WO2024004121A1 - Imaging device, imaging method, and program - Google Patents

Imaging device, imaging method, and program Download PDF

Info

Publication number
WO2024004121A1
WO2024004121A1 PCT/JP2022/026172 JP2022026172W WO2024004121A1 WO 2024004121 A1 WO2024004121 A1 WO 2024004121A1 JP 2022026172 W JP2022026172 W JP 2022026172W WO 2024004121 A1 WO2024004121 A1 WO 2024004121A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
imaging device
mask
input signal
cassi
Prior art date
Application number
PCT/JP2022/026172
Other languages
French (fr)
Japanese (ja)
Inventor
稜 白川
陽光 曽我部
暁経 三反崎
正樹 北原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/026172 priority Critical patent/WO2024004121A1/en
Publication of WO2024004121A1 publication Critical patent/WO2024004121A1/en

Links

Images

Definitions

  • the present invention relates to an imaging device, an imaging method, and a program technology.
  • CASSI Coded Aperture Snapshot Spectral Imaging
  • Non-Patent Document 2 a method for designing a coded aperture mask in a CASSI optical system has been proposed as a method for improving the measurement accuracy of hyperspectral images (see, for example, Non-Patent Document 2).
  • Compressive Coded Aperture Spectral Imaging An Introduction [Arce et al., 2013] Compressive spectral imaging approach using adaptive coded apertures [Zhang et al., 2020] Rank minimization code aperture design for spectrally selective compressive imaging[Arguello et al., 2013]
  • CASSI CASSI
  • g represents a compressed signal
  • f represents an original signal
  • is an observation matrix (also referred to as a compression matrix) representing a CASSI observation process.
  • observation matrix also referred to as a compression matrix
  • the observation process ( ⁇ ) of CASSI is a process of encoding ⁇ dispersion ⁇ integration, but the dispersion and integration processes are unique to the optical element, and there is no degree of freedom in design.
  • the present invention aims to provide a technique that can improve the measurement accuracy of hyperspectral images by CASSI.
  • One aspect of the present invention is an imaging device that measures a hyperspectral image by compressed sensing, which includes: an encoding unit that encodes and outputs an input signal by applying a coded aperture mask to the input signal; a CASSI observation system comprising: a dispersion section that wavelength-disperses and outputs the input signal encoded by the encoding section; and a measurement section that images the input signal wavelength-dispersed by the dispersion section; and the CASSI observation system.
  • an attention weight setting unit that sets a weight of the degree of attention for each pixel imaged by the camera; and a mask generation unit that generates the coded aperture mask based on the weight of the degree of attention for each pixel set by the attention weight setting unit.
  • An imaging device comprising:
  • One aspect of the present invention is an imaging method for measuring a hyperspectral image by compressed sensing, which includes: an encoding unit that encodes and outputs an input signal by applying a coded aperture mask to the input signal; An input signal is imaged by a CASSI observation system including a dispersion unit that wavelength-disperses and outputs the input signal encoded by the encoding unit, and a measurement unit that images the input signal wavelength-dispersed by the dispersion unit.
  • This imaging method includes an imaging step and a modulation step of modulating the output signal of the CASSI observation system using a multiplication mask.
  • One aspect of the present invention is a program for causing a computer to function as the above-described imaging device.
  • FIG. 1 is a block diagram showing the configuration of an imaging device 1A according to the first embodiment. It is an image diagram showing the flow of processing by the imaging device 1A of the first embodiment. It is a figure showing an example of the effect that 1 A of imaging devices of a 1st embodiment show. It is a block diagram showing the composition of imaging device 1B of a 2nd embodiment.
  • FIG. 7 is an image diagram showing the flow of processing by the imaging device 1B of the second embodiment.
  • FIG. 12 is an image diagram showing the flow of processing when the imaging device 1B of the second embodiment generates a coded aperture mask and a multiplication mask.
  • FIG. 7 is an image diagram showing a flow in which a mask generation unit 160 generates a multiplication mask and a reconstruction processing unit 140 learns a reconstruction model in an imaging apparatus 1B according to the second embodiment.
  • FIG. 1 is a block diagram showing the configuration of an imaging device 1A according to the first embodiment.
  • the imaging device 1A includes an optical system 110, a CASSI observation system 120, a modulation section 130, and a reconstruction processing section 140.
  • the imaging device 1A is configured using a processor such as a CPU (Central Processing Unit) and a memory.
  • the imaging device 1A functions as a device that inputs light as an input signal and outputs an estimated signal of a hyperspectral image by a processor executing a program.
  • a processor executing a program Among the units included in the imaging device 1A, a part of the CASSI observation system 120, the modulation unit 130, and the reconstruction processing unit 140 are realized by a processor executing a program.
  • some or all of the functions of the imaging device 1A that execute electrical signal processing are implemented using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). It may be realized using.
  • Computer-readable recording media include portable media such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, semiconductor storage devices (such as SSDs: Solid State Drives), and hard disks and semiconductor storage built into computer systems. It is a storage device such as a device.
  • the above program may be transmitted via a telecommunications line.
  • the optical system 110 is composed of a lens that forms an image.
  • Optical system 110 may include multiple lenses.
  • the CASSI observation system 120 has a function of encoding and measuring an input signal using CASSI. More specifically, the CASSI observation system 120 includes, for example, an encoding section 121, a dispersion section 122, and a measurement section 123.
  • the configuration of the CASSI observation system 120 will be described below, with the intention that the CASSI observation system 120 of the first embodiment and the second embodiment may be similar to the conventional CASSI observation system. .
  • the encoding unit 121 outputs an encoded input signal by applying the encoded aperture mask to the input signal.
  • Coded aperture masks include LCOS (Liquid Crystal On Silicon) and DMD (Digital Mirror Device).
  • the coded aperture mask may be composed of discrete values of 0 and 1 (hereinafter referred to as ⁇ 0,1 ⁇ ), or continuous values from 0 to 1 (hereinafter referred to as [0,1]). ).
  • a coded aperture mask can be generated using a data-driven approach in which the coded aperture is modeled as a variable parameter and determined by end-to-end input/output optimization, including a reconstruction model.
  • coded aperture masks can also be generated by a theoretical approach based on the theory of compressed sensing that takes advantage of the incoherence with respect to the basis during sparse transformation of images. good.
  • the dispersion unit 122 is, for example, a prism.
  • the dispersion unit 122 inputs the output signal of the encoding unit 121, performs wavelength dispersion on the input signal, and outputs the resultant signal.
  • the measurement unit 123 is, for example, an FPA (Focal Plane Array) array sensor.
  • each sensor for each pixel inputs the output signal of the dispersion unit 122, integrates the signal in the wavelength direction, and outputs the integrated signal.
  • the measurement unit 123 outputs a compressed signal (image) as a measurement result.
  • the modulation unit 130 inputs the output signal of the CASSI observation system 120, modulates it using a multiplication mask, and outputs it.
  • data indicates that the multiplication mask is modeled as a variable parameter in the same way as the coded aperture mask described above, and is determined by end-to-end input/output optimization including the coded aperture mask and the reconstruction model. can be generated by a driven approach.
  • the reconstruction processing unit 140 inputs the output signal of the modulation unit 130, performs reconstruction processing on it, and outputs an estimation result (estimated signal) of the hyperspectral image.
  • FIG. 2 is an image diagram showing the flow of processing by the imaging device 1A.
  • FIG. 2 shows how the signal transformation of each step is parameterized (modeled).
  • the solid line represents conversion based on unique parameter values (fixed) of the optical element (prism, sensor, etc.), and the broken line represents conversion based on variable parameters that can be designed.
  • the imaging device 1A inputs wavelength data (Spectral Data Cube) D0 of light in the imaging target space to the CASSI observation system 120 via the optical system 110 (step S1).
  • wavelength data Spectrum Data Cube
  • the encoding unit 121 outputs encoded wavelength data D1 to the dispersion unit 122 by applying the encoded aperture mask M1 to the input wavelength data (input signal).
  • This step means covering each pixel with a coded aperture mask for 3D (spatial and wavelength) input signals.
  • the dispersion unit 122 performs wavelength dispersion on the encoded wavelength data D1 and outputs it to the measurement unit 123 (step S3).
  • This step means tilting the wavelength axis using a dispersive optical element (prism).
  • the measuring unit 123 inputs the wavelength-dispersed wavelength data D2, and each pixel integrates the wavelength data D2 in the wavelength direction, thereby obtaining compressed signal data as a measurement result of the target space.
  • D3 is generated and output to the modulation section 130 (step S4). This step means integrating each tilted wavelength signal pixel by pixel. Through the steps up to this point, a 2D compressed signal is obtained.
  • the modulation unit 130 generates modulated compressed signal data D4 by performing modulation using a multiplication mask on the 2D compressed signal data D3 input from the CASSI observation system 120 (step S5).
  • the modulation section 130 outputs the generated compressed modulated signal data D4 to the reconstruction processing section 140.
  • the reconstruction processing unit 140 generates and outputs a hyperspectral image IMG as an estimation result by performing reconstruction processing on the modulated compressed signal data D4 input from the modulation unit 130 (step S6 ).
  • the reconstruction processing unit 140 performs reconstruction processing by inputting the modulated compressed signal data D4 to the reconstruction model.
  • the reconstructed model is generated, for example, by previously learning the correlation (i.e., observation matrix) between the desired signal data and the modulated compressed signal data using a machine learning method such as a neural network.
  • the reconstruction model is constructed using a DUN (Deep Unrolled Network), which uses deep learning to implement iterative optimization algorithms such as ADMM (Alternating Direction Method of Multiplier) and ISTA (Iterative Shrinkage Thresholding Algorithm). It can be learned by optimizing variable parameters end-to-end including the modulator 121 and the modulator 130.
  • FIG. 3 is a diagram showing an example of the effects produced by the imaging device 1A of the first embodiment.
  • FIG. 3 shows the estimation accuracy of an image using a conventional configuration that does not use a multiplication mask (only a coded aperture mask), and the image estimation accuracy of an image using the configuration of this embodiment using the multiplication mask described above (a combination of a coded aperture mask and a multiplication mask). A comparison with the estimation accuracy is shown.
  • the vertical axis of the graph shown in FIG. 3 is the strength of PSNR (Peak Signal to Noise Ratio). As is clear from FIG. 3, it can be seen that the estimation result of this embodiment has a larger PSNR value and improved image quality than the conventional configuration.
  • PSNR Peak Signal to Noise Ratio
  • the hyperspectral image is The measurement accuracy of spectral images can be improved.
  • each pixel of the coded aperture mask used in the CASSI observation system blocks the corresponding pixel information of the input signal (attenuates in the case of [0, 1])
  • signal conversion for each wavelength signal within the same pixel in the input signal is limited to signal conversion common to the pixels (conversion to ⁇ 0,1 ⁇ or scalar multiplication of [0,1]).
  • the imaging device 1A of the first embodiment uses a coded aperture mask that directly acts on the input signal before dispersion processing, as well as a measurement signal that is the result of dispersion processing and integration processing.
  • the modulation unit 130 that multiplies and modulates the mask, it is possible to perform different signal conversions on each wavelength signal within the same pixel of the input signal.
  • the design of the CASSI observation matrix uses various optical elements and is implemented on hardware.
  • the modulation unit 130 of this embodiment performs signal processing after signal compression, and can be implemented in software. Therefore, there are advantages such as fewer physical restrictions in implementing the modulation section 130 and ease of handling in terms of conversion speed and continuous value expression.
  • the modulation unit 130 does not add or change the conventional imaging process using CASSI. Therefore, according to the imaging device 1A of this embodiment, the estimation accuracy of the original signal can be easily improved without complicating the device.
  • FIG. 4 is a block diagram showing the configuration of an imaging device 1B according to the second embodiment.
  • the imaging device 1B differs from the imaging device 1A of the first embodiment in that it does not include a modulation section 130 and includes an attention weight setting section 150 and a mask generation section 160.
  • the attention weight setting unit 150 sets a weight (hereinafter referred to as "attention weight") for each pixel imaged by the CASSI observation system 120, indicating the degree to which it should be noticed as observation data. For example, the attention weight setting unit 150 receives an input for setting an attention weight from an operation input unit (not shown), generates attention weight information indicating the attention weight for each pixel based on the input information, and generates a mask. 160.
  • the attention weight is a value within the range of continuous values [0, 1], and the attention weight setting unit 150 sets a 3D (spatial and wavelength) attention weight for each pixel.
  • attention weight may be set by any method other than the method described above.
  • attention weight information may be received from another device via communication, or attention weight information stored in advance from a storage unit (not shown) may be read.
  • the mask generation unit 160 generates a coded aperture mask based on the attention weight information input from the attention weight setting unit 150.
  • the mask generation unit 160 sets the generated encoded aperture mask in the encoding unit 121 of the CASSI observation system 120 at the subsequent stage.
  • FIG. 5 is an image diagram showing the flow of processing by the imaging device 1B.
  • the attention weight setting unit 150 performs a process of setting attention weight for each pixel (step S201), and outputs attention weight information indicating the settings to the mask generation unit 160.
  • the attention weight setting unit 150 may accept an operation to select a rectangular region of interest in an image, or an operation to input an annotation map that associates each region in an image with information as to whether it is a region of interest or not. may be accepted.
  • the mask generation unit 160 receives the attention weight information from the attention weight setting unit 150 and generates a coded aperture mask based on the attention weight information (step S202).
  • the mask generation unit 160 can generate a coded aperture mask using an image processing model based on a DNN (Deep Neural Network) such as CNN (Convolutional Neural Network) or U-NET.
  • the mask generation unit 160 sets the generated encoded aperture mask in the encoding unit 121 of the subsequent CASSI observation system 120.
  • the subsequent processing is similar to the flow of processing when the multiplication mask is not applied in the first embodiment.
  • the CASSI observation system 120 acquires (images) observation data using the encoded aperture mask set in step S202, and the reconstruction processing unit 140 performs reconstruction processing on the acquired observation data. This outputs an image that is the estimation result of the original signal.
  • the same reference numerals as in FIG. 2 indicate the same processes as those executed by the imaging device 1A of the first embodiment.
  • the mask generation unit 160 generates only the coded aperture mask by the attention weight setting operation, but the mask generation unit 160 also generates the coded aperture mask in addition to the coded aperture mask of the first embodiment.
  • a multiplication mask may also be generated.
  • the function of the mask generation unit 160 to generate a multiplication mask may be realized by machine learning using a deep learning model.
  • FIG. 6 is an image diagram showing the flow of processing in this case.
  • the imaging device 1B may further include the modulation unit 130 of the first embodiment, and may be configured to modulate the observation data of the CASSI observation system 120 and then perform the reconstruction process.
  • FIG. 7 is an image diagram showing a flow in which the mask generation unit 160 generates a multiplication mask and the reconstruction processing unit 140 learns a reconstruction model.
  • the function of the mask generation unit 160 to generate a multiplication mask and the reconstruction processing unit 140 can be realized by a deep learning model.
  • the mask generation unit 160 and the reconstruction processing unit 140 each specialize in reconstructing the region of interest by learning as a loss MSE (Mean Squared Error) weighted by attention weights set for each pixel. It is possible to construct a generation model and a reconstruction model of the multiplicative mask. In other words, by expressing the attention weight as a real value [0, 1] and designing the loss using that value, it is possible to measure hyperspectral images that take into account the magnitude of importance. . For example, loss is defined as in equation (2) below.
  • the imaging device 1B of the second embodiment sets the attention weight indicating the degree of attention for each pixel in the captured image for the CASSI observation system that measures hyperspectral images, and sets By generating a coded aperture mask based on the attention weight information, a reconstruction model specialized for the attention area can be constructed. Therefore, according to the imaging device 1B of the second embodiment, it is possible to improve the measurement accuracy of hyperspectral images by CASSI.
  • the imaging device 1B of the second embodiment includes the modulation unit 130 of the first embodiment, and the mask generation unit 160 includes an encoded aperture mask based on the attention weight information set by the attention weight setting unit 150, ⁇ A multiplication mask is generated based on the generative model (DNN) learned to optimize from end to end, and the modulation unit 130 modulates the observed data using the generated multiplication mask, so that CASSI The measurement accuracy of hyperspectral images can be further improved.
  • the mask generation unit 160 includes an encoded aperture mask based on the attention weight information set by the attention weight setting unit 150, ⁇ A multiplication mask is generated based on the generative model (DNN) learned to optimize from end to end, and the modulation unit 130 modulates the observed data using the generated multiplication mask, so that CASSI The measurement accuracy of hyperspectral images can be further improved.
  • DNN generative model
  • the imaging device 1B of the second embodiment weights the coded aperture mask used in the CASSI observation system 120 with respect to the wavelength range of interest for each pixel (setting the attention weight).
  • a coded aperture mask is generated using a DNN (Deep Neural Network) using the attention weights for each pixel and wavelength range as input.
  • DNN Deep Neural Network
  • the importance (weight) for each wavelength range can be set as a value within a continuous range of [0, 1] instead of a discrete value of ⁇ 0, 1 ⁇ , and the importance of a different wavelength range for each pixel can be set. It is possible to set the degree and perform imaging. According to the imaging device 1B of the second embodiment, unlike the conventional method, all the pixel information of the acquired compressed signal can be used, so the reconstruction result in a single image capture has sufficient performance. Since this can be expected, the measurement cost can be reduced.
  • the present invention is applicable to an imaging device that measures hyperspectral images using a CASSI observation system.
  • 1A, 1B ...Imaging device, 110...Optical system, 120...CASSI observation system, 121...Encoding section, 122...Dispersion section, 123...Measurement section, 130...Modulation section, 140...Reconstruction processing section, 150...Weight setting Section, 160...Mask generation section

Abstract

One aspect of the present invention relates to an imaging device for measuring a hyperspectral image using compressive sensing, the imaging device comprising: a CASSI observation system comprising an encoding unit that encodes an input signal by applying a coded-aperture mask to the input signal and outputs the encoded signal, a dispersing unit that disperses the input signal encoded by the encoding unit into wavelength components and outputs the dispersed wavelength components, and a measuring unit that captures an image of the input signal subjected to the wavelength dispersion by the dispersing unit; an attention weight setting unit that sets a weight, which indicates the degree of attention, for each pixel used for imaging by the CASSI observation system; and a mask generating unit that generates the coded-aperture mask on the basis of the attention weight set for each pixel by the attention weight setting unit.

Description

撮像装置、撮像方法、およびプログラムImaging device, imaging method, and program
 本発明は、撮像装置、撮像方法、およびプログラムの技術に関する。 The present invention relates to an imaging device, an imaging method, and a program technology.
 従来、圧縮スペクトル撮像という圧縮センシング理論に基づくハイパースペクトル画像の測定技術がある。その実装手法の1つとして符号化開口マスクと分散光学素子とを組み合わせたCASSI(Coded Aperture Snapshot Spectral Imaging)と呼ばれる技術がある(例えば非特許文献1参照。) Conventionally, there is a hyperspectral image measurement technology based on compressed sensing theory called compressed spectral imaging. One of the implementation methods is a technology called CASSI (Coded Aperture Snapshot Spectral Imaging), which combines a coded aperture mask and a dispersive optical element (for example, see Non-Patent Document 1).
 また、このようなCASSIに関し、ハイパースペクトル画像の測定精度を向上させるための手法として、CASSI光学系内の符号化開口マスクのデザイン方法が提案されている(例えば非特許文献2参照)。 Regarding such CASSI, a method for designing a coded aperture mask in a CASSI optical system has been proposed as a method for improving the measurement accuracy of hyperspectral images (see, for example, Non-Patent Document 2).
 また、一方で、CASSIにおける符号化開口マスクのデザイン及び圧縮信号から元信号への再構成処理における最適化問題の定式化を工夫して、取得する波長域の情報を限定することにより測定精度を向上させる技術が提案されている(例えば非特許文献3参照)。 On the other hand, we have improved the measurement accuracy by limiting the wavelength range information to be acquired by devising the design of the coded aperture mask in CASSI and the formulation of the optimization problem in the reconstruction process from the compressed signal to the original signal. Techniques for improving this have been proposed (for example, see Non-Patent Document 3).
 一般に、上述のCASSIは(1)式のように定式化される。 In general, the above-mentioned CASSI is formulated as shown in equation (1).
Figure JPOXMLDOC01-appb-M000001
 (1)式において、gは圧縮信号を表し、fは元信号を表し、ΦはCASSIの観測過程を表す観測行列(圧縮行列ともいう)である。このように、圧縮センシングにおいて圧縮信号を得るための観測過程(観測行列)は、後段の元信号推定の性能と密接に関係する。
Figure JPOXMLDOC01-appb-M000001
In equation (1), g represents a compressed signal, f represents an original signal, and Φ is an observation matrix (also referred to as a compression matrix) representing a CASSI observation process. In this way, the observation process (observation matrix) for obtaining a compressed signal in compressed sensing is closely related to the performance of the subsequent original signal estimation.
 しかしながら、CASSIの観測過程における設計の自由度は、符号化開口マスクのデザインのみである。そのため、元信号再構成のための理想的な観測行列を設計することは困難である。CASSIの観測過程(Φ)は、符号化→分散→積算の処理であるが、分散と積算の処理は光学素子に固有の処理であり、設計の自由度はないためである。 However, the only degree of freedom in design in the CASSI observation process is the design of the coded aperture mask. Therefore, it is difficult to design an ideal observation matrix for original signal reconstruction. The observation process (Φ) of CASSI is a process of encoding→dispersion→integration, but the dispersion and integration processes are unique to the optical element, and there is no degree of freedom in design.
 また、取得する波長域を限定する従来技術では、各波長域を取得するか否かの2択でありそれぞれの重要度の大小を考慮することができなかった。加えて、波長域の限定は入力信号に対して一様に行われるため、空間的に異なる領域について異なる波長域の情報を取得することはできなかった。 Furthermore, in the conventional technology that limits the wavelength range to be acquired, there are two choices: whether to acquire each wavelength range or not, and the importance of each wavelength range cannot be considered. In addition, since the wavelength range is uniformly limited for input signals, it is not possible to obtain information on different wavelength ranges for spatially different regions.
 また、従来技術では、取得する波長域を限定するために、限定した波長域の情報のみを含む画素を圧縮信号から抽出して再構成問題を解くため、利用可能な圧縮信号の要素数が削減され、再構成精度が低下することが想定される。そのため、従来は、複数回の撮影により圧縮信号の情報を補足することで再構成精度の低下を抑えるというアプローチがとられているが、そのデメリットとして測定にかかるコストが増加してしまう。 In addition, in conventional technology, in order to limit the wavelength range to be acquired, pixels containing only information in the limited wavelength range are extracted from the compressed signal to solve the reconstruction problem, reducing the number of elements of the available compressed signal. Therefore, it is assumed that the reconstruction accuracy will decrease. Conventionally, therefore, an approach has been taken in which the reduction in reconstruction accuracy is suppressed by supplementing the compressed signal information through multiple imaging, but the disadvantage of this is that it increases the cost of measurement.
 上記事情に鑑み、本発明は、CASSIによるハイパースペクトル画像の測定精度を向上させることができる技術の提供を目的としている。 In view of the above circumstances, the present invention aims to provide a technique that can improve the measurement accuracy of hyperspectral images by CASSI.
 本発明の一態様は、圧縮センシングによるハイパースペクトル画像の測定を行う撮像装置であって、入力信号に符号化開口マスクを作用させることで入力信号を符号化して出力する符号化部と、前記符号化部によって符号化された前記入力信号を波長分散して出力する分散部と、前記分散部により波長分散された前記入力信号を撮像する計測部と、を備えるCASSI観測系と、前記CASSI観測系が撮像する画素ごとに注目度合いの重みを設定する注目重み設定部と、前記注目重み設定部によって設定された前記画素ごとの注目度合いの重みに基づいて前記符号化開口マスクを生成するマスク生成部と、を備える撮像装置である。 One aspect of the present invention is an imaging device that measures a hyperspectral image by compressed sensing, which includes: an encoding unit that encodes and outputs an input signal by applying a coded aperture mask to the input signal; a CASSI observation system comprising: a dispersion section that wavelength-disperses and outputs the input signal encoded by the encoding section; and a measurement section that images the input signal wavelength-dispersed by the dispersion section; and the CASSI observation system. an attention weight setting unit that sets a weight of the degree of attention for each pixel imaged by the camera; and a mask generation unit that generates the coded aperture mask based on the weight of the degree of attention for each pixel set by the attention weight setting unit. An imaging device comprising:
 本発明の一態様は、圧縮センシングによるハイパースペクトル画像の測定を行う撮像方法であって、入力信号に符号化開口マスクを作用させることで入力信号を符号化して出力する符号化部と、前記符号化部によって符号化された前記入力信号を波長分散して出力する分散部と、前記分散部により波長分散された前記入力信号を撮像する計測部と、を備えるCASSI観測系により入力信号を撮像する撮像ステップと、前記CASSI観測系の出力信号を乗算マスクによって変調する変調ステップと、を有する撮像方法である。 One aspect of the present invention is an imaging method for measuring a hyperspectral image by compressed sensing, which includes: an encoding unit that encodes and outputs an input signal by applying a coded aperture mask to the input signal; An input signal is imaged by a CASSI observation system including a dispersion unit that wavelength-disperses and outputs the input signal encoded by the encoding unit, and a measurement unit that images the input signal wavelength-dispersed by the dispersion unit. This imaging method includes an imaging step and a modulation step of modulating the output signal of the CASSI observation system using a multiplication mask.
 本発明の一態様は、コンピューターを、上記の撮像装置として機能させるためのプログラムである。 One aspect of the present invention is a program for causing a computer to function as the above-described imaging device.
 本発明により、CASSIによるハイパースペクトル画像の測定精度を向上させることが可能となる。 According to the present invention, it is possible to improve the measurement accuracy of hyperspectral images by CASSI.
第1実施形態の撮像装置1Aの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an imaging device 1A according to the first embodiment. 第1実施形態の撮像装置1Aによる処理の流れを示すイメージ図である。It is an image diagram showing the flow of processing by the imaging device 1A of the first embodiment. 第1実施形態の撮像装置1Aが奏する効果の一例を示す図である。It is a figure showing an example of the effect that 1 A of imaging devices of a 1st embodiment show. 第2実施形態の撮像装置1Bの構成を示すブロック図である。It is a block diagram showing the composition of imaging device 1B of a 2nd embodiment. 第2実施形態の撮像装置1Bによる処理の流れを示すイメージ図である。FIG. 7 is an image diagram showing the flow of processing by the imaging device 1B of the second embodiment. 第2実施形態の撮像装置1Bが符号化開口マスクおよび乗算マスクを生成する場合の処理の流れを示すイメージ図である。FIG. 12 is an image diagram showing the flow of processing when the imaging device 1B of the second embodiment generates a coded aperture mask and a multiplication mask. 第2実施形態の撮像装置1Bにおいて、マスク生成部160が乗算マスクを生成し、再構成処理部140が再構成モデルを学習する流れを示すイメージ図である。FIG. 7 is an image diagram showing a flow in which a mask generation unit 160 generates a multiplication mask and a reconstruction processing unit 140 learns a reconstruction model in an imaging apparatus 1B according to the second embodiment.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
<第1実施形態>
 図1は、第1実施形態の撮像装置1Aの構成を示すブロック図である。撮像装置1Aは、光学系110と、CASSI観測系120と、変調部130と、再構成処理部140とを備える。
Embodiments of the present invention will be described in detail below with reference to the drawings.
<First embodiment>
FIG. 1 is a block diagram showing the configuration of an imaging device 1A according to the first embodiment. The imaging device 1A includes an optical system 110, a CASSI observation system 120, a modulation section 130, and a reconstruction processing section 140.
 撮像装置1Aは、CPU(Central Processing Unit)等のプロセッサーとメモリーとを用いて構成される。撮像装置1Aは、プロセッサーがプログラムを実行することによって、入力信号としての光を入力して、ハイパースペクトル画像の推定信号を出力する装置として機能する。撮像装置1Aが備える各部のうち、CASSI観測系120の一部と、変調部130と、再構成処理部140とは、プロセッサーがプログラムを実行することによって実現される。なお、撮像装置1Aの機能のうち電気的信号処理を実行する機能の一部または全部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。上記のプログラムは、コンピューター読み取り可能な記録媒体に記録されても良い。コンピューター読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM、半導体記憶装置(例えばSSD:Solid State Drive)等の可搬媒体、コンピューターシステムに内蔵されるハードディスクや半導体記憶装置等の記憶装置である。上記のプログラムは、電気通信回線を介して送信されてもよい。 The imaging device 1A is configured using a processor such as a CPU (Central Processing Unit) and a memory. The imaging device 1A functions as a device that inputs light as an input signal and outputs an estimated signal of a hyperspectral image by a processor executing a program. Among the units included in the imaging device 1A, a part of the CASSI observation system 120, the modulation unit 130, and the reconstruction processing unit 140 are realized by a processor executing a program. Note that some or all of the functions of the imaging device 1A that execute electrical signal processing are implemented using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). It may be realized using. The above program may be recorded on a computer-readable recording medium. Computer-readable recording media include portable media such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, semiconductor storage devices (such as SSDs: Solid State Drives), and hard disks and semiconductor storage built into computer systems. It is a storage device such as a device. The above program may be transmitted via a telecommunications line.
 光学系110は、画像を結像するレンズで構成される。光学系110は、複数のレンズを備えてもよい。 The optical system 110 is composed of a lens that forms an image. Optical system 110 may include multiple lenses.
 CASSI観測系120は、CASSIにより入力信号を符号化して計測する機能を有する。より具体的には、CASSI観測系120は、例えば、符号化部121と、分散部122と、計測部123とを備える。以下、CASSI観測系120の構成について説明するが、これは、第1実施形態および第2実施形態のCASSI観測系120が、従来のCASSI観測系と同様であってよいことを意図したものである。 The CASSI observation system 120 has a function of encoding and measuring an input signal using CASSI. More specifically, the CASSI observation system 120 includes, for example, an encoding section 121, a dispersion section 122, and a measurement section 123. The configuration of the CASSI observation system 120 will be described below, with the intention that the CASSI observation system 120 of the first embodiment and the second embodiment may be similar to the conventional CASSI observation system. .
 符号化部121は、入力信号に符号化開口マスクを作用させることで符号化された入力信号を出力する。符号化開口マスクは、LCOS(Liquid Crystal On Silicon)やDMD(Digital Mirror Device)などである。符号化開口マスクは、0および1の離散値(以下{0,1}と表す場合がある)で構成されてもよいし、0から1までの連続値(以下[0,1]と表す場合がある)によって構成されてもよい。例えば、符号化開口マスクは、符号化開口を可変のパラメータとしてモデル化し、再構成モデルを含めたエンド・トゥ・エンドの入出力の最適化により決定する、というデータ駆動的なアプローチにより生成され得る。一方、このようなデータ駆動的なアプローチとは逆に、符号化開口マスクは、画像のスパース変換時の基底に対するインコヒーレンス性を利用した圧縮センシングの理論に基づく理論的なアプローチによって生成されてもよい。 The encoding unit 121 outputs an encoded input signal by applying the encoded aperture mask to the input signal. Coded aperture masks include LCOS (Liquid Crystal On Silicon) and DMD (Digital Mirror Device). The coded aperture mask may be composed of discrete values of 0 and 1 (hereinafter referred to as {0,1}), or continuous values from 0 to 1 (hereinafter referred to as [0,1]). ). For example, a coded aperture mask can be generated using a data-driven approach in which the coded aperture is modeled as a variable parameter and determined by end-to-end input/output optimization, including a reconstruction model. . On the other hand, contrary to such data-driven approaches, coded aperture masks can also be generated by a theoretical approach based on the theory of compressed sensing that takes advantage of the incoherence with respect to the basis during sparse transformation of images. good.
 分散部122は、例えばプリズムである。分散部122は、符号化部121の出力信号を入力し、入力信号を波長分散して出力する。 The dispersion unit 122 is, for example, a prism. The dispersion unit 122 inputs the output signal of the encoding unit 121, performs wavelength dispersion on the input signal, and outputs the resultant signal.
 計測部123は、例えば、FPA(Focal Plane Array:焦点面アレイ)アレイセンサである。計測部123は、画素ごとの各センサが分散部122の出力信号を入力し、波長方向に積算して出力する。計測部123は、計測結果としての圧縮信号(画像)を出力する。 The measurement unit 123 is, for example, an FPA (Focal Plane Array) array sensor. In the measurement unit 123, each sensor for each pixel inputs the output signal of the dispersion unit 122, integrates the signal in the wavelength direction, and outputs the integrated signal. The measurement unit 123 outputs a compressed signal (image) as a measurement result.
 変調部130は、CASSI観測系120の出力信号を入力し、それに乗算マスクによる変調を施して出力する。例えば、乗算マスクは、上述の符号化開口マスクと同様に可変のパラメータとしてモデル化し、符号化開口マスクと再構成モデルを含めたエンド・トゥ・エンドの入出力の最適化により決定する、というデータ駆動的なアプローチにより生成され得る。 The modulation unit 130 inputs the output signal of the CASSI observation system 120, modulates it using a multiplication mask, and outputs it. For example, data indicates that the multiplication mask is modeled as a variable parameter in the same way as the coded aperture mask described above, and is determined by end-to-end input/output optimization including the coded aperture mask and the reconstruction model. can be generated by a driven approach.
 再構成処理部140は、変調部130の出力信号を入力し、それに再構成処理を施すことにより、ハイパースペクトル画像の推定結果(推定信号)を出力する。 The reconstruction processing unit 140 inputs the output signal of the modulation unit 130, performs reconstruction processing on it, and outputs an estimation result (estimated signal) of the hyperspectral image.
図2は、撮像装置1Aによる処理の流れを示すイメージ図である。図2は、各ステップの信号変換をパラメータ化(モデル化)した様子を表している。なお、図2の信号変換において、実線は、光学素子(プリズムやセンサ等)の固有のパラメータ値(固定)に基づく変換を表し、破線は、設計可能な可変パラメータに基づく変換を表している。 FIG. 2 is an image diagram showing the flow of processing by the imaging device 1A. FIG. 2 shows how the signal transformation of each step is parameterized (modeled). In the signal conversion shown in FIG. 2, the solid line represents conversion based on unique parameter values (fixed) of the optical element (prism, sensor, etc.), and the broken line represents conversion based on variable parameters that can be designed.
 まず、撮像装置1Aが、光学系110を介して、撮像対象空間内の光の波長データ(Spectral Data Cube)D0をCASSI観測系120に入力する(ステップS1)。 First, the imaging device 1A inputs wavelength data (Spectral Data Cube) D0 of light in the imaging target space to the CASSI observation system 120 via the optical system 110 (step S1).
 続いて、CASSI観測系120において、符号化部121が、入力した波長データ(入力信号)に対して符号化開口マスクM1を作用させることにより、符号化された波長データD1を分散部122に出力する(ステップS2)。この工程は、3D(空間および波長)の入力信号に対して各画素を符号化開口マスクで被覆することを意味する。 Next, in the CASSI observation system 120, the encoding unit 121 outputs encoded wavelength data D1 to the dispersion unit 122 by applying the encoded aperture mask M1 to the input wavelength data (input signal). (Step S2). This step means covering each pixel with a coded aperture mask for 3D (spatial and wavelength) input signals.
 続いて、CASSI観測系120において、分散部122が、符号化された波長データD1を波長分散して計測部123に出力する(ステップS3)。この工程は、分散光学素子(プリズム)により波長軸を傾斜させることを意味するものである。 Subsequently, in the CASSI observation system 120, the dispersion unit 122 performs wavelength dispersion on the encoded wavelength data D1 and outputs it to the measurement unit 123 (step S3). This step means tilting the wavelength axis using a dispersive optical element (prism).
 続いて、CASSI観測系120において、計測部123が、波長分散された波長データD2を入力し、各画素が波長方向に波長データD2を積算することにより、対象空間の計測結果としての圧縮信号データD3を生成して変調部130に出力する(ステップS4)。この工程は、傾斜された各波長信号をピクセル毎に積算することを意味するものである。ここまでの工程により、2Dの圧縮信号が取得される。 Next, in the CASSI observation system 120, the measuring unit 123 inputs the wavelength-dispersed wavelength data D2, and each pixel integrates the wavelength data D2 in the wavelength direction, thereby obtaining compressed signal data as a measurement result of the target space. D3 is generated and output to the modulation section 130 (step S4). This step means integrating each tilted wavelength signal pixel by pixel. Through the steps up to this point, a 2D compressed signal is obtained.
 続いて、変調部130が、CASSI観測系120から入力した2Dの圧縮信号データD3に対して乗算マスクによる変調を施すことによって変調後圧縮信号データD4を生成する(ステップS5)。変調部130は、生成した変調後圧縮信号データD4を再構成処理部140に出力する。 Subsequently, the modulation unit 130 generates modulated compressed signal data D4 by performing modulation using a multiplication mask on the 2D compressed signal data D3 input from the CASSI observation system 120 (step S5). The modulation section 130 outputs the generated compressed modulated signal data D4 to the reconstruction processing section 140.
 続いて、再構成処理部140が、変調部130から入力した変調後圧縮信号データD4に対して再構成処理を施すことにより、推定結果としてのハイパースペクトル画像IMGを生成して出力する(ステップS6)。例えば、再構成処理部140は、変調後圧縮信号データD4を再構成モデルに入力することにより再構成処理を実施する。 Subsequently, the reconstruction processing unit 140 generates and outputs a hyperspectral image IMG as an estimation result by performing reconstruction processing on the modulated compressed signal data D4 input from the modulation unit 130 (step S6 ). For example, the reconstruction processing unit 140 performs reconstruction processing by inputting the modulated compressed signal data D4 to the reconstruction model.
 ここで、再構成モデルは、例えば、所望の信号データと、変調後圧縮信号データとの相関(すなわち観測行列)をニューラルネットワークなどの機械学習手法により予め学習することによって生成される。例えば、再構成モデルは、ADMM(Alternating Direction Method of Multiplier)やISTA(Iterative Shrinkage Thresholding Algorithm)等に代表される繰り返し最適化アルゴリズムを深層学習によって実装したDUN(Deep Unrolled Network)で構築され、符号化部121と変調部130を含めた可変パラメータをエンド・トゥ・エンドで最適化することにより学習され得る。 Here, the reconstructed model is generated, for example, by previously learning the correlation (i.e., observation matrix) between the desired signal data and the modulated compressed signal data using a machine learning method such as a neural network. For example, the reconstruction model is constructed using a DUN (Deep Unrolled Network), which uses deep learning to implement iterative optimization algorithms such as ADMM (Alternating Direction Method of Multiplier) and ISTA (Iterative Shrinkage Thresholding Algorithm). It can be learned by optimizing variable parameters end-to-end including the modulator 121 and the modulator 130.
 図3は、第1実施形態の撮像装置1Aが奏する効果の一例を示す図である。図3は、乗算マスクを用いない(符号化開口マスクのみ)従来構成による画像の推定精度と、上記の乗算マスク(符号化開口マスクと乗算マスクの組み合わせ)を用いた本実施形態の構成による画像の推定精度との比較を示す。図3に示すグラフの縦軸はPSNR(Peak Signal to-Noise Ratio:ピーク信号対雑音比)の強度である。図3からも明らかなように、本実施形態の推定結果の方が、従来構成よりもPSNRの値が大きく、画質が向上していることが分かる。 FIG. 3 is a diagram showing an example of the effects produced by the imaging device 1A of the first embodiment. FIG. 3 shows the estimation accuracy of an image using a conventional configuration that does not use a multiplication mask (only a coded aperture mask), and the image estimation accuracy of an image using the configuration of this embodiment using the multiplication mask described above (a combination of a coded aperture mask and a multiplication mask). A comparison with the estimation accuracy is shown. The vertical axis of the graph shown in FIG. 3 is the strength of PSNR (Peak Signal to Noise Ratio). As is clear from FIG. 3, it can be seen that the estimation result of this embodiment has a larger PSNR value and improved image quality than the conventional configuration.
 このように構成された第1実施形態の撮像装置1Aによれば、ハイパースペクトル画像の測定を行うCASSI観測系において、計測された信号に対して乗算マスクによる変調処理を行うことにより、CASSIによるハイパースペクトル画像の測定精度を向上させることができる。 According to the imaging device 1A of the first embodiment configured in this way, in the CASSI observation system that measures hyperspectral images, by performing modulation processing using a multiplication mask on the measured signal, the hyperspectral image is The measurement accuracy of spectral images can be improved.
 より具体的には、CASSI観測系で用いられる符号化開口マスクの各画素は入力信号の対応する画素情報を遮断するか否か([0,1]の場合は減衰)であるために、従来構成では、入力信号における同一画素内の各波長信号に対する信号変換は画素で共通した信号変換({0,1}または[0,1]のスカラー倍にする変換)に限られた。これに対して、第1実施形態の撮像装置1Aは、分散処理前の入力信号に直接的に作用する符号化開口マスクに加えて、分散処理および積算処理を行った結果の計測信号に対してマスクを乗算して変調する変調部130を有することにより、入力信号の同一画素内の各波長信号に対して異なる信号変換を可能とするものである。 More specifically, since each pixel of the coded aperture mask used in the CASSI observation system blocks the corresponding pixel information of the input signal (attenuates in the case of [0, 1]), In this configuration, signal conversion for each wavelength signal within the same pixel in the input signal is limited to signal conversion common to the pixels (conversion to {0,1} or scalar multiplication of [0,1]). In contrast, the imaging device 1A of the first embodiment uses a coded aperture mask that directly acts on the input signal before dispersion processing, as well as a measurement signal that is the result of dispersion processing and integration processing. By having the modulation unit 130 that multiplies and modulates the mask, it is possible to perform different signal conversions on each wavelength signal within the same pixel of the input signal.
 このため、ハイパースペクトル画像の測定に関して、自由度の高い観測行列の設計が可能となり、符号化開口マスクおよび乗算マスクの2つのマスクを適切に設計することで最終的に得られる元信号の精度を向上させることが可能となる。 For this reason, it is possible to design observation matrices with a high degree of freedom when measuring hyperspectral images, and by appropriately designing the two masks, the encoded aperture mask and the multiplication mask, the accuracy of the final source signal can be improved. It becomes possible to improve the performance.
 また、CASSIの観測行列の設計は各種光学素子を用いたものでありハードウェア上での実装である。これに対して、本実施形態の変調部130は信号圧縮後の信号処理であり、ソフトウェア上の実装が可能である。従って、変調部130の実装において物理的な制約が少なく、変換の速度や連続値の表現において扱いやすい等のメリットがある。 Additionally, the design of the CASSI observation matrix uses various optical elements and is implemented on hardware. In contrast, the modulation unit 130 of this embodiment performs signal processing after signal compression, and can be implemented in software. Therefore, there are advantages such as fewer physical restrictions in implementing the modulation section 130 and ease of handling in terms of conversion speed and continuous value expression.
 さらに、第1実施形態の撮像装置1Aにおいて、変調部130は、CASSIによる従来の撮像プロセスに追加や変更等を加えるものではない。このため、本実施形態の撮像装置1Aによれば、容易に、且つ、装置を複雑化させることなく元信号の推定精度を向上させることができる。 Furthermore, in the imaging device 1A of the first embodiment, the modulation unit 130 does not add or change the conventional imaging process using CASSI. Therefore, according to the imaging device 1A of this embodiment, the estimation accuracy of the original signal can be easily improved without complicating the device.
<第2実施形態>
 図4は、第2実施形態の撮像装置1Bの構成を示すブロック図である。図4について、図1と同様の構成には図1と同じ符号を付すことによりここでの説明を省略する。撮像装置1Bは、変調部130を備えない点、注目重み設定部150およびマスク生成部160を備える点で第1実施形態の撮像装置1Aと異なる。
<Second embodiment>
FIG. 4 is a block diagram showing the configuration of an imaging device 1B according to the second embodiment. Regarding FIG. 4, the same components as in FIG. 1 are given the same reference numerals as in FIG. 1, and the explanation here will be omitted. The imaging device 1B differs from the imaging device 1A of the first embodiment in that it does not include a modulation section 130 and includes an attention weight setting section 150 and a mask generation section 160.
 注目重み設定部150は、CASSI観測系120が撮像する画素ごとに、観測データとして注目すべき度合いの重み(以下「注目重み」という。)を設定する。例えば、注目重み設定部150は、不図示の操作入力部から注目重みの設定操作の入力を受け付け、その入力情報をもとに、画素ごとの注目重みを示す注目重み情報を生成してマスク生成部160に出力する。 The attention weight setting unit 150 sets a weight (hereinafter referred to as "attention weight") for each pixel imaged by the CASSI observation system 120, indicating the degree to which it should be noticed as observation data. For example, the attention weight setting unit 150 receives an input for setting an attention weight from an operation input unit (not shown), generates attention weight information indicating the attention weight for each pixel based on the input information, and generates a mask. 160.
 より、具体的には、注目重みは、連続値[0,1]の範囲内の値であり、注目重み設定部150は、画素ごとに、3D(空間および波長)の注目重みを設定する。 More specifically, the attention weight is a value within the range of continuous values [0, 1], and the attention weight setting unit 150 sets a 3D (spatial and wavelength) attention weight for each pixel.
 なお、注目重みの設定方法は、上記のような方法のほか、任意の方法によって設定されてよい。例えば、注目重み情報が、通信によって他の装置から受信されてもよいし、不図示の記憶部から予め記憶された注目重み情報が読み出されてもよい。 Note that the attention weight may be set by any method other than the method described above. For example, attention weight information may be received from another device via communication, or attention weight information stored in advance from a storage unit (not shown) may be read.
 マスク生成部160は、注目重み設定部150から入力する注目重み情報に基づいて符号化開口マスクを生成する。マスク生成部160は、生成した符号化開口マスクを、後段のCASSI観測系120の符号化部121に設定する。 The mask generation unit 160 generates a coded aperture mask based on the attention weight information input from the attention weight setting unit 150. The mask generation unit 160 sets the generated encoded aperture mask in the encoding unit 121 of the CASSI observation system 120 at the subsequent stage.
 図5は、撮像装置1Bによる処理の流れを示すイメージ図である。まず、撮像装置1Bにおいて、注目重み設定部150が、画素ごとの注目重みを設定する処理を行い(ステップS201)、その設定内容を示す注目重み情報をマスク生成部160に出力する。例えば、注目重み設定部150は、画像内の注目領域を矩形で選択する操作を受け付けてもよいし、画像内の各領域に注目領域か否かの情報を対応づけたアノテーションマップを入力する操作を受け付けてもよい。 FIG. 5 is an image diagram showing the flow of processing by the imaging device 1B. First, in the imaging device 1B, the attention weight setting unit 150 performs a process of setting attention weight for each pixel (step S201), and outputs attention weight information indicating the settings to the mask generation unit 160. For example, the attention weight setting unit 150 may accept an operation to select a rectangular region of interest in an image, or an operation to input an annotation map that associates each region in an image with information as to whether it is a region of interest or not. may be accepted.
 続いて、マスク生成部160が、注目重み設定部150から注目重み情報を入力し、その注目重み情報をもとに符号化開口マスクを生成する(ステップS202)。例えば、マスク生成部160は、CNN(Convolutional Neural Network)やU-NETなどのDNN(Deep Neural Network)ベースの画像処理モデルを用いて符号化開口マスクを生成することができる。マスク生成部160は、生成した符号化開口マスクを後段のCASSI観測系120の符号化部121に設定する。 Next, the mask generation unit 160 receives the attention weight information from the attention weight setting unit 150 and generates a coded aperture mask based on the attention weight information (step S202). For example, the mask generation unit 160 can generate a coded aperture mask using an image processing model based on a DNN (Deep Neural Network) such as CNN (Convolutional Neural Network) or U-NET. The mask generation unit 160 sets the generated encoded aperture mask in the encoding unit 121 of the subsequent CASSI observation system 120.
 以降の処理は、第1実施形態において乗算マスクを適用しない場合の処理の流れと同様である。具体的には、CASSI観測系120がステップS202で設定された符号化開口マスクを用いて観測データの取得(撮像)を行い、再構成処理部140が取得された観測データに再構成処理を施すことにより元信号の推定結果である画像を出力する。図5では、第1実施形態の撮像装置1Aが実行する処理と同様の処理については図2と同じ符号を示している。 The subsequent processing is similar to the flow of processing when the multiplication mask is not applied in the first embodiment. Specifically, the CASSI observation system 120 acquires (images) observation data using the encoded aperture mask set in step S202, and the reconstruction processing unit 140 performs reconstruction processing on the acquired observation data. This outputs an image that is the estimation result of the original signal. In FIG. 5, the same reference numerals as in FIG. 2 indicate the same processes as those executed by the imaging device 1A of the first embodiment.
 なお、図5では、マスク生成部160が注目重みの設定操作により符号化開口マスクのみを生成する場合について説明したが、マスク生成部160は、符号化開口マスクに加えて、第1実施形態の乗算マスクを生成してもよい。この場合、マスク生成部160が乗算マスクを生成する機能は、深層学習モデルによる機械学習によって実現され得る。 Note that in FIG. 5, a case has been described in which the mask generation unit 160 generates only the coded aperture mask by the attention weight setting operation, but the mask generation unit 160 also generates the coded aperture mask in addition to the coded aperture mask of the first embodiment. A multiplication mask may also be generated. In this case, the function of the mask generation unit 160 to generate a multiplication mask may be realized by machine learning using a deep learning model.
 図6は、この場合の処理の流れを示すイメージ図である。この場合、撮像装置1Bは、第1実施形態の変調部130をさらに備え、CASSI観測系120の観測データを変調した上で再構成処理を実施するように構成されてもよい。 FIG. 6 is an image diagram showing the flow of processing in this case. In this case, the imaging device 1B may further include the modulation unit 130 of the first embodiment, and may be configured to modulate the observation data of the CASSI observation system 120 and then perform the reconstruction process.
 図7は、マスク生成部160が乗算マスクを生成し、再構成処理部140が再構成モデルを学習する流れを示すイメージ図である。上述のとおり、マスク生成部160が乗算マスクを生成する機能および再構成処理部140は、深層学習モデルによって実現され得る。例えば、マスク生成部160および再構成処理部140は、それぞれ、画素単位で設定された注目重みによって重み付けされたMSE(Mean Squared Error)をロスとして学習することにより、注目領域の再構成に特化した乗算マスクの生成モデルおよび再構成モデルを構築することができる。これはすなわち、注目重みを実数値[0,1]で表現し、その値を利用したロスの設計を行うことで、重要度の大小を考慮したハイパースペクトル画像の計測を可能とするものである。例えば、ロスは以下の(2)式のように定義される。 FIG. 7 is an image diagram showing a flow in which the mask generation unit 160 generates a multiplication mask and the reconstruction processing unit 140 learns a reconstruction model. As described above, the function of the mask generation unit 160 to generate a multiplication mask and the reconstruction processing unit 140 can be realized by a deep learning model. For example, the mask generation unit 160 and the reconstruction processing unit 140 each specialize in reconstructing the region of interest by learning as a loss MSE (Mean Squared Error) weighted by attention weights set for each pixel. It is possible to construct a generation model and a reconstruction model of the multiplicative mask. In other words, by expressing the attention weight as a real value [0, 1] and designing the loss using that value, it is possible to measure hyperspectral images that take into account the magnitude of importance. . For example, loss is defined as in equation (2) below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 以上説明したように、第2実施形態の撮像装置1Bは、ハイパースペクトル画像の測定を行うCASSI観測系について、撮像される画像内の画素ごとに注目度合いの重みを示す注目重みを設定し、設定した注目重み情報に基づいて符号化開口マスクを生成することにより、注目領域に特化した再構成モデルを構成することができる。このため、第2実施形態の撮像装置1Bによれば、CASSIによるハイパースペクトル画像の測定精度を向上させることができる。 As described above, the imaging device 1B of the second embodiment sets the attention weight indicating the degree of attention for each pixel in the captured image for the CASSI observation system that measures hyperspectral images, and sets By generating a coded aperture mask based on the attention weight information, a reconstruction model specialized for the attention area can be constructed. Therefore, according to the imaging device 1B of the second embodiment, it is possible to improve the measurement accuracy of hyperspectral images by CASSI.
 さらに、第2実施形態の撮像装置1Bは、第1実施形態の変調部130を備え、マスク生成部160が、注目重み設定部150により設定された注目重み情報に基づく符号化開口マスク含め、エンド・トゥ・エンドで最適化するように学習された生成モデル(DNN)をもとに乗算マスクを生成し、変調部130が生成された乗算マスクを用いて観測データを変調することにより、CASSIによるハイパースペクトル画像の測定精度をさらに向上させることができる。 Furthermore, the imaging device 1B of the second embodiment includes the modulation unit 130 of the first embodiment, and the mask generation unit 160 includes an encoded aperture mask based on the attention weight information set by the attention weight setting unit 150,・A multiplication mask is generated based on the generative model (DNN) learned to optimize from end to end, and the modulation unit 130 modulates the observed data using the generated multiplication mask, so that CASSI The measurement accuracy of hyperspectral images can be further improved.
 より具体的には、第2実施形態の撮像装置1Bは、CASSI観測系120で用いられる符号化開口マスクを、画素単位で注目したい波長域について重みづけ(注目重みの設定)を行った上で、画素及び波長域ごとの注目重みを入力としてDNN(Deep Neural Network)により符号化開口マスクを生成する。これはすなわち、ピクセルワイズな重みの設計とそれを加味した符号化開口マスクの生成モデル及び再構成モデルの学習により、波長の注目領域を空間的に変動させた測定画像の取得が可能となるということである。 More specifically, the imaging device 1B of the second embodiment weights the coded aperture mask used in the CASSI observation system 120 with respect to the wavelength range of interest for each pixel (setting the attention weight). , a coded aperture mask is generated using a DNN (Deep Neural Network) using the attention weights for each pixel and wavelength range as input. In other words, by designing pixel-wise weights and learning the coded aperture mask generation model and reconstruction model that take this into account, it is possible to acquire measurement images with spatially varying wavelength regions of interest. That's true.
 これにより、各波長域に対して{0,1}の離散値ではなく[0,1]で連続する範囲内の値として重要度(重み)を設定して、画素ごとに異なる波長域の重要度を設定して撮像を行うことができる。第2実施形態の撮像装置1Bによれば、従来手法とは異なり、取得した圧縮信号の画素情報を全て利用することができるため、単一撮影での再構成の結果が十分な性能であることが期待できるので、計測コストを小さくすることができる。 As a result, the importance (weight) for each wavelength range can be set as a value within a continuous range of [0, 1] instead of a discrete value of {0, 1}, and the importance of a different wavelength range for each pixel can be set. It is possible to set the degree and perform imaging. According to the imaging device 1B of the second embodiment, unlike the conventional method, all the pixel information of the acquired compressed signal can be used, so the reconstruction result in a single image capture has sufficient performance. Since this can be expected, the measurement cost can be reduced.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs within the scope of the gist of the present invention.
 本発明は、CASSI観測系を用いたハイパースペクトル画像の計測を行う撮像装置に適用可能である。 The present invention is applicable to an imaging device that measures hyperspectral images using a CASSI observation system.
1A,1B…撮像装置、110…光学系、120…CASSI観測系、121…符号化部、122…分散部、123…計測部、130…変調部、140…再構成処理部、150…重み設定部、160…マスク生成部 1A, 1B...Imaging device, 110...Optical system, 120...CASSI observation system, 121...Encoding section, 122...Dispersion section, 123...Measurement section, 130...Modulation section, 140...Reconstruction processing section, 150...Weight setting Section, 160...Mask generation section

Claims (8)

  1.  圧縮センシングによるハイパースペクトル画像の測定を行う撮像装置であって、
     入力信号に符号化開口マスクを作用させることで入力信号を符号化して出力する符号化部と、前記符号化部によって符号化された前記入力信号を波長分散して出力する分散部と、前記分散部により波長分散された前記入力信号を撮像する計測部と、を備えるCASSI観測系と、
     前記CASSI観測系が撮像する画素ごとに注目度合いの重みを設定する注目重み設定部と、
     前記注目重み設定部によって設定された前記画素ごとの注目度合いの重みに基づいて前記符号化開口マスクを生成するマスク生成部と、
     を備える撮像装置。
    An imaging device that measures hyperspectral images by compressed sensing,
    an encoding unit that encodes and outputs the input signal by applying a coded aperture mask to the input signal; a dispersion unit that wavelength-disperses and outputs the input signal encoded by the encoding unit; a CASSI observation system comprising: a measurement unit that images the input signal wavelength-dispersed by the unit;
    an attention weight setting unit that sets a degree of attention weight for each pixel imaged by the CASSI observation system;
    a mask generation unit that generates the encoded aperture mask based on the weight of the degree of attention for each pixel set by the attention weight setting unit;
    An imaging device comprising:
  2.  前記CASSI観測系の出力信号を乗算マスクによって変調する変調部をさらに備える、
     請求項1に記載の撮像装置。
    further comprising a modulation unit that modulates the output signal of the CASSI observation system using a multiplication mask;
    The imaging device according to claim 1.
  3.  前記マスク生成部は、前記符号化開口マスクに加えて前記乗算マスクを前記注目度合いの重みに基づいて生成し、生成した前記乗算マスクを前記変調部に設定する、
     請求項2に記載の撮像装置。
    The mask generation unit generates the multiplication mask in addition to the coded aperture mask based on the weight of the degree of attention, and sets the generated multiplication mask in the modulation unit.
    The imaging device according to claim 2.
  4.  前記注目重み設定部は、前記画素ごとの注目度合いの重みとして0から1までの間の任意の値を設定可能である、
     請求項1に記載の撮像装置。
    The attention weight setting unit is capable of setting an arbitrary value between 0 and 1 as a weight of the degree of attention for each pixel.
    The imaging device according to claim 1.
  5.  前記変調部の出力信号を入力し、それに再構成処理を施すことにより、ハイパースペクトル画像の推定結果を出力する再構成処理部をさらに備える、
     請求項2に記載の撮像装置。
    further comprising a reconstruction processing unit that inputs the output signal of the modulation unit and performs reconstruction processing on it to output an estimation result of a hyperspectral image;
    The imaging device according to claim 2.
  6.  前記再構成処理部は、前記撮像装置の入出力を、前記符号化開口マスクおよび乗算マスクを含めて最適化するように構築されたニューラルネットワークを再構成モデルとして予め学習済みである、
     請求項5に記載の撮像装置。
    The reconstruction processing unit has previously learned as a reconstruction model a neural network constructed to optimize input and output of the imaging device including the encoded aperture mask and the multiplication mask.
    The imaging device according to claim 5.
  7.  圧縮センシングによるハイパースペクトル画像の測定を行う撮像方法であって、
     入力信号に符号化開口マスクを作用させることで入力信号を符号化して出力する符号化部と、前記符号化部によって符号化された前記入力信号を波長分散して出力する分散部と、前記分散部により波長分散された前記入力信号を撮像する計測部と、を備えるCASSI観測系により入力信号を撮像する撮像ステップと、
     前記CASSI観測系の出力信号を乗算マスクによって変調する変調ステップと、
     を有する撮像方法。
    An imaging method for measuring hyperspectral images by compressed sensing, the method comprising:
    an encoding unit that encodes and outputs the input signal by applying a coded aperture mask to the input signal; a dispersion unit that wavelength-disperses and outputs the input signal encoded by the encoding unit; an imaging step of imaging the input signal with a CASSI observation system comprising: a measurement unit that images the input signal wavelength-dispersed by the unit;
    a modulation step of modulating the output signal of the CASSI observation system by a multiplication mask;
    An imaging method having.
  8.  コンピューターを、請求項1から6のいずれか一項に記載の撮像装置として機能させるためのプログラム。 A program for causing a computer to function as the imaging device according to any one of claims 1 to 6.
PCT/JP2022/026172 2022-06-30 2022-06-30 Imaging device, imaging method, and program WO2024004121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026172 WO2024004121A1 (en) 2022-06-30 2022-06-30 Imaging device, imaging method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026172 WO2024004121A1 (en) 2022-06-30 2022-06-30 Imaging device, imaging method, and program

Publications (1)

Publication Number Publication Date
WO2024004121A1 true WO2024004121A1 (en) 2024-01-04

Family

ID=89382482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026172 WO2024004121A1 (en) 2022-06-30 2022-06-30 Imaging device, imaging method, and program

Country Status (1)

Country Link
WO (1) WO2024004121A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090576A (en) * 2014-10-29 2016-05-23 パナソニックIpマネジメント株式会社 Imaging apparatus, spectroscopy system, and spectroscopy method
JP2016157999A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Light field acquiring device and light field acquiring method
US20190096049A1 (en) * 2017-09-27 2019-03-28 Korea Advanced Institute Of Science And Technology Method and Apparatus for Reconstructing Hyperspectral Image Using Artificial Intelligence
WO2021234797A1 (en) * 2020-05-18 2021-11-25 日本電信電話株式会社 Learning method, resolution enhancement method, learning device, and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090576A (en) * 2014-10-29 2016-05-23 パナソニックIpマネジメント株式会社 Imaging apparatus, spectroscopy system, and spectroscopy method
JP2016157999A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Light field acquiring device and light field acquiring method
US20190096049A1 (en) * 2017-09-27 2019-03-28 Korea Advanced Institute Of Science And Technology Method and Apparatus for Reconstructing Hyperspectral Image Using Artificial Intelligence
WO2021234797A1 (en) * 2020-05-18 2021-11-25 日本電信電話株式会社 Learning method, resolution enhancement method, learning device, and computer program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOMITSU SOGABE, SHIORI SUGIMOTO, TAKAYUKI KUROZUMI, HIDEAKI KIZEN: "Image reconstruction using codec", IEICE TECHNICAL REPORT; IE, IEICE, JP, vol. 119, no. 324 (IE2019-66), 28 November 2019 (2019-11-28), JP , pages 105 - 109, XP009532379 *

Similar Documents

Publication Publication Date Title
Zheng et al. Deep plug-and-play priors for spectral snapshot compressive imaging
JP2018195069A (en) Image processing apparatus and image processing method
Punnappurath et al. Learning raw image reconstruction-aware deep image compressors
JP2004534342A (en) Method and system for outputting formatted information relating to a defect of one device in a chain, particularly relating to smearing
Stork et al. Theoretical foundations for joint digital-optical analysis of electro-optical imaging systems
EP1708136A1 (en) Measuring method for optical transfer function, image restoring method, and digital imaging device
JP6652510B2 (en) System and method for compressed sensing imaging
KR20220124622A (en) Image compression method and apparatus thereof
CN110428362B (en) Image HDR conversion method and device and storage medium
WO2021110262A1 (en) Noise reconstruction for image denoising
Jagatap et al. Sample efficient fourier ptychography for structured data
TW200806019A (en) Image sensors
EP3185555A1 (en) Image compression method with negligible and quantifiable information loss and high compression ratio
JP5765893B2 (en) Image processing apparatus, imaging apparatus, and image processing program
WO2024004121A1 (en) Imaging device, imaging method, and program
EP3979185A1 (en) Image processing method, program, image processing apparatus, trained model producing method, learning method, learning apparatus, and image processing system
WO2024004120A1 (en) Imaging device, imaging method, and program
KR20230118938A (en) optical method
Liu et al. Deep self-supervised hyperspectral image reconstruction
JP2012003454A (en) Image processing apparatus, imaging device and image processing program
JP7443030B2 (en) Learning method, program, learning device, and method for manufacturing learned weights
US11920981B2 (en) Spectral imaging device
CN110249619B (en) Image processing apparatus, image processing method, and camera system
WO2023276022A1 (en) Learning device, learning method, and program
JP7309520B2 (en) Image processing method, image processing device, imaging device, program, storage medium, image processing system, and learned model manufacturing method