WO2024004285A1 - Evaporated fuel treatment device - Google Patents

Evaporated fuel treatment device Download PDF

Info

Publication number
WO2024004285A1
WO2024004285A1 PCT/JP2023/009766 JP2023009766W WO2024004285A1 WO 2024004285 A1 WO2024004285 A1 WO 2024004285A1 JP 2023009766 W JP2023009766 W JP 2023009766W WO 2024004285 A1 WO2024004285 A1 WO 2024004285A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption tower
adsorption
valve
gas fluid
tower
Prior art date
Application number
PCT/JP2023/009766
Other languages
French (fr)
Japanese (ja)
Inventor
裕章 北永
浩之 高橋
啓太 鈴木
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2024004285A1 publication Critical patent/WO2024004285A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Definitions

  • the technology disclosed in this specification relates to an evaporative fuel processing device.
  • Vehicles such as automobiles that use gasoline as fuel are equipped with an evaporative fuel processing device that processes evaporative fuel (also referred to as gaseous fluid) generated in the fuel tank without releasing it into the atmosphere from the viewpoint of environmental issues.
  • This evaporative fuel processing device includes a canister filled with adsorbent.
  • the evaporated fuel processing device temporarily collects evaporated fuel generated from within a fuel tank by adsorbing it onto an adsorbent.
  • the canister and the engine intake pipe are communicated via a purge passage, and the intake pipe negative pressure generated in the intake pipe during engine operation is used to remove adsorption in the canister.
  • the structure is such that evaporated fuel is desorbed from the fuel. The desorbed evaporated fuel is then directly introduced into the intake pipe through the purge passage, and is supplied to the engine and burned.
  • Japanese Patent Application Laid-Open No. 2011-21505 discloses an evaporative fuel processing device in which a pressure swing adsorption device is provided after a canister.
  • vaporized fuel can also be adsorbed in the adsorption tower of the two-column pressure swing adsorption device, so the recovery efficiency of vaporized fuel is improved. It is possible to reliably suppress the release of evaporated fuel into the atmosphere while increasing the amount of fuel vapor.
  • the adsorption tower provided in the above-mentioned pressure swing adsorption apparatus is filled with an adsorbent inside, and adsorption and desorption actions are performed alternately.
  • the adsorbent has a characteristic that the lower the temperature, the higher the adsorption capacity, and the higher the temperature, the lower the adsorption capacity. Therefore, in the case of a desorption action that desorbs evaporated fuel, it is preferable that the temperature of the adsorbent is high. Further, in the case of an adsorption action in which the adsorbent adsorbs evaporated fuel, it is preferable that the temperature of the adsorbent is low.
  • FIG. 12 shows the arrangement of the adsorption tower.
  • the two-column pressure swing adsorption apparatus 112 has a first adsorption tower 144 on the left side and a second adsorption tower 146 on the right side.
  • the first adsorption tower 144 is in an adsorption state
  • the second adsorption tower 146 is in a desorption state.
  • the first adsorption tower 144 has an inlet 154 for vaporized fuel at its lower end, and an outlet 156 for fluid gas at its upper end.
  • the second adsorption tower 146 has a fluid gas inlet 155 at its upper end, and a fluid gas outlet 157 at its lower end.
  • the flow directions of the fluid gas in the adsorption action and the desorption action are opposite to each other.
  • the flow direction of the vaporized fuel adsorbed in the first adsorption tower 144 on the left side is an upward flow indicated by X.
  • the flow direction of the vaporized fuel desorbed in the second adsorption tower 146 on the right side is a downward flow indicated by Y, which is the opposite direction.
  • the thermal effects such as heating and cooling caused by the adsorption action in the first adsorption tower 144 and the desorption action in the second adsorption tower 146 described above are noticeable in the vicinity of the inlets 154 and 155 of each adsorption tower 144 and 146. It will be done.
  • the states are shown in FIG. 12 as a "warmed region W" and a "cold region C.” That is, in the first adsorption tower 144 where the adsorption action is performed, a "warmed region W" is generated due to the adsorption action at a position on the lower end side where the inlet 154 is set. Furthermore, in the second adsorption tower 146 where the desorption action is performed, a "cold region C" is generated due to the desorption action at the upper end side position where the inlet 155 is set.
  • the "warmed region W" produced by the adsorption action of the first adsorption tower 144 and the "cooled region C" produced by the desorption action of the second adsorption tower 146 are at different positions in the vertical direction. .
  • the efficiency of heat exchange is low. Therefore, in the two-column pressure swing adsorption device 112 shown in FIG. 12, it is not possible to reliably suppress the release of vaporized fuel into the atmosphere while increasing the recovery efficiency of vaporized fuel. Therefore, there is a need for an improved evaporative fuel processing system.
  • the evaporated fuel processing apparatus includes at least one first adsorption tower and at least one second adsorption tower arranged in parallel to each other, the first adsorption tower and the second adsorption tower disposed in parallel to each other.
  • a pressure swing adsorption device configured to alternately adsorb and desorb a gas fluid in an adsorption tower is provided.
  • the first adsorption tower and the second adsorption tower are in surface contact along the flow direction of the gas fluid so as to be able to exchange heat therebetween. While one of adsorption and desorption is performed in the first adsorption tower, the other of adsorption and desorption is performed in the second adsorption tower.
  • the flow direction of the gas fluid in the first adsorption tower is the same as the flow direction of the gas fluid in the second adsorption tower.
  • the first adsorption tower and the second adsorption tower in which adsorption and desorption are performed are in surface contact along the flow direction of the gas fluid so as to be able to exchange heat, and the gas fluid in the first adsorption tower The flow direction of is the same as the flow direction of the gas fluid in the second adsorption tower.
  • the "warm region" produced by the adsorption action and the "cold region” produced by the desorption action are both on the inlet side of the gas fluid in each adsorption tower and are adjacent to each other. Therefore, heat exchange between the "warm area” and the "cold area” is performed efficiently.
  • the adsorption efficiency and desorption efficiency of the gas fluid in the first adsorption tower and the second adsorption tower are improved. Therefore, the recovery efficiency of vaporized fuel by the pressure swing adsorption device can be increased.
  • FIG. 1 is a configuration diagram showing the overall configuration of an evaporated fuel processing device including a pressure swing adsorption device according to a first embodiment
  • FIG. FIG. 2 is a schematic diagram of the pressure swing adsorption apparatus of FIG. 1, and shows an example of adsorption and desorption operations when the adsorption tower is a two-tower type.
  • FIG. 3 is a schematic diagram of the pressure swing adsorption device of FIG. 2, showing another example of adsorption and desorption effects.
  • FIG. 2 is an explanatory diagram showing the state of adsorption and desorption of adsorption towers in a two-column pressure swing adsorption apparatus.
  • FIG. 3 is a cross-sectional shape diagram of the adsorption tower in FIG.
  • FIG. 6 is a cross-sectional diagram showing a modification of the cross-sectional shape of the adsorption tower shown in FIG. 5; 6 is a cross-sectional diagram showing another modification of the cross-sectional shape of the adsorption tower shown in FIG. 5.
  • FIG. It is a perspective view when the adsorption tower of a pressure swing adsorption apparatus is made into a four tower structure.
  • FIG. 9 is a configuration diagram showing an example of a state in which a three-way valve is disposed above the adsorption tower in the four-column adsorption tower shown in FIG. 8; FIG.
  • FIG. 9 is a configuration diagram showing an example of an arrangement state of a three-way valve disposed at a lower position of the adsorption tower in the four-column configuration adsorption tower shown in FIG. 8;
  • FIG. 2 is a perspective view showing an example of a pressure swing adsorption apparatus in which a plurality of adsorption towers are arranged in an arc shape.
  • 1 is a schematic diagram of an adsorption tower in a conventional two-column pressure swing adsorption apparatus.
  • Embodiment 1 of the evaporated fuel processing device equipped with the pressure swing adsorption device disclosed in this specification will be described based on the drawings.
  • the evaporated fuel processing device of this embodiment is provided in a fuel supply device of a vehicle such as an automobile.
  • directions such as left and right, up and down, and front and back in the explanation of the figures indicate the directions in the figures, and do not indicate the directions when mounted on a vehicle such as an automobile unless otherwise specified.
  • FIG. 1 shows the overall configuration of an evaporated fuel processing device 10 equipped with a pressure swing adsorption device 12.
  • the evaporative fuel processing device 10 includes a canister 16 that adsorbs evaporative fuel (HC) generated within a fuel tank 14, and a vacuum pump 18 that removes the evaporative fuel adsorbed within the canister 16.
  • the inside of the canister 16 is filled with an adsorbent 24 such as activated carbon that selectively adsorbs evaporated fuel and allows air to pass through.
  • gas fluid is the evaporated fuel in this embodiment.
  • Gasoline fuel F is stored in the fuel tank 14, and the gasoline fuel F is supplied to an engine (not shown) through a fuel supply passage 28 by a fuel pump 26 disposed in the fuel tank 14. This gasoline fuel F generates vaporized fuel in the fuel tank 14.
  • the fuel tank 14 and the canister 16 are communicated by a vapor passage 20, and the vaporized fuel generated in the fuel tank 14 is guided into the canister 16 through the vapor passage 20.
  • a vapor passage valve 22 is provided on the vapor passage 20, and switches the vapor passage 20 between a communicating state and a non-communicating state. Then, in the communicating state, evaporated fuel in the fuel tank 14 is guided to the canister.
  • the vapor passage valve 22 is a solenoid valve, and its opening and closing timing is controlled by an electronic control unit (ECU) 30.
  • the ECU 30 includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), a backup RAM, an external input circuit, an external output circuit, and the like.
  • the ROM stores in advance a predetermined control program related to vapor recovery control and the like.
  • the RAM temporarily stores the calculation results of the CPU.
  • the CPU controls each control device, such as the vapor passage valve 22, based on signals input through the input circuit.
  • the vaporized fuel adsorbed in the canister 16 is sucked by a vacuum pump 18 provided in a gas circuit 32 connected to the canister 16, and is supplied to a pressure swing adsorption device 12 whose detailed configuration will be explained later.
  • the vacuum pump 18 is an electric pump, and its drive and stop timing are controlled by the ECU 30.
  • an atmospheric passage 34 is set in the canister 16, and an atmospheric passage valve 38 is provided on the atmospheric passage 34, which is opened and closed to switch the atmospheric passage 34 between a communicating state and a non-communicating state.
  • the atmospheric passage valve 38 is a solenoid valve, and the opening/closing timing is controlled by the ECU 30.
  • the atmospheric passage 34 is provided with a first pressure regulating valve 36 in a branch passage 40 branching from the atmospheric passage 34 to maintain the pressure inside the canister 16 at a constant pressure.
  • This first pressure regulating valve 36 is a check valve, and functions to only allow gas to flow from the atmosphere side to the canister 16 side when the pressure inside the canister 16 is lower than a predetermined pressure (for example, ⁇ 70 kPa or lower).
  • This first pressure regulating valve 36 is also controlled by the ECU 30.
  • the ECU 30 closes the vapor passage valve 22 and the atmospheric passage valve 38, and drives the vacuum pump 18.
  • the gas fluid within the canister 16 is then suctioned by the vacuum pump 18.
  • the vaporized fuel adsorbed in the canister 16 is desorbed and supplied to the pressure swing adsorption device 12, which will be described later, through the gas circuit 32.
  • the vapor passage valve 22 and the atmospheric passage valve 38 are opened under the control of the ECU 30, and the pressure inside the canister 16 gradually decreases (depressurizes).
  • the vacuum pump 18 is controlled by the ECU 30 and is stopped after a predetermined period of time has elapsed. At the same time, the vapor passage valve 22 and the atmospheric passage valve 38 are also opened. While the vehicle is in operation, the vacuum pump 18 can be driven and stopped, and the vapor passage valve 22 and the atmosphere passage valve 38 can be repeatedly opened and closed. When the engine is stopped, the vacuum pump 18 is stopped, and the vapor passage valve 22 and the atmospheric passage valve 38 are opened.
  • the evaporated fuel processing device shown in FIG. 1 is provided with a pressure sensor 80 that detects the pressure inside the fuel tank 14, and a detection signal from the pressure sensor 80 is input to the ECU 30 to control various devices. used for.
  • Pressure swing adsorption device 12 is configured to efficiently return gaseous fluid desorbed from canister 16 to fuel tank 14 .
  • the pressure swing adsorption apparatus 12 shown in FIGS. 2 and 3 has a two-column type adsorption tower module 42 that performs adsorption and desorption operations. That is, the adsorption tower module 42 includes a first adsorption tower 44 and a second adsorption tower 46 that are arranged in parallel to each other. In FIGS. 2 and 3, the adsorption/desorption actions in the first adsorption tower 44 and the second adsorption tower 46 are different from each other.
  • the two-column adsorption tower module 42 is illustrated in an arrangement in which the gas fluid flows in a horizontal direction, but it may be arranged in a vertical direction.
  • the adsorption tower module 42 is composed of two towers, a first adsorption tower 44 and a second adsorption tower 46.
  • the first adsorption tower 44 and the second adsorption tower 46 are filled with an adsorbent 24 that adsorbs and desorbs gas fluid.
  • This adsorbent 24 is activated carbon or the like similar to the adsorbent 24 filled in the canister 16. Note that the adsorbent 24 is filled in the same range in the entire length of the first adsorption tower 44 and the second adsorption tower 46, that is, in the same range in the horizontal direction in FIG.
  • the cross-sectional shapes of the first adsorption tower 44 and the second adsorption tower 46 perpendicular to the flow direction of the gas fluid are polygonal.
  • the cross-sectional shapes of the first adsorption tower 44 and the second adsorption tower 46 in the embodiment of FIG. 2 are quadrangular as shown in FIG. 5. That is, the first adsorption tower 44 and the second adsorption tower 46 are each formed into a square column shape.
  • the first adsorption tower 44 and the second adsorption tower 46 are arranged adjacent to each other in the flow direction of the gas fluid, and one surface 48 of the square column is arranged in a surface-contact configuration. Thereby, the first adsorption tower 44 and the second adsorption tower 46 are configured to perform heat exchange well.
  • the material of the surface disposed in the surface contact form is a material with good thermal conductivity.
  • FIGS. 5 to 7 show examples of cross-sectional shapes of modified examples of the adsorption tower module 42.
  • FIG. FIG. 6 shows an example in which both the first adsorption tower 44 and the second adsorption tower 46 have a triangular prism shape, and are arranged with one surface 50 of the adsorption tower in contact with each other.
  • FIG. 7 shows an example in which both the first adsorption tower 44 and the second adsorption tower 46 have a semi-cylindrical shape, and the flat side surfaces 52 are arranged in surface contact with each other. Note that the cross-sectional shapes shown in FIGS. 5 to 7 can also be combined.
  • the cross-sectional shape of the first adsorption tower 44 is set to one of the cross-sectional shapes shown in FIGS. 5 to 7, and the cross-sectional shape of the second adsorption tower 46 is set to any of the other cross-sectional shapes shown in FIGS. 5 to 7. It can also be configured.
  • both the first adsorption tower 44 and the second adsorption tower 46 have inlet holes 54 and 55 on one end side surface on the left side, and an outlet hole 56 on the other end side surface on the right side, as seen in FIG. 57 is set.
  • the gas fluid flows in the flow direction from the inlet holes 54 and 55 toward the outlet holes 56 and 57.
  • Gas fluid flows into and out of the first adsorption tower 44 and the second adsorption tower 46 through two three-way valves 58, 60 set on the inlet holes 54, 55 side and on the outlet holes 56, 57 side. It is controlled by two three-way valves 62 and 64.
  • a first three-way valve 58 and a second three-way valve 60 are set on the inlet holes 54 and 55 side, and a third three-way valve 62 and a fourth three-way valve 64 are set on the outlet holes 56 and 57 side. .
  • a first inflow passage 66 is set in the inlet hole 54 of the first adsorption tower 44, and a second inflow passage 68 is set in the inlet hole 55 of the second adsorption tower 46. Further, a first outflow passage 70 is set in the outlet hole 56 of the first adsorption tower 44, and a second outflow passage 72 is set in the outlet hole 57 of the second adsorption tower 46.
  • the first three-way valve 58 includes three valves 58a, 58b, and 58c.
  • the valve 58a is in communication with the gas circuit 32 shown in FIG. 1, and is supplied with the gas fluid desorbed from the canister 16.
  • the valve 58b is connected in communication with the first inflow passage 66, and is also in communication with the inlet hole 54 of the first adsorption tower 44.
  • the valve 58c is connected in communication with the second inflow passage 68, and is also in communication with the inlet hole 55 of the second adsorption tower 46.
  • the valves 58b and 58c of the first three-way valve 58 are controlled by the ECU 30 so that one is open and the other is closed.
  • FIG. 2 shows a state in which the valve 58a and the valve 58b are in communication
  • FIG. 3 shows a state in which the valve 58a and the valve 58c are in communication.
  • the second three-way valve 60 also includes three valves 60a, 60b, and 60c.
  • An intake passage 74 for introducing fresh air into the pressure swing adsorption device 12 is connected to the valve 60a.
  • An intake passage valve 75 which is a solenoid valve whose opening and closing are controlled by the ECU 30 (see FIG. 1), is set in the intake passage 74, and fresh air is introduced into the valve 60a.
  • the valve 60b is connected in communication with the first inflow passage 66, and is also in communication with the inlet hole 54 of the first adsorption tower 44.
  • the valve 60c is connected in communication with the second inflow passage 68, and is also in communication with the inlet hole 55 of the second adsorption tower 46.
  • valves 60b and 60c are opened and the other is closed under the control of the ECU 30. That is, the valve 58a is in communication with only one of the valves 58b and 58c.
  • FIG. 2 shows a state in which the valve 60a and the valve 60c are in communication
  • FIG. 3 shows a state in which the valve 60a and the valve 60b are in communication.
  • first three-way valve 58 and the second three-way valve 60 are controlled by the ECU 30 (see FIG. 1) so that they are in communication with only one of the first inflow passage 66 and the second inflow passage 68, respectively. controlled. In FIG. 2, only the first three-way valve 58 is in communication with the first inflow passage 66, and only the second three-way valve 60 is in communication with the second inflow passage 68.
  • the third three-way valve 62 also includes three valves 62a, 62b, and 62c.
  • the valve 62a is communicated with an exhaust passage 76.
  • a second pressure regulating valve 77 which is a check valve, is set in the exhaust passage 76. This second pressure regulating valve 77 allows gas to flow out from the pressure swing adsorption device 12 to the atmosphere side when the pressure in the exhaust passage 76 exceeds a predetermined pressure (for example, 150 kPa).
  • the valve 62b of the third three-way valve 62 is connected in communication with the first outflow passage 70, and is in communication with the outlet hole 56 of the first adsorption tower 44.
  • the valve 62c is connected in communication with the second outflow passage 72, and is in communication with the outlet hole 57 of the second adsorption tower 46.
  • the valves 62b and 62c of the third three-way valve 62 are controlled by the ECU 30 so that one is open and the other is closed. Thereby, the valve 62a is brought into communication with only one of the valves 58b and 58c.
  • FIG. 2 shows a state in which the valve 62a and the valve 62b are in communication.
  • FIG. 3 shows a state in which the valve 62a and the valve 62c are in communication.
  • the fourth three-way valve 64 also includes three valves 64a, 64b, and 64c.
  • a gas recovery passage 78 for recovering gas fluid from the pressure swing adsorption device 12 to the fuel tank 14 is communicated with the valve 64a.
  • a pressure reducing pump 79 is installed in the gas recovery passage 78 to ensure that the gas fluid is returned from the pressure swing adsorption device 12 to the fuel tank 14.
  • the valve 64b of the fourth three-way valve 64 is connected in communication with the first outflow passage 70, and is in communication with the outlet hole 56 of the first adsorption tower 44.
  • the valve 64c is connected in communication with the second outflow passage 72, and is also in communication with the outlet hole 57 of the second adsorption tower 46.
  • One of the valves 64b and 64c is opened and the other is closed under the control of the ECU 30. That is, the valve 64a is in communication with only one of the valves 64b and 64c.
  • FIG. 2 shows a state in which the valve 64a and the valve 64c are in communication.
  • FIG. 3 shows a state in which the valve 64a and the valve 64b are in communication.
  • the first adsorption tower 44 performs an adsorption action by the adsorbent 24 within the adsorption tower 44 .
  • the flow of the gas fluid for adsorption in the first adsorption tower 44 is shown in FIG. 2 as a flow in the X direction. At this time, the adsorption action is performed at a high concentration.
  • a second pressure regulating valve 77 is set in the exhaust passage 76 with which the first adsorption tower 44 communicates.
  • a predetermined pressure for example, 150 kPa
  • gas is allowed to flow out to the atmosphere, so that the adsorption action in the first adsorption tower 44 is maintained at a predetermined level. is carried out under pressure. That is, by maintaining the interior of the first adsorption tower 44 in a constant pressurized state by the second pressure regulating valve 77, the adsorption effect of the evaporated fuel is enhanced, and the evaporated fuel is adsorbed in the adsorbent 24 at a high concentration.
  • the valves 60a and 60c are in communication, and the fresh air in the intake passage 74 is passed through the second inflow passage 68. 2 flows into the adsorption tower 46 from the inlet hole 55.
  • the valves 64a and 64c are in communication, so that the gas fluid in the second adsorption tower 46 is transferred from the outlet hole 57 to the second outflow passage. It can be discharged through 72.
  • the second adsorption tower 46 performs a desorption action on the gas fluid that has been adsorbed by the adsorbent 24 .
  • the flow of the gas fluid for desorption in the second adsorption tower 46 is shown in FIG. 2 as a flow in the Y direction.
  • an intake passage valve 75 is set in the intake passage 74 with which the second adsorption tower 46 communicates.
  • the intake passage valve 75 is controlled to open and close by the ECU 30 (see FIG. 1), and is opened when the adsorption tower module 42 performs a desorption operation.
  • a decompression pump 79 is installed in the gas recovery passage 78, which promotes the introduction of fresh air from the intake passage 74 into the second adsorption tower 46 to actively perform the desorption action.
  • the gas fluid desorbed from the second adsorption tower 46 is returned to the fuel tank 14 (see FIG. 1) through the gas recovery passage 78.
  • the gas fluid is recovered into the fuel tank 14 (see FIG. 1) by first adsorbing the gas fluid at a high concentration using the pressure swing adsorption device 12, so that the liquefaction of the gas fluid is promoted and the recovery efficiency is improved. It is done as follows.
  • the valves 58a and 58c are in communication, and the gas fluid in the gas circuit 32 is passed through the second inflow passage 68 to the second adsorption It enters the column 46 through the inlet hole 55.
  • the valves 62a and 62c are in communication, so that the gas fluid in the second adsorption tower 46 is transferred from the outlet hole 57 to the second outflow passage 72. It can be discharged through.
  • the second adsorption tower 46 performs an adsorption action by the adsorbent 24 filled inside.
  • the flow of gas fluid for adsorption in this second adsorption tower 46 is shown in FIG. 3 as a flow in the X direction.
  • the valves 60a and 60b are in communication, and fresh air from the intake passage 74 is passed through the first inflow passage 66. 1 flows into the adsorption tower 44 from the inlet hole 54.
  • the valves 64a and 64b are in communication, so that the gas fluid in the first adsorption tower 44 flows into the gas recovery passage 78 through the first outlet hole 56. It can be discharged through the passage 70.
  • the first adsorption tower 44 performs a desorption action on the gas fluid that has been adsorbed by the adsorbent 24 filled inside.
  • the flow of the gas fluid for desorption in the first adsorption tower 44 is shown in FIG. 3 as a flow in the Y direction.
  • the adsorption action and desorption action in the embodiment described above are performed alternately in the first adsorption tower 44 and the second adsorption tower 46. That is, by switching and controlling the first to fourth three-way valves 58, 60, 62, and 64 between the states of FIG. 2 and the state of FIG. 3 by the ECU 30 (see FIG. 1), the first adsorption tower 44 and the second In the adsorption tower 46, adsorption and desorption are performed alternately.
  • the flow directions of gas fluids for adsorption and desorption operations performed in the adsorption tower module 42 of the pressure swing adsorption apparatus 12 are the same direction. Also in FIGS. 2 and 3, the flow of gas fluid during adsorption is in the X direction, and the flow of gas fluid during desorption is in the Y direction. Both the X direction and the Y direction are the same right direction.
  • the adsorption tower module 42 is shown horizontally, but in FIG. 4, the adsorption tower module 42 is shown vertically for ease of comparison with the conventional adsorption tower shown in FIG. Shown in orientation.
  • the adsorption/desorption state of the adsorption tower module 42 corresponds to the adsorption/desorption state shown in FIG. That is, the adsorption action is performed in the first adsorption tower 44 on the left, and the desorption action is performed in the second adsorption tower 46 on the right.
  • FIG. 4 the flow of the gas fluid during adsorption in the first adsorption tower 44 is shown as the X direction, and the flow of the gas fluid during the desorption action in the second adsorption tower 46 is shown as the Y direction. That is, in the illustrated state of FIG. 4, both the X direction and the Y direction are upward, and are the same direction. Therefore, in the illustrated state of FIG. 4, the lower end side of the adsorption tower module 42 is the gas fluid inflow side, and the upper end side is the gas fluid outflow side.
  • Thermal effects such as heating and cooling on the adsorbent 24 filled in the adsorption tower module 42 caused by adsorption and desorption effects occur significantly in the initial stage when the gas fluid passes through the adsorbent 24 in the X and Y directions. . That is, a significant thermal effect occurs in the area near the inlet hole 54 of the first adsorption tower 44 and the area near the inlet hole 55 of the second adsorption tower 46.
  • the adsorbent 24 in the lower range is heated by the heat of condensation generated by adsorption of the gas fluid.
  • the range is shown in FIG. 4 as a "warmed region W.”
  • the adsorbent 24 in the lower range is cooled by the heat of vaporization generated by desorption of the gas fluid. This range is shown in FIG. 4 as “cold region C.” Note that the other ranges in FIG. 4 are indicated as "normal temperature region T.”
  • the "warmed region W" in the first adsorption tower 44 and the "cooled region C" in the second adsorption tower 46 are located in the same range in the vertical direction.
  • the first adsorption tower 44 and the second adsorption tower 46 are arranged adjacent to each other, and are in a face-to-face state along the flow direction of the gas fluid so as to be able to exchange heat, as shown in FIG. It is located in As a result, in FIG. 4, heat exchange between the "warm region W" in the first adsorption tower 44 and the "cold region C" in the second adsorption tower 46 is efficiently performed in the "heat exchange region K". . As a result, the adsorbent 24 in the first adsorption tower 44 is cooled by heat exchange, and the adsorption efficiency is improved. Conversely, the adsorbent 24 in the second adsorption tower 46 is warmed by heat exchange, improving the desorption efficiency.
  • a plurality of adsorption tower modules 42 are arranged in a surface contact configuration to enable heat exchange, and the gas fluid flows in the same direction during the adsorption action and the desorption action, thereby achieving the adsorption action. It is possible to improve the efficiency of the desorption action.
  • the pressure swing adsorption device 12 may have three or more adsorption towers.
  • the number of first adsorption towers 44 and second adsorption towers 46 is preferably the same.
  • FIG. 8 is a schematic diagram of an embodiment in which the adsorption tower module 42 includes two first adsorption towers 44 and two second adsorption towers 46.
  • the first adsorption tower 44 and the second adsorption tower 46 are each formed into a quadrangular column shape.
  • Each first adsorption tower 44 is in surface contact with the second adsorption tower 46 on two sides.
  • each second adsorption tower 46 is in surface contact with the first adsorption tower 44 on two sides.
  • FIG. 8 is a schematic diagram of an embodiment in which the adsorption tower module 42 includes two first adsorption towers 44 and two second adsorption towers 46.
  • the first adsorption tower 44 and the second adsorption tower 46 are each formed into a quadrangular column shape.
  • FIG. 9 shows an example of the arrangement of a three-way valve connected to the inlet on the upper surface of the adsorption tower module 42 shown in FIG.
  • FIG. 10 shows an example of the arrangement of a three-way valve connected to the outlet on the bottom surface of the adsorption tower module 42 shown in FIG.
  • components corresponding to those in Embodiment 1 are denoted by the same reference numerals, and detailed explanations are omitted.
  • the first adsorption tower 44 and the second adsorption tower 46 may be arranged in a ring.
  • FIG. 11 shows an embodiment in which the first adsorption tower 44 and the second adsorption tower 46 are arranged in a ring.
  • the adsorption tower module 42 has three first adsorption towers 44 and three second adsorption towers 46 arranged alternately in the circumferential direction.
  • the first adsorption tower 44 and the second adsorption tower 46 are each formed into a columnar shape with a substantially hexagonal cross section perpendicular to the flow direction of the gas fluid.
  • Each first adsorption tower 44 is in surface contact with the second adsorption tower 46 on two sides.
  • each second adsorption tower 46 is in surface contact with the first adsorption tower 44 on two sides.
  • the first adsorption tower 44 and the second adsorption tower 46 can be arranged compactly.
  • a first aspect is a vaporized fuel processing apparatus including a pressure swing adsorption device including a plurality of adsorption towers and alternately adsorbing and desorbing a gas fluid in the adsorption towers,
  • the plurality of adsorption towers are arranged in a surface-contact configuration in the flow direction of the gas fluid so that adjacent adsorption towers can exchange heat.
  • the tower has a treatment configuration in which one of the adsorption and desorption actions is performed in one adsorption tower, and the other action of adsorption and desorption is performed alternately in the other adsorption tower.
  • This is a evaporated fuel processing device equipped with a pressure swing adsorption device configured such that the flow directions of gas fluids for adsorption and desorption in an adsorption tower and the other adsorption tower are in the same direction.
  • the gas fluid flows in the same direction in the plurality of adsorption towers that are arranged adjacently to enable heat exchange and alternately perform adsorption and desorption actions.
  • the main range of the "warm region” generated by the adsorption tower where adsorption action is performed and the main range of the "cold region” created by the adsorption tower where desorption action is performed are both at the inlet of each adsorption tower. These are adjacent positions and are at the same position when viewed in the flow direction of the gas fluid. Therefore, the heat exchange effect between the "warm area” and the "cold area” is performed well.
  • the adsorption action in the adsorption tower where the adsorption action is performed is performed well, and the desorption action in the adsorption tower where the desorption action is performed is also performed well. Therefore, the recovery efficiency of vaporized fuel by the pressure swing adsorption device can be increased.
  • a second aspect is an evaporated fuel processing device equipped with the pressure swing adsorption device according to the above-described first means, wherein the adsorption tower has a polygonal cross section in a direction perpendicular to the flow direction of the gas fluid;
  • the evaporated fuel processing apparatus includes a pressure swing adsorption device, wherein at least two surfaces of the cross section of the one adsorption tower are disposed in contact with polygonal surfaces of the cross section of the other adsorption tower.
  • the contact area for heat exchange between one adsorption tower and the other adsorption tower disposed adjacent to each other is increased, and the effect of the above-mentioned first means is carried out more markedly. .
  • a third aspect is a vaporized fuel processing apparatus equipped with the pressure swing adsorption device of the second means described above, wherein the one adsorption tower and the other adsorption tower are arranged so that the overall arrangement is annular.
  • This is an evaporative fuel processing device equipped with a plurality of pressure swing adsorption devices installed in the fuel vapor treatment system.
  • a large number of adsorption towers can be arranged compactly.

Abstract

An evaporated fuel treatment device (10) is provided with a pressure swing adsorption device (12) configured to have a first adsorption tower (44) and a second adsorption tower (46) arranged parallel to each other and to alternatingly perform adsorption and desorption of a gas fluid in the first adsorption tower (44) and the second adsorption tower (46). The first adsorption tower (44) and the second adsorption tower (46) are in surface contact along the direction of flow of a gas fluid so as to allow heat exchange therebetween. While an adsorption or desorption operation is taking place in the first adsorption tower (44), the other operation is taking place in the second adsorption tower (46). The direction of flow of the gas fluid in the first adsorption tower (44) is the same as the direction of flow of the gas fluid in the second adsorption tower (46).

Description

蒸発燃料処理装置Evaporated fuel processing equipment
 本明細書に開示の技術は、蒸発燃料処理装置に関する。 The technology disclosed in this specification relates to an evaporative fuel processing device.
 ガソリンを燃料とする自動車等車両には、環境問題等の観点から燃料タンク内で発生した蒸発燃料(ガス流体とも呼ぶ)を大気へ放出させることなく処理する蒸発燃料処理装置が備えられる。この蒸発燃料処理装置は、吸着材が充填されたキャニスタを備える。蒸発燃料処理装置は、燃料タンク内から発生した蒸発燃料を吸着材に吸着させることで一時的に捕集するようにしている。 Vehicles such as automobiles that use gasoline as fuel are equipped with an evaporative fuel processing device that processes evaporative fuel (also referred to as gaseous fluid) generated in the fuel tank without releasing it into the atmosphere from the viewpoint of environmental issues. This evaporative fuel processing device includes a canister filled with adsorbent. The evaporated fuel processing device temporarily collects evaporated fuel generated from within a fuel tank by adsorbing it onto an adsorbent.
 そして、従来の一般的な蒸発燃料処理装置では、キャニスタとエンジンの吸気管とをパージ通路を介して連通させて、エンジン運転時に吸気管で発生する吸気管負圧を利用してキャニスタ内の吸着材から蒸発燃料を脱離させる構成をとっている。そして、脱離された蒸発燃料は、そのままパージ通路を通して吸気管へ導入し、エンジンに供給されて燃焼される。 In conventional general evaporative fuel processing equipment, the canister and the engine intake pipe are communicated via a purge passage, and the intake pipe negative pressure generated in the intake pipe during engine operation is used to remove adsorption in the canister. The structure is such that evaporated fuel is desorbed from the fuel. The desorbed evaporated fuel is then directly introduced into the intake pipe through the purge passage, and is supplied to the engine and burned.
 しかし、近年では、燃料消費量や排気ガス排出量を低減させる等の観点から、「アイドリング停止システム」や「ハイブリッドシステム」を搭載した車両が増加している。このようなシステムを搭載した車両では、必然的に吸気管負圧を得る機会が減少する。したがって、このようなシステムを搭載した車両では、蒸発燃料のキャニスタからのパージが十分に行われない可能性がある。なお、過給機により過給を行う車両でも、キャニスタに捕集されたベーパを吸気通路へパージさせることが難しく、同様の問題がある。 However, in recent years, an increasing number of vehicles are equipped with "idling stop systems" and "hybrid systems" from the perspective of reducing fuel consumption and exhaust gas emissions. In a vehicle equipped with such a system, the chances of obtaining negative pressure in the intake pipe inevitably decrease. Therefore, in a vehicle equipped with such a system, the vaporized fuel may not be purged sufficiently from the canister. Note that even in vehicles that are supercharged using a supercharger, it is difficult to purge the vapor collected in the canister into the intake passage, and the same problem occurs.
 このため、近年では、蒸発燃料を吸気管へ導入ことなく回収する「パージレスエバポシステム」を採用した蒸発燃料処理装置が提案されている。特開2011-21505号公報は、その一つとして、キャニスタの後に圧力スイング吸着装置を設けた蒸発燃料処理装置を開示している。 For this reason, in recent years, evaporated fuel processing devices have been proposed that employ a "purgeless evaporation system" that recovers evaporated fuel without introducing it into the intake pipe. As one example, Japanese Patent Application Laid-Open No. 2011-21505 discloses an evaporative fuel processing device in which a pressure swing adsorption device is provided after a canister.
 圧力スイング吸着装置は、複数の吸着塔を備え、キャニスタ内から脱離させた蒸発燃料を、各吸着塔において交互に吸着・脱離する作用を行い、蒸発燃料を燃料タンクに戻すように構成されている。 The pressure swing adsorption device is equipped with a plurality of adsorption towers, and each adsorption tower alternately adsorbs and desorbs the evaporated fuel that has been desorbed from the inside of the canister, and is configured to return the evaporated fuel to the fuel tank. ing.
 そして、特開2011-21505号公報に示される二塔式圧力スイング吸着装置によれば、二塔式圧力スイング吸着装置の吸着塔にも蒸発燃料を吸着させることができるので、蒸発燃料の回収効率を高めながら蒸発燃料の大気放出を確実に抑制することができる。 According to the two-column pressure swing adsorption device disclosed in Japanese Unexamined Patent Publication No. 2011-21505, vaporized fuel can also be adsorbed in the adsorption tower of the two-column pressure swing adsorption device, so the recovery efficiency of vaporized fuel is improved. It is possible to reliably suppress the release of evaporated fuel into the atmosphere while increasing the amount of fuel vapor.
 上記の圧力スイング吸着装置に備えられる吸着塔は、内部に吸着材が充填されており、吸着作用と脱離作用が交互に行われるようになっている。吸着材は、温度が低いほど吸着容量が多く、温度が高いほど吸着容量が低くなる特性を有する。したがって、蒸発燃料を脱離させる脱離作用の場合には、吸着材の温度は高い方が好ましい。また、吸着材に蒸発燃料を吸着させる吸着作用の場合は、吸着材の温度は低い方が好ましい。 The adsorption tower provided in the above-mentioned pressure swing adsorption apparatus is filled with an adsorbent inside, and adsorption and desorption actions are performed alternately. The adsorbent has a characteristic that the lower the temperature, the higher the adsorption capacity, and the higher the temperature, the lower the adsorption capacity. Therefore, in the case of a desorption action that desorbs evaporated fuel, it is preferable that the temperature of the adsorbent is high. Further, in the case of an adsorption action in which the adsorbent adsorbs evaporated fuel, it is preferable that the temperature of the adsorbent is low.
 しかし、吸着材に蒸発燃料が吸着される場合は、その凝縮熱によって吸着材は加熱される。逆に、吸着材から蒸発燃料が脱離される場合は、その気化熱によって吸着材は冷却される。そのため、外部の熱源と熱交換しない状態では、吸着、脱離作用が効果的に行われにくい。 However, when vaporized fuel is adsorbed by the adsorbent, the adsorbent is heated by the heat of condensation. Conversely, when vaporized fuel is desorbed from the adsorbent, the adsorbent is cooled by the heat of vaporization. Therefore, in the absence of heat exchange with an external heat source, adsorption and desorption effects are difficult to perform effectively.
 このため、特開2011-21505号公報の二塔式圧力スイング吸着装置では、2個の吸着塔を熱交換可能なように隣接して配設させて、吸着作用と脱離作用により生じる熱を交換している。図12はその吸着塔の配設構成を示す。 For this reason, in the two-column pressure swing adsorption device disclosed in JP-A No. 2011-21505, two adsorption towers are placed adjacent to each other so that heat exchange is possible, and the heat generated by adsorption and desorption is transferred. are being exchanged. FIG. 12 shows the arrangement of the adsorption tower.
 図12に示すように、二塔式圧力スイング吸着装置112は、左側の第1吸着塔144及び右側の第2吸着塔146を有する。図12の状態では、第1吸着塔144が吸着作用状態となっており、第2吸着塔146が脱離作用状態となっている。第1吸着塔144は、下端に蒸発燃料の入口154が設定されており、上端に流体ガスの出口156が設定されている。第2吸着塔146は、逆に、上端に流体ガスの入口155が設定されており、下端に流体ガスの出口157が設定されている。このため、吸着作用と脱離作用における流体ガスの流れ方向は、逆方向となっている。図12の図示状態では、左側の第1吸着塔144における吸着作用の蒸発燃料の流れ方向はXで示す上方向の流れとなっている。右側の第2吸着塔146における脱離作用の蒸発燃料の流れ方向はYで示す下方向の流れとなっており、逆方向となっている。 As shown in FIG. 12, the two-column pressure swing adsorption apparatus 112 has a first adsorption tower 144 on the left side and a second adsorption tower 146 on the right side. In the state of FIG. 12, the first adsorption tower 144 is in an adsorption state, and the second adsorption tower 146 is in a desorption state. The first adsorption tower 144 has an inlet 154 for vaporized fuel at its lower end, and an outlet 156 for fluid gas at its upper end. On the contrary, the second adsorption tower 146 has a fluid gas inlet 155 at its upper end, and a fluid gas outlet 157 at its lower end. Therefore, the flow directions of the fluid gas in the adsorption action and the desorption action are opposite to each other. In the illustrated state of FIG. 12, the flow direction of the vaporized fuel adsorbed in the first adsorption tower 144 on the left side is an upward flow indicated by X. The flow direction of the vaporized fuel desorbed in the second adsorption tower 146 on the right side is a downward flow indicated by Y, which is the opposite direction.
 ところで、上記における第1吸着塔144における吸着作用と、第2吸着塔146における脱離作用で生じる加熱、冷却等の熱作用は、各吸着塔144、146における入口154、155の近傍において顕著に行われる。その状態が図12に「暖まった領域W」と、「冷えている領域C」として示されている。すなわち、吸着作用が行われる第1吸着塔144では、入口154が設定される下端側の位置に吸着作用により生じる「暖まった領域W」が生じる。また、脱離作用が行われる第2吸着塔146では、入口155が設定される上端側の位置に脱離作用により生じる「冷えている領域C」が生じる。 By the way, the thermal effects such as heating and cooling caused by the adsorption action in the first adsorption tower 144 and the desorption action in the second adsorption tower 146 described above are noticeable in the vicinity of the inlets 154 and 155 of each adsorption tower 144 and 146. It will be done. The states are shown in FIG. 12 as a "warmed region W" and a "cold region C." That is, in the first adsorption tower 144 where the adsorption action is performed, a "warmed region W" is generated due to the adsorption action at a position on the lower end side where the inlet 154 is set. Furthermore, in the second adsorption tower 146 where the desorption action is performed, a "cold region C" is generated due to the desorption action at the upper end side position where the inlet 155 is set.
 しかし、第1吸着塔144の吸着作用により生じる「暖まった領域W」と、第2吸着塔146の脱離作用により生じる「冷えている領域C」は、上下方向において異なった位置となっている。このため、2個の吸着塔144,146を熱交換可能なように隣接して配設させたにもかかわらず、熱交換の効率が低い。したがって、図12に示される二塔式圧力スイング吸着装置112では、蒸発燃料の回収効率を高めながら蒸発燃料の大気放出を確実に抑制することができない。そのため、改良された蒸発燃料処理装置が求められている。 However, the "warmed region W" produced by the adsorption action of the first adsorption tower 144 and the "cooled region C" produced by the desorption action of the second adsorption tower 146 are at different positions in the vertical direction. . For this reason, even though the two adsorption towers 144 and 146 are disposed adjacent to each other so as to be able to exchange heat, the efficiency of heat exchange is low. Therefore, in the two-column pressure swing adsorption device 112 shown in FIG. 12, it is not possible to reliably suppress the release of vaporized fuel into the atmosphere while increasing the recovery efficiency of vaporized fuel. Therefore, there is a need for an improved evaporative fuel processing system.
 本開示の一態様において、蒸発燃料処理装置は、相互に平行に配置された少なくとも1個の第1吸着塔及び少なくとも1個の第2吸着塔を有し、前記第1吸着塔及び前記第2吸着塔においてガス流体の吸着、脱離を交互に行うよう構成された圧力スイング吸着装置を備える。前記第1吸着塔及び前記第2吸着塔は、相互間で熱交換可能なようにガス流体の流動方向に沿って面接触している。前記第1吸着塔において吸着、脱離作用の一方が行われる間、前記第2吸着塔において吸着、脱離作用の他方が行われる。前記第1吸着塔における前記ガス流体の流動方向は、前記第2吸着塔における前記ガス流体の流動方向と同一である。 In one aspect of the present disclosure, the evaporated fuel processing apparatus includes at least one first adsorption tower and at least one second adsorption tower arranged in parallel to each other, the first adsorption tower and the second adsorption tower disposed in parallel to each other. A pressure swing adsorption device configured to alternately adsorb and desorb a gas fluid in an adsorption tower is provided. The first adsorption tower and the second adsorption tower are in surface contact along the flow direction of the gas fluid so as to be able to exchange heat therebetween. While one of adsorption and desorption is performed in the first adsorption tower, the other of adsorption and desorption is performed in the second adsorption tower. The flow direction of the gas fluid in the first adsorption tower is the same as the flow direction of the gas fluid in the second adsorption tower.
 上記態様によれば、吸着、脱離が行われる第1吸着塔及び第2吸着塔は熱交換可能なようにガス流体の流動方向に沿って面接触しており、第1吸着塔におけるガス流体の流動方向は、第2吸着塔におけるガス流体の流動方向と同一である。これにより、吸着作用により生じる「暖まった領域」と、脱離作用により生じる「冷えている領域」は、共に各吸着塔におけるガス流体の入口側であり、相互に隣接する。したがって、「暖まった領域」と「冷えている領域」の熱交換が効率的に行われる。その結果、第1吸着塔及び第2吸着塔におけるガス流体の吸着効率及び脱離効率が向上する。そのため、圧力スイング吸着装置による蒸発燃料の回収効率を高めることができる。 According to the above aspect, the first adsorption tower and the second adsorption tower in which adsorption and desorption are performed are in surface contact along the flow direction of the gas fluid so as to be able to exchange heat, and the gas fluid in the first adsorption tower The flow direction of is the same as the flow direction of the gas fluid in the second adsorption tower. As a result, the "warm region" produced by the adsorption action and the "cold region" produced by the desorption action are both on the inlet side of the gas fluid in each adsorption tower and are adjacent to each other. Therefore, heat exchange between the "warm area" and the "cold area" is performed efficiently. As a result, the adsorption efficiency and desorption efficiency of the gas fluid in the first adsorption tower and the second adsorption tower are improved. Therefore, the recovery efficiency of vaporized fuel by the pressure swing adsorption device can be increased.
実施形態1に係る圧力スイング吸着装置を備えた蒸発燃料処理装置の全体構成を示す構成図である。1 is a configuration diagram showing the overall configuration of an evaporated fuel processing device including a pressure swing adsorption device according to a first embodiment; FIG. 図1の圧力スイング吸着装置の模式図であり、吸着塔が二塔式の場合の吸着、脱離作用の一例を示す。FIG. 2 is a schematic diagram of the pressure swing adsorption apparatus of FIG. 1, and shows an example of adsorption and desorption operations when the adsorption tower is a two-tower type. 図2の圧力スイング吸着装置の模式図であり、吸着、脱離作用の他例を示す。FIG. 3 is a schematic diagram of the pressure swing adsorption device of FIG. 2, showing another example of adsorption and desorption effects. 二塔式圧力スイング吸着装置における吸着塔の吸着、脱離作用状態を示す説明図である。FIG. 2 is an explanatory diagram showing the state of adsorption and desorption of adsorption towers in a two-column pressure swing adsorption apparatus. 図2の吸着塔のV-V線断面の断面形状図である。FIG. 3 is a cross-sectional shape diagram of the adsorption tower in FIG. 2 taken along the line VV. 図5に示す吸着塔の断面形状の一つの変形例を示す断面形状図である。FIG. 6 is a cross-sectional diagram showing a modification of the cross-sectional shape of the adsorption tower shown in FIG. 5; 図5に示す吸着塔の断面形状の他の変形例を示す断面形状図である。6 is a cross-sectional diagram showing another modification of the cross-sectional shape of the adsorption tower shown in FIG. 5. FIG. 圧力スイング吸着装置の吸着塔を四塔構成とした場合の斜視図である。It is a perspective view when the adsorption tower of a pressure swing adsorption apparatus is made into a four tower structure. 図8に示される四塔構成の吸着塔において、吸着塔の上方位置に配設される三方弁の配設状態の一例を示す構成図である。FIG. 9 is a configuration diagram showing an example of a state in which a three-way valve is disposed above the adsorption tower in the four-column adsorption tower shown in FIG. 8; 図8に示される四塔構成の吸着塔において、吸着塔の下方位置に配設される三方弁の配設状態の一例を示す構成図である。FIG. 9 is a configuration diagram showing an example of an arrangement state of a three-way valve disposed at a lower position of the adsorption tower in the four-column configuration adsorption tower shown in FIG. 8; 圧力スイング吸着装置における複数個の吸着塔を円弧形状に配設して構成する場合の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a pressure swing adsorption apparatus in which a plurality of adsorption towers are arranged in an arc shape. 従来の二塔式圧力スイング吸着装置における吸着塔の模式図である。1 is a schematic diagram of an adsorption tower in a conventional two-column pressure swing adsorption apparatus.
 以下、本明細書に開示の圧力スイング吸着装置を備えた蒸発燃料処理装置の実施形態1を、図面に基づいて説明する。なお、本実施形態の蒸発燃料処理装置は、自動車等車両等の燃料供給装置に備えられる。なお、図の説明における左右、上下、前後等の方向表示は、当該図における方向を示すものであり、特に指定しない限り、自動車等車両に搭載した状態の方向を示すものではない。 Hereinafter, Embodiment 1 of the evaporated fuel processing device equipped with the pressure swing adsorption device disclosed in this specification will be described based on the drawings. Note that the evaporated fuel processing device of this embodiment is provided in a fuel supply device of a vehicle such as an automobile. Note that directions such as left and right, up and down, and front and back in the explanation of the figures indicate the directions in the figures, and do not indicate the directions when mounted on a vehicle such as an automobile unless otherwise specified.
〔蒸発燃料処理装置10の全体構成〕
 先ず、本実施形態の蒸発燃料処理装置10の全体構成を説明する。図1は圧力スイング吸着装置12を備えた蒸発燃料処理装置10の全体構成を示す。蒸発燃料処理装置10は燃料タンク14内で発生した蒸発燃料(HC)を吸着するキャニスタ16と、キャニスタ16内に吸着された蒸発燃料を脱離させる真空ポンプ18とを備える。キャニスタ16の内部には、蒸発燃料を選択的に吸着し空気は透過させる活性炭等の吸着材24が充填されている。なお、本明細書においてはガス流体と称するのは、本実施形態における蒸発燃料である。
[Overall configuration of evaporative fuel processing device 10]
First, the overall configuration of the evaporated fuel processing apparatus 10 of this embodiment will be explained. FIG. 1 shows the overall configuration of an evaporated fuel processing device 10 equipped with a pressure swing adsorption device 12. As shown in FIG. The evaporative fuel processing device 10 includes a canister 16 that adsorbs evaporative fuel (HC) generated within a fuel tank 14, and a vacuum pump 18 that removes the evaporative fuel adsorbed within the canister 16. The inside of the canister 16 is filled with an adsorbent 24 such as activated carbon that selectively adsorbs evaporated fuel and allows air to pass through. Note that in this specification, what is referred to as gas fluid is the evaporated fuel in this embodiment.
 燃料タンク14内にはガソリン燃料Fが貯留されており、当該ガソリン燃料Fは、燃料タンク14に配設された燃料ポンプ26によって燃料供給通路28を通して図外のエンジンに供給される。そして、このガソリン燃料Fによって燃料タンク14内には蒸発燃料が発生する。 Gasoline fuel F is stored in the fuel tank 14, and the gasoline fuel F is supplied to an engine (not shown) through a fuel supply passage 28 by a fuel pump 26 disposed in the fuel tank 14. This gasoline fuel F generates vaporized fuel in the fuel tank 14.
 燃料タンク14とキャニスタ16とはベーパ通路20によって連通されており、当該ベーパ通路20を通じて燃料タンク14内で発生した蒸発燃料がキャニスタ16内に導かれる。ベーパ通路20上には、ベーパ通路弁22が設けられており、ベーパ通路20を連通、非連通状態に切り替える。そして、連通状態において燃料タンク14の蒸発燃料がキャニスタに導かれる。 The fuel tank 14 and the canister 16 are communicated by a vapor passage 20, and the vaporized fuel generated in the fuel tank 14 is guided into the canister 16 through the vapor passage 20. A vapor passage valve 22 is provided on the vapor passage 20, and switches the vapor passage 20 between a communicating state and a non-communicating state. Then, in the communicating state, evaporated fuel in the fuel tank 14 is guided to the canister.
 ベーパ通路弁22は電磁弁であり、電子制御装置(ECU)30によって開閉タイミングが制御される。ECU30は、中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、バックアップRAM、外部入力回路及び外部出力回路などを備える。ROMは、ベーパ回収制御等に関する所定の制御プログラムを予め記憶する。RAMは、CPUの演算結果を一時記憶する。CPUが、入力回路を介して入力される信号に基づき、ベーパ通路弁22等の各制御機器を制御する。 The vapor passage valve 22 is a solenoid valve, and its opening and closing timing is controlled by an electronic control unit (ECU) 30. The ECU 30 includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), a backup RAM, an external input circuit, an external output circuit, and the like. The ROM stores in advance a predetermined control program related to vapor recovery control and the like. The RAM temporarily stores the calculation results of the CPU. The CPU controls each control device, such as the vapor passage valve 22, based on signals input through the input circuit.
 キャニスタ16に吸着された蒸発燃料は、キャニスタ16に接続されたガス回路32に設けられた真空ポンプ18により吸引されて、後で詳細構成を説明する圧力スイング吸着装置12に供給される。真空ポンプ18は電動ポンプであり、その駆動、停止タイミングはECU30によって制御される。 The vaporized fuel adsorbed in the canister 16 is sucked by a vacuum pump 18 provided in a gas circuit 32 connected to the canister 16, and is supplied to a pressure swing adsorption device 12 whose detailed configuration will be explained later. The vacuum pump 18 is an electric pump, and its drive and stop timing are controlled by the ECU 30.
 また、キャニスタ16には大気通路34が設定されており、この大気通路34上には、当該大気通路34の連通、非連通状態を切り替えるように開閉される大気通路弁38が設けられている。大気通路弁38は電磁弁であり、ECU30によって開閉タイミングが制御される。なお、この大気通路34には、この大気通路34から分岐した分岐通路40にキャニスタ16内の圧力を一定の圧力に維持する第1の圧力調整弁36が設けられている。この第1の圧力調整弁36はチェック弁であり、キャニスタ16内が所定圧力以下(例えば、-70kPa以下)となった場合に大気側からキャニスタ16側への気体流入のみを許す作用をなす。この第1の圧力調整弁36もECU30によって制御される。第1の圧力調整弁36の設定圧力を適宜調整することにより、キャニスタ16内において蒸発燃料が脱離する時の負圧の程度が調整される。 Further, an atmospheric passage 34 is set in the canister 16, and an atmospheric passage valve 38 is provided on the atmospheric passage 34, which is opened and closed to switch the atmospheric passage 34 between a communicating state and a non-communicating state. The atmospheric passage valve 38 is a solenoid valve, and the opening/closing timing is controlled by the ECU 30. The atmospheric passage 34 is provided with a first pressure regulating valve 36 in a branch passage 40 branching from the atmospheric passage 34 to maintain the pressure inside the canister 16 at a constant pressure. This first pressure regulating valve 36 is a check valve, and functions to only allow gas to flow from the atmosphere side to the canister 16 side when the pressure inside the canister 16 is lower than a predetermined pressure (for example, −70 kPa or lower). This first pressure regulating valve 36 is also controlled by the ECU 30. By appropriately adjusting the set pressure of the first pressure regulating valve 36, the degree of negative pressure when the vaporized fuel is desorbed within the canister 16 is adjusted.
〔キャニスタ16の作用〕
 次に、キャニスタ16の作用を説明する。先ず、車両停止時(イグニッションスイッチやスタータのOFF時)は、ベーパ通路弁22及び大気通路弁38はECU30により制御されて、開弁状態とされる。これにより、車両停止時に燃料タンク14内で発生した蒸発燃料は、ベーパ通路20を通してキャニスタ16内へ導入され、吸着材24に吸着捕集される。空気はそのままキャニスタ16を透過し、大気通路弁38を介して大気中に放出される。これにより、燃料タンク14の内圧が大きく上昇することが避けられる。
[Function of canister 16]
Next, the function of the canister 16 will be explained. First, when the vehicle is stopped (when the ignition switch or starter is turned off), the vapor passage valve 22 and the atmospheric passage valve 38 are controlled by the ECU 30 and are opened. As a result, evaporated fuel generated in the fuel tank 14 when the vehicle is stopped is introduced into the canister 16 through the vapor passage 20 and adsorbed and collected by the adsorbent 24 . The air directly passes through the canister 16 and is discharged into the atmosphere via the atmosphere passage valve 38. This prevents the internal pressure of the fuel tank 14 from increasing significantly.
 次に、車両運転時(イグニッションスイッチやスタータのON状態)では、ECU30によってベーパ通路弁22及び大気通路弁38は閉弁状態にされると共に、真空ポンプ18が駆動される。すると、キャニスタ16内のガス流体が真空ポンプ18によって吸引される。これにより、キャニスタ16内に吸着されていた蒸発燃料が脱離されて、ガス回路32を通して後述の圧力スイング吸着装置12に供給される。このとき、ベーパ通路弁22及び大気通路弁38はECU30により制御されて開弁されており、キャニスタ16内の圧力は徐々に低下(減圧)していく。そして、キャニスタ16内が所定の負圧になると、第1の圧力調整弁36を介して新気(大気)がキャニスタ16内に導入される。このように、真空ポンプ18によってキャニスタ16内から蒸発燃料を脱離させる際には、キャニスタ16内が負圧状態に維持されながら、第1の圧力調整弁36を介して新気がキャニスタ16内に導入されて、蒸発燃料の脱離効率を向上させるようにしている。 Next, when the vehicle is operating (the ignition switch and starter are ON), the ECU 30 closes the vapor passage valve 22 and the atmospheric passage valve 38, and drives the vacuum pump 18. The gas fluid within the canister 16 is then suctioned by the vacuum pump 18. As a result, the vaporized fuel adsorbed in the canister 16 is desorbed and supplied to the pressure swing adsorption device 12, which will be described later, through the gas circuit 32. At this time, the vapor passage valve 22 and the atmospheric passage valve 38 are opened under the control of the ECU 30, and the pressure inside the canister 16 gradually decreases (depressurizes). Then, when the inside of the canister 16 reaches a predetermined negative pressure, fresh air (atmosphere) is introduced into the canister 16 via the first pressure regulating valve 36. In this way, when the vaporized fuel is removed from the canister 16 by the vacuum pump 18, fresh air is pumped into the canister 16 via the first pressure regulating valve 36 while the canister 16 is maintained in a negative pressure state. It is intended to improve the desorption efficiency of evaporated fuel.
 本実施形態では、真空ポンプ18は、ECU30により制御されて、所定時間経過後に停止される。これと同時にベーパ通路弁22及び大気通路弁38も開弁される。車両運転中は、真空ポンプ18の駆動・停止、及びこれに伴うベーパ通路弁22及び大気通路弁38の開閉が繰り返されるように制御することもできる。エンジンが停止されると、真空ポンプ18が停止されると共にベーパ通路弁22及び大気通路弁38が開弁される。 In this embodiment, the vacuum pump 18 is controlled by the ECU 30 and is stopped after a predetermined period of time has elapsed. At the same time, the vapor passage valve 22 and the atmospheric passage valve 38 are also opened. While the vehicle is in operation, the vacuum pump 18 can be driven and stopped, and the vapor passage valve 22 and the atmosphere passage valve 38 can be repeatedly opened and closed. When the engine is stopped, the vacuum pump 18 is stopped, and the vapor passage valve 22 and the atmospheric passage valve 38 are opened.
 なお、図1に示す蒸発燃料処理装置には、燃料タンク14内の圧力を検知する圧力センサ80が設けられており、圧力センサ80からの検知信号は、ECU30に入力されて、各種機器の制御に用いられる。 The evaporated fuel processing device shown in FIG. 1 is provided with a pressure sensor 80 that detects the pressure inside the fuel tank 14, and a detection signal from the pressure sensor 80 is input to the ECU 30 to control various devices. used for.
〔圧力スイング吸着装置12〕
 次に、本実施形態が特徴とする圧力スイング吸着装置12について説明する。圧力スイング吸着装置12はキャニスタ16から脱離されたガス流体を効率よく燃料タンク14に戻すよう構成されている。図2及び図3に示される圧力スイング吸着装置12は吸着・脱離作用を行う吸着塔モジュール42が二塔式である。すなわち、吸着塔モジュール42は、相互に平行に配置された第1吸着塔44と第2吸着塔46を備える。図2と図3では、第1吸着塔44と第2吸着塔46における吸着・脱離作用が相互に異なる。なお、図2及び図3では、二塔の吸着塔モジュール42はガス流体の流れが横方向となる配置として図示されているが、縦方向となる配置でもよい。
[Pressure swing adsorption device 12]
Next, the pressure swing adsorption device 12, which is a feature of this embodiment, will be explained. Pressure swing adsorber 12 is configured to efficiently return gaseous fluid desorbed from canister 16 to fuel tank 14 . The pressure swing adsorption apparatus 12 shown in FIGS. 2 and 3 has a two-column type adsorption tower module 42 that performs adsorption and desorption operations. That is, the adsorption tower module 42 includes a first adsorption tower 44 and a second adsorption tower 46 that are arranged in parallel to each other. In FIGS. 2 and 3, the adsorption/desorption actions in the first adsorption tower 44 and the second adsorption tower 46 are different from each other. In addition, in FIGS. 2 and 3, the two-column adsorption tower module 42 is illustrated in an arrangement in which the gas fluid flows in a horizontal direction, but it may be arranged in a vertical direction.
 先ず、図2に基づいて、本実施形態の圧力スイング吸着装置12を説明する。吸着塔モジュール42は第1吸着塔44と第2吸着塔46の2塔から構成される。第1吸着塔44と第2吸着塔46内には、ガス流体を吸着・脱離作用をなす吸着材24が充填されている。この吸着材24は、キャニスタ16内に充填される吸着材24と同様の活性炭等である。なお、吸着材24は、第1吸着塔44と第2吸着塔46の全長における同じ範囲、すなわち図2における水平方向で同じ範囲に充填されている。 First, the pressure swing adsorption device 12 of this embodiment will be explained based on FIG. 2. The adsorption tower module 42 is composed of two towers, a first adsorption tower 44 and a second adsorption tower 46. The first adsorption tower 44 and the second adsorption tower 46 are filled with an adsorbent 24 that adsorbs and desorbs gas fluid. This adsorbent 24 is activated carbon or the like similar to the adsorbent 24 filled in the canister 16. Note that the adsorbent 24 is filled in the same range in the entire length of the first adsorption tower 44 and the second adsorption tower 46, that is, in the same range in the horizontal direction in FIG.
〔吸着塔モジュール42の断面形状〕
 第1吸着塔44と第2吸着塔46のガス流体の流れ方向に直交する断面形状は多角形形状とされる。図2の実施形態における第1吸着塔44と第2吸着塔46の断面形状は図5に示される4角形とされている。つまり、第1吸着塔44と第2吸着塔46は、それぞれ四角柱状に形成されている。そして、第1吸着塔44と第2吸着塔46はガス流体の流れ方向に隣接して配設されており、四角柱の一面48は面接触形態として配置されている。これにより、第1吸着塔44と第2吸着塔46は熱交換が良好に行われる構成とされている。なお、面接触形態として配設される面の材質は、熱伝導の良い材質であるのが好ましい。
[Cross-sectional shape of adsorption tower module 42]
The cross-sectional shapes of the first adsorption tower 44 and the second adsorption tower 46 perpendicular to the flow direction of the gas fluid are polygonal. The cross-sectional shapes of the first adsorption tower 44 and the second adsorption tower 46 in the embodiment of FIG. 2 are quadrangular as shown in FIG. 5. That is, the first adsorption tower 44 and the second adsorption tower 46 are each formed into a square column shape. The first adsorption tower 44 and the second adsorption tower 46 are arranged adjacent to each other in the flow direction of the gas fluid, and one surface 48 of the square column is arranged in a surface-contact configuration. Thereby, the first adsorption tower 44 and the second adsorption tower 46 are configured to perform heat exchange well. Note that it is preferable that the material of the surface disposed in the surface contact form is a material with good thermal conductivity.
〔吸着塔モジュール42の他の断面形状〕
 図6及び図7は吸着塔モジュール42の変形例の断面形状例を示す。図6は第1吸着塔44と第2吸着塔46ともに三角柱形状であり、その一面50が面接触して配置された形態例である。図7は第1吸着塔44と第2吸着塔46ともに半円柱状とされた形状であり、平らな側面52が面接触して配置された形態例である。なお、図5から図7に示す断面形状を組み合わせて構成することもできる。すなわち、第1吸着塔44の断面形状を図5から図7に示すいずれかの断面形状とし、第2吸着塔46の断面形状を図5から図7に示すいずれかの他の断面形状として組合せ構成とすることもできる。
[Other cross-sectional shapes of adsorption tower module 42]
6 and 7 show examples of cross-sectional shapes of modified examples of the adsorption tower module 42. FIG. FIG. 6 shows an example in which both the first adsorption tower 44 and the second adsorption tower 46 have a triangular prism shape, and are arranged with one surface 50 of the adsorption tower in contact with each other. FIG. 7 shows an example in which both the first adsorption tower 44 and the second adsorption tower 46 have a semi-cylindrical shape, and the flat side surfaces 52 are arranged in surface contact with each other. Note that the cross-sectional shapes shown in FIGS. 5 to 7 can also be combined. That is, the cross-sectional shape of the first adsorption tower 44 is set to one of the cross-sectional shapes shown in FIGS. 5 to 7, and the cross-sectional shape of the second adsorption tower 46 is set to any of the other cross-sectional shapes shown in FIGS. 5 to 7. It can also be configured.
〔吸着塔モジュール42へのガス流体の流入・流出〕
 吸着塔モジュール42を構成する第1吸着塔44と第2吸着塔46へのガス流体の流入・流出構成を次に説明する。本実施形態では、第1吸着塔44と第2吸着塔46とも、図2で見て、左側の一端側面に入口孔54、55が設定されており、右側の他端側面に出口孔56、57が設定されている。これにより、第1吸着塔44と第2吸着塔46とも、入口孔54、55から出口孔56、57に向けてガス流体は流動する流れ方向となる。
[Inflow/outflow of gas fluid to adsorption tower module 42]
The inflow and outflow configurations of gas fluids into and out of the first adsorption tower 44 and the second adsorption tower 46 that constitute the adsorption tower module 42 will now be described. In this embodiment, both the first adsorption tower 44 and the second adsorption tower 46 have inlet holes 54 and 55 on one end side surface on the left side, and an outlet hole 56 on the other end side surface on the right side, as seen in FIG. 57 is set. As a result, in both the first adsorption tower 44 and the second adsorption tower 46, the gas fluid flows in the flow direction from the inlet holes 54 and 55 toward the outlet holes 56 and 57.
 第1吸着塔44と第2吸着塔46へのガス流体の流入・流出は、入口孔54、55側に設定される2個の三方弁58、60と、出口孔56、57側に設定される2個の三方弁62、64により制御される。入口孔54、55側には第1の三方弁58と第2の三方弁60が設定され、出口孔56、57側には第3の三方弁62と第4の三方弁64が設定される。 Gas fluid flows into and out of the first adsorption tower 44 and the second adsorption tower 46 through two three- way valves 58, 60 set on the inlet holes 54, 55 side and on the outlet holes 56, 57 side. It is controlled by two three- way valves 62 and 64. A first three-way valve 58 and a second three-way valve 60 are set on the inlet holes 54 and 55 side, and a third three-way valve 62 and a fourth three-way valve 64 are set on the outlet holes 56 and 57 side. .
 第1吸着塔44の入口孔54には第1の流入通路66が設定されており、第2吸着塔46の入口孔55には第2の流入通路68が設定されている。また、第1吸着塔44の出口孔56には第1の流出通路70が設定されており、第2吸着塔46の出口孔57には第2の流出通路72が設定されている。 A first inflow passage 66 is set in the inlet hole 54 of the first adsorption tower 44, and a second inflow passage 68 is set in the inlet hole 55 of the second adsorption tower 46. Further, a first outflow passage 70 is set in the outlet hole 56 of the first adsorption tower 44, and a second outflow passage 72 is set in the outlet hole 57 of the second adsorption tower 46.
〔第1の三方弁58〕
 第1の三方弁58は、3個の弁58a、58b、58cを備える。弁58aは図1に示すガス回路32と連通されており、キャニスタ16から脱離したガス流体が供給されてくる。弁58bは第1の流入通路66と連通結合されており、第1吸着塔44の入口孔54とも連通状態にある。弁58cは第2の流入通路68と連通結合されており、第2吸着塔46の入口孔55とも連通状態にある。第1の三方弁58の弁58b、58cは、ECU30により一方が開弁で他方が閉弁状態に制御される。これにより、弁58aは弁58b、58cの一方のみと連通状態とされる。図2は弁58aと弁58bが連通した状態を示し、図3は弁58aと弁58cが連通した状態を示す。
[First three-way valve 58]
The first three-way valve 58 includes three valves 58a, 58b, and 58c. The valve 58a is in communication with the gas circuit 32 shown in FIG. 1, and is supplied with the gas fluid desorbed from the canister 16. The valve 58b is connected in communication with the first inflow passage 66, and is also in communication with the inlet hole 54 of the first adsorption tower 44. The valve 58c is connected in communication with the second inflow passage 68, and is also in communication with the inlet hole 55 of the second adsorption tower 46. The valves 58b and 58c of the first three-way valve 58 are controlled by the ECU 30 so that one is open and the other is closed. Thereby, the valve 58a is brought into communication with only one of the valves 58b and 58c. FIG. 2 shows a state in which the valve 58a and the valve 58b are in communication, and FIG. 3 shows a state in which the valve 58a and the valve 58c are in communication.
〔第2の三方弁60〕
 第2の三方弁60も、3個の弁60a、60b、60cを備える。弁60aには、圧力スイング吸着装置12に新気を導入する吸気通路74が連結される。吸気通路74にECU30(図1参照)によって開閉制御される電磁弁の吸気通路弁75が設定されており、弁60aには新気が導入される。弁60bは、第1の流入通路66と連通結合されており、第1吸着塔44の入口孔54とも連通状態にある。弁60cは第2の流入通路68と連通結合されており、第2吸着塔46の入口孔55とも連通状態にある。弁60b、60cは、ECU30の制御により一方が開弁で他方が閉弁状態とされる。すなわち、弁58aは弁58b、58cの一方のみと連通状態とされる。図2は弁60aと弁60cが連通した状態を示し、図3は弁60aと弁60bが連通した状態を示す。
[Second three-way valve 60]
The second three-way valve 60 also includes three valves 60a, 60b, and 60c. An intake passage 74 for introducing fresh air into the pressure swing adsorption device 12 is connected to the valve 60a. An intake passage valve 75, which is a solenoid valve whose opening and closing are controlled by the ECU 30 (see FIG. 1), is set in the intake passage 74, and fresh air is introduced into the valve 60a. The valve 60b is connected in communication with the first inflow passage 66, and is also in communication with the inlet hole 54 of the first adsorption tower 44. The valve 60c is connected in communication with the second inflow passage 68, and is also in communication with the inlet hole 55 of the second adsorption tower 46. One of the valves 60b and 60c is opened and the other is closed under the control of the ECU 30. That is, the valve 58a is in communication with only one of the valves 58b and 58c. FIG. 2 shows a state in which the valve 60a and the valve 60c are in communication, and FIG. 3 shows a state in which the valve 60a and the valve 60b are in communication.
 なお、第1の三方弁58及び第2の三方弁60は、それぞれ第1の流入通路66と第2の流入通路68のいずれか一方のみと連通状態となるようにECU30(図1参照)により制御される。図2では、第1の流入通路66には第1の三方弁58のみが連通状態とされ、第2の流入通路68には第2の三方弁60のみが連通状態とされている。 Note that the first three-way valve 58 and the second three-way valve 60 are controlled by the ECU 30 (see FIG. 1) so that they are in communication with only one of the first inflow passage 66 and the second inflow passage 68, respectively. controlled. In FIG. 2, only the first three-way valve 58 is in communication with the first inflow passage 66, and only the second three-way valve 60 is in communication with the second inflow passage 68.
〔第3の三方弁62〕
 次に、吸着塔モジュール42の流出側に配設される第3の三方弁62及び第4の三方弁64について説明する。第3の三方弁62も、3個の弁62a、62b、62cを備える。弁62aは排気通路76に連通されている。排気通路76には、チェックバルブである第2の圧力調整弁77が設定されている。この第2の圧力調整弁77は、排気通路76内の圧力が所定圧力(例えば150kPa)以上になると、圧力スイング吸着装置12から大気側へのガス流出を許すようになっている。
[Third three-way valve 62]
Next, the third three-way valve 62 and fourth three-way valve 64 disposed on the outflow side of the adsorption tower module 42 will be explained. The third three-way valve 62 also includes three valves 62a, 62b, and 62c. The valve 62a is communicated with an exhaust passage 76. A second pressure regulating valve 77, which is a check valve, is set in the exhaust passage 76. This second pressure regulating valve 77 allows gas to flow out from the pressure swing adsorption device 12 to the atmosphere side when the pressure in the exhaust passage 76 exceeds a predetermined pressure (for example, 150 kPa).
 第3の三方弁62の弁62bは、第1の流出通路70と連通結合されており、第1吸着塔44の出口孔56と連通状態にある。弁62cは第2の流出通路72と連通結合されており、第2吸着塔46の出口孔57と連通状態にある。第3の三方弁62の弁62b、62cは、ECU30により一方が開弁で他方が閉弁状態に制御される。これにより、弁62aは弁58b、58cの一方のみと連通状態とされる。図2は弁62aと弁62bが連通する状態を示す。図3は弁62aと弁62cが連通する状態を示す。 The valve 62b of the third three-way valve 62 is connected in communication with the first outflow passage 70, and is in communication with the outlet hole 56 of the first adsorption tower 44. The valve 62c is connected in communication with the second outflow passage 72, and is in communication with the outlet hole 57 of the second adsorption tower 46. The valves 62b and 62c of the third three-way valve 62 are controlled by the ECU 30 so that one is open and the other is closed. Thereby, the valve 62a is brought into communication with only one of the valves 58b and 58c. FIG. 2 shows a state in which the valve 62a and the valve 62b are in communication. FIG. 3 shows a state in which the valve 62a and the valve 62c are in communication.
〔第4の三方弁64〕
 第4の三方弁64も、3個の弁64a、64b、64cを備える。弁64aには、圧力スイング吸着装置12から燃料タンク14にガス流体を回収するガス回収通路78が連通されている。ガス回収通路78には減圧ポンプ79が設定されており、圧力スイング吸着装置12から燃料タンク14へのガス流体の戻しを確実に行うようにしている。
[Fourth three-way valve 64]
The fourth three-way valve 64 also includes three valves 64a, 64b, and 64c. A gas recovery passage 78 for recovering gas fluid from the pressure swing adsorption device 12 to the fuel tank 14 is communicated with the valve 64a. A pressure reducing pump 79 is installed in the gas recovery passage 78 to ensure that the gas fluid is returned from the pressure swing adsorption device 12 to the fuel tank 14.
 第4の三方弁64の弁64bは、第1の流出通路70と連通結合されており、第1吸着塔44の出口孔56と連通状態にある。弁64cは第2の流出通路72と連通結合されており、第2吸着塔46の出口孔57とも連通状態にある。弁64b、64cは、ECU30の制御により一方が開弁で他方が閉弁状態とされる。すなわち、弁64aは弁64b、64cの一方のみと連通状態とされる。図2は弁64aと弁64cが連通する状態を示す。図3は弁64aと弁64bが連通する状態を示す。 The valve 64b of the fourth three-way valve 64 is connected in communication with the first outflow passage 70, and is in communication with the outlet hole 56 of the first adsorption tower 44. The valve 64c is connected in communication with the second outflow passage 72, and is also in communication with the outlet hole 57 of the second adsorption tower 46. One of the valves 64b and 64c is opened and the other is closed under the control of the ECU 30. That is, the valve 64a is in communication with only one of the valves 64b and 64c. FIG. 2 shows a state in which the valve 64a and the valve 64c are in communication. FIG. 3 shows a state in which the valve 64a and the valve 64b are in communication.
〔圧力スイング吸着装置12の吸着・脱離作用〕
 次に、上記構成からなる圧力スイング吸着装置12の作用を説明する。圧力スイング吸着装置12の第1から第4の各三方弁58、60、62、64の各弁はECU30により開閉制御される。そして、図2に示すように弁58b、60c、62b、64cが開弁されると、第1吸着塔44において吸着作用がなされ、第2吸着塔46において脱離作用がなされる。
[Adsorption/desorption action of pressure swing adsorption device 12]
Next, the operation of the pressure swing adsorption device 12 having the above configuration will be explained. The opening and closing of each of the first to fourth three- way valves 58, 60, 62, and 64 of the pressure swing adsorption device 12 is controlled by the ECU 30. Then, as shown in FIG. 2, when the valves 58b, 60c, 62b, and 64c are opened, the first adsorption tower 44 performs an adsorption action, and the second adsorption tower 46 performs a desorption action.
〔図2に示す状態の吸着・脱離作用〕
 図2に示される状態においては、入口側の第1の三方弁58は、弁58aと弁58bが連通状態とされて、ガス回路32のガス流体が、第1の流入通路66を通じて、第1吸着塔44に入口孔54から流入する。一方、出口側の第3の三方弁62は、弁62aと弁62bが連通状態とされて、排気通路76に、第1吸着塔44内のガス流体が、出口孔56から第1の流出通路70を通じて排出可能とされる。これにより、第1吸着塔44は、当該吸着塔44内の吸着材24により吸着作用がなされる。この第1吸着塔44における吸着作用のガス流体の流れは図2にX方向の流れとして示される。そして、この際における吸着作用は高濃度状態に行われる。
[Adsorption/desorption action in the state shown in Figure 2]
In the state shown in FIG. 2, in the first three-way valve 58 on the inlet side, the valves 58a and 58b are in communication, and the gas fluid in the gas circuit 32 flows through the first inflow passage 66 into the first three-way valve 58. It flows into the adsorption tower 44 through the inlet hole 54 . On the other hand, in the third three-way valve 62 on the outlet side, the valves 62a and 62b are in communication, so that the gas fluid in the first adsorption tower 44 is transferred from the outlet hole 56 to the first outflow passage. It can be discharged through 70. Thereby, the first adsorption tower 44 performs an adsorption action by the adsorbent 24 within the adsorption tower 44 . The flow of the gas fluid for adsorption in the first adsorption tower 44 is shown in FIG. 2 as a flow in the X direction. At this time, the adsorption action is performed at a high concentration.
 図2に示す状態では、第1吸着塔44が連通する排気通路76には第2の圧力調整弁77が設定されている。これにより、第1吸着塔44内の圧力が所定圧力(例えば150kPa)以上となったときに、大気側へガス流出を許容するようになっているので、第1吸着塔44における吸着作用は所定の圧力で行われる。すなわち、第2の圧力調整弁77により第1吸着塔44内が一定の加圧状態に維持されることにより、蒸発燃料の吸着作用が高められ、吸着材24には高濃度で吸着される。 In the state shown in FIG. 2, a second pressure regulating valve 77 is set in the exhaust passage 76 with which the first adsorption tower 44 communicates. As a result, when the pressure inside the first adsorption tower 44 reaches a predetermined pressure (for example, 150 kPa) or higher, gas is allowed to flow out to the atmosphere, so that the adsorption action in the first adsorption tower 44 is maintained at a predetermined level. is carried out under pressure. That is, by maintaining the interior of the first adsorption tower 44 in a constant pressurized state by the second pressure regulating valve 77, the adsorption effect of the evaporated fuel is enhanced, and the evaporated fuel is adsorbed in the adsorbent 24 at a high concentration.
 次に、図2に示す状態においては、入口側の第2の三方弁60は、弁60aと弁60cが連通状態とされて、吸気通路74の新気が第2の流入通路68を通じて、第2吸着塔46に入口孔55から流入する。一方、出口側の第4の三方弁64は、弁64aと弁64cが連通状態とされて、ガス回収通路78に第2吸着塔46内のガス流体は、出口孔57から第2の流出通路72を通じて排出可能とされる。これにより、第2吸着塔46は、吸着材24により吸着されていたガス流体の脱離作用がなされる。この第2吸着塔46における脱離作用のガス流体の流れは図2にY方向の流れとして示される。 Next, in the state shown in FIG. 2, in the second three-way valve 60 on the inlet side, the valves 60a and 60c are in communication, and the fresh air in the intake passage 74 is passed through the second inflow passage 68. 2 flows into the adsorption tower 46 from the inlet hole 55. On the other hand, in the fourth three-way valve 64 on the outlet side, the valves 64a and 64c are in communication, so that the gas fluid in the second adsorption tower 46 is transferred from the outlet hole 57 to the second outflow passage. It can be discharged through 72. As a result, the second adsorption tower 46 performs a desorption action on the gas fluid that has been adsorbed by the adsorbent 24 . The flow of the gas fluid for desorption in the second adsorption tower 46 is shown in FIG. 2 as a flow in the Y direction.
 図2に示す状態において、第2吸着塔46が連通する吸気通路74には吸気通路弁75が設定されている。この吸気通路弁75はECU30(図1参照)により制御されて開閉制御され、吸着塔モジュール42において脱離作用がなされる状態において開弁状態とされる。そして、ガス回収通路78には減圧ポンプ79が設定されており、吸気通路74の新気の第2吸着塔46への導入を促進し、脱離作用を積極的に行わせる。そして、第2吸着塔46から脱離したガス流体がガス回収通路78を通じて燃料タンク14(図1参照)に戻される。この燃料タンク14(図1参照)へのガス流体の回収は、圧力スイング吸着装置12によって一旦ガス流体を高濃度で吸着してから回収するので、ガス流体の液化が促進され、回収効率を向上して行われる。 In the state shown in FIG. 2, an intake passage valve 75 is set in the intake passage 74 with which the second adsorption tower 46 communicates. The intake passage valve 75 is controlled to open and close by the ECU 30 (see FIG. 1), and is opened when the adsorption tower module 42 performs a desorption operation. A decompression pump 79 is installed in the gas recovery passage 78, which promotes the introduction of fresh air from the intake passage 74 into the second adsorption tower 46 to actively perform the desorption action. Then, the gas fluid desorbed from the second adsorption tower 46 is returned to the fuel tank 14 (see FIG. 1) through the gas recovery passage 78. The gas fluid is recovered into the fuel tank 14 (see FIG. 1) by first adsorbing the gas fluid at a high concentration using the pressure swing adsorption device 12, so that the liquefaction of the gas fluid is promoted and the recovery efficiency is improved. It is done as follows.
〔図3に示す状態の吸着・脱離作用〕
 次に、ECU30(図1参照)により、図3に示すように弁58c、60b、62c、64bが開弁されると、第1吸着塔44と第2吸着塔46における吸着・脱離作用が切り替えられる。すなわち、図3の状態では、第1吸着塔44において脱離作用がなされ、第2吸着塔46において吸着作用がなされる。
[Adsorption/desorption action in the state shown in Figure 3]
Next, when the ECU 30 (see FIG. 1) opens the valves 58c, 60b, 62c, and 64b as shown in FIG. Can be switched. That is, in the state shown in FIG. 3, the first adsorption tower 44 performs a desorption action, and the second adsorption tower 46 performs an adsorption action.
 図3に示される状態においては、入口側の第1の三方弁58は、弁58aと弁58cが連通状態とされて、ガス回路32のガス流体が第2の流入通路68を通じて、第2吸着塔46に入口孔55から流入する。他方、出口側の第3の三方弁62は、弁62aと弁62cが連通状態とされて、排気通路76に第2吸着塔46内のガス流体は、出口孔57から第2の流出通路72を通じて排出可能とされる。これにより、第2吸着塔46は内部に充填された吸着材24により吸着作用がなされる。この第2吸着塔46における吸着作用のガス流体の流れは図3にX方向の流れとして示される。 In the state shown in FIG. 3, in the first three-way valve 58 on the inlet side, the valves 58a and 58c are in communication, and the gas fluid in the gas circuit 32 is passed through the second inflow passage 68 to the second adsorption It enters the column 46 through the inlet hole 55. On the other hand, in the third three-way valve 62 on the outlet side, the valves 62a and 62c are in communication, so that the gas fluid in the second adsorption tower 46 is transferred from the outlet hole 57 to the second outflow passage 72. It can be discharged through. Thereby, the second adsorption tower 46 performs an adsorption action by the adsorbent 24 filled inside. The flow of gas fluid for adsorption in this second adsorption tower 46 is shown in FIG. 3 as a flow in the X direction.
 そして、図3に示される状態においては、入口側の第2の三方弁60は、弁60aと弁60bが連通状態とされて、吸気通路74の新気が第1の流入通路66を通じて、第1吸着塔44に入口孔54から流入する。他方、出口側の第4の三方弁64は、弁64aと弁64bが連通状態とされて、ガス回収通路78に、第1吸着塔44内のガス流体は、出口孔56から第1の流出通路70を通じて排出可能とされる。これにより、第1吸着塔44は、内部に充填された吸着材24に吸着されていたガス流体の脱離作用がなされる。この第1吸着塔44における脱離作用のガス流体の流れは図3にY方向の流れとして示される。 In the state shown in FIG. 3, in the second three-way valve 60 on the inlet side, the valves 60a and 60b are in communication, and fresh air from the intake passage 74 is passed through the first inflow passage 66. 1 flows into the adsorption tower 44 from the inlet hole 54. On the other hand, in the fourth three-way valve 64 on the outlet side, the valves 64a and 64b are in communication, so that the gas fluid in the first adsorption tower 44 flows into the gas recovery passage 78 through the first outlet hole 56. It can be discharged through the passage 70. As a result, the first adsorption tower 44 performs a desorption action on the gas fluid that has been adsorbed by the adsorbent 24 filled inside. The flow of the gas fluid for desorption in the first adsorption tower 44 is shown in FIG. 3 as a flow in the Y direction.
 なお、図3に示す吸着塔モジュール42における吸着・脱離作用においても、吸気通路弁75、第2の圧力調整弁77、減圧ポンプ79は図2に示す状態と同様の作用をなす。 Note that also in the adsorption/desorption action in the adsorption tower module 42 shown in FIG. 3, the intake passage valve 75, the second pressure regulating valve 77, and the pressure reducing pump 79 perform the same actions as in the state shown in FIG.
 上記した実施形態における吸着作用と脱離作用は、第1吸着塔44と第2吸着塔46において交互に行われる。すなわち、ECU30(図1参照)により第1から第4の各三方弁58、60、62、64を図2の状態と図3の状態に切り返し制御することにより、第1吸着塔44と第2吸着塔46において吸着作用と脱離作用が交互に行われる。 The adsorption action and desorption action in the embodiment described above are performed alternately in the first adsorption tower 44 and the second adsorption tower 46. That is, by switching and controlling the first to fourth three- way valves 58, 60, 62, and 64 between the states of FIG. 2 and the state of FIG. 3 by the ECU 30 (see FIG. 1), the first adsorption tower 44 and the second In the adsorption tower 46, adsorption and desorption are performed alternately.
 圧力スイング吸着装置12の吸着塔モジュール42において行われる吸着・脱離作用のガス流体の流れ方向は、同じ方向とされている。図2及び図3においても、吸着作用時におけるガス流体の流れはX方向であり、脱離作用時におけるガス流体の流れはY方向である。そして、X方向、Y方向とも同じ右方向である。 The flow directions of gas fluids for adsorption and desorption operations performed in the adsorption tower module 42 of the pressure swing adsorption apparatus 12 are the same direction. Also in FIGS. 2 and 3, the flow of gas fluid during adsorption is in the X direction, and the flow of gas fluid during desorption is in the Y direction. Both the X direction and the Y direction are the same right direction.
〔本実施形態の作用効果〕
 次に、本実施形態における作用効果を図4により説明する。なお、図2及び図3においては吸着塔モジュール42は横向き状態で図示されているが、図4は図12に示した従来の吸着塔との比較を容易とするために吸着塔モジュール42を縦向き状態で示した。そして、図4において、吸着塔モジュール42の吸着・脱離状態は、図2に示される吸着・脱離状態に相当する。すなわち、左側の第1吸着塔44において吸着作用がなされ、右側の第2吸着塔46において脱離作用がなされる。
[Operations and effects of this embodiment]
Next, the effects of this embodiment will be explained with reference to FIG. 2 and 3, the adsorption tower module 42 is shown horizontally, but in FIG. 4, the adsorption tower module 42 is shown vertically for ease of comparison with the conventional adsorption tower shown in FIG. Shown in orientation. In FIG. 4, the adsorption/desorption state of the adsorption tower module 42 corresponds to the adsorption/desorption state shown in FIG. That is, the adsorption action is performed in the first adsorption tower 44 on the left, and the desorption action is performed in the second adsorption tower 46 on the right.
 図4において、第1吸着塔44における吸着作用時のガス流体の流れはX方向として示され、第2吸着塔46における脱離作用時のガス流体の流れはY方向として示される。すなわち、図4の図示状態では、X方向及びY方向とも、上向きであり、同じ方向となっている。したがって、図4の図示状態では、吸着塔モジュール42の下端側がガス流体の流入側となっており、上端側がガス流体の流出側となっている。 In FIG. 4, the flow of the gas fluid during adsorption in the first adsorption tower 44 is shown as the X direction, and the flow of the gas fluid during the desorption action in the second adsorption tower 46 is shown as the Y direction. That is, in the illustrated state of FIG. 4, both the X direction and the Y direction are upward, and are the same direction. Therefore, in the illustrated state of FIG. 4, the lower end side of the adsorption tower module 42 is the gas fluid inflow side, and the upper end side is the gas fluid outflow side.
 吸着作用と脱離作用で生じる吸着塔モジュール42内に充填された吸着材24に対する加熱、冷却等の熱作用は、ガス流体がX、Y方向に吸着材24を通過する初期段階で顕著に生じる。すなわち、第1吸着塔44の入口孔54近傍の領域、及び第2吸着塔46の入口孔55近傍の領域において熱作用が顕著に生じる。 Thermal effects such as heating and cooling on the adsorbent 24 filled in the adsorption tower module 42 caused by adsorption and desorption effects occur significantly in the initial stage when the gas fluid passes through the adsorbent 24 in the X and Y directions. . That is, a significant thermal effect occurs in the area near the inlet hole 54 of the first adsorption tower 44 and the area near the inlet hole 55 of the second adsorption tower 46.
 したがって、図4に示す第1吸着塔44においては、下方範囲の吸着材24が、ガス流体の吸着により生じる凝縮熱によって加熱される。その範囲が図4に「暖まった領域W」として示される。また、第2吸着塔46においては、下方範囲の吸着材24が、ガス流体の脱離により生じる気化熱によって冷却される。その範囲が図4に「冷えている領域C」として示される。なお、図4におけるその他の範囲は「常温領域T」として示される。 Therefore, in the first adsorption tower 44 shown in FIG. 4, the adsorbent 24 in the lower range is heated by the heat of condensation generated by adsorption of the gas fluid. The range is shown in FIG. 4 as a "warmed region W." Further, in the second adsorption tower 46, the adsorbent 24 in the lower range is cooled by the heat of vaporization generated by desorption of the gas fluid. This range is shown in FIG. 4 as "cold region C." Note that the other ranges in FIG. 4 are indicated as "normal temperature region T."
 図4に示すように、第1吸着塔44における「暖まった領域W」と第2吸着塔46における「冷えている領域C」は、上下方向において同じ範囲に位置する。 As shown in FIG. 4, the "warmed region W" in the first adsorption tower 44 and the "cooled region C" in the second adsorption tower 46 are located in the same range in the vertical direction.
 そして、本実施形態においては、第1吸着塔44と第2吸着塔46は隣接して配置され、かつ、図5に示すように熱交換可能なようにガス流体の流動方向に沿って面接状態で配置されている。これにより、図4において、第1吸着塔44における「暖まった領域W」と第2吸着塔46における「冷えている領域C」の熱交換が、「熱交換領域K」において効率的に行われる。その結果、第1吸着塔44における吸着材24は熱交換により冷やされて、吸着効率が向上する。逆に、第2吸着塔46における吸着材24は熱交換により温められて、脱離効率が向上する。 In this embodiment, the first adsorption tower 44 and the second adsorption tower 46 are arranged adjacent to each other, and are in a face-to-face state along the flow direction of the gas fluid so as to be able to exchange heat, as shown in FIG. It is located in As a result, in FIG. 4, heat exchange between the "warm region W" in the first adsorption tower 44 and the "cold region C" in the second adsorption tower 46 is efficiently performed in the "heat exchange region K". . As a result, the adsorbent 24 in the first adsorption tower 44 is cooled by heat exchange, and the adsorption efficiency is improved. Conversely, the adsorbent 24 in the second adsorption tower 46 is warmed by heat exchange, improving the desorption efficiency.
 本実施形態によれば、複数個の吸着塔モジュール42を熱交換可能に面接触形態として配置して、吸着作用時と脱離作用時のガス流体の流れを同一方向とすることにより、吸着作用と脱離作用の効率の向上を図ることができる。 According to this embodiment, a plurality of adsorption tower modules 42 are arranged in a surface contact configuration to enable heat exchange, and the gas fluid flows in the same direction during the adsorption action and the desorption action, thereby achieving the adsorption action. It is possible to improve the efficiency of the desorption action.
<他の実施形態>
 本明細書に開示の技術は、上記した実施形態に限定されるものではなく、種々の変更が可能である。
<Other embodiments>
The technology disclosed in this specification is not limited to the embodiments described above, and various modifications are possible.
 例えば、圧力スイング吸着装置12は3個以上の吸着塔を有してもよい。なお、第1吸着塔44と第2吸着塔46の数は同じであることが好ましい。図8は、吸着塔モジュール42が2個の第1吸着塔44と2個の第2吸着塔46を有する実施形態の模式図である。本実施形態では、第1吸着塔44及び第2吸着塔46は、それぞれ四角柱状に形成されている。各第1吸着塔44は、2側面において第2吸着塔46に面接触している。各第2吸着塔46も同様に、2側面において第1吸着塔44に面接触している。図8の実施形態には実施形態1と対応する構成には同一の符号を付して示し、詳細説明を省略した。なお、図9は、図8に示される吸着塔モジュール42の上面の入口に接続される三方弁の配設例を示す。図10は、図8に示される吸着塔モジュール42の下面の出口に接続される三方弁の配設例を示す。図9及び図10においても、実施形態1と対応する構成には同一の符号を付して示し、詳細説明を省略した。 For example, the pressure swing adsorption device 12 may have three or more adsorption towers. Note that the number of first adsorption towers 44 and second adsorption towers 46 is preferably the same. FIG. 8 is a schematic diagram of an embodiment in which the adsorption tower module 42 includes two first adsorption towers 44 and two second adsorption towers 46. In this embodiment, the first adsorption tower 44 and the second adsorption tower 46 are each formed into a quadrangular column shape. Each first adsorption tower 44 is in surface contact with the second adsorption tower 46 on two sides. Similarly, each second adsorption tower 46 is in surface contact with the first adsorption tower 44 on two sides. In the embodiment of FIG. 8, components corresponding to those of Embodiment 1 are denoted by the same reference numerals, and detailed description thereof is omitted. Note that FIG. 9 shows an example of the arrangement of a three-way valve connected to the inlet on the upper surface of the adsorption tower module 42 shown in FIG. FIG. 10 shows an example of the arrangement of a three-way valve connected to the outlet on the bottom surface of the adsorption tower module 42 shown in FIG. Also in FIGS. 9 and 10, components corresponding to those in Embodiment 1 are denoted by the same reference numerals, and detailed explanations are omitted.
 また、第1吸着塔44及び第2吸着塔46は環状に配置されていてもよい。図11は、第1吸着塔44及び第2吸着塔46を環状に並べた実施形態を示す。図11では、吸着塔モジュール42は周方向に交互に配置された3個の第1吸着塔44と3個の第2吸着塔46を有する。第1吸着塔44及び第2吸着塔46は、それぞれガス流体の流動方向と直交する断面が略六角形の柱状に形成されている。各第1吸着塔44は、2側面において第2吸着塔46に面接触している。各第2吸着塔46も同様に、2側面において第1吸着塔44に面接触している。この構成例によれば第1吸着塔44及び第2吸着塔46をコンパクトに配置することができる。 Furthermore, the first adsorption tower 44 and the second adsorption tower 46 may be arranged in a ring. FIG. 11 shows an embodiment in which the first adsorption tower 44 and the second adsorption tower 46 are arranged in a ring. In FIG. 11, the adsorption tower module 42 has three first adsorption towers 44 and three second adsorption towers 46 arranged alternately in the circumferential direction. The first adsorption tower 44 and the second adsorption tower 46 are each formed into a columnar shape with a substantially hexagonal cross section perpendicular to the flow direction of the gas fluid. Each first adsorption tower 44 is in surface contact with the second adsorption tower 46 on two sides. Similarly, each second adsorption tower 46 is in surface contact with the first adsorption tower 44 on two sides. According to this configuration example, the first adsorption tower 44 and the second adsorption tower 46 can be arranged compactly.
 また、本開示の内容は様々な態様で実施可能である。第1の態様は、複数個の吸着塔を備えて、ガス流体を前記吸着塔において吸着、脱離を交互に行うようにされた圧力スイング吸着装置を備えた蒸発燃料処理装置であって、前記複数個の吸着塔は、隣接する吸着塔が熱交換可能なようにガス流体の流動方向に面接触形態の配設構成とされており、前記隣接配設される一方の吸着塔と他方の吸着塔は、一方の吸着塔において吸着、脱離作用の一方の作用が行われ、他方の吸着塔において吸着、脱離作用の他方の作用が交互に行われる処理構成とされており、前記一方の吸着塔と他方の吸着塔における吸着、脱離作用のガス流体の流動方向が同一方向となるように構成されている、圧力スイング吸着装置を備えた蒸発燃料処理装置である。 Furthermore, the contents of the present disclosure can be implemented in various ways. A first aspect is a vaporized fuel processing apparatus including a pressure swing adsorption device including a plurality of adsorption towers and alternately adsorbing and desorbing a gas fluid in the adsorption towers, The plurality of adsorption towers are arranged in a surface-contact configuration in the flow direction of the gas fluid so that adjacent adsorption towers can exchange heat. The tower has a treatment configuration in which one of the adsorption and desorption actions is performed in one adsorption tower, and the other action of adsorption and desorption is performed alternately in the other adsorption tower. This is a evaporated fuel processing device equipped with a pressure swing adsorption device configured such that the flow directions of gas fluids for adsorption and desorption in an adsorption tower and the other adsorption tower are in the same direction.
 上記第1の態様によれば、熱交換可能に隣接して配設され、吸着作用と脱離作用が交互に行われる複数の吸着塔におけるガス流体の流動方向が同一方向とされる。これにより、吸着作用が行われる吸着塔により生じる「暖まった領域」の主たる範囲と、脱離作用が行われる吸着塔により生じる「冷えている領域」の主たる範囲は、共に各吸着塔における入口の近傍位置であり、ガス流体の流動方向で見て同じ位置となる。したがって、「暖まった領域」と「冷えている領域」の熱交換作用が良好に行われる。その結果、吸着作用が行われる吸着塔の吸着作用が良好に行われ、脱離作用が行われる吸着塔における脱離作用も良好に行われる。そのため、圧力スイング吸着装置による蒸発燃料の回収効率を高めることができる。 According to the first aspect, the gas fluid flows in the same direction in the plurality of adsorption towers that are arranged adjacently to enable heat exchange and alternately perform adsorption and desorption actions. As a result, the main range of the "warm region" generated by the adsorption tower where adsorption action is performed and the main range of the "cold region" created by the adsorption tower where desorption action is performed are both at the inlet of each adsorption tower. These are adjacent positions and are at the same position when viewed in the flow direction of the gas fluid. Therefore, the heat exchange effect between the "warm area" and the "cold area" is performed well. As a result, the adsorption action in the adsorption tower where the adsorption action is performed is performed well, and the desorption action in the adsorption tower where the desorption action is performed is also performed well. Therefore, the recovery efficiency of vaporized fuel by the pressure swing adsorption device can be increased.
 第2の態様は、前述した第1の手段における圧力スイング吸着装置を備えた蒸発燃料処理装置であって、前記吸着塔は前記ガス流体の流動方向と直交する方向の断面が多角形であり、前記一方の吸着塔の断面の少なくとも2面が前記他方の吸着塔の断面の多角形の面と接触して配設されている、圧力スイング吸着装置を備えた蒸発燃料処理装置である。 A second aspect is an evaporated fuel processing device equipped with the pressure swing adsorption device according to the above-described first means, wherein the adsorption tower has a polygonal cross section in a direction perpendicular to the flow direction of the gas fluid; The evaporated fuel processing apparatus includes a pressure swing adsorption device, wherein at least two surfaces of the cross section of the one adsorption tower are disposed in contact with polygonal surfaces of the cross section of the other adsorption tower.
 上記の第2の態様によれば、隣接し配設される一方の吸着塔と他方の吸着塔における熱交換する接触面積が多くなり、上述した第1の手段による作用効果がより顕著に行われる。 According to the above-mentioned second aspect, the contact area for heat exchange between one adsorption tower and the other adsorption tower disposed adjacent to each other is increased, and the effect of the above-mentioned first means is carried out more markedly. .
 第3の態様は、前述した第2の手段の圧力スイング吸着装置を備えた蒸発燃料処理装置であって、前記一方の吸着塔と前記他方の吸着塔は、全体の配置構成が環状となるように複数個配設されている圧力スイング吸着装置を備えた蒸発燃料処理装置である。 A third aspect is a vaporized fuel processing apparatus equipped with the pressure swing adsorption device of the second means described above, wherein the one adsorption tower and the other adsorption tower are arranged so that the overall arrangement is annular. This is an evaporative fuel processing device equipped with a plurality of pressure swing adsorption devices installed in the fuel vapor treatment system.
 上記の第3の態様によれば、多数の吸着塔をコンパクトに配置できる。 According to the third aspect described above, a large number of adsorption towers can be arranged compactly.

Claims (3)

  1.  相互に平行に配置された少なくとも1個の第1吸着塔及び少なくとも1個の第2吸着塔を有し、前記第1吸着塔及び前記第2吸着塔においてガス流体の吸着、脱離を交互に行うよう構成された圧力スイング吸着装置を備える蒸発燃料処理装置であって、
     前記第1吸着塔及び前記第2吸着塔は、相互間で熱交換可能なようにガス流体の流動方向に沿って面接触しており、
     前記第1吸着塔において吸着、脱離作用の一方が行われる間、前記第2吸着塔において吸着、脱離作用の他方が行われ、
     前記第1吸着塔における前記ガス流体の流動方向は、前記第2吸着塔における前記ガス流体の流動方向と同一である、蒸発燃料処理装置。
    At least one first adsorption tower and at least one second adsorption tower are arranged in parallel to each other, and the first adsorption tower and the second adsorption tower alternately adsorb and desorb the gas fluid. 1. A evaporated fuel processing apparatus comprising a pressure swing adsorption device configured to perform
    The first adsorption tower and the second adsorption tower are in surface contact along the flow direction of the gas fluid so as to be able to exchange heat therebetween,
    While one of the adsorption and desorption actions is performed in the first adsorption tower, the other of the adsorption and desorption actions is performed in the second adsorption tower,
    A flow direction of the gas fluid in the first adsorption tower is the same as a flow direction of the gas fluid in the second adsorption tower.
  2.  請求項1に記載の蒸発燃料処理装置であって、
     前記第2吸着塔の数は少なくとも2個であり、
     前記第1吸着塔及び前記第2吸着塔は、前記ガス流体の流動方向と直交する断面が多角形であり、
     前記第1吸着塔は、少なくとも2側面において前記第2吸着塔と面接触している、蒸発燃料処理装置。
    The evaporated fuel processing device according to claim 1,
    The number of the second adsorption towers is at least two,
    The first adsorption tower and the second adsorption tower have a polygonal cross section perpendicular to the flow direction of the gas fluid,
    The first adsorption tower is in surface contact with the second adsorption tower on at least two sides.
  3.  請求項2に記載の蒸発燃料処理装置であって、
     前記第1吸着塔と前記第2吸着塔は環状に配置されている、圧力スイング吸着装置を備えた蒸発燃料処理装置。
    The evaporated fuel processing device according to claim 2,
    The first adsorption tower and the second adsorption tower are arranged in an annular manner.
PCT/JP2023/009766 2022-06-28 2023-03-14 Evaporated fuel treatment device WO2024004285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022103346A JP2024003964A (en) 2022-06-28 2022-06-28 Evaporated fuel treatment device with pressure swing adsorption device
JP2022-103346 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024004285A1 true WO2024004285A1 (en) 2024-01-04

Family

ID=89381929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009766 WO2024004285A1 (en) 2022-06-28 2023-03-14 Evaporated fuel treatment device

Country Status (2)

Country Link
JP (1) JP2024003964A (en)
WO (1) WO2024004285A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3323288A (en) * 1964-05-27 1967-06-06 Union Carbide Corp Selective adsorption process and apparatus
JP2011021505A (en) * 2009-07-14 2011-02-03 Aisan Industry Co Ltd Evaporated fuel processing device
US20120272822A1 (en) * 2011-04-29 2012-11-01 Uop, Llc Process for pressure swing adsorption
JP2014226617A (en) * 2013-05-23 2014-12-08 前澤工業株式会社 Gas purification device and gas purification method
US20160332106A1 (en) * 2015-05-15 2016-11-17 Robert F. Tammera Apparatus and System for Swing Adsorption Processes Related Thereto
JP2016195034A (en) * 2015-03-31 2016-11-17 東京瓦斯株式会社 Fuel battery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3323288A (en) * 1964-05-27 1967-06-06 Union Carbide Corp Selective adsorption process and apparatus
JP2011021505A (en) * 2009-07-14 2011-02-03 Aisan Industry Co Ltd Evaporated fuel processing device
US20120272822A1 (en) * 2011-04-29 2012-11-01 Uop, Llc Process for pressure swing adsorption
JP2014226617A (en) * 2013-05-23 2014-12-08 前澤工業株式会社 Gas purification device and gas purification method
JP2016195034A (en) * 2015-03-31 2016-11-17 東京瓦斯株式会社 Fuel battery system
US20160332106A1 (en) * 2015-05-15 2016-11-17 Robert F. Tammera Apparatus and System for Swing Adsorption Processes Related Thereto

Also Published As

Publication number Publication date
JP2024003964A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5394330B2 (en) Evaporative fuel treatment device leak diagnosis device
US11560817B2 (en) System and method for mobile carbon capture
JPH03509Y2 (en)
WO2024004285A1 (en) Evaporated fuel treatment device
EP3708238B1 (en) Adsorption refrigeration system for the production of demineralized water aboard a motor vehicle, motor vehicle and method for producing demineralized water aboard a motor vehicle
JPH1193784A (en) Fuel vapor recovering device
US11654392B2 (en) Vehicle and CO2 recovery method
US20200391575A1 (en) Co2 recovery system
JP3146570B2 (en) Evaporative fuel control device
JP2003042008A (en) Evaporating fuel treatment device
JPH0842413A (en) Evaporated fuel treating equipment
JP2020169613A (en) Evaporated fuel treatment device
JP3909631B2 (en) Vaporized fuel processing apparatus for vehicles
JPH0674107A (en) Evaporation fuel treatment device
JPH04187861A (en) Fuel-vapor discharge preventing device of engine
JP2003314381A (en) Evaporation fuel recovery device
JPH05332211A (en) Canister device
JP3628214B2 (en) Fuel vapor treatment equipment
KR100331628B1 (en) Fuel vaporization control system
US20230258112A1 (en) Co2 separation apparatus for internal combustion engine
JP2002285919A (en) Evaporated fuel processing apparatus
JP2023091395A (en) CO2 adsorption device and CO2 adsorption device for internal combustion engine
JP4158467B2 (en) Exhaust treatment device for internal combustion engine and method for treating evaporated fuel by the device
JP2538074Y2 (en) Vehicle fuel cooling system
JP3771726B2 (en) Volatile hydrocarbon vapor processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830740

Country of ref document: EP

Kind code of ref document: A1