽24の内圧を測定するように構成されてもよい。内槽24における極低温液体12の蒸気圧がセンサ34によって測定される。駆動源106cは、測定圧力を圧力しきい値と比較し、測定圧力が圧力しきい値を超える場合に熱スイッチをオンにし、測定圧力が圧力しきい値を下回る場合に熱スイッチをオフにするように動作してもよい。このようにして、圧力しきい値に相当する適正圧力に内槽24の内圧を維持することができる。 For example, the sensor 34 may be arranged in the inner tank 24 of the vacuum container 20 and configured to measure the internal pressure of the inner tank 24. The vapor pressure of cryogenic liquid 12 in inner tank 24 is measured by sensor 34 . The drive source 106c compares the measured pressure with a pressure threshold, turns on the thermal switch when the measured pressure exceeds the pressure threshold, and turns off the thermal switch when the measured pressure is below the pressure threshold. It may work like this. In this way, the internal pressure of the inner tank 24 can be maintained at an appropriate pressure corresponding to the pressure threshold.
 あるいは、センサ34は、極低温液体12の温度を測定するように構成されてもよい。この場合、センサ34は、内槽24の中に配置され、または内槽24の再凝縮部30に設置されてもよい。駆動源106cは、測定温度を温度しきい値と比較し、測定温度が温度しきい値を超える場合に熱スイッチをオンにし、測定温度が温度しきい値を下回る場合に熱スイッチをオフにするように動作してもよい。このようにして、温度しきい値に相当する適正温度に極低温液体12を維持することができる。 Alternatively, the sensor 34 may be configured to measure the temperature of the cryogenic liquid 12. In this case, the sensor 34 may be arranged within the inner tank 24 or installed in the recondensation section 30 of the inner tank 24 . The drive source 106c compares the measured temperature with a temperature threshold, turns on the thermal switch when the measured temperature exceeds the temperature threshold, and turns off the thermal switch when the measured temperature is below the temperature threshold. It may work like this. In this way, the cryogenic liquid 12 can be maintained at a suitable temperature corresponding to a temperature threshold.
 また、極低温冷凍機100は、真空容器20の外でコールドヘッド104に接続されるフレキシブルライン108と、真空容器20に対して固定的にフレキシブルライン108を保持するように構成されるフレキシブルラインホルダ110とを備える。フレキシブルライン108は、真空容器20の外に配置される外部要素(例えば圧縮機102)にコールドヘッド104の駆動部104cを接続する。フレキシブルラインホルダ110は、コールドヘッドマウント106の取付フランジ106aに固定されており、コールドヘッド104から外部要素への途中でフレキシブルライン108を保持する。言い換えれば、フレキシブルラインホルダ110は、フレキシブルライン108を真空容器20に固定する中継点にあたる。 The cryogenic refrigerator 100 also includes a flexible line 108 connected to the cold head 104 outside the vacuum container 20, and a flexible line holder configured to hold the flexible line 108 fixedly with respect to the vacuum container 20. 110. A flexible line 108 connects the drive portion 104c of the cold head 104 to an external element located outside the vacuum vessel 20 (eg, the compressor 102). A flexible line holder 110 is secured to the mounting flange 106a of the cold head mount 106 and holds the flexible line 108 on its way from the cold head 104 to an external element. In other words, the flexible line holder 110 corresponds to a relay point for fixing the flexible line 108 to the vacuum container 20.
 圧縮機102は、例えばコールドヘッド104および真空容器20が設置される部屋または区画とは別の部屋または区画に設置される等、コールドヘッド104および真空容器20から遠隔の位置に配置されてもよく、フレキシブルライン108の長さは、例えば10m以上であってもよい。フレキシブルラインホルダ110は、取付フランジ106aに固定されるため、フレキシブルライン108のコールドヘッド104側の端部(例えば、フレキシブルライン108の全長の10%以内、または5%以内となるフレキシブルライン108の端部)でフレキシブルライン108を保持する。 Compressor 102 may be located remotely from coldhead 104 and vacuum vessel 20, such as in a separate room or compartment from the room or compartment in which coldhead 104 and vacuum vessel 20 are installed. , the length of the flexible line 108 may be, for example, 10 m or more. Since the flexible line holder 110 is fixed to the mounting flange 106a, the end of the flexible line 108 on the cold head 104 side (for example, the end of the flexible line 108 that is within 10% or 5% of the total length of the flexible line 108) 1) to hold the flexible line 108.
 フレキシブルライン108は、この実施の形態では、作動ガスのコールドヘッド104への供給またはコールドヘッド104からの排出のための作動ガスライン、より具体的には、ガス供給ライン112およびガス回収ライン114を備える。ガス供給ライン112は、圧縮機102の作動ガス吐出ポート102aをコールドヘッド104の高圧ポート116aに接続し、ガス回収ライン114は、圧縮機102の作動ガス吸入ポート102bをコールドヘッド104の低圧ポート116bに接続する。 Flexible line 108 in this embodiment is a working gas line for supplying working gas to or exhausting working gas from cold head 104 , more specifically gas supply line 112 and gas recovery line 114 . Be prepared. The gas supply line 112 connects the working gas discharge port 102a of the compressor 102 to the high pressure port 116a of the cold head 104, and the gas recovery line 114 connects the working gas intake port 102b of the compressor 102 to the low pressure port 116b of the cold head 104. Connect to.
 よって、極低温冷凍機100の作動ガスは、圧縮機102からガス供給ライン112を通じてコールドヘッド104に供給され、コールドヘッド104からガス回収ライン114を通じて圧縮機102に回収される。よく知られているように、ガス供給ライン112における作動ガスの圧力と、ガス回収ライン114における作動ガスの圧力は、ともに大気圧よりかなり高く、それぞれ第1高圧及び第2高圧と呼ぶことができる。説明の便宜上、第1高圧及び第2高圧はそれぞれ単に高圧及び低圧とも呼ばれる。典型的には、高圧は例えば2~3MPaである。低圧は例えば0.5~1.5MPaであり、例えば約0.8MPaである。 Therefore, the working gas of the cryogenic refrigerator 100 is supplied from the compressor 102 to the cold head 104 through the gas supply line 112, and is recovered from the cold head 104 to the compressor 102 through the gas recovery line 114. As is well known, the pressure of the working gas in the gas supply line 112 and the pressure of the working gas in the gas recovery line 114 are both significantly higher than atmospheric pressure and can be referred to as a first high pressure and a second high pressure, respectively. . For convenience of explanation, the first high pressure and the second high pressure are also simply referred to as high pressure and low pressure, respectively. Typically, the high pressure is for example 2-3 MPa. The low pressure is, for example, 0.5 to 1.5 MPa, for example about 0.8 MPa.
 フレキシブルラインホルダ110は、こうした作動ガスラインを保持する作動ガスラインホルダを備えてもよい。フレキシブルラインホルダ110は、ガス供給ライン112を保持する第1ホルダおよびガス回収ライン114を保持する第2ホルダを有してもよく、これら2つのホルダが取付フランジ106aに固定されてもよい。フレキシブルラインホルダ110は、例えばねじ止め、溶接、またはそのほか適宜の固定手段により、取付フランジ106aに剛に固定されうる。 The flexible line holder 110 may include a working gas line holder that holds such a working gas line. The flexible line holder 110 may have a first holder that holds the gas supply line 112 and a second holder that holds the gas recovery line 114, and these two holders may be fixed to the mounting flange 106a. The flexible line holder 110 may be rigidly secured to the mounting flange 106a, for example, by screwing, welding, or other suitable securing means.
 2つのホルダは、取付フランジ106a上で横並びに配置されてもよいし、取付フランジ106a上で駆動部104cを挟むように配置されてもよいし、取付フランジ106a上でそのほか任意の場所に配置されてもよい。図1に示される例では、フレキシブルラインホルダ110は取付フランジ106aの上面に取り付けられているが、取付フランジ106aの下面またはそのほかの部位に取り付けられてもよい。 The two holders may be arranged side by side on the mounting flange 106a, may be arranged on the mounting flange 106a so as to sandwich the drive portion 104c, or may be arranged at any other arbitrary location on the mounting flange 106a. It's okay. In the example shown in FIG. 1, the flexible line holder 110 is attached to the upper surface of the mounting flange 106a, but it may be attached to the lower surface of the mounting flange 106a or other parts.
 ガス供給ライン112は、コールドヘッド104の高圧ポート116aから延びる第1部分112aと、圧縮機102の作動ガス吐出ポート102aから延びる第2部分112bとを備える。フレキシブルラインホルダ110は、極低温冷凍機100の作動ガスが流れることができる内部流路を有する中間継手として構成されてもよい。例えば、第1ホルダが第1内部流路を有する第1中間継手であってもよい。この場合、ガス供給ライン112の第1部分112aは、一端で第1ホルダに接続され、他端で高圧ポート116aに接続される。ガス供給ライン112の第2部分112bは、一端で第1ホルダに接続され、他端で作動ガス吐出ポート102aに接続される。こうして、作動ガス吐出ポート102aから吐出される高圧の作動ガスは、第2部分112b、第1ホルダ、第1部分112aを通じてコールドヘッド104に流入する。 The gas supply line 112 includes a first portion 112a extending from the high pressure port 116a of the cold head 104 and a second portion 112b extending from the working gas discharge port 102a of the compressor 102. The flexible line holder 110 may be configured as an intermediate joint with an internal flow path through which the working gas of the cryogenic refrigerator 100 can flow. For example, the first holder may be a first intermediate joint having a first internal flow path. In this case, the first portion 112a of the gas supply line 112 is connected at one end to the first holder and at the other end to the high pressure port 116a. The second portion 112b of the gas supply line 112 is connected at one end to the first holder and at the other end to the working gas discharge port 102a. In this way, the high-pressure working gas discharged from the working gas discharge port 102a flows into the cold head 104 through the second portion 112b, the first holder, and the first portion 112a.
 同様に、ガス回収ライン114は、コールドヘッド104の低圧ポート116bから延びる第1部分114aと、圧縮機102の作動ガス吸入ポート102bから延びる第2部分114bとを備える。フレキシブルラインホルダ110は、極低温冷凍機100の作動ガスが流れることができる内部流路を有する中間継手として構成されてもよい。例えば、第2ホルダが第2内部流路を有する第2中間継手であってもよい。この場合、ガス回収ライン114の第1部分114aは、一端で第2ホルダに接続され、他端で低圧ポート116bに接続される。ガス回収ライン114の第2部分114bは、一端で第2ホルダに接続され、他端で作動ガス吸入ポート102bに接続される。こうして、コールドヘッド104の低圧ポート116bから流出する低圧の作動ガスは、第1部分114a、第2ホルダ、第2部分114bを通じて圧縮機102に回収される。 Similarly, gas recovery line 114 includes a first portion 114a extending from low pressure port 116b of cold head 104 and a second portion 114b extending from working gas intake port 102b of compressor 102. The flexible line holder 110 may be configured as an intermediate joint with an internal flow path through which the working gas of the cryogenic refrigerator 100 can flow. For example, the second holder may be a second intermediate joint having a second internal flow path. In this case, the first portion 114a of the gas recovery line 114 is connected at one end to the second holder and at the other end to the low pressure port 116b. The second portion 114b of the gas recovery line 114 is connected at one end to the second holder and at the other end to the working gas intake port 102b. Thus, the low-pressure working gas flowing out from the low-pressure port 116b of the cold head 104 is recovered to the compressor 102 through the first portion 114a, the second holder, and the second portion 114b.
 ガス供給ライン112およびガス回収ライン114は、例えばフレキシブルホースなど柔軟性をもつ配管であってもよい。また、ガス供給ライン112およびガス回収ライン114は、例えば損耗による交換に便利となるように、圧縮機102、コールドヘッド104、フレキシブルライン108と着脱可能であってもよい。 The gas supply line 112 and the gas recovery line 114 may be flexible piping such as flexible hoses. Gas supply line 112 and gas recovery line 114 may also be removable from compressor 102, cold head 104, and flexible line 108, for convenient replacement due to wear and tear, for example.
 図2は、比較例に係る極低温冷凍機の作動ガスラインを概略的に示す図である。図示されるように、極低温冷凍機200は、圧縮機202およびコールドヘッド204を備える。圧縮機202とコールドヘッド204は、フレキシブルホース206により接続されている。コールドヘッド204は、真空容器20に対して移動(昇降)することができるように真空容器20に搭載されている。コールドヘッド204は、その昇降により、コールドヘッド204を被冷却物208と熱的に接続しまたは切り離す熱スイッチとして動作可能である。図2では、熱スイッチがオフの場合、つまり、コールドヘッド204が被冷却物208から離れた状態が示されている。 FIG. 2 is a diagram schematically showing a working gas line of a cryogenic refrigerator according to a comparative example. As shown, cryogenic refrigerator 200 includes a compressor 202 and a cold head 204. Compressor 202 and cold head 204 are connected by flexible hose 206. The cold head 204 is mounted on the vacuum container 20 so that it can move (elevate and lower) relative to the vacuum container 20. The cold head 204 can operate as a thermal switch that thermally connects or disconnects the cold head 204 from the object to be cooled 208 by raising and lowering the cold head 204 . FIG. 2 shows a state in which the thermal switch is off, that is, the cold head 204 is separated from the object 208 to be cooled.
 極低温冷凍機200の近くを通る作業者が、自分の足210をフレキシブルホース206に引っ掛けてつまずくことがあるかもしれない。そうすると、フレキシブルホース206は、引っ掛けられた足210によって瞬時に強く引っ張られ、コールドヘッド204に強い横荷重212が作用することになりうる。熱スイッチがオフのときコールドヘッド204はベローズなど剛性の低い支持構造によって真空容器20に支持されているから、横荷重212は、図2に黒矢印214および破線で示すように、極低温冷凍機200の位置および姿勢を乱し、場合によっては極低温冷凍機200を真空容器20や被冷却物208など周囲の構造物と衝突させるかもしれない。その結果、極低温冷凍機200や周囲の構造物が破損することになるかもしれない。 A worker passing near the cryogenic refrigerator 200 may get his or her foot 210 caught on the flexible hose 206 and trip. In this case, the flexible hose 206 is instantly pulled strongly by the hooked leg 210, and a strong lateral load 212 may be applied to the cold head 204. Since the cold head 204 is supported by the vacuum vessel 20 by a support structure with low rigidity such as a bellows when the thermal switch is off, the lateral load 212 is applied to the cryogenic refrigerator as shown by the black arrow 214 and the dashed line in FIG. This may disturb the position and attitude of the cryogenic refrigerator 200, and in some cases may cause the cryogenic refrigerator 200 to collide with surrounding structures such as the vacuum container 20 and the object to be cooled 208. As a result, the cryogenic refrigerator 200 and surrounding structures may be damaged.
 これに対して、実施の形態によれば、フレキシブルライン108がフレキシブルラインホルダ110によって真空容器20に対して固定的に保持されている。コールドヘッド104から遠い側のフレキシブルライン108の第2部分(例えば、112b、114b)については、依然として作業者が足を引っ掛けてしまうリスクが想定されうる。しかし、そのような事態がたとえ起こったとしても、第2部分に働く引張力は、フレキシブルラインホルダ110が固定された取付フランジ106aおよび真空容器20が受けるにすぎない。この引張力は、コールドヘッド104には直接伝わらず、熱スイッチがオフであってもコールドヘッド104の位置、姿勢を保持することができるものと期待される。このようにして、極低温冷凍機100を予期せぬ外力から保護することができる。 On the other hand, according to the embodiment, the flexible line 108 is fixedly held with respect to the vacuum vessel 20 by the flexible line holder 110. Regarding the second portions of the flexible line 108 (for example, 112b, 114b) on the side far from the cold head 104, there may still be a risk that a worker may trip over them. However, even if such a situation occurs, the tensile force acting on the second portion is only received by the mounting flange 106a to which the flexible line holder 110 is fixed and the vacuum vessel 20. This tensile force is not directly transmitted to the cold head 104, and it is expected that the position and posture of the cold head 104 can be maintained even when the heat switch is off. In this way, cryogenic refrigerator 100 can be protected from unexpected external forces.
 図3は、図1に示される極低温冷凍機100に適用しうる例示的な電気接続を概略的に示す図である。フレキシブルライン108は、コールドヘッド104への給電のための給電ケーブルであってもよい。給電ケーブルは、真空容器20の外に配置された電源118をコールドヘッド104の駆動部104c(例えば、図1に示されるコールドヘッド駆動モータ104e)に接続する。例示的な構成では、圧縮機102が電源118として用いられてもよい。 FIG. 3 is a diagram schematically illustrating exemplary electrical connections that may be applied to the cryogenic refrigerator 100 shown in FIG. 1. The flexible line 108 may be a power supply cable for supplying power to the cold head 104. A power supply cable connects a power source 118 located outside the vacuum vessel 20 to a drive portion 104c of the coldhead 104 (eg, the coldhead drive motor 104e shown in FIG. 1). In an exemplary configuration, compressor 102 may be used as power source 118.
 フレキシブルラインホルダ110は、取付フランジ106aに固定され、給電ケーブルを保持するケーブルホルダであってもよい。図示される例では、フレキシブルラインホルダ110は、取付フランジ106aを貫通するように取付フランジ106aに取り付けられている。これにより、取付フランジ106aの一方の面(例えば上面)からその反対側の面(例えば下面)へと給電ケーブルを導くことができる。取付フランジ106aの上面側のみで給電ケーブルを取り回す場合に比べて、給電ケーブルの配置の自由度を高めることができる。 The flexible line holder 110 may be a cable holder that is fixed to the mounting flange 106a and holds the power supply cable. In the illustrated example, flexible line holder 110 is attached to attachment flange 106a so as to pass through attachment flange 106a. Thereby, the power supply cable can be guided from one surface (for example, the top surface) of the mounting flange 106a to the opposite surface (for example, the bottom surface). The degree of freedom in arranging the power supply cable can be increased compared to the case where the power supply cable is routed only on the upper surface side of the mounting flange 106a.
 このようにしても、図1および図2を参照して説明した実施の形態と同様にして、極低温冷凍機100を予期せぬ外力から保護することができる。すなわち、フレキシブルラインホルダ110から電源118へと延びるフレキシブルライン108の第2部分に不測の外力が作用したとしても、フレキシブルラインホルダ110が固定された取付フランジ106aおよび真空容器20でこの外力を受けることができる。外力によるコールドヘッド104への悪影響を低減することができる。 Even in this case, the cryogenic refrigerator 100 can be protected from unexpected external forces in the same way as the embodiment described with reference to FIGS. 1 and 2. That is, even if an unexpected external force acts on the second portion of the flexible line 108 extending from the flexible line holder 110 to the power source 118, this external force will not be received by the mounting flange 106a to which the flexible line holder 110 is fixed and the vacuum vessel 20. Can be done. The negative influence on the cold head 104 due to external force can be reduced.
 なお、上述のように取付フランジ106aを貫通するタイプのフレキシブルラインホルダ110が、図1を参照して説明した作動ガスラインのホルダとして用いられてもよい。 Note that the flexible line holder 110 of the type that passes through the mounting flange 106a as described above may be used as the holder for the working gas line described with reference to FIG. 1.
 図4は、図1に示される極低温冷凍機100に適用しうる例示的な駆動源を概略的に示す図である。駆動源106cは、コールドヘッド104の上方に配置されたプレート状の支持体120に取り付けられている。駆動源106cは、支持体120を貫通して下方に突出する可動ピストン122を備える。複数本(例えば4本)のガイドロッド124がコールドヘッド104を囲むようにして取付フランジ106aに立設されており、ガイドロッド124の先端に支持体120が固定されている。ガイドロッド124は、コールドヘッドフランジ104dを上下方向に貫通しており、コールドヘッドフランジ104dは、ガイドロッド124に沿って上下方向に移動可能である。 FIG. 4 is a diagram schematically showing an exemplary drive source that can be applied to the cryogenic refrigerator 100 shown in FIG. 1. The drive source 106c is attached to a plate-shaped support 120 placed above the cold head 104. The drive source 106c includes a movable piston 122 that penetrates the support body 120 and projects downward. A plurality of (for example, four) guide rods 124 are erected on the mounting flange 106a so as to surround the cold head 104, and a support 120 is fixed to the tips of the guide rods 124. The guide rod 124 passes through the cold head flange 104d in the vertical direction, and the cold head flange 104d is movable in the vertical direction along the guide rod 124.
 また、支持柱126aおよび可動プレート126bを含む可動フレーム126がコールドヘッドフランジ104dに設置されている。支持柱126aは、コールドヘッドフランジ104dに立設されており、支持柱126aの先端どうしを架橋するように可動プレート126bが支持柱126aに固定されている。可動プレート126bには、可動ピストン122の下端が固定されている。 Furthermore, a movable frame 126 including a support column 126a and a movable plate 126b is installed on the cold head flange 104d. The support column 126a is erected on the cold head flange 104d, and a movable plate 126b is fixed to the support column 126a so as to bridge the ends of the support column 126a. The lower end of the movable piston 122 is fixed to the movable plate 126b.
 従って、駆動源106cの作動により可動ピストン122が上下に進退するとき、可動フレーム126を介してコールドヘッドフランジ104dも上下に移動することができる。このとき、コールドヘッドフランジ104dは、気密隔壁106bの伸縮を伴いながら、ガイドロッド124に沿って上下に移動することになる。このようにして、駆動源106cは、コールドヘッド104の真空容器20に対する移動を提供できる。 Therefore, when the movable piston 122 moves up and down by the operation of the drive source 106c, the cold head flange 104d can also move up and down via the movable frame 126. At this time, the cold head flange 104d moves up and down along the guide rod 124 while the airtight partition wall 106b expands and contracts. In this manner, drive source 106c can provide movement of cold head 104 relative to vacuum vessel 20.
 極低温冷凍機100は、駆動源106cに接続される別のフレキシブルライン128と、真空容器20に対して固定的に別のフレキシブルライン128を保持するように構成される別のフレキシブルラインホルダ130と、を備えてもよい。駆動源106cは、例えばエアシリンダであってもよく、その場合、フレキシブルライン128は、駆動源106cに圧縮空気を給排するための圧縮空気ラインであってもよい。フレキシブルラインホルダ130は、取付フランジ106aに固定され、圧縮空気ラインを保持するホルダであってもよい。 The cryogenic refrigerator 100 includes another flexible line 128 connected to the drive source 106c, and another flexible line holder 130 configured to fixedly hold the other flexible line 128 with respect to the vacuum container 20. , may be provided. The drive source 106c may be, for example, an air cylinder, and in that case, the flexible line 128 may be a compressed air line for supplying and discharging compressed air to the drive source 106c. The flexible line holder 130 may be a holder that is fixed to the mounting flange 106a and holds a compressed air line.
 このようにしても、極低温冷凍機100を予期せぬ外力から保護することができる。すなわち、フレキシブルラインホルダ130から圧縮空気源132へと延びるフレキシブルライン128の第2部分に不測の外力が作用したとしても、フレキシブルラインホルダ130が固定された取付フランジ106aおよび真空容器20でこの外力を受けることができる。外力によるコールドヘッド104への悪影響を低減することができる。 Even in this way, the cryogenic refrigerator 100 can be protected from unexpected external forces. That is, even if an unexpected external force acts on the second portion of the flexible line 128 extending from the flexible line holder 130 to the compressed air source 132, the mounting flange 106a to which the flexible line holder 130 is fixed and the vacuum vessel 20 absorb this external force. Can receive. The negative influence on the cold head 104 due to external force can be reduced.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。 The present invention has been described above based on examples. It will be understood by those skilled in the art that the present invention is not limited to the above embodiments, and that various design changes and modifications are possible, and that such modifications also fall within the scope of the present invention. By the way. Various features described in connection with one embodiment are also applicable to other embodiments. A new embodiment resulting from a combination has the effects of each of the combined embodiments.
 上述の実施の形態は、作動ガスラインホルダが中間継手である場合を例として説明しているが、他の構成も可能である。例えば、作動ガスラインホルダは作動ガスラインを保持するホースクランプなど適宜の固定具であってもよく、こうした固定具が取付フランジ106aに固定されていてもよい。この場合、作動ガスラインは、ホルダで分割される必要はない(作動ガスラインは、第1部分と第2部分に分割されなくてもよく、1本のフレキシブルホースであってもよい)。 Although the above-described embodiments have been described using an example in which the working gas line holder is an intermediate joint, other configurations are also possible. For example, the working gas line holder may be a suitable fixture such as a hose clamp for holding the working gas line, and such a fixture may be secured to the mounting flange 106a. In this case, the working gas line does not need to be divided by the holder (the working gas line does not need to be divided into a first part and a second part, and may be a single flexible hose).
 上述の実施の形態は、フレキシブルラインホルダ110がコールドヘッドマウント106の取付フランジ106aに固定される場合を例として説明しているが、他の構成も可能である。例えば、フレキシブルラインホルダ110は、真空容器20に直接固定されてもよい。例えば、フレキシブルラインホルダ110は、取付フランジ106aが取り付けられる(すなわち、装着口32が設けられている)真空容器20の壁面、または真空容器20のそのほかの部位に固定されてもよい。 Although the above-described embodiment has been described as an example in which the flexible line holder 110 is fixed to the mounting flange 106a of the cold head mount 106, other configurations are also possible. For example, flexible line holder 110 may be directly fixed to vacuum vessel 20. For example, the flexible line holder 110 may be fixed to the wall surface of the vacuum container 20 to which the mounting flange 106a is attached (that is, to which the mounting port 32 is provided) or to other parts of the vacuum container 20.
 上述の実施の形態は、極低温冷凍機100が単段式のGM冷凍機である場合を例として説明しているが、他の構成も可能である。例えば、極低温冷凍機100は、二段式のGM冷凍機であってもよい。この場合、極低温冷凍機100は、約4K以下の極低温冷却を提供してもよく、極低温液体12は、液体ヘリウムであってもよい。あるいは、極低温冷凍機100は、パルス管冷凍機、スターリング冷凍機、またはそのほかのタイプの極低温冷凍機であってもよい。 Although the above-described embodiment has been described as an example in which the cryogenic refrigerator 100 is a single-stage GM refrigerator, other configurations are also possible. For example, the cryogenic refrigerator 100 may be a two-stage GM refrigerator. In this case, cryogenic refrigerator 100 may provide cryogenic cooling of about 4K or less, and cryogenic liquid 12 may be liquid helium. Alternatively, cryogenic refrigerator 100 may be a pulse tube refrigerator, a Stirling refrigerator, or other type of cryogenic refrigerator.
 上述の実施の形態は、極低温装置10が極低温液体12の貯蔵装置である場合を例として説明しているが、他の構成も可能である。例えば、極低温装置10は、超伝導機器であってもよく、極低温冷凍機100は、真空容器20内に配置された超伝導コイルを冷却するために用いられてもよい。 Although the above-described embodiment has been described with reference to the case where the cryogenic device 10 is a storage device for the cryogenic liquid 12, other configurations are also possible. For example, cryogenic device 10 may be a superconducting device, and cryogenic refrigerator 100 may be used to cool a superconducting coil placed within vacuum vessel 20.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific words based on the embodiments, the embodiments merely illustrate one aspect of the principles and applications of the present invention, and the embodiments do not include the claims. Many modifications and changes in arrangement are possible without departing from the spirit of the invention as defined in scope.
 本発明は、極低温冷凍機の分野における利用が可能である。 The present invention can be used in the field of cryogenic refrigerators.
 20 真空容器、 100 極低温冷凍機、 104 コールドヘッド、 106 コールドヘッドマウント、 106a 取付フランジ、 106b 気密隔壁、 106c 駆動源、 108 フレキシブルライン、 110 フレキシブルラインホルダ。 20 vacuum containers, 100 polar low and hot freezers, 104 cold heads, 106 cold head mounts, 106A mounting flanges, 106B airtight sore walls, 106C driving sources, 108 flexible lines, 110 flexible line holder.

Claims (9)

  1.  真空容器に搭載可能なコールドヘッドと、
     前記真空容器に対する前記コールドヘッドの移動を許容するように前記コールドヘッドを前記真空容器に連結するように構成されるコールドヘッドマウントと、
     前記真空容器の外で前記コールドヘッドに接続されるフレキシブルラインと、
     前記真空容器に対して固定的に前記フレキシブルラインを保持するように構成されるフレキシブルラインホルダと、を備えることを特徴とする極低温冷凍機。
    A cold head that can be mounted on a vacuum container,
    a cold head mount configured to couple the cold head to the vacuum vessel to allow movement of the cold head relative to the vacuum vessel;
    a flexible line connected to the cold head outside the vacuum vessel;
    A cryogenic refrigerator comprising: a flexible line holder configured to fixedly hold the flexible line with respect to the vacuum container.
  2.  前記フレキシブルラインホルダは、前記フレキシブルラインの前記コールドヘッド側の端部で前記フレキシブルラインを保持することを特徴とする請求項1に記載の極低温冷凍機。 The cryogenic refrigerator according to claim 1, wherein the flexible line holder holds the flexible line at an end of the flexible line on the cold head side.
  3.  前記フレキシブルラインは、作動ガスの前記コールドヘッドへの供給または前記コールドヘッドからの排出のための作動ガスラインを備え、
     前記フレキシブルラインホルダは、前記作動ガスラインを保持する作動ガスラインホルダを備えることを特徴とする請求項1または2に記載の極低温冷凍機。
    The flexible line includes a working gas line for supplying working gas to or discharging working gas from the cold head,
    The cryogenic refrigerator according to claim 1 or 2, wherein the flexible line holder includes a working gas line holder that holds the working gas line.
  4.  前記作動ガスラインホルダは、前記作動ガスが流れることができる内部流路を有する中間継手を備え、
     前記作動ガスラインは、前記コールドヘッドを前記中間継手に接続する第1部分と、前記中間継手に接続される第2部分とを備えることを特徴とする請求項3に記載の極低温冷凍機。
    The working gas line holder includes an intermediate joint having an internal flow path through which the working gas can flow;
    4. The cryogenic refrigerator according to claim 3, wherein the working gas line includes a first portion connecting the cold head to the intermediate joint, and a second portion connecting the intermediate joint.
  5.  前記コールドヘッドマウントは、前記真空容器に取付可能な取付フランジと、前記コールドヘッドを前記取付フランジに接続する伸縮可能な気密隔壁と、を備え、
     前記作動ガスラインホルダは、前記取付フランジに固定されていることを特徴とする請求項3に記載の極低温冷凍機。
    The cold head mount includes a mounting flange attachable to the vacuum vessel and an expandable airtight bulkhead connecting the cold head to the mounting flange,
    The cryogenic refrigerator according to claim 3, wherein the working gas line holder is fixed to the mounting flange.
  6.  前記フレキシブルラインは、前記コールドヘッドへの給電のための給電ケーブルを備え、
     前記フレキシブルラインホルダは、前記給電ケーブルを保持するケーブルホルダを備えることを特徴とする請求項1または2に記載の極低温冷凍機。
    The flexible line includes a power supply cable for power supply to the cold head,
    The cryogenic refrigerator according to claim 1 or 2, wherein the flexible line holder includes a cable holder that holds the power supply cable.
  7.  前記コールドヘッドマウントは、前記真空容器に取付可能な取付フランジと、前記コールドヘッドを前記取付フランジに接続する伸縮可能な気密隔壁と、を備え、
     前記ケーブルホルダは、前記取付フランジに固定されていることを特徴とする請求項6に記載の極低温冷凍機。
    The cold head mount includes a mounting flange attachable to the vacuum vessel and an expandable airtight bulkhead connecting the cold head to the mounting flange,
    The cryogenic refrigerator according to claim 6, wherein the cable holder is fixed to the mounting flange.
  8.  前記コールドヘッドマウントに搭載され、前記コールドヘッドを前記真空容器に対して移動させるように構成される駆動源と、
     前記駆動源に接続される別のフレキシブルラインと、
     前記真空容器に対して固定的に前記別のフレキシブルラインを保持するように構成される別のフレキシブルラインホルダと、をさらに備えることを特徴とする請求項1から7のいずれかに記載の極低温冷凍機。
    a drive source mounted on the cold head mount and configured to move the cold head relative to the vacuum vessel;
    another flexible line connected to the drive source;
    8. The cryogenic method according to claim 1, further comprising another flexible line holder configured to fixedly hold the other flexible line with respect to the vacuum container. refrigerator.
  9.  前記コールドヘッドマウントは、前記真空容器に取付可能な取付フランジと、前記コールドヘッドを前記取付フランジに接続する伸縮可能な気密隔壁と、を備え、
     前記別のフレキシブルラインホルダは、前記取付フランジに固定されていることを特徴とする請求項8に記載の極低温冷凍機。
    The cold head mount includes a mounting flange attachable to the vacuum vessel and an expandable airtight bulkhead connecting the cold head to the mounting flange,
    The cryogenic refrigerator according to claim 8, wherein the other flexible line holder is fixed to the mounting flange.
PCT/JP2023/018540 2022-07-01 2023-05-18 Cryogenic refrigerator WO2024004422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-107168 2022-07-01
JP2022107168A JP2024006360A (en) 2022-07-01 2022-07-01 cryogenic refrigerator

Publications (1)

Publication Number Publication Date
WO2024004422A1 true WO2024004422A1 (en) 2024-01-04

Family

ID=89382589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018540 WO2024004422A1 (en) 2022-07-01 2023-05-18 Cryogenic refrigerator

Country Status (2)

Country Link
JP (1) JP2024006360A (en)
WO (1) WO2024004422A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287837A (en) * 1996-04-19 1997-11-04 Kobe Steel Ltd Cryogenic cooling device
JPH11512512A (en) * 1995-09-11 1999-10-26 シーメンス アクチエンゲゼルシヤフト Indirect cooling of electrical equipment
JP2020134006A (en) * 2019-02-19 2020-08-31 住友重機械工業株式会社 Disassembling method for cold head, and lift-up jig
JP2022113132A (en) * 2021-01-22 2022-08-03 住友重機械工業株式会社 Cryogenic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512512A (en) * 1995-09-11 1999-10-26 シーメンス アクチエンゲゼルシヤフト Indirect cooling of electrical equipment
JPH09287837A (en) * 1996-04-19 1997-11-04 Kobe Steel Ltd Cryogenic cooling device
JP2020134006A (en) * 2019-02-19 2020-08-31 住友重機械工業株式会社 Disassembling method for cold head, and lift-up jig
JP2022113132A (en) * 2021-01-22 2022-08-03 住友重機械工業株式会社 Cryogenic device

Also Published As

Publication number Publication date
JP2024006360A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP4613025B2 (en) Pulse tube cryocooler system for magnetic resonance superconducting magnets
US20070051116A1 (en) Device for loss-free cryogen cooling of a cryostat configuration
US20140130520A1 (en) Apparatus and methods for improving vibration isolation, thermal dampening, and optical access in cryogenic refrigerators
CN110858509B (en) Superconducting magnet cooling device and superconducting magnet cooling method
JPH0394483A (en) Cryostat having cooling means
JPH11159899A (en) Cryostat
JP2008111666A (en) Cryogenic cooler
WO2004055452A1 (en) Method and device for installing refrigerator
WO2014173809A1 (en) An assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement
CN111571517B (en) Cold head dismounting method and lifting clamp
WO2024004422A1 (en) Cryogenic refrigerator
CN113375359B (en) Cryogenic refrigerator and cryogenic system
CN111442557B (en) Cryogenic refrigerator and cryogenic system
JP5283096B2 (en) Cryogenic cooling device
CN216928214U (en) Superconducting magnet device
JP7139303B2 (en) Helium recondenser for cryostat
JP7450377B2 (en) Cryogenic equipment and heating mechanisms for cryogenic equipment
JPH11182959A (en) Proof stress means for cryostat system
JP2004235653A (en) Superconductive magnet
WO2023276856A1 (en) Cold head mounting structure and cryogenic device
EP4141346A1 (en) Cooling device and cold head exchange method
WO2023145302A1 (en) Cryogenic cooling device
WO2024111339A1 (en) Joule-thomson refrigerator
JP2022064520A (en) Pre-cooling device, cryogenic device, and pre-cooling method
JP2004233047A (en) Superconductive magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830874

Country of ref document: EP

Kind code of ref document: A1