WO2024002396A2 - 一种车辆充电口识别方法及相关设备 - Google Patents
一种车辆充电口识别方法及相关设备 Download PDFInfo
- Publication number
- WO2024002396A2 WO2024002396A2 PCT/CN2023/123678 CN2023123678W WO2024002396A2 WO 2024002396 A2 WO2024002396 A2 WO 2024002396A2 CN 2023123678 W CN2023123678 W CN 2023123678W WO 2024002396 A2 WO2024002396 A2 WO 2024002396A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image information
- charging port
- information
- depth
- target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000004590 computer program Methods 0.000 claims description 17
- 230000004927 fusion Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present application relates to the field of vehicle charging technology, and in particular, to a vehicle charging port identification method and related equipment.
- the current automatic charging technology works by moving the vehicle to a designated charging location associated with the charging device and controlling the automatic charging equipment to charge the vehicle. Therefore, the identification of the vehicle charging port in the current automatic charging method is based on the principle that the charging port can be determined when the vehicle is in a fixed position. However, in this identification method, the model of the vehicle and the position of the vehicle during transportation are affected. Factors such as the moving situation, the parking angle and parking direction of the vehicle on the mobile platform will all have an impact on the parking status of the vehicle on the mobile platform before and after transportation, which will lead to the identification of the charging port of the vehicle based only on the location of the vehicle, which will lead to incorrect identification of the charging port.
- This application provides a vehicle charging port identification method and related equipment to solve the problem of the current vehicle charging port identification method, which determines the location of the charging port only based on the location of the vehicle, thereby reducing the accuracy of charging port identification and affecting charging. Quality, causing energy waste and affecting the flexibility and practicality of charging port identification.
- this application provides a vehicle charging port identification method, including:
- image information of the charging port to be detected wherein the image information includes color image information and depth image information of the charging port to be detected;
- the second preset condition includes depth information of the target charging port
- the charging port to be detected is the target charging port.
- the method before the step of obtaining corrected color image information based on the color image information and the first preset condition, the method further includes:
- the first preset condition and the second preset condition are obtained according to the type of the target charging port.
- obtaining corrected color image information based on the color image information and the first preset condition includes:
- the color target outline distribution information including at least one of the relative position, area and perimeter of the minimum enclosing rectangle to which each color target outline belongs;
- the corrected color image information is obtained.
- obtaining the corrected depth image information according to the depth image information and the second preset condition includes:
- the depth target contour distribution information including at least one of the relative position, depth, area and perimeter of the minimum enclosing rectangle to which each depth target contour belongs;
- the corrected depth image information is obtained.
- obtaining the image information of the charging port to be detected includes:
- obtaining the fused image information based on the corrected color image information and the corrected depth image information includes:
- the fused image information is obtained according to the overlapped image information.
- determining whether the charging port to be detected is the target charging port based on the fused image information includes:
- this application also provides a vehicle charging port identification device, including:
- An image acquisition module configured to acquire image information of the charging port to be detected, where the image information includes color image information and depth image information of the charging port to be detected;
- a color processing module configured to obtain corrected color image information based on the color image information and a first preset condition, wherein the first preset condition includes outline information of the target charging port;
- Depth processing module configured to obtain corrected depth image information according to the depth image information and a second preset condition, wherein the second preset condition includes the depth information of the target charging port;
- An image fusion module configured to obtain fused image information based on the corrected color image information and the corrected depth image information
- a judgment module configured to judge whether the charging port to be detected is the target charging port according to the fused image information.
- the present application also provides an electronic device, including a memory and a processor.
- the processor is configured to implement the vehicle charging port identification method as described in any one of the above first aspects when executing a computer program stored in the memory. .
- a computer program including computer-readable code, which when the computer-readable code is run on a computing device, causes the computing device to execute any one of the aforementioned vehicle charging port identification methods.
- a computer-readable medium in which a computer program such as the aforementioned vehicle charging port identification method is stored.
- the present application provides a vehicle charging port identification method and related equipment, including: obtaining image information of the charging port to be detected, wherein the image information includes the charging port to be detected. Detect color image information and depth image information of the charging port; obtain corrected color image information based on the color image information and a first preset condition, wherein the first preset condition includes outline information of the target charging port; according to the The depth image information and the second preset condition are used to obtain the corrected depth image information, wherein the second preset condition includes the depth information of the target charging port; based on the corrected color image information and the corrected depth image information , obtain the fused image information; and determine whether the charging port to be detected is the target charging port according to the fused image information.
- the embodiment of the present application obtains the image information of the charging port to be detected, corrects the image information through the first preset condition and the second preset condition, and obtains corrected color image information and corrected depth image information to exclude non-target charging ports.
- the port is the target charging port can improve the accuracy of charging port identification, thereby improving the quality and efficiency of charging.
- Figure 1 is a schematic flow chart of a vehicle charging port identification method provided by an embodiment of the present application
- FIG. 2 is a schematic structural diagram of a vehicle charging port identification device provided by an embodiment of the present application.
- Figure 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- Figure 4 is a schematic structural diagram of a computer-readable storage medium provided by an embodiment of the present application.
- Figure 5 schematically shows a block diagram of a computing device for performing a method according to the present application
- Figure 6 schematically shows a storage unit for holding or carrying program code for implementing the method according to the present application.
- an embodiment of the present application provides a vehicle charging port identification method.
- the execution subject of the method may be a server, a controller, etc.
- the method includes:
- Step S110 Obtain image information of the charging port to be detected, where the image information includes color image information and depth image information of the charging port to be detected.
- the color image information and depth image information of the charging port to be detected can be collected through a 3D camera.
- Step S120 Obtain corrected color image information based on the above-mentioned color image information and a first preset condition, wherein the above-mentioned first preset condition includes outline information of the target charging port.
- Gaussian filtering can be performed on the image to reduce noise on the image, and the image can also be dilated and corroded to remove noise from the color image.
- Contour detection can be performed on the above color image to obtain the contour information of the color image. Contour information that obviously does not meet the first preset condition can be removed based on at least one of the positional relationship of each contour and the matching degree of the contour in the color image with the first preset condition to obtain corrected color image information.
- Step S130 Obtain corrected depth image information based on the depth image information and a second preset condition, where the second preset condition includes the depth information of the target charging port.
- the image may be dilated and etched to remove noise from the color image.
- Contour information with similar depth values in the depth image can be extracted from areas with similar depth values in the depth image.
- Contour information with similar depth values in the depth image can be extracted based on at least one of the positional relationship of each contour and the degree of matching between the contours in the depth image and the second preset condition. Contour information that obviously does not meet the second preset condition is removed to obtain corrected depth image information.
- Step S140 Obtain fused image information based on the corrected color image information and the corrected depth image information.
- Step S150 Based on the fused image information, determine whether the charging port to be detected is the target charging port.
- the method before the step of obtaining corrected color image information based on the above-mentioned color image information and the first preset condition, the method further includes:
- the above-mentioned first preset condition and the above-mentioned second preset condition are obtained according to the type of the above-mentioned target charging port.
- the charging demand information may be a charging instruction received through a charging device, where the charging demand information may include a fast charging demand and a slow charging demand.
- the above target charging port Can include fast charging ports and slow charging ports.
- the target charging port can be determined more accurately when there are at least two charging ports in the vehicle, and the first preset condition and the second preset condition can be determined more accurately to improve vehicle charging. Practicality and accuracy of mouth recognition methods.
- obtaining corrected color image information based on the above-mentioned color image information and the first preset condition includes:
- the above-mentioned color target contour distribution information includes at least one of the relative position, area and perimeter of the minimum enclosing rectangle to which each color target contour belongs;
- the corrected color image information is obtained.
- contour detection can be performed on the color image information of the target charging port to obtain the minimum enclosing rectangle to which the contour of each color target belongs, where the minimum enclosing rectangle is obtained after fitting the contour.
- At least one of the area information, perimeter information and the relative position relationship of each contour in the image of the minimum enclosing rectangle can be obtained through an image processing algorithm.
- Image processing can be performed on the above-mentioned color image information to obtain at least one of area information, perimeter information, and relative positional relationship of each contour in the image of the minimum enclosing rectangle to which each contour in the above-mentioned color image belongs.
- the first preset color area threshold, the second preset color area threshold, and the first preset color of the minimum enclosing rectangle to which each contour in the target charging port belongs can be determined.
- the contour corresponding to the minimum enclosing rectangle may be removed based on the situation that the area of the minimum enclosing rectangle to which each outline belongs in the color image information is greater than the first preset color area threshold or less than the second preset color area threshold.
- the contour corresponding to the minimum surrounding rectangle may be removed based on the situation that the perimeter of the minimum surrounding rectangle to which each contour belongs in the color image information is greater than the first preset color area threshold or less than the second preset color perimeter threshold.
- the relative position of the minimum enclosing rectangle to which each contour belongs in the color image information after removing the outline corresponding to the minimum enclosing rectangle can be matched according to the relative position of the color target outline of the target charging port, and the obviously unmatched minimum enclosing rectangle can be removed.
- the corresponding outline of the rectangle is based on the situation that the perimeter of the minimum surrounding rectangle to which each contour belongs in the color image information is greater than the first preset color area threshold or less than the second preset color perimeter threshold.
- Contour matching through the minimum enclosing rectangle can avoid the poor quality of the collected image. Directly obtaining the contour of the image will cause the correct contour to be removed due to blurred contour edges or contour distortion, while the wrong contour is retained. Matching the relative position, area, and perimeter of the smallest enclosing rectangle can remove contours that are obviously too large, too small, or have incorrect positional relationships, thereby improving High charging port identification accuracy and practicality.
- obtaining corrected depth image information based on the above depth image information and the second preset condition includes:
- Obtain depth target contour distribution information of the above-mentioned target charging port where the above-mentioned depth target contour distribution information includes at least one of the relative position, depth, area and perimeter of the minimum enclosing rectangle to which each depth target contour belongs;
- Contour matching through the minimum enclosing rectangle can avoid the poor quality of the collected image. Directly obtaining the contour of the image will cause the correct contour to be removed due to blurred contour edges or contour distortion, while the wrong contour is retained. Matching the relative position, area, and perimeter of the minimum enclosing rectangle can remove contours that are obviously too far, too close, or have incorrect positional relationships, thereby improving the accuracy and practicality of charging port identification.
- the above-mentioned acquisition of image information of the charging port to be detected includes:
- the image information of the charging port to be detected is obtained.
- the model information of the vehicle can be determined through the registration information of the smart terminal associated with the above-mentioned vehicle, or the vehicle model information can be determined through the characteristic information of the vehicle obtained by the image acquisition device.
- the image information of the vehicle can be obtained according to the image acquisition device, and the orientation of the vehicle and other information can be determined.
- the vehicle model information and the vehicle orientation information can be combined to determine the position of the vehicle charging port relative to the image acquisition device, and the image information of the vehicle charging port can be obtained through the image acquisition device.
- the vehicle's model information and current location information are different, the actual location of the vehicle's charging port will be different. Therefore, determining the location of the vehicle's charging port to be detected based on the model information and current location information can improve the vehicle's charging port location.
- the collection quality of the image information of the charging port can avoid low image quality and need to be determined multiple times, which can improve the efficiency and quality of charging port identification.
- the above-mentioned acquisition of fused image information based on the above-mentioned corrected color image information and the above-mentioned corrected depth image information includes:
- the above fused image information is obtained.
- the above-mentioned corrected color image information and corrected depth image information can be processed through the IOU intersection-to-union ratio algorithm to obtain the intersection-to-union ratio information of the corrected color image information and the corrected depth image information.
- the location is used to determine the overlap distribution information of the above-mentioned color image information and depth image information.
- the preset coincidence degree of the color image information and the depth image information can be determined based on the historical usage information of the image acquisition device.
- the color overlapped image information may be determined when the overlap degree of the color image information is greater than the preset overlap degree of the color image information.
- the depth overlapped image information may be determined when the coincidence degree of the depth image information is greater than the preset coincidence degree of the depth image information.
- the intersection-to-union ratio of the contours at the same position of the above-mentioned color superimposed image information and the depth-overlapping image information is greater than the intersection-to-union ratio threshold, the fused image information can be obtained based on the above-mentioned contours.
- the coincident image information is obtained, and the fused image information is obtained based on the position of each contour in the coincident image information.
- the quality of the fused image can be improved, which in turn can improve the accuracy of charging port identification.
- determining whether the charging port to be detected is the target charging port based on the fused image information includes:
- the preset matching degree can be determined based on the matching degree between the above-mentioned fused image information and the target charging port, and the historical usage information of the image collection device.
- the above-mentioned matching degree is greater than or equal to the above-mentioned preset matching degree, It can be determined that the charging port to be detected is the target charging port.
- the matching degree is less than the preset matching degree, it can be determined that the charging port to be detected is not the target charging port.
- the matching quality and efficiency of the image can be improved, which in turn can improve the accuracy and practicality of charging port identification.
- Figure 2 is a schematic structural diagram of a vehicle charging port identification device provided by an embodiment of the present application.
- the embodiment of the present application provides a vehicle charging port identification device 200, which includes:
- the image acquisition module 201 is used to acquire the image information of the charging port to be detected, where the above-mentioned image information includes the color image information and depth image information of the above-mentioned charging port to be detected;
- the color processing module 202 is configured to obtain corrected color image information 203 based on the above-mentioned color image information and a first preset condition, wherein the above-mentioned first preset condition includes the outline information of the target charging port;
- Depth processing module 204 is used to obtain Correcting the depth image information, wherein the above-mentioned second preset condition includes the depth information of the above-mentioned target charging port;
- the image fusion module 205 is used to obtain fused image information based on the above-mentioned corrected color image information and the above-mentioned corrected depth image information;
- the determination module 206 is used to determine whether the charging port to be detected is the target charging port based on the fused image information.
- a vehicle charging port identification device 200 can implement each process implemented in the method embodiment of Figure 1. To avoid repetition, details will not be described here.
- FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- the embodiment of the present application provides an electronic device 300, which includes a memory 310, a processor 320, and a computer program 311 stored in the memory 310 and executable on the processor 320.
- the processor 320 executes the computer program 311, it implements the following steps:
- image information of the charging port to be detected wherein the image information includes color image information and depth image information of the charging port to be detected;
- any implementation manner in the embodiment corresponding to Figure 1 can be implemented.
- the electronic device introduced in this embodiment is a device used to implement a device in the embodiment of this application, based on the method introduced in the embodiment of this application, those skilled in the art can understand the functions of the electronic device in this embodiment. Specific embodiments and various variations thereof, so how the electronic device implements the methods in the embodiments of the application will not be described in detail here. As long as those skilled in the art implement the methods used in the embodiments of the application, the equipment used will be All fall within the scope of protection sought by this application.
- Figure 4 is a schematic structural diagram of a computer-readable storage medium provided by an embodiment of the present application.
- This embodiment provides a computer-readable storage medium 400 on which a computer program 411 is stored.
- the computer program 411 implements the following steps when executed by a processor:
- image information of the charging port to be detected wherein the image information includes color image information and depth image information of the charging port to be detected;
- corrected color image information is obtained, where,
- the above-mentioned first preset condition includes outline information of the target charging port
- Various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
- a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the computing device according to embodiments of the present application.
- the present application may also be implemented as an apparatus or device program (eg, computer program and computer program product) for performing part or all of the methods described herein.
- Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, or provided on a carrier signal, or in any other form.
- Figure 5 illustrates a computing device in which the present application may be implemented.
- the computing device conventionally includes a processor 510 and a computer program product or computer-readable medium in the form of memory 520 .
- Memory 520 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
- the memory 520 has a storage space 530 for program code 531 for executing any method steps in the above-described methods.
- the storage space 530 for program codes may include individual program codes 531 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
- These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 6 .
- the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 520 in the server of FIG. 5 .
- the program code may, for example, be compressed in a suitable form.
- the storage unit includes computer readable code 531', that is, code that can be read by, for example, a processor such as 510, which code, when run by a server, causes the server to perform the various steps in the method described above.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本申请实施例提供了一种车辆充电口识别方法及相关设备,该方法包括:获取待检测充电口的图像信息,其中,所述图像信息包括所述待检测充电口的彩色图像信息和深度图像信息;基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,所述第一预设条件包括目标充电口的轮廓信息;根据所述深度图像信息和第二预设条件,获取校正深度图像信息,其中,所述第二预设条件包括所述目标充电口的深度信息;基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息;根据所述融合图像信息,判断所述待检测充电口是否为所述目标充电口。通过预设条件校正图像信息,排除非充电口图像,通过融合图像,排除彩色与深度不相匹配部分,以提高识别准确性。
Description
本申请要求于2022年12月2日提交中国专利局、申请号为202211540471.2,发明名称为“一种车辆充电口识别方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及车辆充电技术领域,尤其涉及一种车辆充电口识别方法及相关设备。
随着电动车辆应用的普及与科学技术的进步,自动充电技术应运而生。目前的自动充电技术是通过将车辆移动至充电装置相关联的指定可充电位置,并控制自动充电设备向车辆进行充电。因此,目前的自动充电方法中对于车辆充电口的识别,是基于车辆处于固定位置时充电口可确定的原理实现的,但在这种识别方法中,车辆的型号、搬运过程中车辆的位置偏移情况、车辆在移动平台上的停放角度和停放方向等因素都会对车辆在搬运前后在移动平台上的停放状态产生影响,进而导致仅根据车辆的位置确定车辆的充电口会导致充电口识别的准确性降低,浪费充电时间,影响充电质量,同时,由于车辆及移动平台的搬运需要一定的动力,因此,目前的充电口识别方法还会造成能源的浪费,影响充电口识别的灵活性和实用性。因此,开发出一种能够准确对车辆充电口进行定位的方法成为目前自动充电技术领域内亟待解决的问题。
申请内容
本申请提供了一种车辆充电口识别方法及相关设备,以解决目前的车辆充电口识别方法,仅根据车辆所处位置即确定充电口位置,进而导致的充电口识别的准确性降低,影响充电质量,造成能源浪费,影响充电口识别的灵活性和实用性的问题。
第一方面,本申请提供了一种车辆充电口识别方法,包括:
获取待检测充电口的图像信息,其中,所述图像信息包括所述待检测充电口的彩色图像信息和深度图像信息;
基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,所述第一预设条件包括目标充电口的轮廓信息;
根据所述深度图像信息和第二预设条件,获取校正深度图像信息,
其中,所述第二预设条件包括所述目标充电口的深度信息;
基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息;
根据所述融合图像信息,判断所述待检测充电口是否为所述目标充电口。
在实施例中,在基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息步骤之前,还包括:
获取车辆的充电需求信息;
基于所述充电需求信息,确定所述目标充电口的类型;
根据所述目标充电口的类型,获取所述第一预设条件和所述第二预设条件。
在实施例中,所述基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,包括:
获取所述目标充电口的彩色目标轮廓分布信息,所述彩色目标轮廓分布信息包括每个彩色目标轮廓所属的最小包围矩形的相对位置、面积和周长中的至少一者;
基于所述目标充电口的颜色分布,获取所述彩色图像信息的彩色目标轮廓分布信息;
获取所述彩色图像信息的彩色目标轮廓分布信息和所述目标充电口的彩色目标轮廓分布信息的第一匹配结果;
根据所述第一匹配结果,获取所述校正彩色图像信息。
在实施例中,所述根据所述深度图像信息和第二预设条件,获取校正深度图像信息,包括:
获取所述目标充电口的深度目标轮廓分布信息,所述深度目标轮廓分布信息包括每个深度目标轮廓所属的最小包围矩形的相对位置、深度、面积和周长中的至少一者;
基于所述目标充电口的深度分布,获取所述深度图像信息的深度目标轮廓分布信息;
获取所述深度图像信息的深度目标轮廓分布信息和所述目标充电口的深度目标轮廓分布信息的第二匹配结果;
根据所述第二匹配结果,获取所述校正深度图像信息。
在实施例中,所述获取待检测充电口的图像信息,包括:
获取所述车辆的型号信息;
获取所述车辆的当前所处位置信息;
基于所述型号信息和所述当前所处位置信息,确定所述车辆的待检测充电口位置;
根据所述待检测充电口位置,获取所述待检测充电口的图像信息。
在实施例中,所述基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息,包括:
获取所述校正彩色图像信息和所述校正深度图像信息的重合度分布信息;
基于所述重合度分布信息,在重合度高于预设重合度的情况下,获取重合图像信息;
根据所述重合图像信息,获取所述融合图像信息。
在实施例中,所述根据所述融合图像信息,判断所述待检测充电口是否为所述目标充电口,包括:
获取所述目标充电口的图像信息;
基于所述融合图像信息和所述目标充电口的图像信息,判断所述待检测充电口是否为所述目标充电口。
第二方面,本申请还提供了一种车辆充电口识别装置,包括:
图像获取模块,用于获取待检测充电口的图像信息,其中,所述图像信息包括所述待检测充电口的彩色图像信息和深度图像信息;
彩色处理模块,用于基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,所述第一预设条件包括目标充电口的轮廓信息;
深度处理模块,用于根据所述深度图像信息和第二预设条件,获取校正深度图像信息,其中,所述第二预设条件包括所述目标充电口的深度信息;
图像融合模块,用于基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息;
判断模块,用于根据所述融合图像信息,判断所述待检测充电口是否为所述目标充电口。
第三方面,本申请还提供了一种电子设备,包括存储器、处理器,所述处理器用于执行存储器中存储的计算机程序时实现如上述第一方面任一种所述的车辆充电口识别方法。
第四方面,提供了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算设备上运行时,导致所述计算设备执行前述任一个所述的车辆充电口识别方法。
第五方面,提供了一种计算机可读介质,其中存储了如前述车辆充电口识别方法的计算机程序。
由以上技术方案可知,本申请提供了一种车辆充电口识别方法及相关设备,包括:获取待检测充电口的图像信息,其中,所述图像信息包括所述待
检测充电口的彩色图像信息和深度图像信息;基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,所述第一预设条件包括目标充电口的轮廓信息;根据所述深度图像信息和第二预设条件,获取校正深度图像信息,其中,所述第二预设条件包括所述目标充电口的深度信息;基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息;根据所述融合图像信息,判断所述待检测充电口是否为所述目标充电口。由于目前的车辆充电口识别方法,仅根据车辆所处位置即确定充电口位置,进而存在充电口识别的准确性降低,影响充电质量,造成能源浪费,影响充电口识别的灵活性和实用性的问题。而本申请实施例通过获取待检测充电口的图像信息,通过第一预设条件和第二预设条件对图像信息进行校正,得到校正彩色图像信息和校正深度图像信息,以排除非目标充电口部分的图像,并根据校正彩色图像信息和校正深度图像信息获取融合图像信息,以排除校正彩色图像信息和校正深度图像信息中彩色与深度不相匹配的部分图像,基于融合图像信息确定待检测充电口是否为目标充电口,可以提高充电口识别的准确性,进而可以提高充电的质量和效率。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例提供的一种车辆充电口识别方法的示意性流程图;
图2为本申请实施例提供的一种车辆充电口识别装置的示意性结构图;
图3为本申请实施例提供的一种电子设备的示意性结构图;
图4为本申请实施例提供的一种计算机可读存储介质的示意性结构图;
图5示意性地示出了用于执行根据本申请的方法的计算设备的框图;
图6示意性地示出了用于保持或者携带实现根据本申请的方法的程序代码的存储单元。
下面将详细地对实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下实施例中描述的实施方式并不代表与本申请相一致的所有实施方式。仅是与权利要求书中所详述的、本申请的一些方面相一致的系统和方法的示例。在本申请实施例所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现,以下所描述的装置实施例仅仅是示例性的。
如图1所示,本申请实施例提供了一种车辆充电口识别方法,该方法的执行主体可以为服务器和控制器等,该方法包括:
步骤S110、获取待检测充电口的图像信息,其中,上述图像信息包括上述待检测充电口的彩色图像信息和深度图像信息。
示例性的,可以通过3D相机采集上述待检测充电口的彩色图像信息和深度图像信息。
步骤S120、基于上述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,上述第一预设条件包括目标充电口的轮廓信息。
示例性的,在获取上述校正彩色图像的步骤之前,可以通过对图像进行高斯滤波处理,以对图像进行减噪,还可以对图像进行膨胀腐蚀,以去除彩色图像的噪点。可以对上述彩色图像进行轮廓检测,获取彩色图像的轮廓信息。可以根据各轮廓的位置关系和彩色图像中的轮廓与第一预设条件的匹配程度中的至少一者,对明显不符合第一预设条件的轮廓信息进行去除,以获取校正彩色图像信息。
步骤S130、根据上述深度图像信息和第二预设条件,获取校正深度图像信息,其中,上述第二预设条件包括上述目标充电口的深度信息。
示例性的,在上述获取校正深度图像信息的步骤之前,可以对图像进行膨胀腐蚀,以去除彩色图像的噪点。可以在深度图像中深度值相近的区域提取深度图像中深度值相近的轮廓信息,可以根据各轮廓的位置关系和深度图像中的轮廓与第二预设条件的匹配程度中的至少一者,对明显不符合第二预设条件的轮廓信息进行去除,以获取校正深度图像信息。
步骤S140、基于上述校正彩色图像信息和上述校正深度图像信息,获取融合图像信息。
步骤S150、根据上述融合图像信息,判断上述待检测充电口是否为上述目标充电口。
通过获取待检测充电口的图像信息,通过第一预设条件和第二预设条件对图像信息进行校正,得到校正彩色图像信息和校正深度图像信息,以排除非目标充电口部分的图像,并根据校正彩色图像信息和校正深度图像信息获取融合图像信息,以排除校正彩色图像信息和校正深度图像信息中彩色与深度不相匹配的部分图像,基于融合图像信息确定待检测充电口是否为目标充电口,可以提高充电口识别的准确性,进而可以提高充电的质量和效率。
根据一些实施例,在基于上述彩色图像信息和第一预设条件,获取校正彩色图像信息步骤之前,还包括:
获取车辆的充电需求信息;
基于上述充电需求信息,确定上述目标充电口的类型;
根据上述目标充电口的类型,获取上述第一预设条件和上述第二预设条件。
示例性的,上述充电需求信息可以为通过充电装置接收的充电指令,其中,充电需求信息可以包括快速充电需求和慢速充电需求。上述目标充电口
可以包括快速充电口和慢速充电口。
通过获取车辆的充电需求信息,可以在车辆存在至少两个充电口的情况下,更精准地确定目标充电口,进而可以更精准地确定第一预设条件和第二预设条件,提高车辆充电口识别方法的实用性和准确性。
根据一些实施例,上述基于上述彩色图像信息和第一预设条件,获取校正彩色图像信息,包括:
获取上述目标充电口的彩色目标轮廓分布信息,上述彩色目标轮廓分布信息包括每个彩色目标轮廓所属的最小包围矩形的相对位置、面积和周长中的至少一者;
基于上述目标充电口的颜色分布,获取上述彩色图像信息的彩色目标轮廓分布信息;
获取上述彩色图像信息的彩色目标轮廓分布信息和上述目标充电口的彩色目标轮廓分布信息的第一匹配结果;
根据上述第一匹配结果,获取上述校正彩色图像信息。
示例性的,可以对上述目标充电口的彩色图像信息进行轮廓检测,获取各彩色目标轮廓所属的最小包围矩形,其中,上述最小包围矩形为对轮廓进行拟合后获取的。可以通过图像处理算法,获取最小包围矩形的面积信息、周长信息和各轮廓在图像中的相对位置关系中的至少一者。可以对上述彩色图像信息进行图像处理,获取上述彩色图像中各轮廓所属的最小包围矩形的面积信息、周长信息和各轮廓在图像中的相对位置关系中的至少一者。
示例性的,可以根据上述目标充电口的彩色目标轮廓分布信息,确定目标充电口中各轮廓所属的最小包围矩形的第一预设彩色面积阈值、第二预设彩色面积阈值、第一预设彩色周长阈值、第二预设彩色周长阈值及相对位置关系,其中,上述第一预设彩色面积阈值大于第二预设彩色面积阈值,上述第一预设彩色周长阈值大于第二预设彩色周长阈值。可以根据在彩色图像信息中各轮廓所属的最小包围矩形的面积大于上述第一预设彩色面积阈值或小于上述第二预设彩色面积阈值的情况下,去除上述最小包围矩形对应的轮廓。可以根据在彩色图像信息中各轮廓所属的最小包围矩形的周长大于上述第一预设彩色面积阈值或小于上述第二预设彩色周长阈值的情况下,去除上述最小包围矩形对应的轮廓。可以根据目标充电口的彩色目标轮廓的相对位置,对上述去除最小包围矩形对应的轮廓后的彩色图像信息中的各轮廓所属的最小包围矩形的相对位置进行匹配,可以去除明显不匹配的最小包围矩形对应的轮廓。
通过最小包围矩形进行轮廓匹配,可以避免采集到的图像质量较差,直接获取图像的轮廓会由于轮廓边缘模糊或轮廓出现畸变等问题,导致正确的轮廓被去除,而错误的轮廓被保留,通过匹配最小包围矩形的相对位置、面积和周长,可以去除明显过大、过小或位置关系不正确的轮廓,从而可以提
高充电口识别的准确性和实用性。
根据一些实施例,上述根据上述深度图像信息和第二预设条件,获取校正深度图像信息,包括:
获取上述目标充电口的深度目标轮廓分布信息,上述深度目标轮廓分布信息包括每个深度目标轮廓所属的最小包围矩形的相对位置、深度、面积和周长中的至少一者;
基于上述目标充电口的深度分布,获取上述深度图像信息的深度目标轮廓分布信息;
获取上述深度图像信息的深度目标轮廓分布信息和上述目标充电口的深度目标轮廓分布信息的第二匹配结果;
根据上述第二匹配结果,获取上述校正深度图像信息。
通过最小包围矩形进行轮廓匹配,可以避免采集到的图像质量较差,直接获取图像的轮廓会由于轮廓边缘模糊或轮廓出现畸变等问题,导致正确的轮廓被去除,而错误的轮廓被保留,通过匹配最小包围矩形的相对位置、面积和周长,可以去除明显过远、过近或位置关系不正确的轮廓,从而可以提高充电口识别的准确性和实用性。
根据一些实施例,上述获取待检测充电口的图像信息,包括:
获取上述车辆的型号信息;
获取上述车辆的当前所处位置信息;
基于上述型号信息和上述当前所处位置信息,确定上述车辆的待检测充电口位置;
根据上述待检测充电口位置,获取上述待检测充电口的图像信息。
示例性的,可以通过与上述车辆相关联的智能终端的注册信息,确定车辆的型号信息,也可以通过图像采集设备获取的车辆的特征信息,确定车辆的型号信息。示例性的,可以根据图像采集设备获取车辆的图像信息,确定车辆的朝向等信息。可以结合车辆的型号信息和车辆的朝向信息,确定车辆充电口的相对图像采集设备的位置,通过图像采集设备对车辆充电口的图像信息。
由于车辆的型号信息和当前所处位置信息的不同,会导致车辆的充电口实际所处位置不同,因此,基于型号信息和当前所处位置信息,确定车辆的待检测充电口位置,可以提高车辆充电口的图像信息的采集质量,避免图像质量较低,需要多次确定,进而可以提高充电口识别的效率和质量。
根据一些实施例,上述基于上述校正彩色图像信息和上述校正深度图像信息,获取融合图像信息,包括:
获取上述校正彩色图像信息和上述校正深度图像信息的重合度分布信息;
基于上述重合度分布信息,在重合度高于预设重合度的情况下,获取重
合图像信息;
根据上述重合图像信息,获取上述融合图像信息。
示例性的,可以通过IOU交并比算法对上述校正彩色图像信息和校正深度图像信息进行处理,获取校正彩色图像信息和校正深度图像信息的交并比信息,通过上述交并比信息和各轮廓所处位置,确定上述彩色图像信息和深度图像信息的重合度分布信息。可以根据图像采集设备的历史使用信息,确定彩色图像信息和深度图像信息的预设重合度。可以在上述彩色图像信息的重合度大于彩色图像信息的预设重合度的情况下,确定彩色重合图像信息。可以在上述深度图像信息的重合度大于深度图像信息的预设重合度的情况下,确定深度重合图像信息。可以在上述彩色重合图像信息和深度重合图像信息同一位置处的轮廓的交并比大于交并比阈值的情况下,根据上述轮廓获取融合图像信息。
通过对校正彩色图像信息和校正深度图像信息进行重合度计算,并基于预设重合度对上述重合度进行筛选,获取重合图像信息,并根据重合图像信息中各轮廓的位置,获取融合图像信息,可以提高融合图像的质量,进而可以提高充电口识别的准确性。
根据一些实施例,上述根据上述融合图像信息,判断上述待检测充电口是否为上述目标充电口,包括:
获取上述目标充电口的图像信息;
基于上述融合图像信息和上述目标充电口的图像信息,判断上述待检测充电口是否为上述目标充电口。
示例性的,可以根据上述融合图像信息与目标充电口的匹配程度,可以根据图像采集设备的历史使用信息,确定预设匹配程度,在上述匹配程度大于或等于上述预设匹配程度的情况下,可以确定上述待检测充电口为目标充电口,在上述匹配程度小于上述预设匹配程度的情况下,可以确定上述待检测充电口不是目标充电口。
通过对融合图像信息和目标充电口的图像信息进行匹配,可以提高图像的匹配质量和效率,进而可以提高充电口识别的准确性和实用性。
如图2所示,图2为本申请实施例提供的一种车辆充电口识别装置的示意性结构图。
本申请实施例提供了一种车辆充电口识别装置200,该装置包括:
图像获取模块201,用于获取待检测充电口的图像信息,其中,上述图像信息包括上述待检测充电口的彩色图像信息和深度图像信息;
彩色处理模块202,用于基于上述彩色图像信息和第一预设条件,获取校正彩色图像信息203,其中,上述第一预设条件包括目标充电口的轮廓信息;
深度处理模块204,用于根据上述深度图像信息和第二预设条件,获取
校正深度图像信息,其中,上述第二预设条件包括上述目标充电口的深度信息;
图像融合模块205,用于基于上述校正彩色图像信息和上述校正深度图像信息,获取融合图像信息;
判断模块206,用于根据上述融合图像信息,判断上述待检测充电口是否为上述目标充电口。
一种车辆充电口识别装置200够实现图1的方法实施例中实现的各个过程,为避免重复,这里不再赘述。
请参阅图3,图3为本申请实施例提供的电子设备的示意性结构图。
本申请实施例提供了一种电子设备300,包括存储器310、处理器320及存储在存储器310上并可在处理器320上运行的计算机程序311,处理器320执行计算机程序311时实现以下步骤:
获取待检测充电口的图像信息,其中,上述图像信息包括上述待检测充电口的彩色图像信息和深度图像信息;
基于上述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,上述第一预设条件包括目标充电口的轮廓信息;
根据上述深度图像信息和第二预设条件,获取校正深度图像信息,其中,上述第二预设条件包括上述目标充电口的深度信息;
基于上述校正彩色图像信息和上述校正深度图像信息,获取融合图像信息;
根据上述融合图像信息,判断上述待检测充电口是否为上述目标充电口。
在具体实施过程中,处理器320执行计算机程序311时,可以实现图1对应的实施例中任一实施方式。
由于本实施例所介绍的电子设备为实施本申请实施例中一种装置所采用的设备,故而基于本申请实施例中所介绍的方法,本领域所属技术人员能够了解本实施例的电子设备的具体实施方式以及其各种变化形式,所以在此对于该电子设备如何实现本申请实施例中的方法不再详细介绍,只要本领域所属技术人员实施本申请实施例中的方法所采用的设备,都属于本申请所欲保护的范围。
如图4所示,图4为本申请实施例提供的一种计算机可读存储介质的示意性结构图。
本实施例提供了一种计算机可读存储介质400,其上存储有计算机程序411,该计算机程序411被处理器执行时实现如下步骤:
获取待检测充电口的图像信息,其中,上述图像信息包括上述待检测充电口的彩色图像信息和深度图像信息;
基于上述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,
上述第一预设条件包括目标充电口的轮廓信息;
根据上述深度图像信息和第二预设条件,获取校正深度图像信息,其中,上述第二预设条件包括上述目标充电口的深度信息;
基于上述校正彩色图像信息和上述校正深度图像信息,获取融合图像信息;
根据上述融合图像信息,判断上述待检测充电口是否为上述目标充电口。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的计算设备中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图5示出了可以实现根据本申请的计算设备。该计算设备传统上包括处理器510和以存储器520形式的计算机程序产品或者计算机可读介质。存储器520可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器520具有用于执行上述方法中的任何方法步骤的程序代码531的存储空间530。例如,用于程序代码的存储空间530可以包括分别用于实现上面的方法中的各种步骤的各个程序代码531。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图6所述的便携式或者固定存储单元。该存储单元可以具有与图5的服务器中的存储器520类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码531’,即可以由例如诸如510之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
此外,还应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本申请的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本申请的范围,对本申请所做的公开是说明性的,而非限制性的,本申请的范围由所附权利要求书限定。
Claims (11)
- 一种车辆充电口识别方法,其中,包括:获取待检测充电口的图像信息,其中,所述图像信息包括所述待检测充电口的彩色图像信息和深度图像信息;基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,所述第一预设条件包括目标充电口的轮廓信息;根据所述深度图像信息和第二预设条件,获取校正深度图像信息,其中,所述第二预设条件包括所述目标充电口的深度信息;基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息;根据所述融合图像信息,判断所述待检测充电口是否为所述目标充电口。
- 如权利要求1所述的车辆充电口识别方法,其中,在基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息步骤之前,还包括:获取车辆的充电需求信息;基于所述充电需求信息,确定所述目标充电口的类型;根据所述目标充电口的类型,获取所述第一预设条件和所述第二预设条件。
- 如权利要求1所述的车辆充电口识别方法,其中,所述基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,包括:获取所述目标充电口的彩色目标轮廓分布信息,所述彩色目标轮廓分布信息包括每个彩色目标轮廓所属的最小包围矩形的相对位置、面积和周长中的至少一者;基于所述目标充电口的颜色分布,获取所述彩色图像信息的彩色目标轮廓分布信息;获取所述彩色图像信息的彩色目标轮廓分布信息和所述目标充电口的彩色目标轮廓分布信息的第一匹配结果;根据所述第一匹配结果,获取所述校正彩色图像信息。
- 如权利要求1所述的车辆充电口识别方法,其中,所述根据所述深度图像信息和第二预设条件,获取校正深度图像信息,包括:获取所述目标充电口的深度目标轮廓分布信息,所述深度目标轮廓分布信息包括每个深度目标轮廓所属的最小包围矩形的相对位置、深度、面积和周长中的至少一者;基于所述目标充电口的深度分布,获取所述深度图像信息的深度目标轮廓分布信息;获取所述深度图像信息的深度目标轮廓分布信息和所述目标充电口的深度目标轮廓分布信息的第二匹配结果;根据所述第二匹配结果,获取所述校正深度图像信息。
- 如权利要求1所述的车辆充电口识别方法,其中,所述获取待检测充电口的图像信息,包括:获取所述车辆的型号信息;获取所述车辆的当前所处位置信息;基于所述型号信息和所述当前所处位置信息,确定所述车辆的待检测充电口位置;根据所述待检测充电口位置,获取所述待检测充电口的图像信息。
- 如权利要求1所述的车辆充电口识别方法,其中,所述基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息,包括:获取所述校正彩色图像信息和所述校正深度图像信息的重合度分布信息;基于所述重合度分布信息,在重合度高于预设重合度的情况下,获取重合图像信息;根据所述重合图像信息,获取所述融合图像信息。
- 如权利要求1所述的车辆充电口识别方法,其中,所述根据所述融合图像信息,判断所述待检测充电口是否为所述目标充电口,包括:获取所述目标充电口的图像信息;基于所述融合图像信息和所述目标充电口的图像信息,判断所述待检测充电口是否为所述目标充电口。
- 一种车辆充电口识别装置,其中,包括:图像获取模块,用于获取待检测充电口的图像信息,其中,所述图像信息包括所述待检测充电口的彩色图像信息和深度图像信息;彩色处理模块,用于基于所述彩色图像信息和第一预设条件,获取校正彩色图像信息,其中,所述第一预设条件包括目标充电口的轮廓信息;深度处理模块,用于根据所述深度图像信息和第二预设条件,获取校正深度图像信息,其中,所述第二预设条件包括所述目标充电口的深度信息;图像融合模块,用于基于所述校正彩色图像信息和所述校正深度图像信息,获取融合图像信息;判断模块,用于根据所述融合图像信息,判断所述待检测充电口 是否为所述目标充电口。
- 一种电子设备,包括存储器、处理器,其中,所述处理器用于执行存储器中存储的计算机程序时实现如权利要求1至7中任一项所述的车辆充电口识别方法。
- 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算设备上运行时,导致所述计算设备执行根据权利要求1至7中任一项所述的车辆充电口识别方法。
- 一种计算机可读介质,其中存储了如权利要求10所述的计算机程序。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211540471.2 | 2022-12-02 | ||
CN202211540471.2A CN115719351A (zh) | 2022-12-02 | 2022-12-02 | 一种车辆充电口识别方法及相关设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2024002396A2 true WO2024002396A2 (zh) | 2024-01-04 |
WO2024002396A3 WO2024002396A3 (zh) | 2024-02-22 |
Family
ID=85257228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/123678 WO2024002396A2 (zh) | 2022-12-02 | 2023-10-10 | 一种车辆充电口识别方法及相关设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115719351A (zh) |
WO (1) | WO2024002396A2 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115719351A (zh) * | 2022-12-02 | 2023-02-28 | 浙江安吉智电控股有限公司 | 一种车辆充电口识别方法及相关设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108171212A (zh) * | 2018-01-19 | 2018-06-15 | 百度在线网络技术(北京)有限公司 | 用于检测目标的方法和装置 |
CN112085775B (zh) * | 2020-09-17 | 2024-05-24 | 北京字节跳动网络技术有限公司 | 图像处理的方法、装置、终端和存储介质 |
CN112995641B (zh) * | 2021-02-08 | 2022-09-27 | 东莞埃科思科技有限公司 | 一种3d模组成像装置及方法、电子设备 |
CN115719351A (zh) * | 2022-12-02 | 2023-02-28 | 浙江安吉智电控股有限公司 | 一种车辆充电口识别方法及相关设备 |
-
2022
- 2022-12-02 CN CN202211540471.2A patent/CN115719351A/zh active Pending
-
2023
- 2023-10-10 WO PCT/CN2023/123678 patent/WO2024002396A2/zh unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024002396A3 (zh) | 2024-02-22 |
CN115719351A (zh) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110705405B (zh) | 目标标注的方法及装置 | |
WO2017032311A1 (zh) | 一种检测方法及装置 | |
CN110163912B (zh) | 二维码位姿标定方法、装置及系统 | |
WO2024002396A2 (zh) | 一种车辆充电口识别方法及相关设备 | |
CN111860489A (zh) | 一种证件图像校正方法、装置、设备及存储介质 | |
CN113766209B (zh) | 相机偏移量处理方法及装置 | |
CN112598922B (zh) | 车位检测方法、装置、设备及存储介质 | |
CN109102026B (zh) | 一种车辆图像检测方法、装置及系统 | |
CN110962844A (zh) | 一种车辆航向角修正方法及系统、存储介质及终端 | |
CN104517108A (zh) | 一种确定qr码二值化图像边缘线的方法及系统 | |
CN105991913B (zh) | 一种基于机器视觉定位摄像模组的花瓣槽角度的方法 | |
JP2011043969A (ja) | 画像特徴点抽出方法 | |
CN111386530B (zh) | 车辆检测方法和设备 | |
US20240265521A1 (en) | Cell alignment metric detection method, controller, detection system and storage medium | |
Chang et al. | An efficient method for lane-mark extraction in complex conditions | |
CN112001200A (zh) | 识别码识别方法、装置、设备、存储介质和系统 | |
CN111192326A (zh) | 一种用于视觉识别电动汽车直流充电插口的方法及系统 | |
CN111222507A (zh) | 数字式仪表读数的自动识别方法、计算机可读存储介质 | |
CN112837384B (zh) | 车辆标记方法、装置和电子设备 | |
CN117745850A (zh) | 地图矢量化生成方法、装置和服务器 | |
CN115526881B (zh) | 一种基于图像建模的电芯极性检测方法及装置 | |
CN112215222A (zh) | 车牌识别方法、装置、设备及存储介质 | |
CN112634141A (zh) | 一种车牌矫正方法、装置、设备及介质 | |
CN116363076A (zh) | 一种实验电路的电流流向判断方法和装置 | |
CN113657371B (zh) | 一种相机角度的调整方法、系统、存储介质、电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23830558 Country of ref document: EP Kind code of ref document: A2 |