WO2024004114A1 - Conductor abnormality sensing device and conductor abnormality sensing method - Google Patents

Conductor abnormality sensing device and conductor abnormality sensing method Download PDF

Info

Publication number
WO2024004114A1
WO2024004114A1 PCT/JP2022/026134 JP2022026134W WO2024004114A1 WO 2024004114 A1 WO2024004114 A1 WO 2024004114A1 JP 2022026134 W JP2022026134 W JP 2022026134W WO 2024004114 A1 WO2024004114 A1 WO 2024004114A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
waveform
discrete wavelet
abnormality
wavelet transform
Prior art date
Application number
PCT/JP2022/026134
Other languages
French (fr)
Japanese (ja)
Inventor
佑紀 岡南
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/026134 priority Critical patent/WO2024004114A1/en
Publication of WO2024004114A1 publication Critical patent/WO2024004114A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Definitions

  • the present disclosure relates to conductor abnormality detection technology.
  • Patent Document 1 discloses a detection technique using Time Domain Reflectometry in order to detect an abnormality such as an open cable failure in a vehicle power supply system.
  • the characteristic impedance of the target wiring is measured by injecting a high-speed pulse or step signal into the target wiring and observing the reflected waveform or transmitted waveform of the signal.
  • An abnormality in the wiring is detected based on whether the measured impedance is within a predetermined normal range (paragraphs 0043 to 0054 of Patent Document 1).
  • Patent Document 1 does not mention the case where noise exists on the wiring.
  • the characteristic impedance cannot be accurately measured because there is no mechanism for removing the noise. Therefore, there is a problem in that the characteristic impedance deviates from the true value due to superimposed noise, and there is a possibility that an abnormality in the wiring is detected incorrectly.
  • the present disclosure was made in recognition of such problems, and aims to provide a conductor abnormality detection technique that can detect abnormalities in conductors in a noisy environment.
  • One aspect of the conductor abnormality detection device includes a pulse generation circuit for applying an electric pulse to a conductor, and detecting reflection of the applied electric pulse from the conductor, and reflecting waveform data of the detected reflection.
  • a conductor abnormality detection device comprising: a waveform detection circuit for outputting the waveform data; and a control circuit for processing the waveform data output from the waveform detection circuit to determine abnormality in the conductor, the control circuit includes a pulse control unit that controls the transmission timing of the electric pulse, a discrete wavelet transform unit that performs discrete wavelet transform on the reflected waveform data to calculate detailed coefficients of the reflected waveform data, and adjusts the calculated detailed coefficients.
  • a coefficient adjustment section an inverse discrete wavelet transform section that reconstructs a reflected waveform by performing an inverse discrete wavelet transform using the adjusted detailed coefficients, and a difference between the reconstructed waveform and a reference waveform. It includes a data comparison section and an abnormality determination section that determines whether the conductor is abnormal based on the calculated difference.
  • an abnormal location of a conductor in a noisy environment can be detected.
  • FIG. 1 is a diagram illustrating a configuration example of a conductor abnormality detection device according to a first embodiment
  • FIG. FIG. 3 is a diagram illustrating a configuration example of a data processing unit according to the first embodiment.
  • FIG. 2 is a schematic diagram of level 2 decomposition in discrete wavelet transform.
  • FIG. 2 is a schematic diagram of level 2 reconstruction in inverse discrete wavelet transform.
  • 1 is a diagram showing an example of a hardware configuration of a control circuit according to a first embodiment;
  • FIG. 1 is a diagram showing an example of a hardware configuration of a control circuit according to a first embodiment;
  • FIG. 5 is a flowchart showing the operation of the conductor abnormality detection device according to the first embodiment.
  • FIG. 3 is a schematic diagram showing a reflected waveform from a cable abnormality location.
  • 5 is a diagram showing an example of a reflected waveform observed by the waveform detection circuit in the first embodiment.
  • FIG. 5 is a diagram showing an example of a waveform reconstructed by the data processing unit in the first embodiment.
  • Embodiment 1 The configuration of the conductor abnormality detection device 1 according to the first embodiment will be explained.
  • the conductor abnormality detection device 1 includes a control circuit 2, a pulse generation circuit 3, and a waveform detection circuit 4.
  • the conductor abnormality detection device 1 is used by being connected to a cable 5, which is an example of a conductor to be detected.
  • the control circuit 2 includes, as functional units, a pulse control unit 21 that controls the operation of the pulse generation circuit 3, and a data processing unit 22 that processes the received digital signal. Details of the functional units of the data processing unit 22 will be described later.
  • the control circuit 2 includes processing circuitry as a hardware configuration. The processing circuitry, even if it is a dedicated processing circuit 2A as shown in FIG. 5A, executes the program stored in the memory 2C as shown in FIG. 5B. It may be the processor 2B.
  • the dedicated processing circuit 2A is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an application specific integrated circuit (ASIC). , FPGA (field-programmable gate array), or a combination of these.
  • the plurality of functional units of the control circuit 2 may be realized by a plurality of separate processing circuits, or the plurality of functional units may be realized by a single processing circuit.
  • the functional parts of the control circuit 2 are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the memory 2C.
  • the processor 2B implements each functional unit by reading and executing programs stored in the memory. Examples of the memory 2C include non-volatile or Includes volatile semiconductor memory, magnetic disks, flexible disks, optical disks, compact disks, minidisks, and DVDs.
  • the pulse generation circuit 3 is a circuit for applying an electric pulse to a conductor.
  • the pulse generation circuit 3 generates an electric pulse (hereinafter simply referred to as a "pulse") in response to a control signal from the pulse control section 21, and transmits the generated pulse to the cable 5.
  • the pulse transmission format is set to be a single-end method or a differential method depending on the cable 5. For example, if the cable 5 is a twisted pair cable, the pulse transmission format is a differential method.
  • the pulse width is preferably short compared to the propagation delay time of the cable 5.
  • the propagation delay time per unit length is 4.94 ns/m. If the cable length is 10 m, the propagation delay time will be 49.4 ns, so it is desirable that the pulse width be about 1/10 of this time or less, that is, 5 ns or less.
  • the waveform detection circuit 4 is a circuit for detecting the reflection of an applied electric pulse from a conductor.
  • the waveform detection circuit 4 observes the reflected voltage at the pulse transmission end of the conductor abnormality detection device 1.
  • the pulse transmitted from the pulse generation circuit 3 is reflected at the impedance mismatch point of the cable 5, and the reflected waveform is observed by the waveform detection circuit 4 at the transmission end.
  • the waveform detection circuit 4 is realized using, for example, an AD converter. It is desirable that the sampling rate of the AD converter is at least faster than the time width of the pulse.
  • the data processing unit 22 includes a discrete wavelet transform unit 221 that performs discrete wavelet transform on the reflected waveform data transmitted from the waveform detection circuit 4, and a coefficient adjustment unit 222 that modifies the values of the approximate coefficients and detailed coefficients obtained after data conversion.
  • An inverse discrete wavelet transform unit 223 reconstructs time waveform data by performing an inverse discrete wavelet transform on the corrected coefficients, a data comparison unit 224 calculates the difference between the reference data and the reconstructed data, and detects cable abnormality based on the difference data. It includes an abnormality determination section 225 that determines the presence or absence of abnormality and the location of the abnormality, and a storage section 226 that temporarily stores reference data.
  • the discrete wavelet transform is a signal processing technique that decomposes a given signal into several signals having different levels of resolution.
  • the approximation f j+1 (t) with resolution j+1 is the approximation f j (t) with resolution j and the details g j ( t) can be orthogonally decomposed into
  • the sequence ⁇ l[k] ⁇ k ⁇ Z and ⁇ h[k] ⁇ k ⁇ Z are filters determined by a scaling function and a wavelet function, and are called a low frequency filter coefficient and a high frequency filter coefficient, respectively.
  • the superscript bar represents a complex conjugate.
  • Equations (5) and (6) are the decomposition algorithm from resolution j+1 to resolution j. This decomposition algorithm is called discrete wavelet transform.
  • sequence c j+1 can be determined from the sequence c j and the sequence d j as shown in equation (7).
  • This equation (7) is the reconstruction algorithm from resolution j to resolution j+1. This reconstruction algorithm is called inverse discrete wavelet transform.
  • c 0 is decomposed into two sequences c -1 and d -1 .
  • This decomposition is called level 1 decomposition.
  • sequence c -1 is called a level 1 approximation coefficient
  • sequence d -1 is called a level 1 detailed coefficient.
  • the discrete wavelet transform starts from level 0 and is decomposed to level N (N is an integer of 1 or more) depending on the situation.
  • FIG. 3 shows a schematic diagram of level 2 decomposition
  • FIG. 4 shows a schematic diagram of level 2 reconstruction.
  • the filter coefficients ⁇ l[k] ⁇ k ⁇ Z and ⁇ h[k] ⁇ k ⁇ Z are determined by what kind of wavelet waveform is adopted, that is, what kind of mother wavelet is adopted.
  • mother wavelets include the Daubcy wavelet and the Meyer wavelet.
  • the Haar wavelet is used as an example of the mother wavelet.
  • the filter coefficients are given by equation (8) and equation (9).
  • step S1 the pulse generation circuit 3 applies a pulse to the cable 5 to be measured according to a command from the pulse control section 21. If there is an abnormality in the cable 5, such as a break, short circuit, or half-break, the characteristic impedance of the cable 5 changes at the abnormal location, so that the applied pulse is reflected at the abnormal location. If the abnormality is a disconnection, the impedance becomes open and the pulse is positive and totally reflected. On the other hand, if the abnormality is short-circuited, the impedance will be short-circuited and the pulse will be negative and totally reflected. If the abnormal point is a half-break, the impedance takes an intermediate value between an open circuit and a short circuit, so a reflection with a voltage amplitude smaller than the transmission amplitude occurs.
  • an abnormality in the cable 5 such as a break, short circuit, or half-break
  • step S2 the waveform detection circuit 4 observes the reflection from such an abnormal location as a transmission end voltage after the round trip time of the delay time between the pulse transmission end and the abnormal location. For example, if there is an abnormality at a position 5 m from the transmitting end, and the dielectric constant of the insulator covering the signal line of cable 5 is 2.2, the propagation delay time per unit length is 4.94 ns/ m, the time it takes for the pulse to reach the abnormal location is 24.7 ns. Therefore, at the transmitting end, the reflected waveform is observed after 49.4 ns, which is twice that time. The waveform detection circuit 4 performs AD conversion on the reflected waveform to be observed, and sends the converted data to the data processing section 22 as reflected waveform data.
  • step S3 the discrete wavelet transform unit 221 performs discrete wavelet transform on the reflected waveform data in digital format.
  • the level N for decomposing the waveform by the discrete wavelet transform is set to 2 or more.
  • an approximation coefficient of level N and N detailed coefficients of levels 1 to N are obtained.
  • step S4 the coefficient adjustment unit 222 adjusts N detailed coefficients at levels 1 to N and one approximation coefficient at level N. Specifically, the detailed coefficients from levels 1 to N-1 and the approximation coefficients at level N are set to 0 at all times. A threshold is set for the detailed coefficients of level N, coefficients below the threshold are set to 0, and coefficients larger than the threshold are left unchanged. In this way, the coefficient adjustment unit 222 adjusts the N detailed coefficients at levels 1 to N and the one approximation coefficient at level N. Note that the threshold value of the detailed coefficient needs to be adjusted in advance by simulation or the like for each measurement target. In the examples shown in FIGS. 8 and 9, which will be described later, the threshold value was adjusted in advance through simulation, and the threshold value was determined to be 0.16.
  • step S5 the inverse discrete wavelet transform unit 223 reconstructs the reflected waveform by performing inverse discrete wavelet transform using these modified N detailed coefficients and level N approximation coefficients. By reconstructing the reflected waveform in this manner, noise components can be suppressed or removed from the reflected waveform data.
  • the inverse discrete wavelet transform unit 223 determines the presence or absence of reference data that is reference waveform data. The presence or absence of reference data is determined by referring to the storage unit 226. If there is no reference data in advance, that is, if there is no reference data in the storage unit 226, the inverse discrete wavelet transform unit 223 stores the first measured and reconstructed waveform data in the storage unit 226 as reference data ( Step S7). On the other hand, if the reference data exists in the storage unit 226, the inverse discrete wavelet transform unit 223 outputs reconstructed waveform data.
  • the data comparison unit 224 calculates the difference between the reference data and the waveform data reconstructed by the inverse discrete wavelet transform unit 223, and calculates the maximum difference and the maximum difference. Calculate the time of the hour.
  • the data comparison unit 224 transmits the calculated maximum difference amount data and the current time data to the abnormality determination unit 225.
  • the conductor abnormality detection device 1 By operating as described above, the conductor abnormality detection device 1 having the configuration described above can detect cable abnormalities such as disconnections, short circuits, and half-disconnections with high accuracy even in a noisy environment. Can be done.
  • FIG. 7 shows a schematic diagram illustrating how a pulse transmitted from a transmitter is reflected at an abnormal location.
  • Z0 represents the characteristic impedance of the cable
  • Z1 represents the impedance at the abnormal location
  • the pulse is positively reflected in front of the abnormality and negatively reflected in the back of the transmitter. Therefore, a reflected waveform in which positive and negative reflections are superimposed is observed at the transmitting end.
  • This reflection shape has a shape similar to a Haar wavelet. For this reason, it is thought that by using the Haar wavelet as the mother wavelet used in the discrete wavelet transform, it becomes easier to detect abnormal locations.
  • the detail coefficients at levels 1 to N obtained by discrete wavelet transform include higher frequency components as the level is lower. Further, when assuming the observed reflected waveform and random noise, the random noise is included in a higher frequency band than the band of the reflected waveform. For the above reasons, only the value of the detail coefficient of level N is left in the adjustment of the detail coefficient.
  • FIG. 9 shows the reflected waveform after processing using the proposed method. At the time of 100 ns (actually half the time, 50 ns) when the half-disconnection occurs, a reflected waveform from the half-disconnection is confirmed. In this way, it was confirmed that the proposed method can detect abnormalities in the cable 5 with high accuracy even in a noisy environment.
  • the conductor abnormality detection device (1) of Supplementary Note 1 includes a pulse generation circuit (3) for applying an electric pulse to a conductor, and detects reflection of the applied electric pulse from the conductor, and generates reflection waveform data of the detected reflection.
  • a conductor abnormality detection device comprising: a waveform detection circuit (4) for outputting the waveform data; and a control circuit (2) for calculating the waveform data output from the waveform detection circuit and determining abnormality of the conductor.
  • the control circuit includes a pulse control section (21) that controls the transmission timing of the electric pulse, and a discrete wavelet transform section (221) that performs discrete wavelet transform on the reflected waveform data to calculate detailed coefficients of the reflected waveform data.
  • a coefficient adjustment unit (222) that adjusts the calculated detailed coefficients
  • an inverse discrete wavelet transform unit (223) that reconstructs the reflected waveform by performing inverse discrete wavelet transform using the adjusted detailed coefficients.
  • a data comparison unit (224) that calculates a difference between the reconstructed waveform and a reference waveform
  • an abnormality determination unit (225) that determines an abnormality in the conductor based on the calculated difference. Be prepared.
  • the coefficient adjustment unit (222) adjusts the detailed coefficients, and the inverse discrete wavelet transform unit (223) performs inverse discrete wavelet transform using the adjusted detailed coefficients. Since the reflected waveform is reconstructed by this, it is possible to reconstruct the reflected waveform from which noise has been removed. Therefore, an abnormal location can be detected with high accuracy from the reflected wave of the electric pulse.
  • the conductor abnormality detection device of Appendix 2 is the conductor abnormality detection device described in Appendix 1, in which the discrete wavelet transform unit performs discrete wavelet transform on the reflected waveform data to a level N (N ⁇ 1), and performs the coefficient adjustment.
  • the inverse discrete wavelet transform section sets the detailed coefficients of levels 1 to N-1 and the approximation coefficients of level N to 0, and the inverse discrete wavelet transform section sets the detailed coefficients of levels 1 to N-1 set to 0 and the level set to 0.
  • the reflected waveform is reconstructed using N approximation coefficients.
  • the detail coefficients of levels 1 to N obtained by discrete wavelet transform include higher frequency components as the level is lower. Furthermore, assuming the presence of electric pulse reflection and random noise, the random noise is included in higher frequencies than the reflection band. Therefore, according to the conductor abnormality detection device of Appendix 2, the detailed coefficients of levels 1 to N-1 corresponding to higher frequency components are set to 0, so that random noise can be removed.
  • the conductor abnormality detection device of Supplementary Note 3 is the conductor abnormality detection device described in Supplementary Note 2, in which the coefficient adjustment section adjusts the detailed coefficient of level N when the detailed coefficient of level N is equal to or less than a predetermined threshold value.
  • the detail coefficient of the level N is adjusted by setting the coefficient to 0 and leaving the detail coefficient of the level N as it is when it is larger than the threshold value, and the inverse discrete wavelet transform unit adjusts the detail coefficient of the level N that was set to 0.
  • the reflected waveform is reconstructed using the detail coefficient of ⁇ 1, the approximation coefficient of level N set to 0, and the adjusted detail coefficient of level N.
  • the threshold value determination is performed for the detailed coefficient of level N corresponding to the low frequency component, so it is possible to better observe the reflection of the electric pulse.
  • the conductor abnormality detection device of Appendix 4 is the conductor abnormality detection device described in any one of Appendixes 1 to 3, in which the discrete wavelet transform section performs the discrete wavelet transform using a Haar wavelet as a mother wavelet.
  • the conductor abnormality detection device of Appendix 4 Since the conductor abnormality detection device of Appendix 4 performs discrete wavelet transform using the Haar wavelet as a mother wavelet, reflected waves having a waveform similar to the Haar wavelet can be better observed. A half-disconnection is an event that causes such a reflected wave. Therefore, the conductor abnormality detection device of Supplementary Note 4 can better detect half-wire breaks.
  • the conductor abnormality detection method of Supplementary Note 5 is a conductor abnormality detection method performed by a conductor abnormality detection device including a pulse generation circuit (3), a waveform detection circuit (4), and a control circuit (2), wherein the pulse generation circuit , a step (S1) of applying an electric pulse to the conductor; a step (S2) of the waveform detection circuit detecting the reflection of the applied electric pulse from the conductor and outputting reflected waveform data of the detected reflection;
  • a conductor abnormality detection device comprising steps (S3 to S11) in which the control circuit arithmetic processes the waveform data output from the waveform detection circuit and determines abnormality in the conductor, the control circuit comprising: , a step (S1) of controlling the transmission timing of the electric pulse; a step (S3) of calculating detailed coefficients of the reflected waveform data by performing discrete wavelet transform on the reflected waveform data; and adjusting the calculated detailed coefficients.
  • a step (S4) a step (S5) of reconstructing the reflected waveform using the adjusted detail coefficients, a step (S8) of calculating the difference between the reconstructed waveform and the reference waveform, and the calculation thereof. and a step (S11) of determining an abnormality in the conductor based on the determined difference.
  • the coefficient adjustment unit (222) adjusts the detailed coefficients, and the inverse discrete wavelet transform unit (223) performs the inverse discrete wavelet transform using the adjusted detailed coefficients to detect the reflection. Since the waveform is reconstructed, the reflected waveform from which noise has been removed can be reconstructed. Therefore, an abnormal location can be detected with high accuracy from the reflected wave of the pulse.
  • the conductor abnormality detection device of the present disclosure can be used as a device for detecting abnormalities such as disconnections, short circuits, or half-disconnections in conductors such as communication cables or power lines.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Locating Faults (AREA)

Abstract

Provided is a conductor abnormality sensing device comprising a pulse generating circuit (3) for applying an electrical pulse to a conductor, a waveform detection circuit (4) for sensing a reflection of the applied electrical pulse from the conductor and outputting reflection waveform data, and a control circuit (2) that performs computational processing of the waveform data outputted from the waveform detection circuit and determines abnormality of the conductor, the control circuit being provided with a pulse control unit (21) that controls transmission timing of the electrical pulse, a discrete wavelet conversion unit (221) that performs discrete wavelet conversion of the reflection waveform data to calculate a detail coefficient, a coefficient adjustment unit (222) that adjusts the detail coefficient, an inverse discrete wavelet conversion unit (223) that reconstructs a reflection waveform by performing inverse discrete wavelet conversion using the adjusted detail coefficient, a data comparison unit (224) that calculates a difference between the reconstructed waveform and a reference waveform, and an abnormality determination unit (225) that determines abnormality of the conductor on the basis of the calculated difference.

Description

導体異常検知装置および導体異常検知方法Conductor abnormality detection device and conductor abnormality detection method
 本開示は導体異常検知技術に関する。 The present disclosure relates to conductor abnormality detection technology.
 通信ケーブルまたは電力線等の導体において、経年劣化により断線、短絡、または半断線が生じる場合がある。なお、半断線とは、断線しかかりの状態をいう。これらの異常のいずれかが発生すると、正常な通信ができなくなりまたは電力が供給されなくなる。また、短絡が発生した場合には火災が生じる可能性がある。このような事態が発生するのを抑制するため、導体の異常を検知する技術が求められる。特許文献1には、車両用電源システムにおいてケーブルのオープン故障のような異常を検知するために、Time Domain Reflectometry(時間領域反射法)を利用した検知技術が開示されている。 In conductors such as communication cables or power lines, disconnections, short circuits, or half-disconnections may occur due to deterioration over time. Note that a half-broken wire refers to a state where the wire is about to break. If any of these abnormalities occur, normal communication will no longer be possible or power will not be supplied. Additionally, if a short circuit occurs, a fire may occur. In order to prevent such situations from occurring, a technology is required to detect abnormalities in conductors. Patent Document 1 discloses a detection technique using Time Domain Reflectometry in order to detect an abnormality such as an open cable failure in a vehicle power supply system.
国際公開第2021/235228号International Publication No. 2021/235228
 特許文献1の検知技術によれば、対象配線に対して高速なパルスまたはステップ信号を注入し、信号の反射波形あるいは透過波形を観測することで、対象配線の特性インピーダンスを計測する。計測したインピーダンスが、予め定められた正常範囲内であるか否かをもって配線の異常を検知する(特許文献1の段落0043~0054)。 According to the detection technology disclosed in Patent Document 1, the characteristic impedance of the target wiring is measured by injecting a high-speed pulse or step signal into the target wiring and observing the reflected waveform or transmitted waveform of the signal. An abnormality in the wiring is detected based on whether the measured impedance is within a predetermined normal range (paragraphs 0043 to 0054 of Patent Document 1).
 しかしながら、特許文献1には配線上にノイズが存在する場合について言及されていない。特許文献1の方法では観測した反射波形あるいは透過波形に幾分かのノイズが重畳していても、ノイズを除去する仕組みがないため特性インピーダンスを正確に計測することができない。ゆえに、特性インピーダンスが重畳ノイズにより真値から外れ、配線の異常を誤検知する可能性があるという問題がある。 However, Patent Document 1 does not mention the case where noise exists on the wiring. In the method of Patent Document 1, even if some noise is superimposed on the observed reflected waveform or transmitted waveform, the characteristic impedance cannot be accurately measured because there is no mechanism for removing the noise. Therefore, there is a problem in that the characteristic impedance deviates from the true value due to superimposed noise, and there is a possibility that an abnormality in the wiring is detected incorrectly.
 本開示は、このような問題の認識を契機としてなされたものであり、ノイズ環境下にある導体の異常箇所を検知できる導体異常検知技術を提供することを目的とする。 The present disclosure was made in recognition of such problems, and aims to provide a conductor abnormality detection technique that can detect abnormalities in conductors in a noisy environment.
 本開示の実施形態による導体異常検知装置の一側面は、導体に電気パルスを印加するためのパルス生成回路と、印加した電気パルスの前記導体からの反射を検知し、検知した反射の反射波形データを出力するための波形検出回路と、前記波形検出回路から出力された前記波形データを演算処理し、前記導体の異常を判定する制御回路と、を備える導体異常検知装置であって、前記制御回路は、前記電気パルスの送信タイミング制御するパルス制御部と、前記反射波形データを離散ウェーブレット変換して前記反射波形データの詳細係数を算出する離散ウェーブレット変換部と、その算出された詳細係数を調整する係数調整部と、その調整された詳細係数を用いて逆離散ウェーブレット変換を行うことにより反射波形を再構築する逆離散ウェーブレット変換部と、その再構築された波形と基準波形との差分を算出するデータ比較部と、その算出された差分を元に前記導体の異常を判定する異常判定部と、を備える。 One aspect of the conductor abnormality detection device according to the embodiment of the present disclosure includes a pulse generation circuit for applying an electric pulse to a conductor, and detecting reflection of the applied electric pulse from the conductor, and reflecting waveform data of the detected reflection. A conductor abnormality detection device comprising: a waveform detection circuit for outputting the waveform data; and a control circuit for processing the waveform data output from the waveform detection circuit to determine abnormality in the conductor, the control circuit includes a pulse control unit that controls the transmission timing of the electric pulse, a discrete wavelet transform unit that performs discrete wavelet transform on the reflected waveform data to calculate detailed coefficients of the reflected waveform data, and adjusts the calculated detailed coefficients. a coefficient adjustment section, an inverse discrete wavelet transform section that reconstructs a reflected waveform by performing an inverse discrete wavelet transform using the adjusted detailed coefficients, and a difference between the reconstructed waveform and a reference waveform. It includes a data comparison section and an abnormality determination section that determines whether the conductor is abnormal based on the calculated difference.
 本開示の実施形態による導体異常検知装置によれば、ノイズ環境下にある導体の異常箇所を検知できる。 According to the conductor abnormality detection device according to the embodiment of the present disclosure, an abnormal location of a conductor in a noisy environment can be detected.
実施の形態1の導体異常検知装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a conductor abnormality detection device according to a first embodiment; FIG. 実施の形態1のデータ処理部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a data processing unit according to the first embodiment. 離散ウェーブレット変換におけるレベル2の分解の模式図である。FIG. 2 is a schematic diagram of level 2 decomposition in discrete wavelet transform. 逆離散ウェーブレット変換におけるレベル2の再構築の模式図である。FIG. 2 is a schematic diagram of level 2 reconstruction in inverse discrete wavelet transform. 実施の形態1の制御回路のハードウェアの構成例を示す図である。1 is a diagram showing an example of a hardware configuration of a control circuit according to a first embodiment; FIG. 実施の形態1の制御回路のハードウェアの構成例を示す図である。1 is a diagram showing an example of a hardware configuration of a control circuit according to a first embodiment; FIG. 実施の形態1による導体異常検知装置の動作を示すフローチャートである。5 is a flowchart showing the operation of the conductor abnormality detection device according to the first embodiment. ケーブル異常箇所からの反射波形を示す模式図である。FIG. 3 is a schematic diagram showing a reflected waveform from a cable abnormality location. 実施の形態1における波形検出回路にて観測した反射波形の例を示す図である。5 is a diagram showing an example of a reflected waveform observed by the waveform detection circuit in the first embodiment. FIG. 実施の形態1におけるデータ処理部にて再構築した波形の例を示す図である。5 is a diagram showing an example of a waveform reconstructed by the data processing unit in the first embodiment. FIG.
 以下、添付の図面を参照して、本開示における種々の実施形態について詳細に説明する。なお、図面において同一または類似の符号を付された構成要素は、同一または類似の構成または機能を有するものであり、そのような構成要素についての重複する説明は省略する。 Hereinafter, various embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Note that components given the same or similar symbols in the drawings have the same or similar configurations or functions, and overlapping explanations of such components will be omitted.
実施の形態1.
<構成>
 実施の形態1による導体異常検知装置1の構成について説明をする。図1に示されているように、導体異常検知装置1は、制御回路2、パルス生成回路3、および波形検出回路4を備える。導体異常検知装置1は、検知対象の導体の例であるケーブル5と接続されて用いられる。
Embodiment 1.
<Configuration>
The configuration of the conductor abnormality detection device 1 according to the first embodiment will be explained. As shown in FIG. 1, the conductor abnormality detection device 1 includes a control circuit 2, a pulse generation circuit 3, and a waveform detection circuit 4. The conductor abnormality detection device 1 is used by being connected to a cable 5, which is an example of a conductor to be detected.
(制御回路)
 制御回路2は、機能部として、パルス生成回路3の動作を制御するパルス制御部21と、受信したデジタル信号を処理するデータ処理部22とを有する。データ処理部22の機能部の詳細については後述する。これらの機能部を実現するため、制御回路2は、ハードウェア構成として処理回路(processing circuitry)を備える。処理回路(processing circuitry)は、図5Aに示されているような専用の処理回路(processing circuit)2Aであっても、図5Bに示されているようなメモリ2Cに格納されるプログラムを実行するプロセッサ2Bであってもよい。
(control circuit)
The control circuit 2 includes, as functional units, a pulse control unit 21 that controls the operation of the pulse generation circuit 3, and a data processing unit 22 that processes the received digital signal. Details of the functional units of the data processing unit 22 will be described later. In order to implement these functional units, the control circuit 2 includes processing circuitry as a hardware configuration. The processing circuitry, even if it is a dedicated processing circuit 2A as shown in FIG. 5A, executes the program stored in the memory 2C as shown in FIG. 5B. It may be the processor 2B.
 処理回路(processing circuitry)が専用の処理回路2Aである場合、専用の処理回路2Aは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、またはこれらを組み合わせたものが該当する。制御回路2の複数の機能部を別個の複数の処理回路(processing circuits)で実現してもよいし、複数の機能部をまとめて単一の処理回路(processing circuit)で実現してもよい。 When the processing circuit is a dedicated processing circuit 2A, the dedicated processing circuit 2A is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an application specific integrated circuit (ASIC). , FPGA (field-programmable gate array), or a combination of these. The plurality of functional units of the control circuit 2 may be realized by a plurality of separate processing circuits, or the plurality of functional units may be realized by a single processing circuit.
 処理回路(processing circuitry)がプロセッサ2Bの場合、制御回路2の機能部は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアはプログラムとして記述され、メモリ2Cに格納される。プロセッサ2Bは、メモリに記憶されたプログラムを読み出して実行することにより、各機能部を実現する。メモリ2Cの例には、RAM(random access memory)、ROM(read-only memory)、フラッシュメモリ、EPROM(erasable programmable read only memory)、EEPROM(electrically erasable programmable read-only memory)等の、不揮発性または揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDが含まれる。 When the processing circuit is the processor 2B, the functional parts of the control circuit 2 are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the memory 2C. The processor 2B implements each functional unit by reading and executing programs stored in the memory. Examples of the memory 2C include non-volatile or Includes volatile semiconductor memory, magnetic disks, flexible disks, optical disks, compact disks, minidisks, and DVDs.
(パルス生成回路)
 パルス生成回路3は、導体に電気パルスを印加するための回路である。実施の形態1では、パルス生成回路3は、パルス制御部21からの制御信号に応じて電気パルス(以下、単に「パルス」と称する。)を生成し、生成したパルスをケーブル5に送信する。なお、パルスの送信形式は、ケーブル5に合わせてシングルエンド方式か差動方式にする。例えば、ケーブル5がツイストペアケーブルならば、パルスの送信形式は差動方式にする。パルス幅はケーブル5の伝搬遅延時間と比較して短いものが好ましい。例えば、検知対象のケーブル5において信号線を被覆する絶縁体の比誘電率が2.2であれば、単位長さあたりの伝搬遅延時間は4.94ns/mである。ケーブル長が10mであれば伝搬遅延時間は49.4nsとなるため、パルス幅はこの時間の1/10程度以下、すなわち5ns以下であることが望ましい。
(Pulse generation circuit)
The pulse generation circuit 3 is a circuit for applying an electric pulse to a conductor. In the first embodiment, the pulse generation circuit 3 generates an electric pulse (hereinafter simply referred to as a "pulse") in response to a control signal from the pulse control section 21, and transmits the generated pulse to the cable 5. Note that the pulse transmission format is set to be a single-end method or a differential method depending on the cable 5. For example, if the cable 5 is a twisted pair cable, the pulse transmission format is a differential method. The pulse width is preferably short compared to the propagation delay time of the cable 5. For example, if the dielectric constant of the insulator covering the signal line in the cable 5 to be detected is 2.2, the propagation delay time per unit length is 4.94 ns/m. If the cable length is 10 m, the propagation delay time will be 49.4 ns, so it is desirable that the pulse width be about 1/10 of this time or less, that is, 5 ns or less.
(波形検出回路)
 波形検出回路4は、印加した電気パルスの導体からの反射を検知するための回路である。実施の形態1において、波形検出回路4は、導体異常検知装置1のパルス送信端で反射の電圧を観測する。パルス生成回路3から送信されたパルスはケーブル5のインピーダンス不整合点で反射し、送信端で波形検出回路4により反射波形が観測される。波形検出回路4は、例えばAD変換器を用いて実現される。AD変換器のサンプリング速度は少なくともパルスの時間幅よりも高速であることが望ましい。
(Waveform detection circuit)
The waveform detection circuit 4 is a circuit for detecting the reflection of an applied electric pulse from a conductor. In the first embodiment, the waveform detection circuit 4 observes the reflected voltage at the pulse transmission end of the conductor abnormality detection device 1. The pulse transmitted from the pulse generation circuit 3 is reflected at the impedance mismatch point of the cable 5, and the reflected waveform is observed by the waveform detection circuit 4 at the transmission end. The waveform detection circuit 4 is realized using, for example, an AD converter. It is desirable that the sampling rate of the AD converter is at least faster than the time width of the pulse.
(データ処理部)
 次に、図2を参照して、データ処理部22の構成について説明をする。データ処理部22は、波形検出回路4から送信された反射波形データを離散ウェーブレット変換する離散ウェーブレット変換部221と、データ変換後に得られる近似係数と詳細係数の値を修正する係数調整部222と、修正した係数を逆離散ウェーブレット変換することにより時間波形データを再構築する逆離散ウェーブレット変換部223と、基準データと再構築データの差分を求めるデータ比較部224と、差分データを元にケーブルの異常の有無及び異常箇所を判定する異常判定部225と、基準データを一時保管しておくための記憶部226とを備える。
(Data processing section)
Next, the configuration of the data processing section 22 will be explained with reference to FIG. 2. The data processing unit 22 includes a discrete wavelet transform unit 221 that performs discrete wavelet transform on the reflected waveform data transmitted from the waveform detection circuit 4, and a coefficient adjustment unit 222 that modifies the values of the approximate coefficients and detailed coefficients obtained after data conversion. An inverse discrete wavelet transform unit 223 reconstructs time waveform data by performing an inverse discrete wavelet transform on the corrected coefficients, a data comparison unit 224 calculates the difference between the reference data and the reconstructed data, and detects cable abnormality based on the difference data. It includes an abnormality determination section 225 that determines the presence or absence of abnormality and the location of the abnormality, and a storage section 226 that temporarily stores reference data.
 ここで、離散ウェーブレット変換とは、与えられた信号を異なるレベルの解像度を有するいくつかの信号に分解する信号処理手法である。信号f(t)∈L(R)に対して解像度j+1の近似fj+1(t)は、式(1)のように、解像度jの近似f(t)と解像度jの詳細g(t)とに直交分解できる。

Figure JPOXMLDOC01-appb-I000001
Here, the discrete wavelet transform is a signal processing technique that decomposes a given signal into several signals having different levels of resolution. For the signal f(t)∈L 2 (R), the approximation f j+1 (t) with resolution j+1 is the approximation f j (t) with resolution j and the details g j ( t) can be orthogonally decomposed into

Figure JPOXMLDOC01-appb-I000001
 fj+1(t)、f(t)およびg(t)を、スケーリング関数φ(t)またはウェーブレット関数Ψ(t)でそれぞれ式(2)~式(4)のように展開したときの展開係数に着目する。

Figure JPOXMLDOC01-appb-I000002
When f j+1 (t), f j (t), and g j (t) are expanded using the scaling function φ (t) or the wavelet function Ψ (t), respectively, as shown in equations (2) to (4), Focus on the expansion coefficient.

Figure JPOXMLDOC01-appb-I000002
 このとき、解像度j+1の近似係数列cj+1={cj+1[k]}k∈Zから解像度が1つ下がった近似係数列c={c[k]}k∈Z及び詳細係数列d={d[k]}k∈Zは、それぞれ式(5)と式(6)で決まる。

Figure JPOXMLDOC01-appb-I000003
At this time, an approximate coefficient sequence with resolution j+1 c j+1 = {c j+1 [k]} an approximate coefficient sequence with one resolution lower than k∈Z c j = {c j [k]} k∈Z and detailed coefficient sequence d j = {d j [k]} kεZ is determined by Equation (5) and Equation (6), respectively.

Figure JPOXMLDOC01-appb-I000003
 ここで、数列{l[k]}k∈Zと{h[k]}k∈Zはスケーリング関数及びウェーブレット関数から決まるフィルタで、それぞれ低周波フィルタ係数、高周波フィルタ係数と呼ばれる。また、上付きバーは複素共役を表す。この式(5)と式(6)が解像度j+1から解像度jへの分解アルゴリズムである。この分解アルゴリズムを離散ウェーブレット変換と呼ぶ。 Here, the sequence {l[k]} k∈Z and {h[k]} k∈Z are filters determined by a scaling function and a wavelet function, and are called a low frequency filter coefficient and a high frequency filter coefficient, respectively. Moreover, the superscript bar represents a complex conjugate. Equations (5) and (6) are the decomposition algorithm from resolution j+1 to resolution j. This decomposition algorithm is called discrete wavelet transform.
 逆に、式(7)のように、数列cと数列dから数列cj+1を決めることができる。

Figure JPOXMLDOC01-appb-I000004
Conversely, the sequence c j+1 can be determined from the sequence c j and the sequence d j as shown in equation (7).

Figure JPOXMLDOC01-appb-I000004
 この式(7)が解像度jから解像度j+1への再構築アルゴリズムである。この再構築アルゴリズムを逆離散ウェーブレット変換と呼ぶ。 This equation (7) is the reconstruction algorithm from resolution j to resolution j+1. This reconstruction algorithm is called inverse discrete wavelet transform.
 離散ウェーブレット変換によりcは2つの数列c-1と数列d-1に分解される。この分解をレベル1の分解と呼ぶ。また、数列c-1はレベル1の近似係数、数列d-1はレベル1の詳細係数と呼ばれる。離散ウェーブレット変換ではレベル0からスタートし、状況に応じてレベルN(Nは1以上の整数。)まで分解する。図3にレベル2の分解の模式図を示し、図4にレベル2の再構築の模式図を示す。 Using the discrete wavelet transform, c 0 is decomposed into two sequences c -1 and d -1 . This decomposition is called level 1 decomposition. Further, the sequence c -1 is called a level 1 approximation coefficient, and the sequence d -1 is called a level 1 detailed coefficient. The discrete wavelet transform starts from level 0 and is decomposed to level N (N is an integer of 1 or more) depending on the situation. FIG. 3 shows a schematic diagram of level 2 decomposition, and FIG. 4 shows a schematic diagram of level 2 reconstruction.
 フィルタ係数{l[k]}k∈Z及び{h[k]}k∈Zはどのようなウェーブレット波形を採用するか、すなわちどのようなマザーウェーブレットを採用するかで決まる。マザーウェーブレットの例には、ドブシィウェーブレットおよびメイエウェーブレットが含まれる。ここでは、マザーウェーブレットの例として、ハールウェーブレットを採用する。ハールウェーブレットの場合、フィルタ係数は式(8)および式(9)で与えられる。

Figure JPOXMLDOC01-appb-I000005
The filter coefficients {l[k]} k∈Z and {h[k]} k∈Z are determined by what kind of wavelet waveform is adopted, that is, what kind of mother wavelet is adopted. Examples of mother wavelets include the Daubcy wavelet and the Meyer wavelet. Here, the Haar wavelet is used as an example of the mother wavelet. In the case of Haar wavelet, the filter coefficients are given by equation (8) and equation (9).

Figure JPOXMLDOC01-appb-I000005
 次に、図6に従って導体異常検知装置1の動作について説明を行う。ステップS1において、パルス制御部21の指令により、パルス生成回路3は測定対象のケーブル5にパルスを印加する。ケーブル5に断線、短絡、あるいは半断線などの異常があると、ケーブル5の特性インピーダンスがこれらの異常のある箇所で変化するため、印加されたパルスは異常箇所で反射する。異常箇所が断線の場合、インピーダンスは開放になるためパルスは正で全反射する。一方異常箇所が短絡の場合、インピーダンスは短絡になるためパルスは負で全反射する。異常箇所が半断線の場合、インピーダンスは開放と短絡の間の中間的な値をとるため、送信振幅よりも小さい電圧振幅の反射が発生する。 Next, the operation of the conductor abnormality detection device 1 will be explained according to FIG. In step S1, the pulse generation circuit 3 applies a pulse to the cable 5 to be measured according to a command from the pulse control section 21. If there is an abnormality in the cable 5, such as a break, short circuit, or half-break, the characteristic impedance of the cable 5 changes at the abnormal location, so that the applied pulse is reflected at the abnormal location. If the abnormality is a disconnection, the impedance becomes open and the pulse is positive and totally reflected. On the other hand, if the abnormality is short-circuited, the impedance will be short-circuited and the pulse will be negative and totally reflected. If the abnormal point is a half-break, the impedance takes an intermediate value between an open circuit and a short circuit, so a reflection with a voltage amplitude smaller than the transmission amplitude occurs.
 ステップS2において、波形検出回路4は、このような異常箇所からの反射をパルス送信端と異常箇所の遅延時間の往復時間後に、送信端電圧として観測する。例えば、送信端からみて5mの位置に異常があるとすると、ケーブル5の信号線を被覆する絶縁体の比誘電率が2.2のとき、単位長さあたりの伝搬遅延時間は4.94ns/mであるので、パルスが異常箇所に到達する時間が24.7nsとなる。したがって、送信端ではその時間の倍の49.4ns後に反射波形が観測される。波形検出回路4は、観測する反射の波形をAD変換して、変換後のデータを反射波形データとしてデータ処理部22に送る。 In step S2, the waveform detection circuit 4 observes the reflection from such an abnormal location as a transmission end voltage after the round trip time of the delay time between the pulse transmission end and the abnormal location. For example, if there is an abnormality at a position 5 m from the transmitting end, and the dielectric constant of the insulator covering the signal line of cable 5 is 2.2, the propagation delay time per unit length is 4.94 ns/ m, the time it takes for the pulse to reach the abnormal location is 24.7 ns. Therefore, at the transmitting end, the reflected waveform is observed after 49.4 ns, which is twice that time. The waveform detection circuit 4 performs AD conversion on the reflected waveform to be observed, and sends the converted data to the data processing section 22 as reflected waveform data.
 ステップS3において、離散ウェーブレット変換部221は、デジタル形式の反射波形データを離散ウェーブレット変換する。離散ウェーブレット変換による波形を分解するレベルNは2以上にする。レベルがNのとき、レベルNの近似係数とレベル1~NまでのN個の詳細係数とが得られる。 In step S3, the discrete wavelet transform unit 221 performs discrete wavelet transform on the reflected waveform data in digital format. The level N for decomposing the waveform by the discrete wavelet transform is set to 2 or more. When the level is N, an approximation coefficient of level N and N detailed coefficients of levels 1 to N are obtained.
 ステップS4において、係数調整部222は、レベル1~NのN個の詳細係数とレベルNの1個の近似係数とを調整する。具体的には、レベル1~N-1までの詳細係数とレベルNの近似係数とを全ての時刻で0とする。レベルNの詳細係数については閾値を設定し、閾値以下の係数は0とし、閾値より大きい係数には修正を施さないでそのまま残す。このようにして、係数調整部222は、レベル1~NのN個の詳細係数とレベルNの1個の近似係数とについて調整を行う。なお、詳細係数の閾値は測定対象毎に事前にシミュレーション等で調整する必要がある。後述する図8、図9の事例では事前にシミュレーションにて閾値の調整を行い、閾値を0.16と決定した。 In step S4, the coefficient adjustment unit 222 adjusts N detailed coefficients at levels 1 to N and one approximation coefficient at level N. Specifically, the detailed coefficients from levels 1 to N-1 and the approximation coefficients at level N are set to 0 at all times. A threshold is set for the detailed coefficients of level N, coefficients below the threshold are set to 0, and coefficients larger than the threshold are left unchanged. In this way, the coefficient adjustment unit 222 adjusts the N detailed coefficients at levels 1 to N and the one approximation coefficient at level N. Note that the threshold value of the detailed coefficient needs to be adjusted in advance by simulation or the like for each measurement target. In the examples shown in FIGS. 8 and 9, which will be described later, the threshold value was adjusted in advance through simulation, and the threshold value was determined to be 0.16.
 ステップS5において、逆離散ウェーブレット変換部223は、これら修正したN個の詳細係数とレベルNの近似係数とを用いて逆離散ウェーブレット変換を行うことにより、反射波形を再構築する。このようにして反射波形を再構築することにより、反射波形データからノイズ成分を抑制または除去することができる。 In step S5, the inverse discrete wavelet transform unit 223 reconstructs the reflected waveform by performing inverse discrete wavelet transform using these modified N detailed coefficients and level N approximation coefficients. By reconstructing the reflected waveform in this manner, noise components can be suppressed or removed from the reflected waveform data.
 ステップS6において、逆離散ウェーブレット変換部223は、基準波形のデータである基準データの有無を判定する。基準データの有無の判定は、記憶部226を参照して行う。もし事前に基準データが存在しない場合、すなわち記憶部226に基準データが存在しない場合、逆離散ウェーブレット変換部223は、最初に測定し再構築した波形データを基準データとして記憶部226に保存する(ステップS7)。一方、基準データが記憶部226に存在する場合、逆離散ウェーブレット変換部223は、再構築した波形データを出力する。 In step S6, the inverse discrete wavelet transform unit 223 determines the presence or absence of reference data that is reference waveform data. The presence or absence of reference data is determined by referring to the storage unit 226. If there is no reference data in advance, that is, if there is no reference data in the storage unit 226, the inverse discrete wavelet transform unit 223 stores the first measured and reconstructed waveform data in the storage unit 226 as reference data ( Step S7). On the other hand, if the reference data exists in the storage unit 226, the inverse discrete wavelet transform unit 223 outputs reconstructed waveform data.
 基準データが記憶部226に存在する場合、ステップS8において、データ比較部224は、基準データと逆離散ウェーブレット変換部223により再構築された波形データとの差分を取って、最大の差分と最大差分の時の時刻とを算出する。データ比較部224は、算出した最大差分量データとこの時の時刻データとを異常判定部225に送信する。 If the reference data exists in the storage unit 226, in step S8, the data comparison unit 224 calculates the difference between the reference data and the waveform data reconstructed by the inverse discrete wavelet transform unit 223, and calculates the maximum difference and the maximum difference. Calculate the time of the hour. The data comparison unit 224 transmits the calculated maximum difference amount data and the current time data to the abnormality determination unit 225.
 ステップS9において、異常判定部225は、最大差分と予め設けられた電圧閾値とを比較して、異常の有無を判定する。すなわち、異常判定部225は、最大差分が閾値以上であれば異常ありと判断し(ステップS11)、閾値未満なら異常なしと判断する(ステップS10)。さらに、異常ありと判断した場合、異常判定部225は、d=ct/(2√ε)より、送信端から異常箇所までの距離dを算出する(ステップS12)。cは光速、tはパルス伝搬遅延時間、εはケーブル5の絶縁体の比誘電率である。 In step S9, the abnormality determination unit 225 compares the maximum difference with a predetermined voltage threshold to determine whether there is an abnormality. That is, the abnormality determining unit 225 determines that there is an abnormality if the maximum difference is equal to or greater than the threshold (step S11), and determines that there is no abnormality if it is less than the threshold (step S10). Further, when it is determined that there is an abnormality, the abnormality determining unit 225 calculates the distance d from the transmitting end to the abnormal location from d=ct/(2√ε) (step S12). c is the speed of light, t is the pulse propagation delay time, and ε is the dielectric constant of the insulator of the cable 5.
 以上で説明をした構成を備える導体異常検知装置1は、以上のように動作することによって、ノイズ環境下であっても、断線、短絡、半断線などのケーブル異常箇所を高精度に検知することができる。 By operating as described above, the conductor abnormality detection device 1 having the configuration described above can detect cable abnormalities such as disconnections, short circuits, and half-disconnections with high accuracy even in a noisy environment. Can be done.
 異常箇所から反射したパルスは、異常箇所の両端にて正と負で反射する。図7に送信器から送信されたパルスが異常箇所で反射する様子を描いた模式図を示す。図7ではZ0がケーブルの特性インピーダンス、Z1が異常箇所におけるインピーダンスを表し、Z0<Z1である。この系において、パルスは、送信器から見て異常箇所の前方で正に反射し、後方で負の反射をする。ゆえに、送信端において正と負の反射が重ね合わさった反射波形が観測される。この反射形状はハールウェーブレットと類似の形をしている。このため離散ウェーブレット変換に使用するマザーウェーブレットとしてハールウェーブレットを用いることにより、異常箇所が検知しやすくなると考えられる。 The pulse reflected from the abnormal location is reflected positively and negatively at both ends of the abnormal location. FIG. 7 shows a schematic diagram illustrating how a pulse transmitted from a transmitter is reflected at an abnormal location. In FIG. 7, Z0 represents the characteristic impedance of the cable, Z1 represents the impedance at the abnormal location, and Z0<Z1. In this system, the pulse is positively reflected in front of the abnormality and negatively reflected in the back of the transmitter. Therefore, a reflected waveform in which positive and negative reflections are superimposed is observed at the transmitting end. This reflection shape has a shape similar to a Haar wavelet. For this reason, it is thought that by using the Haar wavelet as the mother wavelet used in the discrete wavelet transform, it becomes easier to detect abnormal locations.
 さらに、離散ウェーブレット変換で得られるレベル1~Nの詳細係数には、レベルが低い程高周波成分が含まれる。また、観測された反射波形とランダムノイズを想定した場合、反射波形の帯域と比較してランダムノイズの方が高周波に含まれる。以上の理由により、詳細係数の調整においてレベルNの詳細係数のみ値を残している。 Furthermore, the detail coefficients at levels 1 to N obtained by discrete wavelet transform include higher frequency components as the level is lower. Further, when assuming the observed reflected waveform and random noise, the random noise is included in a higher frequency band than the band of the reflected waveform. For the above reasons, only the value of the detail coefficient of level N is left in the adjustment of the detail coefficient.
 図8および図9にシミュレーション結果を示す。特性インピーダンス50Ωのケーブルにおいて、伝搬遅延時間50nsの位置に半断線(インピーダンス70Ωと仮定)が生じているケースを考えている。このケースではケーブル5にランダムノイズが重畳している。図8は波形検出回路4にて観測された反射波形であり、50ns×2=100nsの位置で反射が観測されるはずであるが、ノイズに埋もれてしまっている様子が確認される。図9は本提案手法で処理した後の反射波形である。半断線が生じている時刻100ns(実際は半分の時刻の50ns)において、半断線からの反射波形が確認される。このように、本提案手法によりノイズ環境下においてもケーブル5の異常を高精度に検知できることを確認した。 Figures 8 and 9 show simulation results. A case is considered in which, in a cable with a characteristic impedance of 50Ω, a half-break (assuming the impedance is 70Ω) occurs at a position where the propagation delay time is 50ns. In this case, random noise is superimposed on the cable 5. FIG. 8 shows a reflected waveform observed by the waveform detection circuit 4, and although reflection should be observed at a position of 50 ns×2=100 ns, it is confirmed that it is buried in noise. FIG. 9 shows the reflected waveform after processing using the proposed method. At the time of 100 ns (actually half the time, 50 ns) when the half-disconnection occurs, a reflected waveform from the half-disconnection is confirmed. In this way, it was confirmed that the proposed method can detect abnormalities in the cable 5 with high accuracy even in a noisy environment.
<付記>
 以上で説明した種々の実施形態のいくつかの側面について、以下のとおりまとめる。
<Additional notes>
Some aspects of the various embodiments described above are summarized as follows.
(付記1)
 付記1の導体異常検知装置(1)は、導体に電気パルスを印加するためのパルス生成回路(3)と、印加した電気パルスの前記導体からの反射を検知し、検知した反射の反射波形データを出力するための波形検出回路(4)と、前記波形検出回路から出力された前記波形データを演算処理し、前記導体の異常を判定する制御回路(2)と、を備える導体異常検知装置であって、記制御回路は、前記電気パルスの送信タイミング制御するパルス制御部(21)と、前記反射波形データを離散ウェーブレット変換して前記反射波形データの詳細係数を算出する離散ウェーブレット変換部(221)と、その算出された詳細係数を調整する係数調整部(222)と、その調整された詳細係数を用いて逆離散ウェーブレット変換を行うことにより反射波形を再構築する逆離散ウェーブレット変換部(223)と、その再構築された波形と基準波形との差分を算出するデータ比較部(224)と、その算出された差分を元に前記導体の異常を判定する異常判定部(225)と、を備える。
(Additional note 1)
The conductor abnormality detection device (1) of Supplementary Note 1 includes a pulse generation circuit (3) for applying an electric pulse to a conductor, and detects reflection of the applied electric pulse from the conductor, and generates reflection waveform data of the detected reflection. A conductor abnormality detection device comprising: a waveform detection circuit (4) for outputting the waveform data; and a control circuit (2) for calculating the waveform data output from the waveform detection circuit and determining abnormality of the conductor. The control circuit includes a pulse control section (21) that controls the transmission timing of the electric pulse, and a discrete wavelet transform section (221) that performs discrete wavelet transform on the reflected waveform data to calculate detailed coefficients of the reflected waveform data. ), a coefficient adjustment unit (222) that adjusts the calculated detailed coefficients, and an inverse discrete wavelet transform unit (223) that reconstructs the reflected waveform by performing inverse discrete wavelet transform using the adjusted detailed coefficients. ), a data comparison unit (224) that calculates a difference between the reconstructed waveform and a reference waveform, and an abnormality determination unit (225) that determines an abnormality in the conductor based on the calculated difference. Be prepared.
 付記1の導体異常検知装置(1)によれば、係数調整部(222)は詳細係数を調整し、逆離散ウェーブレット変換部(223)は調整された詳細係数を用いて逆離散ウェーブレット変換を行うことにより反射波形を再構築するので、ノイズが除去された反射波形を再構築することができる。したがって、電気パルスの反射波から精度良く異常箇所を検知することができる。 According to the conductor abnormality detection device (1) of Appendix 1, the coefficient adjustment unit (222) adjusts the detailed coefficients, and the inverse discrete wavelet transform unit (223) performs inverse discrete wavelet transform using the adjusted detailed coefficients. Since the reflected waveform is reconstructed by this, it is possible to reconstruct the reflected waveform from which noise has been removed. Therefore, an abnormal location can be detected with high accuracy from the reflected wave of the electric pulse.
(付記2)
 付記2の導体異常検知装置は、付記1に記載された導体異常検知装置であって、前記離散ウェーブレット変換部は前記反射波形データをレベルN(N≧1)まで離散ウェーブレット変換し、前記係数調整部はレベル1~N-1の詳細係数とレベルNの近似係数を0とし、前記逆離散ウェーブレット変換部は、その0とされたレベル1~N-1の詳細係数とその0とされたレベルNの近似係数とを用いて、前記反射波形を再構築する。
(Additional note 2)
The conductor abnormality detection device of Appendix 2 is the conductor abnormality detection device described in Appendix 1, in which the discrete wavelet transform unit performs discrete wavelet transform on the reflected waveform data to a level N (N≧1), and performs the coefficient adjustment. The inverse discrete wavelet transform section sets the detailed coefficients of levels 1 to N-1 and the approximation coefficients of level N to 0, and the inverse discrete wavelet transform section sets the detailed coefficients of levels 1 to N-1 set to 0 and the level set to 0. The reflected waveform is reconstructed using N approximation coefficients.
 離散ウェーブレット変換で得られるレベル1~Nの詳細係数には、レベルが低い程高周波成分が含まれる。また、電気パルスの反射とランダムノイズの存在とを想定した場合、反射の帯域と比較してランダムノイズの方が高周波に含まれる。したがって、付記2の導体異常検知装置によれば、より高周波の成分に相当するレベル1~N-1の詳細係数が0とされるので、ランダムノイズを除去できる。 The detail coefficients of levels 1 to N obtained by discrete wavelet transform include higher frequency components as the level is lower. Furthermore, assuming the presence of electric pulse reflection and random noise, the random noise is included in higher frequencies than the reflection band. Therefore, according to the conductor abnormality detection device of Appendix 2, the detailed coefficients of levels 1 to N-1 corresponding to higher frequency components are set to 0, so that random noise can be removed.
(付記3)
 付記3の導体異常検知装置は、付記2に記載された導体異常検知装置であって、前記係数調整部は、レベルNの詳細係数が、予め定められた閾値以下の場合は前記レベルNの詳細係数を0にし、前記閾値より大きい場合は前記レベルNの詳細係数をそのまま残すことにより、前記レベルNの詳細係数を調整し、前記逆離散ウェーブレット変換部は、前記0とされたレベル1~N-1の詳細係数、前記0とされたレベルNの近似係数、およびその調整されたレベルNの詳細係数を用いて、前記反射波形を再構築する。
(Appendix 3)
The conductor abnormality detection device of Supplementary Note 3 is the conductor abnormality detection device described in Supplementary Note 2, in which the coefficient adjustment section adjusts the detailed coefficient of level N when the detailed coefficient of level N is equal to or less than a predetermined threshold value. The detail coefficient of the level N is adjusted by setting the coefficient to 0 and leaving the detail coefficient of the level N as it is when it is larger than the threshold value, and the inverse discrete wavelet transform unit adjusts the detail coefficient of the level N that was set to 0. The reflected waveform is reconstructed using the detail coefficient of −1, the approximation coefficient of level N set to 0, and the adjusted detail coefficient of level N.
 付記3導体異常検知装置によれば、低周波成分に相当するレベルNの詳細係数について閾値判定を行うので、電気パルスの反射をより良く観測できる。 Supplementary Note 3 According to the conductor abnormality detection device, the threshold value determination is performed for the detailed coefficient of level N corresponding to the low frequency component, so it is possible to better observe the reflection of the electric pulse.
(付記4)
 付記4の導体異常検知装置は、付記1から3のいずれか1つに記載された導体異常検知装置であって、前記離散ウェーブレット変換部はハールウェーブレットをマザーウェーブレットとして前記離散ウェーブレット変換を行う。
(Additional note 4)
The conductor abnormality detection device of Appendix 4 is the conductor abnormality detection device described in any one of Appendixes 1 to 3, in which the discrete wavelet transform section performs the discrete wavelet transform using a Haar wavelet as a mother wavelet.
 付記4の導体異常検知装置は、ハールウェーブレットをマザーウェーブレットとして離散ウェーブレット変換を行うので、ハールウェーブレットの波形と類似の波形を有する反射波をより良く観測することができる。そのような反射波を呈する事象として半断線がある。したがって、付記4の導体異常検知装置は、半断線をより良く検知することができる。 Since the conductor abnormality detection device of Appendix 4 performs discrete wavelet transform using the Haar wavelet as a mother wavelet, reflected waves having a waveform similar to the Haar wavelet can be better observed. A half-disconnection is an event that causes such a reflected wave. Therefore, the conductor abnormality detection device of Supplementary Note 4 can better detect half-wire breaks.
(付記5)
 付記5の導体異常検知方法は、パルス生成回路(3)、波形検出回路(4)、および制御回路(2)を備える導体異常検知装置が行う導体異常検知方法であって、前記パルス生成回路が、導体に電気パルスを印加するステップ(S1)と、前記波形検出回路が、印加した電気パルスの前記導体からの反射を検知し、検知した反射の反射波形データを出力するステップ(S2)と、前記制御回路が、前記波形検出回路から出力された前記波形データを演算処理し、前記導体の異常を判定するステップ(S3~S11)と、を備える導体異常検知装置であって、前記制御回路は、前記電気パルスの送信タイミング制御するステップ(S1)と、前記反射波形データを離散ウェーブレット変換して前記反射波形データの詳細係数を算出するステップ(S3)と、その算出された詳細係数を調整するステップ(S4)と、その調整された詳細係数を用いて反射波形を再構築するステップ(S5)と、その再構築された波形と基準波形との差分を算出するステップ(S8)と、その算出された差分を元に前記導体の異常を判定するステップ(S11)と、を備える。
(Appendix 5)
The conductor abnormality detection method of Supplementary Note 5 is a conductor abnormality detection method performed by a conductor abnormality detection device including a pulse generation circuit (3), a waveform detection circuit (4), and a control circuit (2), wherein the pulse generation circuit , a step (S1) of applying an electric pulse to the conductor; a step (S2) of the waveform detection circuit detecting the reflection of the applied electric pulse from the conductor and outputting reflected waveform data of the detected reflection; A conductor abnormality detection device comprising steps (S3 to S11) in which the control circuit arithmetic processes the waveform data output from the waveform detection circuit and determines abnormality in the conductor, the control circuit comprising: , a step (S1) of controlling the transmission timing of the electric pulse; a step (S3) of calculating detailed coefficients of the reflected waveform data by performing discrete wavelet transform on the reflected waveform data; and adjusting the calculated detailed coefficients. a step (S4), a step (S5) of reconstructing the reflected waveform using the adjusted detail coefficients, a step (S8) of calculating the difference between the reconstructed waveform and the reference waveform, and the calculation thereof. and a step (S11) of determining an abnormality in the conductor based on the determined difference.
 付記5の導体異常検知方法によれば、係数調整部(222)は詳細係数を調整し、逆離散ウェーブレット変換部(223)は調整された詳細係数を用いて逆離散ウェーブレット変換を行うことにより反射波形を再構築するので、ノイズが除去された反射波形を再構築することができる。したがって、パルスの反射波から精度良く異常箇所を検知することができる。 According to the conductor abnormality detection method of Appendix 5, the coefficient adjustment unit (222) adjusts the detailed coefficients, and the inverse discrete wavelet transform unit (223) performs the inverse discrete wavelet transform using the adjusted detailed coefficients to detect the reflection. Since the waveform is reconstructed, the reflected waveform from which noise has been removed can be reconstructed. Therefore, an abnormal location can be detected with high accuracy from the reflected wave of the pulse.
 なお、実施形態を組み合わせたり、各実施形態を適宜、変形、省略したりすることが可能である。 Note that it is possible to combine the embodiments, or to modify or omit each embodiment as appropriate.
 本開示の導体異常検知装置は、通信ケーブルまたは電力線などの導体の断線、短絡または半断線などの異常を検知するための装置として用いることができる。 The conductor abnormality detection device of the present disclosure can be used as a device for detecting abnormalities such as disconnections, short circuits, or half-disconnections in conductors such as communication cables or power lines.
 1 導体異常検知装置、2 制御回路、2A 処理回路、2B プロセッサ、2C メモリ、3 パルス生成回路、4 波形検出回路、5 ケーブル、21 パルス制御部、22 データ処理部、221 離散ウェーブレット変換部、222 係数調整部、223 逆離散ウェーブレット変換部、224 データ比較部、225 異常判定部、226 記憶部。 1 Conductor abnormality detection device, 2 Control circuit, 2A Processing circuit, 2B Processor, 2C Memory, 3 Pulse generation circuit, 4 Waveform detection circuit, 5 Cable, 21 Pulse control unit, 22 Data processing unit, 221 Discrete wavelet transform unit, 222 Coefficient adjustment unit, 223 Inverse discrete wavelet transform unit, 224 Data comparison unit, 225 Abnormality determination unit, 226 Storage unit.

Claims (5)

  1.  導体に電気パルスを印加するためのパルス生成回路と、
     印加した電気パルスの前記導体からの反射を検知し、検知した反射の反射波形データを出力するための波形検出回路と、
     前記波形検出回路から出力された前記波形データを演算処理し、前記導体の異常を判定する制御回路と、
    を備える導体異常検知装置であって、
     前記制御回路は、
     前記電気パルスの送信タイミング制御するパルス制御部と、
     前記反射波形データを離散ウェーブレット変換して前記反射波形データの詳細係数を算出する離散ウェーブレット変換部と、
     その算出された詳細係数を調整する係数調整部と、
     その調整された詳細係数を用いて逆離散ウェーブレット変換を行うことにより反射波形を再構築する逆離散ウェーブレット変換部と、
     その再構築された波形と基準波形との差分を算出するデータ比較部と、
     その算出された差分を元に前記導体の異常を判定する異常判定部と、
    を備える導体異常検知装置。
    a pulse generation circuit for applying an electric pulse to a conductor;
    a waveform detection circuit for detecting reflection of the applied electric pulse from the conductor and outputting reflection waveform data of the detected reflection;
    a control circuit that performs arithmetic processing on the waveform data output from the waveform detection circuit and determines whether there is an abnormality in the conductor;
    A conductor abnormality detection device comprising:
    The control circuit includes:
    a pulse control unit that controls the transmission timing of the electric pulse;
    a discrete wavelet transform unit that performs discrete wavelet transform on the reflected waveform data to calculate detailed coefficients of the reflected waveform data;
    a coefficient adjustment unit that adjusts the calculated detailed coefficient;
    an inverse discrete wavelet transform unit that reconstructs the reflected waveform by performing inverse discrete wavelet transform using the adjusted detail coefficients;
    a data comparison unit that calculates the difference between the reconstructed waveform and the reference waveform;
    an abnormality determination unit that determines an abnormality in the conductor based on the calculated difference;
    A conductor abnormality detection device equipped with.
  2.  前記離散ウェーブレット変換部は前記反射波形データをレベルN(N≧1)まで離散ウェーブレット変換し、
     前記係数調整部はレベル1~N-1の詳細係数とレベルNの近似係数を0とし、
     前記逆離散ウェーブレット変換部は、その0とされたレベル1~N-1の詳細係数とその0とされたレベルNの近似係数とを用いて、前記反射波形を再構築する、
    請求項1に記載された導体異常検知装置。
    The discrete wavelet transform unit performs a discrete wavelet transform on the reflected waveform data to a level N (N≧1),
    The coefficient adjustment unit sets detailed coefficients of levels 1 to N-1 and approximate coefficients of level N to 0,
    The inverse discrete wavelet transform unit reconstructs the reflected waveform using the detailed coefficients of levels 1 to N-1 set to 0 and the approximate coefficients of level N set to 0.
    A conductor abnormality detection device according to claim 1.
  3.  前記係数調整部は、レベルNの詳細係数が、予め定められた閾値以下の場合は前記レベルNの詳細係数を0にし、前記閾値より大きい場合は前記レベルNの詳細係数をそのまま残すことにより、前記レベルNの詳細係数を調整し、
     前記逆離散ウェーブレット変換部は、前記0とされたレベル1~N-1の詳細係数、前記0とされたレベルNの近似係数、およびその調整されたレベルNの詳細係数を用いて、前記反射波形を再構築する、
    請求項2に記載された導体異常検知装置。
    The coefficient adjustment unit sets the detail coefficient of level N to 0 when the detail coefficient of level N is less than or equal to a predetermined threshold, and leaves the detail coefficient of level N as it is when it is larger than the threshold. adjusting the detail coefficient of the level N;
    The inverse discrete wavelet transform unit uses the detail coefficients of levels 1 to N-1 set to 0, the approximation coefficients of level N set to 0, and the adjusted detail coefficients of level N to transform the reflection. reconstruct the waveform,
    A conductor abnormality detection device according to claim 2.
  4.  前記離散ウェーブレット変換部はハールウェーブレットをマザーウェーブレットとして前記離散ウェーブレット変換を行う、
    請求項1から3のいずれか1項に記載された導体異常検知装置。
    The discrete wavelet transform unit performs the discrete wavelet transform using a Haar wavelet as a mother wavelet.
    A conductor abnormality detection device according to any one of claims 1 to 3.
  5.  パルス生成回路、波形検出回路、および制御回路を備える導体異常検知装置が行う導体異常検知方法であって、
     前記パルス生成回路が、導体に電気パルスを印加するステップと、
     前記波形検出回路が、印加した電気パルスの前記導体からの反射を検知し、検知した反射の反射波形データを出力するステップと、
     前記制御回路が、前記波形検出回路から出力された前記波形データを演算処理し、前記導体の異常を判定するステップと、
    を備える導体異常検知装置であって、
     前記制御回路は、
     前記電気パルスの送信タイミング制御するステップと、
     前記反射波形データを離散ウェーブレット変換して前記反射波形データの詳細係数を算出するステップと、
     その算出された詳細係数を調整するステップと、
     その調整された詳細係数を用いて反射波形を再構築するステップと、
     その再構築された波形と基準波形との差分を算出するステップと、
     その算出された差分を元に前記導体の異常を判定するステップと、
    を備える導体異常検知方法。
    A conductor abnormality detection method performed by a conductor abnormality detection device comprising a pulse generation circuit, a waveform detection circuit, and a control circuit, the method comprising:
    the pulse generation circuit applying an electric pulse to the conductor;
    a step in which the waveform detection circuit detects reflection of the applied electric pulse from the conductor and outputs reflection waveform data of the detected reflection;
    a step in which the control circuit performs arithmetic processing on the waveform data output from the waveform detection circuit to determine an abnormality in the conductor;
    A conductor abnormality detection device comprising:
    The control circuit includes:
    controlling the transmission timing of the electric pulse;
    calculating detailed coefficients of the reflected waveform data by performing a discrete wavelet transform on the reflected waveform data;
    adjusting the calculated detail coefficient;
    reconstructing the reflected waveform using the adjusted detail coefficients;
    calculating a difference between the reconstructed waveform and a reference waveform;
    determining an abnormality in the conductor based on the calculated difference;
    A conductor abnormality detection method comprising:
PCT/JP2022/026134 2022-06-30 2022-06-30 Conductor abnormality sensing device and conductor abnormality sensing method WO2024004114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026134 WO2024004114A1 (en) 2022-06-30 2022-06-30 Conductor abnormality sensing device and conductor abnormality sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026134 WO2024004114A1 (en) 2022-06-30 2022-06-30 Conductor abnormality sensing device and conductor abnormality sensing method

Publications (1)

Publication Number Publication Date
WO2024004114A1 true WO2024004114A1 (en) 2024-01-04

Family

ID=89382373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026134 WO2024004114A1 (en) 2022-06-30 2022-06-30 Conductor abnormality sensing device and conductor abnormality sensing method

Country Status (1)

Country Link
WO (1) WO2024004114A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856936B1 (en) * 2001-08-02 2005-02-15 Turnstone Systems, Inc. Method and system to provide an improved time domain reflectrometry technique
JP2007333468A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Cable diagnosis device and method
US20130245969A1 (en) * 2012-03-15 2013-09-19 Applied Materials, Inc. Method to detect wafer arcing in semiconductor manufacturing equipment
JP2015512293A (en) * 2012-03-28 2015-04-27 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for ECG monitoring
CN106841918A (en) * 2017-01-22 2017-06-13 华南理工大学 A kind of cable low resistance faults localization method combined using single both-end
CN108646145A (en) * 2018-07-26 2018-10-12 南方电网科学研究院有限责任公司 Method and system for positioning flashover tower of power transmission line
CN109142966A (en) * 2018-07-13 2019-01-04 南方电网科学研究院有限责任公司 Fault location method, device, equipment and medium based on line measured data
CN111157852A (en) * 2020-02-17 2020-05-15 广东电网有限责任公司 Power cable fault positioning system and method based on wavelet and pulse attenuation
CN113253046A (en) * 2021-04-14 2021-08-13 国网江苏省电力有限公司淮安供电分公司 Cable water tree fault positioning method based on impedance spectroscopy technology

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856936B1 (en) * 2001-08-02 2005-02-15 Turnstone Systems, Inc. Method and system to provide an improved time domain reflectrometry technique
JP2007333468A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Cable diagnosis device and method
US20130245969A1 (en) * 2012-03-15 2013-09-19 Applied Materials, Inc. Method to detect wafer arcing in semiconductor manufacturing equipment
JP2015512293A (en) * 2012-03-28 2015-04-27 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for ECG monitoring
CN106841918A (en) * 2017-01-22 2017-06-13 华南理工大学 A kind of cable low resistance faults localization method combined using single both-end
CN109142966A (en) * 2018-07-13 2019-01-04 南方电网科学研究院有限责任公司 Fault location method, device, equipment and medium based on line measured data
CN108646145A (en) * 2018-07-26 2018-10-12 南方电网科学研究院有限责任公司 Method and system for positioning flashover tower of power transmission line
CN111157852A (en) * 2020-02-17 2020-05-15 广东电网有限责任公司 Power cable fault positioning system and method based on wavelet and pulse attenuation
CN113253046A (en) * 2021-04-14 2021-08-13 国网江苏省电力有限公司淮安供电分公司 Cable water tree fault positioning method based on impedance spectroscopy technology

Similar Documents

Publication Publication Date Title
CN111526077B (en) Controller Area Network (CAN), CAN device and method thereof
US9246604B1 (en) Method and apparatus for virtual cable test using echo canceller coefficients
JP4812007B2 (en) Fault detection method for power cables
CN110346660B (en) Testing shield continuity of cables or wiring devices using common mode insertion loss
KR20180047135A (en) Apparatus for processing reflected wave
EP0766247A2 (en) Signal restoration using left-sided and right-sided autoregressive parameters
WO2024004114A1 (en) Conductor abnormality sensing device and conductor abnormality sensing method
CN106471748B (en) Method for estimating characteristic impedance of transmission medium and line estimation apparatus
US10707916B2 (en) Methods and devices for determining termination characteristics of an electrically conductive line
CN115902529A (en) Cable defect detection method and device based on time-frequency domain reflection method
Shi et al. Application of iterative deconvolution for wire fault location via reflectometry
Lee et al. A method of fault localization within the blind spot using the hybridization between TDR and wavelet transform
EP2074437A1 (en) Method and device for monitoring a system
EP1423923B1 (en) Adaptive equalizer for reducing distortion in a communication channel
US5265038A (en) Computer system peripheral connection pulse filtering technique and circuit
WO2022030192A1 (en) Communication device, communication system, and communication method
EP3814786A1 (en) Method and system for characterising a fault in a network of transmission lines, by time reversal
CN105286920B (en) Ultrasound Doppler information self-adapting interference suppression method
Iurinic et al. Transmission lines fault location based on high-frequency components technique: a general formulation for estimation of the dominant frequency
US20210319163A1 (en) Transmission path design assistance system, transmission path design assistance method, and computer readable medium storing transmission path design assistance program
RU2431897C1 (en) Device to disturb equipment operation due to decomposition and recovery of pulses
CN113820563A (en) Power transmission line fault detection and positioning method based on hybrid conductor
Li et al. High impedance grounding fault location method for power cables based on reflection coefficient spectrum
CN110426598B (en) Method and system for positioning fault of communication cable shielding layer
CN111418193B (en) Signal transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949388

Country of ref document: EP

Kind code of ref document: A1