WO2024002359A1 - 防火装置、氧疗仪及通气治疗系统 - Google Patents

防火装置、氧疗仪及通气治疗系统 Download PDF

Info

Publication number
WO2024002359A1
WO2024002359A1 PCT/CN2023/105040 CN2023105040W WO2024002359A1 WO 2024002359 A1 WO2024002359 A1 WO 2024002359A1 CN 2023105040 W CN2023105040 W CN 2023105040W WO 2024002359 A1 WO2024002359 A1 WO 2024002359A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
opening
fluid channel
fusible
elastic
Prior art date
Application number
PCT/CN2023/105040
Other languages
English (en)
French (fr)
Inventor
刘振
何垄
王亚杰
周明钊
庄志
Original Assignee
天津怡和嘉业医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210761495.4A external-priority patent/CN115105699A/zh
Priority claimed from CN202221696322.0U external-priority patent/CN219001551U/zh
Priority claimed from CN202210761499.2A external-priority patent/CN115089828A/zh
Priority claimed from CN202221696132.9U external-priority patent/CN219001549U/zh
Priority claimed from CN202210761502.0A external-priority patent/CN115089829A/zh
Priority claimed from CN202221696321.6U external-priority patent/CN219001550U/zh
Priority claimed from CN202210769833.9A external-priority patent/CN115105700A/zh
Priority claimed from CN202223598765.9U external-priority patent/CN219963788U/zh
Priority claimed from CN202223598962.0U external-priority patent/CN219375799U/zh
Priority claimed from CN202223599609.4U external-priority patent/CN219595512U/zh
Priority claimed from CN202211733732.2A external-priority patent/CN115998999A/zh
Priority claimed from CN202321658850.1U external-priority patent/CN220558374U/zh
Application filed by 天津怡和嘉业医疗科技有限公司 filed Critical 天津怡和嘉业医疗科技有限公司
Publication of WO2024002359A1 publication Critical patent/WO2024002359A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/08Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses

Definitions

  • the present disclosure relates to the technical field of medical devices, and in particular to a fire prevention device, an oxygen therapy device and a communication device. Qi healing System.
  • oxygen therapy has been widely used in clinical treatment and hospital rescue.
  • external oxygen supply is usually required.
  • External instruments can be used to supply the patient through invasive or non-invasive methods.
  • oxygen therapy devices are collectively called oxygen therapy devices.
  • a fire prevention device Due to the combustion-supporting properties of oxygen, it is usually necessary to install a fire prevention device on the oxygen therapy device. When oxygen leaks and causes a fire, the fire prevention device can promptly cut off the oxygen path to weaken the spread of the fire and reduce losses.
  • a support member with a low melting point is usually provided at the opening of the fire protection device, and the support member is used to support the sealing valve. After the support member is heated and melted, the sealing valve moves to the opening driven by the spring and engages with the opening to block the opening. Cut off the gas line.
  • the existing fire prevention device is connected to the oxygen therapy device and the oxygen pipeline at the patient end.
  • the metal spring is in an oxygen-rich environment and is prone to oxidation failure. In the event of a fire, there is still a risk of oxygen leakage. The safety factor is low.
  • the sealing valve may be deflected when moving within the fire protection device, resulting in the sealing valve being unable to accurately engage with the opening, and the stability of the fire protection device being poor. Moreover, due to the slow melting speed of the support, the sealing valve cannot move to the opening in time and cannot quickly block the air path, which can easily cause the fire to spread.
  • the ventilation device is connected to the user's respiratory airway through tubing to continuously provide oxygen to the user through the tubing. Due to the combustion-supporting properties of oxygen, when a fire breaks out on the user side, the oxygen produced by the ventilation equipment will cause the fire to continue to expand.
  • oxygen therapy In medical or home settings, external oxygen is often required when a patient's own oxygen intake is insufficient. This method, which relies on external instruments to supply oxygen to the patient through invasive or non-invasive methods, is called oxygen therapy. Instruments used to provide oxygen to patients are collectively called oxygen concentrators. Oxygen concentrators are typically connected via flexible plastic tubing to a respiratory mask or nasal cannula that is worn onto the face of a patient requiring ventilatory therapy (eg, oxygen therapy).
  • ventilatory therapy eg, oxygen therapy
  • Oxygen is a kind of combustion-supporting gas. If it encounters an open flame (such as smoking, etc.), it will definitely contribute to the fire and can easily cause a fire. Most oxygen concentrators are set up to continuously deliver oxygen to the respirator or nasal cannula at a determined rate based on the patient's needs, and do not stop oxygen delivery even when the respirator or nasal cannula is removed. In this situation, an oxygen-rich environment can easily be established around the patient, preparing the environment for a catastrophic fire based on ignition. The oxygen concentration output by the oxygen generator is generally higher than 90%. If the flexible plastic tube that is outputting oxygen is accidentally ignited, because there is continuous high-concentration oxygen flowing out of the flexible plastic tube, the flame will follow the oxygen.
  • the output air pipe gradually burned towards the fuselage, eventually igniting the oxygen generator and causing a fire.
  • the oxygen concentrator is used in a home care environment, due to the lack of corresponding supervision conditions, the above fire hazards will worsen in the home environment. If the oxygen output path cannot be closed in time, the fire will become more intense, which will aggravate the difficulty of fire rescue. difficulty.
  • the relevant technology In order to block the output path of oxygen in the event of a fire, the relevant technology generally uses a fire isolation device to block it.
  • gas such as oxygen
  • the compression springs in such fire isolation devices are generally made of metal materials. After the compression springs of metal materials are exposed to oxygen for a long time, especially in humid environments, chemical reactions such as oxidation will inevitably occur, which will destroy the compression springs. Failure will greatly reduce the service life of the fire isolation device and have an impact on the health of the patient.
  • the present disclosure provides a fire prevention device, an oxygen therapy device and a ventilation therapy system, aiming to solve the problem in related technologies that the metal spring inside the fire prevention device is in an oxygen-rich environment and is prone to oxidation failure. When a fire occurs, oxygen still leaks. Risk, low safety factor.
  • an embodiment of the present disclosure discloses a fire prevention device, including: a housing, a valve body, a torsion spring and a fusible member;
  • the fluid channel is provided with a first opening and a second opening.
  • the first opening and the second opening are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the valve body is located in the fluid channel and is rotationally connected to the housing;
  • the valve body is provided with an accommodation cavity, and the fluid channel and the accommodation cavity are two mutually independent spaces;
  • the torsion spring is embedded in the accommodation cavity to drive the valve body and the housing to rotate relative to each other;
  • the fusible component is disposed on the inner wall of the fluid channel
  • the fusible member When the fusible member is in a non-melted state, the fusible member supports the valve body in a first position, and both the first opening and the second opening are in an open state;
  • the torsion spring drives the valve body to rotate to the second position, and at least one of the first opening and the second opening is in a closed state.
  • valve body includes a mounting part, a first connecting part and a first sealing part;
  • the mounting part includes an inner sleeve and an outer sleeve, and the accommodation cavity is located between the inner sleeve and the outer sleeve;
  • a rotating shaft is provided in the fluid channel, and the inner sleeve is sleeved on the rotating shaft and is rotationally connected with the rotating shaft;
  • One end of the first connecting part is connected to the side wall of the outer sleeve, and the other end of the first connecting part is connected to the first sealing part;
  • the first sealing portion When the valve body is in the second position, the first sealing portion is engaged with the first opening so that the first opening is in a closed state.
  • valve body further includes a second connection part and a second sealing part
  • One end of the second connecting part is connected to the side wall of the outer sleeve, and the other end of the second connecting part is connected to the second sealing part;
  • the second sealing portion When the valve body is in the second position, the second sealing portion is engaged with the second opening so that the second opening is in a closed state.
  • first connection part and/or the second connection part are provided with a gap, and the gap is used to pass fluid.
  • the inner wall of the fluid channel is provided with at least one limiting part, and the limiting part is located on the rotation path of the valve body;
  • valve body When the valve body is in the second position, the valve body is in contact with the limiting portion.
  • the housing is provided with a first pipeline joint and a second pipeline joint;
  • the first pipeline joint is provided with a first through hole, and the first through hole is connected with the first opening;
  • the second pipeline joint is provided with a second through hole, and the second through hole is connected with the second opening;
  • the first pipeline connector and the second pipeline connector are respectively used for pipeline connection with the oxygen therapy device or the patient end.
  • the outer wall of the first pipeline connector and/or the second pipeline connector is provided with at least one clamping portion, and the clamping portion is used to connect with the oxygen therapy device or the patient end. Pipe clamping.
  • the fusible member has an extension portion, and the extension portion penetrates the first through hole or the second through hole.
  • an embodiment of the present disclosure also discloses an oxygen therapy device, including the above-mentioned fire prevention device.
  • embodiments of the present disclosure also disclose a ventilation therapy system, which includes the above-mentioned oxygen therapy device.
  • the fire prevention device includes: a shell, a valve body, a torsion spring and a fusible member; a fluid channel is provided in the shell, and the fluid channel is provided with a first opening and a second opening, and the first opening and the second opening are respectively It is connected with the oxygen therapy device or the pipeline at the patient end; the valve body is located in the fluid channel and is rotationally connected to the housing; the valve body is provided with an accommodation cavity, and the fluid channel and the accommodation cavity are two independent spaces; the torsion spring is embedded In the accommodation cavity, the valve body and the housing are driven to rotate relative to each other; the fusible component is arranged on the inner wall of the fluid channel.
  • the fusible component When the fusible component is in a non-molten state, the fusible component supports the valve body in the first position, the first opening and the second opening are both in an open state, and the fluid channel transmits oxygen normally; in the event of a fire, the fusible component reaches a temperature of At the melting point, it will be in a molten state, and the fusible component is not enough to support the elastic force exerted by the torsion spring on the valve body.
  • the torsion spring releases the stored elastic potential energy, and the valve body rotates from the first position to the second position driven by the torsion spring.
  • an embodiment of the present disclosure discloses a fire prevention device, which includes: a shell, an elastic member, a valve body, and a fusible member;
  • the housing has a receiving cavity and a gas channel, and the gas channel is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the valve body separates the accommodation chamber and the gas channel into mutually independent spaces
  • the elastic member is disposed in the accommodation cavity, the valve body is at least partially located in the gas channel, and the elastic member is in contact with the housing and the valve body respectively;
  • the fusible component is disposed between the valve body and the gas channel, and there is a gap between the fusible component and the gas channel;
  • the fusible member When the fusible member is in a non-molten state, the fusible member supports the valve body in a third In one position, the gas channel is in an open state;
  • the elastic member drives the valve body to the second position, and the gas channel is in a closed state.
  • the accommodation cavity has an opening
  • the valve body is disposed at the opening of the accommodation cavity, and the valve body is slidably connected to the accommodation cavity;
  • the fusible member When the fusible member is in the non-molten state, the fusible member supports the valve body in the first position and the gas channel is in an open state;
  • the elastic member drives the valve body to slide to the second position, and the gas channel is in a closed state.
  • the housing includes a first housing and a second housing
  • the first housing is rotationally connected to the second housing
  • the first housing is provided with a first through hole and a second through hole;
  • the second housing is provided with a third through hole and a fourth through hole;
  • the valve body is fixedly connected to the first housing, and the valve body is provided with a fifth through hole;
  • the fusible member is respectively engaged with the valve body and the second housing, and the fusible member is provided with a sixth through hole;
  • the elastic member is in contact with the valve body and the second housing respectively;
  • the fusible member When the fusible member is in the non-molten state, the fusible member supports the valve body in the first position, and the first through hole, the second through hole, the third through hole The hole, the fourth through hole, the fifth through hole and the sixth through hole are connected to form the gas channel, and the gas channel is in an open state;
  • the elastic member drives the first housing and the second housing to rotate relative to each other, the valve body is in the second position, and the first passage
  • the hole, the second through hole and the fifth through hole are respectively attached to the shell wall of the second housing, and the gas channel is in a closed state.
  • a first protruding part and a second protruding part are provided in the second housing;
  • the third through hole is provided on the first protruding part, and the fourth through hole is provided on the second protruding part;
  • the fusible component is at least partially embedded in the third through hole or the fourth through hole.
  • the first protruding part is provided with a first extension part
  • the second protruding part is provided with a third extension part.
  • both ends of the fifth through hole are respectively in contact with the first extension part and the second extension part.
  • one end of the valve body is provided with a third extension part, and the other end of the valve body is provided with a fourth extension part;
  • the third through hole is in contact with the third extension part
  • the fourth through hole is in contact with the fourth extension part
  • the second housing is provided with at least one limiting portion, the limiting portion is located on the movement path of the valve body;
  • valve body When the valve body is in the second position, the valve body is in contact with the limiting portion.
  • the first housing is provided with a first connection part and a second connection part;
  • the first through hole is provided in the first connecting part, and the second through hole is provided in the second connecting part;
  • the first connection part and the second connection part are respectively used to communicate with the pipeline of the oxygen therapy device or the patient.
  • the gas channel includes a first pipeline interface, a second pipeline interface and a communication part
  • the communicating part has an inner cavity
  • the first pipeline interface and the second pipeline interface are respectively located at both ends of the communication part, and are respectively connected with the inner cavity to form the gas channel;
  • the first pipeline interface and the second pipeline interface are arranged symmetrically.
  • the fusible member is located in the inner cavity, and the fusible member is in clearance fit with a wall of the inner cavity.
  • an embodiment of the present disclosure also discloses an oxygen therapy device, including the above-mentioned fire prevention device.
  • an embodiment of the present disclosure also discloses a ventilation therapy system, which includes the above-mentioned oxygen therapy device.
  • the fire prevention device includes: a shell, an elastic member, a valve body and a fusible member; the shell has a receiving cavity and a gas channel, and the gas channel is used to communicate with the oxygen therapy device or the pipeline at the patient end; the valve body will The accommodating cavity and the gas channel are separated into mutually independent spaces; the elastic member is arranged in the accommodating cavity, the valve body is at least partially located in the gas channel, and the elastic member is in contact with the shell and the valve body respectively; there is a gap between the valve body and the gas channel.
  • the fusible component has a gap between the fusible component and the gas channel; in the fusible component When the component is in a non-molten state, the fusible component supports the valve body in the first position and the gas channel is in an open state; when the fusible component is in a molten state, the elastic component drives the valve body in the second position and the gas channel is in a closed state. In the event of a fire, the fusible component will be in a molten state when the temperature reaches the melting point. The fusible component is not enough to support the elastic force exerted by the elastic component on the valve body. The elastic component releases the stored elastic potential energy, and the valve body is driven by the elastic component.
  • an embodiment of the present disclosure discloses a fire prevention device, which includes: a housing, a first elastic valve body, and a first fusible member;
  • first opening and a second opening are provided on both sides of the accommodation cavity, and the first opening and the second opening are used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the first elastic valve body is positioned in the accommodation cavity, and the first elastic valve body is arranged opposite to the first opening, wherein the first elastic valve body has oxidation resistance;
  • the first fusible member is located in the housing and connected to the housing, and the first fusible member is in contact with a side of the first elastic valve body close to the first opening;
  • the first fusible component When the first fusible component is in a non-molten state, the first fusible component compresses the first elastic valve body, and there is a gap for gas circulation between the first opening and the first elastic valve body. gap;
  • the first elastic valve body When the first fusible component is in a molten state, the first elastic valve body releases at least part of the elastic potential energy, and the first elastic valve body abuts the first end surface of the accommodation cavity, so that the first elastic valve body An opening is in a closed state, wherein the first opening is provided on the first end surface.
  • the housing includes a first connection part and a second connection part
  • the first connecting part has a first through hole, and the first through hole is connected with the first opening;
  • the second connecting part has a second through hole, and the second through hole is connected with the second opening;
  • the first fusible component is located in the first through hole, one end of the first fusible component extends to form at least two reinforcing ribs, and the reinforcing ribs are connected to the wall of the first through hole;
  • the other end of the first fusible component is in contact with the side of the first elastic valve body close to the first opening.
  • the first fusible member is located between the first elastic valve body and the first end surface, and the first fusible member and the first elastic valve body are close to the first opening. Butt on one side.
  • the number of the first fusible components is two, and the two first fusible components are symmetrically arranged on the first end face.
  • the fire protection device further includes a support member
  • the support member is located in the accommodation cavity and connected to the cavity wall of the accommodation cavity;
  • the support member is in contact with a side of the first elastic valve body away from the first opening.
  • the support member is provided with a first positioning portion at one end close to the first elastic valve body, and a second positioning portion is provided at a side of the first elastic valve body away from the first opening.
  • the first positioning part and the second positioning part are positioned and matched.
  • the outer side wall of the first connection part and/or the outer side wall of the second connection part is provided with at least one clamping part, and the clamping part is used to connect with the oxygen therapy device or the tube at the patient end. Luca picks up.
  • the fire protection device further includes a second elastic valve body and a second fusible component
  • the second elastic valve body is arranged opposite to the second opening
  • the second fusible component is located in the housing and connected to the housing, and the second fusible component abuts a side of the second elastic valve body close to the second opening, wherein the The second elastic valve body has oxidation resistance;
  • the support member is located between the first elastic valve body and the second elastic valve body, and is in contact with the first elastic valve body and the second elastic valve body respectively;
  • the second fusible component When the second fusible component is in a non-melted state, the second fusible component compresses the second elastic valve body, and there is a gap for gas circulation between the second opening and the second elastic valve body. gap;
  • the second elastic valve body When the second fusible component is in a molten state, the second elastic valve body releases at least part of the elastic potential energy, and the second elastic valve body abuts the second end surface of the accommodation cavity, so that the second elastic valve body The two openings are in a closed state, wherein the second opening is provided on the second end surface.
  • the embodiment of the present disclosure also discloses an oxygen therapy device, including the above-mentioned fire prevention device.
  • an embodiment of the present disclosure also discloses a ventilation therapy system, including the above-mentioned oxygen therapy device.
  • the fire prevention device includes: a shell, a first elastic valve body and a first fusible member; the shell has an accommodation cavity, and a first opening and a second opening are provided on both sides of the accommodation cavity, and the first opening and The second opening is used to communicate with the oxygen therapy device or the pipeline at the patient end; the first elastic valve body is positioned in the accommodation cavity, and the first elastic valve body is arranged opposite to the first opening, wherein the first elastic valve body has a resistance to Oxidation properties.
  • the first fusible component is located in the housing and connected to the housing, and the first fusible component is connected to the first elastic component.
  • the side of the elastic valve body close to the first opening abuts; when the first fusible component is in a non-molten state, the first fusible component compresses the first elastic valve body, the thickness of the first elastic valve body decreases, and the first opening and There is a gap for gas circulation between the first elastic valve bodies; in the event of a fire, the fusible component will be in a molten state when the temperature reaches the melting point, and the first elastic valve body releases at least part of the elastic potential energy, and the first elastic valve body and The first end surface of the accommodation cavity is in contact to keep the first opening in a closed state, thereby cutting off the oxygen passage and preventing the continuous leakage of oxygen from causing the spread of fire, wherein the first opening is provided on the first end surface. Since the first elastic valve body has oxidation resistance, the problem of oxidation of the first elastic valve body is avoided, and the durability and safety factor of the device are improved.
  • the present disclosure also provides a fire prevention device, an oxygen therapy device and a ventilation therapy system, aiming to solve the problem in related technologies that the oxygen is transmitted by opening small holes on the support, which has a great impact on the smoothness of the air path and is not very stable. It is easy to block the air path under non-fire conditions and affect the treatment effect.
  • an embodiment of the present disclosure discloses a fire prevention device, which includes: a housing, a first moving rod, a first fusible member, a first valve body, and a first elastic member;
  • the fluid channel is provided with a first narrowing part and a second narrowing part, the first moving rod, the first fusible member, the first valve body and the first elastic member are all provided with in the fluid channel;
  • the first fusible component is disposed at one end of the fluid channel and connected to the inner wall of the fluid channel;
  • the first moving rod is slidingly connected to the inner wall of the fluid channel, and the first fusible member is provided on the first moving rod;
  • the first valve body passes through the first narrowing part and is slidingly connected to the inner wall of the fluid channel.
  • One end of the first valve body is connected to the first moving rod.
  • the first valve body The other end is provided with the first elastic member, and the first elastic member is in contact with the housing;
  • a first sealing member is provided near the first narrowing portion of the first valve body
  • the first fusible member supports the first moving rod and the first valve body is in a first position, and the first sealing member and the first retracting member
  • the narrow part has a clearance fit and the fluid channel is in an open state
  • the first fusible member is provided with a first snap-fitting portion
  • the first moving rod is provided with a first snap-fitting portion
  • the first fusible member is snap-fitted with the first moving rod.
  • the side wall of the first moving rod is provided with at least one first guide portion
  • the inner wall of the fluid channel is provided with a first chute
  • the first guide portion is in sliding fit with the first chute.
  • the side wall of the first valve body is provided with at least one second guide portion
  • the inner wall of the fluid channel is provided with a second slide groove
  • the second guide portion is in sliding fit with the second slide groove.
  • the other end of the first valve body is provided with a groove body, and the first elastic member is at least partially located in the groove body;
  • One end of the first elastic member is in contact with the bottom of the tank body, and the other end of the first elastic member is in contact with the housing.
  • a mounting shaft is provided in the tank body, and the mounting shaft is coaxially arranged with the tank body;
  • the first elastic member is sleeved on the mounting shaft.
  • the housing further includes a baffle, which is disposed in the fluid channel and connected to the inner wall of the fluid channel;
  • the first elastic member is in contact with the baffle.
  • the fire protection device further includes a second moving rod, a second fusible member, a second valve body and a second elastic member;
  • the second moving rod, the second fusible member, the second valve body and the second elastic member are all provided in the fluid channel;
  • the second fusible component is disposed at the other end of the fluid channel and connected to the inner wall of the fluid channel;
  • the second moving rod is slidingly connected to the inner wall of the fluid channel, and the second fusible member is provided on the second moving rod;
  • the second valve body passes through the second narrowing part and is slidingly connected to the inner wall of the fluid channel.
  • One end of the second valve body is connected to the second moving rod.
  • the second valve body The other end is provided with the second elastic member, and the second elastic member is in contact with the housing;
  • a second sealing member is provided near the second narrowing portion of the second valve body
  • the second fusible member supports the second moving rod and the second valve body is in a third position, and the second sealing member and the second closing member
  • the narrow part has a clearance fit and the fluid channel is in an open state
  • the second fusible member is provided with a second snap-fitting portion
  • the second moving rod is provided with a second snap-fitting portion
  • the second fusible member is clipped with the second moving rod.
  • the housing is provided with a first pipeline connector and a second pipeline connector, and the first pipeline connector and the second pipeline connector are respectively used for pipeline connection with the oxygen therapy device or the patient end. ;
  • the outer wall of the first pipeline connector and/or the second pipeline connector is provided with at least one third clamping portion, and the third clamping portion is used to connect with the oxygen therapy device or the patient end. Pipe clamping.
  • the first moving rod and the first valve body are an integral structure.
  • the first moving rod and the first valve body have a separate structure.
  • an embodiment of the present disclosure also discloses an oxygen therapy device, including the above-mentioned fire prevention device.
  • embodiments of the present disclosure also disclose a ventilation therapy system, which includes the above-mentioned oxygen therapy device.
  • the fire prevention device includes: a housing, a first moving rod, a first fusible member, a first valve body, and a first elastic member; a fluid channel is provided in the housing, and the fluid channel is provided with a first narrowing portion and a first elastic member.
  • the second narrowing part, the first moving rod, the first fusible member, the first valve body and the first elastic member are all arranged in the fluid channel;
  • the first fusible member is arranged at one end of the fluid channel and in contact with the inner wall of the fluid channel Connection;
  • the first moving rod is slidingly connected to the inner wall of the fluid channel, and the first fusible member is provided on the first moving rod;
  • the first valve body is penetrated through the first narrowing part and is slidingly connected to the inner wall of the fluid channel, and the first valve body is connected to the inner wall of the fluid channel.
  • One end of the valve body is connected to the first moving rod, the other end of the first valve body is provided with a first elastic member, and the first elastic member is in contact with the housing; the first valve body is provided with a first elastic member near the first narrowing portion. Seals. When the first valve body is in the open state, the first fusible member supports the first moving rod and the first valve body is in the first position, the first sealing member is in clearance fit with the first narrowing portion, and the fluid channel is in the open state, without Opening holes in the first fusible component can also ensure the normal transmission of oxygen and improve the stability of the fire protection device.
  • the first fusible component melts and is insufficient to support the elastic force exerted by the first elastic member on the first valve body and the first moving rod.
  • the first valve body and the first moving rod are driven by the first elastic member. Slide from the first position to the second position, the first valve body is in a closed state, the first sealing member is engaged with the first narrowing part, and the fluid channel is in a closed state, thus cutting off the oxygen path and preventing the continued leakage of oxygen from causing the spread of fire. .
  • the present disclosure also provides a fire prevention device and ventilation treatment equipment, which is also intended to solve the problem in related technologies that the fire prevention device is prone to aging and failure. When a fire occurs, there is still a risk of oxygen leakage and the safety factor is low.
  • an embodiment of the present disclosure discloses a fire prevention device, including: a housing, a first positioning member and a first sealing member;
  • the housing There is a fluid channel in the housing, and a first opening and a second opening are provided on opposite sides of the fluid channel.
  • the first opening and the second opening are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end. ;
  • the first positioning member is disposed in the fluid channel and connected to the housing;
  • the first sealing member is sleeved on the first positioning member, and the first sealing member has oxidation resistance
  • the first sealing member is in clearance fit with the inner wall of the fluid channel, and the fluid channel is in an open state;
  • the volume of the first seal increases and fits the inner wall of the fluid channel, and the fluid channel is in a closed state
  • the second temperature is higher than the first temperature.
  • the first sealing member is thermally induced shape memory plastic
  • the first sealing member expands due to heat and is in contact with the inner wall of the fluid channel, and the fluid channel is in a closed state.
  • the inner wall of the fluid channel is provided with at least one annular protrusion
  • the annular protrusion abuts the first seal, and the fluid channel is in a closed state.
  • the inner wall of the fluid channel is provided with a first protruding structure and a second protruding structure;
  • the first protruding structure and the second protruding structure are respectively located at both ends of the first positioning member
  • the first convex structure is provided with a first positioning part
  • the second convex structure is provided with a second positioning part
  • both ends of the first positioning member are respectively connected with the first positioning part and the second positioning part.
  • the positioning part is snap-connected.
  • the inner wall of the fluid channel is provided with a mounting portion, and the mounting portion is provided with a receiving groove;
  • One end of the first positioning member is embedded in the receiving groove.
  • one end of the first positioning member is provided with a snap-fitting portion
  • the groove wall of the accommodating groove is provided with a snap-fitting portion
  • one end of the first positioning member is clipped with the accommodating groove.
  • one end of the first positioning member is provided with external threads
  • the groove wall of the receiving groove is provided with internal threads
  • one end of the first positioning member is threadedly connected to the receiving groove.
  • one end of the first positioning member is interference-fitted with the receiving groove.
  • the mounting portion is provided with at least one connecting rib, and the mounting portion is connected to the inner wall of the fluid channel through the connecting rib.
  • the fire protection device further includes a fusible component
  • the first sealing member is an elastomer, and the fusible member wraps the first sealing member
  • the fusible member When the fusible member is in a non-molten state, the fusible member compresses the first seal, the fusible member is in clearance fit with the inner wall of the fluid channel, and the fluid channel is in an open state;
  • the first sealing member When the fusible component is in a molten state, the first sealing member releases at least part of the elastic potential energy, the volume of the first sealing member increases and fits the inner wall of the fluid channel, and the fluid channel is in a closed state. .
  • the fire protection device further includes a second positioning member and a second sealing member;
  • the second positioning member is disposed in the fluid channel and connected to the housing, the first positioning member is close to the first opening, and the second positioning member is close to the second opening;
  • the second sealing member is sleeved on the second positioning member, and the second sealing member has oxidation resistance
  • the first seal and the second seal respectively fit with the inner wall of the fluid channel, and the fluid channel is in an open state;
  • the first sealing member and the second sealing member increase in volume and are respectively in contact with the inner wall of the fluid channel, and the fluid channel is in a closed state.
  • an embodiment of the present disclosure also discloses a ventilation treatment device, including the above-mentioned fire prevention device.
  • the fire protection device includes: a housing, a first positioning member and a first sealing member; a fluid channel is provided in the housing, and a first opening and a second opening are provided on opposite sides of the fluid channel.
  • the two openings are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the first positioning member is arranged in the fluid channel and connected to the housing;
  • the first sealing member is sleeved on the first positioning member, and the first sealing member has a resistance to Oxidation properties.
  • the fire protection device When a fire does not occur, the fire protection device is at the first temperature, the first sealing member is in clearance fit with the inner wall of the fluid channel, and the fluid channel is in an open state; when a fire occurs, the fire protection device is at the second temperature, and the volume of the first sealing member increases And fit with the inner wall of the fluid channel, the fluid channel In a closed state, the oxygen passage is cut off to avoid the continuous leakage of oxygen causing the fire to spread, wherein the second temperature is higher than the first temperature. Since the first seal has oxidation resistance, the problem of oxidation of the first seal is avoided, and the durability and safety factor of the device are improved.
  • the present disclosure also provides a fire prevention device and ventilation treatment equipment, aiming to solve the problem in related technologies that when the sealing valve moves within the fire prevention device, it will deflect, resulting in the sealing valve being unable to accurately engage with the opening, and the fire prevention device having poor stability. Bad question.
  • an embodiment of the present disclosure discloses a fire protection device, which includes: a housing and a valve body;
  • the fluid channel is provided with a first narrowing part and a second narrowing part, and the valve body is arranged in the fluid channel;
  • the valve body is slidingly connected to the inner wall of the fluid channel, and the outer side wall of the valve body is provided with at least one guide portion, and the guide portion is slidably matched with the inner wall of the fluid channel;
  • the valve body has a first position and a second position relative to the fluid passage
  • valve body When the valve body is in the first position, the valve body is in clearance fit with the first narrowing part and the second narrowing part respectively, and the fluid channel is in an open state;
  • valve body When the valve body is in the second position, the valve body is engaged with the first narrowing part and/or the second narrowing part, and the fluid channel is in a closed state.
  • the fire protection device further includes: a first fusible component and a first elastic component;
  • the valve body includes opposing first and second ends, the first end being adjacent to the first narrowing portion, and the second end being adjacent to the second narrowing portion;
  • the housing is provided with a fixing portion close to the first narrowing portion
  • the first end of the valve body is provided with a first groove body, and the first elastic member is at least partially located in the first groove body;
  • One end of the first elastic member is in contact with the bottom of the first tank body, and the other end of the first elastic member is in contact with the end surface of the fixing part;
  • the first fusible component is disposed at the first end of the valve body and is engaged with the fixed portion to support the valve body in the first position;
  • the first fusible component melts, the first elastic member drives the valve body to slide to the second position, the second end of the valve body engages with the second narrowing portion, and the fluid channel is closed.
  • a first installation shaft is provided in the first tank body, and the first installation shaft is coaxially arranged with the first tank body;
  • the first elastic member is sleeved on the first installation shaft, and the first fusible component is connected to the first installation shaft.
  • the second end of the valve body is provided with a first seal, and the first seal at least partially wraps the second end;
  • the fire protection device further includes: a second fusible component and a second elastic component;
  • the valve body includes opposing first and second ends, the first end being adjacent to the first narrowing portion, and the second end being adjacent to the second narrowing portion;
  • the second end of the valve body is provided with a second groove body, and the second elastic member is at least partially located in the second groove body;
  • One end of the second elastic member is in contact with the bottom of the second tank body, and the other end of the second elastic member is in contact with the housing;
  • the second fusible component is disposed on the first narrowing portion and is engaged with the first narrowing portion, and the second fusible component is provided with a through hole for passing fluid;
  • the first end of the valve body abuts the second fusible member to support the valve body in the first position
  • the second fusible component melts, the second elastic member drives the valve body to slide to the second position, the first end of the valve body engages the first narrowing portion, and the fluid channel is closed.
  • a second installation shaft is provided in the second tank body, and the second installation shaft is coaxially arranged with the second tank body;
  • the second elastic member is sleeved on the second mounting shaft.
  • the first end of the valve body is provided with a second seal, and the second seal at least partially wraps the first end;
  • the second sealing member When the valve body is in the second position, the second sealing member is engaged with the first narrowing portion, and the fluid channel is in a closed state.
  • the first narrowing portion is provided with a first positioning structure
  • the second fusible member is provided with There is a second positioning structure, and the first positioning structure and the second positioning structure are positioned and matched.
  • the first narrowing portion is provided with a first positioning structure
  • the second sealing member is provided with a third positioning structure
  • the first positioning structure and the third positioning structure are positionally matched.
  • the outer side wall of the valve body is provided with at least one positioning rib
  • the inner wall of the fluid channel is provided with at least one positioning groove, and the positioning rib is slidably matched with the positioning groove.
  • an embodiment of the present disclosure also discloses a ventilation treatment device, including the above-mentioned fire prevention device.
  • the fire protection device includes: a shell and a valve body; a fluid channel is provided in the shell, the fluid channel is provided with a first narrowing part and a second narrowing part, and the valve body is disposed in the fluid channel; the valve body and the fluid The inner wall of the channel is slidingly connected, and the outer wall of the valve body is provided with at least one guide part, which slides with the inner wall of the fluid channel; the valve body has a first position and a second position relative to the fluid channel; when the valve body is in the first position When the valve body is in the second position, the valve body is in clearance fit with the first narrowing part and/or the second narrowing part, and the fluid channel is in an open state.
  • the fluid channel is closed, thereby cutting off the oxygen path and preventing oxygen from continuously leaking out and causing the fire to spread.
  • the guide part can play a limiting role when the valve body slides relative to the fluid channel, avoiding the problems of deflection and jamming of the valve body, and ensuring that the valve body can be connected with the first The narrowing part and/or the second narrowing part are accurately joined, which improves the stability of the fire protection device.
  • the present disclosure also provides a fire prevention device and ventilation treatment equipment, aiming to solve the problem in related technologies that the support member melts slowly, causing the sealing valve to be unable to move to the opening in time, and the air path cannot be quickly blocked, which easily causes the spread of fire. .
  • a fire protection device including: a shell, a base, a valve body, an elastic member and a fusible ferrule;
  • the housing has a fluid channel, and the fluid channel is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the base is positioned in the fluid channel, the valve body is connected to the base, and the elastic member is provided between the base and the valve body;
  • a sealing portion is provided at one end of the valve body away from the base, and at least one narrowing portion is provided in the fluid channel, and the sealing portion is opposite to the narrowing portion;
  • the fusible ferrule is nested in the whole body composed of the base, the elastic member and at least part of the valve body to compress the elastic member so that the There is a gap for fluid to pass between the sealing part and the narrowing part;
  • the elastic member releases at least part of its elastic potential energy and pushes against the valve body, causing the sealing portion to engage with the narrowing portion to block the fluid channel.
  • valve body further includes a bearing portion connected to the base, and the sealing portion is provided at an end of the bearing portion away from the base;
  • a protruding first support structure is provided on the peripheral side of the load-bearing part.
  • the elastic member is sleeved on the load-bearing part. One end of the elastic member is in contact with the base, and the other end of the elastic member is in contact with the base.
  • the first support structure is in contact.
  • the bearing portion is provided with a hollow structure along its length direction, and the hollow structure is used for fluid to pass through.
  • valve body further includes a connecting portion, the connecting portion is provided between the bearing portion and the sealing portion, and is connected to the bearing portion and the sealing portion respectively;
  • the connecting part is provided with a snap-in structure, and the snap-in structure is used to snap and position the fusible ferrule.
  • the peripheral side of the sealing portion extends to form a convex guide portion, and the guide portion is slidably matched with the inner wall of the fluid channel.
  • the base is provided with a ventilation hole
  • the edge of the base is provided with at least one first positioning groove, and the first positioning groove is used to snap and position the fusible ferrule.
  • valve body includes a first valve body and a second valve body, the first valve body and the second valve body are respectively located on both sides of the base and are respectively connected to the base;
  • the elastic member includes a first elastic member and a second elastic member.
  • the first elastic member is disposed between the base and the first valve body.
  • the second elastic member is disposed between the base and the first valve body. between the second valve body;
  • a first narrowing part and a second narrowing part are provided in the fluid channel.
  • An end of the first valve body away from the base is provided with a first sealing part.
  • the first sealing part is connected with the first narrowing part.
  • the narrow parts are arranged oppositely, and an end of the second valve body away from the base is provided with a second sealing part, and the second sealing part is arranged oppositely to the second narrowing part;
  • the fusible ferrule is nested in the base, the first elastic member, the second elastic member, and the third elastic member.
  • a valve body and the second valve body are integrally formed to compress the first elastic member and the second elastic member so that the first sealing part and the first narrowing part and the There is a gap for fluid to pass between the second sealing part and the second narrowing part;
  • the first elastic member releases at least part of the elastic potential energy and pushes against the first valve body, so that the first sealing part and the first narrowing part are engaged,
  • the second elastic member releases at least part of its elastic potential energy and pushes against the second valve body, causing the second sealing portion to engage with the second narrowing portion to block the fluid channel.
  • the first valve body includes a first mounting sleeve
  • the second valve body includes a second mounting sleeve
  • the first sealing portion is provided on the first mounting sleeve away from the base.
  • the second sealing portion is provided at an end of the second installation sleeve away from the base;
  • the base is provided with a protruding first positioning portion toward the first valve body, and the base is provided with a protruding second positioning portion toward the second valve body;
  • the first positioning portion is at least partially embedded in the first mounting sleeve, and the second positioning portion is at least partially embedded in the second mounting sleeve;
  • a raised second support structure is provided on the peripheral side of the first mounting sleeve, the first elastic member is sleeved on the outer wall of the first mounting sleeve, and one end of the first elastic member is connected to the outer wall of the first mounting sleeve.
  • the base is in contact, and the other end of the first elastic member is in contact with the second support structure;
  • a raised third support structure is provided on the peripheral side of the second mounting sleeve, the second elastic member is sleeved on the outer wall of the second mounting sleeve, and one end of the second elastic member is connected to the outer wall of the second mounting sleeve.
  • the base is in contact, and the other end of the second elastic member is in contact with the third support structure.
  • a raised flange is provided on the peripheral side of the base, and two opposite end surfaces of the flange respectively extend toward the first valve body and the second valve body to form a first limiting portion and a first limiting portion. the second limiting part;
  • the second support structure extends toward the base to form a third limiting portion, and the third support structure extends toward the base to form a fourth limiting portion;
  • a first limiting space is formed between the first limiting part, the third limiting part and the outer wall of the first mounting sleeve, and the first elastic member is embedded in the first limiting space. within space;
  • a second limiting space is formed between the second limiting part, the fourth limiting part and the outer wall of the second mounting sleeve, and the second elastic member is embedded in the second limiting space. within the space.
  • the first sealing part is provided with a second positioning groove
  • the second sealing part is provided with a third positioning groove
  • the second positioning groove and the third positioning groove are used for snap positioning.
  • an embodiment of the present disclosure also discloses a ventilation treatment device, including the above-mentioned fire prevention device.
  • the base, the valve body, the elastic member and the fusible ferrule together constitute the valve body triggering system.
  • the fusible ferrule does not melt, under the constraints of the fusible ferrule, the elastic member is in In the compressed state, there is a gap for fluid to pass between the sealing part of the valve body and the narrowing part of the fluid channel, and oxygen can pass normally; after the fusible ferrule melts, the elastic member releases at least part of its elastic potential energy and pushes against the valve body , so that the sealing part and the narrowing part are engaged, thereby blocking the fluid channel.
  • the fusible ferrule itself is prone to fusing when heated, the fusing speed is further accelerated by the elastic force of the elastic member, thereby increasing the triggering speed of the valve body and reducing the risk of fire spreading due to untimely triggering. Improved the safety factor of fire protection devices.
  • the present disclosure also provides a fire prevention device and ventilation treatment equipment, aiming to solve the problem in related technologies that the support member melts slowly, causing the sealing valve to be unable to move to the opening in time, and the air path cannot be quickly blocked, which easily causes the spread of fire. .
  • an embodiment of the present disclosure discloses a fire prevention device, including: a housing, an inner housing, a valve body and an elastic member;
  • the housing has a fluid channel, and the fluid channel is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the inner shell is disposed in the fluid channel and is sealingly connected to the inner wall of the fluid channel, and the inner shell is provided with a through hole for fluid to pass;
  • the valve body is slidingly connected to the inner wall of the fluid channel, and has a first position and a second position relative to the fluid channel;
  • valve body When in the second position, the valve body is in contact with the peripheral side of the through hole, so that the fluid channel is in a blocked state;
  • the elastic member is disposed between the valve body and the inner wall of the fluid channel;
  • the inner walls at both ends of the fluid channel are respectively provided with at least one raised support portion.
  • One end of the valve body is opposite to the through hole, and the other end of the valve body is engaged with the support portion to support The valve body is in the first position, and the elastic member is in a compressed state;
  • the elastic member releases at least part of the elastic potential energy to drive the valve body to switch from the first position to the second position.
  • the support portion is provided on an inner wall of the fluid channel close to the opening.
  • valve body includes a clamping member and a sealing member, the clamping member and the sealing member are of separate structure, and the clamping member and the sealing member are respectively connected with the inner wall of the fluid channel. sliding connection;
  • the elastic member is disposed between the clamping member and the inner wall of the fluid channel;
  • One end of the clamping member is used to clamp with the support part, and the other end of the clamping member is used to push against the sealing member, so that the sealing member is in contact with the peripheral side of the through hole. ;
  • a protruding first guide portion is provided at one end of the clamping member close to the sealing member, and the first guide portion is slidably matched with the inner wall of the fluid channel;
  • the elastic member is sleeved on the clamping member, one end of the elastic member is in contact with the inner wall of the fluid channel, and the other end of the elastic member is in contact with the first guide part;
  • the elastic member When the clamping member is clamped with the support part, the elastic member is compressed by the inner wall of the fluid channel and the first guide part.
  • the fluid channel includes a main body and openings provided at both ends of the main body, wherein the inner diameter of the opening is smaller than the inner diameter of the main body;
  • connection between the main body and the opening narrows to form a shoulder
  • the support part is provided on the inner wall of the opening part
  • One end of the elastic member is in contact with the shoulder, and the other end of the elastic member is in contact with the first guide portion.
  • the latch is provided with a protruding second guide portion, and the second guide portion is slidably matched with the inner wall of the opening.
  • the sealing member has an end face on one side facing the clamping member, and a peripheral side of the end face extends toward the clamping member to form a third guide portion, and the third guide portion is in contact with the fluid channel.
  • the inner wall slides into place.
  • the third guide part and the end surface enclose a limiting groove
  • the latch extends toward one end of the seal to form a limiting portion, and the limiting portion is at least partially embedded in the limiting groove.
  • the outer side wall of the seal extends to form a raised fourth guide portion, and the fourth guide portion is slidably engaged with the inner wall of the fluid channel.
  • one end of the clamping member is provided with a groove toward the sealing member, and one end of the sealing member is provided with a boss toward the clamping member, and the boss is at least partially embedded in the recess. groove.
  • a sealing structure is provided in the assembly gap between the housing and the inner housing.
  • the number of the supporting parts is two or more, and the supporting parts are arranged at intervals along the circumference of the inner wall of the opening.
  • a fusible part is provided at one end of the valve body close to the support part;
  • valve body When the support part and the fusible part are in a non-melted state, the valve body is engaged with the support part to support the valve body in the first position;
  • the elastic member releases at least part of the elastic potential energy to drive the valve body to the second position.
  • valve body includes a first valve body and a second valve body
  • the first valve body and the second valve body are symmetrically arranged on both sides of the through hole;
  • the body passage is in a blocked state.
  • an elastic support member is provided between the first valve body and the second valve body, and the elastic support member passes through the through hole;
  • Both ends of the elastic support member are in contact with the first valve body and the second valve body respectively;
  • the elastic force of the elastic support member is smaller than the elastic force of the elastic member.
  • the first valve body is provided with a first installation groove at one end toward the second valve body
  • the second valve body is provided with a second installation groove at one end toward the first valve body
  • the The first mounting slot is arranged opposite to the second mounting slot
  • the elastic support member is at least partially embedded in the first installation groove and the second installation groove.
  • an embodiment of the present disclosure discloses a fire prevention device, including: a housing and a valve body;
  • the housing has a fluid channel, and the fluid channel is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the valve body is disposed in the fluid channel, and the valve body has a first position and a second position relative to the fluid channel;
  • valve body When in the second position, the valve body blocks the fluid channel
  • the inner walls at both ends of the fluid channel are respectively provided with at least one raised fusible support portion
  • the valve body When the fusible support part is in a non-melted state, the valve body is engaged with the fusible support part to support the valve body in the first position;
  • the valve body switches from the first position to the second position.
  • the fire protection device further includes: an elastic member;
  • the elastic member is disposed between the valve body and the inner wall of the fluid channel;
  • the elastic member is used to provide elastic driving force when the valve body switches from the first position to the second position.
  • valve body includes a clamping member and a sealing member, the clamping member and the sealing member are of separate structure, and the clamping member and the sealing member are respectively connected with the inner wall of the fluid channel. sliding connection;
  • the elastic member is disposed between the clamping member and the inner wall of the fluid channel;
  • One end of the clamping member is used to clamp with the fusible support part, and the other end of the clamping member is used to push against the sealing member;
  • a protruding first guide portion is provided at one end of the clamping member close to the sealing member, and the first guide portion is slidably matched with the inner wall of the fluid channel;
  • the elastic member is sleeved on the clamping member, one end of the elastic member is in contact with the inner wall of the fluid channel, and the other end of the elastic member is in contact with the first guide part;
  • the elastic member When the clamping member is clamped with the fusible support part, the elastic member is compressed by the inner wall of the fluid channel and the first guide part.
  • the fluid channel includes a main body and openings provided at both ends of the main body, wherein the inner diameter of the opening is smaller than the inner diameter of the main body;
  • connection between the main body and the opening narrows to form a shoulder
  • the fusible support part is provided on the inner wall of the opening;
  • One end of the elastic member is in contact with the shoulder, and the other end of the elastic member is in contact with the first guide portion.
  • the latch is provided with a protruding second guide portion, and the second guide portion is slidably matched with the inner wall of the opening.
  • the sealing member has an end face on one side facing the clamping member, and a peripheral side of the end face extends toward the clamping member to form a third guide portion, and the third guide portion is in contact with the fluid channel.
  • the inner wall slides into place.
  • the third guide part and the end surface enclose a limiting groove
  • the latch extends toward one end of the seal to form a limiting portion, and the limiting portion is at least partially embedded in the limiting groove.
  • the outer side wall of the sealing member extends to form a raised fourth guide portion, and the fourth guide portion is slidably engaged with the inner wall of the fluid channel.
  • one end of the clamping member is provided with a groove toward the sealing member, and one end of the sealing member is provided with a boss toward the clamping member, and the boss is at least partially embedded in the recess. groove.
  • a fire prevention device including: a housing and a valve body;
  • the housing has a fluid channel, and the fluid channel is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the valve body is disposed in the fluid channel, and the valve body has a first position and a second position relative to the fluid channel;
  • valve body When in the second position, the valve body blocks the fluid channel
  • the inner walls at both ends of the fluid channel are respectively provided with at least one raised support portion
  • a fusible part is provided at one end of the valve body close to the support part
  • the valve body When the fusible part is in a non-melted state, the valve body is engaged with the supporting part to support the valve body in the first position;
  • the valve body switches from the first position to the second position.
  • the outer diameter of the fusible portion is smaller than the outer diameter of other positions of the valve body.
  • the fire protection device further includes: an elastic member;
  • the elastic member is disposed between the valve body and the inner wall of the fluid channel;
  • the elastic member is used to provide elastic driving force when the valve body switches from the first position to the second position.
  • valve body includes a clamping member and a sealing member, the clamping member and the sealing member are of separate structure, and the clamping member and the sealing member are respectively connected with the inner wall of the fluid channel. sliding connection;
  • the fusible part is provided at one end of the clamping member close to the support part, and the elastic member is provided between the clamping member and the inner wall of the fluid channel;
  • One end of the clamping member is used to clamp with the support part, and the other end of the clamping member is used to push against the sealing member;
  • a protruding first guide portion is provided at one end of the clamping member close to the sealing member, and the first guide portion is slidably matched with the inner wall of the fluid channel;
  • the elastic member is sleeved on the clamping member, one end of the elastic member is in contact with the inner wall of the fluid channel, and the other end of the elastic member is in contact with the first guide part;
  • the elastic member When the clamping member is clamped with the support part, the elastic member is compressed by the inner wall of the fluid channel and the first guide part.
  • the fluid channel includes a main body and openings provided at both ends of the main body, wherein the inner diameter of the opening is smaller than the inner diameter of the main body;
  • connection between the main body and the opening narrows to form a shoulder
  • the support part is provided on the inner wall of the opening part
  • One end of the elastic member is in contact with the shoulder, and the other end of the elastic member is in contact with the first guide portion.
  • the latch is provided with a protruding second guide portion, and the second guide portion is slidably matched with the inner wall of the opening.
  • the sealing member has an end face on one side facing the clamping member, and a peripheral side of the end face extends toward the clamping member to form a third guide portion, and the third guide portion is in contact with the fluid channel.
  • the inner wall slides into place.
  • the third guide part and the end surface enclose a limiting groove
  • the latch extends toward one end of the seal to form a limiting portion, and the limiting portion is at least partially embedded in the limiting groove.
  • the outer side wall of the seal extends to form a raised fourth guide portion, and the fourth guide portion The upward part is slidably engaged with the inner wall of the fluid channel.
  • one end of the clamping member is provided with a groove toward the sealing member, and one end of the sealing member is provided with a boss toward the clamping member, and the boss is at least partially embedded in the recess. groove.
  • an embodiment of the present disclosure also discloses a ventilation treatment device, including the above-mentioned fire prevention device.
  • the inner wall of the fluid channel is provided with a support part
  • the valve body is engaged with the fusible support part, so that the valve body is in the first position, and there is a gap for fluid to pass between the valve body and the through hole of the inner shell.
  • the elastic member is in a compressed state; after at least one of the support part and the valve body is melted, the elastic member releases at least part of the elastic potential energy, driving the valve body to contact the peripheral side of the through hole, so that the fluid channel is in a blocked state.
  • the trigger system composed of a support part, an elastic member and a valve body can cause the valve body to move to the second position in time and contact the peripheral side of the through hole when any one of the valve body and the support part melts. Blocking the air path increases the triggering speed of the valve body, reduces the risk of fire spreading due to untimely triggering, and thereby improves the safety factor of the fire protection device.
  • the present disclosure also provides a fire prevention device and ventilation treatment equipment, aiming to solve the problem in related technologies that the support member melts slowly, causing the sealing valve to be unable to move to the opening in time, and the air path cannot be quickly blocked, which easily causes the spread of fire. .
  • an embodiment of the present disclosure discloses a fire prevention device, which includes: a housing, a seal, a valve body and an elastic member;
  • the fluid channel is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the sealing member is connected to the inner wall of the fluid channel, the sealing member is provided with a gap, and the gap is used to pass fluid;
  • valve body is slidingly connected to the inner wall of the fluid channel, and the elastic member is disposed between the valve body and the inner wall of the fluid channel;
  • the valve body is provided with a fusible portion, the inner wall of the fluid channel is provided with at least one protruding fusible support portion, one end of the valve body is arranged opposite to the notch, and the other end of the valve body is provided with To snap into place with the fusible support part;
  • the valve body has a first position and a second position relative to the fluid passage
  • the valve body When the fusible support part and the fusible part are in a non-melted state, the valve body is engaged with the fusible support part to support the valve body in the first position, and The valve body is sealed with the There is a gap for fluid to pass between the seals, and the elastic member is in a compressed state;
  • the elastic member releases at least part of the elastic potential energy to drive the valve body to the second position, and the valve body is in contact with the The notch of the sealing member is engaged so that the fluid channel is in a blocked state.
  • valve body has an integrated structure.
  • the notch has opposing first and second sides
  • the valve body is provided on at least one side of the notch, and when at least one side of the notch is engaged with the valve body, the fluid channel is in a blocked state.
  • valve body includes a clamping part, a connecting part and a sealing part, and the clamping part and the sealing part are connected through the connecting part;
  • the clamping part is used to clamp with the fusible support part to support the valve body in the first position
  • the sealing portion is arranged opposite to the notch and is used to engage with the notch when the valve body is in the second position;
  • the fusible part is provided at the connecting part.
  • the elastic member is sleeved on the connecting part, one end of the elastic member is in contact with the inner wall of the fluid channel, and the other end of the elastic member is in contact with the sealing part;
  • the elastic member When the engaging portion is engaged with the fusible support portion, the elastic member is compressed by the inner wall of the fluid channel and the sealing portion;
  • the elastic member releases at least part of the elastic potential energy, driving the sealing part to engage with the gap, so that the fluid channel is in a molten state. blocking state.
  • the fluid channel includes a main body and openings provided at both ends of the main body, wherein the inner diameter of the opening is smaller than the inner diameter of the main body;
  • connection between the main body and the opening narrows to form a shoulder
  • the fusible support part is provided on the inner wall of the opening, and the sealing member is connected to the inner wall of the main body;
  • One end of the elastic member is in contact with the shoulder portion, and the other end of the elastic member is in contact with the sealing portion.
  • the sealing part is provided with a raised first guide part, and the first guide part is in sliding fit with the inner wall of the main body;
  • One end of the elastic member is in contact with the shoulder, and the other end of the elastic member is in contact with the first guide portion.
  • the connecting part is provided with a raised second guide part, and the second guide part is slidably matched with the inner wall of the opening part.
  • the number of the fusible support parts is two or more, and the fusible support parts are arranged at intervals along the circumference of the inner wall of the opening.
  • the housing includes a first housing and a second housing
  • the first housing and/or the second housing are provided with mounting slots;
  • the sealing member When the first housing and the second housing are assembled, the sealing member has an interference fit with the installation slot.
  • the installation slot is provided with an expansion portion
  • the edge of the seal extends to form an embedded portion, and the embedded portion is at least partially embedded in the expanded portion.
  • the fire protection device includes two valve bodies symmetrically arranged in the fluid channel;
  • the two valve bodies are located on both sides of the seal;
  • the elastic member is disposed between each valve body and the inner wall of the fluid channel;
  • the fusible support parts are respectively provided in the openings at both ends of the main body.
  • an embodiment of the present disclosure also discloses a ventilation treatment device, including the above-mentioned fire prevention device.
  • the valve body is provided with a fusible part
  • the inner wall of the fluid channel is provided with a fusible support part.
  • the valve body and the fusible support part are The valve body is clamped to support the valve body in the first position, there is a gap for fluid to pass between the valve body and the sealing member, and the elastic member is in a compressed state; when the fusible support part and/or the fusible part is in a molten state, The elastic member releases at least part of the elastic potential energy to drive the valve body to the second position, and the valve body engages with the notch of the sealing member so that the fluid channel is in a blocked state.
  • the valve body By utilizing the combination of the fusible part and the fusible support part, when any one of the fusible part and the fusible support part melts, the valve body can be moved to the second position in time and engaged with the gap of the seal. This further blocks the air path, increases the triggering speed of the valve body, reduces the risk of fire spreading due to untimely triggering, and thereby improves the safety factor of the fire protection device.
  • Embodiments of the present disclosure also provide a fire damper and ventilation equipment to block the delivery of oxygen when a fire breaks out on the user side.
  • the present disclosure provides a fire damper for use in ventilation equipment, including a housing and a seal; the housing is provided with a penetrating air flow channel, and the air flow channel is provided with a third air flow channel that separates the air flow channel.
  • a partition, the first partition is provided with a first vent hole; the seal is located in the air flow channel, and has a first gap between it and the first vent hole before being heated, so that the gas Flows from one end of the airflow channel to the other end through the first vent hole and the first gap;
  • the sealing member includes a heat shrinkable material layer, so that the sealing member shrinks after being heated and blocks the first A vent.
  • the first vent hole faces the sealing member, and the projection of the sealing member completely covers the first vent hole, so that the sealing member shrinks and fits after being heated. on the first partition and covering the first vent hole.
  • the first partition includes a first vent tube, and the first vent hole is provided on a side wall of the first vent tube; the sealing member is tubular and is sleeved on the first vent tube. The outside of the trachea.
  • the first vent pipe divides the airflow channel into a first channel and a second channel
  • the sealing member is located in the second channel
  • the outer wall of the sealing member is in contact with the second channel.
  • the sealing member is in a tubular shape, and one end of the sealing member is connected to the periphery of the first vent hole; the other end of the sealing member is in an open state before being heated, and is in a closed state after shrinking by heat.
  • the seal further includes a hot melt layer located inside the heat shrinkable material layer.
  • the wall thickness of the end of the hot melt layer away from the first vent hole is greater than the wall thickness of the end close to the first vent hole.
  • the hot melt layer is provided with a plurality of protrusions facing the inside of the seal.
  • a second partition is also provided in the air flow channel, and a second ventilation hole is provided on the second partition.
  • the first partition and the second partition are arranged along the axis of the air flow channel.
  • the sealing member is arranged to be spaced apart, and the sealing member seals the second vent hole after being heated and shrinking.
  • the present disclosure provides a ventilation device, including the fire damper.
  • a first partition is provided in the housing.
  • the first partition separates the air flow channel in the housing into two parts that are connected through the first vent hole.
  • a first gap is provided between the sealing member and the first vent hole before being heated, thereby allowing normal communication between the two parts of the air flow channel.
  • the sealing member includes a layer of heat shrinkable material, so that the sealing member can block the first vent hole after being heated, so that the air flow channel can be There is no connection between the two parts, thus cutting off the oxygen transport channel.
  • the fire damper provided by the present disclosure includes a shell and a seal, has a smaller number of parts, and has a simple structure.
  • the present disclosure provides an automatic fire protection device used in oxygen therapy equipment, which can avoid failure when in contact with oxygen for a long time, thereby increasing the service life of the automatic fire protection device.
  • the present disclosure provides an automatic fire prevention device applied to oxygen therapy equipment, including:
  • the sealing member when the sealing member is in the first state, there is a gap between the sealing part and the gas outlet end of the gas channel, so that the gas channel is opened; when the sealing member is in the second state, the sealing part Fitted with the gas outlet end of the gas channel, so that the gas channel is closed.
  • the seal further includes a first connecting piece and a second connecting piece respectively provided on the sealing part, and the first connecting piece and the second connecting piece are respectively fixed on the gas
  • the first connecting member and the second connecting member are both fixed in the housing and in a stretched state, so that the sealing part A gap is formed away from the gas channel and the outlet end of the gas channel;
  • the first connecting member is fixed in the housing and is in a stretched state, and the The second connecting piece is disconnected and in a natural state, so that the sealing portion is close to the gas channel and fits the air outlet end of the gas channel.
  • the second connecting piece is fixed in the housing through a fixing structure, and the fixing structure is configured to be fused after being heated beyond a preset temperature, so that the second connecting piece is formed by the The stretched state is transformed into the natural state.
  • the housing is further provided with a mounting arm for mounting the seal, and the first connecting piece and the second connecting piece are respectively fixedly connected to both ends of the mounting arm;
  • the second connecting piece is connected to the mounting arm through the fixing structure to be fixed in the housing.
  • the fixing structure can be fused after being heated beyond the preset temperature, so that the second The connecting piece is disconnected from the mounting arm, and the second connecting piece is transformed from the stretched state to the natural state.
  • the first connecting piece is disposed on a side wall of the sealing part, and the second connecting piece is disposed on an end side of the sealing part, wherein the first connecting piece and When the second connecting members are in their natural state, the extension direction of the first connecting member is consistent with the extension direction of the second connecting member.
  • the extension direction is vertical:
  • first connecting piece and the second connecting piece are respectively provided on corresponding sides of the sealing part, and the first connecting piece is located on a side of the sealing part away from the second connecting piece. Side: wherein, when the first connecting piece and the second connecting piece are both in a natural state, the first connecting piece and the second connecting piece respectively extend in opposite directions.
  • the mounting arm includes:
  • a transfer block a receiving hole is provided in the transfer block, and the gas channel is provided penetratingly in the receiving hole; a mounting column, the mounting column is provided on the side wall of the transfer block, the The mounting post is used to connect with the first connecting piece; and
  • a connecting plate extending along the axial direction of the receiving hole.
  • a triggering post is provided on the side of the connecting plate away from the adapter block. The triggering post is used to connect to the second connecting piece.
  • the first connecting piece is connected to the mounting post, and when the second connecting piece is connected to the triggering post, the sealing member is in the first state in the housing; the first connecting piece is connected to the mounting post.
  • the sealing member is in the second state in the housing.
  • the fixed structure includes a connecting ring located at the end of the second connecting piece and the triggering post, and the connecting ring can cooperate with the triggering post:
  • connecting ring and/or the triggering post can be fused after being heated beyond the preset temperature.
  • the mounting post includes:
  • a connecting post extending along the radial direction of the accommodation hole on the side wall of the adapter block
  • a stopper truncated cone which is disposed on the connecting column; and a fixing column, which is disposed on the end of the stopper circus cone and is used to connect with the inner wall of the housing, thereby connecting the The mounting arm is fixed in the housing.
  • the first connecting member is provided with a first connecting hole extending through its thickness direction, and the inner diameter of the first connecting hole is smaller than the maximum outer diameter of the stopper truncated cone.
  • the mounting posts are symmetrically arranged on the side walls of the adapter block, and the number and distribution of the first connectors are the same as the number and distribution of the mounting posts, so The number of both the first connecting piece and the mounting post is at least two.
  • connection plate includes:
  • a recessed portion one end of which is connected to the side wall of the adapter block, and the recessed portion is used to receive the sealing portion;
  • An extension plate is connected to the other end of the recessed portion, the extension plate extends along the axial direction of the receiving hole, and the triggering post is disposed on a side of the extension plate away from the recessed portion.
  • the housing includes a first housing and a second housing. After the first housing and the second housing are connected, a sealed chamber is formed inside the first housing and the second housing, and the gas channel passes from the first housing to the second housing.
  • the inner wall of the chamber extends on one side:
  • a first nozzle is provided on one side of the first housing, and a second nozzle is provided on the side of the second housing opposite to the first housing:
  • the sealing member when the sealing member is in the first state, the first nozzle, the gas channel, the chamber and the second nozzle are in fluid communication; when the sealing member is in the second state, the first nozzle, the gas channel, the chamber and the second nozzle are in fluid communication; Fluid entering the gas channel through a nozzle is isolated from the chamber outside the gas channel.
  • a connecting groove is provided on the inner wall of the chamber, and the connecting groove is used to connect with the fixed column.
  • the trigger post is disposed in the chamber or in the second nozzle.
  • the outer walls of the first nozzle and the second nozzle are both provided with anti-separation parts.
  • first housing and the second housing are connected by sealing buckle, welding or threaded connection.
  • the seal is made of elastic non-metallic material, even if it is in contact with oxygen for a long time, it will not undergo chemical reactions such as oxidation, thereby increasing the service life of the automatic fire protection device used in oxygen therapy equipment, and Avoid affecting the health of users.
  • the purpose of this disclosure is to provide a fire prevention device and ventilation treatment equipment that can solve the problem of using an oxygen therapy device in related technologies. If a flame appears, the flame will gradually burn towards the fuselage along with the oxygen tube, easily causing the fire to spread. Eventually, a serious fire broke out in the oxygen concentrator.
  • the present disclosure provides a fire protection device, including: a housing, a first valve body, a second
  • the valve body and the elastic member have a fluid channel inside the housing, and one end of the housing has a first opening, and the second end of the housing has a second opening, and the first opening and the The second openings are all connected to the fluid channel, and the first opening and the second opening are used to communicate with the pipeline of the oxygen therapy device or the pipeline of the oxygen supply end;
  • the first valve body and the second valve body are both located in the fluid channel, and the first valve body and the second valve body are arranged along the first opening to the second opening.
  • a first limiting rib is fixed on the hole wall of the first opening
  • a second limiting rib is fixed on the hole wall of the second opening
  • the first end of the first valve body The first end of the second valve body is in contact with the first limiting rib
  • the first end of the second valve body is in contact with the second limiting rib.
  • the elastic member is located between the first valve body and the second valve body.
  • the elastic member When the first limiting rib is in a molten state, the elastic member is elongated, the first valve body is in the first position, and the first valve body is sealingly connected to the channel wall of the fluid channel, to block the fluid channel; when the second limiting rib is in a molten state, the elastic member is extended, the second valve body is in the second position, and the second valve body is in contact with the The channel walls of the fluid channel are sealingly connected to block the fluid channel.
  • the first valve body includes a first mounting rod and a first mounting seat.
  • the axial direction of the first mounting rod is consistent with the expansion and contraction direction of the elastic member.
  • One end of the first mounting rod is in contact with the first mounting seat.
  • the first mounting seat is connected, the other end of the first mounting rod is in contact with the first limiting rib, and one end of the elastic member is in contact with the first mounting seat;
  • the second valve body includes a second mounting rod and a second mounting seat.
  • the axis direction of the second mounting rod is consistent with the expansion and contraction direction of the elastic member.
  • One end of the second mounting rod is in contact with the second mounting seat.
  • the other end of the second mounting rod is in contact with the second limiting rib, and the other end of the elastic member is in contact with the second installation seat;
  • the channel wall of the fluid channel of the first mounting seat is sealed and connected;
  • the channel walls of the fluid channel of the second mounting seat are sealed and connected.
  • an end of the first mounting base away from the first mounting rod is provided with a first mounting cavity
  • a second installation cavity is provided at one end of the second installation seat away from the second installation rod.
  • the first installation cavity is opposite to the second installation cavity.
  • One end of the elastic member is connected to the first installation cavity.
  • the bottom of the installation cavity is in contact with the bottom of the second installation cavity, and the other end of the elastic member is in contact with the bottom of the second installation cavity.
  • the bottom of the first installation cavity is connected to a first guide rod
  • the bottom of the second installation cavity is connected to a second guide rod
  • the elastic member is sleeved on the first Guide rod and/or the second guide rod, the first guide rod and the second guide rod are used to guide the expansion and contraction of the elastic member.
  • a first positioning portion is provided around the first mounting seat, and a first positioning groove is provided on the inner wall of the fluid channel.
  • the extension direction of the first positioning groove is consistent with the expansion and contraction direction of the elastic member. Consistently, the first positioning portion is embedded in the first positioning groove, and the first positioning groove is used to position the first mounting base when the first limiting rib is in a molten state. limit the movement direction;
  • a second positioning portion is provided around the second mounting seat, a second positioning groove is provided on the inner wall of the fluid channel, and the extension direction of the second positioning groove is consistent with the expansion and contraction direction of the elastic member. Consistently, the second positioning portion is embedded in the second positioning groove, and the second positioning groove is used to position the second mounting base when the second limiting rib is in a molten state. limit the movement direction.
  • a first mounting groove is provided on the inner wall of the fluid channel, the first mounting groove extends along the circumferential direction of the fluid channel and surrounds the fluid channel, and a first mounting groove is provided in the first mounting groove.
  • There is a first sealing member and a part of the first sealing member extends out of the first installation groove, the first sealing member is opposite to the first valve body, and the first sealing member is used in the When the first limiting rib is in a molten state, it abuts against the first valve body, so that the first valve body is sealingly connected to the channel wall of the fluid channel;
  • a second mounting groove is provided on the inner wall of the fluid channel, the second mounting groove extends along the circumferential direction of the fluid channel and surrounds the fluid channel, and a second mounting groove is provided in the second mounting groove.
  • the channel wall of the fluid channel has a first groove along the circumferential direction of the fluid channel.
  • a blocking platform and a second blocking platform and the first blocking platform and the second blocking platform are spaced apart along the direction from the first opening to the second opening;
  • the first valve body and the The second valve body is located between the first blocking platform and the second blocking platform.
  • the projection of the first blocking platform is in line with the projection of the first blocking platform.
  • the projection of the first valve body has an overlapping portion, and the projection of the second blocking platform and the projection of the second valve body have an overlapping portion;
  • the first blocking platform has a first surface facing the first valve body in the direction from the first opening to the second opening, and the first mounting groove is provided on the first surface, so The first mounting groove extends along the circumferential direction of the fluid channel, and in the direction from the first opening to the second opening, the projection of the first mounting groove is located at the first valve inside the body’s projection;
  • the second blocking platform has a second surface facing the second valve body in the direction from the first opening to the second opening, and the second mounting groove is provided on the second On the surface, the second mounting groove extends along the circumferential direction of the fluid channel, and the projection of the second mounting groove is located at the direction from the first opening to the second opening. The projected interior of the second valve body.
  • the housing includes a first sub-housing and a second sub-housing, the first sub-housing is arranged opposite to the second sub-housing, and a third sub-housing is provided inside the first sub-housing.
  • a channel, a second channel is provided in the second sub-casing, the first sub-casing is connected to the second sub-casing, and the first channel and the second channel are connected to form the fluid channel, the first valve body is arranged in the first housing, and the second valve body is arranged in the second housing.
  • the first opening is connected to a first joint, and the first joint is connected to the fluid channel;
  • the second opening is connected with a second joint, and the second joint is connected with the fluid channel;
  • the first connector and the second connector are used to communicate with the pipeline of the oxygen therapy device or the pipeline of the oxygen supply end.
  • the present disclosure provides a ventilation treatment device, specifically including an oxygen therapy device, an oxygen supply end, and the fire prevention device described in any one of the above first aspects; the first opening is connected to the oxygen therapy device, The second opening is connected to the oxygen supply end; or the second opening is connected to the oxygen therapy device, and the first opening is connected to the oxygen supply end.
  • the fire protection device includes a shell, a first valve body, a second valve body and an elastic member.
  • the shell has a fluid channel inside, one end of the shell has a first opening, and the second end of the shell has a second opening, since the first opening and the second opening are both connected to the fluid channel, therefore, the first opening and the fluid passage
  • the channel, the second opening may form a channel for allowing gas to flow.
  • the first opening and the second opening are used to communicate with the pipeline of the oxygen therapy device or the pipeline of the oxygen supply end, so that one end of the fluid channel can be connected with the oxygen therapy device through the first opening and the second opening.
  • the pipeline is connected so that the other end of the fluid channel is connected to the pipeline at the oxygen supply end, and the oxygen therapy instrument can deliver oxygen to the patient through the oxygen supply end.
  • a first limiting rib is fixed on the hole wall of the first opening
  • a second limiting rib is fixed on the hole wall of the second opening
  • the first end of the first valve body is in contact with the first limiting rib
  • the first limiting rib is fixed on the hole wall of the second opening.
  • the second end of the second valve body is in contact with the second limiting rib
  • an elastic member is connected between the second end of the first valve body and the second end of the second valve body, so that the first valve body and the second The valve bodies are spaced apart along the direction from the first opening to the second opening.
  • the elastic member can move the first valve body and the second opening.
  • the two valve bodies exert force so that the first valve body has a tendency to move toward the first opening, and the second valve body has a tendency to move toward the second opening.
  • the first limiting rib can move toward the second opening.
  • One valve body blocks, and the second limiting rib can block the second valve body. Since there is a gap for gas to flow between the peripheral portion of the first valve body and the peripheral portion of the second valve body and the channel wall of the fluid channel, during normal use, gas can flow through the gap so that the oxygen therapy device Can be used normally.
  • the first limiting rib When the first limiting rib is in a molten state, the first limiting rib loses its blocking effect on the first valve body. At this time, the elastic member stretches, that is, the elastic member releases elastic potential energy, and the first valve body moves between the elastic member and the elastic member. It moves to the first position in the direction of the first opening under the action of elastic force, so that the first valve body is sealingly connected with the channel wall of the fluid channel, thereby blocking the fluid channel and preventing oxygen from continuing to flow in the fluid channel; at the second limit When the positioning rib is in a molten state, the second limiting rib loses its blocking effect on the second valve body.
  • the elastic member stretches, that is, the elastic member releases elastic potential energy, and the second valve body moves toward the second valve body under the elastic force of the elastic member.
  • the direction of the second opening moves to the second position so that the second valve body is sealingly connected to the channel wall of the fluid channel, thereby blocking the fluid channel and preventing oxygen from continuing to flow in the fluid channel.
  • the first limiting rib or the second limiting rib burns in a molten state.
  • the first valve body and the second valve body The elastic member provided between the bodies can push the first valve body or the second valve body to move, so that the first valve body or the second valve body is sealingly connected with the fluid channel, so that the fluid channel can be blocked.
  • the fire prevention device can prevent oxygen from continuing to flow in the fluid channel and prevent the flame from gradually burning toward the fuselage along with the oxygen pipe, which can easily cause the fire to spread and eventually ignite the oxygen concentrator and cause a serious fire.
  • Figure 1 shows a schematic diagram of the explosion structure of the first fire protection device described in the embodiment of the present disclosure
  • Figure 2 shows a schematic structural diagram of the first fire prevention device described in the embodiment of the present disclosure in an open state
  • Figure 3 shows a schematic structural diagram of the first fire protection device described in the embodiment of the present disclosure in a closed state
  • Figure 4 shows one of the structural schematic diagrams of the first valve body described in the embodiment of the present disclosure
  • Figure 5 shows the second structural schematic diagram of the first valve body described in the embodiment of the present disclosure
  • Figure 6 shows one of the schematic structural diagrams of the first housing described in the embodiment of the present disclosure
  • Figure 7 shows the second schematic structural diagram of the first housing described in the embodiment of the present disclosure
  • Figure 8 shows one of the structural schematic diagrams of the second fire protection device described in the embodiment of the present disclosure
  • Figure 9 shows the second structural schematic diagram of the second fire protection device described in the embodiment of the present disclosure.
  • Figure 10 shows the third structural schematic diagram of the second fire protection device described in the embodiment of the present disclosure.
  • Figure 11 shows a schematic structural diagram of the first housing described in the embodiment of the present disclosure
  • Figure 12 shows a schematic diagram of the assembly structure of the first housing and the second housing described in the embodiment of the present disclosure
  • Figure 13 shows one of the structural schematic diagrams of the second housing described in the embodiment of the present disclosure
  • Figure 14 shows the second schematic structural diagram of the second housing described in the embodiment of the present disclosure
  • Figure 15 shows a schematic structural diagram of the gas channel in an open state according to the embodiment of the present disclosure
  • Figure 16 shows a schematic structural diagram of the gas channel in a closed state in the embodiment of the present disclosure
  • Figure 17 shows one of the structural schematic diagrams of the third fire protection device described in the embodiment of the present disclosure in an open state
  • Figure 18 shows the second structural schematic diagram of the third fire protection device in the open state in the embodiment of the present disclosure
  • Figure 19 shows the structure of the third fire protection device described in the embodiment of the present disclosure in a closed state.
  • Figure 20 shows the second structural schematic diagram of the third fire prevention device described in the embodiment of the present disclosure in a closed state
  • Figure 21 shows a schematic structural diagram of the third fire prevention device described in the embodiment of the present disclosure.
  • Figure 22 shows a schematic diagram of the assembly structure of the support member and the first elastic valve body described in the embodiment of the present disclosure
  • Figure 23 shows the third structural schematic diagram of the third fire protection device in the open state in the embodiment of the present disclosure
  • Figure 24 shows the fourth structural schematic diagram of the third fire protection device in the open state in the embodiment of the present disclosure
  • Figure 25 shows the third structural schematic diagram of the third fire prevention device described in the embodiment of the present disclosure in a closed state
  • Figure 26 shows the fourth structural schematic diagram of the third fire prevention device described in the embodiment of the present disclosure in a closed state
  • Figure 27 shows the fifth structural schematic diagram of the third fire protection device in the open state in the embodiment of the present disclosure
  • Figure 28 shows the sixth structural schematic diagram of the third fire protection device in the open state in the embodiment of the present disclosure
  • Figure 29 shows one of the structural schematic diagrams of the fourth fire prevention device described in the embodiment of the present disclosure.
  • Figure 30 shows the second structural schematic diagram of the fourth fire prevention device described in the embodiment of the present disclosure
  • Figure 31 shows the third structural schematic diagram of the fourth fire protection device described in the embodiment of the present disclosure.
  • Figure 32 shows the fourth structural schematic diagram of the fourth fire prevention device described in the embodiment of the present disclosure
  • Figure 33 shows one of the structural schematic diagrams of the fifth fire prevention device described in the embodiment of the present disclosure in an open state
  • Figure 34 shows one of the structural schematic diagrams of the fifth fire prevention device described in the embodiment of the present disclosure in a closed state
  • Figure 35 shows the second structural schematic diagram of the fifth fire prevention device described in the embodiment of the present disclosure in an open state
  • Figure 36 shows the third structural schematic diagram of the fifth fire protection device in the open state according to the embodiment of the present disclosure
  • Figure 37 shows the fourth structural schematic diagram of the fifth fire protection device in the open state in the embodiment of the present disclosure
  • Figure 38 shows one of the schematic diagrams of the assembly structure of the first positioning member and the second housing described in the embodiment of the present disclosure
  • Figure 39 shows the second schematic diagram of the assembly structure of the first positioning member and the second housing described in the embodiment of the present disclosure
  • Figure 40 shows a schematic structural diagram of the fifth fire prevention device described in the embodiment of the present disclosure.
  • Figure 41 shows the fifth structural schematic diagram of the fifth fire protection device in the open state according to the embodiment of the present disclosure
  • Figure 42 shows the second structural schematic diagram of the fifth fire prevention device described in the embodiment of the present disclosure in a closed state
  • Figure 43 shows the sixth structural schematic diagram of the fifth fire protection device in the open state in the embodiment of the present disclosure
  • Figure 44 shows the seventh structural schematic diagram of the fifth fire prevention device described in the embodiment of the present disclosure in the open state
  • Figure 45 shows the third structural schematic diagram of the fifth fire prevention device described in the embodiment of the present disclosure in a closed state
  • Figure 46 shows one of the structural schematic diagrams in which the fluid channel in the sixth fire protection device described in the embodiment of the present disclosure is in an open state
  • Figure 47 shows the second structural schematic diagram of the fluid channel in the open state of the sixth fire prevention device described in the embodiment of the present disclosure
  • Figure 48 shows one of the structural schematic diagrams in which the fluid channel in the sixth fire protection device described in the embodiment of the present disclosure is in a closed state
  • Figure 49 shows the second structural schematic diagram in which the fluid channel in the sixth fire protection device described in the embodiment of the present disclosure is in a closed state
  • Figure 50 shows one of the structural schematic diagrams of the second valve body described in the embodiment of the present disclosure
  • Figure 51 shows a schematic structural diagram of the third housing described in the embodiment of the present disclosure.
  • Figure 52 shows the third structural schematic diagram in which the fluid channel in the sixth fire protection device described in the embodiment of the present disclosure is in an open state
  • Figure 53 shows that the fluid channel in the sixth fire protection device described in the embodiment of the present disclosure is open.
  • Figure 54 shows the third structural schematic diagram in which the fluid channel in the sixth fire prevention device described in the embodiment of the present disclosure is in a closed state
  • Figure 55 shows the fourth structural schematic diagram in which the fluid channel in the sixth fire protection device described in the embodiment of the present disclosure is in a closed state
  • Figure 56 shows the second structural schematic diagram of the second valve body described in the embodiment of the present disclosure
  • Figure 57 shows one of the structural schematic diagrams of the seventh fire prevention device described in the embodiment of the present disclosure.
  • Figure 58 shows a schematic structural diagram of the third valve body described in the embodiment of the present disclosure.
  • Figure 59 shows one of the schematic structural diagrams of the base described in the embodiment of the present disclosure.
  • Figure 60 shows one of the schematic diagrams of the third valve body assembly structure described in the embodiment of the present disclosure.
  • Figure 61 shows the second structural schematic diagram of the seventh fire prevention device described in the embodiment of the present disclosure.
  • Figure 62 shows the second schematic diagram of the third valve body assembly structure described in the embodiment of the present disclosure.
  • Figure 63 shows the third structural schematic diagram of the seventh fire prevention device described in the embodiment of the present disclosure.
  • Figure 64 shows a schematic structural diagram of the first valve body described in one embodiment of the present disclosure
  • Figure 65 shows the second schematic diagram of the base structure described in the embodiment of the present disclosure.
  • Figure 66 shows a schematic diagram of the assembly structure of the first valve body according to an embodiment of the present disclosure
  • Figure 67 shows a schematic diagram of the assembly structure of the first valve body, the second valve body and the base described in one embodiment of the present disclosure
  • Figure 68 shows one of the structural schematic diagrams of the eighth fire prevention device described in the embodiment of the present disclosure.
  • Figure 69 shows the second structural schematic diagram of the eighth fire prevention device described in the embodiment of the present disclosure.
  • Figure 70 shows the third structural schematic diagram of the eighth fire prevention device described in the embodiment of the present disclosure.
  • Figure 71 shows the fourth structural schematic diagram of the eighth fire prevention device described in the embodiment of the present disclosure.
  • Figure 72 shows the fifth structural schematic diagram of the eighth fire prevention device described in the embodiment of the present disclosure.
  • Figure 73 shows one of the structural schematic diagrams of the ninth fire prevention device described in the embodiment of the present disclosure.
  • Figure 74 shows the second structural schematic diagram of the ninth fire prevention device described in the embodiment of the present disclosure.
  • Figure 75 shows the third structural schematic diagram of the ninth fire prevention device described in the embodiment of the present disclosure.
  • Figure 76 is a cross-sectional view of a fire damper in the related art
  • Figure 77 is a isometric view of a fire damper provided by an embodiment of the present disclosure.
  • Figure 78 is a cross-sectional view of a fire damper provided by an embodiment of the present disclosure.
  • Figure 79 is a second cross-sectional view of a fire damper provided by an embodiment of the present disclosure.
  • Figure 80 is a cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 81 is a second cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 82 is a cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 83 is a second cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 84 is a cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 85 is a partial enlarged view of the quick-plug connector in Figure 84;
  • Figure 86 is a cross-sectional view of a fire damper provided by an embodiment of the present disclosure.
  • Figure 87 is a second cross-sectional view of a fire damper provided by an embodiment of the present disclosure.
  • Figure 88 is a cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 89 is a cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 90 is a cross-sectional view of another fire damper provided by an embodiment of the present disclosure.
  • Figure 91 is a schematic structural diagram of a fire isolation device in the related art.
  • Figure 92 is a schematic three-dimensional structural diagram of an automatic fire prevention device applied to oxygen therapy equipment in one embodiment of the present disclosure
  • Figure 93 is a perspective cross-sectional view of the automatic fire protection device shown in Figure 92, which shows that the seal is in a first state and the trigger column and the connecting ring are connected in the chamber;
  • Figure 94 is a cross-sectional view of the automatic fire protection device shown in Figure 92;
  • Figure 95 is a schematic three-dimensional structural view of the seal shown in Figure 93, in which the seal is in an unstretched state;
  • Figure 96 is a schematic three-dimensional structural view of the seal shown in Figure 93, in which the seal is in a stretched state;
  • Figure 97 is a schematic three-dimensional structural view of the mounting arm shown in Figure 96;
  • Figure 98 is a structural schematic diagram of the seal shown in Figure 93 being stretched and installed on the mounting arm;
  • Figure 99 is a perspective cross-sectional view of the automatic fire protection device shown in Figure 92, showing the seal in a second state;
  • Figure 100 is a perspective cross-sectional view of an automatic fire protection device applied to oxygen therapy equipment in another embodiment of the present disclosure, which shows that the trigger column and the connecting ring are connected in the second nozzle.
  • Figure 101 is a cross-sectional view of a tenth fire prevention device provided by an embodiment of the present disclosure
  • Figure 102 is a schematic diagram of the first limiting rib in a molten state in the tenth fire prevention device provided by an embodiment of the present disclosure
  • Figure 103 is a side view of a tenth fire prevention device provided by an embodiment of the present disclosure.
  • Figure 104 is a schematic diagram of a tenth fire prevention device provided by an embodiment of the present disclosure.
  • Figure 105 is a cross-sectional view of an eleventh fire prevention device provided by an embodiment of the present disclosure.
  • Figure 106 is a structural diagram of a first valve body provided by another embodiment of the present disclosure.
  • Figure 107 is one of the side views of the first valve body provided by another embodiment of the present disclosure.
  • Figure 108 is the second side view of the first valve body provided by another embodiment of the present disclosure.
  • Second connecting piece 1-421, first connection hole; 1-431, connection ring; 1-432, second connection hole; 1-50, installation arm; 1-51, adapter block; 1-52, mounting column; 1-53, connecting plate; 1-511, receiving hole; 1-521, connecting column; 1-522, stopper round cone; 1-523, fixed column; 1-531, depression; 1-532, extension plate; 1-533, trigger column; 2-100: Fire protection device; 2-20: First valve body; 2-30: Second valve body; 2-40: Elastic member; 2-11: Fluid channel; 2-12: first limiting rib; 2-13: second limiting rib; 2-21: first mounting rod; 2-22: first mounting seat; 2-23: first mounting cavity; 2-24: The first guide rod; 2-25: The first positioning part; 2-31: The second mounting rod; 2-32: The second mounting seat; 2-33: The second mounting cavity; 2-34: The second Two guide rods; 2-35: second positioning part; 2-14: first positioning groove; 2-15: second positioning groove; 2-16: first installation groove; 2
  • a first fire protection device including: a housing 10, a valve body 20, a torsion spring 30 and a fusible member 40;
  • the housing 10 has a fluid channel 101 , the fluid channel 101 is provided with a first opening 102 and a second opening 103, the first opening 102 and the second opening 103 are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the valve body 20 It is located in the fluid channel 101 and is rotationally connected to the housing 10;
  • the valve body 20 is provided with an accommodation cavity 201, and the fluid channel 101 and the accommodation cavity 201 are two mutually independent spaces;
  • the torsion spring 30 is embedded in the accommodation cavity 201 to drive the valve body 20 and the housing 10 to rotate relative to each other;
  • the fusible member 40 is provided on the inner wall of the fluid channel 101; in the fusible When the component 40 is in a non-melted state, the fusible component 40 supports the valve body 20 in the first position, and both the first opening 102 and
  • the first fire protection device includes a housing 10 , a valve body 20 , a torsion spring 30 and a fusible member 40 .
  • the housing 10 can be made of materials that are not prone to chemical reactions with oxygen and are resistant to high temperatures, such as stainless steel or ceramic materials.
  • the fluid channel 101 is provided with a first opening 102 and a second opening 103.
  • the first opening 102 and the second opening 103 may be located on opposite sides of the fluid channel 101.
  • the first opening 102 and the second opening 103 are provided in the housing 10.
  • the axes of the openings 103 are collinear; the first opening 102 and the second opening 103 can also be arranged at an angle on the fluid channel 101 .
  • the first opening 102 and the second opening 103 are respectively used to communicate with the oxygen therapy device or the patient-side pipeline.
  • the first opening 102 is connected to the oxygen therapy device-side pipeline
  • the second opening 103 is connected to the patient-side pipeline.
  • Oxygen flows from the third opening 102 to the patient-side pipeline.
  • An opening 102 enters the fluid channel 101 and is then transmitted to the patient through a second opening 103 .
  • the second opening 103 may also be connected to the pipeline at the oxygen therapy device end, and the first opening 102 may be connected to the pipeline at the patient end, which is not limited in the embodiment of the present disclosure.
  • the valve body 20 is located in the fluid channel 101 and is rotationally connected to the housing 10 .
  • the valve body 20 and the housing 10 can be rotationally connected using a rotating shaft 104 or a roller.
  • a rotating shaft 104 is provided on the housing 10 , and the valve body 20 is sleeved on the rotating shaft 104 ; or a roller is provided on the valve body 20 , and the roller rotates relative to the inner wall of the housing 10 .
  • the valve body 20 can also be made of materials that are not prone to chemical reactions with oxygen and are resistant to high temperatures.
  • the valve body 20 is also provided with a sealing portion that is joined to the first opening 102 or the second opening 103.
  • the sealing portion can be made of silicone, rubber or other materials, which can achieve a good sealing effect.
  • the valve body 20 is provided with an accommodation cavity 201, and the fluid channel 101 and the accommodation cavity 201 are two independent spaces.
  • the torsion spring 30 is embedded in the accommodation cavity 201 to drive the valve body 20 and the housing 10 to rotate relative to each other.
  • the torsion spring 30 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the torsion spring 30 can store elastic potential energy and drive the valve body 20 to rotate when a fire occurs, closing the fluid channel 101 and blocking the oxygen channel, thus achieving a fire prevention effect.
  • the fusible component 40 is disposed on the inner wall of the fluid channel 101 and is located on the rotation path of the valve body 20 to support the valve body 20.
  • the fusible component 40 can be made of a material with a lower melting point, such as PP, PVC and other materials.
  • the fusible component 40 and the inner wall of the fluid channel 101 can be assembled by bonding, snapping, or other methods.
  • the fusible member 40 When a fire does not occur (the temperature is low), the fusible member 40 is in a non-melted state, has a certain rigidity, and can support the valve body 20. At this time, the valve body 20 is in the first position, and the first opening 102 and the second opening 102 are in the first position. Both openings 103 are in an open state, and oxygen can be transmitted normally in the fluid channel 101 through the first opening 102 and the second opening 103 .
  • the elastic force exerted by the torsion spring 30 on the valve body 20 and the supporting force exerted by the fusible member 40 on the valve body 20 are in a balanced state.
  • the fusible member 40 When a fire occurs (high temperature), the fusible member 40 is in a molten state, and the fusible member 40 cannot continue to support the valve body 20, and the equilibrium state of the valve body 20 is broken. At this time, under the elastic force of the torsion spring 30, The valve body 20 will rotate from the first position to the second position, and the sealing portion on the valve body 20 will engage with at least one of the first opening 102 and the second opening 103 , so that the first opening 102 and the second opening 103 are At least one of them is in a closed state. At this time, the fluid channel 101 is blocked and oxygen cannot continue to be transmitted.
  • the fusible member 40 when the fusible member 40 is in a non-melted state, the fusible member 40 supports the valve body 20 in the first position, the first opening 102 and the second opening 103 are both in an open state, and the fluid channel 101 normally transmits oxygen. ; In the event of a fire, the fusible component 40 will be in a molten state when the temperature reaches the melting point. The fusible component 40 is not enough to support the elastic force exerted by the torsion spring 30 on the valve body 20. The torsion spring 30 releases the stored elastic potential energy, and the valve The body 20 is driven by the torsion spring 30 to rotate from the first position to the second position.
  • At least one of the first opening 102 and the second opening 103 is in a closed state, thereby cutting off the oxygen passage and preventing the continuous leakage of oxygen from causing the fire to spread; and, the accommodation cavity 201 where the torsion spring 30 is located and the fluid channel 101 Being independent of each other avoids the problem of oxidation of the torsion spring 30 and improves the durability and safety factor of the device.
  • the valve body 20 includes a mounting part 202, a first connecting part 203 and a first sealing part 204; the mounting part 202 includes an inner sleeve 2021 and an outer sleeve 2022.
  • the accommodation cavity 201 is located between the inner sleeve 2021 and the outer sleeve 2022; a rotating shaft 104 is provided in the fluid channel 101, and the inner sleeve 2021 is sleeved on the rotating shaft 104 and is connected with the rotating shaft 104.
  • the rotating shaft 104 is rotationally connected; one end of the first connecting part 203 is connected to the side wall of the outer sleeve 2022, and the other end of the first connecting part 203 is connected to the first sealing part 204; in the valve When the body 20 is in the second position, the first sealing part 204 is engaged with the first opening 102 so that the first opening 102 is in a closed state.
  • the fluid channel 101 has a first opening 102 and a second opening 103 .
  • the first opening 102 and the second opening 103 When at least one of the first opening 102 and the second opening 103 is in a closed state, the fluid channel 101 is closed. Block.
  • the valve body 20 includes a mounting part 202, a first connecting part 203 and a first sealing part 204.
  • the valve body 20 is assembled with the housing 10 through the mounting part 202.
  • the installation part 202 includes an inner sleeve 2021 and an outer sleeve 2022.
  • the inner sleeve 2021 and the outer sleeve 2022 are coaxially arranged.
  • the bottom surfaces of the inner sleeve 2021 and the outer sleeve 2022 are closed on one side, and the other side is in an open state.
  • the outer side wall of the shaft sleeve 2021 and the inner side wall of the outer shaft sleeve 2022 together form an accommodating cavity 201, and the torsion spring 30 is embedded in the accommodating cavity 201.
  • a rotating shaft 104 is provided in the fluid channel 101.
  • the rotating shaft 104 and the inner wall of the fluid channel 101 can be made by an integral molding process, or they can be assembled separately and then assembled by bonding or snapping.
  • the inner sleeve 2021 is sleeved on the rotating shaft 104.
  • the inner sleeve 2021 is coaxially arranged with the rotating shaft 104 and is rotationally connected with the rotating shaft 104, thereby realizing relative rotation between the valve body 20 and the housing 10.
  • One end of the first connecting part 203 is connected to the side wall of the outer sleeve 2022, and the other end of the first connecting part 203 is connected to the first sealing part 204.
  • the first connecting part 203, the outer sleeve 2022 and the inner sleeve 2021 can be Made of the same material and made in one piece.
  • the first sealing part 204 is close to the first opening 102.
  • the first sealing part 204 can be made of silicone, rubber or other materials, which can achieve a good sealing effect.
  • the valve body 20 further includes a second connection part 205 and a second sealing part 206 ; one end of the second connection part 205 is connected to the side of the outer sleeve 2022 wall connection, the other end of the second connection part 205 is connected to the second sealing part 206; when the valve body 20 is in the second position, the second sealing part 206 is connected to the second opening 103 is engaged, so that the second opening 103 is in a closed state.
  • the valve body 20 further includes a second connection part 205 and a second sealing part 206 .
  • the second sealing part 206 is close to the second opening 103 .
  • the first connection part 203 and the second connection part 206 are close to the second opening 103 .
  • Parts 205 are respectively located on both sides of the mounting part 202.
  • One end of the second connecting part 205 is connected to the side wall of the outer sleeve 2022, and the other end of the second connecting part 205 is connected to the second sealing part 206.
  • the outer sleeve 2022 can be made of the same material and made by one-piece molding.
  • the second sealing part 206 can be made of silicone, rubber or other materials, which can achieve a good sealing effect.
  • the second sealing portion 206 is engaged with the second opening 103 , that is, the end surface of the second sealing portion 206 is in contact with the inner wall of the fluid channel 101 around the second opening 103 and covers the second opening. 103, at this time, the second opening 103 is in a closed state, and the fluid channel 101 is blocked.
  • the first connection part 203 and/or the second connection part 205 are provided with a gap 207 , and the gap 207 is used to pass fluid.
  • oxygen is transmitted in the fluid channel 101 through the first opening 102 and the second opening 103 , and the first connection part 203 and the second connection part 205 are located in the fluid channel 101 , in order to avoid The first connection part 203 and the second connection part 205 hinder the normal transmission of oxygen.
  • a gap 207 is provided in the first connection part 203 and/or the second connection part 205 through which oxygen can be transmitted normally in the fluid channel 101. Does not affect oxygen transfer rate.
  • the notch 207 can be provided only on the first connecting part 203 or the second connecting part 205, or the notch 207 can be provided on both the first connecting part 203 and the second connecting part 205 to improve the ventilation effect.
  • the shape and size of the notch 207 can be determined according to The selection is made according to actual needs, and the embodiments of the present disclosure do not limit this.
  • the inner wall of the fluid channel 101 is provided with at least one limiting portion 105, and the limiting portion 105 is located on the rotation path of the valve body 20; in the valve When the body 20 is in the second position, the valve body 20 is in contact with the limiting portion 105 .
  • the limiting part 105 is provided on the inner wall of the fluid channel 101 , and the limiting part 105 may be a plate-shaped, cylindrical, or other structure.
  • the limiting part 105 and the housing 10 can be made using an integral molding process.
  • the limiting portion 105 is located on the rotation path of the valve body 20 , that is, when the valve body 20 rotates relative to the housing 10 , it will come into contact with the limiting portion 105 .
  • the number of the limiting parts 105 may be one or two. When the number of the limiting parts 105 is two, the two limiting parts 105 may be located on both sides of the valve body 20 respectively.
  • the fusible component 40 When a fire occurs, the fusible component 40 is heated and melted, which is not enough to offset the rotational torque exerted by the torsion spring 30 on the valve body 20. At this time, the torsion spring 30 releases the stored elastic potential energy and promotes the interaction between the valve body 20 and the housing 10.
  • the valve body 20 rotates relative to each other until the valve body 20 stops rotating when it contacts the limiting portion 105.
  • the valve body 20 is just in the second position, and the fluid channel 101 is in a closed state. Under the joint action of the torsion spring 30 and the limiting portion 105, a stable assembly is formed between the valve body 20 and the housing 10.
  • the housing 10 is provided with a first pipeline joint 106 and a second pipeline joint 108; the first pipeline joint 106 is provided with a first through hole 107, The first through hole 107 is connected to the first opening 102; the second pipe joint 108 is provided with a second through hole 109, and the second through hole 109 is connected to the second opening 103; The first pipeline connector 106 and the second pipeline connector 108 are respectively used to connect to the pipeline of the oxygen therapy device or the patient.
  • the first pipeline joint 106 and the second pipeline joint 108 are respectively located on both sides of the fluid channel 101 , and the first pipeline joint 106 is provided with a first through hole 107 .
  • a through hole 107 is connected to the first opening 102
  • the second pipe joint 108 is provided with a second through hole 109
  • the second through hole 109 is connected to the second opening 103 .
  • the first pipe joint 106, the second pipe joint 108 and the housing 10 can be an integrated structure, or can be made separately and then assembled.
  • the first pipeline connector 106 and the second pipeline connector 108 are used to communicate with the oxygen therapy device or the pipeline at the patient end.
  • the pipeline at the oxygen therapy device or the patient end can be connected to the first pipeline connector 106 or the second pipeline connector 108. Assembly is achieved by threaded connection or interference fit.
  • At least one clamping portion 110 is provided on the outer wall of the first pipeline connector 106 and/or the second pipeline connector 108 , and the clamping portion 110 for use with the The oxygen therapy device or the pipeline on the patient side is clamped.
  • the first pipeline connector 106 and the second pipeline connector 108 are used to connect the oxygen therapy device or the patient's pipeline.
  • the pipeline usually adopts a conduit, and the conduit is sleeved on the outside of the first pipeline joint 106 and the second pipeline joint 108.
  • the outer wall of a pipeline connector 106 and/or the outer wall of the second pipeline connector 108 is provided with at least one snap-in portion 110 .
  • the snap-in portion 110 is in the shape of a trumpet.
  • the clamping portion 110 When the conduit is sleeved on the first pipeline connector 106 When the outer wall of the pipe and/or the outer wall of the second pipe joint 108 is connected, the clamping portion 110 is clamped with the conduit, ensuring the airtightness between the conduit and the first pipe joint 106 and/or the second pipe joint 108 properties to avoid oxygen leakage problems.
  • the number of clamping parts 110 can be selected according to the sizes of the first pipeline connector 106 and the second pipeline connector 108 .
  • the fusible member 40 has an extension portion 401 , and the extension portion 401 penetrates the first through hole 107 or the second through hole 109 .
  • the fusible member 40 is located in the fluid channel 101 , that is, inside the housing 10 , and is not in direct contact with the external environment. There is a response delay, that is, when a fire occurs in the external environment, it can The molten component 40 cannot be heated and melted quickly, and the oxygen passage cannot be blocked in time. Therefore, an extension 401 is provided on the fusible member 40 and passes through the first through hole 107 or the second through hole 109 . The extension part 401 is generally close to the pipeline at the patient end.
  • Whether the extension part 401 passes through the first through hole 107 or the second through hole 109 can be determined according to the assembly method of the first pipeline connector 106 and the second pipeline connector 108, for example If the first pipeline connector 106 is connected to the pipeline at the patient end, the extension part 401 can be disposed in the first through hole 107; if the second pipeline connector 108 is connected to the pipeline at the patient end, the extension part 401 can be disposed in the first through hole 107. two through holes 109.
  • the extension part 401 and the fusible component 40 can be made of the same material, and the extension part 401 can also be made of copper, iron or other materials with good thermal conductivity.
  • the extension 401 can burn first and ignite the fusible component 40 inside the fluid channel 101, so that the fusible component 40 melts in time; if The extension 401 made of copper, iron or other materials can quickly conduct heat to the fusible component 40 inside the fluid channel 101, allowing it to quickly reach the melting point, blocking the oxygen path in time, and reducing losses caused by fire.
  • the embodiment of the present disclosure also discloses a first oxygen therapy device, including a first fire prevention device.
  • oxygen therapy equipment usually consists of three parts: an oxygen generating device (such as an oxygen tank, an oxygen concentrator, etc.), an interface used to deliver oxygen to the patient (such as a nasal oxygen tube, a mask, etc.), and a connection between the generating device and the patient interface.
  • An oxygen generating device such as an oxygen tank, an oxygen concentrator, etc.
  • An interface used to deliver oxygen to the patient such as a nasal oxygen tube, a mask, etc.
  • Pipeline A fire prevention device is arranged in series in the pipeline between the oxygen generating device and the patient interface.
  • the fire prevention device has a fluid channel 101.
  • the fluid channel 101 is used to communicate with the oxygen therapy device or the patient's pipeline.
  • the fire protection device can control the fluid channel.
  • the opening or closing of 101 controls the opening or closing of the oxygen therapy instrument pipeline.
  • a first fire prevention device is connected in series in the pipeline of the first oxygen therapy device.
  • the fusible member 40 When the fusible member 40 is in a non-molten state, the fusible member 40 supports the valve body 20 in the first position. Both the opening 102 and the second opening 103 are in an open state, and the fluid channel 101 transmits oxygen normally; in the event of a fire, the fusible component 40 will be in a molten state when the temperature reaches the melting point, and the fusible component 40 is not enough to support the torsion spring 30 to exert The elastic force on the valve body 20 and the torsion spring 30 release the stored elastic potential energy.
  • the valve body 20 is driven by the torsion spring 30 to rotate from the first position to the second position, so that at least one of the first opening 102 and the second opening 103 One is in a closed state, thus cutting off the oxygen passage and preventing the continuous leakage of oxygen from causing the fire to spread; and, the accommodation cavity 201 where the torsion spring 30 is located and the fluid channel 101 are independent of each other, which avoids the problem of oxidation of the torsion spring 30 and improves the device durability and safety factor.
  • the embodiment of the present disclosure also discloses a first ventilation treatment system, including a first oxygen therapy instrument.
  • the first ventilation therapy system includes a control device and a first oxygen therapy device.
  • the control device is used to control the oxygen supply amount, working time, etc. of the first oxygen therapy device.
  • the control device can be an electronic device, or it can be Components in electronic equipment, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile Internet device, a robot, a wearable device, etc., which are not specifically limited in the embodiments of this disclosure.
  • the first ventilation therapy system includes a first oxygen therapy device, and a first fire prevention device is connected in series in the pipeline of the first oxygen therapy device.
  • a first fire prevention device is connected in series in the pipeline of the first oxygen therapy device.
  • the torsion spring 30 releases the stored elastic potential energy, and the valve body 20 is driven by the torsion spring 30 to rotate from the first position to the second position. , so that at least one of the first opening 102 and the second opening 103 is in a closed state, thereby cutting off the oxygen passage and preventing the continued leakage of oxygen from causing the fire to spread; and, the torsion spring
  • the accommodation cavity 201 in which the torsion spring 30 is located is independent of the fluid channel 101, which avoids the problem of oxidation of the torsion spring 30 and improves the durability and safety factor of the device.
  • the second fire prevention device includes: a housing 210, an elastic member 220, a valve body 230 and a fusible member 240;
  • the housing 210 has a Accommodation chamber 2101 and gas channel 2102, the gas channel 2102 is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the valve body 230 separates the accommodation chamber 2101 and the gas channel 2102 into mutually independent spaces;
  • the elastic member 220 is provided in the accommodation chamber 2101 Inside, the valve body 230 is at least partially located in the gas channel 2102, and the elastic member 220 is in contact with the housing 210 and the valve body 230 respectively;
  • a fusible member 240 is provided between the valve body 230 and the gas channel 2102, and the fusible member 240 is in contact with the gas.
  • the fusible member 240 when the fusible member 240 is in a non-melted state, the fusible member 240 supports the valve body 230 in the first position, and the gas channel 2102 is in an open state; when the fusible member 240 is in a molten state, the elastic member 220 drives the valve body 230 to the second position, and the gas channel 2102 is in a closed state.
  • the second fire prevention device includes a housing 210 , an elastic member 220 , a valve body 230 and a fusible member 240 .
  • the housing 210 can be made of materials such as plastic that are not easily chemically reactive with oxygen.
  • the housing 210 has an accommodation cavity 2101 and a gas channel 2102.
  • the internal shell wall of the housing 210 and the valve body 230 separate the accommodation cavity 2101 and the gas channel 2102 into mutually independent spaces. Oxygen in the gas channel 2102 cannot enter the accommodation cavity 2101.
  • the accommodating cavity 2101 and the shell 210 can be made using an integrated molding process, such as open mold casting. The position of the accommodating cavity 2101 can be reserved on the mold.
  • the integrated molding process can ensure the structural strength of the shell 210. and the airtightness of the accommodating cavity 2101; the accommodating cavity 2101 and the shell 210 can also be made in a separate manner, and the accommodating cavity 2101 is divided by adding partitions and other components to the shell 210.
  • the embodiment of the present disclosure is This is not limited.
  • the valve body 230 can be made of rubber, which can have good fit with the gas channel 2102 and the accommodation cavity 2101.
  • the elastic member 220 is disposed in the accommodation cavity 2101.
  • the elastic member 220 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the elastic member 220 can store elastic potential energy, and push the valve body 230 to close the gas channel 2102 when a fire occurs, blocking the passage of oxygen, thereby achieving a fire prevention effect.
  • the fusible member 240 is disposed between the valve body 230 and the gas channel 2102 to support the valve body 230. There is a gap between the fusible member 240 and the gas channel 2102, and oxygen can flow normally through the gap. Pass.
  • the fusible component 240 is usually made of a material with a lower melting point, such as PP, PVC and other materials.
  • the fusible component 240 When a fire does not occur (the temperature is low), the fusible component 240 is in a non-melted state, has a certain rigidity, and can support the valve body 230. At this time, the valve body 230 is in the first position and the gas channel 2102 is in an open state. , oxygen can circulate normally in the gas channel 2102. When the valve body 230 is in the first position, the elastic force exerted by the elastic member 220 on the valve body 230 and the supporting force exerted by the fusible member 240 on the valve body 230 are in a balanced state.
  • the fusible component 240 When a fire occurs (high temperature), the fusible component 240 is in a molten state, and the fusible component 240 cannot continue to support the valve body 230 , and the equilibrium state of the valve body 230 is broken. At this time, the valve body 230 will move between the elastic member 220 and the valve body 230 . Under the action of elastic force, when moving from the first position to the second position, the gas channel 2102 is in a closed state and the oxygen channel is blocked.
  • the first position and the second position of the valve body 230 are the positions of the valve body 230 relative to the gas channel 2102.
  • the valve body 230 can be a sliding switch or a rotational switch. Switching only requires that the gas channel 2102 can be opened and closed, and the embodiment of the present disclosure does not limit this.
  • the fusible member 240 in the event of a fire, the fusible member 240 will be in a molten state when the temperature reaches the melting point.
  • the fusible member 240 is not enough to support the elastic force exerted by the elastic member 220 on the valve body 230, and the elastic member 220 releases the stored energy.
  • the elastic potential energy of the valve body 230 is driven by the elastic member 220 to switch from the first position to the second position, occupying the space of the gas channel 2102, thereby cutting off the oxygen passage and preventing the continuous leakage of oxygen from causing the fire to spread; and, the elastic member 220
  • the accommodation cavity 2101 and the gas channel 2102 are independent of each other, which avoids the problem of oxidation of the elastic member 220 and improves the durability and safety factor of the device.
  • the accommodation cavity 2101 has an opening, and the valve body 230 is disposed at the opening of the accommodation cavity 2101.
  • the valve body 230 is slidably connected to the accommodation cavity 2101; when the fusible member 240 is in a non-molten state When the fusible member 240 is in a molten state, the elastic member 220 drives the valve body 230 to slide to the second position, and the gas channel 2102 is closed. state.
  • the accommodation cavity 2101 has an opening, which is U-shaped.
  • the opening of the accommodation cavity 2101 faces the gas channel 2102, and the valve body 230 is at least partially located in the accommodation cavity 2101. And is slidably connected to the accommodation cavity 2101 through the opening.
  • the valve body 230 can be a sphere, a cylinder or a bowl-shaped structure.
  • the valve body 230 is made of rubber material and has an interference fit with the inner wall of the accommodation cavity 2101. During the sliding process, the airtightness inside the accommodation cavity 2101 can still be ensured, so that the accommodation cavity 2101 and the gas channel 2102 are separated from each other, which can effectively prevent the chemical reaction between the elastic member 220 and oxygen under long-term use.
  • the elastic member 220 is located in the accommodation cavity 2101. One end of the elastic member 220 is in contact with the bottom of the accommodation cavity 2101, and the other end is in contact with the valve body 230. When the valve body 230 is in the first position, the elastic member 220 is in a compressed state and accumulates elastic potential energy.
  • the fusible member 240 is located on the side of the valve body 230 close to the gas channel 2102 to support the valve body 230 .
  • the fusible member 240 can be a series of protruding structures. When the fusible member 240 contacts the valve body 230, a gap can be formed between the protruding structure and the valve body 230, which facilitates the transportation of oxygen through the gap when a fire does not occur. to patients.
  • the fusible member 240 can also be provided with a hollow structure or a small hole structure, and when a fire does not occur, oxygen is delivered to the patient through the hollow structure or the small hole structure.
  • the gas channel 2102 may include multiple sub-channels, and the multiple sub-channels may be arranged in a meandering manner, as shown in FIG. 8 ; or may be arranged in only one segment of the channel, as shown in FIG. 9 . Arranged in a section of channel, the structure is simpler, the volume is smaller, and during the oxygen transmission process, the inner wall of the gas channel 2102 produces less resistance to oxygen.
  • the fusible component 240 When a fire does not occur (the temperature is low), the fusible component 240 is in a non-melted state, has a certain rigidity, and can support the valve body 230. At this time, the valve body 230 is in the first position and the gas channel 2102 is in an open state. , oxygen can circulate normally in the gas channel 2102. When the valve body 230 is in the first position, the elastic force exerted by the elastic member 220 on the valve body 230 and the supporting force exerted by the fusible member 240 on the valve body 230 are in a balanced state.
  • the fusible component 240 When a fire occurs (high temperature), the fusible component 240 is in a molten state, and the fusible component 240 cannot continue to support the valve body 230 , and the equilibrium state of the valve body 230 is broken. At this time, the valve body 230 will move between the elastic member 220 and the valve body 230 . Under the action of elastic force, it slides relative to the accommodation cavity 2101 and slides from the first position to the second position. The valve body 230 enters the gas channel 2102 and fits the inner wall of the gas channel 2102, occupying the space of the gas channel 2102 and the gas channel 2102. As a result, the oxygen passage is blocked and the gas channel 2102 is closed. It prevents further leakage of oxygen, avoids further deterioration of fire, and achieves fire prevention effect.
  • the first position and the second position of the valve body 230 are the positions of the valve body 230 relative to the gas channel 2102.
  • the valve body 230 When the valve body 230 is in the first position, it is far away from the gas channel 2102, and the gas channel 2102 is in an open state; the valve body 230 is in the open state.
  • the valve body 230 In the second position, slide to the side closer to the gas channel 2102 and block it. Gas channel 2102, at this time, the gas channel 2102 is in a closed state.
  • the housing 210 includes a first housing 2103 and a second housing 2104; the first housing 2103 and the second housing 2104 are rotationally connected; the first housing 2103 is provided with The first through hole 2105 and the second through hole 2106; the second housing 2104 is provided with a third through hole 2107 and a fourth through hole 2108; the valve body 230 is fixedly connected to the first housing 2103, and the valve body 230 is provided with a fifth through hole 2107 and a fourth through hole 2108.
  • Through hole 2301; the fusible member 240 is respectively engaged with the valve body 230 and the second housing 2104.
  • the fusible member 240 is provided with a sixth through hole 2401; the elastic member 220 is in contact with the valve body 230 and the second housing 2104 respectively. ; When the fusible member 240 is in a non-melted state, the fusible member 240 supports the valve body 230 in the first position, the first through hole 2105, the second through hole 2106, the third through hole 2107, the fourth through hole 2108, and the The fifth through hole 2301 and the sixth through hole 2401 are connected to form a gas channel 2102, which is in an open state; when the fusible member 240 is in a molten state, the elastic member 220 drives the first shell 2103 and the second shell 2104 Relative rotation, the valve body 230 is in the second position, the first through hole 2105, the second through hole 2106 and the fifth through hole 2301 are respectively in contact with the shell wall of the second housing 2104, and the gas channel 2102 is in a closed state.
  • the housing 210 includes a first housing 2103 and a second housing 2104.
  • the first housing 2103 and the second housing 2104 may be in the form of disks. Shape, with base and side walls.
  • the diameter of the first housing 2103 is slightly larger than the diameter of the second housing 2104, and the first housing 2103 and the second housing 2104 are locked together to form an internal space.
  • the first housing 2103 and the second housing 2104 may also adopt a spherical structure, which is not limited in this embodiment of the disclosure.
  • the first housing 2103 and the second housing 2104 are rotationally connected. Specifically, a rotating shaft can be provided at the axis center of the first housing 2103 and the second housing 2104. The first housing 2103 and the second housing 2104 rotate relatively around the rotating shaft. . It is also possible that the side wall of the first housing 2103 and the side wall of the second housing 2104 are attached to each other and rotate relative to each other around the attachment surface.
  • the side wall of the first housing 2103 is provided with a first through hole 2105 and a second through hole 2106.
  • the first through hole 2105 and the second through hole 2106 are respectively used to connect the oxygen therapy device or the pipeline at the patient end. Oxygen can be supplied from the third through hole.
  • a through hole 2105 is input into the housing 210, and then flows out through a second through hole 2106.
  • the valve body 230 is fixedly connected to the first housing 2103.
  • the valve body 230 is provided with a fifth through hole 2301.
  • the openings at both ends of the fifth through hole 2301 are opposite to the first through hole 2105 and the second through hole 2106 respectively.
  • the side wall of the second housing 2104 is also provided with a third through hole 2107 and a fourth through hole 2108.
  • the fusible member 240 is a hollow cylindrical structure and is provided with a sixth through hole 2401. The fusible member 240 can be disposed between the valve body 230 and the second shell 2104, and is connected to the valve body 230 and the second shell 2104 respectively.
  • the fusible component 240 has a certain rigidity and limits the relative rotation of the first housing 2103 and the second housing 2104.
  • the number of the fusible member 240 may be one or two. When the number of the fusible member 240 is one, the fusible member 240 may be engaged with the fifth through hole 2301 and the third through hole 2107 respectively, or may be engaged with the third through hole 2107 respectively.
  • the fifth through hole 2301 and the fourth through hole 2108 are snap-fitted. When the number of fusible members 240 is two, the fusible members 240 may be provided between the fifth through hole 2301 and the third through hole 2107 and between the fifth through hole 2301 and the fourth through hole 2108 .
  • the elastic member 220 is located in the installation cavity formed by the first housing 2103 and the second housing 2104.
  • the elastic member 220 contacts the valve body 230 and the second housing 2104 respectively to accumulate elastic potential energy.
  • the elastic member 220 can be a metal torsion spring, spring, etc., such as iron, copper, or alloy, or a soft rubber structure that can store elastic potential energy, such as silicone or rubber.
  • the number of the elastic member 220 may be one or multiple.
  • the fusible member 240 When a fire does not occur (the temperature is low), the fusible member 240 is in a non-molten state and has a certain rigidity, and can support the valve body 230 so that the first shell 2103 and the second shell 2104 are in a relatively static state.
  • the valve body 230 is in the first position, and the first through hole 2105, the second through hole 2106, the third through hole 2107, the fourth through hole 2108, the fifth through hole 2301 and the sixth through hole 2401 are connected to form a gas channel 2102.
  • the gas channel 2102 is in an open state, oxygen can enter the gas channel 2102 through the first through hole 2105, and then flow out through the second through hole 2106.
  • the gas channel 2102 and the accommodation cavity 2101 in which the elastic member 220 is located are independent of each other, which avoids the problem of oxidation of the elastic member 220 and improves the durability and safety factor of the device.
  • the first through hole 2105, the second through hole 2106, the third through hole 2107, the fourth through hole 2108, the fifth through hole 2301 and the sixth through hole 2401 can be located on the same straight line to form a linear gas channel 2102; They can also be bent at a certain angle instead of being in the same straight line, so that normal oxygen transmission can be achieved.
  • the fusible member 240 When a fire occurs (high temperature), the fusible member 240 is in a molten state, and the fusible member 240 is insufficient to support the rotational torque exerted by the elastic member 220 between the first housing 2103 and the second housing 2104.
  • the first housing The equilibrium state between the body 2103 and the second shell 2104 is broken.
  • the elastic member 220 releases the stored elastic potential energy, and the valve body 230 and the first shell 2103 will contact the second shell under the elastic force of the elastic member 220.
  • the bodies 2104 rotate relative to each other, and the valve body 230 rotates from the first position to the second position.
  • the fifth through hole 2301 on the body 230 is staggered with the third through hole 2107 and the fourth through hole 2108 on the second housing 2104.
  • the first through hole 2105 and the second through hole 2106 are also respectively separated from the third through hole 2107 and the fourth through hole 2108.
  • the fourth through holes 2108 are staggered. After the first housing 2103 and the second housing 2104 rotate relative to each other, the first through hole 2105, the second through hole 2106 and the fifth through hole 2301 respectively fit into the shell wall of the second housing 2104, so that the oxygen passage is blocked. , the gas channel 2102 is in a closed state. It prevents further leakage of oxygen, avoids further deterioration of fire, and achieves fire prevention effect.
  • the first position and the second position of the valve body 230 are the positions of the valve body 230 relative to the second housing 2104.
  • the first through hole 2105, the second through hole 2106, the third The through hole 2107, the fourth through hole 2108, the fifth through hole 2301 and the sixth through hole 2401 are connected, and the gas channel 2102 is in an open state.
  • the first housing 2103 and the second housing 2104 rotate relative to each other.
  • the gas channel 2102 is divided into multiple sections and blocked by the shell wall of the second housing 2104. At this time, the gas channel 2102 is closed.
  • the second housing 2104 is provided with a first protruding portion 2109 and a second protruding portion 2110 ; a third through hole 2107 is provided in the first protruding portion 2109 , The four through holes 2108 are provided in the second protruding portion 2110; the fusible member 240 is at least partially embedded in the third through hole 2107 or the fourth through hole 2108.
  • a first protruding portion 2109 and a second protruding portion 2110 are provided extending from the side wall.
  • the outlet portions 2110 are arranged oppositely.
  • the first protruding part 2109 and the second protruding part 2110 and the second housing 2104 can be made by an integral molding process.
  • the third through hole 2107 is provided in the first protruding part 2109, and the fourth through hole 2108 is provided in the second protruding part 2110.
  • Two sections of gas passages 2102 are formed in the second housing 2104.
  • the fusible member 240 When the fusible member 240 is engaged with the valve body 230 and the second housing 2104, the fusible member 240 is at least partially embedded in the third through hole 2107 or the fourth through hole 2108.
  • the specific embedded position can be determined according to the fusible member 240. The number of components 240 and their installation locations are selected.
  • the residue after the fusible member 240 is heated and melted is stored in the third through hole 2107 or the fourth through hole 2108 respectively, and will not enter the oxygen delivery pipeline, so that the patient does not have the risk of inhaling foreign matter.
  • the first protruding portion 2109 is provided with a first extension portion 2111
  • the second protruding portion 2110 is provided with a second extension portion 2112; when the valve body 230 is in the second position , both ends of the fifth through hole 2301 are respectively attached to the first extension part 2111 and the second extension part 2112.
  • the first protruding portion 2109 is provided on a side close to the valve body 230.
  • a first extension part 2111 is provided, and a second extension part 2112 is provided on a side of the second protruding part 2110 close to the valve body 230 .
  • the first extension part 2111 and the first protrusion part 2109, the second extension part 2112 and the second protrusion part 2110 can be made by an integral molding process.
  • the first extension part 2111 and the second extension part 2112 may adopt an arc-shaped structure, and the arc-shaped structure matches the end shape of the valve body 230 .
  • both ends of the fifth through hole 2301 are respectively in contact with the first extension part 2111 and the second extension part 2112 to achieve sealing, thereby preventing the residual oxygen in the valve body 230 from leaking to the accommodation cavity 2101 , while improving the fire protection effect.
  • a third extension 2302 is provided at one end of the valve body 230
  • a fourth extension 2303 is provided at the other end of the valve body 230 ; when the valve body 230 is in the second position, The third through hole 2107 is attached to the third extension part 2302, and the fourth through hole 2108 is attached to the fourth extension part 2303.
  • the valve body 230 is provided with a fifth through hole 2301, and a third extension portion 2302 and a fourth extension portion 2303 are respectively extended at both ends of the fifth through hole 2301.
  • the third extension part 2302 and the fourth extension part 2303 and the valve body 230 can be made by an integral molding process.
  • the third extension part 2302 and the fourth extension part 2303 may adopt an arc-shaped structure, and the arc-shaped structure matches the end shapes of the third through-hole 2107 and the fourth through-hole 2108.
  • the third through hole 2107 is in contact with the third extension part 2302, and the third extension part 2302 seals one end of the third through hole 2107; the fourth through hole 2108 and the fourth extension part 2303, the fourth extension 2303 seals one end of the fourth through hole 2108, preventing oxygen from passing through, and the fire prevention effect is more significant.
  • the second housing 2104 is provided with at least one limiting portion 2113 , and the limiting portion 2113 is located on the movement path of the valve body 230 ; when the valve body 230 is in the second position, The valve body 230 is in contact with the limiting part 2113.
  • the limiting portion 2113 is provided on the second housing 2104 , and the specific structure of the limiting portion 2113 may be plate-shaped, cylindrical, or other structures.
  • the limiting part 2113 and the second housing 2104 can be made using an integral molding process.
  • the limiting portion 2113 is located on the movement path of the valve body 230 , that is, when the valve body 230 rotates relative to the second housing 2104 , it will come into contact with the limiting portion 2113 .
  • the number of limiting parts 2113 may be one or two. When the number of limiting parts 2113 is two, the two limiting parts 2113 may be respectively located on both sides of the valve body 230 and have a certain distance from the valve body 230 .
  • the first housing 2103 is provided with a first connection part 2114 and a second connection part 2115; the first through hole 2105 is provided in the first connection part 2114, and the second through hole 2106 Provided at the second connection part 2115; the first connection part 2114 and the second connection part 2115 are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end.
  • the oxygen therapy device or the patient-side pipeline is connected to the fire protection device through the first through hole 2105 and the second through hole 2106 .
  • a first connecting part 2114 and a second connecting part 2115 are provided on the first housing 2103.
  • the first connecting part 2114 and the second connecting part 2115 are arranged along the radial direction of the first housing 2103. Extending outward, the first through hole 2105 is provided in the first connecting part 2114, and the second through hole 2106 is provided in the second connecting part 2115.
  • the pipeline can be directly sleeved or embedded on the first connecting part 2114 and the second connecting part 2115 without occupying the internal space of the housing 210.
  • the gas channel includes a first pipeline interface, a second pipeline interface and a connecting part; the connecting part has an inner cavity; the first pipeline interface and the The second pipeline interfaces are respectively located at both ends of the communication part, and are respectively connected with the inner cavity to form the gas channel; the first pipeline interface and the second pipeline interface are symmetrically arranged.
  • the gas channel is formed by a first pipeline interface, a second pipeline interface and a communication part.
  • the first pipeline interface, the second pipeline interface and the connecting part can be an integrated structure, or can be made separately and then assembled.
  • the first pipeline interface and the second pipeline interface are respectively used to communicate with the oxygen therapy device or the patient-side pipeline.
  • the oxygen therapy device or the patient-side pipeline and the first pipeline interface or the second pipeline interface can be connected by threads or Assembly is achieved by interference fit.
  • the communication part adopts a hollow cylindrical structure and has an inner cavity.
  • the first pipeline interface and the second pipeline interface are respectively located at both ends of the communication part.
  • the inner cavity of the communication part is respectively connected with the first pipeline interface and the second pipeline interface to form a complete gas channel.
  • first pipeline interface and the second pipeline interface When the first pipeline interface and the second pipeline interface are assembled with the pipeline, one of the pipeline interfaces is connected to the patient end, and the other pipeline interface is connected to the oxygen therapy instrument end. Since the first pipeline interface and the second The pipeline interfaces are symmetrically arranged. Both the first pipeline interface and the second pipeline interface can be adapted to the oxygen therapy device end or the patient end. The fire protection device will not be installed backwards, which greatly improves the assembly efficiency.
  • the fusible member is located in the inner cavity, and the fusible member is in clearance fit with the cavity wall of the inner cavity.
  • the fusible member is disposed in the inner cavity of the communication part. Only one fusible member can block the gas channel without the need for both the oxygen therapy device end and the patient end. The installation of fusible components greatly reduces production costs.
  • the embodiment of the present disclosure also discloses a second oxygen therapy device, including a second fire prevention device.
  • oxygen therapy equipment usually consists of three parts: an oxygen generating device (such as an oxygen tank, an oxygen concentrator, etc.), an interface used to deliver oxygen to the patient (such as a nasal oxygen tube, a mask, etc.), and a connection between the generating device and the patient interface. Pipeline.
  • a fire prevention device is provided in series in the pipeline between the oxygen generating device and the patient interface.
  • the fire prevention device has a gas channel 2102.
  • the gas channel 2102 is used to communicate with the pipeline of the oxygen therapy device.
  • the fire protection device can control the internal gas channel 2102. to open or close, and control the opening or closing of the oxygen therapy instrument pipeline.
  • a second fire prevention device is connected in series in the pipeline of the second oxygen therapy device.
  • the fusible component 240 will be in a molten state when the temperature reaches the melting point, and the fusible component 240 is not sufficient.
  • the elastic force exerted by the elastic member 220 on the valve body 230 is supported, and the elastic member 220 releases the stored elastic potential energy.
  • the valve body 230 is driven by the elastic member 220 to switch from the first position to the second position, occupying the space of the gas channel 2102, thereby Cut off the oxygen passage to avoid the continuous leakage of oxygen and the spread of fire; and, the accommodation cavity 2101 where the elastic member 220 is located and the gas channel 2102 are independent of each other, which avoids the problem of oxidation of the elastic member 220 and improves the durability and durability of the oxygen therapy device. Safety factor.
  • the embodiment of the present disclosure also discloses a second ventilation therapy system, including a second oxygen therapy device.
  • the second ventilation therapy system includes a control device and a second oxygen therapy device.
  • the control device is used to control the oxygen supply amount, working time, etc. of the oxygen therapy device.
  • the control device can be an electronic device or an electronic device. components, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a mobile Internet device, a robot, a wearable device, etc.
  • the present disclosure implements The examples are not specifically limited.
  • the second ventilation therapy system includes a second oxygen therapy device, and a second fire prevention device is connected in series to the pipeline of the second oxygen therapy device.
  • a fire occurs, the fusible component 240 reaches a temperature of At the melting point, it will be in a molten state, and the fusible member 240 is not enough to support the elastic force exerted by the elastic member 220 on the valve body 230.
  • the elastic member 220 releases the stored elastic potential energy, and the valve body 230 is driven from the first position by the elastic member 220.
  • the third fire prevention device includes: a housing 10, a first elastic valve body 320 and a first fusible member 330; the housing 10 has an accommodation cavity 3101, and a first opening 3102 and a second opening 3103 are provided on both sides of the accommodation cavity 3101. The first opening 3102 and the second opening 3103 are used to communicate with the oxygen therapy device or the tube at the patient end.
  • the first elastic valve body 320 is positioned in the accommodation cavity 3101, and the first elastic valve body 320 is arranged opposite to the first opening 3102, wherein the first elastic valve body 320 has a resistance to Oxidation characteristics; the first fusible component 330 is located in the housing 10 and connected to the housing 10 , and the first fusible component 330 and the first elastic valve body 320 are close to the first opening.
  • One side of 3102 is in contact; when the first fusible member 330 is in a non-molten state, the first fusible member 330 compresses the first elastic valve body 320, and the first opening 3102 is in contact with the first elastic valve body 320.
  • the first fusible component 330 when the first fusible component 330 is in a molten state, the first elastic valve body 320 releases at least part of the elastic potential energy, and the first elastic valve body 320 It abuts the first end surface of the accommodation cavity 3101 so that the first opening 3102 is in a closed state, wherein the first opening 3102 is provided on the first end surface.
  • the third fire prevention device includes a housing 10 , a first elastic valve body 320 and a first fusible member 330 .
  • the housing 10 can be made of materials such as plastic that are not easily chemically reactive with oxygen.
  • the housing 10 has an accommodation cavity 3101.
  • a first opening 3102 and a second opening 3103 are provided on both sides of the accommodation cavity 3101.
  • the first opening 3102 and the second opening 3103 may be located on opposite sides of the accommodation cavity 3101.
  • the first opening 3102 and The axes of the second opening 3103 are collinear, and the first opening 3102 and the second opening 3103 can also be arranged at an angle on the accommodation cavity 3101. Set.
  • the first opening 3102 and the second opening 3103 are used to communicate with the oxygen therapy device or the patient-side pipeline.
  • the first opening 3102 is connected to the oxygen therapy device-side pipeline
  • the second opening 3103 is connected to the patient-side pipeline.
  • Oxygen flows from the first The opening 3102 enters the receiving cavity 3101, and is then transmitted to the patient end through the second opening 3103.
  • the second opening 3103 may also be connected to the pipeline at the oxygen therapy device end, and the first opening 3102 may be connected to the pipeline at the patient end. This is not limited in the embodiment of the present disclosure.
  • the first elastic valve body 320 is positioned in the accommodation cavity 3101, and the first elastic valve body 320 is opposite to the first opening 3102.
  • a partition or positioning structure can be provided in the accommodation cavity 3101 to achieve positioning and fixation of the first elastic valve body 320.
  • a protrusion is provided in the accommodation cavity 3101, and a groove or step is provided in the first elastic valve body 320 to cooperate with it to achieve positioning and fixation.
  • the oxygen passage is opened or closed by cooperation between the first elastic valve body 320 and the first opening 3102 .
  • the first elastic valve body 320 has oxidation resistance.
  • the first elastic valve body 320 can be made of materials such as silicone or rubber that can be compressed and store elastic potential energy. It is not prone to oxidation and rust when exposed to oxygen for a long time, thus avoiding the need for treatment. The effect has an impact and also improves the stability and durability of the fire protection device.
  • the first fusible component 330 is disposed in the housing 10 and connected to the housing 10 .
  • the housing 10 supports and fixes the first fusible component 330 .
  • the side of the first fusible member 330 away from the first opening 3102 and the housing 10 can be assembled by bonding or snapping.
  • the first fusible member 330 contacts the side of the first elastic valve body 320 close to the first opening 3102 to support the first elastic valve body 320 .
  • the first fusible component 330 is usually made of a material with a lower melting point, such as PP, PVC and other materials.
  • the first fusible component 330 When a fire does not occur (the temperature is low), the first fusible component 330 is in a non-melted state, the first fusible component 330 compresses the first elastic valve body 320, the thickness of the first elastic valve body 320 decreases, and accumulation Elastic potential energy. There is a gap for gas circulation between the first elastic valve body 320 and the first opening 3102. Oxygen can flow normally through the gap.
  • the thickness direction of the first elastic valve body 320 is the long axis direction of the fire prevention device.
  • the first fusible component 330 When a fire occurs (high temperature), the first fusible component 330 is in a molten state, and the first fusible component 330 cannot continue to support the first elastic valve body 320, and the equilibrium state of the first elastic valve body 320 is broken. At this time , the first elastic valve body 320 will release at least part of the elastic potential energy.
  • the thickness of the first elastic valve body 320 increases and contacts the first end surface of the accommodation cavity 3101, where the first opening 3102 is located on the first end surface, and the first elastic valve body 320 is The valve body 320 covers the first opening 3102 so that the first opening 3102 is in a closed state, oxygen cannot pass through the first opening 3102, and the oxygen gas path is blocked.
  • the first fusible component 330 when the first fusible component 330 is in a non-molten state, the first fusible component 330 The member 330 compresses the first elastic valve body 320, the thickness of the first elastic valve body 320 is reduced, and there is a gap for gas flow between the first opening 3102 and the first elastic valve body 320; in the event of a fire, the temperature of the fusible component When it reaches the melting point, it will be in a molten state, and the first elastic valve body 320 releases at least part of the elastic potential energy, and the first elastic valve body 320 contacts the first end surface of the accommodation cavity 3101, so that the first opening 3102 is in a closed state, thereby cutting off Oxygen passage to prevent oxygen from continuously leaking out and causing the fire to spread. Since the first elastic valve body 320 has oxidation resistance, the problem of oxidation of the first elastic valve body 320 is avoided, and the durability and safety factor of the device are improved.
  • the housing 10 includes a first connection part 3104 and a second connection part 3105; the first connection part 3104 has a first through hole 3106, and the The first through hole 3106 is connected to the first opening 3102; the second connecting part 3105 has a second through hole 3107, and the second through hole 3107 is connected to the second opening 3103; the first fusible The member 330 is located in the first through hole 3106, and one end of the first fusible member 330 extends to form at least two reinforcing ribs 3108, and the reinforcing ribs 3108 are connected to the wall of the first through hole 3106; The other end of the first fusible member 330 is in contact with the side of the first elastic valve body 320 close to the first opening 3102 .
  • the housing 10 includes a first connecting portion 3104 and a second connecting portion 3105.
  • the first connecting portion 3104 and the second connecting portion 3105 are extension structures on the housing 10.
  • the first connection part 3104 and the second connection part 3105 and the main body of the housing 10 can be made by an integral molding process, or they can be made separately and then assembled by bonding or welding.
  • the first connecting part 3104 has a first through hole 3106 that communicates with the first opening 3102.
  • the second connecting part 3105 has a second through hole 3107 that communicates with the second opening 3103.
  • the first connection part 3104 and the second connection part 3105 are used to connect the oxygen therapy device or the patient's pipeline.
  • the first connection part 3104 is connected to the pipeline at the oxygen therapy device end, and the second connection part 3105 is connected to the pipeline at the patient end.
  • Oxygen enters the accommodation chamber 3101 from the first connection part 3104, and is then transmitted to the patient end through the second connection part 3105.
  • the second connection part 3105 may also be connected to the pipeline at the oxygen therapy device end, and the first connection part 3104 may be connected to the pipeline at the patient end, which is not limited in the embodiment of the present disclosure.
  • one end of the first fusible member 330 extends to form at least two reinforcing ribs 3108 .
  • the first fusible member 330 is located in the first through hole 3106.
  • the first fusible member 330 adopts a rod-shaped structure.
  • the first fusible member 330 and the reinforcing rib 3108 are made of the same material.
  • the reinforcing rib 3108 is connected to the hole wall of the first through hole 3106, thereby realizing the installation and fixation of the first fusible component 330.
  • the reinforcing rib 3108 is connected to the wall of the first through hole 3106.
  • the connection method of the walls of the through hole 3106 may be welding or bonding.
  • the other end of the first fusible member 330 is in contact with the side of the first elastic valve body 320 close to the first opening 3102, so that the first elastic valve body 320 can be compressed to reduce its thickness, ensuring that the first elastic valve body 320 is in contact with the first elastic valve body 320.
  • the first fusible member 330 and the reinforcing ribs 3108 are in a molten state, the first fusible member 330 cannot continue to support the first elastic valve body 320, and the equilibrium state of the first elastic valve body 320 is affected. Break, at this time, the first elastic valve body 320 will release at least part of the elastic potential energy, the thickness of the first elastic valve body 320 increases and contacts the first end surface of the accommodation cavity 3101, so that the first opening 3102 is in a closed state, and the oxygen Unable to pass through the first opening 3102, the oxygen gas path is blocked.
  • the first fusible member 330 is located between the first elastic valve body 320 and the first end surface, and the first fusible member 330 is connected to the first elastic valve body 320 .
  • the side of the valve body 320 close to the first opening 3102 is in contact with the valve body 320 .
  • the first fusible member 330 is located between the first elastic valve body 320 and the first end surface.
  • One end of the first fusible component 330 can be connected to the cavity wall or the first end surface of the accommodation cavity 3101, and the specific connection method can be bonding or snapping.
  • the other end of the first fusible member 330 is in contact with the side of the first elastic valve body 320 close to the first opening 3102 .
  • the first fusible component 330 remains flush with the first opening 3102 and does not block the first opening 3102 and avoid affecting the oxygen transmission rate.
  • the first fusible component 330 When a fire does not occur (the temperature is low), the first fusible component 330 is in a non-melted state, the first fusible component 330 compresses the first elastic valve body 320, and the thickness of the first elastic valve body 320 decreases and accumulates elastic potential energy. , there is a gap for gas circulation between the first elastic valve body 320 and the first opening 3102, and oxygen can flow normally through the gap.
  • the first fusible component 330 When a fire occurs (high temperature), the first fusible component 330 is in a molten state, and the first fusible component 330 cannot continue to support the first elastic valve body 320, and the equilibrium state of the first elastic valve body 320 is broken. At this time , the first elastic valve body 320 will release at least part of the elastic potential energy. The thickness of the first elastic valve body 320 increases and contacts the first end surface, so that the first opening 3102 is in a closed state, and oxygen cannot pass through the first opening 3102. The airway is blocked.
  • the number of the first fusible members 330 is two, and the two first fusible members 30 are symmetrically arranged on the first end surface.
  • the number of first fusible members 330 is two, and the two first fusible members 330 are The melting member 330 is symmetrically arranged on the first end face of the accommodation cavity 3101. That is to say, on both axial sides of the first opening 3102, the two first fusible members 330 are symmetrically arranged, which can achieve stable support for the first elastic valve body 320 and avoid the problem of deflection of the first elastic valve body 320. , ensuring the sealing effect between the first elastic valve body 320 and the first opening 3102.
  • the fire protection device further includes a support member 340; the support member 340 is located in the accommodation cavity 3101 and is connected to the cavity wall of the accommodation cavity 3101; The support member 340 is in contact with the side of the first elastic valve body 320 away from the first opening 3102 .
  • the first elastic valve body 320 is positioned in the accommodation cavity 3101 , and a partition or positioning structure can be provided in the accommodation cavity 3101 to position and fix the first elastic valve body 320 .
  • the first elastic valve body 320 can be positioned and fixed through the support member 340.
  • the support member 340 is located in the accommodation cavity 3101.
  • the shape of the support member 340 can be rod-shaped, plate-shaped, etc.
  • the support member 340 is connected to the cavity wall of the accommodating cavity 3101, and can be assembled by bonding, welding, or other methods.
  • the support member 340 is in contact with the side of the first elastic valve body 320 away from the first opening 3102, and the first fusible member 330 is in contact with the side of the first elastic valve body 320 close to the first opening 3102.
  • the first elastic valve body 320 is in a compressed state and its thickness is reduced, thereby forming a gap for gas flow between the first elastic valve body 320 and the first opening 3102.
  • the support member 340 is provided with a first positioning portion 3401 at one end close to the first elastic valve body 320, and the first elastic valve body 320 is away from the first opening 3102.
  • a second positioning part 3201 is provided on one side, and the first positioning part 3401 and the second positioning part 3201 are positioned and matched.
  • the support member 340 is in contact with the side of the first elastic valve body 320 away from the first opening 3102.
  • the support member 340 and the first elastic valve body 320 are offset.
  • a first positioning portion 3401 is provided at one end of the support member 340 close to the first elastic valve body 320, and a first positioning portion 3401 is provided at the side of the first elastic valve body 320 away from the first opening 3102.
  • the first positioning part 3401 can be a boss, and correspondingly, the second positioning part 3201 can be a groove, and the groove matches the shape of the boss; similarly, the first positioning part 3401 can be a groove, and the second positioning part 3201 can be a groove. 3201 can be a boss.
  • the number of bosses and grooves can be selected according to the size of the support member 340 and the first elastic valve body 320, which is not limited in the embodiment of the present disclosure.
  • the outer side wall of the first connecting part 3104 and/or the outer side wall of the second connecting part 3105 is provided with at least one clamping part 3109 , and the clamping part 3109 is used to connect with The oxygen therapy device or the pipeline at the patient end is clamped.
  • the first connection part 3104 and the second connection part 3105 are used to connect the oxygen therapy device or the pipeline at the patient end.
  • the pipeline of the oxygen therapy device usually uses a conduit, which is sleeved on the outside of the first connecting part 3104 and the second connecting part 3105.
  • the outer wall of the connecting portion 3104 and/or the outer wall of the second connecting portion 3105 is provided with at least one snap portion 3109.
  • the snap portion 3109 is in the shape of a trumpet.
  • the snap-in part 3109 is snap-fitted with the conduit, ensuring the airtightness between the conduit and the first connection part 3104 and/or the second connection part 3105, and avoiding oxygen leakage question.
  • the number of latching parts 3109 can be selected according to the sizes of the first connecting part 3104 and the second connecting part 3105.
  • the fire protection device further includes a second elastic valve body 350 and a second fusible member 360; the second elastic valve body 350 is arranged opposite to the second opening 3103. ;
  • the second fusible component 360 is located in the housing 10 and connected to the housing 10 , and the second fusible component 360 and the second elastic valve body 350 are close to the second opening 3103
  • the second elastic valve body 350 is in contact with one side, wherein the second elastic valve body 350 has oxidation resistance;
  • the support member 340 is located between the first elastic valve body 320 and the second elastic valve body 350 and is respectively connected with the first elastic valve body 320 and the second elastic valve body 350.
  • the first elastic valve body 320 and the second elastic valve body 350 are in contact; when the second fusible member 360 is in a non-melted state, the second fusible member 360 compresses the second elastic valve body 350. There is a gap for gas circulation between the second opening 3103 and the second elastic valve body 350; when the second fusible component 360 is in a molten state, the second elastic valve body 350 releases at least Part of the elastic potential energy, the second elastic valve body 350 contacts the second end surface of the accommodation cavity 3101, so that the second opening 3103 is in a closed state, wherein the second opening is disposed on the second End face.
  • the second elastic valve body 350 is provided at the second opening 3103.
  • Fire protection devices provide double protection.
  • the second elastic valve body 350 is positioned in the accommodation cavity 3101, and the second elastic valve body 350 is opposite to the second opening 3103.
  • a partition or positioning structure can be provided in the accommodation cavity 3101 to position and fix the second elastic valve body 350 .
  • the oxygen passage is opened or closed by cooperation between the second elastic valve body 350 and the second opening 3103 .
  • the second elastic valve body 350 has an oxidation resistance
  • the second elastic valve body 350 can be made of materials such as silicone or rubber that can be compressed and store elastic potential energy.
  • both the first elastic valve body 320 and the second elastic valve body 350 use silicone springs, which have a spiral appearance of a traditional metal spring and are easy to compress and release elastic potential energy. Compared with traditional metal springs, The spring has strong oxidation resistance.
  • the second fusible component 360 is disposed in the housing 10 and connected to the housing 10 .
  • the housing 10 supports and fixes the second fusible component 360 .
  • the second fusible component 360 and the housing 10 can be assembled by bonding or snapping.
  • the second fusible member 360 contacts the side of the second elastic valve body 350 close to the second opening 3103 to support the second elastic valve body 350 .
  • the second fusible component 360 is usually made of a material with a lower melting point, such as PP, PVC and other materials.
  • the support member 340 is located between the first elastic valve body 320 and the second elastic valve body 350, and is in contact with the first elastic valve body 320 and the second elastic valve body 350 respectively.
  • the second fusible member 360 may be located in the second through hole 3107, and one end of the second fusible member 360 extends to form at least two reinforcing ribs 3108.
  • the second fusible member 360 adopts a rod-shaped structure.
  • the reinforcing rib 108 is connected to the wall of the second through hole 3107, thereby realizing the installation and fixation of the second fusible member 360.
  • the reinforcing rib 3108 is connected to the wall of the second through hole 3107.
  • the method can be welding or bonding, etc.
  • the other end of the second fusible member 360 is in contact with the side of the second elastic valve body 350 close to the second opening 3103, so that the second elastic valve body 350 can be compressed to reduce its thickness, ensuring that the second elastic valve body 350 is in contact with the second opening 3103. There is a gap for gas circulation between the second openings 3103 .
  • the second fusible member 360 may also be located between the second elastic valve body 350 and the second end surface.
  • One end of the second fusible component 360 can be connected to the cavity wall or the second end surface of the accommodation cavity 3101, and the specific connection method can be bonding or snapping.
  • the other end of the second fusible member 360 is in contact with the side of the second elastic valve body 350 close to the second opening 3103 .
  • the second fusible component 360 remains flush with the second opening 3103 and will not block the second opening 3103 and avoid affecting the oxygen transmission rate.
  • the first fusible component 330 and the second fusible component 360 are in a non-melted state, the first fusible component 330 compresses the first elastic valve body 320, and the second fusible component 360
  • the second elastic valve body 350 is compressed, the thicknesses of the first elastic valve body 320 and the second elastic valve body 350 are reduced and elastic potential energy is accumulated.
  • the first fusible component 330 and the second fusible component 360 are in a molten state, the first fusible component 330 cannot continue to support the first elastic valve body 320, and the second fusible component 360 cannot continue to support the first elastic valve body 320.
  • the equilibrium state of the first elastic valve body 320 and the second elastic valve is broken.
  • the first elastic valve body 320 and the second elastic valve will release at least part of the elastic potential energy, and the first elastic valve body 320 will release at least part of the elastic potential energy.
  • the thickness of the valve body 320 and the second elastic valve increases and contacts the first end surface and the second end surface respectively, so that the first opening 3102 and the second opening 3103 are in a closed state, and oxygen cannot pass through the first opening 3102 and the second opening. 3103, the oxygen gas path is blocked.
  • the first fusible component 330 and the second fusible component 360 melts when a fire occurs (higher temperature). , which can temporarily block the air path to prevent oxygen leakage and improve the reliability of the fire prevention device.
  • the first opening 3102 and the second opening 3103 are both in a closed state, providing double sealing guarantee and greatly improving the safety factor of the fire prevention device.
  • the disclosed embodiment also discloses a third type of oxygen therapy device, including a third type of fire prevention device.
  • oxygen therapy equipment usually consists of three parts: an oxygen generating device (such as an oxygen tank, an oxygen concentrator, etc.), an interface used to deliver oxygen to the patient (such as a nasal oxygen tube, a mask, etc.), and a connection between the generating device and the patient interface. pipeline.
  • a fire protection device is installed in series in the pipeline between the oxygen generating device and the patient interface.
  • a third fire prevention device is connected in series in the pipeline of the third oxygen therapy device.
  • the first fusible component 330 compresses the first elastic valve body 320 , the thickness of the first elastic valve body 320 is reduced, and there is a gap for gas circulation between the first opening 3102 and the first elastic valve body 320; in the event of a fire, the fusible component will be in a molten state when the temperature reaches the melting point, The first elastic valve body 320 releases at least part of the elastic potential energy.
  • the first elastic valve body 320 contacts the first end surface of the accommodation cavity 3101.
  • the first elastic valve body 320 covers the first opening 3102 so that the first opening 3102 is in a closed state. , thereby cutting off the oxygen path and preventing the continued leakage of oxygen from causing the fire to spread. Since the first elastic valve body 320 has oxidation resistance, oxidation of the first elastic valve body 320 is avoided. problems and improve the durability and safety factor of the device.
  • Embodiments of the present disclosure also disclose a third ventilation therapy system, including a third oxygen therapy device.
  • the third ventilation therapy system includes a control device and a third oxygen therapy device.
  • the control device is used to control the oxygen supply amount, working time, etc. of the oxygen therapy device.
  • the control device can be an electronic device or an electronic device. components, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile Internet device, a robot, a wearable device, etc., which are not specifically limited in the embodiments of this disclosure.
  • the third ventilation therapy system includes a third oxygen therapy device, and a third fire prevention device is connected in series in the pipeline of the third oxygen therapy device.
  • the first fusible component 330 When the first fusible component 330 is in a non-melted state , the first fusible member 330 compresses the first elastic valve body 320, the thickness of the first elastic valve body 320 is reduced, and there is a gap for gas flow between the first opening 3102 and the first elastic valve body 320; in the event of a fire, When the temperature of the fusible component reaches the melting point, it will be in a molten state.
  • the first elastic valve body 320 releases at least part of the elastic potential energy.
  • the first elastic valve body 320 contacts the first end surface of the accommodation cavity 3101 and covers it.
  • the first opening 3102 is in a closed state, thereby cutting off the oxygen passage and preventing the continued leakage of oxygen from causing the fire to spread. Since the first elastic valve body 320 has oxidation resistance, the problem of oxidation of the first elastic valve body 320 is avoided, and the durability and safety factor of the device are improved.
  • the fire prevention device includes: a housing 10, a first moving rod 420, a first fusible member 430, a first valve body 440 and The first elastic member 450; the housing 10 has a fluid channel 4101, the fluid channel 4101 is provided with a first narrowing part 4102 and a second narrowing part 4103, the first moving rod 420, the first fusible The member 430, the first valve body 440 and the first elastic member 450 are all disposed in the fluid channel 4101; the first fusible member 430 is disposed at one end of the fluid channel 4101 and in contact with the inner wall of the fluid channel 4101.
  • the first moving rod 420 is slidingly connected to the inner wall of the fluid channel 4101, and the first fusible member 430 is provided on the first moving rod 420; the first valve body 440 is disposed on the The first narrowed portion 4102 is slidably connected to the inner wall of the fluid channel 4101.
  • the first valve body 440 is connected to the first moving rod 420, and the other end of the first valve body 440 is provided with The first elastic member 450 is in contact with the housing 10; the The first valve body 440 is provided with a first seal 4401 close to the first narrowing portion 4102; when the first valve body 440 is in an open state, the first fusible member 430 supports the first movement The rod 420 and the first valve body 440 are in the first position, the first seal 4401 is in clearance fit with the first narrowing portion 4102, and the fluid channel 4101 is in an open state; when the first elastic member 450 drives the first moving rod 420 and the first valve body 440 to slide to the second position, the first valve body 440 is in a closed state, the first seal 4401 and the first narrowing portion 4102 is engaged, and the fluid channel 4101 is in a closed state.
  • the fourth fire prevention device includes a housing 10 , a first moving rod 420 , a first fusible member 430 , a first valve body 440 and a first elastic member 450 .
  • the housing 10 can be made of materials that are not prone to chemical reactions with oxygen and are resistant to high temperatures, such as stainless steel or ceramic materials; it can also be made of fire-proof and flame-retardant materials.
  • the fluid channel 4101 adopts a structure with a thick middle and thin ends to facilitate connection with the pipeline at the oxygen therapy device end or the patient end.
  • the fluid channel 4101 transitions from the middle to both ends, and is provided with a first narrowing portion 4102 and a second narrowing portion 4103.
  • the first moving rod 420 , the first fusible component 430 , the first valve body 440 and the first elastic member 450 are all disposed in the fluid channel 4101 .
  • the fluid channel 4101 includes one opposite end and the other end.
  • the first fusible member 430 is disposed at one end of the fluid channel 4101, close to the opening of the fluid channel 4101.
  • the first fusible member 430 is connected to the inner wall of the fluid channel 4101.
  • the specific connection is The method can be snapping, bonding, etc.
  • the first fusible component 430 may be made of a material with a lower melting point, such as PP, PVC and other materials.
  • the first moving rod 420 is slidingly connected to the inner wall of the fluid channel 4101.
  • the axis of the first moving rod 420 coincides with the axis of the fluid channel 4101.
  • the first moving rod 420 is made of fire-proof and flame-retardant material.
  • the first fusible member 430 is disposed on the first moving rod 420 to support the first moving rod 420 in the fluid channel 4101 .
  • the first valve body 440 penetrates the first narrowing part 4102 and is slidingly connected with the inner wall of the fluid channel 4101. One end of the first valve body 440 is connected to the first moving rod 420.
  • the specific connection method may be clamping, bonding, etc.
  • the first valve body 440 is also made of fire-proof and flame-retardant material.
  • a first elastic member 450 is provided at the other end of the first valve body 440 .
  • the first elastic member 450 contacts the housing 10 to provide driving force for the first valve body 440 .
  • the first elastic member 450 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the first valve body 440 is provided with a first seal 4401 near the first narrowing portion 4102.
  • the first seal The member 4401 can be disposed on both sides of the first valve body 440 along its own axis. When the first valve body 440 slides relative to the housing 10, the first sealing member 4401 can block the first valve body 440 and the first narrowing portion 4102. gap between them, thereby closing the fluid channel 4101.
  • the first seal 4401 can be made of silicone, rubber or other materials, which can achieve a good sealing effect.
  • the first fusible member 430 When a fire does not occur (the temperature is low), the first fusible member 430 is in a non-molten state, has a certain rigidity, and can support the first moving rod 420 and the first valve body 440. At this time, the first moving rod 420 and the first valve body 440 are in the first position, the first valve body 440 is in the open state, the first seal 4401 and the first narrowing part 4102 are in clearance fit, the fluid channel 4101 is in the open state, and oxygen can be in the fluid channel 4101 Normal transmission.
  • the supporting forces exerted by the rod 420 and the first valve body 440 are in a balanced state.
  • the first fusible member 430 melts, and the first fusible member 430 cannot continue to support the first moving rod 420 and the first valve body 440, and the equilibrium state is broken.
  • the first moving rod 420 and the first valve body 440 will slide from the first position to the second position.
  • the first valve body 440 is in a closed state, and the first sealing member on the first valve body 440 4401 will engage with the first narrowing portion 4102, so that the fluid channel 4101 is in a closed state and oxygen cannot continue to be transported.
  • the first moving rod 420 can also be separated from the first valve body 440.
  • the first moving rod 420 continues to slide under the action of inertia and extends into the oxygen therapy device or the patient's pipeline, which can also cut off the oxygen path. function, further improving the safety factor of the fire protection device.
  • the cooperation of the first fusible member 430, the first moving rod 420, the first valve body 440 and the first elastic member 450 can automatically close the fluid channel 4101 in the event of a fire, cut off the oxygen channel, and avoid The continued leakage of oxygen caused the fire to spread.
  • the structure is simple, which reduces the manufacturing difficulty; there is no need to open holes in the first fusible component 430, and oxygen can be transmitted normally through the gap between the above components and the fluid channel 4101, reducing ventilation noise and avoiding errors in non-fire situations.
  • the occurrence of blocking the air path improves the stability of the fire protection device and ensures the treatment effect.
  • the first fusible member 430 is provided with a first snap-in portion 4301
  • the first moving rod 420 is provided with a first snap-in fitting portion 4201
  • the first snap-in fitting portion 4201 is provided in the first fusible member 430.
  • a fusible component 430 is engaged with the first moving rod 420 .
  • the first fusible member 430 is provided with a first snap portion 4301.
  • the first moving rod 420 is provided with a first snap-fitting portion 4201, and the first fusible member 430 is snap-fitted with the first moving rod 420.
  • the first snapping part 4301 may be a protrusion, and the first snapping fitting part 4201 may be a groove; correspondingly, the first snapping part 4301 may be a groove, and the first snapping fitting part 4201 may be a protrusion.
  • the side wall of the first moving rod 420 is provided with at least one first guide portion 4202
  • the inner wall of the fluid channel 4101 is provided with a first slide groove
  • the first slide groove is provided on the inner wall of the fluid channel 4101.
  • a guide portion 4202 is slidably engaged with the first slide groove.
  • the first moving rod 420 is slidingly connected to the inner wall of the fluid channel 4101 , and the side wall of the first moving rod 420 is opposite to the inner wall of the fluid channel 4101 .
  • At least one first guide part 4202 is provided on the side wall of the first moving rod 420.
  • the shape of the first guide part 4202 may be plate-shaped, spherical, etc.
  • a first chute is provided on the inner wall of the fluid channel 4101, and the extending direction of the first chute is consistent with the sliding direction of the first moving rod 420.
  • the first guide part 4202 is embedded in the first slide groove.
  • the first moving rod 420 When the first moving rod 420 slides relative to the fluid channel 4101, the first moving rod 420 can be lifted by the sliding fit between the first guide part 4202 and the first slide groove. Smoothness when sliding to avoid jamming and deflection problems.
  • the number of the first guide parts 4202 matches the number of the first chute.
  • two first guide parts 4202 are symmetrically provided on the side wall of the first moving rod 420.
  • the inner wall of the channel 4101 is symmetrically provided with two first slide grooves, which further improves the stability of the first moving rod 420 when sliding.
  • At least one second guide 4402 is provided on the side wall of the first valve body 440 , and a second slide groove is provided on the inner wall of the fluid channel 4101 .
  • the two guide parts 4402 are slidingly engaged with the second slide groove.
  • the first valve body 440 is slidingly connected to the inner wall of the fluid channel 4101 , and the side wall of the first valve body 440 is opposite to the inner wall of the fluid channel 4101 .
  • At least one second guide part 4402 is provided on the side wall of the first valve body 440.
  • the shape of the second guide part 4402 may be plate-shaped, spherical, etc.
  • a second chute is provided on the inner wall of the fluid channel 4101, and the extension direction of the second chute is consistent with the sliding direction of the first valve body 440.
  • the second guide part 4402 is embedded in the second slide groove.
  • the first valve body 440 When the first valve body 440 slides relative to the fluid channel 4101, the first valve body 440 can be lifted by the sliding fit between the second guide part 4402 and the second slide groove. Smoothness when sliding to avoid jamming and deflection problems.
  • the number of the second guide parts 4402 matches the number of the second slide grooves.
  • two second guide parts 4402 are symmetrically provided on the side wall of the first valve body 440.
  • Two second slide grooves are symmetrically provided on the inner wall of the channel 4101, which further improves the stability of the first valve body 440 when sliding.
  • a groove 4403 is provided at the other end of the first valve body 440, and the first elastic member 450 is at least partially located in the groove 4403; the first One end of the elastic member 450 is in contact with the bottom of the groove body 4403 , and the other end of the first elastic member 450 is in contact with the housing 10 .
  • the first elastic member 450 provides driving force for the first valve body 440 and the first moving rod 420 .
  • a groove body 4403 is provided at the other end of the first valve body 440.
  • the groove body 4403 can be formed by opening a hole or by integral injection molding.
  • the first elastic member 450 is at least partially located in the groove body 4403, and partially extends out of the groove body 4403.
  • One end of the first elastic member 450 is in contact with the bottom of the groove body 4403, and the other end of the first elastic member 450 is in contact with the shell.
  • the body 10 is in contact.
  • an installation space can be provided for the first elastic member 450 and play a certain limiting role for the first elastic member 450, so that the first elastic member 450 is less likely to deflect. , jamming problem and improve the stability of the fire protection device.
  • a mounting shaft 4404 is provided in the groove body 4403, and the mounting shaft 4404 is coaxially arranged with the groove body 4403; the first elastic member 450 is sleeved on The mounting shaft 4404.
  • the first elastic member 450 is embedded in the groove body 4403, and a mounting shaft 4404 is provided in the groove body 4403.
  • the mounting shaft 4404 is coaxially arranged with the groove body 4403.
  • the mounting shaft One end of 4404 is connected to the bottom of the groove, and the first elastic member 450 is sleeved on the mounting shaft 4404.
  • the first elastic member 450 will deform in a direction along the common axis of the installation shaft 4404 and the groove body 4403, making it less likely to cause deflection and jamming, further improving fire protection. device stability.
  • the housing 10 further includes a baffle 4104, which is disposed in the fluid channel 4101 and connected to the inner wall of the fluid channel 4101;
  • the first elastic member 450 is in contact with the baffle 4104.
  • the first elastic member 450 accumulates elastic potential energy under the joint action of the first valve body 440 and the housing 10.
  • the housing 10 is provided with a baffle 4104.
  • the baffle 4104 It is connected to the inner wall of the fluid channel 4101.
  • the specific connection method can be bonding, snapping, etc., or it can be made using an integrated molding process.
  • the shape of the baffle 4104 can be rectangular or semicircular. No. One end of the elastic member 450 is in contact with the first valve body 440, and the other end of the first elastic member 450 is in contact with the baffle 4104, and elastic potential energy is accumulated under the joint action of the first valve body 440 and the baffle 4104.
  • the end surface of the baffle 4104 is perpendicular to the deformation direction of the first elastic member 450, which is beneficial to improving the stability of the fire protection device.
  • the baffle 4104 can also be made of fire-proof and flame-retardant material.
  • the fire prevention device also includes a second moving rod 460, a second fusible member 470, a second valve body 480 and a second elastic member 490; the second moving rod 460.
  • the second fusible component 470, the second valve body 480 and the second elastic member 490 are all disposed in the fluid channel 4101; the second fusible component 470 is disposed at the other end of the fluid channel 4101 and connected with The inner wall of the fluid channel 4101 is connected; the second moving rod 460 is slidingly connected to the inner wall of the fluid channel 4101, and the second fusible member 470 is provided on the second moving rod 460; the second The valve body 480 penetrates the second narrowing portion 4103 and is slidingly connected to the inner wall of the fluid channel 4101.
  • the second valve body 480 is connected to the second moving rod 460.
  • the second valve The second elastic member 490 is provided at the other end of the body 480, and the second elastic member 490 is in contact with the housing 10; the second valve body 480 is provided with a second elastic member 490 near the second narrowing portion 4103.
  • the second seal 4801 when the second valve body 480 is in the open state, the second fusible member 470 supports the second moving rod 460 and the second valve body 480 is in the third position, the The second seal 4801 has a clearance fit with the second narrowing portion 4103, and the fluid channel 4101 is in an open state; the second elastic member 490 drives the second moving rod 460 and the second valve body 480 When sliding to the fourth position, the second valve body 480 is in a closed state, the second seal 4801 is engaged with the second narrowing portion 4103, and the fluid channel 4101 is in a closed state.
  • the second moving rod 460 , the second fusible member 470 , the second valve body 480 and the second elastic member 490 are all disposed in the fluid channel 4101 .
  • the fluid channel 4101 includes one opposite end and the other end.
  • the second fusible member 470 is disposed at the other end of the fluid channel 4101, close to the opening of the fluid channel 4101.
  • the second fusible member 470 is connected to the inner wall of the fluid channel 4101.
  • the connection method can be snapping, bonding, etc.
  • the second fusible component 470 may be made of a material with a lower melting point, such as PP, PVC and other materials.
  • the second moving rod 460 is slidingly connected to the inner wall of the fluid channel 4101.
  • the axis of the second moving rod 460 coincides with the axis of the fluid channel 4101.
  • the second moving rod 460 is made of fire-proof and flame-retardant material.
  • the second fusible member 470 is disposed on the second moving rod 460 to support the second moving rod 460 in the fluid channel 4101 .
  • the second valve body 480 penetrates the second narrowing portion 4103 and is slidably connected to the inner wall of the fluid channel 4101.
  • One end of the second valve body 480 is connected to the second moving rod 460.
  • the specific connection method may be clamping, bonding, etc.
  • the second valve body 480 is also made of fire-proof and flame-retardant material.
  • a second elastic member 490 is provided at the other end of the second valve body 480 .
  • the second elastic member 490 contacts the housing 10 to provide driving force for the second valve body 480 .
  • the second elastic member 490 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the second valve body 480 is provided with a second seal 4801 near the second narrowing portion 4103.
  • the second seal 4801 can be disposed on both sides of the second valve body 480 along its axis. When the second valve body 480 is relative to the shell When the body 10 slides, the second seal 4801 can block the gap between the second valve body 480 and the second narrowing portion 4103, thereby closing the fluid channel 4101.
  • the second seal 4801 can be made of silicone, rubber or other materials, which can achieve a good sealing effect.
  • the second fusible member 470 When a fire does not occur (the temperature is low), the second fusible member 470 is in a non-molten state, has a certain rigidity, and can support the second moving rod 460 and the second valve body 480. At this time, the second moving rod 460 and the second valve body 480 are in the third position, the second valve body 480 is in the open state, the second seal 4801 and the second narrowing part 4103 are in clearance fit, the fluid channel 4101 is in the open state, and oxygen can be in the fluid channel 4101 Normal transmission.
  • the second fusible member 470 melts, and the second fusible member 470 cannot continue to support the second moving rod 460 and the second valve body 480, and the equilibrium state is broken.
  • the second moving rod 460 and the second valve body 480 will slide from the third position to the fourth position.
  • the second valve body 480 is in a closed state, and the second seal on the second valve body 480 4801 will engage with the second narrowing portion 4103, so that the fluid channel 4101 is in a closed state and oxygen cannot continue to be transported.
  • the second moving rod 460 can also be separated from the first valve body.
  • the second moving rod 460 continues to slide under the action of inertia and extends into the oxygen therapy device or the patient's pipeline, which can also play a role in cutting off the oxygen passage.
  • the safety factor of the fire protection device is further improved.
  • the fluid channel 4101 By disposing moving rods and valve bodies at both ends of the fluid channel 4101, when at least one of the first narrowing portion 4102 and the second narrowing portion 4103 is engaged with the seal, the fluid channel 4101 can be closed to prevent oxygen leakage and lift Improve the reliability of fire protection devices.
  • the second fusible member 470 is provided with a second snap-in portion 4701
  • the second moving rod 420 is provided with a second snap-in fitting portion 4601
  • the second snap-in fitting portion 4601 is provided in the second fusible member 470.
  • the two fusible components 470 are engaged with the second moving rod 460 .
  • the second fusible member 470 is provided with a second snapping portion 4701
  • the second moving rod 460 is provided with a second snapping fitting portion 4601
  • the second fusible member 470 and The second moving rod 460 is engaged.
  • the second snapping part 4701 may be a protrusion
  • the second snapping fitting part 4601 may be a groove
  • the second snapping part 4701 may be a groove
  • the second snapping fitting part 4601 may be a protrusion.
  • the housing 10 is provided with a first pipeline joint 4105 and a second pipeline joint 4106.
  • the first pipeline joint 4105 and the second pipeline joint 4106 are respectively used to connect to the pipeline of the oxygen therapy device or the patient end; at least one third clamping portion 4107 is provided on the outer wall of the first pipeline connector 4105 and/or the second pipeline connector 4106.
  • the third clamping part 4107 is used for clamping with the oxygen therapy device or the pipeline at the patient end.
  • first pipeline connector 4105 and the second pipeline connector 4106 are respectively located on both sides of the fluid channel 4101 .
  • the first pipe joint 4105, the second pipe joint 4106 and the housing 10 can be an integrated structure, or can be made separately and then assembled.
  • the first pipeline connector 4105 and the second pipeline connector 4106 are used to communicate with the oxygen therapy device or the patient-side pipeline.
  • the oxygen therapy device or the patient-side pipeline can be connected to the first pipeline connector 4105 or the second pipeline connector 4106. Assembly is achieved by threaded connection or interference fit.
  • the first pipeline connector 4105 and the second pipeline connector 4106 can be symmetrically arranged on the housing 10.
  • one of the pipeline connectors is connected to the patient end, and the other pipeline connector is connected to the patient end.
  • the connector is connected to the end of the oxygen therapy device. Since the first pipeline connector 4105 and the second pipeline connector 4106 are symmetrically arranged, both the first pipeline connector 4105 and the second pipeline connector 4106 can be adapted to the oxygen therapy device end or the patient end, and the fire protection device will not be installed backwards. situation, greatly improving assembly efficiency.
  • the first pipeline connector 4105 and the second pipeline connector 4106 are used to connect the oxygen therapy device or the patient's pipeline.
  • the pipeline usually uses a conduit, and the conduit is sleeved on the outside of the first pipeline joint 4105 and the second pipeline joint 4106.
  • the outer wall of a pipe joint 4105 and/or the outer wall of the second pipe joint 4106 is provided with at least one third clamping portion 4107.
  • the shape of the third clamping portion 4107 is tooth-like.
  • the third snap The portion 4107 is snap-fitted with the conduit to ensure air tightness between the conduit and the first pipeline connector 4105 and/or the second pipeline connector 4106, thereby avoiding the problem of oxygen leakage.
  • the number of the third clamping parts 4107 can be selected according to the sizes of the first pipeline connector 4105 and the second pipeline connector 4106.
  • the first moving rod 420 and the first valve body 440 have an integral structure.
  • the first moving rod 420 and the first valve body 440 can be made by using an integrated mold. There will be no seam between the first moving rod 420 and the first valve body 440 , which greatly improves the efficiency of the first moving rod 420 . and the structural strength and aesthetics of the first valve body 440 . Moreover, when the first moving rod 420 and the first valve body 440 are switched between the first position and the second position, the integrated structure of the first moving rod 420 and the first valve body 440 has strong stability and is less prone to jamming and deflection. The problem of inclination greatly improves the stability of the protective device.
  • the first moving rod 420 and the first valve body 440 have a separate structure.
  • the first moving rod 420 and the first valve body 440 can be made separately and assembled by snapping or bonding. Of course, they can also be assembled under the action of the first fusible member 430 and the first elastic member 450 , only maintaining a contact relationship, once the first fusible member 430 melts, the first moving rod 420 and the first valve body 440 can be separated. The first moving rod 420 can also be separated from the first valve body 440. The first moving rod 420 continues to slide under the action of inertia and extends into the oxygen therapy device or the patient's pipeline, and can also play a role in cutting off the oxygen passage. The safety factor of the fire protection device is further improved.
  • the disclosed embodiment also discloses a fourth oxygen therapy device, including a fourth fire prevention device.
  • oxygen therapy equipment usually consists of three parts: an oxygen generating device (such as an oxygen tank, an oxygen concentrator, etc.), an interface used to deliver oxygen to the patient (such as a nasal oxygen tube, a mask, etc.), and a connection between the generating device and the patient interface. Pipeline.
  • a fire prevention device is provided in series in the pipeline between the oxygen generating device and the patient interface.
  • the fire prevention device has a fluid channel 4101.
  • the fluid channel 4101 is used to communicate with the oxygen therapy device or the patient's pipeline.
  • the fire protection device can control the fluid channel.
  • the opening or closing of 4101 controls the opening or closing of the oxygen therapy instrument pipeline.
  • a fourth fire prevention device is connected in series in the pipeline of the fourth oxygen therapy device.
  • the fourth fire prevention device includes: the housing 10, the first moving rod 420, the first fusible component 430, the first The valve body 440 and the first elastic member 450; the housing 10 has a fluid channel 4101, and the fluid channel 4101 is provided There is a first narrowing part 4102 and a second narrowing part 4103.
  • the first moving rod 420, the first fusible member 430, the first valve body 440 and the first elastic member 450 are all arranged in the fluid channel 4101;
  • the meltable component 430 is disposed at one end of the fluid channel 4101 and connected to the inner wall of the fluid channel 4101;
  • the first moving rod 420 is slidingly connected to the inner wall of the fluid channel 4101, and the first fusible component 430 is disposed on the first moving rod 420;
  • the valve body 440 penetrates the first narrowing part 4102 and is slidingly connected with the inner wall of the fluid channel 4101.
  • One end of the first valve body 440 is connected to the first moving rod 420, and the other end of the first valve body 440 is provided with a first elastic
  • the first elastic member 450 is in contact with the housing 10; the first valve body 440 is provided with a first sealing member 4401 close to the first narrowing portion 4102; when the first valve body 440 is in the open state, the first sealing member 4401 is provided.
  • the melting member 430 supports the first moving rod 420 and the first valve body 440 in the first position, the first seal 4401 is in clearance fit with the first narrowing portion 4102, and the fluid channel 4101 is in an open state; when the first elastic member 450 drives the first When a moving rod 420 and the first valve body 440 slide to the second position, the first valve body 440 is in a closed state, the first seal 4401 is engaged with the first narrowing portion 4102, and the fluid channel 4101 is in a closed state.
  • the fluid channel 4101 can be automatically closed in the event of a fire, cutting off the oxygen path to avoid continued leakage of oxygen causing fire. spread.
  • the structure is simple, which reduces the manufacturing difficulty; there is no need to open holes in the first fusible component 430, and oxygen can be transmitted normally through the gap between the above components and the fluid channel 4101, reducing ventilation noise and avoiding errors in non-fire situations.
  • the occurrence of blocking the air path improves the stability of the fire protection device and ensures the treatment effect.
  • the embodiment of the present disclosure also discloses a fourth ventilation therapy system, including a fourth oxygen therapy instrument.
  • the fourth ventilation therapy system includes a control device and a fourth oxygen therapy device.
  • the control device is used to control the oxygen supply amount, working time, etc. of the oxygen therapy device.
  • the control device may be an electronic device or an electronic device. components, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile Internet device, a robot, a wearable device, etc., which are not specifically limited in the embodiments of this disclosure.
  • the fourth ventilation therapy system includes a fourth oxygen therapy device, and a fourth fire prevention device is connected in series in the pipeline of the fourth oxygen therapy device.
  • the fire prevention device includes: a housing 10, a first moving rod 420.
  • the housing 10 has a fluid channel 4101, and the fluid channel 4101 is provided with a first narrowing portion 4102 and a second narrowing portion 4103.
  • a moving rod 420, the first fusible component 430, the first valve body 440 and the first elastic member 450 are all arranged on In the fluid channel 4101; the first fusible member 430 is disposed at one end of the fluid channel 4101 and connected to the inner wall of the fluid channel 4101; the first moving rod 420 is slidingly connected to the inner wall of the fluid channel 4101, and the first fusible member 430 is disposed at the On a moving rod 420; the first valve body 440 penetrates the first narrowing part 4102 and is slidingly connected with the inner wall of the fluid channel 4101. One end of the first valve body 440 is connected to the first moving rod 420.
  • the first valve body 440 A first elastic member 450 is provided at the other end, and the first elastic member 450 is in contact with the housing 10; a first sealing member 4401 is provided near the first narrowing portion 4102 of the first valve body 440; in the first valve body 440 When in the open state, the first fusible member 430 supports the first moving rod 420 and the first valve body 440 in the first position, the first seal 4401 and the first narrowing portion 4102 are in clearance fit, and the fluid channel 4101 is in the open state; When the first elastic member 450 drives the first moving rod 420 and the first valve body 440 to slide to the second position, the first valve body 440 is in a closed state and the first seal 4401 is engaged with the first narrowing portion 4102, and the fluid channel 4101 is closed.
  • the fluid channel 4101 can be automatically closed in the event of a fire, cutting off the oxygen path to avoid continued leakage of oxygen causing fire. spread.
  • the structure is simple, which reduces the manufacturing difficulty; there is no need to open holes in the first fusible component 430, and oxygen can be transmitted normally through the gap between the above components and the fluid channel 4101, reducing ventilation noise and avoiding errors in non-fire situations.
  • the occurrence of blocking the air path improves the stability of the fire protection device and ensures the treatment effect.
  • a fifth fire prevention device including: a housing 10, a first positioning member 520, and a first seal 530; there is a fluid in the housing 10 Channel 5101.
  • a first opening 5102 and a second opening 5103 are provided on opposite sides of the fluid channel 5101. The first opening 5102 and the second opening 5103 are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end.
  • the first positioning member 520 is disposed in the fluid channel 5101 and connected to the housing 10; the first sealing member 530 is sleeved on the first positioning member 520, and the first sealing member 530 has oxidation resistance; at the first temperature, the first seal 530 is in clearance fit with the inner wall of the fluid channel 5101, and the fluid channel 5101 is in an open state; at the second temperature, the first seal The component 530 increases in volume and fits the inner wall of the fluid channel 5101, and the fluid channel 5101 is in a closed state; wherein the second temperature is higher than the first temperature.
  • the fifth fire prevention device includes a housing 10, a first positioning member 520, and a first sealing member 530.
  • the housing 10 can It is better to use materials such as plastic that are not prone to chemical reactions with oxygen.
  • the fluid channel 5101 is provided with a first opening 5102 and a second opening 5103.
  • the first opening 5102 and the second opening 5103 can be located on opposite sides of the fluid channel 5101.
  • the first opening 5102 and the second opening 5103 are provided in the housing 10.
  • the axes of the openings 5103 are collinear; the first opening 5102 and the second opening 5103 can also be arranged at an angle on the fluid channel 5101.
  • the first opening 5102 and the second opening 5103 are respectively used to communicate with the oxygen therapy device or the patient-side pipeline.
  • the first opening 5102 is connected to the oxygen therapy device-side pipeline
  • the second opening 5103 is connected to the patient-side pipeline.
  • Oxygen flows from the An opening 5102 enters the fluid channel 5101, and is then transmitted to the patient through a second opening 5103.
  • the second opening 5103 may also be connected to the pipeline at the oxygen therapy device end, and the first opening 5102 may be connected to the pipeline at the patient end. This is not limited in the embodiment of the present disclosure.
  • At least one toothed protrusion is provided on the outer wall of the housing 10 .
  • the toothed protrusion is used for clamping with the oxygen therapy device or the pipeline at the patient end.
  • the pipeline of the oxygen therapy device usually uses a conduit, which is sleeved on the outer wall of the housing 10.
  • at least one tooth-shaped protrusion is provided on the outer wall of the housing 10.
  • the tooth-shaped protrusions are engaged with the conduit, ensuring the airtightness between the conduit and the housing 10 and avoiding the problem of oxygen leakage.
  • the number of tooth-shaped protrusions can be selected according to the size of the housing 10 .
  • the first positioning member 520 is disposed in the fluid channel 5101 and is connected to the housing 10 .
  • the first positioning member 520 and the housing 10 may be connected by snapping, welding, or bonding.
  • the first positioning member 520 only occupies a small part of the space of the fluid channel 5101 and does not hinder the transmission of gas in the fluid channel 5101.
  • the first sealing member 530 is sleeved on the first positioning member 520.
  • the first positioning member 520 is used to fix the first sealing member 530 in the fluid channel 5101.
  • the first sealing member 530 and the first positioning member 520 are coaxially arranged.
  • the common axis of the first seal 530 and the first positioning member 520 may also coincide with the long axis of the fluid channel 5101.
  • the first seal 530 has a first state and a second state.
  • the first seal 530 When the first seal 530 is in the first state, the volume is small. There is a gap between the outer surface of the first seal 530 and the inner wall of the fluid channel 5101, and the gas can Transmit normally through this gap.
  • the first sealing member 530 When the first sealing member 530 is in the second state, the volume increases, and the outer surface of the first sealing member 530 is in contact with the inner wall of the fluid channel 5101 with a certain amount of interference, so that the fluid channel 5101 is in a closed state.
  • the fluid channel 5101 By switching the first seal 530 from the first state to the second state, the fluid channel 5101 can be controlled to switch from the open state to the closed state, thereby blocking the passage of oxygen.
  • the first seal 530 has oxidation resistance. Even if it is exposed to an oxygen-rich environment for a long time, it is not prone to aging and rust, which will avoid affecting the treatment effect. Improved the stability
  • the first seal 530 can switch from the first state to the second state according to the temperature. When no fire occurs, the fire protection device is at the first temperature.
  • the first temperature may be any temperature value before the volume of the first seal 530 increases, or it may be a temperature range. At the first temperature, the first seal 530 is in the above-mentioned first state and has a small volume. There is a gap between the outer surface of the first seal 530 and the inner wall of the fluid channel 5101. The fluid channel 5101 is in an open state and gas can pass through. This gap is transmitted normally.
  • the fire prevention device When a fire occurs, the fire prevention device is at a second temperature, and the second temperature is higher than the first temperature.
  • the second temperature can be any temperature value that can increase the volume of the first seal 530, or it can be a temperature range.
  • the first sealing member 530 At the second temperature, the first sealing member 530 is in the above-mentioned second state, and the volume increases.
  • the outer surface of the first sealing member 530 is in contact with the inner wall of the fluid channel 5101 and has a certain amount of interference, so that the fluid channel 5101 is closed.
  • the fifth fire prevention device includes: a housing 10, a first positioning member 520 and a first seal 530; the housing 10 has a fluid channel 5101, and first openings are provided on opposite sides of the fluid channel 5101 5102 and the second opening 5103.
  • the first opening 5102 and the second opening 5103 are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the first positioning member 520 is provided in the fluid channel 5101 and is connected to the housing 10;
  • a sealing member 530 is sleeved on the first positioning member 520, and the first sealing member 530 has oxidation resistance.
  • the fire protection device When a fire does not occur, the fire protection device is at the first temperature, the first seal 530 is in clearance fit with the inner wall of the fluid channel 5101, and the fluid channel 5101 is in an open state; when a fire occurs, the fire protection device is at the second temperature, and the first seal 530 increases in volume and fits the inner wall of the fluid channel 5101, and the fluid channel 5101 is in a closed state, thereby cutting off the oxygen passage and preventing the continued leakage of oxygen from causing the fire to spread, wherein the second temperature is higher than the first temperature. Since the first sealing member 530 has oxidation resistance, the problem of oxidation of the first sealing member 530 is avoided, and the durability and safety factor of the fire prevention device are improved.
  • the first seal 530 is a thermotropic shape memory plastic; at the second temperature, the first seal 530 expands due to heat and interacts with the fluid channel.
  • the inner wall of 5101 is in contact with each other, and the fluid channel 5101 is in a closed state.
  • the first seal 530 may be a thermotropic shape memory plastic.
  • the thermotropic shape memory plastic is a heat-sensitive functional material that can be used at room temperature. It can be stored in a certain shape for a long time and can expand rapidly when heated.
  • thermoforming Shape memory plastics can specifically include polyurethane elastomer, polynorbornene, trans-1,4-polyisoprene, styrene/butadiene copolymer, cross-linked polyethylene materials, etc.
  • the first seal 530 When no fire occurs, the first seal 530 can be stored in a certain shape for a long time. There is a gap between the outer surface of the first seal 530 and the inner wall of the fluid channel 5101. The fluid channel 5101 is in an open state, and gas can pass through the gap normally. transmission.
  • the first sealing member 530 When a fire occurs, the first sealing member 530 rapidly expands when heated, and the volume increases. The outer surface of the first sealing member 530 is in contact with the inner wall of the fluid channel 5101 and has a certain amount of interference, so that the fluid channel 5101 is in a closed state. .
  • thermotropic shape memory plastic By using the first seal 530 of a thermotropic shape memory plastic, in the event of a fire, the characteristics of the thermotropic shape memory plastic can be used to quickly close the fluid channel 5101, block the oxygen path, and prevent the continued leakage of oxygen from causing the fire to spread. At the same time, thermal shape memory plastic has good oxidation resistance. Even if it is in an oxygen-rich environment for a long time, it is not prone to rust and aging, which will avoid affecting the treatment effect. It also improves the stability and durability of the fire protection device. .
  • the inner wall of the fluid channel 5101 is provided with at least one annular protrusion 5104; at the second temperature, the annular protrusion 5104 abuts the first seal 530 , the fluid channel 5101 is in a closed state.
  • the inner wall of the fluid channel 5101 is provided with at least one annular protrusion 5104 , and the annular protrusion 5104 surrounds the outer surface of the first seal 530 .
  • the fluid channel 5101 is in an open state, and gas can be transmitted normally through the gap.
  • the first sealing member 530 rapidly expands when heated, and its volume increases.
  • the outer surface of the first sealing member 530 fits the annular protrusion 5104 with a certain amount of interference, so that the fluid channel 5101 is closed.
  • the first seal 530 does not need to expand too much and can also close the fluid channel 5101 by cooperating with the annular protrusion 5104, thereby improving the fire protection device. stability.
  • the inner wall of the fluid channel 5101 is provided with a first protruding structure 5105 and a second protruding structure 5106; the first protruding structure 5105 and the second protruding structure
  • the raised structures 5106 are respectively located at both ends of the first positioning member 520; the first raised structure 5105 is provided with a first positioning portion 5107, and the second raised structure 5106 is provided with a second positioning portion 5108. Both ends of the first positioning member 520 are respectively connected with the first positioning part 5107 and the second positioning part. 5108 card connection.
  • the first positioning member 520 is used to position and fix the first sealing member 530 .
  • the first positioning member 520 can be installed in the fluid channel 5101 in the following manner: a first protruding structure 5105 and a second protruding structure 5106 are provided on the inner wall of the fluid channel 5101.
  • the first protruding structure 5105 and the second protruding structure 5106 are They are spaced apart along the long axis of the fluid channel 5101 and are respectively located at both ends of the first positioning member 520; the first protruding structure 5105 and the second protruding structure 5106 only occupy a small part of the space of the fluid channel 5101 and will not hinder oxygen. normal transmission.
  • the first protrusion structure 5105 can be divided into an upper protrusion and a lower protrusion, with a gap between the upper protrusion and the lower protrusion; the second protrusion structure 5106 is the same as the first protrusion structure 5105.
  • a step-shaped positioning portion namely a first positioning portion 5107, is provided on the relatively close end surfaces of the upper protrusion and the lower protrusion; similarly, a second protrusion structure 5106 is provided with a second positioning portion.
  • Positioning part 5108 Both ends of the first positioning member 520 can be respectively embedded in the first positioning part 5107 and the second positioning part 5108 to achieve snap-fitting.
  • the inner wall of the fluid channel 5101 is provided with a mounting portion 5109, and the mounting portion 5109 is provided with a receiving groove 5110; one end of the first positioning member 520 is embedded in the inside the accommodating groove 5110.
  • a mounting portion 5109 is provided on the inner wall of the fluid channel 5101.
  • the mounting portion 5109 is connected to the inner wall of the fluid channel 5101 and can be assembled by welding, snapping or bonding.
  • the mounting portion 5109 and the inner wall of the fluid channel 5101 can also be assembled using
  • the one-piece structure has better structural strength; the mounting part 5109 can also be connected to the inner wall of the fluid channel 5101 using a connecting structure.
  • the mounting portion 5109 is provided with a receiving groove 5110, and one end of the first positioning member 520 is embedded in the receiving groove 5110 to achieve installation and fixation.
  • one end of the first positioning member 520 is provided with a snap-fitting portion, and the groove wall of the accommodation groove 5110 is provided with a snap-fitting portion.
  • One end of the first positioning member 520 is connected to The receiving groove 5110 is snap-fitted.
  • a snap-fitting portion is provided at one end of the first positioning member 520, and the groove wall of the receiving groove 5110 is provided with a snap-fitting portion, using The snap-in function of the snap-in part and the snap-in mating part realizes the stable assembly of the first positioning part 520 and the mounting part 5109.
  • one end of the first positioning member 520 is provided with external threads, so The groove wall of the accommodation groove 5110 is provided with internal threads, and one end of the first positioning member 520 is threadedly connected to the accommodation groove 5110 .
  • the first positioning member 520 and the mounting portion 5109 can also be assembled through threaded connection to facilitate disassembly.
  • One end of the first positioning member 520 is provided with external threads, and the groove wall of the receiving groove 5110 is provided with internal threads.
  • the threaded connection between the first positioning member 520 and the mounting portion 5109 can be achieved by rotating the first positioning member 520 or the housing 10 .
  • one end of the first positioning member 520 is interference-fitted with the receiving groove 5110 .
  • one end of the first positioning member 520 can also be assembled with the receiving groove 5110 through an interference fit, which is easy to install and has good stability.
  • the mounting portion 5109 is provided with at least one connecting rib 5111 , and the mounting portion 5109 is connected to the inner wall of the fluid channel 5101 through the connecting rib 5111 .
  • the mounting portion 5109 can also be connected to the inner wall of the fluid channel 5101 through a connecting rib 5111.
  • At least one connecting rib 5111 is provided on the mounting portion 5109, and one end of the connecting rib 5111 is connected to the inner wall of the fluid channel 5101.
  • the inner wall of the fluid channel 5101 is fixed, and the other end is fixed to the mounting portion 5109.
  • the fixing method can be welding or bonding.
  • connecting ribs 5111 can be provided on both sides of the mounting part 5109.
  • the number of connecting ribs 5111 can be selected according to the size of the fluid channel 5101 and the mounting part 5109. This is not the case in the embodiment of the present disclosure. Make limitations.
  • the mounting part 5109 is fixed in the fluid channel 5101 through the connecting rib 5111.
  • the mounting part 5109 will not block the oxygen passage, and oxygen can be transmitted normally through the gap between the connecting rib 5111 and the inner wall of the fluid channel 5101.
  • the fifth fire prevention device further includes a fusible member 540; the first seal 530 is an elastomer, and the fusible member 540 wraps the first seal 530 ;
  • the fusible component 540 compresses the first seal 530, and the fusible component 540 is in clearance fit with the inner wall of the fluid channel 5101, and the fluid channel 5101 is in the open state;
  • the fusible member 540 is in the molten state, the first seal 530 releases at least part of the elastic potential energy, and the first seal 530 increases in volume and sticks to the inner wall of the fluid channel 5101 Close, the fluid channel 5101 is in a closed state.
  • the first seal 530 may also be an elastomer, such as silicone or rubber, or other materials that can be compressed and store elastic potential energy. exist
  • the outer surface of the first sealing member 530 is wrapped with a fusible member 540.
  • the fusible member 540 may be made of a material with a lower melting point, such as PP, PVC and other materials. Due to the wrapping of the fusible component 540, the first seal 530 will not be exposed to an oxygen-rich environment to avoid oxidation; at the same time, the first seal 530 itself is not prone to oxidation and is not prone to oxidation and rust when exposed to oxygen for a long time. phenomenon to avoid affecting the treatment effect, while also improving the stability and durability of the fire protection device.
  • the fusible member 540 When a fire does not occur (the temperature is low), the fusible member 540 is in a non-melted state, and the fusible member 540 compresses the first sealing member 530, the volume of the first sealing member 530 decreases, and accumulates elastic potential energy, and the first sealing member 530
  • the volume of the component 530 refers to the volume perpendicular to the inner wall of the fluid channel 5101. There is a gap for gas circulation between the outer surface of the first seal 530 and the inner wall of the fluid channel 5101, and oxygen can circulate normally through the gap.
  • the fusible member 540 When a fire occurs (high temperature), the fusible member 540 is in a molten state, and the fusible member 540 cannot continue to wrap the first sealing member 530 , and the equilibrium state of the first sealing member 530 is broken. At this time, the first sealing member 530 At least part of the elastic potential energy will be released, the volume of the first sealing member 530 increases, and the outer surface of the first sealing member 530 contacts the inner wall of the fluid channel 5101, so that the fluid channel 5101 is in a closed state and the oxygen passage is blocked.
  • the fifth fire prevention device also includes a second positioning member 550 and a second sealing member 560; the second positioning member 550 is disposed in the fluid channel 5101 and is connected with the fluid channel 5101.
  • the housing 10 is connected, the first positioning member 520 is close to the first opening 5102, and the second positioning member 550 is close to the second opening 5103; the second sealing member 560 is sleeved on the first opening 5102.
  • Two positioning members 550, the second sealing member 560 has oxidation resistance; at the first temperature, the first sealing member 530 and the second sealing member 560 respectively have a gap with the inner wall of the fluid channel 5101 Cooperating, the fluid channel 5101 is in an open state; at the second temperature, the first seal 530 and the second seal 560 increase in volume and fit with the inner wall of the fluid channel 5101 respectively.
  • the fluid channel 5101 is in a closed state.
  • the fire prevention device Acts as double protection.
  • the second positioning member 550 is disposed in the fluid channel 5101 and is connected to the housing 10 .
  • the connection between the second positioning member 550 and the housing 10 may be snapping, welding, or bonding.
  • the second positioning member 550 only occupies a small part of the space of the fluid channel 5101 and does not hinder the transmission of gas in the fluid channel 5101.
  • the second sealing member 560 is sleeved on the second positioning member 550.
  • the second positioning member 550 For fixing the second sealing member 560 in the fluid channel 5101, the second sealing member 560 and the second positioning member 550 are coaxially arranged.
  • the common axis of the second seal 560 and the second positioning member 550 may also coincide with the long axis of the fluid channel 5101.
  • the second seal 560 has a first state and a second state.
  • the second seal 560 When the second seal 560 is in the first state, its volume is small. There is a gap between the outer surface of the second seal 560 and the inner wall of the fluid channel 5101, and the gas can Transmit normally through this gap.
  • the second sealing member 560 When the second sealing member 560 is in the second state, the volume increases, and the outer surface of the second sealing member 560 is in contact with the inner wall of the fluid channel 5101 with a certain amount of interference, so that the fluid channel 5101 is in a closed state.
  • the fluid channel 5101 By switching the second seal 560 from the first state to the second state, the fluid channel 5101 can be controlled to switch from the open state to the closed state, thereby blocking the passage of oxygen.
  • the second seal 560 has oxidation resistance. Even if it is exposed to an oxygen-rich environment for a long time, it is not prone to rust and aging, which avoids affecting the treatment effect. It also improves
  • the second seal 560 can switch from the first state to the second state according to the temperature.
  • the fire protection device is at the first temperature.
  • the first temperature can be any temperature value before the volume of the second sealing member 560 increases, or it can also be a temperature range.
  • the second seal 560 is in the above-mentioned first state and has a small volume. There is a gap between the outer surface of the second seal 560 and the inner wall of the fluid channel 5101. The fluid channel 5101 is in an open state and gas can pass through. This gap is transmitted normally.
  • the fire protection device When a fire occurs, the fire protection device is at a second temperature, and the second temperature is higher than the first temperature.
  • the second temperature can be any temperature value that can increase the volume of the second seal 560, or it can be a temperature range.
  • the second sealing member 560 At the second temperature, the second sealing member 560 is in the above-mentioned second state, and its volume increases.
  • the outer surface of the second sealing member 560 is in contact with the inner wall of the fluid channel 5101 and has a certain amount of interference, so that the fluid channel 5101 is closed.
  • the first positioning member 520 is close to the first opening 5102 and the second positioning member 550 is close to the second opening 5103.
  • the first sealing member 530 is close to the first opening 5102 and the second sealing member 560 is close to the second opening 5103.
  • the first seal 530 and the second seal 560 of thermotropic shape memory plastic can be used in the fluid channel 5101, or a combination of an elastomer and a fusible member 540 can be used.
  • the above two implementations The methods are all applicable to the solution of being symmetrically arranged at both ends of the fluid channel 5101.
  • the embodiment of the present disclosure also discloses a fifth ventilation treatment device, including a fifth fire prevention device.
  • ventilation therapy equipment includes a control device, an oxygen therapy device, and a gas pipeline.
  • the control device is used to control the oxygen supply amount, working time, etc. of the oxygen therapy device.
  • the control device can be an electronic device or a component of an electronic device. , such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile Internet device, a robot, a wearable device, etc., which are not specifically limited in the embodiments of this disclosure.
  • the fifth ventilation treatment device includes a fifth fire prevention device.
  • the fifth fire prevention device includes: a housing 10, a first positioning member 520 and a first sealing member 530; the housing 10 has a fluid channel 5101. , a first opening 5102 and a second opening 5103 are provided on opposite sides of the fluid channel 5101. The first opening 5102 and the second opening 5103 are respectively used to communicate with the oxygen therapy device or the pipeline at the patient end; the first positioning member 520 is provided on In the fluid channel 5101, and connected to the housing 10; the first sealing member 530 is sleeved on the first positioning member 520, and the first sealing member 530 has oxidation resistance.
  • the fire protection device When a fire does not occur, the fire protection device is at the first temperature, the first seal 530 is in clearance fit with the inner wall of the fluid channel 5101, and the fluid channel 5101 is in an open state; when a fire occurs, the fire protection device is at the second temperature, and the first seal 530 increases in volume and fits the inner wall of the fluid channel 5101, and the fluid channel 5101 is in a closed state, thereby cutting off the oxygen passage and preventing the continued leakage of oxygen from causing the fire to spread, wherein the second temperature is higher than the first temperature. Since the first sealing member 530 has oxidation resistance, the problem of oxidation of the first sealing member 530 is avoided, and the durability and safety factor of the fire prevention device are improved.
  • the fire prevention device includes: a housing 10 and a valve body 620; the housing 10 has a fluid channel 6101, and the fluid channel 6101 is provided with a first narrowing portion 6102 and a second narrowing portion 6103, and the valve body 620 is disposed in the fluid channel 6101; the valve body 620 is slidingly connected to the inner wall of the fluid channel 6101, and the valve body 620 is disposed in the fluid channel 6101.
  • the outer side wall of the body 620 is provided with at least one guide portion 630, and the guide portion 630 slides with the inner wall of the fluid channel 6101; the valve body 620 has a first position and a second position relative to the fluid channel 6101; When the valve body 620 is in the first position, the valve body 620 is in clearance fit with the first narrowing portion 6102 and the second narrowing portion 6103 respectively, and the fluid channel 6101 is in an open state; When the valve body 620 is in the second position, the valve body 620 Engaged with the first narrowing portion 6102 and/or the second narrowing portion 6103, the fluid channel 6101 is in a closed state.
  • the sixth fire protection device includes a housing 10 and a valve body 620 .
  • the housing 10 can be made of materials that are not prone to chemical reactions with oxygen and are resistant to high temperatures, such as stainless steel or ceramic materials; it can also be made of fire-proof and flame-retardant materials.
  • the fluid channel 6101 adopts a structure with a thick middle and thin ends to facilitate connection with the pipeline at the oxygen therapy device end or the patient end.
  • the fluid channel 6101 transitions from the middle to both ends, and is provided with a first narrowing portion 6102 and a second narrowing portion 6103.
  • the valve body 620 is disposed in the fluid channel 6101.
  • the valve body 620 is slidingly connected to the inner wall of the fluid channel 6101.
  • the axis of the valve body 620 coincides with the axis of the fluid channel 6101.
  • the valve body 620 is made of fire-proof and flame-retardant material, which can provide a stable barrier to the fluid channel 6101 in the event of a fire. interruption effect.
  • the outer wall of the valve body 620 is opposite to the inner wall of the fluid channel 6101.
  • the outer wall of the valve body 620 is provided with at least one guide portion 630.
  • the guide portion 630 is slidably matched with the inner wall of the fluid channel 6101, so that the valve body 620 can move relative to the fluid channel. When 6101 slides, it acts as a limit guide.
  • the guide part 630 may be a sliding piece, a boss, or other structures.
  • the number of guide portions 630 can be selected according to actual needs. As shown in Figure 50, in the embodiment of the present disclosure, a plurality of guide portions 630 are provided on the outer wall of the valve body 620, and the plurality of guide portions 630 are on the outside of the valve body 620. Evenly distributed on the wall, the guide portion 630 is in the shape of a hemispherical boss, which not only plays a good guiding and limiting role, but also reduces the sliding friction between the valve body 620 and the housing 10 .
  • the guide part 630 may be made of the same material as the valve body 620 , or may be made of a fire-retardant and wear-resistant material.
  • the guide part 630 and the valve body 620 can adopt an integrated structure, which has good structural strength and stability.
  • the guide portion 630 can also be manufactured separately from the valve body 620 and then assembled together by bonding or welding.
  • the valve body 620 has a first position and a second position relative to the fluid channel 6101.
  • the valve body 620 is switched from the first position to the second position by sliding.
  • the valve body 620 slides along the long axis direction of the fluid channel.
  • a driving component can be provided on the valve body 620 to drive the valve body 620 to slide relative to the fluid channel 6101.
  • the driving component can be a metal spring, a silicone component, or other components that can store elastic potential energy; a driving component such as a cylinder can also be provided on the valve body 620.
  • the mechanism controls the sliding of the valve body 620.
  • valve body 620 When the valve body 620 is in the first position, the valve body 620 is in clearance fit with the first narrowing part 6102 and the second narrowing part 6103 respectively, the fluid channel 6101 is in an open state, and oxygen can be transmitted normally in the fluid channel 6101.
  • the valve body 620 When the valve body 620 is in the second position, the valve body 620 and the first narrowing portion 6102 and/or Or the second narrowing part 6103 is engaged, the fluid channel 6101 is in a closed state, and oxygen cannot continue to be transmitted.
  • the valve body 620 is engaged with at least one of the first narrowing portion 6102 and the second narrowing portion 6103, both of which can block the oxygen passage.
  • the valve body 620 is engaged with the first narrowing portion 6102 and the second narrowing portion 6103. Joined at the same time, the sealing effect is better and the performance of the fire protection device is improved.
  • the guide portion 630 can play a limiting role when the valve body 620 slides relative to the fluid channel 6101, thereby preventing the valve body 620 from deflecting or jamming.
  • the problem of the plug ensures that the valve body 620 can accurately engage with the first narrowing portion 6102 and/or the second narrowing portion 6103, thereby improving the stability of the fire prevention device.
  • the sixth fire prevention device also includes: a first fusible member 640 and a first elastic member 650; the valve body 620 includes opposite first and second ends, The first end is close to the first narrowing part 6102, and the second end is close to the second narrowing part 6103; the housing 10 is provided with a fixing part 6104 close to the first narrowing part 6102.
  • the first end of the valve body 620 is provided with a first groove body 6201, and the first elastic member 650 is at least partially located in the first groove body 6201; one end of the first elastic member 650 is connected to the first groove body 6201; The bottom of a groove body 6201 is in contact, and the other end of the first elastic member 650 is in contact with the end surface of the fixed part 6104; the first fusible component 640 is provided at the first end of the valve body 620 , and is engaged with the fixed portion 6104 to support the valve body 620 in the first position; the first fusible member 640 melts, and the first elastic member 650 drives the valve body 620 to slide to In the second position, the second end of the valve body 620 is engaged with the second narrowing portion 6103, and the fluid channel 6101 is in a closed state.
  • the sixth fire prevention device further includes a first fusible member 640 and a first elastic member 650 .
  • the first fusible component 640 may be made of a material with a lower melting point, such as PP, PVC and other materials.
  • the first elastic member 650 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the valve body 620 includes opposite first and second ends, the first end is close to the first narrowing portion 6102 , and the second end is close to the second narrowing portion 6103 .
  • the housing 10 is provided with a fixing portion 6104 close to the first narrowing portion 6102.
  • the fixing portion 6104 and the housing 10 can be an integral structure; they can also be made separately, and the fixing portion 6104 is bonded, welded or snap-fitted with the housing. 10 Realize assembly.
  • the first elastic member 650 provides driving force for the valve body 620.
  • the first end of the valve body 620 is provided with a first groove body 6201, and the first elastic member 650 is at least partially located in the first groove body 6201.
  • the first groove body 6201 may be formed with the first end of the valve body 620 by opening a hole, or may be integrally formed by injection molding. At least part of the first elastic member 650 In the first groove body 6201, there is a part that extends out of the first groove body 6201. One end of the first elastic member 650 is in contact with the bottom of the first groove body 6201, and the other end of the first elastic member 650 is in contact with the fixed part. The end surface of 6104 close to the valve body 620 is in contact.
  • the first groove body 6201 By arranging the first groove body 6201 at the first end of the valve body 620, an installation space can be provided for the first elastic member 650, and a certain limiting effect can be exerted on the first elastic member 650, so that the first elastic member 650 is less likely to deflect. , jamming problem and improve the stability of the fire protection device.
  • the first fusible component 640 When a fire does not occur (the temperature is low), the first fusible component 640 is disposed at the first end of the valve body 620 and is engaged with the fixed portion 6104 to support the valve body 620 in the first position and the fluid channel 6101 is open. state.
  • the first fusible component 640 can be a hook, and the hook is engaged with the end surface of the fixing portion 6104 on the side facing away from the valve body 620, thereby maintaining the valve body 620 in the first position.
  • the first fusible component 640 melts, the valve body 620 loses the restraint of the first fusible component 640, and slides to the second position driven by the first elastic member 650.
  • the valve body 620 The second end of the fluid channel 6103 is engaged with the second narrowing portion 6103, and the fluid channel 6101 is in a closed state, so that oxygen cannot continue to be transmitted, thus preventing oxygen from continuously leaking out and causing the fire to spread.
  • a first mounting shaft 6202 is provided in the first tank 6201, and the first mounting shaft 6202 is coaxially arranged with the first tank 6201;
  • the first elastic member 650 is sleeved on the first mounting shaft 6202, and the first fusible component 640 is connected to the first mounting shaft 6202.
  • the first elastic member 650 is embedded in the first groove body 6201, and a first installation shaft 6202 is provided in the first groove body 6201.
  • the first installation shaft 6202 and the first A tank 6201 is arranged coaxially.
  • One end of the first installation shaft 6202 is connected to the bottom of the first tank 6201.
  • the other end of the first installation shaft 6202 is connected to the first fusible member 640.
  • the first installation shaft 6202 is connected to the first fusible member 640.
  • a fusible member 640 can be connected by bonding, snapping or other methods.
  • the first elastic member 650 is sleeved on the first mounting shaft 6202.
  • the first elastic member 650 will move along the first mounting shaft 6202 and the first groove body.
  • the directional deformation of 6201 in the direction of the common axis makes it less likely to cause deflection and jamming, further improving the stability of the fire protection device.
  • the second end of the valve body 620 is provided with a first seal 6203, and the first seal 6203 at least partially wraps the second end; in the valve When the body 620 is in the second position, the first seal 6203 is engaged with the second narrowing portion 6103, and the fluid channel 6101 is in a closed state.
  • the second end of the valve body 620 is used to communicate with the second narrowing portion. 6103 is connected, and a first seal 6203 is provided at the second end of the valve body 620.
  • the first seal 6203 can be made of silicone, rubber or other materials, which can achieve a good sealing effect.
  • the first sealing member 6203 at least partially wraps the second end, which can prevent the valve body 620 from directly contacting the second narrowing portion 6103 and improve the sealing effect.
  • the fire protection device further includes: a second fusible member 660 and a second elastic member 670;
  • the valve body 620 includes opposite first ends and second ends, so The first end is close to the first narrowing part 6102, and the second end is close to the second narrowing part 6103;
  • the second end of the valve body 620 is provided with a second groove 6204, and the second end is close to the second narrowing part 6103.
  • the elastic member 670 is at least partially located in the second groove body 6204; one end of the second elastic member 670 is in contact with the bottom of the second groove body 6204, and the other end of the second elastic member 670 is in contact with the second groove body 6204.
  • the housing 10 is in contact; the second fusible member 660 is provided on the first narrowing portion 6102 and is engaged with the first narrowing portion 6102.
  • the second fusible member 660 is provided with a Through the through hole of the fluid; the first end of the valve body 620 abuts the second fusible member 660 to support the valve body 620 in the first position; the second fusible member 660 melts , the second elastic member 670 drives the valve body 620 to slide to the second position, the first end of the valve body 620 is engaged with the first narrowing portion 6102, and the fluid channel 6101 is in a closed state .
  • the fire prevention device further includes a second fusible member 660 and a second elastic member 670 .
  • the second fusible component 660 may be made of a material with a lower melting point, such as PP, PVC and other materials.
  • the second elastic member 670 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the valve body 620 includes opposite first and second ends, the first end is close to the first narrowing portion 6102 , and the second end is close to the second narrowing portion 6103 .
  • the second elastic member 670 provides driving force for the valve body 620.
  • the second end of the valve body 620 is provided with a second groove body 6204, and the second elastic member 670 is at least partially located in the second groove body 6204.
  • the second groove body 6204 can be formed by opening a hole, or can be formed by integral injection molding.
  • the second elastic member 670 is at least partially located in the second groove body 6204, and partially extends out of the second groove body 6204.
  • One end of the second elastic member 670 is in contact with the bottom of the second groove body 6204.
  • the other end of 670 is in contact with the housing 10 .
  • the second fusible component 660 is disposed on the first narrowing portion 6102 and is engaged with the first narrowing portion 6102, A snap-in structure can be provided on the second fusible member 660 or the first narrowed portion 6102 to realize the snap-in connection between the second fusible member 660 and the first narrowed portion 6102.
  • a through hole for passing fluid can be provided on the second fusible member 660, and the size of the through hole can be selected according to actual needs. .
  • the first end of the valve body 620 is in contact with the second fusible member 660. Under the support of the second fusible member 660, the valve body 620 is in the first position, and the fluid channel 6101 is on.
  • the second fusible component 660 melts, the valve body 620 loses the restraint of the second fusible component 660, and the second elastic member 670 drives the valve body 620 to slide to the second position.
  • the first end of the body 620 is joined to the first narrowing portion 6102, and the fluid channel 6101 is in a closed state, so that oxygen cannot continue to be transmitted to avoid continued leakage of oxygen and the spread of the fire.
  • a second installation shaft 6205 is provided in the second tank 6204, and the second installation shaft 6205 is coaxially arranged with the second tank 6204;
  • the second elastic member 670 is sleeved on the second mounting shaft 6205.
  • the second elastic member 670 is embedded in the second groove body 6204, and a second installation shaft 6205 is provided in the second groove body 6204.
  • the second installation shaft 6205 and the third The two tank bodies 6204 are coaxially arranged, and one end of the second installation shaft 6205 is connected to the bottom of the second tank body 6204.
  • the second elastic member 670 is sleeved on the second installation shaft 6205. Under the common limiting action of the second installation shaft 6205 and the second groove body 6204, the second elastic member 670 will move along the second installation shaft 6205 and the second groove body.
  • the directional deformation of 6204 in the direction of the common axis makes it less prone to deflection and jamming problems, further improving the stability of the fire protection device.
  • the first end of the valve body 620 is provided with a second seal 6206, and the second seal 6206 at least partially wraps the first end; in the valve When the body 620 is in the second position, the second seal 6206 is engaged with the first narrowing portion 6102, and the fluid channel 6101 is in a closed state.
  • the first end of the valve body 620 is used to engage with the first narrowing portion 6102, and a second seal 6206 is provided at the first end of the valve body 620.
  • the second seal Part 6206 can be made of silicone, rubber and other materials, which can achieve a good sealing effect.
  • the second sealing member 6206 at least partially wraps the first end, which can prevent the valve body 620 from directly contacting the first narrowing portion 6102 and improve the sealing effect.
  • the first narrowing portion 6102 is provided with a first positioning structure
  • the second fusible member 660 is provided with a second positioning structure
  • the first positioning structure and The second positioning structure is positioned and matched.
  • the first narrowing portion 6102 is provided with a first positioning structure
  • the second fusible member 660 is provided with a second positioning structure.
  • the first positioning structure and the second positioning structure are used. By interacting with each other, stable engagement between the second fusible component 660 and the first narrowing portion 6102 can be achieved.
  • the first positioning structure may be a stepped structure
  • the second positioning structure may be a stepped structure complementary to the first positioning structure.
  • the first positioning structure may also be a groove or boss structure, and correspondingly, the second positioning structure may be a boss or groove structure.
  • the first narrowing portion 6102 is provided with a first positioning structure
  • the second seal 6206 is provided with a third positioning structure
  • the first positioning structure and the The third positioning structure is positioned and matched.
  • the first narrowing portion 6102 is provided with a first positioning structure
  • the second seal 6206 is provided with a third positioning structure.
  • the first positioning structure may be a stepped structure
  • the third positioning structure may be a stepped structure complementary to the first positioning structure.
  • the first positioning structure may also be a groove or boss structure, and correspondingly, the third positioning structure may be a boss or groove structure.
  • the outer wall of the valve body 620 is provided with at least one positioning rib 6207; the inner wall of the fluid channel 6101 is provided with at least one positioning groove 6105, and the positioning rib 6207 is in sliding fit with the positioning groove 6105.
  • the valve body 620 is slidably connected to the inner wall of the fluid channel 6101 , and the outer side wall of the valve body 620 is opposite to the inner wall of the fluid channel 6101 .
  • At least one positioning rib 6207 is provided on the outer wall of the valve body 620
  • at least one positioning groove 6105 is provided on the inner wall of the fluid channel 6101 .
  • the extension direction of the positioning groove 6105 is consistent with the sliding direction of the valve body 620 .
  • the positioning ribs 6207 are embedded in the positioning grooves 6105.
  • the sliding cooperation between the positioning ribs 6207 and the positioning grooves 6105 can improve the stability of the sliding movement of the valve body 620 and avoid jamming. , the problem of deflection.
  • the number of positioning ribs 6207 matches the number of positioning grooves 6105.
  • two positioning ribs are symmetrically provided on the outer wall of the valve body 620.
  • Position ribs 6207 correspondingly, two positioning grooves 6105 are symmetrically provided on the inner wall of the fluid channel 6101, which further improves the stability of the valve body 620 when sliding.
  • the embodiment of the present disclosure also discloses a sixth ventilation treatment device, including a sixth fire prevention device.
  • the sixth type of ventilation therapy equipment includes a control device, an oxygen therapy device, and a gas pipeline.
  • the control device is used to control the oxygen supply, working time, etc. of the oxygen therapy device.
  • the control device can be an electronic device or an electronic device. components, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile Internet device, a robot, a wearable device, etc., which are not specifically limited in the embodiments of this disclosure.
  • the sixth fire protection device includes: a housing 10 and a valve body 620; the housing 10 has a fluid channel 6101, and the fluid channel 6101 is provided with a first narrowing portion 6102 and a second narrowing portion 6103.
  • the valve body 620 is disposed in the fluid channel 6101; the valve body 620 is slidingly connected to the inner wall of the fluid channel 6101; the outer wall of the valve body 620 is provided with at least one guide portion 630; the guide portion 630 is in sliding fit with the inner wall of the fluid channel 6101; the valve body 620 has a first position and a second position relative to the fluid channel 6101; when the valve body 620 is in the first position, the valve body 620 is in clearance fit with the first narrowing portion 6102 and the second narrowing portion 6103 respectively, and the fluid channel 6101 is in the first position.
  • the valve body 620 Open state; when the valve body 620 is in the second position, the valve body 620 is engaged with the first narrowing portion 6102 and/or the second narrowing portion 6103, and the fluid channel 6101 is in a closed state, thereby cutting off the oxygen passage and preventing continued leakage of oxygen. The leak caused the fire to spread.
  • the guide portion 630 By providing the guide portion 630 on the outer wall of the valve body 620, the guide portion 630 can play a limiting role when the valve body 620 slides relative to the fluid channel 6101, avoiding the problems of deflection and jamming of the valve body 620, and ensuring The valve body 620 can accurately engage with the first narrowing portion 6102 and/or the second narrowing portion 6103, thereby improving the stability of the fire protection device.
  • a seventh fire protection device including: a housing 10, a base 720, a valve body 730, an elastic member 740 and a fusible ferrule 750;
  • the housing 10 has a fluid Channel 7101, the fluid channel 7101 is used to communicate with the oxygen therapy device or the pipeline at the patient end;
  • the base 720 is positioned in the fluid channel 7101, the valve body 730 is connected to the base 720, and the elastic member 740 is provided between the base 720 and the valve body 730;
  • a sealing portion 7301 is provided at one end of the valve body 730 away from the base 720, and at least one narrowing portion 7102 is provided in the fluid channel 7101.
  • the sealing portion 7301 and the narrowing portion 7102 are arranged oppositely; along the elastic deformation direction of the elastic member 740, the fusibility
  • the ferrule 750 is nested in the base 720 and the spring
  • the elastic member 740 and at least part of the valve body 730 are formed as a whole to compress the elastic member 740 so that there is a gap for fluid to pass between the sealing portion 7301 and the narrowing portion 7102; after the fusible ferrule 750 is melted, the elastic member 740 is The member 740 releases at least part of its elastic potential energy and pushes against the valve body 730 , causing the sealing portion 7301 to engage with the narrowing portion 7102 to block the fluid channel 7101 .
  • the housing 10 as the main frame of the fire protection device, can be made of materials that are not prone to chemical reactions with oxygen and are resistant to high temperatures, such as stainless steel or ceramic materials; it can also be made of fire-proof and flame-retardant materials. Material.
  • the housing 10 can adopt an integrated structure or a split structure.
  • the housing 10 includes a first housing and a second housing. The first housing and the second housing are buckled together to form a complete structure.
  • the assembly gap between the first housing and the second housing can be filled with a sealing structure, such as silicone, rubber, etc.
  • the fluid channel 7101 is used to communicate with the oxygen therapy device or the pipeline at the patient end. Since the oxygen transmission process needs to pass through the fluid channel 7101, the oxygen passage can be blocked by blocking the fluid channel 7101. Minimize the spread of fire caused by oxygen curse.
  • the base 720 is positioned in the fluid channel 7101.
  • the base 720 and the inner wall of the fluid channel 7101 can be fixed by bonding, snapping, etc., for example, a slot is provided on the inner wall of the fluid channel 7101, and the edge of the base 720 is embedded in the slot. fixed.
  • the base 720 is fixed relative to the housing 10, and the valve body 730 is connected to the base 720.
  • An embedding groove for positioning the valve body 730 is provided on the end face of the base 720 facing the valve body 730, and the end of the valve body 730 is inserted into the embedding groove.
  • the valve body 730 Positioned and assembled, the valve body 730 can move within the fluid channel 7101.
  • An elastic member 740 is provided between the valve body 730 and the base 720.
  • Both ends of the elastic member 740 are in contact with the valve body 730 and the base 720 respectively, and can provide driving force for the movement of the valve body 730.
  • the elastic member 740 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the valve body 730 is provided with a sealing portion 7301 at one end away from the base 720, and a narrowing portion 7102 is provided in the fluid channel 7101.
  • the inner diameters of the fluid channel 7101 at both ends of the narrowing portion 7102 are different, and the sealing portion 7301 and the narrowing portion 7102 are oppositely arranged and have the same shape. Matching, when the valve body 730 drives the sealing portion 7301 to move to the narrowing portion 7102, the fluid channel 7101 can be blocked by the snap-fitting seal between the sealing portion 7301 and the narrowing portion 7102.
  • the sealing part 7301 can be made of flexible sealing material, such as silicone, rubber, etc.; the sealing part 7301 can also be made of a rigid material, and a flexible sealing ring is only provided at the position of the sealing part 7301 close to the narrowing part 7102.
  • the flexible sealing ring is embedded in the gap between the sealing portion 7301 and the narrowed portion 7102 to achieve sealing.
  • the fusible ferrule 750 is made of a material that is easy to melt or burn when heated. It can be an elastic material, such as silicone, rubber, etc., or a nylon thread or other material.
  • the elastic member 740 will undergo elastic deformation when compressed by the base 720 and the valve body 730. Along the direction of elastic deformation, the fusible ferrule 750 is nested in the base 720, the elastic member 740 and at least part of the valve body 730. Overall, the fusible ferrule 750 can constrain the base 720, the elastic member 740 and the valve body 730. By shortening the distance between the base 720 and the valve body 730, the elastic member 740 is in a compressed state and accumulates elastic potential energy.
  • the overall length of the base 720, the elastic member 740 and the valve body 730 is short, and the sealing portion 7301 and the narrowing portion of the valve body 730 can be A gap is formed between 7102 for fluid to pass through, and oxygen can circulate normally to ensure the normal operation of the equipment.
  • the fire protection device When a fire occurs, the fire protection device is attacked by high temperature, and the fusible ferrule 750 is melted due to heat and loses its restraining effect.
  • the elastic member 740 releases at least part of the elastic potential energy. Since the base 720 is in a fixed state relative to the housing 10, the elastic member 740 is The valve body 730 will be pushed to be displaced relative to the base 720, so that the sealing portion 7301 moves to the narrowing portion 7102 and engages with the narrowing portion 7102, thereby blocking the fluid channel 7101 and cutting off the air path.
  • the base 720, the valve body 730, the elastic member 740 and the fusible ferrule 750 together form the valve body 730 triggering system.
  • the fusible ferrule 750 does not melt, the fusible ferrule 750
  • the elastic member 740 releases at least part of the elastic potential energy and pushes against the valve body 730, causing the sealing portion 7301 to engage with the narrowing portion 7102, thereby blocking the fluid channel 7101.
  • the fusible ferrule 750 itself is prone to fusing when heated, the fusing speed is further accelerated under the elastic force of the elastic member 740, thereby increasing the triggering speed of the valve body 730 and reducing the risk of fire spreading due to untimely triggering. risks, thus improving the safety factor of fire protection devices.
  • the seventh fire protection device is used in high-flow oxygen therapy treatment. It has few internal parts, a simple structure, simplifies the assembly method, and has stable performance and can be used in In the event of a fire, cut off the air path promptly.
  • the valve body 730 further includes a bearing portion 7302 connected to the base 720 , and a sealing portion 7301 is provided at an end of the bearing portion 7302 away from the base 720 ; the peripheral side of the bearing portion 7302 A protruding first support structure 73021 is provided.
  • the elastic member 740 is sleeved on the bearing portion 7302. One end of the elastic member 740 is in contact with the base 720, and the other end of the elastic member 740 is in contact with the first support structure 73021. Support structure 73021 abuts.
  • the valve body 730 includes a bearing part 7302 and a sealing part 7301.
  • the bearing part 7302 is connected to the base 720.
  • the bearing part 7302 can adopt a plate-shaped or columnar structure, and the base 720 faces the bearing part 7302.
  • An embedding groove is provided on one end surface, and the end of the bearing portion 7302 is inserted into the embedding groove to achieve positioning and assembly.
  • the sealing portion 7301 is provided at an end of the bearing portion 7302 away from the base 720 , and an end of the bearing portion 7302 close to the base 720 is in contact with the base 720 .
  • a raised first support structure 73021 is provided on the peripheral side of the load-bearing part 7302.
  • the first support structure 73021 may be a boss, a flange, or other structures.
  • the first support structure 73021 is disposed close to the sealing part 7301.
  • the first support structure 73021 is connected with the load-bearing part 7302.
  • Part 7302 can adopt an integrated structure and has good structural strength and stability.
  • the first support structure 73021 can also be manufactured separately from the bearing portion 7302, and then assembled together by bonding or welding.
  • the elastic member 740 can be a metal spring.
  • the elastic member 740 is sleeved on the bearing portion 7302. Under the constraints of the fusible ferrule 750, one end of the elastic member 740 abuts the base 720 and the other end abuts the first support structure 73021. connected, in a compressed state.
  • the elastic member 740 By placing the elastic member 740 on the bearing portion 7302, the space inside the fluid channel 7101 is saved, and the assembly stability of the elastic member 740 is ensured.
  • the bearing portion 7302 is provided with a hollow structure 73022 along its length direction, and the hollow structure 3022 is used for fluid to pass through.
  • the bearing portion 7302 is provided with a hollow structure 73022 along its length direction, and the hollow structure 73022 can be a hollow groove, a hollow hole, or other structures.
  • the hollow structure 73022 can reduce the air resistance and avoid affecting the oxygen flow.
  • the valve body 730 also includes a connecting portion 7303, which is provided between the bearing portion 7302 and the sealing portion 7301, and is connected to the bearing portion 7302 and the sealing portion 7301 respectively; connection The portion 7303 is provided with a snap-in structure 73031, which is used to snap-in and position the fusible ferrule 750.
  • the bearing part 7302 and the sealing part 7301 are connected through the connecting part 7303.
  • the bearing part 7302, the sealing part 7301 and the connecting part 7303 can be an integrated structure or a split structure.
  • the connecting part 7303 is provided with a snap-in structure 73031.
  • the snap-in structure 73031 can be a slot, a hook, etc., when the fusible ferrule 750 is embedded in the whole body composed of the base 720, the elastic member 740 and at least part of the valve body 730. When installed, the snap-in structure 73031 provides the fusible ferrule 750 Installing in a fixed position can avoid the problem of the fusible ferrule 750 slipping and causing the constraint to fail.
  • the peripheral side of the sealing portion 7301 extends to form a convex guide portion 73011 , and the guide portion 73011 is in sliding fit with the inner wall of the fluid channel 7101 .
  • the sealing portion 7301 is provided with a protruding guide portion 73011.
  • the guide portion 73011 can be a slide, a boss, or other structures, and the guide portion 73011 can slide with the inner wall of the fluid channel 7101. , plays the role of guiding and positioning, avoiding the problem of jamming and deflection of the valve body 730 when moving, and improving the stability of the triggering of the valve body 730.
  • the base 720 is provided with a ventilation hole 7201; the edge of the base 720 is provided with at least one first positioning groove 7202, and the first positioning groove 7202 is used to snap and position the fusible ferrule. 750.
  • the base 720 is provided with a vent hole 7201.
  • the base 720 can be a circular base 720, and at least one first positioning groove 7202 is provided on the edge of the base 720.
  • the fusible ferrule 750 is wound around the base 720, the first positioning groove 7202 is a fusible ferrule. 750 provides a fixed position for installation, and the fusible ferrule 750 is embedded in the first positioning groove 7202, which can avoid the problem of the fusible ferrule 750 slipping and causing the constraint failure.
  • the valve body 730 includes a first valve body 7304 and a second valve body 7305.
  • the first valve body 7304 and the second valve body 7305 are respectively located on both sides of the base 720, and are respectively Connected to the base 720;
  • the elastic member 740 includes a first elastic member 7401 and a second elastic member 7402.
  • the first elastic member 7401 is provided between the base 720 and the first valve body 7304, and the second elastic member 7402 is provided between the base 720 and the first valve body 7304.
  • a first narrowing part and a second narrowing part are provided in the fluid channel 7101, and a first sealing part 73041 is provided at one end of the first valve body 7304 away from the base 720, and the first sealing part 73041 is connected to the second narrowing part.
  • a narrowing portion is provided oppositely, and a second sealing portion 73051 is provided at one end of the second valve body 7305 away from the base 720.
  • the second sealing portion 73051 is provided oppositely to the second narrowing portion; along the first elastic member 7401 and the second elastic member 7402 elastic deformation direction, the fusible ferrule 750 is nested in the base 720, the first elastic member 7401, the second elastic member 7402, the first valve body 7304 and the second valve body 7305 as a whole to compress the third valve body.
  • An elastic member 7401 and a second elastic member 7402 allow a gap for fluid to pass between the first sealing part 73041 and the first narrowing part and the second sealing part 73051 and the second narrowing part; in the fusible ferrule After 750 is blown, the first elastic member 7401 releases at least part of the elastic potential energy and pushes against the first valve body 7304, causing the first sealing portion 73041 to engage with the first narrowing portion.
  • the second elastic member 7402 releases at least part of the elastic potential energy and pushes against the second valve body 7305, causing the second sealing portion 73051 to engage with the first narrowing portion.
  • the second narrowing part snaps to block the fluid channel 7101.
  • the valve body 730 includes a first valve body 7304 and a second valve body 7305.
  • the first valve body 7304 and the second valve body 7305 The structures may be the same.
  • the base 720 is positioned in the middle of the fluid channel 7101.
  • the base 720 and the inner wall of the fluid channel 7101 may be fixed by bonding or snapping.
  • the housing 10 includes a first housing and a second housing. The first housing and the second housing are engaged, and the base 720 can be embedded in the assembly gap between the first housing and the second housing to achieve snap-fitting.
  • the first valve body 7304 and the second valve body 7305 are respectively located on both sides of the base 720 and are connected to the base 720 respectively. That is, the first valve body 7304 and the second valve body 7305 can move in the fluid channel 7101.
  • the first elastic member 7401 is disposed between the base 720 and the first valve body 7304.
  • the second elastic member 7402 is disposed between the base 720 and the second valve body 7305.
  • the first elastic member 7401 and the second elastic member 7402 may be iron. , copper, alloy and other metal springs, or silicone, rubber and other soft rubber that can store elastic potential energy.
  • a first narrowing part and a second narrowing part are provided in the fluid channel 7101.
  • the first narrowing part and the second narrowing part are respectively close to the openings at both ends of the fluid channel 7101.
  • the inner diameter of the fluid channel 7101 between them is larger, and the inner diameter of the fluid channels 7101 on both sides is smaller.
  • the first valve body 7304 is provided with a first sealing portion 73041 at one end away from the base 720.
  • the first sealing portion 73041 is disposed opposite to the first narrowing portion.
  • the second valve body 7305 is provided with a second sealing portion 73051 at one end away from the base 720.
  • the second sealing portion 73051 is arranged opposite to the second narrowing portion.
  • the fluid channel 7101 can be blocked by utilizing the snap sealing between the first sealing portion 73041 and the first narrowing portion.
  • the blocking of the fluid channel 7101 can also be achieved by utilizing the engagement and sealing between the second sealing portion 73051 and the second narrowing portion. break. Utilizing the double valve body 730 structure, the air path blocking function can be realized at both ends of the fluid channel 7101, which greatly improves the reliability of the fire protection device.
  • the fusible ferrule 750 is nested in the base 720, the first elastic member 7401, the second elastic member 7402, the first valve body 7304 and the second valve body 7305, and can control the base 720, the first elastic member 7401, the second elastic member 7402, the first valve body 7304 and the second valve body 7305 realize constraint.
  • the fire protection device When a fire occurs, the fire protection device is attacked by high temperature, and the fusible ferrule 750 is melted due to heat and loses its restraining effect.
  • the first elastic member 7401 and the second elastic member 7402 release at least part of the elastic potential energy.
  • the first elastic member 7401 pushes against the first valve body 7304, causing the first sealing portion 73041 to engage with the first narrowing portion;
  • the second elastic member 7402 releases at least part of the elastic potential energy and pushes against the second valve body 7305, allowing the second
  • the sealing portion 73051 is engaged with the second narrowing portion, thereby blocking the fluid channel 7101 and cutting off the gas path.
  • the first valve body 7304 includes a first installation sleeve 73042
  • the second valve body 7305 includes a second installation sleeve 73052
  • the first sealing portion 73041 is provided on the first installation sleeve.
  • the barrel 73042 is at one end away from the base 720
  • the second sealing portion 73051 is provided at the end of the second installation sleeve 73052 away from the base 720;
  • the base 720 is provided with a protruding first positioning portion 7203 toward the first valve body 7304, and the base 720 is toward the first valve body 7304.
  • the second valve body 7305 is provided with a raised second positioning portion 7204; the first positioning portion 7203 is at least partially embedded in the first mounting sleeve 73042, and the second positioning portion 7204 is at least partially embedded in the second mounting sleeve 73052; A protruding second support structure 73043 is provided on the peripheral side of an installation sleeve 73042.
  • the first elastic member 7401 is sleeved on the outer wall of the first installation sleeve 73042. One end of the first elastic member 7401 is in contact with the base 720.
  • the other end of the first elastic member 7401 is in contact with the second support structure 73043; a protruding third support structure 73053 is provided on the peripheral side of the second installation sleeve 73052, and the second elastic member 7402 is sleeved on the second installation sleeve On the outer side wall of 73052, one end of the second elastic member 7402 is in contact with the base 720, and the other end of the second elastic member 7402 is in contact with the third support structure 73053.
  • the first valve body 7304 includes a first mounting sleeve 73042 and a first sealing portion 73041.
  • the first sealing portion 73041 is provided at an end of the first mounting sleeve 73042 away from the base 720.
  • the second valve body 7305 includes a second mounting sleeve 73052 and a second sealing portion 73051.
  • the second sealing portion 73051 is provided at one end of the second mounting sleeve 73052 away from the base 720.
  • the first installation sleeve 73042 and the second installation sleeve 73052 are respectively located on both sides of the base 720 , and the openings of the first installation sleeve 73042 and the second installation sleeve 73052 both face the base 720 .
  • the base 720 is provided with a protruding first positioning portion 7203 toward the first valve body 7304, and the base 720 is provided with a protruding second positioning portion 7204 toward the second valve body 7305.
  • the shape of the first positioning part 7203 and the second positioning part 7204 can be a cylinder, a prism, etc.
  • the first positioning part 7203 is embedded in the first installation sleeve 73042, and the first positioning part 7203 slides with the first installation sleeve 73042 Fitting; the second positioning part 7204 is embedded in the second installation sleeve 73052, and the second positioning part 7204 and the second installation sleeve 73052 are in sliding fit.
  • the cooperation between the positioning part and the installation sleeve can improve the stability of the assembly between the first valve body 7304 and the second valve body 7305 and the base 720.
  • first valve body 7304 and the second valve body 7305 slide relative to the base 720
  • problems such as deflection and jamming are less likely to occur.
  • a protruding second support structure 73043 is provided on the peripheral side of the first mounting sleeve 73042.
  • the second support structure The structure 73043 may be a boss, a flange, or other structures.
  • the first elastic member 7401 may be a metal spring.
  • the first elastic member 7401 is sleeved on the outer wall of the first installation sleeve 73042. One end of the first elastic member 7401 is connected to the base 720 The other end of the first elastic member 7401 is in contact with the second support structure 73043.
  • a raised third support structure 73053 is provided on the peripheral side of the second installation sleeve 73052.
  • the third support structure 73053 can also be a boss, a flange, or other structures, and the second elastic member 7402 can be a metal spring.
  • the two elastic members 7402 are sleeved on the outer wall of the second installation sleeve 73052. One end of the second elastic member 7402 is in contact with the base 720, and the other end of the second elastic member 7402 is in contact with the third support structure 73053.
  • a raised flange 7205 is provided on the peripheral side of the base 720 , and the two opposite end surfaces of the flange 7205 extend toward the first valve body 7304 and the second valve body 7305 respectively.
  • first A first limiting space is formed between the limiting part 7206, the third limiting part 73044 and the outer wall of the first mounting sleeve 73042, and the first elastic member 7401 is embedded in the first limiting space;
  • the second limiting part A second limiting space is formed between 7207, the fourth limiting portion 73054, and the outer wall of the second mounting sleeve 73052, and the second elastic member 7402 is embedded in the second limiting space.
  • the base 720 can be positioned in the fluid channel 7101 through the flange 7205.
  • the inner wall of the fluid channel 7101 is provided with a slot that matches the flange 7205.
  • the flange 7205 is embedded in the fluid channel 7101. It is disposed in the card slot to fix the base 720 .
  • the flange 7205 has two opposite end surfaces, and the two end surfaces respectively extend toward the first valve body 7304 and the second valve body 7305 to form a first limiting portion 7206 and a second limiting portion 7207.
  • the first limiting portion 7206 The shape of the second limiting portion 7207 can be a cylinder, a prism, etc.
  • the second support structure 73043 on the circumferential side of the first mounting sleeve 73042 extends toward the base 720 to form a third limiting portion 73044, and the third supporting structure 73053 on the circumferential side of the second mounting sleeve 73052 extends toward the base 720 to form a fourth limiting portion. 73054.
  • the first limiting part 7206 and the third limiting part 73044 are arranged oppositely and form a first limiting space with the outer wall of the first mounting sleeve 73042.
  • the first limiting space is used to accommodate the first elastic Part 7401, under the limiting action of the first limiting part 7206 and the third limiting part 73044, the first elastic part 7401 can still maintain a relatively stable state when elastic deformation occurs, and is not prone to deflection or jamming. question.
  • the second limiting part 7207 and the fourth limiting part 73054 are arranged opposite to each other and are connected with the second mounting part.
  • a second limiting space is formed between the outer side walls of the sleeve 73052. The second limiting space is used to accommodate the second elastic member 7402. Under the limiting action of the second limiting part 7207 and the fourth limiting part 73054, When the second elastic member 7402 undergoes elastic deformation, it can still maintain a relatively stable state and is less prone to deflection and jamming problems.
  • the first sealing part 73041 is provided with a second positioning groove 73045
  • the second sealing part 73051 is provided with a third positioning groove 73055
  • the second positioning groove 73045 and the third positioning groove 73055 are used to engage and position the fusible ferrule 750 .
  • the fusible ferrule 750 is nested in the base 720, the first elastic member 7401, the second elastic member 7402, the first valve body 7304 and the second valve body 7305.
  • the fusible ferrule 750 is wound around the first sealing part 73041 and the second sealing part 73051, the second positioning groove 73045 and the third positioning groove 73055 can provide installation and fixation for the fusible ferrule 750 position, the fusible ferrule 750 is embedded in the second positioning groove 73045 and the third positioning groove 73055, which can avoid the problem of the fusible ferrule 750 slipping and causing the constraint failure.
  • the embodiment of the present disclosure also discloses a seventh kind of ventilation treatment equipment, including a seventh kind of fire prevention device.
  • the seventh type of ventilation therapy equipment includes a control device, an oxygen therapy device, and a gas pipeline.
  • the control device is used to control the oxygen supply amount, working time, etc. of the oxygen therapy device.
  • the control device can be an electronic device or an electronic device.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile Internet device, a robot, a wearable device, etc., which are not specifically limited in the embodiments of this disclosure.
  • the seventh type of ventilation therapy equipment adopts the seventh type of fire prevention device.
  • the fire prevention device the base 720, the valve body 730, the elastic member 740 and the fusible ferrule 750 together form the valve body 730 triggering system.
  • the elastic member 740 When the fusible ferrule 750 does not melt, the elastic member 740 is in a compressed state under the constraints of the fusible ferrule 750 , and there is a fluid supply space between the sealing portion 7301 of the valve body 730 and the narrowing portion 7102 of the fluid channel 7101 Through the gap, oxygen can pass normally; after the fusible ferrule 750 is melted, the elastic member 740 releases at least part of the elastic potential energy and pushes against the valve body 730, causing the sealing portion 7301 to engage with the narrowing portion 7102, thereby blocking the fluid.
  • the fusible ferrule 750 itself is prone to fusing when heated, the fusing speed is further accelerated under the elastic force of the elastic member 740, thereby increasing the triggering speed of the valve body 730 and reducing the risk of fire spreading due to untimely triggering. risks, thus improving the safety factor of fire protection devices.
  • the fire prevention device includes: a housing 10, an inner housing 820, a valve body 830 and an elastic member 840; the housing 10 has a fluid channel, and the fluid channel It is used to communicate with the pipeline of the oxygen therapy device or the patient; the inner shell 820 is arranged in the fluid channel and is sealingly connected to the inner wall of the fluid channel.
  • the inner shell 820 is provided with a through hole 8201 for the fluid to pass; the valve body 830 is connected to the fluid channel.
  • the inner wall is slidingly connected and has a first position and a second position relative to the fluid channel; when in the first position, there is a gap for fluid to pass between the valve body 830 and the through hole 8201; when in the second position, the valve body 830 It abuts the peripheral side of the through hole 8201 so that the fluid channel is in a blocked state; the elastic member 840 is provided between the valve body 830 and the inner wall of the fluid channel; the inner walls at both ends of the fluid channel are respectively provided with at least one raised support portion 8100, one end of the valve body 830 is arranged opposite to the through hole 8201, and the other end of the valve body 830 is used to engage with the support part 8100 to support the valve body 830 in the first position, and the elastic member 840 is in a compressed state; in the support part 8100 After at least one of the valve body 830 is melted, the elastic member 840 releases at least part of the elastic potential energy to drive the valve body 830 to switch from the first position to the second position.
  • the housing 10, as the main body frame of the fire protection device can be made of materials that are not prone to chemical reactions with oxygen and are resistant to high temperatures, such as stainless steel or ceramic materials; it can also be made of fire-proof and flame-retardant materials.
  • the fluid channel is used to communicate with the oxygen therapy device or the pipeline at the patient end. Since oxygen needs to pass through the fluid channel during transmission, it can be blocked by blocking the fluid channel. Oxygen passage to minimize the spread of fire caused by oxygen blessing.
  • the inner shell 820 is disposed in the fluid channel, and the inner shell 820 is preferably disposed in the middle position of the fluid channel.
  • the outer wall of the inner shell 820 is sealingly connected to the inner wall of the fluid channel.
  • the inner shell 820 and the housing 10 can be assembled by bonding, ultrasonic welding, etc., and the inner shell 820 itself is also provided with a through hole 8201.
  • oxygen can only pass through the through hole 8201 and will not pass through the assembly gap between the inner shell 820 and the housing 10. Therefore, only the through hole 8201 on the inner shell 820 needs to be closed to achieve air path blocking.
  • oxygen can be transmitted normally through the through hole 8201, and the shape of the through hole 8201 can be circular, elliptical, semicircular, etc.
  • the valve body 830 is slidingly connected to the inner wall of the fluid channel.
  • the valve body 830 has a first position and a second position relative to the fluid channel.
  • When the valve body 830 is in the first position there is a gap between the valve body 830 and the through hole 8201 of the inner shell 820.
  • the gap for fluid to pass through oxygen can be transmitted normally through the through hole 8201; valve body
  • When 830 is in the second position the valve body 830 is in contact with the peripheral side of the through hole 8201, so that the fluid channel is in a blocked state.
  • the cooperation of the valve body 830 and the through hole 8201 can achieve blocking of the fluid channel.
  • the end of the valve body 830 used to contact the peripheral side of the through hole 8201 can be made of flexible sealing material, such as silicone, rubber, etc.; the valve body 830 can also be made of a rigid material, only when the valve body 830 is close to the through hole 8201 A flexible sealing ring is provided at one end.
  • the sealing ring is embedded in the gap between the valve body 830 and the peripheral side of the through hole 8201 to achieve sealing.
  • the elastic member 840 is disposed between the valve body 830 and the inner wall of the fluid channel, and is used to drive the valve body 830 to move from the first position to the second position.
  • the elastic member 840 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the inner walls at both ends of the fluid channel are provided with at least one raised support portion 8100.
  • the support portion 8100 can be engaged with the other end of the valve body 830 so that the valve body 830 is positioned in the first position, ensuring that the fluid flow is maintained in the event of no fire.
  • the support part 8100 can be made of materials with lower melting points, such as PP, PVC and other materials.
  • the elastic member 840 When the valve body 830 is in the first position, the elastic member 840 will be squeezed by the inner wall of the fluid channel and the valve body 830, and is in a compressed state, accumulating elastic potential energy; when the support portion 8100 loses its engagement with the valve body 830, The force balance is broken, and the valve body 830 moves to the second position under the elastic force of the elastic member 840, and contacts the peripheral side of the through hole 8201 to block the air path.
  • the valve body 830 may be triggered in the following ways: first, the support part 8100 melts, the support part 8100 loses its clamping effect on the valve body 830, and under the elastic force of the elastic member 840, the valve body 830 moves to the third position.
  • the second position is in contact with the peripheral side of the through hole 8201 to block the fluid channel; the second position is that the end of the valve body 830 close to the support part 8100 is melted, and the end of the valve body 830 close to the support part 8100 can be made of a material with a lower melting point.
  • the support part 8100 will also lose its clamping effect on the valve body 830.
  • the valve body 830 moves to the third position.
  • the second position is in contact with the peripheral side of the through hole 8201 to block the fluid channel;
  • the third position is that the support part 8100 and the end of the valve body 830 close to the support part 8100 are melted at the same time, and the support part 8100 loses its clamping effect on the valve body 830, and the Blockage of fluid channels can be achieved.
  • the trigger system composed of the support part 8100, the elastic member 840 and the valve body 830 can cause the valve body 830 to move to the first position in time when any one of the valve body 830 and the support part 8100 melts.
  • the two positions are in contact with the peripheral side of the through hole 8201, thus blocking the air path, increasing the triggering speed of the valve body 830, reducing the risk of fire spreading due to untimely triggering, and thereby improving the safety factor of the fire prevention device.
  • the fire protection device has a simple structure, is easy to assemble, and also reduces production costs. and installation costs.
  • the support portion 8100 is provided on the inner wall of the fluid channel near the opening.
  • the support portion 8100 and the inner wall of the fluid channel opening can be assembled by bonding or welding, or the support portion 8100 and the housing can be integrally formed.
  • the support part 8100 is disposed on the inner wall of the fluid channel near the opening. Since fires usually occur outside the fire protection device, the opening of the fluid channel will be attacked by fire first.
  • the support part 8100 is disposed on the inner wall of the fluid channel near the opening, so that the support part 8100
  • the end of the valve body 830 close to the support portion 8100 will first be in a high temperature state and fuse, thereby improving the timeliness of the valve body 830 being triggered.
  • the valve body 830 includes a snap-on part 8302 and a sealing part 8303.
  • the snap-on part 8302 and the sealing part 8303 are of split structure, and the snap-on part 8302 and the sealing part 8303 are respectively connected with each other.
  • the inner wall of the fluid channel is slidingly connected;
  • the snap-in part 8302 is provided with a fusible part 8301, and the elastic member 840 is disposed between the snap-in part 8302 and the inner wall of the fluid channel; one end of the snap-in part 8302 is used to snap into place with the support part 8100.
  • the other end of the clamping member 8302 is used to push against the sealing member 8303 so that the sealing member 8303 contacts the peripheral side of the through hole 8201; there is an assembly gap for fluid to pass between the clamping member 8302 and the sealing member 8303.
  • the valve body 830 includes a clamping member 8302 and a sealing member 8303.
  • the clamping member 8302 and the sealing member 8303 adopt a split structure with an assembly gap through which oxygen can pass, which can reduce the risk caused by the valve body 830. Air resistance to improve oxygen flux and comfort.
  • the clamping member 8302 and the sealing member 8303 are respectively slidingly connected to the inner wall of the fluid channel. When one end of the clamping member 8302 is clamped with the support part 8100, the positioning and fixation of the clamping member 8302 can be realized, so that the clamping member 8302 is in a stationary state.
  • the clamping component 8302 can achieve snap fit with the support part 8100 through structures such as hooks and round heads.
  • the elastic member 840 is disposed between the clamping member 8302 and the inner wall of the fluid channel. Under the compression of the clamping member 8302 and the inner wall of the fluid channel, the elastic member 840 accumulates elastic potential energy; between the sealing member 8303 and the through hole 8201 of the inner shell 820 Clearance fit, when in use, oxygen can be transmitted normally through the gap between the seal 8303 and the through hole 8201 of the inner shell 820.
  • the seal 8303 can be made of flexible sealing material, such as silicone, rubber, etc.; the seal 8303 can also be made of a rigid material, and a flexible sealing ring is only provided on the side of the seal 8303 close to the through hole 8201. When the seal 8303 and When the peripheral side of the through hole 8201 is in contact, the sealing ring is embedded in the gap between the sealing member 8303 and the peripheral side of the through hole 8201 to achieve sealing.
  • the above-mentioned fusible part 8301 is provided on the clamping member 8302.
  • the fusible part 8301 can be made of materials with a lower melting point, such as PP, PVC and other materials. It can also be made fusible through structural design, such as fusible.
  • the part 8301 adopts a structure with a small diameter or thickness, which is prone to fusing.
  • the clamping member 8302 can be broken from the fusible part 8301.
  • the supporting part 8100 loses its clamping effect on the clamping part 8302, thereby releasing at least part of the elastic potential energy in the elastic part 840.
  • the clamping part The other end of 8302 pushes against the seal 8303, so that the seal 8303 contacts the peripheral side of the through hole 8201 to block the fluid channel.
  • a protruding first guide portion 83021 is provided at one end of the clamping member 8302 close to the seal 8303, and the first guide portion 83021 is slidably matched with the inner wall of the fluid channel; the elastic member 840 is sleeved on In the clamping member 8302, one end of the elastic member 840 is in contact with the inner wall of the fluid channel, and the other end of the elastic member 840 is in contact with the first guide part 83021; when the clamping member 8302 is engaged with the support part 8100, the elastic member 840 is clamped by the fluid channel.
  • the inner wall and the first guide part 83021 are compressed; when the support part 8100 and/or the fusible part 8301 is in a molten state, the elastic member 840 releases at least part of the elastic potential energy, driving the sealing member 8303 to contact the peripheral side of the through hole 8201, so as to The fluid channel is blocked.
  • the first guide portion 83021 can be a slide, a boss, or other structures.
  • the number of the first guide portions 83021 can be determined according to the actual situation. Choose according to your needs.
  • the first guide part 83021 may be made of the same material as the latch 8302, and may be made of a fire-retardant and wear-resistant material.
  • the first guide part 83021 and the clamping member 8302 can adopt an integrated structure, which has good structural strength and stability.
  • the first guide part 83021 can also be manufactured separately from the clamping member 8302, and then assembled together by bonding or welding.
  • the first guide part 83021 has two functions: first, it can provide a stable support point for the elastic member 840; second, the first guide part 83021 can slide and cooperate with the inner wall of the fluid channel to play a guiding and positioning role to avoid jamming.
  • the problem of jamming and deflection of the connector 8302 when moving is improved, which improves the stability of the triggering of the valve body 830.
  • the elastic member 840 can be a metal spring, and the metal spring is sleeved on the clamping member 8302.
  • the two ends of the elastic member 840 are respectively in contact with the first guide part 83021 and the inner wall of the fluid channel, and are in a compressed state to accumulate elastic potential energy.
  • the support part 8100 and/or the fusible part 8301 is in a molten state, the support part 8100 loses its clamping effect on the clamping member 8302, and the elastic member 840 releases at least part of the elastic potential energy, driving the sealing member 8303 to contact the peripheral side of the through hole 8201. connection so that the fluid channel is blocked.
  • the clamping member 8302 and the sealing member 8303 provide driving force, causing the sealing member 8303 to move quickly and abut against the peripheral side of the through hole 8201.
  • the elastic member 840 is sleeved on the clamping member 8302, which not only saves the space inside the fluid channel, but also ensures the stability of the assembly of the elastic member 840.
  • the fluid channel includes a main body 8101 and openings 8102 provided at both ends of the main body 8101, wherein the inner diameter of the opening 8102 is smaller than the inner diameter of the main body 8101; the connection between the main body 8101 and the opening 8102
  • the shoulder 8103 is formed by narrowing; the support portion 8100 is provided on the inner wall of the opening 8102; one end of the elastic member 840 is in contact with the shoulder 8103, and the other end of the elastic member 840 is in contact with the first guide portion 83021.
  • the fluid channel includes a main body 8101 and openings 8102 provided at both ends of the main body 8101.
  • the opening 8102 is used to communicate with the pipeline at the patient end or the oxygen therapy device end.
  • the inner diameter of the opening 8102 is smaller than that of the main body 8101.
  • the inner diameter forms a structure with a thick middle and thin ends.
  • the main body 8101 transitions from the middle to both ends, and narrows to form a shoulder 8103 at the connection with the opening 8102.
  • the shoulder 8103 is used to support the elastic member 840.
  • the support part 8100 is disposed on the inner wall of the opening 8102, and the seal 8303 is disposed inside the main body 8101.
  • the seal 8303 is far away from the support part 8100 and is not easily affected by the high temperature of combustion, which is beneficial to improving the performance of the seal 8303 and improving the efficiency of the fire prevention device. stability.
  • the latch 8302 is provided with a protruding second guide portion 83022 , and the second guide portion 83022 is in sliding fit with the inner wall of the opening 8102 .
  • the latch 8302 is provided with a protruding second guide portion 83022.
  • the second guide portion 83022 can be a slide, a boss, or other structures.
  • the second guide portion 83022 can slide and cooperate with the inner wall of the opening 8102 to form a lock. It plays the role of guiding and positioning, avoiding the problem of jamming and deflection of the clamping member 8302 when moving, and improving the stability of the triggering of the valve body 830.
  • the sealing member 8303 has an end face on one side facing the clamping member 8302 , and the peripheral side of the end face extends toward the clamping member 8302 to form a third guide portion 83031 , and the third guide portion 83031 is connected with the fluid channel. Inner wall slide fit.
  • the sealing member 8303 has an end surface on one side facing the clamping member 8302, and the clamping member 8302 can push against the sealing member 8303 by contacting the end face of the sealing member 8303.
  • the peripheral side of the end surface extends toward the clamping member 8302 to form a third guide portion 83031.
  • the third guide portion 83031 can slide with the inner wall of the fluid channel to play a guiding and positioning role to prevent the seal 8303 from jamming or deflecting when moving.
  • the tilt problem improves the stability of valve body 830 triggering.
  • the third guide portion 83031 and the end surface form a limiting groove 83032; the clamping member 8302 extends toward one end of the seal 8303 to form a limiting portion 83023, and the limiting portion 83023 is at least partially embedded in Limit slot 83032.
  • the third guide portion 83031 and the end surface form a limiting groove 83032.
  • the limiting groove 83032 is U-shaped.
  • the opening side of the limiting groove 83032 faces the clamping member 8302; the clamping member 8302 extends toward one end of the seal 8303.
  • a limiting portion 83023 is formed, and the limiting portion 83023 may be a boss structure.
  • the limiting part 83023 is at least partially embedded in the limiting groove 83032, which avoids the problems of shaking and jamming when the clamping member 8302 and the sealing member 8303 move, and improves the valve Body 830 trigger stability.
  • the outer wall of the seal 8303 extends to form a raised fourth guide portion 83033, and the fourth guide portion 83033 slides with the inner wall of the fluid channel.
  • a protruding fourth guide portion 83033 can also be extended from the outer wall of the seal 8303.
  • the fourth guide portion 83033 can be a slide, a boss, or other structures.
  • the fourth guide portion 83033 can It slides and cooperates with the inner wall of the fluid channel to play a guiding and positioning role, avoiding the problem of jamming and deflection of the seal 303 when moving, and improving the stability of the triggering of the valve body 830.
  • the clamping member 8302 is provided with a groove 83024 at one end facing the sealing member 8303, and the sealing member 8303 is provided with a boss 83034 at one end facing the clamping member 8302.
  • the boss 83034 is at least partially embedded in Groove 83024.
  • a groove 83024 can be provided on the clamping member 8302, and a boss 83034 can be provided on the sealing member 8303.
  • the groove 83024 and the boss 83034 are set opposite and have matching shapes.
  • a sealing structure 860 is provided in the assembly gap between the housing 10 and the inner housing 820 .
  • the casing 10 there is an assembly gap between the casing 10 and the inner shell 820.
  • a sealing structure 860 is provided in the assembly gap with the inner shell 820.
  • the sealing structure 860 can be a silicone sealing ring, a rubber sealing ring, etc. Under the extrusion of the housing 10 and the inner shell 820, the sealing structure 860 fills the assembly gap to achieve Sealing connection between housing 10 and inner housing 820.
  • the number of support parts 8100 is two or more, and the support parts 8100 are arranged at intervals along the circumferential direction of the inner wall of the opening 8102 .
  • the support part 8100 is used to support the valve body 830 in the first position, and the stability of the engagement between the support part 8100 and the valve body 830 directly affects the performance of the fire protection device.
  • the number of the support parts 8100 is two or more, and the support parts 8100 are installed along the inner wall of the opening 8102
  • the circumferential spacing is set to achieve multiple clamping connections on the clamping portion of the valve body 830, thereby improving the stability of the clamping connection. At the same time, it can also avoid the problem of deflection of the valve body 830 due to uneven force, and improve the triggering stability of the valve body 830.
  • the valve body 830 includes a first valve body and a second valve body; the first valve body and the second valve body are symmetrically arranged on both sides of the through hole 8201; the first valve body When at least one of the second valve bodies is in contact with the peripheral side of the through hole 8201, the body passage is in a blocked state.
  • the fire protection device includes two first valve bodies and a second valve body symmetrically arranged in the fluid channel.
  • the first valve body and the second valve body have the same structure and are respectively located on both sides of the through hole 8201.
  • Elastic members 840 are provided between the first valve body and the second valve body and the inner wall of the fluid channel; support portions 8100 are respectively provided in the openings 8102 at both ends of the main body 8101 for respectively connecting with the first valve body and the second valve body.
  • Body snap connection is provided.
  • the fire protection device adopts a double valve body 830 structure.
  • the fluid channel can be blocked, ensuring the timeliness of the fire protection device triggering.
  • Any open end can be assembled and connected to the oxygen therapy device or patient-side pipeline, which greatly improves the convenience of installation.
  • an elastic support member 870 is provided between the first valve body and the second valve body, and the elastic support member 870 is passed through the through hole 8201; the two ends of the elastic support member 870 are respectively It is in contact with the first valve body and the second valve body; the elastic force of the elastic support member 870 is smaller than the elastic force of the elastic member 840 .
  • first valve body or the second valve body when they respectively include a clamping member 8302 and a sealing member 8303.
  • the sealing member 8303 When not pushed by the clamping member 8302, the sealing member 8303 is in contact with the inner shell 820. Relative movement will occur between the through holes 8201, and the seal 8303 will have unnecessary contact with the peripheral side of the through hole 8201 of the inner shell 820, which may easily cause airway obstruction and affect normal ventilation. Therefore, an elastic support member 870 is provided between the first valve body and the second valve body.
  • the elastic support member 870 can be a metal spring such as iron, copper, alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber. .
  • the elastic support member 870 is disposed in the through hole 8201 and will not block the normal transmission of oxygen.
  • the two ends of the elastic support member 870 are in contact with the first valve body and the second valve body respectively, thereby supporting the two seals 8303. avoid password
  • the seal 8303 is in contact with the peripheral side of the through hole 8201 in normal use.
  • the elastic force of the elastic support member 870 is less than the elastic force of the elastic member 840.
  • the support part 8100 and/or the fusible part 8301 are in a molten state, the support part 8100 loses its clamping effect on the clamping member 8302, and the elastic member 840 releases at least part of its elasticity. Due to the potential energy, the elastic support member 870 will not hinder the movement of the sealing member 8303, and can smoothly contact the sealing member 8303 with the peripheral side of the through hole 8201, so that the fluid channel is in a blocked state.
  • a first mounting groove 880 is provided at one end of the first valve body toward the second valve body, and a second mounting groove 890 is provided at one end of the second valve body toward the first valve body.
  • the installation groove 880 and the second installation groove 890 are arranged oppositely; the elastic support member 870 is at least partially embedded in the first installation groove 880 and the second installation groove 890 .
  • the elastic support member 870 can be stored, and at the same time, it can also play a limiting role to prevent the elastic support member 870 from shaking and deflecting.
  • the fire prevention device includes: a housing 10 and a valve body 830; the housing 10 has a fluid channel, and the fluid channel is used to communicate with an oxygen therapy device or a patient.
  • the pipelines are connected; the valve body 830 is arranged in the fluid channel, and the valve body 830 has a first position and a second position relative to the fluid channel; when in the first position, there is a gap for gas to pass between the valve body 830 and the fluid channel; When in the second position, the valve body 830 blocks the fluid channel; the inner walls at both ends of the fluid channel are respectively provided with at least one protruding fusible support part 850; when the fusible support part 850 is in a non-molten state, the valve body 830 It is engaged with the fusible support part 850 to support the valve body 830 in the first position; when the fusible support part 850 is in a molten state, the valve body 830 switches from the first position to the second position.
  • the housing 10, as the main body frame of the fire protection device can be made of materials that are not prone to chemical reactions with oxygen and are resistant to high temperatures, such as stainless steel or ceramic materials; it can also be made of fire-proof and flame-retardant materials.
  • the fluid channel is used to communicate with the oxygen therapy device or the pipeline at the patient end. Since oxygen needs to pass through the fluid channel during transmission, it can be blocked by blocking the fluid channel. Oxygen passage to minimize the spread of fire caused by oxygen blessing.
  • the valve body 830 is slidably connected to the inner wall of the fluid channel.
  • the valve body 830 has a first position and a second position relative to the fluid channel.
  • When the valve body 830 is in the first position there is a gap for gas to pass between the valve body 830 and the fluid channel. , oxygen can be transmitted normally through the fluid channel; the valve body 830 is in the
  • the valve body 830 is in the second position, the fluid channel is in a blocked state.
  • the cooperation between the valve body 830 and the inner wall or opening of the fluid channel can be used to achieve blocking of the fluid channel.
  • the shoulder between the valve body and the fluid channel contacts to block the fluid passage.
  • valve body 830 used to seal and block the fluid channel can be made of flexible sealing material, such as silicone, rubber, etc.; the valve body 830 can also be made of rigid material, only the end of the valve body 830 used to seal and block the fluid channel A flexible sealing ring is provided at one end.
  • the inner walls at both ends of the fluid channel are provided with at least one protruding fusible support part 850.
  • the fusible support part 850 can be engaged with the other end of the valve body 830 to position the valve body 830 in the first position, ensuring that the valve body 830 is positioned in the first position. In the absence of fire, the fluid channel must be unobstructed.
  • the fusible support part 850 may be made of materials with lower melting points, such as PP, PVC and other materials, which are prone to melting when exposed to high temperatures.
  • the fusible support part 850 melts, the fusible support part 850 loses its clamping effect on the valve body 830, and the valve body 830 moves to the second position to block the fluid channel.
  • the fusible support part 850 is used.
  • the valve body 830 can be moved to the second position in time and block the gas path.
  • the fusible support part 850 Made of fusible material, the response speed is fast, which increases the triggering speed of the valve body 830, reduces the risk of fire spreading due to untimely triggering, and thereby improves the safety factor of the fire protection device.
  • the fire protection device has a simple structure and is easy to assemble, which also reduces production costs and installation costs.
  • the fire protection device also includes: an elastic member 840; the elastic member 840 is disposed between the valve body 830 and the inner wall of the fluid channel; when the valve body 830 is in the first position, the elastic member 840 is in a compressed state; the elastic member 840 is The elastic driving force is provided when the valve body 830 switches from the first position to the second position.
  • the elastic member 840 is disposed between the valve body 830 and the inner wall of the fluid channel, and is used to drive the valve body 830 to move from the first position to the second position.
  • the elastic member 840 can be a metal spring such as iron, copper, or alloy, or a soft rubber that can store elastic potential energy, such as silicone or rubber.
  • the elastic member 840 When the valve body 830 is in the first position, the elastic member 840 will be squeezed by the inner wall of the fluid channel and the valve body 830, and is in a compressed state, accumulating elastic potential energy; when the support part loses its engagement with the valve body 830, it will be stressed. The balance is broken, and the valve body 830 moves to the second position under the elastic force of the elastic member 840 to block the air path. Under the action of the elastic member 840, the triggering speed of the valve body 830 is further increased.
  • the valve body 830 includes a clamping member 8302 and a sealing member 8303.
  • the clamping member 8302 and the sealing member 8303 are of a split structure, and the clamping member 8302 and the sealing member 8303 are separate.
  • the elastic member 840 is disposed between the clamping member 8302 and the inner wall of the fluid channel; one end of the clamping member 8302 is used to clamp with the fusible support part 850, and the other end of the clamping member 8302 is used to clamp the fusible support part 850.
  • One end is used to push against the seal 8303; there is an assembly gap for fluid to pass between the clamp 8302 and the seal 8303.
  • the valve body 830 includes a clamping member 8302 and a sealing member 8303.
  • the clamping member 8302 and the sealing member 8303 adopt a split structure with an assembly gap through which oxygen can pass, which can reduce the risk caused by the valve body 830. Air resistance to improve oxygen flux and comfort.
  • the clamping member 8302 and the sealing member 8303 are respectively slidingly connected to the inner wall of the fluid channel. When one end of the clamping member 8302 is clamped with the fusible support part 850, the positioning and fixation of the clamping member 8302 can be realized, so that the clamping member 8302 is in In the static state, the snap-in component 8302 can snap into place with the fusible support part 850 through structures such as hooks and round heads.
  • the elastic member 840 is disposed between the clamping member 8302 and the inner wall of the fluid channel. Under the compression of the clamping member 8302 and the inner wall of the fluid channel, the elastic member 840 accumulates elastic potential energy.
  • the seal 8303 can be made of flexible sealing material, such as silicone, rubber, etc.; the seal 8303 can also be made of rigid material, with a flexible sealing ring only provided on one side of the seal 8303.
  • a protruding first guide portion 83021 is provided at one end of the clamping member 8302 close to the seal 8303, and the first guide portion 83021 is slidably matched with the inner wall of the fluid channel; the elastic member 840 is sleeved on The clamping member 8302 has one end of the elastic member 840 in contact with the inner wall of the fluid channel, and the other end of the elastic member 840 in contact with the first guide part 83021; when the clamping member 8302 is engaged with the fusible support part 850, the elastic member 840 It is compressed by the inner wall of the fluid channel and the first guide part 83021.
  • the first guide portion 83021 can be a slide, a boss, or other structures.
  • the number of the first guide portions 83021 can be determined according to the actual situation. Choose according to your needs.
  • the first guide part 83021 may be made of the same material as the latch 8302, and may be made of a fire-retardant and wear-resistant material.
  • the first guide part 83021 and the clamping member 8302 can adopt an integrated structure, which has good structural strength and stability.
  • the first guide part 83021 can also be manufactured separately from the clamping member 8302, and then assembled together by bonding or welding.
  • the first guide part 83021 has two functions: first, it can provide a stable support point for the elastic member 840; second, the first guide part 83021 can slide and cooperate with the inner wall of the fluid channel to play a guiding and positioning role to avoid jamming.
  • the problem of jamming and deflection of the connector 8302 when moving is improved, which improves the stability of the triggering of the valve body 830.
  • the elastic member 840 can be a metal spring, and the metal spring is sleeved on the clamping member 8302. In snap-in part 8302 When engaged with the fusible support member, the two ends of the elastic member 840 are in contact with the first guide portion 83021 and the inner wall of the fluid channel respectively, and are in a compressed state to accumulate elastic potential energy. When the fusible support part 850 is in a molten state, the fusible support part 850 loses its clamping effect on the clamping member 8302, and the elastic member 840 releases at least part of the elastic potential energy, driving the valve body 830 to be in the second position, so that the fluid The channel is blocked.
  • the elastic member 840 when the fusible support part 850 melts, it can provide driving force for the clamping member 8302 and the sealing member 8303, so that the sealing member 8303 moves quickly and blocks the air path. At the same time, the elastic member 840 is sleeved on the clamping member 8302, which not only saves the space inside the fluid channel, but also ensures the stability of the assembly of the elastic member 840.
  • the fluid channel includes a main body 8101 and openings 8102 provided at both ends of the main body 8101, wherein the inner diameter of the opening 8102 is smaller than the inner diameter of the main body 8101; the connection between the main body 8101 and the opening 8102
  • the shoulder 8103 is formed by narrowing; the fusible support part 850 is provided on the inner wall of the opening 8102; one end of the elastic member 840 is in contact with the shoulder 8103, and the other end of the elastic member 840 is in contact with the first guide part 83021.
  • the fluid channel includes a main body 8101 and openings 8102 provided at both ends of the main body 8101.
  • the opening 8102 is used to communicate with the pipeline at the patient end or the oxygen therapy device end.
  • the inner diameter of the opening 8102 is smaller than that of the main body 8101.
  • the inner diameter forms a structure with a thick middle and thin ends.
  • the main body 8101 transitions from the middle to both ends, and narrows to form a shoulder 8103 at the connection with the opening 8102.
  • the shoulder 8103 is used to support the elastic member 840.
  • the fusible support part 850 is provided on the inner wall of the opening 8102, and the sealing member 8303 is provided inside the main body 8101.
  • the sealing member 8303 is far away from the fusible supporting part 850 and is not easily affected by the high temperature of combustion, which is beneficial to improving the sealing member 8303. performance and improve the stability of fire protection devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Check Valves (AREA)

Abstract

一种防火装置、氧疗仪及通气治疗系统,涉及医疗器械技术领域,防火装置包括:壳体(10)、阀体(20)、扭簧(30)以及可熔构件(40);壳体(10)内具有流体通道(101),流体通道(101)设置有第一开口(102)和第二开口(103),第一开口(102)和第二开口(103)分别用于与氧疗仪或患者端的管路连通;阀体(20)位于流体通道(101)内,且与壳体(10)转动连接;阀体(20)设置有容纳腔(201),流体通道(101)与容纳腔(201)为相互独立的两个空间;扭簧(30)嵌设于容纳腔(201)内,以驱动阀体(20)与壳体(10)相对转动;可熔构件(40)设置于流体通道(101)的内壁。在可熔构件(40)处于非熔融状态下,可熔构件(40)支撑阀体(20)处于第一位置,第一开口(102)和第二开口(103)均处于开启状态;在可熔构件(40)处于熔融状态下,扭簧(30)驱动阀体(20)转动至第二位置,第一开口(102)和第二开口(103)中的至少一个处于关闭状态。

Description

防火装置、氧疗仪及通气治疗系统
相关申请的交叉引用
本公开要求在2022年06月30日提交中国专利局、申请号为202210761502.0、名称为“防火装置、氧疗仪及通气治疗系统”的中国专利申请的优先权;本公开要求在2022年06月30日提交中国专利局、申请号为202210761499.2、名称为“防火装置、氧疗仪及通气治疗系统”的中国专利申请的优先权;本公开要求在2022年06月30日提交中国专利局、申请号为202221696322.0、名称为“防火装置、氧疗仪及通气治疗系统”的中国专利申请的优先权;本公开要求在2022年06月30日提交中国专利局、申请号为202221696321.6、名称为“防火装置、氧疗仪及通气治疗系统”的中国专利申请的优先权;本公开要求在2022年06月30日提交中国专利局、申请号为202210761495.4、名称为“防火装置及通气治疗设备”的中国专利申请的优先权;本公开要求在2022年07月01日提交中国专利局、申请号为202210769833.9、名称为“防火装置及通气治疗设备”的中国专利申请的优先权;本公开要求在2022年12月30日提交中国专利局、申请号为202211733732.2、名称为“防火装置及通气治疗设备”的中国专利申请的优先权;本公开要求在2022年12月30日提交中国专利局、申请号为202223599609.4、名称为“防火装置及通气治疗设备”的中国专利申请的优先权;本公开要求在2022年12月29日提交中国专利局、申请号为202223598962.0、名称为“防火装置及通气治疗设备”的中国专利申请的优先权;本公开要求在2022年06月30日提交中国专利局、申请号为202221696132.9、名称为“防火阀、通气设备”的中国专利申请的优先权;本公开要求在2022年12月29日提交中国专利局、申请号为202223598765.9、名称为“应用于氧疗设备的自动防火装置”的中国专利申请的优先权;本公开要求在2023年06月27日提交中国专利局、申请号为202321658850.1、名称为“防火装置及通气治疗设备”的中国专利申请的优先权;其全部内容通过引用结合在本公开中。
技术领域
本公开涉及医疗器械技术领域,特别是涉及一种防火装置、氧疗仪及通 气治疗系统。
背景技术
目前,氧疗法已被广泛地应用在临床治疗和医院抢救中,当患者靠自身吸入的氧气无法满足需求时,通常需要外部给氧,可以利用外部仪器,通过侵入或非侵入的方式为患者供给氧气。用于供给患者氧气的仪器,统称为氧疗仪。
由于氧气的助燃特性,通常需要在氧疗仪上设置防火装置,发生氧气泄漏并引起火灾时,通过防火装置及时切断氧气通路,减弱火势的蔓延,以降低损失。现有技术中,通常在防火装置的开口处设置熔点较低的支撑件,利用支撑件支撑密封阀,支撑件受热熔化后,密封阀在弹簧的驱动下移动至开口处,并与开口接合阻断气路。
现有的防火装置与氧疗仪及患者端的氧气管路连通,防火装置内部设置有金属弹簧,金属弹簧处于富氧环境中,容易出现氧化失效的现象,发生火灾时,仍存在氧气泄漏风险,安全系数较低。
氧疗仪正常使用时,为保证氧气能够通过防火装置,需要在支撑件上开设小孔,而采用开孔设计对气路通畅的影响较大,且稳定性不强,容易在非火灾情况下阻断气路,影响治疗效果。
采用相关技术中的防火装置,密封阀在防火装置内移动时,会出现偏斜的问题,导致密封阀无法与开口准确接合,防火装置的稳定性较差。而且由于支撑件熔化速度较慢,导致密封阀不能及时移动至开口处,无法迅速阻断气路,容易造成火势蔓延。
通气设备通过管路与用户的呼吸气道连通,以通过管路向用户持续提供氧气。由于氧气的助燃性,当用户侧起火时,通气设备产生的氧气会导致火势继续扩大。
在医疗或家庭环境中,当患者靠自身吸入的氧气无法满足需求时,通常需要外部给氧。这种依靠外部仪器,通过侵入或非侵入的方式供给患者氧气的方法,称为氧疗法。用于给患者提供氧气的仪器,统称为制氧机。制氧机通常通过挠性塑料管被连接至呼吸面罩或鼻插管,面罩或鼻插管佩戴至需要通气治疗(例如氧气治疗)的患者的面部。
氧气作为一种助燃气体,如果遇到明火(例如吸烟等)则必定助长火势,极易引发火灾。大多制氧机被设置为根据患者的需要而采用确定的速率来向呼吸面罩或鼻插管连续地传输氧气,而且即使摘掉呼吸面罩或鼻插管,也不会导致氧气的传输停止。在此情况下,患者的周围很容易建立起富氧环境,为基于点燃的灾难性大火准备了周围环境。而制氧机输出的氧气浓度一般高于90%,那么一旦不慎将正在输出氧气的挠性塑料管引燃,由于挠性塑料管内有持续不断的高浓度氧气流出,因此火焰将会随氧气的输出气管逐步向机身燃烧,最终引燃制氧机发生火灾。当制氧机在家庭护理环境中使用时,由于缺乏相应的监督条件,上述火灾隐患会在家庭环境中更加恶化,如果不能及时关闭氧气的输出通路,则火势将愈演愈烈,则会加重火灾营救的困难。
为了在火灾时阻断氧气的输出通路,相关技术一般采用设置防火隔离装置的方式来进行阻断。相关技术中的防火隔离装置在正常工作情况下,气体(如氧气)通过围绕压缩弹簧的中心孔后经过可熔鼻部件的小孔流出;在发生火灾时,可熔鼻部件在高温下被融化,从而允许压缩弹簧促进提升阀关闭以阻断氧气的输出通路。但是,此类防火隔离装置中的压缩弹簧一般由金属材料制成,金属材料的压缩弹簧在长时间接触氧气后,特别在潮湿环境中,无可避免的会出现氧化等化学反应从而早餐压缩弹簧的失效,这将大大降低防火隔离装置的使用寿命,同时对患者的健康会造成影响。
概述
本公开提供一种防火装置、氧疗仪及通气治疗系统,旨在解决相关技术中,防火装置内部的金属弹簧处于富氧环境中,容易出现氧化失效的现象,发生火灾时,氧气仍存在泄漏风险,安全系数较低的问题。
第一方面,本公开实施例公开了一种防火装置,包括:壳体、阀体、扭簧以及可熔构件;
所述壳体内具有流体通道,所述流体通道设置有第一开口和第二开口,所述第一开口和所述第二开口分别用于与氧疗仪或患者端的管路连通;
所述阀体位于所述流体通道内,且与所述壳体转动连接;
所述阀体设置有容纳腔,所述流体通道与所述容纳腔为相互独立的两个空间;
所述扭簧嵌设于所述容纳腔内,以驱动所述阀体与所述壳体相对转动;
所述可熔构件设置于所述流体通道的内壁;
在所述可熔构件处于非熔融状态下,所述可熔构件支撑所述阀体处于第一位置,所述第一开口和所述第二开口均处于开启状态;
在所述可熔构件处于熔融状态下,所述扭簧驱动所述阀体转动至第二位置,所述第一开口和所述第二开口中的至少一个处于关闭状态。
可选地,所述阀体包括安装部、第一连接部以及第一密封部;
所述安装部包括内轴套和外轴套,所述容纳腔位于所述内轴套和外轴套之间;
所述流体通道内设置有转轴,所述内轴套套设于所述转轴,且与所述转轴转动连接;
所述第一连接部的一端与所述外轴套的侧壁连接,所述第一连接部的另一端与所述第一密封部连接;
在所述阀体处于所述第二位置时,所述第一密封部与所述第一开口接合,以使所述第一开口处于关闭状态。
可选地,所述阀体还包括第二连接部和第二密封部;
所述第二连接部的一端与所述外轴套的侧壁连接,所述第二连接部的另一端与所述第二密封部连接;
在所述阀体处于所述第二位置时,所述第二密封部与所述第二开口接合,以使所述第二开口处于关闭状态。
可选地,所述第一连接部和/或所述第二连接部设置有缺口,所述缺口用于通过流体。
可选地,所述流体通道的内壁设置有至少一个限位部,所述限位部位于所述阀体的转动路径上;
在所述阀体处于所述第二位置时,所述阀体与所述限位部抵接。
可选地,所述壳体设置有第一管路接头和第二管路接头;
所述第一管路接头设置有第一通孔,所述第一通孔与所述第一开口连通;
所述第二管路接头设置有第二通孔,所述第二通孔与所述第二开口连通;
所述第一管路接头和所述第二管路接头分别用于与所述氧疗仪或所述患者端的管路连接。
可选地,所述第一管路接头和/或所述第二管路接头的外侧壁设置有至少一个卡接部,所述卡接部用于与所述氧疗仪或所述患者端的管路卡接。
可选地,所述可熔构件具有延伸部,所述延伸部穿设于所述第一通孔或所述第二通孔。
第二方面,本公开实施例还公开了一种氧疗仪,包括上述的防火装置。
第三方面,本公开实施例还公开了一种通气治疗系统,所述通气治疗系统包括上述的氧疗仪。
本公开实施例中,防火装置包括:壳体、阀体、扭簧以及可熔构件;壳体内具有流体通道,流体通道设置有第一开口和第二开口,第一开口和第二开口分别用于与氧疗仪或患者端的管路连通;阀体位于流体通道内,且与壳体转动连接;阀体设置有容纳腔,流体通道与容纳腔为相互独立的两个空间;扭簧嵌设于容纳腔内,以驱动阀体与壳体相对转动;可熔构件设置于流体通道的内壁。在可熔构件处于非熔融状态下,可熔构件支撑阀体处于第一位置,第一开口和第二开口均处于开启状态,流体通道正常传输氧气;在发生火灾时,可熔构件在温度达到熔点时,会处于熔融状态,可熔构件不足以支撑扭簧施加在阀体上的弹力,扭簧释放储存的弹性势能,阀体在扭簧的驱动下由第一位置转动至第二位置,使第一开口和第二开口中的至少一个处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,扭簧所处的容纳腔与流体通道相互独立,避免了扭簧出现氧化的问题,提升了装置的耐久性和安全系数。
第四方面,本公开实施例公开了一种防火装置,所述防火装置包括:壳体、弹性件、阀体以及可熔构件;
所述壳体内具有容纳腔和气体通道,所述气体通道用于与氧疗仪或患者端的管路连通;
所述阀体将所述容纳腔和所述气体通道分隔为相互独立的空间;
所述弹性件设置于所述容纳腔内,所述阀体至少部分位于所述气体通道内,所述弹性件分别与所述壳体以及所述阀体抵接;
所述阀体与所述气体通道之间设置有所述可熔构件,所述可熔构件与所述气体通道之间具有间隙;
在所述可熔构件处于非熔融状态下,所述可熔构件支撑所述阀体处于第 一位置,所述气体通道处于开启状态;
在所述可熔构件处于熔融状态下,所述弹性件驱动所述阀体处于第二位置,所述气体通道处于关闭状态。
可选地,所述容纳腔具有开口,所述阀体设置于所述容纳腔的开口处,所述阀体与所述容纳腔滑动连接;
在所述可熔构件处于所述非熔融状态下,所述可熔构件支撑所述阀体处于所述第一位置,所述气体通道处于开启状态;
在所述可熔构件处于所述熔融状态下,所述弹性件驱动所述阀体滑动至所述第二位置,所述气体通道处于关闭状态。
可选地,所述壳体包括第一壳体和第二壳体;
所述第一壳体与所述第二壳体转动连接;
所述第一壳体设置有第一通孔和第二通孔;
所述第二壳体设置有第三通孔和第四通孔;
所述阀体与所述第一壳体固定连接,所述阀体设置有第五通孔;
所述可熔构件分别与所述阀体以及所述第二壳体卡接,所述可熔构件设置有第六通孔;
所述弹性件分别与所述阀体以及所述第二壳体抵接;
在所述可熔构件处于所述非熔融状态下,所述可熔构件支撑所述阀体处于所述第一位置,所述第一通孔、所述第二通孔、所述第三通孔、所述第四通孔、所述第五通孔以及所述第六通孔连通,共同形成所述气体通道,所述气体通道处于开启状态;
在所述可熔构件处于所述熔融状态下,所述弹性件驱动所述第一壳体和所述第二壳体相对转动,所述阀体处于所述第二位置,所述第一通孔、所述第二通孔以及所述第五通孔分别与所述第二壳体的壳壁贴合,所述气体通道处于关闭状态。
可选地,所述第二壳体内设置有第一凸出部和第二凸出部;
所述第三通孔设置于所述第一凸出部,所述第四通孔设置于所述第二凸出部;
所述可熔构件至少部分嵌设于所述第三通孔或所述第四通孔内。
可选地,所述第一凸出部设置有第一延伸部,所述第二凸出部设置有第 二延伸部;
在所述阀体处于所述第二位置时,所述第五通孔的两端分别与所述第一延伸部以及所述第二延伸部贴合。
可选地,所述阀体的一端设置有第三延伸部,所述阀体的另一端设置有第四延伸部;
在所述阀体处于所述第二位置时,所述第三通孔与所述第三延伸部贴合,所述第四通孔与所述第四延伸部贴合。
可选地,所述第二壳体设置有至少一个限位部,所述限位部位于所述阀体的运动路径上;
在所述阀体处于所述第二位置时,所述阀体与所述限位部抵接。
可选地,所述第一壳体设置有第一连接部和第二连接部;
所述第一通孔设置于所述第一连接部,所述第二通孔设置于所述第二连接部;
所述第一连接部和所述第二连接部分别用于与所述氧疗仪或所述患者端的管路连通。
可选地,所述气体通道包括第一管路接口、第二管路接口以及连通部分;
所述连通部分具有内腔;
所述第一管路接口和所述第二管路接口分别位于所述连通部分的两端,且分别与所述内腔连通以形成所述气体通道;
所述第一管路接口和所述第二管路接口对称设置。
可选地,所述可熔构件位于所述内腔中,所述可熔构件与所述内腔的腔壁间隙配合。
第五方面,本公开实施例还公开了一种氧疗仪,包括上述的防火装置。
第六方面,本公开实施例还公开了一种通气治疗系统,所述通气治疗系统包括上述的氧疗仪。
本公开实施例中,防火装置包括:壳体、弹性件、阀体以及可熔构件;壳体内具有容纳腔和气体通道,气体通道用于与氧疗仪或患者端的管路连通;阀体将容纳腔和气体通道分隔为相互独立的空间;弹性件设置于容纳腔内,阀体至少部分位于气体通道内,弹性件分别与壳体以及阀体抵接;阀体与气体通道之间设置有可熔构件,可熔构件与气体通道之间具有间隙;在可熔构 件处于非熔融状态下,可熔构件支撑阀体处于第一位置,气体通道处于开启状态;在可熔构件处于熔融状态下,弹性件驱动阀体处于第二位置,气体通道处于关闭状态。在发生火灾时,可熔构件在温度达到熔点时,会处于熔融状态,可熔构件不足以支撑弹性件施加在阀体上的弹力,弹性件释放储存的弹性势能,阀体在弹性件的驱动下由第一位置切换至第二位置,侵占气体通道的空间,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,弹性件所处的容纳腔与气体通道相互独立,避免了弹性件出现氧化的问题,提升了装置的耐久性和安全系数。
第七方面,本公开实施例公开了一种防火装置,所述防火装置包括:壳体、第一弹性阀体以及第一可熔构件;
所述壳体内具有容纳腔,所述容纳腔的两侧开设有第一开口和第二开口,所述第一开口和所述第二开口用于与氧疗仪或患者端的管路连通;
所述第一弹性阀体定位于所述容纳腔内,所述第一弹性阀体与所述第一开口相对设置,其中,所述第一弹性阀体具有耐氧化特性;
所述第一可熔构件位于所述壳体内且与所述壳体连接,所述第一可熔构件与所述第一弹性阀体靠近所述第一开口的一侧抵接;
在所述第一可熔构件处于非熔融状态下,所述第一可熔构件压缩所述第一弹性阀体,所述第一开口与所述第一弹性阀体之间具有供气体流通的间隙;
在所述第一可熔构件处于熔融状态下,所述第一弹性阀体释放至少部分弹性势能,所述第一弹性阀体与所述容纳腔的第一端面抵接,以使所述第一开口处于关闭状态,其中,所述第一开口设置于所述第一端面。
可选地,所述壳体包括第一连接部和第二连接部;
所述第一连接部具有第一通孔,所述第一通孔与所述第一开口连通;
所述第二连接部具有第二通孔,所述第二通孔与所述第二开口连通;
所述第一可熔构件位于所述第一通孔内,所述第一可熔构件的一端延伸形成至少两个加强筋,所述加强筋与所述第一通孔的孔壁连接;
所述第一可熔构件的另一端与所述第一弹性阀体靠近所述第一开口的一侧抵接。
可选地,所述第一可熔构件位于所述第一弹性阀体和所述第一端面之间,所述第一可熔构件与所述第一弹性阀体靠近所述第一开口的一侧抵接。
可选地,所述第一可熔构件的数量为两个,两个所述第一可熔构件在所述第一端面上对称设置。
可选地,所述防火装置还包括支撑件;
所述支撑件位于所述容纳腔内,且与所述容纳腔的腔壁连接;
所述支撑件与所述第一弹性阀体远离所述第一开口的一侧抵接。
可选地,所述支撑件靠近所述第一弹性阀体的一端设置有第一定位部,所述第一弹性阀体远离所述第一开口的一侧设置有第二定位部,所述第一定位部和所述第二定位部定位配合。
可选地,所述第一连接部的外侧壁和/或所述第二连接部的外侧壁设置有至少一个卡接部,所述卡接部用于与所述氧疗仪或患者端的管路卡接。
可选地,所述防火装置还包括第二弹性阀体和第二可熔构件;
所述第二弹性阀体与所述第二开口相对设置;
所述第二可熔构件位于所述壳体内且与所述壳体连接,所述第二可熔构件与所述第二弹性阀体靠近所述第二开口的一侧抵接,其中,所述第二弹性阀体具有耐氧化特性;
所述支撑件位于所述第一弹性阀体和所述第二弹性阀体之间,且分别与所述第一弹性阀体和所述第二弹性阀体抵接;
在所述第二可熔构件处于非熔融状态下,所述第二可熔构件压缩所述第二弹性阀体,所述第二开口与所述第二弹性阀体之间具有供气体流通的间隙;
在所述第二可熔构件处于熔融状态下,所述第二弹性阀体释放至少部分弹性势能,所述第二弹性阀体与所述容纳腔的第二端面抵接,以使所述第二开口处于关闭状态,其中,所述第二开口设置于所述第二端面。
第八方面,本公开实施例还公开了一种氧疗仪,包括上述的防火装置。
第九方面,本公开实施例还公开了一种通气治疗系统,包括上述的氧疗仪。
本公开实施例中,防火装置包括:壳体、第一弹性阀体以及第一可熔构件;壳体内具有容纳腔,容纳腔的两侧开设有第一开口和第二开口,第一开口和第二开口用于与氧疗仪或患者端的管路连通;第一弹性阀体定位于容纳腔内,第一弹性阀体与第一开口相对设置,其中,所述第一弹性阀体具有耐氧化特性。第一可熔构件位于壳体内且与壳体连接,第一可熔构件与第一弹 性阀体靠近第一开口的一侧抵接;在第一可熔构件处于非熔融状态下,第一可熔构件压缩第一弹性阀体,第一弹性阀体厚度减小,第一开口与第一弹性阀体之间具有供气体流通的间隙;在发生火灾时,可熔构件在温度达到熔点时,会处于熔融状态,第一弹性阀体释放至少部分弹性势能,第一弹性阀体与容纳腔的第一端面抵接,以使第一开口处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延,其中,第一开口设置于第一端面。由于第一弹性阀体具有耐氧化特性,避免了第一弹性阀体出现氧化的问题,提升了装置的耐久性和安全系数。
本公开还提供一种防火装置、氧疗仪及通气治疗系统,旨在解决相关技术中,通过在支撑件上开设小孔传输氧气,存在对气路通畅影响较大,且稳定性不强,容易在非火灾情况下阻断气路,影响治疗效果的问题。
第一方面,本公开实施例公开了一种防火装置,所述防火装置包括:壳体、第一移动杆、第一可熔构件、第一阀体以及第一弹性件;
所述壳体内具有流体通道,所述流体通道设置有第一收窄部和第二收窄部,所述第一移动杆、第一可熔构件、第一阀体以及第一弹性件均设置于所述流体通道内;
所述第一可熔构件设置于所述流体通道的一端且与所述流体通道的内壁连接;
所述第一移动杆与所述流体通道的内壁滑动连接,所述第一可熔构件设置在所述第一移动杆上;
所述第一阀体穿设于所述第一收窄部且与所述流体通道的内壁滑动连接,所述第一阀体的一端与所述第一移动杆连接,所述第一阀体的另一端设置有所述第一弹性件,所述第一弹性件与所述壳体抵接;
所述第一阀体靠近所述第一收窄部处设置有第一密封件;
在所述第一阀体处于开启状态时,所述第一可熔构件支撑所述第一移动杆以及所述第一阀体处于第一位置,所述第一密封件与所述第一收窄部间隙配合,所述流体通道处于开启状态;
在所述第一弹性件驱动所述第一移动杆以及所述第一阀体滑动至第二位置时,所述第一阀体处于关闭状态,所述第一密封件与所述第一收窄部接合,所述流体通道处于关闭状态。
可选地,所述第一可熔构件设置有第一卡接部,所述第一移动杆设置有第一卡接配合部,所述第一可熔构件与所述第一移动杆卡接。
可选地,所述第一移动杆的侧壁设置有至少一个第一导向部,所述流体通道的内壁设置有第一滑槽,所述第一导向部与所述第一滑槽滑动配合。
可选地,所述第一阀体的侧壁设置有至少一个第二导向部,所述流体通道的内壁设置有第二滑槽,所述第二导向部与所述第二滑槽滑动配合。
可选地,所述第一阀体的另一端设置有槽体,所述第一弹性件至少部分位于所述槽体内;
所述第一弹性件的一端与所述槽体的槽底抵接,所述第一弹性件的另一端与所述壳体抵接。
可选地,所述槽体内设置有安装轴,所述安装轴与所述槽体同轴设置;
所述第一弹性件套设于所述安装轴。
可选地,所述壳体还包括挡板,所述挡板设置于所述流体通道内且与所述流体通道的内壁连接;
所述第一弹性件与挡板抵接。
可选地,所述防火装置还包括第二移动杆、第二可熔构件、第二阀体以及第二弹性件;
所述第二移动杆、第二可熔构件、第二阀体以及第二弹性件均设置于所述流体通道内;
所述第二可熔构件设置于所述流体通道的另一端且与所述流体通道的内壁连接;
所述第二移动杆与所述流体通道的内壁滑动连接,所述第二可熔构件设置在所述第二移动杆上;
所述第二阀体穿设于所述第二收窄部且与所述流体通道的内壁滑动连接,所述第二阀体的一端与所述第二移动杆连接,所述第二阀体的另一端设置有所述第二弹性件,所述第二弹性件与所述壳体抵接;
所述第二阀体靠近所述第二收窄部处设置有第二密封件;
在所述第二阀体处于开启状态时,所述第二可熔构件支撑所述第二移动杆以及所述第二阀体处于第三位置,所述第二密封件与所述第二收窄部间隙配合,所述流体通道处于开启状态;
在所述第二弹性件驱动所述第二移动杆以及所述第二阀体滑动至第四位置时,所述第二阀体处于关闭状态,所述第二密封件与所述第二收窄部接合,所述流体通道处于关闭状态。
可选地,所述第二可熔构件设置有第二卡接部,所述第二移动杆设置有第二卡接配合部,所述第二可熔构件与所述第二移动杆卡接。
可选地,所述壳体设置有第一管路接头和第二管路接头,所述第一管路接头和所述第二管路接头分别用于与氧疗仪或患者端的管路连接;
所述第一管路接头和/或所述第二管路接头的外侧壁设置有至少一个第三卡接部,所述第三卡接部用于与所述氧疗仪或所述患者端的管路卡接。
可选地,所述第一移动杆与所述第一阀体为一体结构。
可选地,所述第一移动杆与所述第一阀体为分体结构。
第二方面,本公开实施例还公开了一种氧疗仪,包括上述的防火装置。
第三方面,本公开实施例还公开了一种通气治疗系统,所述通气治疗系统包括上述的氧疗仪。
本公开实施例中,防火装置包括:壳体、第一移动杆、第一可熔构件、第一阀体以及第一弹性件;壳体内具有流体通道,流体通道设置有第一收窄部和第二收窄部,第一移动杆、第一可熔构件、第一阀体以及第一弹性件均设置于流体通道内;第一可熔构件设置于流体通道的一端且与流体通道的内壁连接;第一移动杆与流体通道的内壁滑动连接,第一可熔构件设置在第一移动杆上;第一阀体穿设于第一收窄部且与流体通道的内壁滑动连接,第一阀体的一端与第一移动杆连接,第一阀体的另一端设置有第一弹性件,第一弹性件与壳体抵接;第一阀体靠近第一收窄部处设置有第一密封件。在第一阀体处于开启状态时,第一可熔构件支撑第一移动杆以及第一阀体处于第一位置,第一密封件与第一收窄部间隙配合,流体通道处于开启状态,无需在第一可熔构件上开孔也能保证氧气的正常传输,提升了防火装置的稳定性。在发生火灾时,第一可熔构件熔融,不足以支撑第一弹性件施加在第一阀体以及第一移动杆上的弹力,第一阀体以及第一移动杆在第一弹性件的驱动下由第一位置滑动至第二位置,第一阀体处于关闭状态,第一密封件与第一收窄部接合,流体通道处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延。
本公开还提供一种防火装置及通气治疗设备,也旨在解决相关技术中,防火装置容易出现老化失效的现象,发生火灾时,氧气仍存在泄漏风险,安全系数较低的问题。
第一方面,本公开实施例公开了一种防火装置,包括:壳体、第一定位件以及第一密封件;
所述壳体内具有流体通道,所述流体通道相对的两侧开设有第一开口和第二开口,所述第一开口和所述第二开口分别用于与氧疗仪或患者端的管路连通;
所述第一定位件设置于所述流体通道内,且与所述壳体连接;
所述第一密封件套设于所述第一定位件,所述第一密封件具有耐氧化特性;
在第一温度时,所述第一密封件与所述流体通道的内壁间隙配合,所述流体通道处于开启状态;
在第二温度时,所述第一密封件体积增大并与所述流体通道的内壁贴合,所述流体通道处于关闭状态;
其中,所述第二温度高于所述第一温度。
可选地,所述第一密封件为热致形状记忆塑料;
在所述第二温度下,所述第一密封件受热膨胀并与所述流体通道的内壁贴合,所述流体通道处于关闭状态。
可选地,所述流体通道的内壁设置有至少一个环形凸起;
在所述第二温度下,所述环形凸起与所述第一密封件抵接,所述流体通道处于关闭状态。
可选地,所述流体通道的内壁设置有第一凸起结构和第二凸起结构;
所述第一凸起结构和所述第二凸起结构分别位于所述第一定位件的两端;
所述第一凸起结构设置有第一定位部,所述第二凸起结构设置有第二定位部,所述第一定位件的两端分别与所述第一定位部和所述第二定位部卡接。
可选地,所述流体通道的内壁设置有安装部,所述安装部设置有容纳槽;
所述第一定位件的一端嵌设于所述容纳槽内。
可选地,所述第一定位件的一端设置有卡接部,所述容纳槽的槽壁设置有卡接配合部,所述第一定位件的一端与所述容纳槽卡接。
可选地,所述第一定位件的一端设置有外螺纹,所述容纳槽的槽壁设置有内螺纹,所述第一定位件的一端与所述容纳槽螺纹连接。
可选地,所述第一定位件的一端与所述容纳槽过盈配合。
可选地,所述安装部设置有至少一个连接筋,所述安装部通过所述连接筋与所述流体通道的内壁连接。
可选地,所述防火装置还包括可熔构件;
所述第一密封件为弹性体,所述可熔构件包裹所述第一密封件;
在所述可熔构件处于非熔融状态下,所述可熔构件压缩所述第一密封件,所述可熔构件与所述流体通道的内壁间隙配合,所述流体通道处于开启状态;
在所述可熔构件处于熔融状态下,所述第一密封件释放至少部分弹性势能,所述第一密封件体积增大并与所述流体通道的内壁贴合,所述流体通道处于关闭状态。
可选地,所述防火装置还包括第二定位件以及第二密封件;
所述第二定位件设置于所述流体通道内,且与所述壳体连接,所述第一定位件靠近所述第一开口,所述第二定位件靠近所述第二开口;
所述第二密封件套设于所述第二定位件,所述第二密封件具有耐氧化特性;
在所述第一温度下,所述第一密封件和所述第二密封件分别与所述流体通道的内壁间隙配合,所述流体通道处于开启状态;
在所述第二温度下,所述第一密封件和所述第二密封件体积增大并分别与所述流体通道的内壁贴合,所述流体通道处于关闭状态。
第二方面,本公开实施例还公开了一种通气治疗设备,包括上述的防火装置。
本公开实施例中,防火装置包括:壳体、第一定位件以及第一密封件;壳体内具有流体通道,流体通道相对的两侧开设有第一开口和第二开口,第一开口和第二开口分别用于与氧疗仪或患者端的管路连通;第一定位件设置于流体通道内,且与壳体连接;第一密封件套设于第一定位件,第一密封件具有耐氧化特性。在未发生火灾时,防火装置处于第一温度,第一密封件与流体通道的内壁间隙配合,流体通道处于开启状态;在发生火灾时,防火装置处于第二温度,第一密封件体积增大并与流体通道的内壁贴合,流体通道 处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延,其中,第二温度高于第一温度。由于第一密封件具有耐氧化特性,避免了第一密封件出现氧化的问题,提升了装置的耐久性和安全系数。
本公开还提供一种防火装置及通气治疗设备,旨在解决相关技术中,密封阀在防火装置内移动时,会出现偏斜的问题,导致密封阀无法与开口准确接合,防火装置稳定性较差的问题。
第一方面,本公开实施例公开了一种防火装置,所述防火装置包括:壳体和阀体;
所述壳体内具有流体通道,所述流体通道设置有第一收窄部和第二收窄部,所述阀体设置于所述流体通道内;
所述阀体与所述流体通道的内壁滑动连接,所述阀体的外侧壁设置有至少一个导向部,所述导向部与所述流体通道的内壁滑动配合;
所述阀体相对于所述流体通道具有第一位置和第二位置;
在所述阀体处于所述第一位置时,所述阀体分别与所述第一收窄部和所述第二收窄部间隙配合,所述流体通道处于开启状态;
在所述阀体处于所述第二位置时,所述阀体与所述第一收窄部和/或所述第二收窄部接合,所述流体通道处于关闭状态。
可选地,所述防火装置还包括:第一可熔构件和第一弹性件;
所述阀体包括相对的第一端和第二端,所述第一端靠近所述第一收窄部,所述第二端靠近所述第二收窄部;
所述壳体靠近所述第一收窄部处设置有固定部;
所述阀体的第一端设置有第一槽体,所述第一弹性件至少部分位于所述第一槽体内;
所述第一弹性件的一端与所述第一槽体的槽底抵接,所述第一弹性件的另一端与所述固定部的端面抵接;
所述第一可熔构件设置于所述阀体的第一端,且与所述固定部卡接,以支撑所述阀体处于所述第一位置;
所述第一可熔构件熔融,所述第一弹性件驱动所述阀体滑动至所述第二位置,所述阀体的第二端与所述第二收窄部接合,所述流体通道处于关闭状态。
可选地,所述第一槽体内设置有第一安装轴,所述第一安装轴与所述第一槽体同轴设置;
所述第一弹性件套设于所述第一安装轴,所述第一可熔构件与所述第一安装轴连接。
可选地,所述阀体的第二端设置有第一密封件,所述第一密封件至少部分包裹所述第二端;
在所述阀体处于所述第二位置时,所述第一密封件与所述第二收窄部接合,所述流体通道处于关闭状态。
可选地,所述防火装置还包括:第二可熔构件和第二弹性件;
所述阀体包括相对的第一端和第二端,所述第一端靠近所述第一收窄部,所述第二端靠近所述第二收窄部;
所述阀体的第二端设置有第二槽体,所述第二弹性件至少部分位于所述第二槽体内;
所述第二弹性件的一端与所述第二槽体的槽底抵接,所述第二弹性件的另一端与所述壳体抵接;
所述第二可熔构件设置于所述第一收窄部,且与所述第一收窄部卡接,所述第二可熔构件设置有用于通过流体的通孔;
所述阀体的第一端与所述第二可熔构件抵接,以支撑所述阀体处于所述第一位置;
所述第二可熔构件熔融,所述第二弹性件驱动所述阀体滑动至所述第二位置,所述阀体的第一端与所述第一收窄部接合,所述流体通道处于关闭状态。
可选地,所述第二槽体内设置有第二安装轴,所述第二安装轴与所述第二槽体同轴设置;
所述第二弹性件套设于所述第二安装轴。
可选地,所述阀体的第一端设置有第二密封件,所述第二密封件至少部分包裹所述第一端;
在所述阀体处于所述第二位置时,所述第二密封件与所述第一收窄部接合,所述流体通道处于关闭状态。
可选地,所述第一收窄部设置有第一定位结构,所述第二可熔构件设置 有第二定位结构,所述第一定位结构和所述第二定位结构定位配合。
可选地,所述第一收窄部设置有第一定位结构,所述第二密封件设置有第三定位结构,所述第一定位结构和所述第三定位结构定位配合。
可选地,所述阀体的外侧壁设置有至少一个定位筋;
所述流体通道的内壁设置有至少一个定位槽,所述定位筋与所述定位槽滑动配合。
第二方面,本公开实施例还公开了一种通气治疗设备,包括上述的防火装置。
本公开实施例中,防火装置包括:壳体和阀体;壳体内具有流体通道,流体通道设置有第一收窄部和第二收窄部,阀体设置于流体通道内;阀体与流体通道的内壁滑动连接,阀体的外侧壁设置有至少一个导向部,导向部与流体通道的内壁滑动配合;阀体相对于流体通道具有第一位置和第二位置;在阀体处于第一位置时,阀体分别与第一收窄部和第二收窄部间隙配合,流体通道处于开启状态;在阀体处于第二位置时,阀体与第一收窄部和/或第二收窄部接合,流体通道处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延。通过在阀体的外侧壁设置导向部,导向部能够在阀体相对于流体通道滑动时,起到限位作用,避免阀体出现偏斜、卡塞的问题,保证了阀体能够与第一收窄部和/或第二收窄部准确接合,提升了防火装置的稳定性。
本公开还提供一种防火装置及通气治疗设备,旨在解决相关技术中,支撑件熔化速度较慢,导致密封阀不能及时移动至开口处,无法迅速阻断气路,容易造成火势蔓延的问题。
第一方面,本公开实施例公开了一种防火装置,包括:壳体、底座、阀体、弹性件以及可熔性套圈;
所述壳体具有流体通道,所述流体通道用于与氧疗仪或患者端的管路连通;
所述底座定位于所述流体通道内,所述阀体与所述底座连接,所述弹性件设置于所述底座和所述阀体之间;
所述阀体远离所述底座的一端设置有密封部,所述流体通道内设置有至少一个收窄部,所述密封部与所述收窄部相对设置;
沿所述弹性件的弹性形变方向,所述可熔性套圈嵌套于所述底座、所述弹性件以及至少部分所述阀体所组成的整体上,以压缩所述弹性件,使所述密封部与所述收窄部之间具有供流体通过的间隙;
在所述可熔性套圈熔断后,所述弹性件释放至少部分弹性势能并推抵所述阀体,使所述密封部与所述收窄部扣合,以阻断所述流体通道。
可选地,所述阀体还包括承载部,所述承载部与所述底座连接,所述密封部设置于所述承载部远离所述底座的一端;
所述承载部的周侧设置有凸起的第一支撑结构,所述弹性件套设于所述承载部,所述弹性件的一端与所述底座抵接,所述弹性件的另一端与所述第一支撑结构抵接。
可选地,所述承载部沿自身长度方向设置有镂空结构,所述镂空结构用于供流体通过。
可选地,所述阀体还包括连接部,所述连接部设置于所述承载部和所述密封部之间,且分别与所述承载部以及所述密封部连接;
所述连接部设置有卡接结构,所述卡接结构用于卡接定位所述可熔性套圈。
可选地,所述密封部的周侧延伸形成凸起的导向部,所述导向部与所述流体通道的内壁滑动配合。
可选地,所述底座设置有通气孔;
所述底座的边缘设置有至少一个第一定位槽,所述第一定位槽用于卡接定位所述可熔性套圈。
可选地,所述阀体包括第一阀体和第二阀体,所述第一阀体和所述第二阀体分别位于所述底座的两侧,且分别与所述底座连接;
所述弹性件包括第一弹性件和第二弹性件,所述第一弹性件设置于所述底座和所述第一阀体之间,所述第二弹性件设置于所述底座和所述第二阀体之间;
所述流体通道内设置有第一收窄部和第二收窄部,所述第一阀体远离所述底座的一端设置有第一密封部,所述第一密封部与所述第一收窄部相对设置,所述第二阀体远离所述底座的一端设置有第二密封部,所述第二密封部与所述第二收窄部相对设置;
沿所述第一弹性件和所述第二弹性件的弹性形变方向,所述可熔性套圈嵌套于所述底座、所述第一弹性件、所述第二弹性件、所述第一阀体以及所述第二阀体所组成的整体上,以压缩所述第一弹性件和所述第二弹性件,使所述第一密封部与所述第一收窄部以及所述第二密封部与所述第二收窄部之间具有供流体通过的间隙;
在所述可熔性套圈熔断后,所述第一弹性件释放至少部分弹性势能并推抵所述第一阀体,使所述第一密封部与所述第一收窄部扣合,所述第二弹性件释放至少部分弹性势能并推抵所述第二阀体,使所述第二密封部与所述第二收窄部扣合,以阻断所述流体通道。
可选地,所述第一阀体包括第一安装套筒,所述第二阀体包括第二安装套筒,所述第一密封部设置于所述第一安装套筒远离所述底座的一端,所述第二密封部设置于所述第二安装套筒远离所述底座的一端;
所述底座朝向所述第一阀体设置有凸起的第一定位部,所述底座朝向所述第二阀体设置有凸起的第二定位部;
所述第一定位部至少部分嵌设于所述第一安装套筒,所述第二定位部至少部分嵌设于所述第二安装套筒;
所述第一安装套筒的周侧设置有凸起的第二支撑结构,所述第一弹性件套设于所述第一安装套筒的外侧壁,所述第一弹性件的一端与所述底座抵接,所述第一弹性件的另一端与所述第二支撑结构抵接;
所述第二安装套筒的周侧设置有凸起的第三支撑结构,所述第二弹性件套设于所述第二安装套筒的外侧壁,所述第二弹性件的一端与所述底座抵接,所述第二弹性件的另一端与所述第三支撑结构抵接。
可选地,所述底座的周侧设置有凸起的法兰,所述法兰相对的两个端面分别朝向所述第一阀体以及所述第二阀体延伸形成第一限位部和第二限位部;
所述第二支撑结构朝向所述底座延伸形成第三限位部,所述第三支撑结构朝向所述底座延伸形成第四限位部;
所述第一限位部、所述第三限位部以及所述第一安装套筒的外侧壁之间形成第一限位空间,所述第一弹性件嵌设于所述第一限位空间内;
所述第二限位部、所述第四限位部以及所述第二安装套筒的外侧壁之间形成第二限位空间,所述第二弹性件嵌设于所述第二限位空间内。
可选地,所述第一密封部上设置有第二定位槽,所述第二密封部上设置有第三定位槽,所述第二定位槽和所述第三定位槽用于卡接定位所述可熔性套圈。
第二方面,本公开实施例还公开了一种通气治疗设备,包括上述的防火装置。
本公开实施例中,底座、阀体、弹性件以及可熔性套圈共同组成阀体触发系统,当可熔性套圈未发生熔断时,在可熔性套圈的约束下,弹性件处于压缩状态,阀体的密封部与流体通道的收窄部之间具有供流体通过的间隙,氧气可正常通过;在可熔性套圈熔断后,弹性件释放至少部分弹性势能并推抵阀体,使密封部与收窄部扣合,从而阻断流体通道。由于可熔性套圈本身在受热时易发生熔断,在弹性件的弹力作用下进一步加快了熔断的速度,从而提高了阀体的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。
本公开还提供一种防火装置及通气治疗设备,旨在解决相关技术中,支撑件熔化速度较慢,导致密封阀不能及时移动至开口处,无法迅速阻断气路,容易造成火势蔓延的问题。
第一方面,本公开实施例公开了一种防火装置,包括:壳体、内壳、阀体以及弹性件;
所述壳体具有流体通道,所述流体通道用于与氧疗仪或患者端的管路连通;
所述内壳设置于所述流体通道内,且与所述流体通道的内壁密封连接,所述内壳设置有供流体通过的通孔;
所述阀体与所述流体通道的内壁滑动连接,且相对于所述流体通道具有第一位置和第二位置;
处于所述第一位置时,所述阀体与所述通孔之间具有供流体通过的间隙;
处于所述第二位置时,所述阀体与所述通孔的周侧抵接,以使所述流体通道处于阻断状态;
所述弹性件设置于所述阀体与所述流体通道的内壁之间;
所述流体通道两端的内壁分别设置有至少一个凸起的支撑部,所述阀体的一端与所述通孔相对设置,所述阀体的另一端与所述支撑部卡接,以支撑 所述阀体处于所述第一位置,所述弹性件处于压缩状态;
在所述支撑部和所述阀体中的至少一者熔融后,所述弹性件释放至少部分弹性势能,以驱动所述阀体由所述第一位置切换至所述第二位置。
可选地,所述支撑部设置于所述流体通道靠近开口处的内壁。
可选地,所述阀体包括卡接件和密封件,所述卡接件和所述密封件为分体式结构,且所述卡接件和所述密封件分别与所述流体通道的内壁滑动连接;
所述弹性件设置于所述卡接件与所述流体通道的内壁之间;
所述卡接件的一端用于与所述支撑部卡接,所述卡接件的另一端用于推抵所述密封件,以使所述密封件与所述通孔的周侧抵接;
所述卡接件与所述密封件之间具有供流体通过的装配间隙。
可选地,所述卡接件靠近所述密封件的一端设置有凸起的第一导向部,所述第一导向部与所述流体通道的内壁滑动配合;
所述弹性件套设于所述卡接件,所述弹性件一端与所述流体通道的内壁抵接,所述弹性件另一端与所述第一导向部抵接;
在所述卡接件与所述支撑部卡接时,所述弹性件被所述流体通道的内壁以及所述第一导向部压缩。
可选地,所述流体通道包括主体以及设置于所述主体两端的开口部,其中,所述开口部的内径小于所述主体的内径;
所述主体与所述开口部的连接处收窄形成肩部;
所述支撑部设置于所述开口部的内壁;
所述弹性件一端与所述肩部抵接,所述弹性件另一端与所述第一导向部抵接。
可选地,所述卡接件设置有凸起的第二导向部,所述第二导向部与所述开口部的内壁滑动配合。
可选地,所述密封件朝向所述卡接件的一侧具有端面,所述端面的周侧朝向所述卡接件延伸形成第三导向部,所述第三导向部与所述流体通道的内壁滑动配合。
可选地,所述第三导向部与所述端面围合成限位槽;
所述卡接件朝向所述密封件的一端延伸形成限位部,所述限位部至少部分嵌设于所述限位槽。
可选地,所述密封件的外侧壁延伸形成凸起的第四导向部,所述第四导向部与所述流体通道的内壁滑动配合。
可选地,所述卡接件朝向所述密封件的一端设置有凹槽,所述密封件朝向所述卡接件的一端设置有凸台,所述凸台至少部分嵌设于所述凹槽。
可选地,所述壳体和所述内壳的装配间隙中设置有密封结构。
可选地,所述支撑部的数量为两个或两个以上,所述支撑部沿开口部内壁的周向间隔设置。
可选地,所述阀体靠近所述支撑部的一端设置有易熔部;
在所述支撑部和所述易熔部处于非熔融状态下,所述阀体与所述支撑部卡接,以支撑所述阀体处于所述第一位置;
在所述支撑部和/或所述易熔部处于熔融状态下,所述弹性件释放至少部分弹性势能,以驱动所述阀体处于所述第二位置。
可选地,所述阀体包括第一阀体和第二阀体;
所述第一阀体和所述第二阀体对称设置于所述通孔的两侧;
所述第一阀体和所述第二阀体中的至少一个与所述通孔的周侧抵接时,所述体通道处于阻断状态。
可选地,所述第一阀体和所述第二阀体之间设置有弹性支撑件,所述弹性支撑件穿设于所述通孔;
所述弹性支撑件的两端分别与所述第一阀体以及所述第二阀体抵接;
其中,所述弹性支撑件的弹力小于所述弹性件的弹力。
可选地,所述第一阀体朝向所述第二阀体的一端设置有第一安装槽,所述第二阀体朝向所述第一阀体的一端设置有第二安装槽,所述第一安装槽与所述第二安装槽相对设置;
所述弹性支撑件至少部分嵌设于所述第一安装槽和所述第二安装槽。
第二方面,本公开实施例公开了一种防火装置,包括:壳体和阀体;
所述壳体具有流体通道,所述流体通道用于与氧疗仪或患者端的管路连通;
所述阀体设置于所述流体通道内,所述阀体相对于所述流体通道具有第一位置和第二位置;
处于所述第一位置时,所述阀体和所述流体通道之间具有供气体通过的 间隙;
处于所述第二位置时,所述阀体阻断所述流体通道;
所述流体通道两端的内壁分别设置有至少一个凸起的可熔性支撑部;
在所述可熔性支撑部处于非熔融状态下,所述阀体与所述可熔性支撑部卡接,以支撑所述阀体处于所述第一位置;
在所述可熔性支撑部处于熔融状态下,所述阀体由所述第一位置切换至所述第二位置。
可选地,所述防火装置还包括:弹性件;
所述弹性件设置于所述阀体与所述流体通道的内壁之间;
在所述阀体处于所述第一位置时,所述弹性件处于压缩状态;
所述弹性件用于在所述阀体由所述第一位置切换至所述第二位置时提供弹性驱动力。
可选地,所述阀体包括卡接件和密封件,所述卡接件和所述密封件为分体式结构,且所述卡接件和所述密封件分别与所述流体通道的内壁滑动连接;
所述弹性件设置于所述卡接件与所述流体通道的内壁之间;
所述卡接件的一端用于与所述可熔性支撑部卡接,所述卡接件的另一端用于推抵所述密封件;
所述卡接件与所述密封件之间具有供流体通过的装配间隙。
可选地,所述卡接件靠近所述密封件的一端设置有凸起的第一导向部,所述第一导向部与所述流体通道的内壁滑动配合;
所述弹性件套设于所述卡接件,所述弹性件一端与所述流体通道的内壁抵接,所述弹性件另一端与所述第一导向部抵接;
在所述卡接件与所述可熔性支撑部卡接时,所述弹性件被所述流体通道的内壁以及所述第一导向部压缩。
可选地,所述流体通道包括主体以及设置于所述主体两端的开口部,其中,所述开口部的内径小于所述主体的内径;
所述主体与所述开口部的连接处收窄形成肩部;
所述可熔性支撑部设置于所述开口部的内壁;
所述弹性件一端与所述肩部抵接,所述弹性件另一端与所述第一导向部抵接。
可选地,所述卡接件设置有凸起的第二导向部,所述第二导向部与所述开口部的内壁滑动配合。
可选地,所述密封件朝向所述卡接件的一侧具有端面,所述端面的周侧朝向所述卡接件延伸形成第三导向部,所述第三导向部与所述流体通道的内壁滑动配合。
可选地,所述第三导向部与所述端面围合成限位槽;
所述卡接件朝向所述密封件的一端延伸形成限位部,所述限位部至少部分嵌设于所述限位槽。
可选地,所述密封件的外侧壁延伸形成凸起的第四导向部,所述第四导向部与所述流体通道的内壁滑动配合。
可选地,所述卡接件朝向所述密封件的一端设置有凹槽,所述密封件朝向所述卡接件的一端设置有凸台,所述凸台至少部分嵌设于所述凹槽。
第三方面,本公开实施例公开了一种防火装置,包括:壳体和阀体;
所述壳体具有流体通道,所述流体通道用于与氧疗仪或患者端的管路连通;
所述阀体设置于所述流体通道内,所述阀体相对于所述流体通道具有第一位置和第二位置;
处于所述第一位置时,所述阀体和所述流体通道之间具有供气体通过的间隙;
处于所述第二位置时,所述阀体阻断所述流体通道;
所述流体通道两端的内壁分别设置有至少一个凸起的支撑部;
所述阀体靠近所述支撑部的一端设置有易熔部;
在所述易熔部处于非熔融状态下,所述阀体与所述支撑部卡接,以支撑所述阀体处于所述第一位置;
在所述易熔部处于熔融状态下,所述阀体由所述第一位置切换至所述第二位置。
可选地,所述易熔部的外径小于所述阀体其他位置的外径。
可选地,所述防火装置还包括:弹性件;
所述弹性件设置于所述阀体与所述流体通道的内壁之间;
在所述阀体处于所述第一位置时,所述弹性件处于压缩状态;
所述弹性件用于在所述阀体由所述第一位置切换至所述第二位置时提供弹性驱动力。
可选地,所述阀体包括卡接件和密封件,所述卡接件和所述密封件为分体式结构,且所述卡接件和所述密封件分别与所述流体通道的内壁滑动连接;
所述易熔部设置于所述卡接件靠近所述支撑部的一端,所述所述弹性件设置于所述卡接件与所述流体通道的内壁之间;
所述卡接件的一端用于与所述支撑部卡接,所述卡接件的另一端用于推抵所述密封件;
所述卡接件与所述密封件之间具有供流体通过的装配间隙。
可选地,所述卡接件靠近所述密封件的一端设置有凸起的第一导向部,所述第一导向部与所述流体通道的内壁滑动配合;
所述弹性件套设于所述卡接件,所述弹性件一端与所述流体通道的内壁抵接,所述弹性件另一端与所述第一导向部抵接;
在所述卡接件与所述支撑部卡接时,所述弹性件被所述流体通道的内壁以及所述第一导向部压缩。
可选地,所述流体通道包括主体以及设置于所述主体两端的开口部,其中,所述开口部的内径小于所述主体的内径;
所述主体与所述开口部的连接处收窄形成肩部;
所述支撑部设置于所述开口部的内壁;
所述弹性件一端与所述肩部抵接,所述弹性件另一端与所述第一导向部抵接。
可选地,所述卡接件设置有凸起的第二导向部,所述第二导向部与所述开口部的内壁滑动配合。
可选地,所述密封件朝向所述卡接件的一侧具有端面,所述端面的周侧朝向所述卡接件延伸形成第三导向部,所述第三导向部与所述流体通道的内壁滑动配合。
可选地,所述第三导向部与所述端面围合成限位槽;
所述卡接件朝向所述密封件的一端延伸形成限位部,所述限位部至少部分嵌设于所述限位槽。
可选地,所述密封件的外侧壁延伸形成凸起的第四导向部,所述第四导 向部与所述流体通道的内壁滑动配合。
可选地,所述卡接件朝向所述密封件的一端设置有凹槽,所述密封件朝向所述卡接件的一端设置有凸台,所述凸台至少部分嵌设于所述凹槽。
第四方面,本公开实施例还公开了一种通气治疗设备,包括上述的防火装置。
本公开实施例中,流体通道的内壁设置有支撑部,阀体与可熔性支撑部卡接,以使阀体处于第一位置,阀体与内壳通孔之间具有供流体通过的间隙,弹性件处于压缩状态;在支撑部和阀体中的至少一者熔融后,弹性件释放至少部分弹性势能,驱动阀体与通孔的周侧抵接,以使流体通道处于阻断状态。由支撑部、弹性件以及阀体组成的触发系统,在阀体和支撑部中的任意一个发生熔融时,均可使阀体及时移动至第二位置并与通孔的周侧抵接,进而阻断气路,提高了阀体的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。
本公开还提供一种防火装置及通气治疗设备,旨在解决相关技术中,支撑件熔化速度较慢,导致密封阀不能及时移动至开口处,无法迅速阻断气路,容易造成火势蔓延的问题。
第一方面,本公开实施例公开了一种防火装置,所述防火装置包括:壳体、密封件、阀体以及弹性件;
所述壳体内具有流体通道,所述流体通道用于与氧疗仪或患者端的管路连通;
所述密封件与所述流体通道的内壁连接,所述密封件设置有缺口,所述缺口用于通过流体;
所述阀体与所述流体通道的内壁滑动连接,所述弹性件设置于所述阀体与所述流体通道的内壁之间;
所述阀体设置有易熔部,所述流体通道的内壁设置有至少一个凸起的可熔性支撑部,所述阀体的一端与所述缺口相对设置,所述阀体的另一端用于与所述可熔性支撑部卡接;
所述阀体相对于所述流体通道具有第一位置和第二位置;
在所述可熔性支撑部和所述易熔部处于非熔融状态下,所述阀体与所述可熔性支撑部卡接,以支撑所述阀体处于所述第一位置,所述阀体与所述密 封件之间具有供流体通过的间隙,所述弹性件处于压缩状态;
在所述可熔性支撑部和/或所述易熔部处于熔融状态下,所述弹性件释放至少部分弹性势能,以驱动所述阀体处于所述第二位置,所述阀体与所述密封件的缺口扣合,以使所述流体通道处于阻断状态。
可选地,所述阀体为一体式结构。
可选地,所述缺口具有相对的第一侧和第二侧;
所述缺口的至少一侧设置有所述阀体,在所述缺口的至少一侧与所述阀体扣合时,所述流体通道处于阻断状态。
可选地,所述阀体包括卡接部、连接部以及密封部,所述卡接部和所述密封部通过所述连接部连接;
所述卡接部用于与所述可熔性支撑部卡接,以支撑所述所述阀体处于所述第一位置;
所述密封部与所述缺口相对设置,用于在所述阀体处于所述第二位置时与所述缺口扣合;
所述易熔部设置于所述连接部。
可选地,所述弹性件套设于所述连接部,所述弹性件一端与所述流体通道的内壁抵接,所述弹性件另一端与所述密封部抵接;
在所述卡接部与所述可熔性支撑部卡接时,所述弹性件被所述流体通道的内壁以及所述密封部压缩;
在所述可熔性支撑部和/或所述易熔部处于熔融状态下,所述弹性件释放至少部分弹性势能,驱动所述密封部与所述缺口扣合,以使所述流体通道处于阻断状态。
可选地,所述流体通道包括主体以及设置于所述主体两端的开口部,其中,所述开口部的内径小于所述主体的内径;
所述主体与所述开口部的连接处收窄形成肩部;
所述可熔性支撑部设置于所述开口部的内壁,所述密封件与所述主体的内壁连接;
所述弹性件一端与所述肩部抵接,所述弹性件另一端与所述密封部抵接。
可选地,所述密封部设置有凸起的第一导向部,所述第一导向部与所述主体的内壁滑动配合;
所述弹性件一端与所述肩部抵接,所述弹性件另一端与所述第一导向部抵接。
可选地,所述连接部设置有凸起的第二导向部,所述第二导向部与所述开口部的内壁滑动配合。
可选地,所述可熔性支撑部的数量为两个或两个以上,所述可熔性支撑部沿开口部内壁的周向间隔设置。
可选地,所述壳体包括第一壳体和第二壳体;
所述第一壳体和/或所述第二壳体设置有安装卡槽;
在所述第一壳体和所述第二壳体装配的情况下,所述密封件与所述安装卡槽过盈配合。
可选地,所述安装卡槽设置有扩展部;
所述密封件的边缘延伸形成嵌入部,所述嵌入部至少部分嵌入所述扩展部。
可选地,所述防火装置包括两个对称设置于所述流体通道内的所述阀体;
两个所述阀体分别位于所述密封件的两侧;
每个所述阀体与所述流体通道的内壁之间均设置有所述弹性件;
所述主体两端的所述开口部内分别设置有所述可熔性支撑部。
第二方面,本公开实施例还公开了一种通气治疗设备,包括上述的防火装置。
本公开实施例中,阀体上设置有易熔部,流体通道的内壁设置有可熔性支撑部,在可熔性支撑部和易熔部处于非熔融状态下,阀体与可熔性支撑部卡接,以支撑阀体处于第一位置,阀体与密封件之间具有供流体通过的间隙,弹性件处于压缩状态;在可熔性支撑部和/或易熔部处于熔融状态下,弹性件释放至少部分弹性势能,以驱动阀体处于第二位置,阀体与密封件的缺口扣合,以使流体通道处于阻断状态。利用易熔部和可熔性支撑部组合,在易熔部和可熔性支撑部中的任意一个发生熔融时,均可使阀体及时移动至第二位置并与密封件的缺口扣合,进而阻断气路,提高了阀体的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。
本公开实施例还提供一种防火阀、通气设备,在用户侧起火时,阻断氧气的输送。
第一方面,本公开提供了一种防火阀,应用于通气设备,包括壳体和密封件;所述壳体内设有贯穿的气流通道,所述气流通道内设有分隔所述气流通道的第一分隔件,所述第一分隔件上设有第一通气孔;所述密封件位于所述气流通道内,且受热前与所述第一通气孔之间设有第一间隙,以使气体通过所述第一通气孔和所述第一间隙从所述气流通道的一端流向另一端;所述密封件包括热收缩材料层,以使所述密封件受热后收缩,并封堵所述第一通气孔。
可选地,所述第一通气孔朝向所述密封件,且所述密封件在所述第一通气孔的投影完全覆盖所述第一通气孔,以使所述密封件受热收缩后贴合在所述第一分隔件上并封盖所述第一通气孔。
可选地,所述第一分隔件包括第一通气管,所述第一通气孔设置在所述第一通气管的侧壁上;所述密封件呈管状,套设于所述第一通气管的外侧。
可选地,所述第一通气管将所述气流通道分隔为第一通道和第二通道,所述密封件位于所述第二通道内,且所述密封件的外壁与所述第二通道的内壁之间设有第二间隙。
可选地,所述密封件呈管状,且所述密封件的一端连接在所述第一通气孔的周缘;所述密封件的另一端受热前处于开口状态,受热收缩后处于封闭状态。
可选地,所述密封件还包括位于所述热收缩材料层内侧的热熔层。
可选地,所述热熔层远离所述第一通气孔一端的壁厚大于靠近所述第一通气孔一端的壁厚。
可选地,所述热熔层设有多个朝向所述密封件内部的凸起。
可选地,所述气流通道内还设有第二分隔件,所述第二分隔件上设有第二通气孔,所述第一分隔件和所述第二分隔件沿所述气流通道轴向间隔设置,所述密封件受热收缩后封堵所述第二通气孔。
第二方面,本公开提供了一种通气设备,包括所述的防火阀。
本公开提供的防火阀,壳体内设有第一分隔件,第一分隔件将壳体内的气流通道分隔为通过第一通气孔连通的两部分。密封件在受热前与第一通气孔之间设有第一间隙,从而使气流通道的两部分之间正常连通。密封件内包括热收缩材料层,以使密封件在受热后可以封堵第一通气孔,使气流通道的 两部分之间不连通,从而切断了氧气的输送通道。与相关技术中的防火阀相比,本公开提供的防火阀包括壳体和密封件,零件数量较少,且结构简单。
本公开提供一种应用于氧疗设备的自动防火装置,其能够避免长时间与氧气接触时失效现象的发生,从而提高自动防火装置的使用寿命。
本公开提供一种应用于氧疗设备的自动防火装置,包括:
壳体,所述壳体中设置有气体通道;以及密封件,其设置在所述壳体的内部,所述密封件由弹性材料制成,所述密封件包括密封部:
其中,所述密封件处于第一状态时,所述密封部与所述气体通道的出气端之间具有间隙,使得所述气体通道打开;所述密封件处于第二状态时,所述密封部与所述气体通道的出气端相贴合,使得所述气体通道关闭。
在一个实施方式中,所述密封件还包括分别设置在所述密封部上的第一连接件和第二连接件,所述第一连接件和所述第二连接件分别固定在所述气体通道的出气端的两侧,所述密封件处于第一状态时,所述第一连接件和所述第二连接件均固定在所述壳体中且均处于拉伸状态,使得所述密封部远离所述气体通道而与所述气体通道的出气端之间形成间隙;所述密封件处于第二状态时,所述第一连接件固定在所述壳体中且处于拉伸状态,所述第二连接件断开连接且处于自然状态,使得所述密封部靠近所述气体通道而与所述气体通道的出气端相贴合。
在一个实施方式中,所述第二连接件通过固定结构固定在所述壳体中,所述固定结构构造为其在受热超过预设温度后可被熔断,使得所述第二连接件由所述拉伸状态转变为所述自然状态。
在一个实施方式中,所述壳体中还设置有用于安装所述密封件的安装臂,所述第一连接件及第二连接件分别固定连接在所述安装臂的两端;
其中,所述第二连接件通过所述固定结构与所述安装臂连接以固定在所述壳体中,所述固定结构在受热超过所述预设温度后可被熔断,使得所述第二连接件与安装臂断开连接,所述第二连接件由所述拉伸状态转变为所述自然状态。
在一个实施方式中,所述第一连接件设置在所述密封部的侧壁上,所述第二连接件设置在所述密封部的端部一侧,其中,所述第一连接件和所述第二连接件均处于自然状态时,所述第一连接件的延伸方向与第二连接件的延 伸方向垂直:
当所述密封件处于第一状态时,所述第一连接件和所述第二连接件的拉伸延伸方向相反。
在一个实施方式中,所述第一连接件和所述第二连接件分别设置在所述密封部相应的两侧,且所述第一连接件位于所述密封部远离第二连接件的一侧:其中,所述第一连接件和所述第二连接件均处于自然状态时,所述第一连接件和所述第二连接件分别沿相反的方向延伸。
在一个实施方式中,所述安装臂包括:
转接块,所述转接块中设置有容纳孔,所述气体通道贯穿地设置在所述容纳孔中;安装柱,所述安装柱设置在所述转接块的侧壁上,所述安装柱用于与所述第一连接件相连;以及
连接板,所述连接板沿所述容纳孔的轴向延伸,所述连接板上远离所述转接块的一侧设置有触发柱,所述触发柱用于与所述第二连接件相连;
其中,所述第一连接件与所述安装柱相连,且所述第二连接件与所述触发柱相连时,所述密封件在壳体中处于第一状态;所述第一连接件与所述安装柱相连,且所述第二连接件与所述触发柱断开相连时,所述密封件在壳体内处于第二状态。
在一个实施方式中,所述固定结构包括位于所述第二连接件端部的连接环以及所述触发柱,所述连接环可与所述触发柱相配合:
其中,所述连接环和/或所述触发柱在受热超过所述预设温度后可被熔断。
在一个实施方式中,所述安装柱包括:
连接柱,所述连接柱在所述转接块的侧壁上沿所述容纳孔的径向延伸;
止挡圆台,所述止挡圆台设置在所述连接柱上;以及固定柱,所述固定柱设置在所述止挡圆台的端部,其用于与所述壳体的内壁相连,从而将所述安装臂固定在所述壳体中。
在一个实施方式中,所述第一连接件上设置有贯穿其厚度方向的第一连接孔,所述第一连接孔的内径小于所述止挡圆台的最大外径。
在一个实施方式中,所述安装柱对称地设置在所述转接块的侧壁上,且所述第一连接件的数量和分布方式分别与所述安装柱的数量和分布方式相同,所述第一连接件和所述安装柱的二者的数量均为至少两个。
在一个实施方式中,所述连接板包括:
凹陷部,所述凹陷部的一端与所述转接块的侧壁相连,所述凹陷部用于接收所述密封部;以及
延伸板,所述延伸板与所述凹陷部的另一端相连,所述延伸板沿所述容纳孔的轴向延伸,所述触发柱设置在所述延伸板远离所述凹陷部的一侧。
在一个实施方式中,所述壳体包括第一壳体和第二壳体,所述第一壳体和所述第二壳体相连后其内部形成密封的腔室,所述气体通道从所述腔室的内壁一侧延伸:
所述第一壳体的一侧设置有第一喷嘴,所述第二壳体上与所述第一壳体相对的一侧设置有第二喷嘴:
其中,所述密封件处于第一状态时,所述第一喷嘴、所述气体通道、所述腔室以及所述第二喷嘴流体联通;所述密封件处于第二状态时,经所述第一喷嘴进入所述气体通道的流体与所述气体通道外的所述腔室隔绝。
在一个实施方式中,所述腔室的内壁上设置有连接槽,所述连接槽用于与所述固定柱相连。
在一个实施方式中,所述触发柱设置在所述腔室中或所述第二喷嘴中。在一个实施方式中,所述第一喷嘴和所述第二喷嘴的外壁上均设置有防脱部。
在一个实施方式中,所述第一壳体和所述第二壳体之间通过密封卡扣、焊接或螺纹连接的方式相连。
与相关技术相比,本公开的优点在于:
(1)由于密封件采用弹性非金属材料制成,因此其即使长时间与氧气接触,也不会出现氧化反应等化学反应,从而可提高应用于氧疗设备的自动防火装置的使用寿命,并避免对使用者的健康造成影响。
(2)壳体内部中的零件较少,其结构简单,使得应用于氧疗设备的自动防火装置的性能更稳定。
本公开的目的是提供一种防火装置及通气治疗设备,能够解决相关技术中使用氧疗仪的过程中,若有火焰出现,火焰将会随氧气管逐步向机身燃烧,容易造成火势蔓延,最终引燃制氧机发生严重火灾的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开提供了一种防火装置,包括:壳体、第一阀体、第二 阀体以及弹性件,所述壳体内部具有流体通道,且所述壳体的一端具有第一开孔,所述壳体的第二端具有第二开孔,所述第一开孔、所述第二开孔均与所述流体通道连通,所述第一开孔、所述第二开孔用于与所述氧疗仪的管路或所述供氧端的管路连通;
所述第一阀体与所述第二阀体均位于所述流体通道中,且所述第一阀体与所述第二阀体沿所述第一开孔至所述第二开孔的方向间隔分布,所述第一开孔的孔壁上固定有第一限位筋,所述第二开孔的孔壁上固定有第二限位筋,所述第一阀体的第一端与所述第一限位筋抵接,所述第二阀体的第一端与所述第二限位筋抵接,所述弹性件位于所述第一阀体与所述第二阀体之间,且所述弹性件的两端分别与所述第一阀体的第二端以及所述第二阀体的第二端抵接,所述弹性件处于压缩状态,所述第一阀体的周部、所述第二阀体的周部均与所述流体通道的通道壁之间具有供气体流通的间隙;
在所述第一限位筋处于熔融状态的情况下,所述弹性件伸长,所述第一阀体位于第一位置,所述第一阀体与所述流体通道的通道壁密封连接,以阻断所述流体通道;在所述第二限位筋处于熔融状态的情况下,所述弹性件伸长,所述第二阀体位于第二位置,所述第二阀体与所述流体通道的通道壁密封连接,以阻断所述流体通道。
可选的,所述第一阀体包括第一安装杆以及第一安装座,所述第一安装杆的轴线方向与所述弹性件的伸缩方向一致,所述第一安装杆的一端与所述第一安装座连接,所述第一安装杆的另一端与所述第一限位筋抵接,所述弹性件的一端与所述第一安装座抵接;
所述第二阀体包括第二安装杆以及第二安装座,所述第二安装杆的轴线方向与所述弹性件的伸缩方向一致,所述第二安装杆的一端与所述第二安装座连接,所述第二安装杆的另一端与所述第二限位筋抵接,所述弹性件的另一端与所述第二安装座抵接;
在所述第一限位筋处于熔融状态的情况下,所述第一安装座所述流体通道的通道壁密封连接;
在所述第二限位筋处于熔融状态的情况下,所述第二安装座所述流体通道的通道壁密封连接。
可选的,所述第一安装座远离所述第一安装杆的一端设置有第一安装腔, 所述第二安装座远离所述第二安装杆的一端设置有第二安装腔,所述第一安装腔与所述第二安装腔的位置相对,所述弹性件的一端与所述第一安装腔的腔底抵接,所述弹性件的另一端与所述第二安装腔的腔底抵接。
可选的,所述第一安装腔的腔底连接有第一导向杆,和/或所述第二安装腔的腔底连接有第二导向杆,所述弹性件套设于所述第一导向杆和/或所述第二导向杆,所述第一导向杆、所述第二导向杆用于对所述弹性件的伸缩进行导向。
可选的,所述第一安装座的周部设置有第一定位部,所述流体通道的内壁上设置第一定位槽,所述第一定位槽的延伸方向与所述弹性件的伸缩方向一致,所述第一定位部嵌设于所述第一定位槽,所述第一定位槽用于在所述第一限位筋处于被处于熔融状态的情况下,对所述第一安装座的移动方向进行限位;
和/或,所述第二安装座的周部设置有第二定位部,所述流体通道的内壁上设置第二定位槽,所述第二定位槽的延伸方向与所述弹性件的伸缩方向一致,所述第二定位部嵌设于所述第二定位槽,所述第二定位槽用于在所述第二限位筋处于被处于熔融状态的情况下,对所述第二安装座的移动方向进行限位。
可选的,所述流体通道的内壁上设置有第一安装槽,所述第一安装槽沿着所述流体通道的周向方向延伸且环绕所述流体通道,所述第一安装槽内设置有第一密封件,且所述第一密封件的部分外伸于所述第一安装槽,所述第一密封件与所述第一阀体相对,所述第一密封件用于在所述第一限位筋处于被处于熔融状态的情况下,与所述第一阀体抵接,以使所述第一阀体与所述流体通道的通道壁密封连接;
和/或,所述流体通道的内壁上设置有第二安装槽,所述第二安装槽沿着所述流体通道的周向方向延伸且环绕所述流体通道,所述第二安装槽内设置有第二密封件,且所述第二密封件的部分外伸于所述第二安装槽,所述第二密封件与所述第二阀体相对,所述第二密封件用于在所述第二限位筋处于被处于熔融状态的情况下,与所述第二阀体抵接,以使所述第二阀体与所述流体通道的通道壁密封连接。
可选的,所述流体通道的通道壁上沿所述流体通道的周向方向具有第一 阻挡台以及第二阻挡台,且所述第一阻挡台与所述第二阻挡台沿所述第一开孔至所述第二开孔的方向间隔分布,所述第一阀体与所述第二阀体位于所述第一阻挡台与所述第二阻挡台之间,在所述第一开孔至所述第二开孔的方向上,所述第一阻挡台的投影与所述第一阀体的投影具有重叠部分,所述第二阻挡台的投影与所述第二阀体的投影具有重叠部分;
所述第一阻挡台在所述第一开孔至第二开孔的方向上具有朝向所述第一阀体的第一表面,所述第一安装槽设置在所述第一表面上,所述第一安装槽沿着所述流体通道的周向方向延伸,且在所述第一开孔至所述第二开孔的方向上,所述第一安装槽的投影位于所述第一阀体的投影内部;
和/或,所述第二阻挡台在所述第一开孔至第二开孔的方向上具有朝向所述第二阀体的第二表面,所述第二安装槽设置在所述第二表面上,所述第二安装槽沿着所述流体通道的周向方向延伸,且在所述第一开孔至所述第二开孔的方向上,所述第二安装槽的投影位于所述第二阀体的投影内部。
可选的,所述壳体包括第一子壳体以及第二子壳体,所述第一子壳体与所述第二子壳体相对设置,所述第一子壳体内部设置有第一通道,所述第二子壳体内设置有第二通道,所述第一子壳体与所述第二子壳体连接,且所述第一通道与所述第二通道连通形成所述流体通道,所述第一阀体设置在所述第一壳体中,所述第二阀体设置在所述第二壳体中。
可选的,所述第一开孔连接有第一接头,所述第一接头与所述流体通道连通;
所述第二开孔连接有第二接头,所述第二接头与所述流体通道连通;
所述第一接头、所述第二接头用于与所述氧疗仪的管路或所述供氧端的管路连通。
第二方面,本公开提供了一种通气治疗设备,具体包括氧疗仪、供氧端以及上述第一方面任一所述的防火装置;所述第一开孔与所述氧疗仪连接,所述第二开孔与所述供氧端连接;或,所述第二开孔与所述氧疗仪连接,所述第一开孔与所述供氧端连接。
在本公开中,防火装置包括壳体、第一阀体、第二阀体以及弹性件,壳体内部具有流体通道,壳体的一端具有第一开孔,壳体的第二端具有第二开孔,由于第一开孔、第二开孔均与流体通道连通,因此,第一开孔、流体通 道、第二开孔可以形成用于使得气体流通的通道。其中,第一开孔、第二开孔用于与氧疗仪的管路或供氧端的管路连通,从而可以通过第一开孔、第二开孔使得流体通道的一端与氧疗仪的管路连接,使得流体通道的另一端与供氧端的管路连接,氧疗仪可以通过供氧端向患者输送氧气。第一开孔的孔壁上固定有第一限位筋,第二开孔的孔壁上固定有第二限位筋,第一阀体的第一端与第一限位筋抵接,第二阀体的第二端与第二限位筋抵接,第一阀体的第二端与第二阀体的第二端之间连接有弹性件,从而可以使得第一阀体、第二阀体沿第一开孔至第二开孔的方向间隔分布,由于弹性件处于压缩状态,且弹性件的伸缩方向与流体通道的延伸方向一致,因此,弹性件可以对第一阀体、第二阀体施力,以使第一阀体具有向朝向第一开孔的方向移动的趋势,第二阀体具有朝向第二开孔移动的趋势,此时,第一限位筋可以对第一阀体进行阻挡,第二限位筋可以对第二阀体进行阻挡。由于第一阀体的周部、第二阀体的周部均与流体通道的通道壁之间具有供气体流通的间隙,因此,在正常使用时,气体可以通过间隙流动,以使氧疗仪可以正常使用。在第一限位筋处于熔融状态的情况下,第一限位筋对第一阀体丧失阻挡作用,此时弹性件伸长,即弹性件会释放弹性势能,第一阀体在弹性件的弹力作用下向第一开孔的方向移动至第一位置,使得第一阀体与流体通道的通道壁密封连接,从而可以阻断流体通道,防止氧气继续在流体通道中流动;在第二限位筋处于熔融状态的情况下,第二限位筋对第二阀体丧失阻挡作用,此时弹性件伸长,即弹性件会释放弹性势能,第二阀体在弹性件的弹力作用下向第二开孔的方向移动至第二位置,使得第二阀体与流体通道的通道壁密封连接,从而可以阻断流体通道,防止氧气继续在流体通道中流动。
也即是,在本公开实施例中,在氧疗过程中,若由于操作不当引发火焰,第一限位筋或第二限位筋燃烧处于熔融状态,此时第一阀体与第二阀体之间设置的弹性件可以推动第一阀体或第二阀体移动,使得第一阀体或第二阀体与流体通道密封连接,从而可以阻断流体通道。防火装置可以防止氧气继续在流体通道中流动,避免火焰随氧气管逐步向机身燃烧,容易造成火势蔓延,最终引燃制氧机发生严重火灾的问题出现。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它 目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开实施例中所述的第一种防火装置爆炸结构示意图;
图2示出了本公开实施例中所述的第一种防火装置处于开启状态的结构示意图;
图3示出了本公开实施例中所述的第一种防火装置处于关闭状态的结构示意图;
图4示出了本公开实施例中所述的第一种阀体结构示意图之一;
图5示出了本公开实施例中所述的第一种阀体结构示意图之二;
图6示出了本公开实施例中所述的第一种壳体结构示意图之一;
图7示出了本公开实施例中所述的第一种壳体结构示意图之二;
图8示出了本公开实施例中所述的第二种防火装置结构示意图之一;
图9示出了本公开实施例中所述的第二种防火装置结构示意图之二;
图10示出了本公开实施例中所述的第二种防火装置结构示意图之三;
图11示出了本公开实施例中所述的第一壳体的结构示意图;
图12示出了本公开实施例中所述的第一壳体和第二壳体装配结构示意图;
图13示出了本公开实施例中所述的第二壳体结构示意图之一;
图14示出了本公开实施例中所述的第二壳体结构示意图之二;
图15示出了本公开实施例中所述的气体通道处于开启状态结构示意图;
图16示出了本公开实施例中所述的气体通道处于关闭状态结构示意图;
图17示出了本公开实施例中所述的第三种防火装置处于开启状态的结构示意图之一;
图18示出了本公开实施例中所述的第三种防火装置处于开启状态的结构示意图之二;
图19示出了本公开实施例中所述的第三种防火装置处于关闭状态的结构 示意图之一;
图20示出了本公开实施例中所述的第三种防火装置处于关闭状态的结构示意图之二;
图21示出了本公开实施例中所述的第三种防火装置结构示意图;
图22示出了本公开实施例中所述的支撑件和第一弹性阀体装配结构示意图;
图23示出了本公开实施例中所述的第三种防火装置处于开启状态的结构示意图之三;
图24示出了本公开实施例中所述的第三种防火装置处于开启状态的结构示意图之四;
图25示出了本公开实施例中所述的第三种防火装置处于关闭状态的结构示意图之三;
图26示出了本公开实施例中所述的第三种防火装置处于关闭状态的结构示意图之四;
图27示出了本公开实施例中所述的第三种防火装置处于开启状态的结构示意图之五;
图28示出了本公开实施例中所述的第三种防火装置处于开启状态的结构示意图之六;
图29示出了本公开实施例中所述的第四种防火装置结构示意图之一;
图30示出了本公开实施例中所述的第四种防火装置结构示意图之二;
图31示出了本公开实施例中所述的第四种防火装置结构示意图之三;
图32示出了本公开实施例中所述的第四种防火装置结构示意图之四;
图33示出了本公开实施例中所述的第五种防火装置处于开启状态的结构示意图之一;
图34示出了本公开实施例中所述的第五种防火装置处于关闭状态的结构示意图之一;
图35示出了本公开实施例中所述的第五种防火装置处于开启状态的结构示意图之二;
图36示出了本公开实施例中所述的第五种防火装置处于开启状态的结构示意图之三;
图37示出了本公开实施例中所述的第五种防火装置处于开启状态的结构示意图之四;
图38示出了本公开实施例中所述的第一定位件与第二种壳体装配结构示意图之一;
图39示出了本公开实施例中所述的第一定位件与第二种壳体装配结构示意图之二;
图40示出了本公开实施例中所述的第五种防火装置结构示意图;
图41示出了本公开实施例中所述的第五种防火装置处于开启状态的结构示意图之五;
图42示出了本公开实施例中所述的第五种防火装置处于关闭状态的结构示意图之二;
图43示出了本公开实施例中所述的第五种防火装置处于开启状态的结构示意图之六;
图44示出了本公开实施例中所述的第五种防火装置处于开启状态的结构示意图之七;
图45示出了本公开实施例中所述的第五种防火装置处于关闭状态的结构示意图之三;
图46示出了本公开实施例中所述的第六种防火装置中流体通道处于开启状态的结构示意图之一;
图47示出了本公开实施例中所述的第六种防火装置中流体通道处于开启状态的结构示意图之二;
图48示出了本公开实施例中所述的第六种防火装置中流体通道处于关闭状态的结构示意图之一;
图49示出了本公开实施例中所述的第六种防火装置中流体通道处于关闭状态的结构示意图之二;
图50示出了本公开实施例中所述的第二种阀体结构示意图之一;
图51示出了本公开实施例中所述的第三种壳体结构示意图;
图52示出了本公开实施例中所述的第六种防火装置中流体通道处于开启状态的结构示意图之三;
图53示出了本公开实施例中所述的第六种防火装置中流体通道处于开启 状态的结构示意图之四;
图54示出了本公开实施例中所述的第六种防火装置中流体通道处于关闭状态的结构示意图之三;
图55示出了本公开实施例中所述的第六种防火装置中流体通道处于关闭状态的结构示意图之四;
图56示出了本公开实施例中所述的第二种阀体结构示意图之二;
图57示出了本公开实施例中所述的第七种防火装置结构示意图之一;
图58示出了本公开实施例中所述的第三种阀体结构示意图;
图59示出了本公开实施例中所述的底座结构示意图之一;
图60示出了本公开实施例中所述的第三种阀体装配结构示意图之一;
图61示出了本公开实施例中所述的第七种防火装置结构示意图之二;
图62示出了本公开实施例中所述的第三种阀体装配结构示意图之二;
图63示出了本公开实施例中所述的第七种防火装置结构示意图之三;
图64示出了本公开的一个实施例中所述的第一阀体结构示意图;
图65示出了本公开实施例中所述的底座结构示意图之二;
图66示出了本公开的一个实施例中所述的第一阀体装配结构示意图;
图67示出了本公开的一个实施例中所述的第一阀体、第二阀体以及底座装配结构示意图;
图68示出了本公开实施例中所述的第八种防火装置结构示意图之一;
图69示出了本公开实施例中所述的第八种防火装置结构示意图之二;
图70示出了本公开实施例中所述的第八种防火装置结构示意图之三;
图71示出了本公开实施例中所述的第八种防火装置结构示意图之四;
图72示出了本公开实施例中所述的第八种防火装置结构示意图之五;
图73示出了本公开实施例中所述的第九种防火装置结构示意图之一;
图74示出了本公开实施例中所述的第九种防火装置结构示意图之二;
图75示出了本公开实施例中所述的第九种防火装置结构示意图之三;
图76为相关技术中一种防火阀的剖视图;
图77为本公开实施例提供的一种防火阀的轴测图;
图78为本公开实施例提供的一种防火阀的剖视图一;
图79为本公开实施例提供的一种防火阀的剖视图二;
图80为本公开实施例提供的另一种防火阀的剖视图一;
图81为本公开实施例提供的另一种防火阀的剖视图二;
图82为本公开实施例提供的另一种防火阀的剖视图一;
图83为本公开实施例提供的另一种防火阀的剖视图二;
图84为本公开实施例提供的另一种防火阀的剖视图;
图85为图84中关于快插接头的局部放大图;
图86为本公开实施例提供的一种防火阀的剖视图一;
图87为本公开实施例提供的一种防火阀的剖视图二;
图88为本公开实施例提供的另一种防火阀的剖视图;
图89为本公开实施例提供的另一种防火阀的剖视图;
图90为本公开实施例提供的另一种防火阀的剖视图。
图91是相关技术中防火隔离装置的结构示意图;
图92是本公开的一个实施例中应用于氧疗设备的自动防火装置的立体结构示意图;
图93是图92所示的自动防火装置的立体剖视图,其中示出了密封件处于第一状态,且触发柱和连接环相连在腔室中;
图94是图92所示的自动防火装置的剖视图;
图95是图93所示的密封件的立体结构示意图,其中,密封件处于未被拉伸的状态;
图96是图93所示的密封件的立体结构示意图,其中,密封件处于被拉伸的状态;
图97是图96所示的安装臂的立体结构示意图;
图98是图93所示的密封件被拉伸后安装在安装臂上的结构示意图;
图99是图92所示的自动防火装置的立体剖视图,其中示出了密封件处于第二状态;
图100是本公开的另一个实施例中应用于氧疗设备的自动防火装置的立体剖视图,其中示出了触发柱和连接环相连在第二喷嘴中。
图101是本公开实施例提供的第十种防火装置的剖面图;
图102是本公开实施例提供的第十种防火装置中第一限位筋处于熔融状态的示意图;
图103是本公开实施例提供的第十种防火装置的侧视图;
图104是本公开实施例提供的第十种防火装置的示意图;
图105是本公开实施例提供的第十一种防火装置的剖面图;
图106是本公开的另一个实施例提供的第一阀体的结构图;
图107是本公开的另一个实施例提供的第一阀体的侧视图之一;
图108是本公开的另一个实施例提供的第一阀体的侧视图之二。
附图标记说明
10-壳体;20-阀体;30-扭簧;40-可熔构件;101-流体通道;102-第一开
口;103-第二开口;104-转轴;105-限位部;106-第一管路接头;107-第一通孔;108-第二管路接头;109-第二通孔;110-卡接部;201-容纳腔;202-安装部;203-第一连接部;204-第一密封部;205-第二连接部;206-第二密封部;207-缺口;401-延伸部;2021-内轴套;2022-外轴套;
220-弹性件;230-阀体;240-可熔构件;2101-容纳腔;2102-气体通道;
2103-第一壳体;2104-第二壳体;2105-第一通孔;2106-第二通孔;2107-第三通孔;2108-第四通孔;2109-第一凸出部;2110-第二凸出部;2111-第一延伸部;2112-第二延伸部;2113-限位部;2114-第一连接部;2115-第二连接部;2301-第五通孔;2302-第三延伸部;2303-第四延伸部;2401-第六通孔;
320-第一弹性阀体;330-第一可熔构件;340-支撑件;350-第二弹性阀体;
360-第二可熔构件;3101-容纳腔;3102-第一开口;3103-第二开口;3104-第一连接部;3105-第二连接部;3106-第一通孔;3107-第二通孔;3108-加强筋;3109-卡接部;3201-第二定位部;3401-第一定位部;
420-第一移动杆;430-第一可熔构件;440-第一阀体;450-第一弹性件;
460-第二移动杆;470-第二可熔构件;480-第二阀体;490-第二弹性件;4101-流体通道;4102-第一收窄部;4103-第二收窄部;4104-挡板;4105-第一管路接头;4106-第二管路接头;4107-第三卡接部;4201-第一卡接配合部;4202-第一导向部;4301-第一卡接部;4401-第一密封件;4402-第二导向部;4403-槽体;4404-安装轴;4601-第二卡接配合部;4701-第二卡接部;4801-第二密封件;
520-第一定位件;530-第一密封件;540-可熔构件;550-第二定位件;560-
第二密封件;5101-流体通道;5102-第一开口;5103-第二开口;5104-环形凸起;5105-第一凸起结构;5106-第二凸起结构;5107-第一定位部;5108-第二定位部;5109-安装部;5110-容纳槽;5111-连接筋;
620-阀体;630-导向部;640-第一可熔构件;650-第一弹性件;660-第二
可熔构件;670-第二弹性件;6101-流体通道;6102-第一收窄部;6103-第二收窄部;6104-固定部;6105-定位槽;6201-第一槽体;6202-第一安装轴;6203-第一密封件;6204-第二槽体;6205-第二安装轴;6206-第二密封件;6207-定位筋;
7101-流体通道;7102-收窄部;720-底座;7201-通气孔;7202-第一定位
槽;7203-第一定位部;7204-第二定位部;7205-法兰;7206-第一限位部;7207-第二限位部;730-阀体;7301-密封部;73011-导向部;7302-承载部;73021-第一支撑结构;73022-镂空结构;7303-连接部;73031-卡接结构;7304-第一阀体;73041-第一密封部;73042-第一安装套筒;73043-第二支撑结构;73044-第三限位部;73045-第二定位槽;7305-第二阀体;73051-第二密封部;73052-第二安装套筒;73053-第三支撑结构;73054-第四限位部;73055-第三定位槽;740-弹性件;7401-第一弹性件;7402-第二弹性件;750-可熔性套圈;
8101-主体;8102-开口部;8103-肩部;820-内壳;8201-通孔;830-阀体;
8301-易熔部;8302-卡接件;83021-第一导向部;83022-第二导向部;83023-限位部;83024-凹槽;8303-密封件;83031-第三导向部;83032-限位槽;83033-第四导向部;83034-凸台;840-弹性件;850-可熔性支撑部;860-密封结构;870-弹性支撑件;880-第一安装槽;890-第二安装槽;8100-支撑部;
9101-流体通道;9102-第一壳体;9103-第二壳体;9104-安装卡槽;9105-
扩展部;91011-主体;91012-开口部;91013-肩部;920-密封件;9201-嵌入部;930-阀体;9301-易熔部;9302-卡接部;9303-连接部;9304-密封部;9305-第一导向部;9306-第二导向部;940-弹性件;950-可熔性支撑部;
1-弹簧;2-活塞;3-第一限位球;4-第二限位球;5-气流通道;
10a-第一壳体;10b-第二壳体;
11-第一接头;12-第二接头;13-第一通气管;14第一通气孔;15-第二通
气管;16-第二通气孔;17-固定部;18-第二间隙;
120-密封件;121-热熔层;1211-薄端;1212-厚端;1213-凸起;122-收缩
材料层;
131-外壳;132-按压件;133-簧片;
1-10、外壳;1-12、端座;1-13、可熔鼻部件;1-14、提升阀;1-15、压
缩弹簧;1-16、入口;1-17、中心孔;1-18、小孔;1-19、出端口;1-21、更大直径的孔;1-22、倾斜部分;1-24、法兰;
1-100、壳体;
1-110、第一壳体;1-120、第二壳体;1-130、腔室;1-140、气体通道;
1-150、连接槽;
1-111、第一喷嘴;1-112、第一防脱部;1-121、第二喷嘴;1-122、第二
防脱部;
1-30、密封圈;1-40、密封件;
1-41、密封部;1-42、第一连接件;1-43、第二连接件;
1-421、第一连接孔;1-431、连接环;1-432、第二连接孔;
1-50、安装臂;
1-51、转接块;1-52、安装柱;1-53、连接板;
1-511、容纳孔;1-521、连接柱;1-522、止挡圆台;1-523、固定柱;1-531、
凹陷部;
1-532、延伸板;1-533、触发柱;
2-100:防火装置;2-20:第一阀体;2-30:第二阀体;2-40:弹性件;2-11:
流体通道;2-12:第一限位筋;2-13:第二限位筋;2-21:第一安装杆;2-22:第一安装座;2-23:第一安装腔;2-24:第一导向杆;2-25:第一定位部;2-31:第二安装杆;2-32:第二安装座;2-33:第二安装腔;2-34:第二导向杆;2-35:第二定位部;2-14:第一定位槽;2-15:第二定位槽;2-16:第一安装槽;2-17:第一密封件;2-18:第二安装槽;2-19:第二密封件;2-111:第一阻挡台;2-112:第二阻挡台;2-1111:第一表面;2-1121:第二表面;2-122:第一子壳体;2-123:第一通道;2-124:第二子壳体;2-125:第二通道;2-51:第一接头;2-52:第二接头;2-26:导向轴。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参照图1至图3所示,本公开实施例公开了第一种防火装置,包括:壳体10、阀体20、扭簧30以及可熔构件40;所述壳体10内具有流体通道101,所述流体通道101设置有第一开口102和第二开口103,所述第一开口102和所述第二开口103分别用于与氧疗仪或患者端的管路连通;所述阀体20位于所述流体通道101内,且与所述壳体10转动连接;所述阀体20设置有容纳腔201,所述流体通道101与所述容纳腔201为相互独立的两个空间;所述扭簧30嵌设于所述容纳腔201内,以驱动所述阀体20与所述壳体10相对转动;所述可熔构件40设置于所述流体通道101的内壁;在所述可熔构件40处于非熔融状态下,所述可熔构件40支撑所述阀体20处于第一位置,所述第一开口102和所述第二开口103均处于开启状态;在所述可熔构件40处于熔融状态下,所述扭簧30驱动所述阀体20转动至第二位置,所述第一开口102和所述第二开口103中的至少一个处于关闭状态。
具体而言,如图1至图3所示,第一种防火装置包括壳体10、阀体20、扭簧30以及可熔构件40。壳体10作为防火装置的主体框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等。壳体10内具有流体通道101,流体通道101开设有第一开口102和第二开口103,第一开口102和第二开口103可以位于流体通道101相对的两侧,第一开口102和第二开口103的轴线共线;第一开口102和第二开口103也可在流体通道101上呈角度设置。第一开口102和第二开口103分别用于与氧疗仪或患者端的管路连通,例如,第一开口102连通氧疗仪端的管路,第二开口103连通患者端的管路,氧气从第一开口102进入流体通道101内,再经由第二开口103传输至患者端。也可将第二开口103连通氧疗仪端的管路,第一开口102连通患者端的管路,本公开实施例对此不做限定。
阀体20位于流体通道101内且与壳体10转动连接。阀体20与壳体10可采用转轴104或者滚轮实现转动连接。例如,在壳体10上设置转轴104,阀体20套设于转轴104上;或者在阀体20上设置滚轮,滚轮与壳体10的内壁之间相对转动。阀体20也可采用不易与氧气发生化学反应且耐高温的材质, 并且阀体20上还设有与第一开口102或第二开口103接合的密封部位,密封部位可采用硅胶、橡胶等材质,能够起到良好的密封效果。
阀体20设置有容纳腔201,流体通道101与容纳腔201为相互独立的两个空间。扭簧30嵌设于容纳腔201内,以驱动阀体20与壳体10相对转动。扭簧30可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。扭簧30能够储存弹性势能,并在发生火灾时驱动阀体20转动,使流体通道101关闭,阻塞氧气通路,进而可以达到防火的效果。氧气在流体通道101内传输时,不会侵入容纳腔201内,从而减少了扭簧30接触氧气的概率,避免了扭簧30发生氧化失效的问题,提升了防火装置的稳定性和耐久性。
可熔构件40设置于流体通道101的内壁,并位于阀体20的转动路径上,对阀体20进行支撑,可熔构件40可以由熔点较低的材料制成,例如PP、PVC等材料。可熔构件40与流体通道101的内壁可以采用粘接、卡接等方式实现装配。
在未发生火灾(温度较低)时,可熔构件40处于非熔融状态,具有一定的刚性,能够对阀体20进行支撑,此时,阀体20处于第一位置,第一开口102和第二开口103均处于开启状态,氧气可通过第一开口102和第二开口103在流体通道101内正常传输。在阀体20处于第一位置时,扭簧30对阀体20施加的弹力,以及可熔构件40对阀体20施加的支撑力处于平衡状态。
在发生火灾(温度较高)时,可熔构件40处于熔融状态,可熔构件40无法继续支撑阀体20,阀体20的平衡状态被打破,此时,在扭簧30的弹力作用下,阀体20会由第一位置转动至第二位置,阀体20上的密封部位会与第一开口102和第二开口103中的至少一个接合,从而使第一开口102和第二开口103中的至少一个处于关闭状态,此时,流体通道101被阻断,氧气无法继续传输。
本公开实施例中,在可熔构件40处于非熔融状态下,可熔构件40支撑阀体20处于第一位置,第一开口102和第二开口103均处于开启状态,流体通道101正常传输氧气;在发生火灾时,可熔构件40在温度达到熔点时,会处于熔融状态,可熔构件40不足以支撑扭簧30施加在阀体20上的弹力,扭簧30释放储存的弹性势能,阀体20在扭簧30的驱动下由第一位置转动至第 二位置,使第一开口102和第二开口103中的至少一个处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,扭簧30所处的容纳腔201与流体通道101相互独立,避免了扭簧30出现氧化的问题,提升了装置的耐久性和安全系数。
可选地,参照图4至图7所示,所述阀体20包括安装部202、第一连接部203以及第一密封部204;所述安装部202包括内轴套2021和外轴套2022,所述容纳腔201位于所述内轴套2021和外轴套2022之间;所述流体通道101内设置有转轴104,所述内轴套2021套设于所述转轴104,且与所述转轴104转动连接;所述第一连接部203的一端与所述外轴套2022的侧壁连接,所述第一连接部203的另一端与所述第一密封部204连接;在所述阀体20处于所述第二位置时,所述第一密封部204与所述第一开口102接合,以使所述第一开口102处于关闭状态。
具体而言,如图4至图7所示,流体通道101具有第一开口102和第二开口103,第一开口102和第二开口103中的至少一个处于关闭状态时,流体通道101均被阻断。为减少流体通道101内的空间占用率,减少对氧气传输的阻碍,在本公开实施例中,仅控制第一开口102由开启切换至关闭状态。对应的,阀体20包括安装部202、第一连接部203以及第一密封部204,阀体20通过安装部202与壳体10实现装配。安装部202包括内轴套2021和外轴套2022,内轴套2021和外轴套2022同轴设置,内轴套2021和外轴套2022一侧的底面封闭,另一侧处于开放状态,内轴套2021的外侧壁和外轴套2022内侧壁共同围成容纳腔201,扭簧30嵌设于容纳腔201内。
流体通道101内设置有转轴104,转轴104与流体通道101的内壁可以采用一体成型的工艺制作,也可分开制作后通过粘接或者卡接等方式实现装配。内轴套2021套设于转轴104,内轴套2021与转轴104同轴设置,并与转轴104转动连接,从而实现阀体20与壳体10的相对转动。第一连接部203的一端与外轴套2022的侧壁连接,第一连接部203的另一端与第一密封部204连接,第一连接部203、外轴套2022以及内轴套2021可采用相同材质制作而成,并通过一体成型的方式制作。
第一密封部204靠近第一开口102,第一密封部204可采用硅胶、橡胶等材质,能够起到良好的密封效果。在阀体20处于第二位置时,第一密封部204 与第一开口102接合,也即,第一密封部204的端面与第一开口102周围的流体通道101内壁抵接,覆盖第一开口102,此时,第一开口102处于关闭状态,流体通道101被阻断。
可选地,参照图4至图7所示,所述阀体20还包括第二连接部205和第二密封部206;所述第二连接部205的一端与所述外轴套2022的侧壁连接,所述第二连接部205的另一端与所述第二密封部206连接;在所述阀体20处于所述第二位置时,所述第二密封部206与所述第二开口103接合,以使所述第二开口103处于关闭状态。
具体而言,如图4至图7所示,阀体20还包括第二连接部205和第二密封部206,第二密封部206靠近第二开口103,第一连接部203和第二连接部205分别位于安装部202的两侧。第二连接部205的一端与外轴套2022的侧壁连接,第二连接部205的另一端与第二密封部206连接,第一连接部203、第二连接部205、内轴套2021、外轴套2022可采用相同材质制作而成,并通过一体成型的方式制作。
第二密封部206可采用硅胶、橡胶等材质,能够起到良好的密封效果。在阀体20处于第二位置时,第二密封部206与第二开口103接合,也即,第二密封部206的端面与第二开口103周围的流体通道101内壁抵接,覆盖第二开口103,此时,第二开口103处于关闭状态,流体通道101被阻断。
通过在第一开口102和第二开口103处均设置密封部,在阀体20处于第二位置时,第一开口102和第二开口103同时处于关闭状态,保证了流体通道101的阻断效果,进而提升了防火装置的稳定性。
可选地,参照图4至图5所示,所述第一连接部203和/或所述第二连接部205设置有缺口207,所述缺口207用于通过流体。
具体而言,如图4至图5所示,氧气通过第一开口102和第二开口103在流体通道101内传输,第一连接部203和第二连接部205位于流体通道101内,为避免第一连接部203和第二连接部205阻碍氧气的正常传输,在第一连接部203和/或第二连接部205设置有缺口207,氧气可通过该缺口207在流体通道101内正常传输,不会对氧气的传输速率产生影响。可仅在第一连接部203或第二连接部205上设置缺口207,也可在第一连接部203和第二连接部205上均设置缺口207,提升通气效果。缺口207的形状以及尺寸可根据 实际需求进行选择,本公开实施例对此不做限定。
可选地,参照图2至图3所示,所述流体通道101的内壁设置有至少一个限位部105,所述限位部105位于所述阀体20的转动路径上;在所述阀体20处于所述第二位置时,所述阀体20与所述限位部105抵接。
具体而言,如图2至图3所示,限位部105设置于流体通道101的内壁,限位部105具体可以为板状、圆柱状等结构。限位部105与壳体10可采用一体成型的工艺制作。限位部105位于阀体20的转动路径上,也即阀体20在相对于壳体10转动时,会与限位部105发生接触。限位部105的数量可以为一个或两个,当限位部105的数量为两个时,两个限位部105可分别位于阀体20的两侧。
当发生火灾时,可熔构件40受热熔融,不足以抵消扭簧30施加在阀体20上的转动扭矩,此时,扭簧30释放储存的弹性势能,并促使阀体20和壳体10之间相对转动,直到阀体20与限位部105接触时停止转动,阀体20刚好处于第二位置,流体通道101处于关闭状态。在扭簧30和限位部105的共同作用下,阀体20和壳体10之间形成稳定装配。
可选地,参照图6至图7所示,所述壳体10设置有第一管路接头106和第二管路接头108;所述第一管路接头106设置有第一通孔107,所述第一通孔107与所述第一开口102连通;所述第二管路接头108设置有第二通孔109,所述第二通孔109与所述第二开口103连通;所述第一管路接头106和所述第二管路接头108分别用于与所述氧疗仪或所述患者端的管路连接。
具体而言,如图6至图7所示,第一管路接头106和第二管路接头108分别位于流体通道101的两侧,第一管路接头106设置有第一通孔107,第一通孔107与第一开口102连通,第二管路接头108设置有第二通孔109,第二通孔109与第二开口103连通。第一管路接头106、第二管路接头108以及壳体10可以为一体式结构,也可以分体制作后拼装而成。
第一管路接头106和第二管路接头108用于与氧疗仪或患者端的管路连通,氧疗仪或患者端的管路与第一管路接头106或第二管路接头108可以采用螺纹连接或者过盈配合的方式实现装配。
可选地,参照图6至图7所示,所述第一管路接头106和/或所述第二管路接头108的外侧壁设置有至少一个卡接部110,所述卡接部110用于与所述 氧疗仪或所述患者端的管路卡接。
具体而言,如图6至图7所示,第一管路接头106和第二管路接头108用于连通氧疗仪或患者端的管路。管路通常采用导管,导管套设在第一管路接头106和第二管路接头108的外侧,为保证导管与第一管路接头106以及第二管路接头108连接的稳定性,在第一管路接头106的外侧壁和/或第二管路接头108的外侧壁设置有至少一个卡接部110,卡接部110的形状呈喇叭状,当导管套设于第一管路接头106的外侧壁和/或第二管路接头108的外侧壁时,卡接部110与导管卡接,保证了导管与第一管路接头106和/或第二管路接头108之间的气密性,避免出现氧气泄露的问题。卡接部110的数量可以根据第一管路接头106以及第二管路接头108的尺寸进行选择。
可选地,参照图7所示,所述可熔构件40具有延伸部401,所述延伸部401穿设于所述第一通孔107或所述第二通孔109。
具体而言,如图7所示,可熔构件40位于流体通道101内,也即壳体10内部,不与外界环境直接接触,存在响应延迟,也即,当外界环境中发生火灾时,可熔构件40无法快速受热熔融,氧气通路无法及时被阻断。因此,在可熔构件40上设置延伸部401,延伸部401穿过第一通孔107或第二通孔109。延伸部401一般靠近患者端的管路,延伸部401具体穿过第一通孔107还是第二通孔109,可根据第一管路接头106和第二管路接头108的装配方式进行确定,例如,第一管路接头106连通患者端的管路,则可将延伸部401设置于第一通孔107内;若第二管路接头108连通患者端的管路,则可将延伸部401设置于第二通孔109内。延伸部401与可熔构件40可采用相同材质,延伸部401也可采用铜、铁等导热性能较好的材质。在发生火灾时,若采用与可熔构件40相同材质的延伸部401,延伸部401可率先燃烧,并引燃流体通道101内部的可熔构件40,以使可熔构件40及时熔融;若采用铜、铁等材质的延伸部401,延伸部401可将热量快速传导至流体通道101内部的可熔构件40,使其快速达到熔点,及时阻断氧气通路,减少火灾造成的损失。
本公开实施例还公开了第一种氧疗仪,包括第一种防火装置。
具体的,在医疗或家庭环境中,当患者靠自身吸入的氧气无法满足需求时,通常需要通过外部仪器供氧。依靠外部仪器,通过侵入或非侵入的方式供给患者氧气的方法,称为氧疗法。用于供给患者氧气的仪器,统称为氧疗 仪。氧疗仪通常由三部分构成:氧气发生装置(例如氧气罐、制氧机等),用于将氧气输送给患者的接口(例如鼻氧管、面罩等),以及连接发生装置和患者接口的管路。在氧气发生装置与患者接口之间的管路中串联设置有防火装置,防火装置内具有流体通道101,流体通道101用于与氧疗仪或患者端的管路连通,防火装置可以通过控制流体通道101的开启或者关闭,控制氧疗仪管路的开启或者关闭。
本公开实施例中,第一种氧疗仪的管路中串联有第一种防火装置,在可熔构件40处于非熔融状态下,可熔构件40支撑阀体20处于第一位置,第一开口102和第二开口103均处于开启状态,流体通道101正常传输氧气;在发生火灾时,可熔构件40在温度达到熔点时,会处于熔融状态,可熔构件40不足以支撑扭簧30施加在阀体20上的弹力,扭簧30释放储存的弹性势能,阀体20在扭簧30的驱动下由第一位置转动至第二位置,使第一开口102和第二开口103中的至少一个处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,扭簧30所处的容纳腔201与流体通道101相互独立,避免了扭簧30出现氧化的问题,提升了装置的耐久性和安全系数。
本公开实施例还公开了第一种通气治疗系统,包括第一种氧疗仪。
具体的,第一种通气治疗系统包括控制装置和第一种氧疗仪,控制装置用于控制第一种氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
本公开实施例中,第一种通气治疗系统包括第一种氧疗仪,第一种氧疗仪的管路中串联有第一种防火装置,在可熔构件40处于非熔融状态下,可熔构件40支撑阀体20处于第一位置,第一开口102和第二开口103均处于开启状态,流体通道101正常传输氧气;在发生火灾时,可熔构件40在温度达到熔点时,会处于熔融状态,可熔构件40不足以支撑扭簧30施加在阀体20上的弹力,扭簧30释放储存的弹性势能,阀体20在扭簧30的驱动下由第一位置转动至第二位置,使第一开口102和第二开口103中的至少一个处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,扭簧 30所处的容纳腔201与流体通道101相互独立,避免了扭簧30出现氧化的问题,提升了装置的耐久性和安全系数。
参照图8至图10所示,本公开实施例公开了第二种防火装置,第二种防火装置包括:壳体210、弹性件220、阀体230以及可熔构件240;壳体210内具有容纳腔2101和气体通道2102,气体通道2102用于与氧疗仪或患者端的管路连通;阀体230将容纳腔2101和气体通道2102分隔为相互独立的空间;弹性件220设置于容纳腔2101内,阀体230至少部分位于气体通道2102内,弹性件220分别与壳体210以及阀体230抵接;阀体230与气体通道2102之间设置有可熔构件240,可熔构件240与气体通道2102之间具有间隙;在可熔构件240处于非熔融状态下,可熔构件240支撑阀体230处于第一位置,气体通道2102处于开启状态;在可熔构件240处于熔融状态下,弹性件220驱动阀体230处于第二位置,气体通道2102处于关闭状态。
具体的,如图8至图10所示,第二种防火装置包括壳体210、弹性件220、阀体230以及可熔构件240。壳体210作为第二种防火装置的主体框架,可以采用塑料等不易与氧气发生化学反应的材质。壳体210内具有容纳腔2101和气体通道2102,壳体210内部的壳壁以及阀体230将容纳腔2101和气体通道2102分隔为相互独立的空间,气体通道2102内的氧气无法进入容纳腔2101内。容纳腔2101与壳体210可以采用一体成型的工艺进行制作,例如开模铸做的方式,可以在模具上预留出容纳腔2101的位置,采用一体成型的工艺能够保证壳体210的结构强度和容纳腔2101的气密性;容纳腔2101与壳体210也可采用分体的方式进行制作,在壳体210上通过加装隔板等部件,分割出容纳腔2101,本公开实施例对此不做限定。阀体230可以选用橡胶材质,能够与气体通道2102以及容纳腔2101之间具有良好的贴合。
弹性件220设置于容纳腔2101内,弹性件220可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。弹性件220能够储存弹性势能,并在发生火灾时推动阀体230关闭气体通道2102,阻塞氧气通过,进而可以达到防火的效果。
可熔构件240设置于阀体230与气体通道2102之间,对阀体230进行支撑,可熔构件240与气体通道2102之间具有间隙,氧气能够通过间隙正常流 通。可熔构件240通常为熔点较低的材料制成,例如PP、PVC等材料。
在未发生火灾(温度较低)时,可熔构件240处于非熔融状态,具有一定的刚性,能够对阀体230进行支撑,此时,阀体230处于第一位置,气体通道2102处于开启状态,氧气可在气体通道2102内的正常流通。在阀体230处于第一位置时,弹性件220对阀体230施加的弹力,以及可熔构件240对阀体230施加的支撑力处于平衡状态。
在发生火灾(温度较高)时,可熔构件240处于熔融状态,可熔构件240无法继续支撑阀体230,阀体230的平衡状态被打破,此时,阀体230会在弹性件220的弹力作用下,由第一位置运动至第二位置,气体通道2102处于关闭状态,氧气通路被阻塞。
其中,阀体230的第一位置和第二位置是阀体230相对于气体通道2102的位置,阀体230在第一位置和第二位置之间切换时,可以为滑动切换,也可以是转动切换,能够实现气体通道2102的开启和关闭即可,本公开实施例对此不做限定。
本公开实施例中,在发生火灾时,可熔构件240在温度达到熔点时,会处于熔融状态,可熔构件240不足以支撑弹性件220施加在阀体230上的弹力,弹性件220释放储存的弹性势能,阀体230在弹性件220的驱动下由第一位置切换至第二位置,侵占气体通道2102的空间,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,弹性件220所处的容纳腔2101与气体通道2102相互独立,避免了弹性件220出现氧化的问题,提升了装置的耐久性和安全系数。
可选地,参照图8和图9所示,容纳腔2101具有开口,阀体230设置于容纳腔2101的开口处,阀体230与容纳腔2101滑动连接;在可熔构件240处于非熔融状态下,可熔构件240支撑阀体230处于第一位置,气体通道2102处于开启状态;在可熔构件240处于熔融状态下,弹性件220驱动阀体230滑动至第二位置,气体通道2102处于关闭状态。
具体的,如图8和图9所示,在本公开实施例中,容纳腔2101具有开口,呈U型,容纳腔2101的开口朝向气体通道2102,阀体230至少部分位于容纳腔2101内,并通过开口与容纳腔2101滑动连接。阀体230可以为球体、柱体或碗状结构体,阀体230采用橡胶材质与容纳腔2101的内壁过盈配合, 在滑动过程中仍可保证容纳腔2101内部的密闭性,使得容纳腔2101与气体通道2102彼此分离,可以有效避免长期使用下弹性件220与氧气发生化学反应。
弹性件220位于容纳腔2101内,弹性件220的一端与容纳腔2101的底部抵接,另一端与阀体230抵接。当阀体230处于第一位置时,弹性件220处于压缩状态,积蓄弹性势能。可熔构件240位于阀体230靠近气体通道2102的一侧,对阀体230进行支撑。
可熔构件240可以为一系列的凸起结构,在可熔构件240与阀体230接触时,能够在凸起结构与阀体230之间形成间隙,在未发生火灾时,便于氧气经间隙输送给患者。当然,可熔构件240上也可设置中空结构或者小孔结构,在未发生火灾时氧气经中空结构或小孔结构输送给患者。
气体通道2102可以包括多段子通道,多段子通道采用弯折的方式布设,如图8所示;也可仅采用一段通道的方式布设,如图9所示。采用一段通道的方式布设,结构更加简单,体积较小,并且氧气在传输过程中,气体通道2102的内壁对氧气产生的阻力也较小。
在未发生火灾(温度较低)时,可熔构件240处于非熔融状态,具有一定的刚性,能够对阀体230进行支撑,此时,阀体230处于第一位置,气体通道2102处于开启状态,氧气可在气体通道2102内的正常流通。在阀体230处于第一位置时,弹性件220对阀体230施加的弹力,以及可熔构件240对阀体230施加的支撑力处于平衡状态。
在发生火灾(温度较高)时,可熔构件240处于熔融状态,可熔构件240无法继续支撑阀体230,阀体230的平衡状态被打破,此时,阀体230会在弹性件220的弹力作用下与容纳腔2101相对滑动,并由第一位置滑动至第二位置,阀体230进入到气体通道2102,并与气体通道2102的内壁贴合,侵占气体通道2102气体通道2102的空间,从而氧气通路被阻塞,气体通道2102处于关闭状态。防止了氧气的进一步泄漏,避免火灾的进一步恶化,达到防火的效果。
其中,阀体230的第一位置和第二位置是阀体230相对于气体通道2102的位置,阀体230处于第一位置时,远离气体通道2102,气体通道2102处于开启状态;阀体230处于第二位置时,向靠近气体通道2102一侧滑动并阻塞 气体通道2102,此时,气体通道2102处于关闭状态。
可选地,参照图10至图16所示,壳体210包括第一壳体2103和第二壳体2104;第一壳体2103与第二壳体2104转动连接;第一壳体2103设置有第一通孔2105和第二通孔2106;第二壳体2104设置有第三通孔2107和第四通孔2108;阀体230与第一壳体2103固定连接,阀体230设置有第五通孔2301;可熔构件240分别与阀体230以及第二壳体2104卡接,可熔构件240设置有第六通孔2401;弹性件220分别与阀体230以及第二壳体2104抵接;在可熔构件240处于非熔融状态下,可熔构件240支撑阀体230处于第一位置,第一通孔2105、第二通孔2106、第三通孔2107、第四通孔2108、第五通孔2301以及第六通孔2401连通,共同形成气体通道2102,气体通道2102处于开启状态;在可熔构件240处于熔融状态下,弹性件220驱动第一壳体2103和第二壳体2104相对转动,阀体230处于第二位置,第一通孔2105、第二通孔2106以及第五通孔2301分别与第二壳体2104的壳壁贴合,气体通道2102处于关闭状态。
具体的,如图10至图16所示,在本公开实施例中,壳体210包括第一壳体2103和第二壳体2104,第一壳体2103和第二壳体2104可以呈圆盘形状,具有底面和侧壁。第一壳体2103的直径略大于第二壳体2104的直径,第一壳体2103和第二壳体2104扣合围成内部空间。第一壳体2103和第二壳体2104也可采用球状结构,本公开实施例对此不做限定。
第一壳体2103与第二壳体2104转动连接,具体可以在第一壳体2103和第二壳体2104的轴心处设置转轴,第一壳体2103和第二壳体2104绕转轴相对转动。也可以是第一壳体2103的侧壁和第二壳体2104的侧壁互相贴合,绕贴合面相对转动。第一壳体2103的侧壁设置有第一通孔2105和第二通孔2106,第一通孔2105和第二通孔2106分别用于连通氧疗仪或患者端的管路,氧气可从第一通孔2105输入壳体210内,再经由第二通孔2106流出。
阀体230与第一壳体2103固定连接,阀体230设置有第五通孔2301,第五通孔2301的两端开口分别与第一通孔2105以及第二通孔2106相对。第二壳体2104的侧壁还设置有第三通孔2107和第四通孔2108。可熔构件240为中空的筒状结构,设置有第六通孔2401,可熔构件240可设置于阀体230和第二壳体2104之间,并分别与阀体230以及第二壳体2104卡接,在未发生 火灾(温度较低)时,可熔构件240具有一定的刚性,限制第一壳体2103和第二壳体2104的相对转动。可熔构件240的数量可以为一个或两个,当可熔构件240的数量为一个时,可熔构件240可分别与第五通孔2301和第三通孔2107卡接,也可以分别与第五通孔2301和第四通孔2108卡接。当可熔构件240的数量为两个时,可在第五通孔2301和第三通孔2107之间、以及第五通孔2301和第四通孔2108之间均设置可熔构件240。
弹性件220位于第一壳体2103和第二壳体2104形成的安装腔内,弹性件220分别与阀体230以及第二壳体2104抵接,积蓄弹性势能。弹性件220可以为铁、铜、合金等金属扭簧、发条等,也可以为硅胶、橡胶等可以储存弹性势能的软胶结构。弹性件220的数量可以设置为一个,也可以设置为多个。在阀体230处于第一位置时,弹性件220对第二壳体2104和阀体230施加的弹力,以及可熔构件240对第二壳体2104和阀体230施加的支撑力处于平衡状态。
在未发生火灾(温度较低)时,可熔构件240处于非熔融状态,具有一定的刚性,能够对阀体230进行支撑,使第一壳体2103和第二壳体2104处于相对静止状态,阀体230处于第一位置,第一通孔2105、第二通孔2106、第三通孔2107、第四通孔2108、第五通孔2301以及第六通孔2401连通,共同形成气体通道2102,气体通道2102处于开启状态,氧气可经由第一通孔2105进入气体通道2102内,再通过第二通孔2106流出。并且该气体通道2102与弹性件220所处的容纳腔2101相互独立,避免了弹性件220出现氧化的问题,提升了装置的耐久性和安全系数。
第一通孔2105、第二通孔2106、第三通孔2107、第四通孔2108、第五通孔2301以及第六通孔2401可位于同一条直线上,形成直线型的气体通道2102;也可不在同一条直线上,成一定角度弯折,能够实现氧气的正常传输即可。
在发生火灾(温度较高)时,可熔构件240处于熔融状态,可熔构件240不足以支撑弹性件220施加在第一壳体2103和第二壳体2104之间的转动扭矩,第一壳体2103和第二壳体2104之间的平衡状态被打破,此时,弹性件220释放储存的弹性势能,阀体230和第一壳体2103会在弹性件220的弹力作用下与第二壳体2104相对转动,阀体230由第一位置转动至第二位置,阀 体230上的第五通孔2301与第二壳体2104上的第三通孔2107以及第四通孔2108错开,第一通孔2105和第二通孔2106也分别与第三通孔2107以及第四通孔2108错开。第一壳体2103和第二壳体2104相对转动后,第一通孔2105、第二通孔2106以及第五通孔2301分别与第二壳体2104的壳壁贴合,从而氧气通路被阻塞,气体通道2102处于关闭状态。防止了氧气的进一步泄漏,避免火灾的进一步恶化,达到防火的效果。
其中,阀体230的第一位置和第二位置是阀体230相对于第二壳体2104的位置,阀体230处于第一位置时,第一通孔2105、第二通孔2106、第三通孔2107、第四通孔2108、第五通孔2301以及第六通孔2401连通,气体通道2102处于开启状态。第一壳体2103和第二壳体2104相对转动,阀体230转动至第二位置时,气体通道2102被分隔为多段,并且被第二壳体2104的壳壁阻断,此时,气体通道2102处于关闭状态。
可选地,参照图10至图16所示,第二壳体2104内设置有第一凸出部2109和第二凸出部2110;第三通孔2107设置于第一凸出部2109,第四通孔2108设置于第二凸出部2110;可熔构件240至少部分嵌设于第三通孔2107或第四通孔2108内。
具体的,如图10至图16所示,在第二壳体2104内,由侧壁延伸设置有第一凸出部2109和第二凸出部2110,第一凸出部2109和第二凸出部2110相对设置。第一凸出部2109和第二凸出部2110与第二壳体2104可采用一体成型的工艺制作。第三通孔2107设置于第一凸出部2109,第四通孔2108设置于第二凸出部2110,在第二壳体2104内形成两段气体通道2102。可熔构件240在与阀体230以及第二壳体2104卡接时,可熔构件240至少部分嵌设于第三通孔2107或第四通孔2108内,具体嵌设位置,可根据可熔构件240的数量以及安装位置进行选择。
可熔构件240受热融化后的残渣,被分别储存在上述第三通孔2107或第四通孔2108内,不会进入到输氧管道,使患者无吸入异物的风险。
可选地,参照图8至图16所示,第一凸出部2109设置有第一延伸部2111,第二凸出部2110设置有第二延伸部2112;在阀体230处于第二位置时,第五通孔2301的两端分别与第一延伸部2111以及第二延伸部2112贴合。
具体的,如图8至图16所示,第一凸出部2109靠近阀体230的一侧设 置有第一延伸部2111,第二凸出部2110靠近阀体230的一侧设置有第二延伸部2112。第一延伸部2111和第一凸出部2109、第二延伸部2112和第二凸出部2110可采用一体成型的工艺制作。第一延伸部2111和第二延伸部2112可采用弧形结构,并且该弧形结构与阀体230的端部形状相匹配。
在阀体230处于第二位置时,第五通孔2301的两端分别与第一延伸部2111以及第二延伸部2112贴合实现密封,避免阀体230内残留的氧气外泄至容纳腔2101中,同时提升了防火效果。
可选地,参照图8至图16所示,阀体230的一端设置有第三延伸部2302,阀体230的另一端设置有第四延伸部2303;在阀体230处于第二位置时,第三通孔2107与第三延伸部2302贴合,第四通孔2108与第四延伸部2303贴合。
具体的,如图8至图16所示,阀体230上开设有第五通孔2301,在第五通孔2301的两端分别延伸设置有第三延伸部2302和第四延伸部2303,第三延伸部2302和第四延伸部2303与阀体230可采用一体成型的工艺制作。第三延伸部2302和第四延伸部2303可采用弧形结构,并且该弧形结构与第三通孔2107和第四通孔2108的端部形状相匹配。
在阀体230处于第二位置时,第三通孔2107与第三延伸部2302贴合,第三延伸部2302对第三通孔2107的一端实现密封;第四通孔2108与第四延伸部2303贴合,第四延伸部2303对第四通孔2108的一端实现密封,使氧气无法通过,防火效果更显著。
可选地,参照图8至图16所示,第二壳体2104设置有至少一个限位部2113,限位部2113位于阀体230的运动路径上;在阀体230处于第二位置时,阀体230与限位部2113抵接。
具体的,如图8至图16所示,限位部2113设置于第二壳体2104,限位部2113的具体结构可以为板状、圆柱状等结构。限位部2113与第二壳体2104可采用一体成型的工艺制作。限位部2113位于阀体230的运动路径上,也即阀体230在相对于第二壳体2104转动时,会与限位部2113发生接触。限位部2113的数量可以为一个或两个,当限位部2113的数量为两个时,两个限位部2113可分别位于阀体230的两侧,且与阀体230存在一定间隔。
当发生火灾时,可熔构件240至少一部分受热融化,不足以支撑弹性件 220施加在第一壳体2103和第二壳体2104之间的转动扭矩。此时,弹性件220释放储存的弹性势能,并促使第一壳体2103和第二壳体2104之间相对转动,直到阀体230与第二壳体2104的限位部2113接触时停止转动。此时,在弹性件220和限位部2113的共同作用下,第一壳体2103和第二壳体2104之间形成稳定装配。
可选地,参照图8至图16所示,第一壳体2103设置有第一连接部2114和第二连接部2115;第一通孔2105设置于第一连接部2114,第二通孔2106设置于第二连接部2115;第一连接部2114和第二连接部2115分别用于与氧疗仪或患者端的管路连通。
具体的,如图10至图15所示,氧疗仪或患者端的管路通过第一通孔2105和第二通孔2106与防火装置连通。为提升管路连接的便利性,在第一壳体2103上设置有第一连接部2114和第二连接部2115,第一连接部2114和第二连接部2115沿第一壳体2103的径向向外延伸,第一通孔2105设置于第一连接部2114,第二通孔2106设置于第二连接部2115。在安装氧疗仪或患者端的管路时,可将管路直接套设或者嵌设于第一连接部2114和第二连接部2115上,无需占用壳体210的内部空间。
可选地,参照图8和图9所示,所述气体通道包括第一管路接口、第二管路接口以及连通部分;所述连通部分具有内腔;所述第一管路接口和所述第二管路接口分别位于所述连通部分的两端,且分别与所述内腔连通以形成所述气体通道;所述第一管路接口和所述第二管路接口对称设置。
具体而言,如图8和图9所示,气体通道由第一管路接口、第二管路接口以及连通部分共同形成。第一管路接口、第二管路接口以及连通部分可以为一体式结构,也可以分体制作后拼装而成。第一管路接口和第二管路接口分别用于与氧疗仪或患者端的管路连通,氧疗仪或患者端的管路与第一管路接口或第二管路接口可以采用螺纹连接或者过盈配合的方式实现装配。连通部分采用空心圆柱结构,具有内腔,第一管路接口和第二管路接口分别位于连通部分的两端。连通部分的内腔分别与第一管路接口和第二管路接口连通形成完整的气体通道。
在第一管路接口和第二管路接口与管路进行装配时,其中一个管路接口与患者端连通,另一个管路接口与氧疗仪端连通。由于第一管路接口和第二 管路接口对称设置,第一管路接口和第二管路接口均可与氧疗仪端或患者端适配,不会出现防火装置装反的情况,大大提升了装配效率。
可选地,参照图8和图9所示,所述可熔构件位于所述内腔中,所述可熔构件与所述内腔的腔壁间隙配合。
具体而言,如图8和图9所示,可熔构件设置于连通部分的内腔中,仅设置一个可熔构件即可实现气体通道的阻断,无需在氧疗仪端和患者端均设置可熔构件,大大降低了生产成本。
本公开实施例还公开了第二种氧疗仪,包括第二种防火装置。
具体的,在医疗或家庭环境中,当患者靠自身吸入的氧气无法满足需求时,通常需要通过外部仪器供氧。依靠外部仪器,通过侵入或非侵入的方式供给患者氧气的方法,称为氧疗法。用于供给患者氧气的仪器,统称为氧疗仪。氧疗仪通常由三部分构成:氧气发生装置(例如氧气罐、制氧机等),用于将氧气输送给患者的接口(例如鼻氧管、面罩等),以及连接发生装置和患者接口的管路。在氧气发生装置与患者接口之间的管路中串联设置有防火装置,防火装置内具有气体通道2102,气体通道2102用于与氧疗仪的管路连通,防火装置可以通过控制内部气体通道2102的开启或者关闭,控制氧疗仪管路的开启或者关闭。
本公开实施例中,第二种氧疗仪的管路中串联有第二种防火装置,在发生火灾时,可熔构件240在温度达到熔点时,会处于熔融状态,可熔构件240不足以支撑弹性件220施加在阀体230上的弹力,弹性件220释放储存的弹性势能,阀体230在弹性件220的驱动下由第一位置切换至第二位置,侵占气体通道2102的空间,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,弹性件220所处的容纳腔2101与气体通道2102相互独立,避免了弹性件220出现氧化的问题,提升了氧疗仪的耐久性和安全系数。
本公开实施例还公开了第二种通气治疗系统,包括第二种氧疗仪。
具体的,第二种通气治疗系统包括控制装置和第二种氧疗仪,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实 施例不作具体限定。
本公开实施例中,第二种通气治疗系统包括第二种氧疗仪,第二种氧疗仪的管路中串联有第二种防火装置,在发生火灾时,可熔构件240在温度达到熔点时,会处于熔融状态,可熔构件240不足以支撑弹性件220施加在阀体230上的弹力,弹性件220释放储存的弹性势能,阀体230在弹性件220的驱动下由第一位置切换至第二位置,侵占气体通道2102的空间,从而切断氧气通路,避免氧气持续外泄导致火势蔓延;并且,弹性件220所处的容纳腔2101与气体通道2102相互独立,避免了弹性件220出现氧化的问题,提升了系统的耐久性和安全系数。
参照图17至图20所示,本公开实施例公开了第三种防火装置,第三种防火装置包括:壳体10、第一弹性阀体320以及第一可熔构件330;所述壳体10内具有容纳腔3101,所述容纳腔3101的两侧开设有第一开口3102和第二开口3103,所述第一开口3102和所述第二开口3103用于与氧疗仪或患者端的管路连通;所述第一弹性阀体320定位于所述容纳腔3101内,所述第一弹性阀体320与所述第一开口3102相对设置,其中,所述第一弹性阀体320具有耐氧化特性;所述第一可熔构件330位于所述壳体10内且与所述壳体10连接,所述第一可熔构件330与所述第一弹性阀体320靠近所述第一开口3102的一侧抵接;在所述第一可熔构件330处于非熔融状态下,所述第一可熔构件330压缩所述第一弹性阀体320,所述第一开口3102与所述第一弹性阀体320之间具有供气体流通的间隙;在所述第一可熔构件330处于熔融状态下,所述第一弹性阀体320释放至少部分弹性势能,所述第一弹性阀体320与所述容纳腔3101的第一端面抵接,以使所述第一开口3102处于关闭状态,其中,所述第一开口3102设置于所述第一端面。
具体的,如图17至图20所示,第三种防火装置包括壳体10、第一弹性阀体320以及第一可熔构件330。壳体10作为防火装置的主体框架,可以采用塑料等不易与氧气发生化学反应的材质。壳体10内具有容纳腔3101,容纳腔3101两侧开设有第一开口3102和第二开口3103,第一开口3102和第二开口3103可以位于容纳腔3101相对的两侧,第一开口3102和第二开口3103的轴线共线,第一开口3102和第二开口3103也可在容纳腔3101上呈角度设 置。第一开口3102和第二开口3103用于与氧疗仪或患者端的管路连通,例如,第一开口3102连通氧疗仪端的管路,第二开口3103连通患者端的管路,氧气从第一开口3102进入容纳腔3101内,再经由第二开口3103传输至患者端。也可将第二开口3103连通氧疗仪端的管路,第一开口3102连通患者端的管路,本公开实施例对此不做限定。
第一弹性阀体320定位于容纳腔3101内,第一弹性阀体320与第一开口3102相对设置。可以在容纳腔3101内设置隔断或者定位结构,对第一弹性阀体320实现定位固定,例,容纳腔3101内设置凸起,第一弹性阀体320设置凹槽或台阶与之配合实现定位固定。利用第一弹性阀体320与第一开口3102的配合实现氧气通路的开启或关闭。第一弹性阀体320具有耐氧化特性,第一弹性阀体320可以采用硅胶或橡胶等能够被压缩并储存弹性势能的材质,长时间与氧气接触也不易发生氧化生锈的现象,避免对治疗效果产生影响,同时也提升了防火装置的稳定性和耐久性。
第一可熔构件330设置于壳体10内且与壳体10连接,壳体10对第一可熔构件330起到支撑固定作用。第一可熔构件330远离第一开口3102的一侧与壳体10可采用粘接或者卡接的方式实现装配。第一可熔构件330与第一弹性阀体320靠近第一开口3102的一侧抵接,对第一弹性阀体320进行支撑。第一可熔构件330通常为熔点较低的材料制成,例如PP、PVC等材料。
在未发生火灾(温度较低)时,第一可熔构件330处于非熔融状态下,第一可熔构件330压缩第一弹性阀体320,第一弹性阀体320的厚度减小,并积蓄弹性势能,第一弹性阀体320与第一开口3102之间具有供气体流通的间隙,氧气可通过间隙正常流通,第一弹性阀体320的厚度方向即为防火装置的长轴方向。
在发生火灾(温度较高)时,第一可熔构件330处于熔融状态,第一可熔构件330无法继续支撑第一弹性阀体320,第一弹性阀体320的平衡状态被打破,此时,第一弹性阀体320会释放至少部分弹性势能,第一弹性阀体320厚度增大并与容纳腔3101的第一端面抵接,其中,第一开口3102位于第一端面上,第一弹性阀体320覆盖第一开口3102从而使第一开口3102处于关闭状态,氧气无法通过第一开口3102,氧气气路被阻断。
本公开实施例中,在第一可熔构件330处于非熔融状态下,第一可熔构 件330压缩第一弹性阀体320,第一弹性阀体320厚度减小,第一开口3102与第一弹性阀体320之间具有供气体流通的间隙;在发生火灾时,可熔构件在温度达到熔点时,会处于熔融状态,第一弹性阀体320释放至少部分弹性势能,第一弹性阀体320与容纳腔3101的第一端面抵接,以使第一开口3102处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延。由于第一弹性阀体320具有耐氧化特性,避免了第一弹性阀体320出现氧化的问题,提升了装置的耐久性和安全系数。
可选地,参照图17、图18、图21所示,所述壳体10包括第一连接部3104和第二连接部3105;所述第一连接部3104具有第一通孔3106,所述第一通孔3106与所述第一开口3102连通;所述第二连接部3105具有第二通孔3107,所述第二通孔3107与所述第二开口3103连通;所述第一可熔构件330位于所述第一通孔3106内,所述第一可熔构件330的一端延伸形成至少两个加强筋3108,所述加强筋3108与所述第一通孔3106的孔壁连接;所述第一可熔构件330的另一端与所述第一弹性阀体320靠近所述第一开口3102的一侧抵接。
具体的,如图17、图18、图21所示,壳体10包括第一连接部3104和第二连接部3105,第一连接部3104和第二连接部3105为壳体10上的延伸结构,第一连接部3104和第二连接部3105与壳体10主体可采用一体成型的工艺制作,也可分别制作后通过粘接或者焊接的方式进行装配。第一连接部3104具有第一通孔3106,第一通孔3106与第一开口3102连通,第二连接部3105具有第二通孔3107,第二通孔3107与第二开口3103连通。第一连接部3104和第二连接部3105用于连通氧疗仪或患者端的管路。例如,第一连接部3104连通氧疗仪端的管路,第二连接部3105连通患者端的管路,氧气从第一连接部3104进入容纳腔3101内,再经由第二连接部3105传输至患者端。也可将第二连接部3105连通氧疗仪端的管路,第一连接部3104连通患者端的管路,本公开实施例对此不做限定。
在本公开实施例中,第一可熔构件330的一端延伸形成至少两个加强筋3108。第一可熔构件330位于第一通孔3106内,第一可熔构件330采用杆状结构,第一可熔构件330与加强筋3108材质相同。加强筋3108与第一通孔3106的孔壁连接,从而实现第一可熔构件330的安装固定,加强筋3108与第 一通孔3106孔壁的连接方式可以为焊接或者粘接等。第一可熔构件330的另一端与第一弹性阀体320靠近第一开口3102的一侧抵接,从而可以压缩第一弹性阀体320使其厚度减小,保证第一弹性阀体320与第一开口3102之间具有供气体流通的间隙。在未发生火灾时,便于氧气经间隙输送给患者。
在发生火灾(温度较高)时,第一可熔构件330和加强筋3108处于熔融状态,第一可熔构件330无法继续支撑第一弹性阀体320,第一弹性阀体320的平衡状态被打破,此时,第一弹性阀体320会释放至少部分弹性势能,第一弹性阀体320厚度增大并与容纳腔3101的第一端面抵接,从而使第一开口3102处于关闭状态,氧气无法通过第一开口3102,氧气气路被阻断。
可选地,参照图28所示,所述第一可熔构件330位于所述第一弹性阀体320和所述第一端面之间,所述第一可熔构件330与所述第一弹性阀体320靠近所述第一开口3102的一侧抵接。
具体而言,如图28所示,在本公开实施例中,第一可熔构件330位于第一弹性阀体320和第一端面之间。第一可熔构件330的一端可以与容纳腔3101的腔壁或第一端面连接,具体的连接方式可以为粘接或者卡接。第一可熔构件330的另一端与第一弹性阀体320靠近第一开口3102的一侧抵接。第一可熔构件330与第一开口3102处保持平齐,不会对第一开口3102形成遮挡,避免对氧气传输速率产生影响。
在未发生火灾(温度较低)时,第一可熔构件330处于非熔融状态下,第一可熔构件330压缩第一弹性阀体320,第一弹性阀体320厚度减小并积蓄弹性势能,第一弹性阀体320与第一开口3102之间具有供气体流通的间隙,氧气可通过间隙正常流通。
在发生火灾(温度较高)时,第一可熔构件330处于熔融状态,第一可熔构件330无法继续支撑第一弹性阀体320,第一弹性阀体320的平衡状态被打破,此时,第一弹性阀体320会释放至少部分弹性势能,第一弹性阀体320厚度增大并与第一端面抵接,从而使第一开口3102处于关闭状态,氧气无法通过第一开口3102,氧气气路被阻断。
可选地,参照图28所示,所述第一可熔构件330的数量为两个,两个所述第一可熔构件30在所述第一端面上对称设置。
具体而言,如图28所示,第一可熔构件330的数量为两个,两个第一可 熔构件330在容纳腔3101的第一端面上对称设置。也即,在第一开口3102的轴向两侧,两个第一可熔构件330对称设置,能够对第一弹性阀体320实现稳定的支撑,避免第一弹性阀体320出现偏斜的问题,保证了第一弹性阀体320与第一开口3102之间的密封效果。
可选地,参照图17至图20所示,所述防火装置还包括支撑件340;所述支撑件340位于所述容纳腔3101内,且与所述容纳腔3101的腔壁连接;所述支撑件340与所述第一弹性阀体320远离所述第一开口3102的一侧抵接。
具体而言,如图17至图20所示,第一弹性阀体320定位于容纳腔3101内,可以在容纳腔3101内设置隔断或者定位结构,对第一弹性阀体320实现定位固定。在本公开实施例中,第一弹性阀体320可通过支撑件340实现定位固定,支撑件340位于容纳腔3101内,支撑件340的形状可以为杆状、板状等。支撑件340与容纳腔3101的腔壁连接,具体可采用粘接、焊接等方式实现装配。支撑件340与第一弹性阀体320远离第一开口3102的一侧抵接,第一可熔构件330与第一弹性阀体320靠近第一开口3102的一侧抵接,在支撑件340和第一可熔构件330的共同挤压之下,第一弹性阀体320处于压缩状态,厚度减小,从而与第一开口3102之间形成供气体流通的间隙。
可选地,参照图22所示,所述支撑件340靠近所述第一弹性阀体320的一端设置有第一定位部3401,所述第一弹性阀体320远离所述第一开口3102的一侧设置有第二定位部3201,所述第一定位部3401和所述第二定位部3201定位配合。
具体而言,如图22所示,支撑件340与第一弹性阀体320远离第一开口3102的一侧抵接,为保证支撑件340与第一弹性阀体320装配的稳定性,避免支撑件340与第一弹性阀体320出现偏移现象,在支撑件340靠近第一弹性阀体320的一端设置有第一定位部3401,第一弹性阀体320远离第一开口3102的一侧设置有第二定位部3201,利用第一定位部3401和第二定位部3201的定位配合,实现支撑件340与第一弹性阀体320的稳定装配。
第一定位部3401可以为凸台,对应的,第二定位部3201可以为凹槽,凹槽与凸台的形状相匹配;同样地,第一定位部3401可以为凹槽,第二定位部3201可以为凸台。凸台和凹槽的数量可以根据支撑件340和第一弹性阀体320的尺寸进行选择,本公开实施例对此不做限定。
可选地,参照21所示,所述第一连接部3104的外侧壁和/或所述第二连接部3105的外侧壁设置有至少一个卡接部3109,所述卡接部3109用于与所述所述氧疗仪或患者端的管路卡接。
具体而言,如图21所示,第一连接部3104和第二连接部3105用于连通氧疗仪或患者端的管路。氧疗仪的管路通常采用导管,导管套设在第一连接部3104和第二连接部3105外侧,为保证导管与第一连接部3104和第二连接部3105连接的稳定性,在第一连接部3104的外侧壁和/或第二连接部3105的外侧壁设置有至少一个卡接部3109,卡接部3109的形状呈喇叭状,当导管套设于第一连接部3104的外侧壁和/或第二连接部3105的外侧壁时,卡接部3109与导管卡接,保证了导管与第一连接部3104和/或第二连接部3105之间的气密性,避免出现氧气泄露的问题。卡接部3109的数量可以根据第一连接部3104和第二连接部3105的尺寸进行选择。
可选地,参照图23至图28所示,所述防火装置还包括第二弹性阀体350和第二可熔构件360;所述第二弹性阀体350与所述第二开口3103相对设置;所述第二可熔构件360位于所述壳体10内且与所述壳体10连接,所述第二可熔构件360与所述第二弹性阀体350靠近所述第二开口3103的一侧抵接,其中,所述第二弹性阀体350具有耐氧化特性;所述支撑件340位于所述第一弹性阀体320和所述第二弹性阀体350之间,且分别与所述第一弹性阀体320和所述第二弹性阀体350抵接;在所述第二可熔构件360处于非熔融状态下,所述第二可熔构件360压缩所述第二弹性阀体350,所述第二开口3103与所述第二弹性阀体350之间具有供气体流通的间隙;在所述第二可熔构件360处于熔融状态下,所述第二弹性阀体350释放至少部分弹性势能,所述第二弹性阀体350与所述容纳腔3101的第二端面抵接,以使所述第二开口3103处于关闭状态,其中,所述第二开口设置于所述第二端面。
具体而言,如图23至图28所示,在本公开实施例中,不仅在第一开口3102处设置第一弹性阀体320,还在第二开口3103处设置第二弹性阀体350,防火装置起到双重防护。第二弹性阀体350定位于容纳腔3101内,第二弹性阀体350与第二开口3103相对设置。可以在容纳腔3101内设置隔断或者定位结构,对第二弹性阀体350实现定位固定。利用第二弹性阀体350与第二开口3103的配合实现氧气通路的开启或关闭。第二弹性阀体350具有耐氧化 特性,第二弹性阀体350可以采用硅胶或橡胶等能够被压缩并储存弹性势能的材质,长时间与氧气接触也不易发生氧化生锈的现象,避免对治疗效果产生影响,同时也提升了防火装置的稳定性和耐久性。例如,如图27至图28所示,第一弹性阀体320和第二弹性阀体350均采用硅胶弹簧,具有传统金属弹簧螺旋状的外观,便于压缩和释放弹性势能,相较于传统金属弹簧具有较强的耐氧化特性。
第二可熔构件360设置于壳体10内且与壳体10连接,壳体10对第二可熔构件360起到支撑固定作用。第二可熔构件360与壳体10可采用粘接或者卡接的方式实现装配。第二可熔构件360与第二弹性阀体350靠近第二开口3103的一侧抵接,对第二弹性阀体350进行支撑。第二可熔构件360通常为熔点较低的材料制成,例如PP、PVC等材料。支撑件340位于第一弹性阀体320和第二弹性阀体350之间,且分别与第一弹性阀体320和第二弹性阀体350抵接。
第二可熔构件360可以位于第二通孔3107内,第二可熔构件360的一端延伸形成至少两个加强筋3108。第二可熔构件360采用杆状结构,加强筋108与第二通孔3107的孔壁连接,从而实现第二可熔构件360的安装固定,加强筋3108与第二通孔3107孔壁的连接方式可以为焊接或者粘接等。第二可熔构件360的另一端与第二弹性阀体350靠近第二开口3103的一侧抵接,从而可以压缩第二弹性阀体350使其厚度减小,保证第二弹性阀体350与第二开口3103之间具有供气体流通的间隙。
第二可熔构件360还可以位于第二弹性阀体350和第二端面之间。第二可熔构件360的一端可以与容纳腔3101的腔壁或第二端面连接,具体的连接方式可以为粘接或者卡接。第二可熔构件360的另一端与第二弹性阀体350靠近第二开口3103的一侧抵接。第二可熔构件360与第二开口3103处保持平齐,不会对第二开口3103形成遮挡,避免对氧气传输速率产生影响。
在未发生火灾(温度较低)时,第一可熔构件330和第二可熔构件360处于非熔融状态下,第一可熔构件330压缩第一弹性阀体320,第二可熔构件360压缩第二弹性阀体350,第一弹性阀体320和第二弹性阀体350厚度均减小并积蓄弹性势能,第一弹性阀体320与第一开口3102之间具有供气体流通的间隙,第二弹性阀体350与第二开口3103之间也具有供气体流通的间隙, 氧气可通过间隙正常流通。
在发生火灾(温度较高)时,第一可熔构件330和第二可熔构件360处于熔融状态,第一可熔构件330无法继续支撑第一弹性阀体320,第二可熔构件360无法继续支撑第二弹性阀体350,第一弹性阀体320和第二弹性阀的平衡状态被打破,此时,第一弹性阀体320和第二弹性阀会释放至少部分弹性势能,第一弹性阀体320和第二弹性阀厚度增大并分别与第一端面以及第二端面抵接,从而使第一开口3102和第二开口3103处于关闭状态,氧气无法通过第一开口3102和第二开口3103,氧气气路被阻断。
通过在第一开口3102和第二开口3103处均设置弹性阀体以及可熔构件,在发生火灾时(温度较高),第一可熔构件330和第二可熔构件360中至少一个发生熔融,即可时间气路阻断,防止氧气泄露,提升了防火装置的可靠性。当第一可熔构件330和第二可熔构件360均熔融时,第一开口3102和第二开口3103均处于关闭状态,提供了双重密封保障,大大提升了防火装置的安全系数。
本公开实施例还公开了第三种种氧疗仪,包括第三种防火装置。
具体的,在医疗或家庭环境中,当患者靠自身吸入的氧气无法满足需求时,通常需要通过外部仪器供氧。依靠外部仪器,通过侵入或非侵入的方式供给患者氧气的方法,称为氧疗法。用于供给患者氧气的仪器,统称为氧疗仪。氧疗仪通常由三部分构成:氧气发生装置(例如氧气罐、制氧机等),用于将氧气输送给患者的接口(例如鼻氧管、面罩等),以及连接发生装置和患者接口的管路。在氧气发生装置与患者接口之间的管路中串联设置有防火装置。
本公开实施例中,第三种氧疗仪的管路中串联有第三种防火装置,在第一可熔构件330处于非熔融状态下,第一可熔构件330压缩第一弹性阀体320,第一弹性阀体320厚度减小,第一开口3102与第一弹性阀体320之间具有供气体流通的间隙;在发生火灾时,可熔构件在温度达到熔点时,会处于熔融状态,第一弹性阀体320释放至少部分弹性势能,第一弹性阀体320与容纳腔3101的第一端面抵接,第一弹性阀体320覆盖第一开口3102,以使第一开口3102处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延。由于第一弹性阀体320具有耐氧化特性,避免了第一弹性阀体320出现氧化 的问题,提升了装置的耐久性和安全系数。
本公开实施例还公开了第三种通气治疗系统,包括第三种氧疗仪。
具体的,第三种通气治疗系统包括控制装置和第三种氧疗仪,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
本公开实施例中,第三种通气治疗系统包括第三种氧疗仪,第三种氧疗仪的管路中串联有第三种防火装置,在第一可熔构件330处于非熔融状态下,第一可熔构件330压缩第一弹性阀体320,第一弹性阀体320厚度减小,第一开口3102与第一弹性阀体320之间具有供气体流通的间隙;在发生火灾时,可熔构件在温度达到熔点时,会处于熔融状态,第一弹性阀体320释放至少部分弹性势能,第一弹性阀体320与容纳腔3101的第一端面抵接,第一弹性阀体320覆盖第一开口3102,以使第一开口3102处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延。由于第一弹性阀体320具有耐氧化特性,避免了第一弹性阀体320出现氧化的问题,提升了装置的耐久性和安全系数。
参照图29和图30所示,本公开实施例公开了第四种防火装置,所述防火装置包括:壳体10、第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450;所述壳体10内具有流体通道4101,所述流体通道4101设置有第一收窄部4102和第二收窄部4103,所述第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450均设置于所述流体通道4101内;所述第一可熔构件430设置于所述流体通道4101的一端且与所述流体通道4101的内壁连接;所述第一移动杆420与所述流体通道4101的内壁滑动连接,所述第一可熔构件430设置在所述第一移动杆420上;所述第一阀体440穿设于所述第一收窄部4102且与所述流体通道4101的内壁滑动连接,所述第一阀体440的一端与所述第一移动杆420连接,所述第一阀体440的另一端设置有所述第一弹性件450,所述第一弹性件450与所述壳体10抵接;所述 第一阀体440靠近所述第一收窄部4102处设置有第一密封件4401;在所述第一阀体440处于开启状态时,所述第一可熔构件430支撑所述第一移动杆420以及所述第一阀体440处于第一位置,所述第一密封件4401与所述第一收窄部4102间隙配合,所述流体通道4101处于开启状态;在所述第一弹性件450驱动所述第一移动杆420以及所述第一阀体440滑动至第二位置时,所述第一阀体440处于关闭状态,所述第一密封件4401与所述第一收窄部4102接合,所述流体通道4101处于关闭状态。
具体而言,如图29和图30所示,第四种防火装置包括壳体10、第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450。壳体10作为防火装置的主体框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等;也可采用防火阻燃材质制成。壳体10内具有流体通道4101,流体通道4101采用中间粗两端细的结构,便于与氧疗仪端或患者端的管路连接。流体通道4101由中间向两端过渡,设置有第一收窄部4102和第二收窄部4103。第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450均设置于流体通道4101内。
流体通道4101包括相对的一端和另一端,第一可熔构件430设置于流体通道4101的一端,靠近流体通道4101的开口处,第一可熔构件430与流体通道4101的内壁连接,具体的连接方式可以为卡接、粘接等。第一可熔构件430可以由熔点较低的材料制成,例如PP、PVC等材料。
第一移动杆420与流体通道4101的内壁滑动连接,第一移动杆420的轴线与流体通道4101的轴线重合,第一移动杆420采用防火阻燃材质制成。第一可熔构件430设置于第一移动杆420上,从而将第一移动杆420支撑于流体通道4101内。
第一阀体440穿设于第一收窄部4102且与流体通道4101的内壁滑动连接。第一阀体440的一端与第一移动杆420连接,具体的连接方式可以为卡接、粘接等,第一阀体440也采用防火阻燃材质制成。第一阀体440的另一端设置有第一弹性件450,第一弹性件450与壳体10抵接,从而能够为第一阀体440提供驱动力。第一弹性件450可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
第一阀体440靠近第一收窄部4102处设置有第一密封件4401,第一密封 件4401可设置于第一阀体440沿自身轴线的两侧,当第一阀体440相对于壳体10滑动时,第一密封件4401能够阻塞第一阀体440和第一收窄部4102之间的缝隙,从而使流体通道4101关闭。第一密封件4401可采用硅胶、橡胶等材质,能够起到良好的密封效果。
在未发生火灾(温度较低)时,第一可熔构件430处于非熔融状态,具有一定的刚性,能够对第一移动杆420以及第一阀体440进行支撑,此时,第一移动杆420以及第一阀体440处于第一位置,第一阀体440处于开启状态,第一密封件4401与第一收窄部4102间隙配合,流体通道4101处于开启状态,氧气可在流体通道4101内正常传输。在第一移动杆420和第一阀体440处于第一位置时,第一弹性件450对第一移动杆420和第一阀体440施加的弹力,以及第一可熔构件430对第一移动杆420和第一阀体440施加的支撑力处于平衡状态。
在发生火灾(温度较高)时,第一可熔构件430熔融,第一可熔构件430无法继续支撑第一移动杆420和第一阀体440,平衡状态被打破,此时,在第一弹性件450的弹力作用下,第一移动杆420和第一阀体440会由第一位置滑动至第二位置,第一阀体440处于关闭状态,第一阀体440上的第一密封件4401会与第一收窄部4102接合,从而使流体通道4101处于关闭状态,氧气无法继续传输。同时,第一移动杆420还可与第一阀体440分离,第一移动杆420在惯性作用下继续滑动,并伸入氧疗仪或患者端的管路内,也能够起到切断氧气通路的作用,进一步提升了防火装置的安全系数。
本公开实施例中,利用第一可熔构件430、第一移动杆420、第一阀体440以及第一弹性件450的配合,能够在发生火灾时自动关闭流体通道4101,切断氧气通路,避免氧气持续外泄导致火势蔓延。结构简单,降低了制作难度;无需在第一可熔构件430上开孔,氧气通过上述部件与流体通道4101之间的间隙即可正常传输,减少了通气噪音,同时避免在非火灾情况下错误阻断气路的情况发生,提升了防火装置的稳定性,保证了治疗效果。
可选地,参照图29和图30所示,所述第一可熔构件430设置有第一卡接部4301,所述第一移动杆420设置有第一卡接配合部4201,所述第一可熔构件430与所述第一移动杆420卡接。
具体而言,如图29和图30所示,第一可熔构件430设置有第一卡接部 4301,第一移动杆420设置有第一卡接配合部4201,第一可熔构件430与第一移动杆420卡接。第一卡接部4301可以为凸起,第一卡接配合部4201可以为凹槽;对应地,第一卡接部4301可以为凹槽,第一卡接配合部4201可以为凸起。
可选地,参照图29和图30所示,所述第一移动杆420的侧壁设置有至少一个第一导向部4202,所述流体通道4101的内壁设置有第一滑槽,所述第一导向部4202与所述第一滑槽滑动配合。
具体而言,如图29和图30所示,第一移动杆420与流体通道4101的内壁滑动连接,第一移动杆420的侧壁与流体通道4101的内壁相对。在第一移动杆420的侧壁设置有至少一个第一导向部4202,第一导向部4202的形状可以为板状、球状等。流体通道4101的内壁设置有第一滑槽,第一滑槽的延伸方向与第一移动杆420的滑动方向保持一致。第一导向部4202嵌设于第一滑槽内,在第一移动杆420相对于流体通道4101滑动时,利用第一导向部4202与第一滑槽的滑动配合,能够提升第一移动杆420滑动时的平稳性,避免出现卡塞、偏斜的问题。第一导向部4202的数量与第一滑槽的数量相匹配,在本公开实施例中,在第一移动杆420的侧壁上对称设置有两个第一导向部4202,对应地,在流体通道4101的内壁对称设置有两个第一滑槽,进一步提升了第一移动杆420滑动时的平稳性。
可选地,参照图29和图30所示,所述第一阀体440的侧壁设置有至少一个第二导向部4402,所述流体通道4101的内壁设置有第二滑槽,所述第二导向部4402与所述第二滑槽滑动配合。
具体而言,如图29和图30所示,第一阀体440与流体通道4101的内壁滑动连接,第一阀体440的侧壁与流体通道4101的内壁相对。在第一阀体440的侧壁设置有至少一个第二导向部4402,第二导向部4402的形状可以为板状、球状等。流体通道4101的内壁设置有第二滑槽,第二滑槽的延伸方向与第一阀体440的滑动方向保持一致。第二导向部4402嵌设于第二滑槽内,在第一阀体440相对于流体通道4101滑动时,利用第二导向部4402与第二滑槽的滑动配合,能够提升第一阀体440滑动时的平稳性,避免出现卡塞、偏斜的问题。第二导向部4402的数量与第二滑槽的数量相匹配,在本公开实施例中,在第一阀体440的侧壁上对称设置有两个第二导向部4402,对应地,在流体 通道4101的内壁对称设置有两个第二滑槽,进一步提升了第一阀体440滑动时的平稳性。
可选地,参照图29和图30所示,所述第一阀体440的另一端设置有槽体4403,所述第一弹性件450至少部分位于所述槽体4403内;所述第一弹性件450的一端与所述槽体4403的槽底抵接,所述第一弹性件450的另一端与所述壳体10抵接。
具体而言,如图29和图30所示,第一弹性件450为第一阀体440以及第一移动杆420提供驱动力。在第一阀体440的另一端设置有槽体4403,槽体4403可通过开孔的方式形成,也可通过注塑一体成型的方式形成。第一弹性件450至少部分位于槽体4403内,还有部分伸出槽体4403外,第一弹性件450的一端与槽体4403的槽底抵接,第一弹性件450的另一端与壳体10抵接。通过在在第一阀体440的另一端设置槽体4403,能够为第一弹性件450提供安装空间,对第一弹性件450起到一定的限位作用,第一弹性件450不易出现偏斜、卡塞的问题,提升了防火装置的稳定性。
可选地,参照图29和图30所示,所述槽体4403内设置有安装轴4404,所述安装轴4404与所述槽体4403同轴设置;所述第一弹性件450套设于所述安装轴4404。
具体而言,如图29和图30所示,第一弹性件450嵌设于槽体4403内,在槽体4403内设置有安装轴4404,安装轴4404与槽体4403同轴设置,安装轴4404的一端与槽底连接,第一弹性件450套设于安装轴4404。在安装轴4404与槽体4403的共同限位作用下,第一弹性件450会沿安装轴4404和槽体4403的共同轴线方向定向形变,不易出现偏斜、卡塞的问题,进一步提升了防火装置的稳定性。
可选地,参照图29和图30所示,所述壳体10还包括挡板4104,所述挡板4104设置于所述流体通道4101内且与所述流体通道4101的内壁连接;所述第一弹性件450与挡板4104抵接。
具体而言,如图29和图30所示,第一弹性件450在第一阀体440和壳体10的共同作用下积蓄弹性势能,在壳体10上设置有挡板4104,挡板4104与流体通道4101的内壁连接,具体的连接方式可以为粘接、卡接等,也可采用一体成型的工艺进行制作,挡板4104的形状可以为矩形或者半圆形等。第 一弹性件450的一端与第一阀体440抵接,第一弹性件450的另一端与挡板4104抵接,在第一阀体440和挡板4104的共同作用下积蓄弹性势能。挡板4104的端面与第一弹性件450的形变方向垂直,有利于提升防火装置的稳定性。挡板4104也可采用防火阻燃材质制成。
可选地,参照图31和图32所示,所述防火装置还包括第二移动杆460、第二可熔构件470、第二阀体480以及第二弹性件490;所述第二移动杆460、第二可熔构件470、第二阀体480以及第二弹性件490均设置于所述流体通道4101内;所述第二可熔构件470设置于所述流体通道4101的另一端且与所述流体通道4101的内壁连接;所述第二移动杆460与所述流体通道4101的内壁滑动连接,所述第二可熔构件470设置在所述第二移动杆460上;所述第二阀体480穿设于所述第二收窄部4103且与所述流体通道4101的内壁滑动连接,所述第二阀体480的一端与所述第二移动杆460连接,所述第二阀体480的另一端设置有所述第二弹性件490,所述第二弹性件490与所述壳体10抵接;所述第二阀体480靠近所述第二收窄部4103处设置有第二密封件4801;在所述第二阀体480处于开启状态时,所述第二可熔构件470支撑所述第二移动杆460以及所述第二阀体480处于第三位置,所述第二密封件4801与所述第二收窄部4103间隙配合,所述流体通道4101处于开启状态;在所述第二弹性件490驱动所述第二移动杆460以及所述第二阀体480滑动至第四位置时,所述第二阀体480处于关闭状态,所述第二密封件4801与所述第二收窄部4103接合,所述流体通道4101处于关闭状态。
具体而言,如图31和图32所示,第二移动杆460、第二可熔构件470、第二阀体480以及第二弹性件490均设置于流体通道4101内。流体通道4101包括相对的一端和另一端,第二可熔构件470设置于流体通道4101的另一端,靠近流体通道4101的开口处,第二可熔构件470与流体通道4101的内壁连接,具体的连接方式可以为卡接、粘接等。第二可熔构件470可以由熔点较低的材料制成,例如PP、PVC等材料。
第二移动杆460与流体通道4101的内壁滑动连接,第二移动杆460的轴线与流体通道4101的轴线重合,第二移动杆460采用防火阻燃材质制成。第二可熔构件470设置于第二移动杆460上,从而将第二移动杆460支撑于流体通道4101内。
第二阀体480穿设于第二收窄部4103且与流体通道4101的内壁滑动连接。第二阀体480的一端与第二移动杆460连接,具体的连接方式可以为卡接、粘接等,第二阀体480也采用防火阻燃材质制成。第二阀体480的另一端设置有第二弹性件490,第二弹性件490与壳体10抵接,从而能够为第二阀体480提供驱动力。第二弹性件490可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
第二阀体480靠近第二收窄部4103处设置有第二密封件4801,第二密封件4801可设置于第二阀体480沿自身轴线的两侧,当第二阀体480相对于壳体10滑动时,第二密封件4801能够阻塞第二阀体480和第二收窄部4103之间的缝隙,从而使流体通道4101关闭。第二密封件4801可采用硅胶、橡胶等材质,能够起到良好的密封效果。
在未发生火灾(温度较低)时,第二可熔构件470处于非熔融状态,具有一定的刚性,能够对第二移动杆460以及第二阀体480进行支撑,此时,第二移动杆460以及第二阀体480处于第三位置,第二阀体480处于开启状态,第二密封件4801与第二收窄部4103间隙配合,流体通道4101处于开启状态,氧气可在流体通道4101内正常传输。在第二移动杆460和第二阀体480处于第三位置时,第二弹性件490对第二移动杆460和第二阀体480施加的弹力,以及第二可熔构件470对第二移动杆460和第二阀体480施加的支撑力处于平衡状态。
在发生火灾(温度较高)时,第二可熔构件470熔融,第二可熔构件470无法继续支撑第二移动杆460和第二阀体480,平衡状态被打破,此时,在第二弹性件490的弹力作用下,第二移动杆460和第二阀体480会由第三位置滑动至第四位置,第二阀体480处于关闭状态,第二阀体480上的第二密封件4801会与第二收窄部4103接合,从而使流体通道4101处于关闭状态,氧气无法继续传输。同时,第二移动杆460还可与第阀体分离,第二移动杆460在惯性作用下继续滑动,并伸入氧疗仪或患者端的管路内,也能够起到切断氧气通路的作用,进一步提升了防火装置的安全系数。
通过在流体通道4101的两端均设置移动杆和阀体,第一收窄部4102和第二收窄部4103中至少一个与密封件接合时,即可关闭流体通道4101,防止氧气泄露,提升了防火装置的可靠性。
可选地,参照图31和图32所示,所述第二可熔构件470设置有第二卡接部4701,所述第二移动杆420设置有第二卡接配合部4601,所述第二可熔构件470与所述第二移动杆460卡接。
具体而言,如图31和图32所示,第二可熔构件470设置有第二卡接部4701,第二移动杆460设置有第二卡接配合部4601,第二可熔构件470与第二移动杆460卡接。第二卡接部4701可以为凸起,第二卡接配合部4601可以为凹槽;对应地,第二卡接部4701可以为凹槽,第二卡接配合部4601可以为凸起。
可选地,参照图29和图30所示,所述壳体10设置有第一管路接头4105和第二管路接头4106,所述第一管路接头4105和所述第二管路接头4106分别用于与氧疗仪或患者端的管路连接;所述第一管路接头4105和/或所述第二管路接头4106的外侧壁设置有至少一个第三卡接部4107,所述第三卡接部4107用于与所述氧疗仪或所述患者端的管路卡接。
具体而言,如图29和图30所示,第一管路接头4105和第二管路接头4106分别流体通道4101的两侧。第一管路接头4105、第二管路接头4106以及壳体10可以为一体式结构,也可以分体制作后拼装而成。第一管路接头4105和第二管路接头4106用于与氧疗仪或患者端的管路连通,氧疗仪或患者端的管路与第一管路接头4105或第二管路接头4106可以采用螺纹连接或者过盈配合的方式实现装配。
第一管路接头4105和第二管路接头4106可在壳体10上对称设置,在与氧疗仪或患者端的管路进行装配时,其中一个管路接头与患者端连通,另一个管路接头与氧疗仪端连通。由于第一管路接头4105和第二管路接头4106对称设置,第一管路接头4105和第二管路接头4106均可与氧疗仪端或患者端适配,不会出现防火装置装反的情况,大大提升了装配效率。
第一管路接头4105和第二管路接头4106用于连通氧疗仪或患者端的管路。管路通常采用导管,导管套设在第一管路接头4105和第二管路接头4106的外侧,为保证导管与第一管路接头4105以及第二管路接头4106连接的稳定性,在第一管路接头4105的外侧壁和/或第二管路接头4106的外侧壁设置有至少一个第三卡接部4107,第三卡接部4107的形状呈齿状,当导管套设于第一管路接头4105的外侧壁和/或第二管路接头4106的外侧壁时,第三卡接 部4107与导管卡接,保证了导管与第一管路接头4105和/或第二管路接头4106之间的气密性,避免出现氧气泄露的问题。第三卡接部4107的数量可以根据第一管路接头4105以及第二管路接头4106的尺寸进行选择。
可选地,所述第一移动杆420与所述第一阀体440为一体结构。
具体而言,第一移动杆420与第一阀体440可采用一体开模的方式进行制作,第一移动杆420与第一阀体440不会存在接缝,大大提升了第一移动杆420与第一阀体440的结构强度以及美观性。并且,在第一移动杆420与第一阀体440在第一位置和第二位置切换时,一体结构的第一移动杆420和第一阀体440稳定性较强,不易出现卡塞、偏斜的问题,大大提升了防护装置的稳定性。
可选地,所述第一移动杆420与所述第一阀体440为分体结构。
具体而言,第一移动杆420与第一阀体440可分别制作,并通过卡接或粘接等方式实现装配,当然也可在第一可熔构件430和第一弹性件450的作用下,仅保持接触关系,第一可熔构件430一旦熔融,第一移动杆420与第一阀体440即可分离。第一移动杆420还可与第一阀体440分离,第一移动杆420在惯性作用下继续滑动,并伸入氧疗仪或患者端的管路内,也能够起到切断氧气通路的作用,进一步提升了防火装置的安全系数。
本公开实施例还公开了第四种氧疗仪,包括第四种防火装置。
具体而言,在医疗或家庭环境中,当患者靠自身吸入的氧气无法满足需求时,通常需要通过外部仪器供氧。依靠外部仪器,通过侵入或非侵入的方式供给患者氧气的方法,称为氧疗法。用于供给患者氧气的仪器,统称为氧疗仪。氧疗仪通常由三部分构成:氧气发生装置(例如氧气罐、制氧机等),用于将氧气输送给患者的接口(例如鼻氧管、面罩等),以及连接发生装置和患者接口的管路。在氧气发生装置与患者接口之间的管路中串联设置有防火装置,防火装置内具有流体通道4101,流体通道4101用于与氧疗仪或患者端的管路连通,防火装置可以通过控制流体通道4101的开启或者关闭,控制氧疗仪管路的开启或者关闭。
本公开实施例中,第四种氧疗仪的管路中串联有第四种防火装置,第四种防火装置包括:壳体10、第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450;壳体10内具有流体通道4101,流体通道4101设置 有第一收窄部4102和第二收窄部4103,第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450均设置于流体通道4101内;第一可熔构件430设置于流体通道4101的一端且与流体通道4101的内壁连接;第一移动杆420与流体通道4101的内壁滑动连接,第一可熔构件430设置于第一移动杆420上;第一阀体440穿设于第一收窄部4102且与流体通道4101的内壁滑动连接,第一阀体440的一端与第一移动杆420连接,第一阀体440的另一端设置有第一弹性件450,第一弹性件450与壳体10抵接;第一阀体440靠近第一收窄部4102处设置有第一密封件4401;在第一阀体440处于开启状态时,第一可熔构件430支撑第一移动杆420以及第一阀体440处于第一位置,第一密封件4401与第一收窄部4102间隙配合,流体通道4101处于开启状态;在第一弹性件450驱动第一移动杆420以及第一阀体440滑动至第二位置时,第一阀体440处于关闭状态,第一密封件4401与第一收窄部4102接合,流体通道4101处于关闭状态。利用第一可熔构件430、第一移动杆420、第一阀体440以及第一弹性件450的配合,能够在发生火灾时自动关闭流体通道4101,切断氧气通路,避免氧气持续外泄导致火势蔓延。结构简单,降低了制作难度;无需在第一可熔构件430上开孔,氧气通过上述部件与流体通道4101之间的间隙即可正常传输,减少了通气噪音,同时避免在非火灾情况下错误阻断气路的情况发生,提升了防火装置的稳定性,保证了治疗效果。
本公开实施例还公开了第四种通气治疗系统,包括第四种氧疗仪。
具体而言,第四种通气治疗系统包括控制装置和第四种氧疗仪,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
本公开实施例中,第四种通气治疗系统包括第四种氧疗仪,第四种氧疗仪的管路中串联有第四种防火装置,防火装置包括:壳体10、第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450;壳体10内具有流体通道4101,流体通道4101设置有第一收窄部4102和第二收窄部4103,第一移动杆420、第一可熔构件430、第一阀体440以及第一弹性件450均设置于 流体通道4101内;第一可熔构件430设置于流体通道4101的一端且与流体通道4101的内壁连接;第一移动杆420与流体通道4101的内壁滑动连接,第一可熔构件430设置于第一移动杆420上;第一阀体440穿设于第一收窄部4102且与流体通道4101的内壁滑动连接,第一阀体440的一端与第一移动杆420连接,第一阀体440的另一端设置有第一弹性件450,第一弹性件450与壳体10抵接;第一阀体440靠近第一收窄部4102处设置有第一密封件4401;在第一阀体440处于开启状态时,第一可熔构件430支撑第一移动杆420以及第一阀体440处于第一位置,第一密封件4401与第一收窄部4102间隙配合,流体通道4101处于开启状态;在第一弹性件450驱动第一移动杆420以及第一阀体440滑动至第二位置时,第一阀体440处于关闭状态第一密封件4401与第一收窄部4102接合,流体通道4101处于关闭状态。利用第一可熔构件430、第一移动杆420、第一阀体440以及第一弹性件450的配合,能够在发生火灾时自动关闭流体通道4101,切断氧气通路,避免氧气持续外泄导致火势蔓延。结构简单,降低了制作难度;无需在第一可熔构件430上开孔,氧气通过上述部件与流体通道4101之间的间隙即可正常传输,减少了通气噪音,同时避免在非火灾情况下错误阻断气路的情况发生,提升了防火装置的稳定性,保证了治疗效果。
参照图33、图34、图40所示,本公开实施例公开了第五种防火装置,包括:壳体10、第一定位件520以及第一密封件530;所述壳体10内具有流体通道5101,所述流体通道5101相对的两侧开设有第一开口5102和第二开口5103,所述第一开口5102和所述第二开口5103分别用于与氧疗仪或患者端的管路连通;所述第一定位件520设置于所述流体通道5101内,且与所述壳体10连接;所述第一密封件530套设于所述第一定位件520,所述第一密封件530具有耐氧化特性;在第一温度时,所述第一密封件530与所述流体通道5101的内壁间隙配合,所述流体通道5101处于开启状态;在第二温度时,所述第一密封件530体积增大并与所述流体通道5101的内壁贴合,所述流体通道5101处于关闭状态;其中,所述第二温度高于所述第一温度。
具体而言,如图33、图34、图40所示,第五种防火装置包括壳体10、第一定位件520以及第一密封件530。壳体10作为防火装置的主体框架,可 以采用塑料等不易与氧气发生化学反应的材质。壳体10内具有流体通道5101,流体通道5101开设有第一开口5102和第二开口5103,第一开口5102和第二开口5103可以位于流体通道5101相对的两侧,第一开口5102和第二开口5103的轴线共线;第一开口5102和第二开口5103也可在流体通道5101上呈角度设置。第一开口5102和第二开口5103分别用于与氧疗仪或患者端的管路连通,例如,第一开口5102连通氧疗仪端的管路,第二开口5103连通患者端的管路,氧气从第一开口5102进入流体通道5101内,再经由第二开口5103传输至患者端。也可将第二开口5103连通氧疗仪端的管路,第一开口5102连通患者端的管路,本公开实施例对此不做限定。
如图40所示,壳体10的外侧壁设置有至少一个齿状凸起,齿状凸起用于与氧疗仪或患者端的管路卡接。氧疗仪的管路通常采用导管,导管套设在壳体10的外侧壁,为保证导管与壳体10连接的稳定性,在壳体10的外侧壁设置有至少一个齿状凸起,当导管套设于壳体10的外侧壁时,齿状凸起与导管卡接,保证了导管与壳体10之间的气密性,避免出现氧气泄露的问题。齿状凸起的数量可以根据壳体10的尺寸进行选择。
第一定位件520设置于流体通道5101内,且与壳体10连接,第一定位件520与壳体10的连接方式可以为卡接、焊接或者粘接等。第一定位件520仅占用流体通道5101的一小部分空间,不会阻碍气体在流体通道5101内的传输。第一密封件530套设于第一定位件520,第一定位件520用于将第一密封件530固定于流体通道5101内,第一密封件530与第一定位件520的同轴设置。第一密封件530和第一定位件520的共同轴线也可以与流体通道5101的长轴重合。
第一密封件530具有第一状态和第二状态,第一密封件530处于第一状态时,体积较小,第一密封件530的外表面与流体通道5101的内壁之间具有间隙,气体可通过该间隙正常传输。第一密封件530处于第二状态时,体积增大,第一密封件530的外表面与流体通道5101的内壁贴合,并具有一定的干涉量,从而使流体通道5101处于关闭状态。利用第一密封件530由第一状态到第二状态的切换,可控制流体通道5101由开启状态切换至关闭状态,从而阻断氧气的通路。第一密封件530具有耐氧化的特性,即使长时间暴露于富氧环境中,也不易发生老化生锈现象,避免对治疗效果产生影响,同时也 提升了防火装置的稳定性和耐久性。
第一密封件530可根据温度实现第一状态到第二状态的切换。在未发生火灾时,防火装置处于第一温度,第一温度可以为第一密封件530体积增大前的任意一个温度值,也可以为温度区间。在第一温度时,第一密封件530处于上述第一状态,体积较小,第一密封件530的外表面与流体通道5101的内壁之间具有间隙,流体通道5101处于开启状态,气体可通过该间隙正常传输。
在发生火灾时,防火装置处于第二温度,第二温度高于第一温度,第二温度可以为能够使第一密封件530体积增大的任意一个温度值,也可以为温度区间。在第二温度时,第一密封件530处于上述第二状态,体积增大,第一密封件530的外表面与流体通道5101的内壁贴合,并具有一定的干涉量,从而使流体通道5101处于关闭状态。
本公开实施例中,第五种防火装置包括:壳体10、第一定位件520以及第一密封件530;壳体10内具有流体通道5101,流体通道5101相对的两侧开设有第一开口5102和第二开口5103,第一开口5102和第二开口5103分别用于与氧疗仪或患者端的管路连通;第一定位件520设置于流体通道5101内,且与壳体10连接;第一密封件530套设于第一定位件520,第一密封件530具有耐氧化特性。在未发生火灾时,防火装置处于第一温度,第一密封件530与流体通道5101的内壁间隙配合,流体通道5101处于开启状态;在发生火灾时,防火装置处于第二温度,第一密封件530体积增大并与流体通道5101的内壁贴合,流体通道5101处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延,其中,第二温度高于第一温度。由于第一密封件530具有耐氧化特性,避免了第一密封件530出现氧化的问题,提升了防火装置的耐久性和安全系数。
可选地,参照图33至图34所示,所述第一密封件530为热致形状记忆塑料;在所述第二温度下,所述第一密封件530受热膨胀并与所述流体通道5101的内壁贴合,所述流体通道5101处于关闭状态。
具体而言,如图33至图34所示,在本公开实施例中,第一密封件530可以为热致形状记忆塑料,热致形状记忆塑料是一种热敏性功能材料,该材料在室温下能够以一定形状长期存放,受热时可迅速膨胀体积增大。热致形 状记忆塑料具体可以包括聚氨酯弹性体、聚降冰片烯、反式1,4-聚异戊二烯、苯乙烯/丁二烯共聚物、交联聚乙烯材质等。
在未发生火灾时,第一密封件530能够以一定形状长期存放,第一密封件530的外表面与流体通道5101的内壁之间具有间隙,流体通道5101处于开启状态,气体可通过该间隙正常传输。
在发生火灾时,第一密封件530受热迅速膨胀,体积增大,第一密封件530的外表面与流体通道5101的内壁贴合,并具有一定的干涉量,从而使流体通道5101处于关闭状态。
通过采用热致形状记忆塑料的第一密封件530,在发生火灾时,能够利用热致形状记忆塑料的特性,迅速关闭流体通道5101,阻断氧气通路,避免氧气持续外泄导致火势蔓延。同时,热致形状记忆塑料具有良好的耐氧化特性,即便长时间处于富氧环境中,也不易发生生锈老化现象,避免对治疗效果产生影响,同时也提升了防火装置的稳定性和耐久性。
可选地,参照图35所示,所述流体通道5101的内壁设置有至少一个环形凸起5104;在所述第二温度下,所述环形凸起5104与所述第一密封件530抵接,所述流体通道5101处于关闭状态。
具体而言,如图35所示,流体通道5101的内壁设置有至少一个环形凸起5104,环形凸起5104环绕在第一密封件530的外表面。在未发生火灾时,第一密封件530的外表面与环形凸起5104之间具有间隙,流体通道5101处于开启状态,气体可通过该间隙正常传输。在发生火灾时,第一密封件530受热迅速膨胀,体积增大,第一密封件530的外表面与环形凸起5104贴合,并具有一定的干涉量,从而使流体通道5101处于关闭状态。
通过设置环形凸起5104,降低了对第一密封件530膨胀率的要求,第一密封件530无需过多膨胀,也能通过与环形凸起5104的配合关闭流体通道5101,提升了防火装置的稳定性。
可选地,参照图33至图34所示,所述流体通道5101的内壁设置有第一凸起结构5105和第二凸起结构5106;所述第一凸起结构5105和所述第二凸起结构5106分别位于所述第一定位件520的两端;所述第一凸起结构5105设置有第一定位部5107,所述第二凸起结构5106设置有第二定位部5108,所述第一定位件520的两端分别与所述第一定位部5107和所述第二定位部 5108卡接。
具体而言,如图33至图34所示,第一定位件520用于对第一密封件530实现定位固定。第一定位件520在流体通道5101内的安装方式可以为:在流体通道5101的内壁设置第一凸起结构5105和第二凸起结构5106,第一凸起结构5105和第二凸起结构5106沿流体通道5101的长轴方向间隔设置,分别位于第一定位件520的两端;第一凸起结构5105和第二凸起结构5106仅占用一小部分流体通道5101的空间,不会阻碍氧气的正常传输。第一凸起结构5105可以分为上凸起和下凸起,上凸起和下凸起之间具有间隙;第二凸起结构5106与第一凸起结构5105相同。在第一凸起结构5105中,上凸起和下凸起相对靠近的端面上开设有台阶状定位部,即第一定位部5107;同样地,在第二凸起结构5106中设置有第二定位部5108。第一定位件520的两端可分别嵌设于第一定位部5107和第二定位部5108中实现卡接固定。
可选地,参照图36至图37所示,所述流体通道5101的内壁设置有安装部5109,所述安装部5109设置有容纳槽5110;所述第一定位件520的一端嵌设于所述容纳槽5110内。
具体而言,如图36至图37所示,为减少流体通道5101内部空间的占用,避免对氧气的正常传输产生影响,可仅对第一定位件520的一端进行固定。在流体通道5101的内壁设置有安装部5109,安装部5109与流体通道5101的内壁连接,具有可采用焊接、卡接或者粘接等方式进行装配,安装部5109与流体通道5101的内壁也可采用一体式结构,具有更好的结构强度;安装部5109还可利用连接结构与流体通道5101的内壁连接。安装部5109上设置有容纳槽5110,第一定位件520的一端嵌设于容纳槽5110内实现安装固定。
可选地,参照图36所示,所述第一定位件520的一端设置有卡接部,所述容纳槽5110的槽壁设置有卡接配合部,所述第一定位件520的一端与所述容纳槽5110卡接。
具体而言,如图36所示,为提升第一定位件520安装的稳定性,在第一定位件520的一端设置有卡接部,容纳槽5110的槽壁设置有卡接配合部,利用卡接部和卡接配合部的卡接作用,实现第一定位件520与安装部5109的稳定装配。
可选地,参照图37所示,所述第一定位件520的一端设置有外螺纹,所 述容纳槽5110的槽壁设置有内螺纹,所述第一定位件520的一端与所述容纳槽5110螺纹连接。
具体而言,如图37所示,第一定位件520与安装部5109也可通过螺纹连接的方式实现装配,便于拆卸。第一定位件520的一端设置有外螺纹,容纳槽5110的槽壁设置有内螺纹,通过旋转第一定位件520或者壳体10即可实现第一定位件520与安装部5109的螺纹连接。
可选的,所述第一定位件520的一端与所述容纳槽5110过盈配合。
具体而言,第一定位件520的一端也可与容纳槽5110通过过盈配合的方式实现装配,安装简便,稳定性好。
可选地,参照图38和图39所示,所述安装部5109设置有至少一个连接筋5111,所述安装部5109通过所述连接筋5111与所述流体通道5101的内壁连接。
具体而言,如图38和图39所示,安装部5109还可通过连接筋5111与流体通道5101的内壁进行连接,在安装部5109上设置有至少一个连接筋5111,连接筋5111的一端与流体通道5101的内壁固定,另一端与安装部5109固定,固定方式可以为焊接或者粘接等。为保证安装部5109安装的稳定性,可以在安装部5109的两侧均设置连接筋5111,连接筋5111的数量可根据流体通道5101以及安装部5109的尺寸进行选择,本公开实施例对此不做限定。
通过连接筋5111将安装部5109固定于流体通道5101内,安装部5109不会阻碍氧气通路,氧气可穿过连接筋5111与流体通道5101内壁之间的间隙正常传输。
可选地,参照图41至图42所示,第五种防火装置还包括可熔构件540;所述第一密封件530为弹性体,所述可熔构件540包裹所述第一密封件530;在所述可熔构件540处于非熔融状态下,所述可熔构件540压缩所述第一密封件530,所述可熔构件540与所述流体通道5101的内壁间隙配合,所述流体通道5101处于开启状态;在所述可熔构件540处于熔融状态下,所述第一密封件530释放至少部分弹性势能,所述第一密封件530体积增大并与所述流体通道5101的内壁贴合,所述流体通道5101处于关闭状态。
具体而言,如图41至图42所示,在本公开实施例中,第一密封件530还可以为弹性体,例如硅胶或橡胶等能够被压缩并储存弹性势能的材质。在 第一密封件530的外表面包裹有可熔构件540,可熔构件540可以为熔点较低的材料制成,例如PP、PVC等材料。由于可熔构件540的包裹,第一密封件530不会暴露于富氧环境中,避免发生氧化;同时,第一密封件530本身也不易发生氧化,长时间与氧气接触也不易发生氧化生锈的现象,避免对治疗效果产生影响,同时也提升了防火装置的稳定性和耐久性。
在未发生火灾(温度较低)时,可熔构件540处于非熔融状态下,可熔构件540压缩第一密封件530,第一密封件530的体积减小,并积蓄弹性势能,第一密封件530的体积指垂直于流体通道5101内壁方向的体积,第一密封件530的外表面与流体通道5101的内壁之间具有供气体流通的间隙,氧气可通过间隙正常流通。
在发生火灾(温度较高)时,可熔构件540处于熔融状态,可熔构件540无法继续包裹第一密封件530,第一密封件530的平衡状态被打破,此时,第一密封件530会释放至少部分弹性势能,第一密封件530的体积增大,第一密封件530的外表面与流体通道5101的内壁抵接,从而使流体通道5101处于关闭状态,氧气通路被阻断。
可选地,参照图43至图45所示,第五种防火装置还包括第二定位件550以及第二密封件560;所述第二定位件550设置于所述流体通道5101内,且与所述壳体10连接,所述第一定位件520靠近所述第一开口5102,所述第二定位件550靠近所述第二开口5103;所述第二密封件560套设于所述第二定位件550,所述第二密封件560具有耐氧化特性;在所述第一温度下,所述第一密封件530和所述第二密封件560分别与所述流体通道5101的内壁间隙配合,所述流体通道5101处于开启状态;在所述第二温度下,所述第一密封件530和所述第二密封件560体积增大并分别与所述流体通道5101的内壁贴合,所述流体通道5101处于关闭状态。
具体而言,如图43至图45所示,在本公开实施例中,不仅在第一开口5102处设置第一密封件530,还在第二开口5103处设置第二密封件560,防火装置起到双重防护。第二定位件550设置于流体通道5101内,且与壳体10连接,第二定位件550与壳体10的连接方式可以为卡接、焊接或者粘接等。第二定位件550仅占用流体通道5101的一小部分空间,不会阻碍气体在流体通道5101内的传输。第二密封件560套设于第二定位件550,第二定位件550 用于将第二密封件560固定于流体通道5101内,第二密封件560与第二定位件550的同轴设置。第二密封件560和第二定位件550的共同轴线也可以与流体通道5101的长轴重合。
第二密封件560具有第一状态和第二状态,第二密封件560处于第一状态时,体积较小,第二密封件560的外表面与流体通道5101的内壁之间具有间隙,气体可通过该间隙正常传输。第二密封件560处于第二状态时,体积增大,第二密封件560的外表面与流体通道5101的内壁贴合,并具有一定的干涉量,从而使流体通道5101处于关闭状态。利用第二密封件560由第一状态到第二状态的切换,可控制流体通道5101由开启状态切换至关闭状态,从而阻断氧气的通路。第二密封件560具有耐氧化的特性,即使长时间暴露于富氧环境中,也不易发生生锈老化现象,避免对治疗效果产生影响,同时也提升了防火装置的稳定性和耐久性。
第二密封件560可根据温度实现第一状态到第二状态的切换。在未发生火灾时,防火装置处于第一温度,第一温度可以为第二密封件560体积增大前的任意一个温度值,也可以为温度区间。在第一温度时,第二密封件560处于上述第一状态,体积较小,第二密封件560的外表面与流体通道5101的内壁之间具有间隙,流体通道5101处于开启状态,气体可通过该间隙正常传输。
在发生火灾时,防火装置处于第二温度,第二温度高于第一温度,第二温度可以为能够使第二密封件560体积增大的任意一个温度值,也可以为温度区间。在第二温度时,第二密封件560处于上述第二状态,体积增大,第二密封件560的外表面与流体通道5101的内壁贴合,并具有一定的干涉量,从而使流体通道5101处于关闭状态。
第一定位件520靠近第一开口5102,第二定位件550靠近第二开口5103,对应地,第一密封件530靠近第一开口5102,第二密封件560靠近第二开口5103。通过在流体通道5101的两端均设置定位件和密封件,第一密封件530和第二密封件560中至少一个与流体通道5101的内壁抵接时,即可关闭流体通道5101,防止氧气泄露,提升了防火装置的可靠性。
流体通道5101内可以采用热致形状记忆塑料的第一密封件530和第二密封件560,也可以采用弹性体和可熔构件540的组合。对应地,上述两者实施 方式均适用于在流体通道5101的两端对称设置的方案。
本公开实施例还公开了第五种通气治疗设备,包括第五种防火装置。
具体的,通气治疗设备包括控制装置、氧疗仪以及气体管路,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
本公开实施例中,第五种通气治疗设备包括第五种防火装置,第五种防火装置包括:壳体10、第一定位件520以及第一密封件530;壳体10内具有流体通道5101,流体通道5101相对的两侧开设有第一开口5102和第二开口5103,第一开口5102和第二开口5103分别用于与氧疗仪或患者端的管路连通;第一定位件520设置于流体通道5101内,且与壳体10连接;第一密封件530套设于第一定位件520,第一密封件530具有耐氧化特性。在未发生火灾时,防火装置处于第一温度,第一密封件530与流体通道5101的内壁间隙配合,流体通道5101处于开启状态;在发生火灾时,防火装置处于第二温度,第一密封件530体积增大并与流体通道5101的内壁贴合,流体通道5101处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延,其中,第二温度高于第一温度。由于第一密封件530具有耐氧化特性,避免了第一密封件530出现氧化的问题,提升了防火装置的耐久性和安全系数。
参照图46至图51所示,本公开实施例公开了第六种防火装置,所述防火装置包括:壳体10和阀体620;所述壳体10内具有流体通道6101,所述流体通道6101设置有第一收窄部6102和第二收窄部6103,所述阀体620设置于所述流体通道6101内;所述阀体620与所述流体通道6101的内壁滑动连接,所述阀体620的外侧壁设置有至少一个导向部630,所述导向部630与所述流体通道6101的内壁滑动配合;所述阀体620相对于所述流体通道6101具有第一位置和第二位置;在所述阀体620处于所述第一位置时,所述阀体620分别与所述第一收窄部6102和所述第二收窄部6103间隙配合,所述流体通道6101处于开启状态;在所述阀体620处于所述第二位置时,所述阀体620 与所述第一收窄部6102和/或所述第二收窄部6103接合,所述流体通道6101处于关闭状态。
具体而言,如图46至图51所示,第六种防火装置包括壳体10和阀体620。壳体10作为防火装置的主体框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等;也可采用防火阻燃材质制成。壳体10内具有流体通道6101,如图51所示,流体通道6101采用中间粗两端细的结构,便于与氧疗仪端或患者端的管路连接。流体通道6101由中间向两端过渡,设置有第一收窄部6102和第二收窄部6103。阀体620设置于流体通道6101内。
阀体620与流体通道6101的内壁滑动连接,阀体620的轴线与流体通道6101的轴线重合,阀体620采用防火阻燃材质制成,能够在火灾发生时对流体通道6101起到稳定的阻断作用。阀体620的外侧壁与流体通道6101的内壁相对,阀体620的外侧壁设置有至少一个导向部630,导向部630与流体通道6101的内壁滑动配合,从而能够在阀体620相对于流体通道6101滑动时,起到限位导向的作用。导向部630可以为滑片、凸台等结构。导向部630的数量可以根据实际需求进行选择,如图50所示,在本公开实施例中,阀体620的外侧壁设置有多个导向部630,多个导向部630在阀体620的外侧壁上均匀分布,导向部630的形状为半球状凸台,在起到良好的导向限位作用的同时,减小了阀体620与壳体10之间的滑动摩擦。导向部630的材质可以与阀体620相同,也可采用具有防火阻燃且耐磨性质的材料制成。导向部630与阀体620可采用一体结构,具有良好的结构强度和稳定性。导向部630也可与阀体620分开制作,再通过粘接或者焊接的方式装配在一起。
阀体620相对于流体通道6101具有第一位置和第二位置,阀体620通过滑动的方式由第一位置切换至第二位置,阀体620沿流体通道的长轴方向滑动。可以在阀体620上设置驱动件,以驱动阀体620相对于流体通道6101滑动,驱动件可以为金属弹簧、硅胶件等能够储存弹性势能的部件;也可在阀体620上设置气缸等驱动机构控制阀体620的滑动。
在阀体620处于第一位置时,阀体620分别与第一收窄部6102和第二收窄部6103间隙配合,流体通道6101处于开启状态,氧气可在流体通道6101内正常传输。在阀体620处于第二位置时,阀体620与第一收窄部6102和/ 或第二收窄部6103接合,流体通道6101处于关闭状态,氧气无法继续传输。阀体620与第一收窄部6102和第二收窄部6103中的至少一个接合,均可阻断氧气通路,优选地,阀体620与第一收窄部6102和第二收窄部6103同时接合,密封效果更好,提升了防火装置的性能。
本公开实施例中,通过在阀体620的外侧壁设置导向部630,导向部630能够在阀体620相对于流体通道6101滑动时,起到限位作用,避免阀体620出现偏斜、卡塞的问题,保证了阀体620能够与第一收窄部6102和/或第二收窄部6103准确接合,提升了防火装置的稳定性。
可选地,参照图46至图50所示,第六种防火装置还包括:第一可熔构件640和第一弹性件650;所述阀体620包括相对的第一端和第二端,所述第一端靠近所述第一收窄部6102,所述第二端靠近所述第二收窄部6103;所述壳体10靠近所述第一收窄部6102处设置有固定部6104;所述阀体620的第一端设置有第一槽体6201,所述第一弹性件650至少部分位于所述第一槽体6201内;所述第一弹性件650的一端与所述第一槽体6201的槽底抵接,所述第一弹性件650的另一端与所述固定部6104的端面抵接;所述第一可熔构件640设置于所述阀体620的第一端,且与所述固定部6104卡接,以支撑所述阀体620处于所述第一位置;所述第一可熔构件640熔融,所述第一弹性件650驱动所述阀体620滑动至所述第二位置,所述阀体620的第二端与所述第二收窄部6103接合,所述流体通道6101处于关闭状态。
具体而言,如图46至图50所示,第六种防火装置还包括第一可熔构件640和第一弹性件650。第一可熔构件640可以由熔点较低的材料制成,例如PP、PVC等材料。第一弹性件650可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
阀体620包括相对的第一端和第二端,第一端靠近第一收窄部6102,第二端靠近第二收窄部6103。壳体10靠近第一收窄部6102处设置有固定部6104,固定部6104与壳体10可以为一体结构;也可以分别制作,固定部6104通过粘接、焊接或者卡接等方式与壳体10实现装配。第一弹性件650为阀体620提供驱动力,阀体620的第一端设置有第一槽体6201,第一弹性件650至少部分位于第一槽体6201内。第一槽体6201可通过开孔的方式形成与阀体620的第一端,也可通过注塑一体成型的方式形成。第一弹性件650至少部分位 于第一槽体6201内,还有部分伸出第一槽体6201外,第一弹性件650的一端与第一槽体6201的槽底抵接,第一弹性件650的另一端与固定部6104靠近阀体620一侧的端面抵接。通过在阀体620的第一端设置第一槽体6201,能够为第一弹性件650提供安装空间,对第一弹性件650起到一定的限位作用,第一弹性件650不易出现偏斜、卡塞的问题,提升了防火装置的稳定性。
在未发生火灾(温度较低)时,第一可熔构件640设置于阀体620的第一端,且与固定部6104卡接,以支撑阀体620处于第一位置,流体通道6101处于开启状态。第一可熔构件640可为卡勾,卡勾与固定部6104背离阀体620一侧的端面卡接,从而使阀体620保持在第一位置。
在发生火灾(温度较高)时,第一可熔构件640熔融,阀体620失去了第一可熔构件640的束缚,在第一弹性件650的驱动下滑动至第二位置,阀体620的第二端与第二收窄部6103接合,流体通道6101处于关闭状态,氧气无法继续传输,避免氧气持续外泄导致火势蔓延。
可选地,参照图46至图50所示,所述第一槽体6201内设置有第一安装轴6202,所述第一安装轴6202与所述第一槽体6201同轴设置;所述第一弹性件650套设于所述第一安装轴6202,所述第一可熔构件640与所述第一安装轴6202连接。
具体而言,如图46至图50所示,第一弹性件650嵌设于第一槽体6201内,在第一槽体6201内设置有第一安装轴6202,第一安装轴6202与第一槽体6201同轴设置,第一安装轴6202的一端与第一槽体6201的槽底连接,第一安装轴6202的另一端与第一可熔构件640连接,第一安装轴6202与第一可熔构件640可采用粘接、卡接等方式实现连接。第一弹性件650套设于第一安装轴6202,在第一安装轴6202与第一槽体6201的共同限位作用下,第一弹性件650会沿第一安装轴6202和第一槽体6201的共同轴线方向定向形变,不易出现偏斜、卡塞的问题,进一步提升了防火装置的稳定性。
可选地,参照图46至图50所示,所述阀体620的第二端设置有第一密封件6203,所述第一密封件6203至少部分包裹所述第二端;在所述阀体620处于所述第二位置时,所述第一密封件6203与所述第二收窄部6103接合,所述流体通道6101处于关闭状态。
具体而言,如图46至图50所示,阀体620的第二端用于与第二收窄部 6103接合,在阀体620的第二端设置有第一密封件6203,第一密封件6203可采用硅胶、橡胶等材质,能够起到良好的密封效果。第一密封件6203至少部分包裹第二端,能够避免阀体620直接与第二收窄部6103接触,提升密封效果。在阀体620处于第二位置时,第一密封件6203与第二收窄部6103接合,流体通道6101处于关闭状态,氧气无法继续传输,避免氧气持续外泄导致火势蔓延。
可选地,参照图52至图56所示,所述防火装置还包括:第二可熔构件660和第二弹性件670;所述阀体620包括相对的第一端和第二端,所述第一端靠近所述第一收窄部6102,所述第二端靠近所述第二收窄部6103;所述阀体620的第二端设置有第二槽体6204,所述第二弹性件670至少部分位于所述第二槽体6204内;所述第二弹性件670的一端与所述第二槽体6204的槽底抵接,所述第二弹性件670的另一端与所述壳体10抵接;所述第二可熔构件660设置于所述第一收窄部6102,且与所述第一收窄部6102卡接,所述第二可熔构件660设置有用于通过流体的通孔;所述阀体620的第一端与所述第二可熔构件660抵接,以支撑所述阀体620处于所述第一位置;所述第二可熔构件660熔融,所述第二弹性件670驱动所述阀体620滑动至所述第二位置,所述阀体620的第一端与所述第一收窄部6102接合,所述流体通道6101处于关闭状态。
具体而言,如图52至图56所示,在本公开实施例中,防火装置还包括第二可熔构件660和第二弹性件670。第二可熔构件660可以由熔点较低的材料制成,例如PP、PVC等材料。第二弹性件670可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
阀体620包括相对的第一端和第二端,第一端靠近第一收窄部6102,第二端靠近第二收窄部6103。第二弹性件670为阀体620提供驱动力,阀体620的第二端设置有第二槽体6204,第二弹性件670至少部分位于第二槽体6204内。第二槽体6204可通过开孔的方式形成,也可通过注塑一体成型的方式形成。第二弹性件670至少部分位于第二槽体6204内,还有部分伸出第二槽体6204外,第二弹性件670的一端与第二槽体6204的槽底抵接,第二弹性件670的另一端与壳体10抵接。
第二可熔构件660设置于第一收窄部6102,且与第一收窄部6102卡接, 可在第二可熔构件660或第一收窄部6102上设置卡接结构,实现第二可熔构件660与第一收窄部6102的卡接。为避免第二可熔构件660遮挡第一收窄部6102,导致氧气无法正常传输,可在第二可熔构件660上设置用于通过流体的通孔,通孔的尺寸可根据实际需求进行选择。在未发生火灾(温度较低)时,阀体620的第一端与第二可熔构件660抵接,在第二可熔构件660的支撑下,阀体620处于第一位置,流体通道6101处于开启状态。
在发生火灾(温度较高)时,所述第二可熔构件660熔融,阀体620失去了第二可熔构件660的束缚,第二弹性件670驱动阀体620滑动至第二位置,阀体620的第一端与第一收窄部6102接合,流体通道6101处于关闭状态,氧气无法继续传输,避免氧气持续外泄导致火势蔓延。
可选地,参照图52至图56所示,所述第二槽体6204内设置有第二安装轴6205,所述第二安装轴6205与所述第二槽体6204同轴设置;所述第二弹性件670套设于所述第二安装轴6205。
具体而言,如图52至图56所示,第二弹性件670嵌设于第二槽体6204内,在第二槽体6204内设置有第二安装轴6205,第二安装轴6205与第二槽体6204同轴设置,第二安装轴6205的一端与第二槽体6204的槽底连接。第二弹性件670套设于第二安装轴6205,在第二安装轴6205与第二槽体6204的共同限位作用下,第二弹性件670会沿第二安装轴6205和第二槽体6204的共同轴线方向定向形变,不易出现偏斜、卡塞的问题,进一步提升了防火装置的稳定性。
可选地,参照图52至图56所示,所述阀体620的第一端设置有第二密封件6206,所述第二密封件6206至少部分包裹所述第一端;在所述阀体620处于所述第二位置时,所述第二密封件6206与所述第一收窄部6102接合,所述流体通道6101处于关闭状态。
具体而言,如图52至图56所示,阀体620的第一端用于与第一收窄部6102接合,在阀体620的第一端设置有第二密封件6206,第二密封件6206可采用硅胶、橡胶等材质,能够起到良好的密封效果。第二密封件6206至少部分包裹第一端,能够避免阀体620直接与第一收窄部6102接触,提升密封效果。在阀体620处于第二位置时,第二密封件6206与第一收窄部6102接合,流体通道6101处于关闭状态,氧气无法继续传输,避免氧气持续外泄导 致火势蔓延。
可选地,参照图52至图53所示,所述第一收窄部6102设置有第一定位结构,所述第二可熔构件660设置有第二定位结构,所述第一定位结构和所述第二定位结构定位配合。
具体而言,如图52至图53所示,第一收窄部6102设置有第一定位结构,第二可熔构件660设置有第二定位结构,利用第一定位结构和第二定位结构的互相作用,能够实现第二可熔构件660与第一收窄部6102的稳定卡接。第一定位结构可以为台阶状结构,对应地,第二定位结构为与第一定位结构互补的台阶状结构。第一定位结构还可以为凹槽或者凸台结构,对应地,第二定位结构为凸台或凹槽结构。
可选地,参照图54至图55所示,所述第一收窄部6102设置有第一定位结构,所述第二密封件6206设置有第三定位结构,所述第一定位结构和所述第三定位结构定位配合。
具体而言,如图54至图55所示,第一收窄部6102设置有第一定位结构,第二密封件6206设置有第三定位结构。当阀体620处于第二位置时,利用第一定位结构和第三定位结构的互相作用,能够实现第二密封件6206与第一收窄部6102的稳定贴合,提升密封效果。第一定位结构可以为台阶状结构,对应地,第三定位结构为与第一定位结构互补的台阶状结构。第一定位结构还可以为凹槽或者凸台结构,对应地,第三定位结构为凸台或凹槽结构。
可选地,参照图52至图56所示,所述阀体620的外侧壁设置有至少一个定位筋6207;所述所述流体通道6101的内壁设置有至少一个定位槽6105,所述定位筋6207与所述定位槽6105滑动配合。
具体而言,如图52至图56所示,阀体620与流体通道6101的内壁滑动连接,阀体620的外侧壁与流体通道6101的内壁相对。在阀体620的外侧壁设置有至少一个定位筋6207,流体通道6101的内壁设置有至少一个定位槽6105,定位槽6105的延伸方向与阀体620的滑动方向保持一致。定位筋6207嵌设于定位槽6105内,在阀体620相对于流体通道6101滑动时,利用定位筋6207与定位槽6105的滑动配合,能够提升阀体620滑动时的平稳性,避免出现卡塞、偏斜的问题。定位筋6207的数量与定位槽6105的数量相匹配,在本公开实施例中,如图56所示,在阀体620的外侧壁上对称设置有两个定 位筋6207,对应地,在流体通道6101的内壁对称设置有两个定位槽6105,进一步提升了阀体620滑动时的平稳性。
本公开实施例还公开了第六种通气治疗设备,包括第六种防火装置。
具体的,第六种通气治疗设备包括控制装置、氧疗仪以及气体管路,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
在本公开实施例中,第六种防火装置包括:壳体10和阀体620;壳体10内具有流体通道6101,流体通道6101设置有第一收窄部6102和第二收窄部6103,阀体620设置于流体通道6101内;阀体620与流体通道6101的内壁滑动连接,阀体620的外侧壁设置有至少一个导向部630,导向部630与流体通道6101的内壁滑动配合;阀体620相对于流体通道6101具有第一位置和第二位置;在阀体620处于第一位置时,阀体620分别与第一收窄部6102和第二收窄部6103间隙配合,流体通道6101处于开启状态;在阀体620处于第二位置时,阀体620与第一收窄部6102和/或第二收窄部6103接合,流体通道6101处于关闭状态,从而切断氧气通路,避免氧气持续外泄导致火势蔓延。通过在阀体620的外侧壁设置导向部630,导向部630能够在阀体620相对于流体通道6101滑动时,起到限位作用,避免阀体620出现偏斜、卡塞的问题,保证了阀体620能够与第一收窄部6102和/或第二收窄部6103准确接合,提升了防火装置的稳定性。
参照图57至图62所示,本公开实施例公开了第七种防火装置,包括:壳体10、底座720、阀体730、弹性件740以及可熔性套圈750;壳体10具有流体通道7101,流体通道7101用于与氧疗仪或患者端的管路连通;底座720定位于流体通道7101内,阀体730与底座720连接,弹性件740设置于底座720和阀体730之间;阀体730远离底座720的一端设置有密封部7301,流体通道7101内设置有至少一个收窄部7102,密封部7301与收窄部7102相对设置;沿弹性件740的弹性形变方向,可熔性套圈750嵌套于底座720、弹 性件740以及至少部分阀体730所组成的整体上,以压缩弹性件740,使密封部7301与收窄部7102之间具有供流体通过的间隙;在可熔性套圈750熔断后,弹性件740释放至少部分弹性势能并推抵阀体730,使密封部7301与收窄部7102扣合,以阻断流体通道7101。
具体而言,如图57至图60所示,壳体10作为防火装置的主体框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等;也可采用防火阻燃材质制成。壳体10可采用一体式结构,也可采用分体式结构,例如,壳体10包括第一壳体和第二壳体,第一壳体和第二壳体通过扣合的方式形成一完整的壳体10,为避免气体泄露,可在第一壳体和第二壳体的装配间隙中填充密封结构,如硅胶、橡胶等。
壳体10内具有流体通道7101,流体通道7101用于与氧疗仪或患者端的管路连通,由于氧气传输过程中需要经过该流体通道7101,通过阻断流体通道7101即可阻断氧气通路,最大程度避免由于氧气加持导致的火势蔓延。
底座720定位于流体通道7101内,底座720与流体通道7101内壁可采用粘接、卡接等方式实现固定,例如,在流体通道7101的内壁设置卡槽,将底座720的边缘嵌入卡槽内实现固定。底座720相对于壳体10固定,阀体730与底座720连接,底座720朝向阀体730一侧的端面上设置有用于定位阀体730的嵌槽,阀体730的端部插入嵌槽内实现定位装配,阀体730能够在流体通道7101内进行移动。阀体730和底座720之间设置有弹性件740,弹性件740的两端分别与阀体730以及底座720接触,能够为阀体730的移动提供驱动力。弹性件740可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
阀体730远离底座720的一端设置有密封部7301,流体通道7101内设置有收窄部7102,收窄部7102两端的流体通道7101内径不同,密封部7301与收窄部7102相对设置且形状相匹配,当阀体730带动密封部7301移动至收窄部7102处时,利用密封部7301与收窄部7102的扣合密封,即可实现流体通道7101的阻断。密封部7301可采用柔性密封材质制成,例如硅胶、橡胶等;密封部7301也可采用刚性材质制成,仅在密封部7301靠近收窄部7102的位置设置柔性密封圈,当密封部7301与收窄部7102处的壳体10内壁抵接时,柔性密封圈嵌设于密封部7301与收窄部7102的间隙中实现密封。
可熔性套圈750采用受热容易熔化或燃烧的材质,可以是具有弹性的材料,例如硅胶、橡胶等,也可以是尼龙线等材质。弹性件740在受到底座720和阀体730压缩时会发生弹性形变,沿该弹性形变的方向上,可熔性套圈750嵌套于底座720、弹性件740以及至少部分阀体730所组成的整体上,可熔性套圈750能够对底座720、弹性件740以及阀体730实现约束,通过缩短底座720和阀体730之间的距离,使弹性件740处于压缩状态,积蓄弹性势能。在可熔性套圈750的约束下,沿流体通道7101的轴向,底座720、弹性件740以及阀体730所组成的整体长度较短,能够在阀体730的密封部7301和收窄部7102之间形成供流体通过的间隙,氧气正常流通,保证设备正常运行。
在发生火灾时,防火装置受高温侵袭,可熔性套圈750受热发生熔断,失去约束作用,弹性件740释放至少部分弹性势能,由于底座720相对于壳体10为固定状态,弹性件740则会推抵阀体730相对于底座720发生位移,以使密封部7301移动至收窄部7102处并与收窄部7102扣合,从而阻断流体通道7101,切断气路。
本公开实施例中,底座720、阀体730、弹性件740以及可熔性套圈750共同组成阀体730触发系统,当可熔性套圈750未发生熔断时,在可熔性套圈750的约束下,弹性件740处于压缩状态,阀体730的密封部7301与流体通道7101的收窄部7102之间具有供流体通过的间隙,氧气可正常通过;在可熔性套圈750熔断后,弹性件740释放至少部分弹性势能并推抵阀体730,使密封部7301与收窄部7102扣合,从而阻断流体通道7101。由于可熔性套圈750本身在受热时易发生熔断,在弹性件740的弹力作用下进一步加快了熔断的速度,从而提高了阀体730的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。
如图61至图62所示,本公开的一种实施例中,第七种防火装置用于高流量氧疗治疗方式,内部零件少,结构简单,简化了装配方式,且性能稳定,能够在发生火灾时,及时切断气路。
可选地,参照图57至图60所示,阀体730还包括承载部7302,承载部7302与底座720连接,密封部7301设置于承载部7302远离底座720的一端;承载部7302的周侧设置有凸起的第一支撑结构73021,弹性件740套设于承载部7302,弹性件740的一端与底座720抵接,弹性件740的另一端与第一 支撑结构73021抵接。
具体而言,如图57至图60所示,阀体730包括承载部7302和密封部7301,承载部7302与底座720连接,承载部7302可采用板状或柱状结构,底座720朝向承载部7302一侧的端面上设置有嵌槽,承载部7302的端部插入嵌槽内实现定位装配。密封部7301设置于承载部7302远离底座720的一端,承载部7302靠近底座720的一端与底座720接触。承载部7302的周侧设置有凸起的第一支撑结构73021,第一支撑结构73021可以为凸台、翻边等结构,第一支撑结构73021靠近密封部7301设置,第一支撑结构73021与承载部7302可采用一体结构,具有良好的结构强度和稳定性。第一支撑结构73021也可与承载部7302分开制作,再通过粘接或者焊接的方式装配在一起。弹性件740可采用金属弹簧,弹性件740套设在承载部7302上,在可熔性套圈750的约束下,弹性件740的一端与底座720抵接,另一端与第一支撑结构73021抵接,处于压缩状态。
通过将弹性件740套设在承载部7302上的装配方式,一方面节省了流体通道7101内部的空间,同时也保证了弹性件740装配的稳定性。
可选地,参照图57至图60所示,承载部7302沿自身长度方向设置有镂空结构73022,镂空结构3022用于供流体通过。
具体而言,如图57至图60所示,承载部7302沿自身长度方向设置有镂空结构73022,镂空结构73022可以为镂空槽、镂空孔等结构。当流体通道7101内通过氧气时,镂空结构73022能够降低气阻,避免对氧气流量产生影响。
可选地,参照图57至图60所示,阀体730还包括连接部7303,连接部7303设置于承载部7302和密封部7301之间,且分别与承载部7302以及密封部7301连接;连接部7303设置有卡接结构73031,卡接结构73031用于卡接定位可熔性套圈750。
具体而言,如图57至图60所示,承载部7302和密封部7301通过连接部7303连接,承载部7302、密封部7301以及连接部7303可以为一体式结构,也可采用分体式结构。连接部7303上设置有卡接结构73031,卡接结构73031可以为卡槽、卡勾等,当可熔性套圈750嵌设在底座720、弹性件740以及至少部分阀体730所组成的整体上时,卡接结构73031为可熔性套圈750提供 安装固定的位置,能够避免可熔性套圈750滑脱导致约束作用失效的问题。
可选地,参照图57至图60所示,密封部7301的周侧延伸形成凸起的导向部73011,导向部73011与流体通道7101的内壁滑动配合。
具体而言,如图57至图60所示,密封部7301设置有凸起的导向部73011,导向部73011可以为滑片、凸台等结构,导向部73011能够与流体通道7101的内壁滑动配合,起到导向定位的作用,避免阀体730在移动时出现卡塞、偏斜的问题,提升了阀体730触发的稳定性。
可选地,参照图57至图60所示,底座720设置有通气孔7201;底座720的边缘设置有至少一个第一定位槽7202,第一定位槽7202用于卡接定位可熔性套圈750。
具体而言,如图57至图60所示,底座720设置有通气孔7201,当流体通道7101内通过氧气时,能够由通气孔7201顺利通过,避免底座720阻塞气路,降低了流体通道7101内的气阻,提高了氧气流量。底座720可以采用圆形底座720,在底座720的边缘设置有至少一个第一定位槽7202,当可熔性套圈750绕设在底座720上时,第一定位槽7202为可熔性套圈750提供安装固定的位置,可熔性套圈750嵌设在第一定位槽7202内,能够避免可熔性套圈750滑脱导致约束作用失效的问题。
可选地,参照图63至图67所示,阀体730包括第一阀体7304和第二阀体7305,第一阀体7304和第二阀体7305分别位于底座720的两侧,且分别与底座720连接;弹性件740包括第一弹性件7401和第二弹性件7402,第一弹性件7401设置于底座720和第一阀体7304之间,第二弹性件7402设置于底座720和第二阀体7305之间;流体通道7101内设置有第一收窄部和第二收窄部,第一阀体7304远离底座720的一端设置有第一密封部73041,第一密封部73041与第一收窄部相对设置,第二阀体7305远离底座720的一端设置有第二密封部73051,第二密封部73051与第二收窄部相对设置;沿第一弹性件7401和第二弹性件7402的弹性形变方向,可熔性套圈750嵌套于底座720、第一弹性件7401、第二弹性件7402、第一阀体7304以及第二阀体7305所组成的整体上,以压缩第一弹性件7401和第二弹性件7402,使第一密封部73041与第一收窄部以及第二密封部73051与第二收窄部之间具有供流体通过的间隙;在可熔性套圈750熔断后,第一弹性件7401释放至少部分弹性势能 并推抵第一阀体7304,使第一密封部73041与第一收窄部扣合,第二弹性件7402释放至少部分弹性势能并推抵第二阀体7305,使第二密封部73051与第二收窄部扣合,以阻断流体通道7101。
具体而言,如图63至图67所示,在本公开的一种实施例中,阀体730包括第一阀体7304和第二阀体7305,第一阀体7304和第二阀体7305结构可以相同,底座720定位于流体通道7101的中间位置,底座720与流体通道7101内壁可采用粘接、卡接等方式实现固定,例如,壳体10包括第一壳体和第二壳体,第一壳体和第二壳体扣合,底座720可嵌设于第一壳体和第二壳体的装配间隙中实现卡接固定。第一阀体7304和第二阀体7305分别位于底座720的两侧,且分别与底座720连接,也即第一阀体7304和第二阀体7305能够在流体通道7101内进行移动。第一弹性件7401设置于底座720和第一阀体7304之间,第二弹性件7402设置于底座720和第二阀体7305之间,第一弹性件7401和第二弹性件7402可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
流体通道7101内设置有第一收窄部和第二收窄部,第一收窄部和第二收窄部分别靠近流体通道7101两端的开口,第一收窄部和第二收窄部之间的流体通道7101内径较大,两侧的流体通道7101内径较小。第一阀体7304远离底座720的一端设置有第一密封部73041,第一密封部73041与第一收窄部相对设置,第二阀体7305远离底座720的一端设置有第二密封部73051,第二密封部73051与第二收窄部相对设置。当第一阀体7304带动第一密封部73041移动至第一收窄部处时,利用第一密封部73041与第一收窄部的扣合密封,即可实现流体通道7101的阻断。同样地,当第二阀体7305带动第二密封部73051移动至第二收窄部处时,利用第二密封部73051与第二收窄部的扣合密封,也可实现流体通道7101的阻断。利用双阀体730结构,能够在流体通道7101的两端均实现气路阻断的功能,大大提升了防火装置的可靠性。
可熔性套圈750嵌套于底座720、第一弹性件7401、第二弹性件7402、第一阀体7304以及第二阀体7305所组成的整体上,能够对底座720、第一弹性件7401、第二弹性件7402、第一阀体7304以及第二阀体7305实现约束。
在发生火灾时,防火装置受高温侵袭,可熔性套圈750受热发生熔断,失去约束作用,第一弹性件7401和第二弹性件7402释放至少部分弹性势能, 第一弹性件7401推抵第一阀体7304,使第一密封部73041与第一收窄部扣合;第二弹性件7402释放至少部分弹性势能并推抵第二阀体7305,使第二密封部73051与第二收窄部扣合,从而阻断流体通道7101,切断气路。
可选地,参照图63至图67所示,第一阀体7304包括第一安装套筒73042,第二阀体7305包括第二安装套筒73052,第一密封部73041设置于第一安装套筒73042远离底座720的一端,第二密封部73051设置于第二安装套筒73052远离底座720的一端;底座720朝向第一阀体7304设置有凸起的第一定位部7203,底座720朝向第二阀体7305设置有凸起的第二定位部7204;第一定位部7203至少部分嵌设于第一安装套筒73042,第二定位部7204至少部分嵌设于第二安装套筒73052;第一安装套筒73042的周侧设置有凸起的第二支撑结构73043,第一弹性件7401套设于第一安装套筒73042的外侧壁,第一弹性件7401的一端与底座720抵接,第一弹性件7401的另一端与第二支撑结构73043抵接;第二安装套筒73052的周侧设置有凸起的第三支撑结构73053,第二弹性件7402套设于第二安装套筒73052的外侧壁,第二弹性件7402的一端与底座720抵接,第二弹性件7402的另一端与第三支撑结构73053抵接。
具体而言,如图63至图67所示,第一阀体7304包括第一安装套筒73042和第一密封部73041,第一密封部73041设置于第一安装套筒73042远离底座720的一端;第二阀体7305包括第二安装套筒73052和第二密封部73051,第二密封部73051设置于第二安装套筒73052远离底座720的一端。第一安装套筒73042和第二安装套筒73052分别位于底座720两侧,且第一安装套筒73042和第二安装套筒73052的开口均朝向底座720。
底座720朝向第一阀体7304设置有凸起的第一定位部7203,底座720朝向第二阀体7305设置有凸起的第二定位部7204。第一定位部7203和第二定位部7204的形状可以为圆柱、棱柱等,第一定位部7203嵌设于第一安装套筒73042内,且第一定位部7203与第一安装套筒73042滑动配合;第二定位部7204嵌设于第二安装套筒73052内,且第二定位部7204与第二安装套筒73052滑动配合。利用定位部和安装套筒的配合,能够提升第一阀体7304、第二阀体7305与底座720之间装配的稳定性,在第一阀体7304和第二阀体7305相对于底座720滑动时,不易出现偏斜、卡塞的问题。
第一安装套筒73042的周侧设置有凸起的第二支撑结构73043,第二支撑 结构73043可以为凸台、翻边等结构,第一弹性件7401可以为金属弹簧,第一弹性件7401套设在第一安装套筒73042的外侧壁,第一弹性件7401的一端与底座720抵接,第一弹性件7401的另一端与第二支撑结构73043抵接。
第二安装套筒73052的周侧设置有凸起的第三支撑结构73053,同样地,第三支撑结构73053也可以为凸台、翻边等结构,第二弹性件7402可以为金属弹簧,第二弹性件7402套设在第二安装套筒73052的外侧壁,第二弹性件7402的一端与底座720抵接,第二弹性件7402的另一端与第三支撑结构73053抵接。
可选地,参照图63至图67所示,底座720的周侧设置有凸起的法兰7205,法兰7205相对的两个端面分别朝向第一阀体7304以及第二阀体7305延伸形成第一限位部7206和第二限位部7207;第二支撑结构73043朝向底座720延伸形成第三限位部73044,第三支撑结构73053朝向底座720延伸形成第四限位部73054;第一限位部7206、第三限位部73044以及第一安装套筒73042的外侧壁之间形成第一限位空间,第一弹性件7401嵌设于第一限位空间内;第二限位部7207、第四限位部73054以及第二安装套筒73052的外侧壁之间形成第二限位空间,第二弹性件7402嵌设于第二限位空间内。
具体而言,如图63至图67所示,底座720可通过法兰7205定位于流体通道7101内,在流体通道7101的内壁上设置有与法兰7205相配合的卡槽,法兰7205嵌设于卡槽内实现底座720的固定。另外,法兰7205具有相对的两个端面,两个端面分别朝向第一阀体7304以及第二阀体7305延伸形成第一限位部7206和第二限位部7207,第一限位部7206和第二限位部7207的形状可以为圆柱、棱柱等。第一安装套筒73042周侧的第二支撑结构73043朝向底座720延伸形成第三限位部73044,第二安装套筒73052周侧的第三支撑结构73053朝向底座720延伸形成第四限位部73054。
其中,第一限位部7206和第三限位部73044相对设置,并与第一安装套筒73042的外侧壁之间形成第一限位空间,该第一限位空间用于容纳第一弹性件7401,在第一限位部7206和第三限位部73044的限位作用下,第一弹性件7401在发生弹性形变时,仍能保持较为稳定的状态,不易发生偏斜、卡塞的问题。
同样地,第二限位部7207和第四限位部73054相对设置,并与第二安装 套筒73052的外侧壁之间形成第二限位空间,该第二限位空间用于容纳第二弹性件7402,在第二限位部7207和第四限位部73054的限位作用下,第二弹性件7402在发生弹性形变时,仍能保持较为稳定的状态,不易发生偏斜、卡塞的问题。
可选地,参照图63至图67所示,第一密封部73041上设置有第二定位槽73045,第二密封部73051上设置有第三定位槽73055,第二定位槽73045和第三定位槽73055用于卡接定位可熔性套圈750。
具体而言,如图63至图67所示,可熔性套圈750嵌套于底座720、第一弹性件7401、第二弹性件7402、第一阀体7304以及第二阀体7305所组成的整体上,当可熔性套圈750绕设在第一密封部73041和第二密封部73051上时,第二定位槽73045和第三定位槽73055可为可熔性套圈750提供安装固定的位置,可熔性套圈750嵌设在第二定位槽73045和第三定位槽73055内,能够避免可熔性套圈750滑脱导致约束作用失效的问题。
本公开实施例还公开了第七种种通气治疗设备,包括第七种防火装置。
具体而言,第七种通气治疗设备包括控制装置、氧疗仪以及气体管路,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
在本公开实施例中,第七种通气治疗设备采用第七种防火装置,防火装置中,底座720、阀体730、弹性件740以及可熔性套圈750共同组成阀体730触发系统,当可熔性套圈750未发生熔断时,在可熔性套圈750的约束下,弹性件740处于压缩状态,阀体730的密封部7301与流体通道7101的收窄部7102之间具有供流体通过的间隙,氧气可正常通过;在可熔性套圈750熔断后,弹性件740释放至少部分弹性势能并推抵阀体730,使密封部7301与收窄部7102扣合,从而阻断流体通道7101。由于可熔性套圈750本身在受热时易发生熔断,在弹性件740的弹力作用下进一步加快了熔断的速度,从而提高了阀体730的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。
参照图68至图69所示,本公开实施例公开了第八种防火装置,防火装置包括:壳体10、内壳820、阀体830以及弹性件840;壳体10具有流体通道,流体通道用于与氧疗仪或患者端的管路连通;内壳820设置于流体通道内,且与流体通道的内壁密封连接,内壳820设置有供流体通过的通孔8201;阀体830与流体通道的内壁滑动连接,且相对于流体通道具有第一位置和第二位置;处于第一位置时,阀体830与通孔8201之间具有供流体通过的间隙;处于第二位置时,阀体830与通孔8201的周侧抵接,以使流体通道处于阻断状态;弹性件840设置于阀体830与流体通道的内壁之间;流体通道两端的内壁分别设置有至少一个凸起的支撑部8100,阀体830的一端与通孔8201相对设置,阀体830的另一端用于与支撑部8100卡接,以支撑阀体830处于第一位置,弹性件840处于压缩状态;在支撑部8100和阀体830中的至少一者熔融后,弹性件840释放至少部分弹性势能,以驱动阀体830由第一位置切换至第二位置。
具体而言,壳体10作为防火装置的主体8101框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等;也可采用防火阻燃材质制成。壳体10内具有流体通道,流体通道两端具有开口,流体通道用于与氧疗仪或患者端的管路连通,由于氧气传输过程中需要经过该流体通道,通过阻断流体通道即可阻断氧气通路,最大程度避免由于氧气加持导致的火势蔓延。
内壳820设置于流体通道内,内壳820优选设置于流体通道的中间位置。内壳820的外壁与流体通道的内壁密封连接,内壳820与壳体10可采用粘接、超声焊接等方式实现装配,并且内壳820自身还设置有通孔8201,当流体通道内通入氧气时,氧气仅能从通孔8201处通过,不会从内壳820和壳体10的装配间隙中通过,因此,仅需关闭内壳820上的通孔8201即可实现气路阻断。在未发生火灾的情况下,氧气能够经通孔8201正常传输,通孔8201的形状可以为圆形、椭圆形、半圆形等。
阀体830与流体通道的内壁滑动连接,阀体830相对于流体通道具有第一位置和第二位置,阀体830处于第一位置时,阀体830与内壳820的通孔8201之间具有供流体通过的间隙,氧气可正常通过通孔8201进行传输;阀体 830处于第二位置时,阀体830与通孔8201的周侧抵接,以使流体通道处于阻断状态,利用阀体830与通孔8201的配合,可实现流体通道的阻断。阀体830用于与通孔8201周侧抵接的一端可采用柔性密封材质制成,例如硅胶、橡胶等;阀体830也可采用刚性材质制成,仅在阀体830靠近通孔8201的一端设置柔性密封圈,当阀体830与通孔8201周侧抵接时,密封圈嵌设于阀体830与通孔8201周侧的间隙中实现密封。
弹性件840设置于阀体830与流体通道的内壁之间,用于驱动阀体830由第一位置移动至第二位置。弹性件840可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。流体通道两端的内壁设置有至少一个凸起的支撑部8100,支撑部8100能够与阀体830的另一端卡接,以使阀体830定位在第一位置,保证了在未发生火灾的情况流体通道的通畅,支撑部8100可以由熔点较低的材料制成,例如PP、PVC等材料。
当阀体830处于第一位置时,弹性件840会被流体通道的内壁以及阀体830挤压,处于压缩状态,积蓄弹性势能;当支撑部8100失去对阀体830的卡接作用时,受力平衡被打破,阀体830在弹性件840的弹力作用下,移动至第二位置,与通孔8201周侧抵接,实现气路阻断。
在发生火灾时,阀体830的触发方式可以为:其一,支撑部8100熔融,支撑部8100失去对阀体830的卡接作用,在弹性件840的弹力作用下,阀体830移动至第二位置与通孔8201周侧抵接,实现流体通道阻断;其二,阀体830靠近支撑部8100的一端熔融,阀体830靠近支撑部8100的一端可以由熔点较低的材料制成,例如PP、PVC等材料,阀体830靠近支撑部8100的一端发生熔断后,支撑部8100也会失去对阀体830的卡接作用,在弹性件840的弹力作用下,阀体830移动至第二位置与通孔8201周侧抵接,实现流体通道阻断;其三,支撑部8100和阀体830靠近支撑部8100的一端同时熔融,支撑部8100失去对阀体830的卡接作用,也可实现流体通道阻断。
在本公开实施例中,由支撑部8100、弹性件840以及阀体830组成的触发系统,在阀体830和支撑部8100中的任意一个发生熔融时,均可使阀体830及时移动至第二位置并与通孔8201的周侧抵接,进而阻断气路,提高了阀体830的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。并且,防火装置结构简单,便于装配,也降低了生产成 本和安装成本。
可选地,支撑部8100设置于流体通道靠近开口处的内壁。
具体而言,支撑部8100与流体通道开口处的内壁可通过粘接、焊接的方式进行装配,也可将支撑部8100与壳体采用一体成型的方式制作。支撑部8100设置于流体通道靠近开口处的内壁,由于火灾通常发生于防火装置外部,流体通道开口处会先遭受火灾侵袭,将支撑部8100设置于流体通道靠近开口处的内壁,从而支撑部8100和阀体830靠近支撑部8100的一端会先处于高温状态发生熔断,提升了阀体830触发的及时性。
可选地,参照图70至图71所示,阀体830包括卡接件8302和密封件8303,卡接件8302和密封件8303为分体式结构,且卡接件8302和密封件8303分别与流体通道的内壁滑动连接;卡接件8302设置有易熔部8301,弹性件840设置于卡接件8302与流体通道的内壁之间;卡接件8302的一端用于与支撑部8100卡接,卡接件8302的另一端用于推抵密封件8303,以使密封件8303与通孔8201的周侧抵接;卡接件8302与密封件8303之间具有供流体通过的装配间隙。
具体而言,阀体830包括卡接件8302和密封件8303,卡接件8302和密封件8303采用分体式结构,具有装配间隙,氧气可经装配间隙通过,能够降低阀体830所带来的气阻,提高氧气通量和舒适性。卡接件8302和密封件8303分别与流体通道的内壁滑动连接,卡接件8302的一端与支撑部8100卡接时,能够实现卡接件8302的定位固定,使卡接件8302处于静止状态,卡接件8302可通过卡勾、卡接圆头等结构,与支撑部8100实现卡接配合。弹性件840设置于卡接件8302与流体通道的内壁之间,在卡接件8302和流体通道内壁的压缩下,弹性件840积蓄弹性势能;密封件8303与内壳820的通孔8201之间间隙配合,在使用时,氧气可经密封件8303与内壳820通孔8201之间间隙正常传输。密封件8303可采用柔性密封材质制成,例如硅胶、橡胶等;密封件8303也可采用刚性材质制成,仅在密封件8303靠近通孔8201的一侧设置柔性密封圈,当密封件8303与通孔8201周侧抵接时,密封圈嵌设于密封件8303与通孔8201周侧的间隙中实现密封。
卡接件8302上设置有上述的易熔部8301,易熔部8301可以由熔点较低的材料制成,例如PP、PVC等材料,也可通过结构设计实现易熔,例如易熔 部8301采用直径或厚度较小的结构,易发生熔断,易熔部8301发生熔断后,卡接件8302可由易熔部8301处断裂。当易熔部8301和支撑部8100中的任意一个发生熔融时,支撑部8100失去对卡接件8302的卡接作用,从而在弹性件840释放至少部分弹性势能,在弹力作用下,卡接件8302的另一端推抵密封件8303,以使密封件8303与通孔8201的周侧抵接,实现流体通道的阻断。
可选地,参照图70所示,卡接件8302靠近密封件8303的一端设置有凸起的第一导向部83021,第一导向部83021与流体通道的内壁滑动配合;弹性件840套设于卡接件8302,弹性件840一端与流体通道的内壁抵接,弹性件840另一端与第一导向部83021抵接;在卡接件8302与支撑部8100卡接时,弹性件840被流体通道的内壁以及第一导向部83021压缩;在支撑部8100和/或易熔部8301处于熔融状态下,弹性件840释放至少部分弹性势能,驱动密封件8303与通孔8201的周侧抵接,以使流体通道处于阻断状态。
具体而言,卡接件8302靠近密封件8303的一端设置有凸起的第一导向部83021,第一导向部83021可以为滑片、凸台等结构,第一导向部83021的数量可以根据实际需求进行选择。第一导向部83021的材质可以与卡接件8302相同,采用具有防火阻燃且耐磨性质的材料制成。第一导向部83021与卡接件8302可采用一体结构,具有良好的结构强度和稳定性。第一导向部83021也可与卡接件8302分开制作,再通过粘接或者焊接的方式装配在一起。第一导向部83021具有两个功能:其一,可以为弹性件840提供稳定的支撑点;其二,第一导向部83021能够与流体通道的内壁滑动配合,起到导向定位的作用,避免卡接件8302在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
弹性件840可采用金属弹簧,金属弹簧套设于卡接件8302。在卡接件8302与可熔性支撑件卡接时,弹性件840的两端分别与第一导向部83021以及流体通道的内壁抵接,处于压缩状态,积蓄弹性势能。当支撑部8100和/或易熔部8301处于熔融状态下,支撑部8100失去对卡接件8302的卡接作用,弹性件840释放至少部分弹性势能,驱动密封件8303与通孔8201周侧抵接,以使流体通道处于阻断状态。
通过设置弹性件840,能够在支撑部8100和/或易熔部8301熔融时,为 卡接件8302和密封件8303提供驱动力,使密封件8303迅速移动并与通孔8201周侧抵接。同时,弹性件840套设在卡接件8302上,一方面节省了流体通道内部的空间,同时也保证了弹性件840装配的稳定性。
可选地,参照图68至图69所示,流体通道包括主体8101以及设置于主体8101两端的开口部8102,其中,开口部8102的内径小于主体8101的内径;主体8101与开口部8102的连接处收窄形成肩部8103;支撑部8100设置于开口部8102的内壁;弹性件840一端与肩部8103抵接,弹性件840另一端与第一导向部83021抵接。
具体而言,流体通道包括主体8101以及设置于主体8101两端的开口部8102,开口部8102用于与患者端或者氧疗仪端的管路连通,为便于装配,开口部8102的内径小于主体8101的内径,形成中间粗两端细的结构,主体8101由中间向两端过渡,在与开口部8102连接处收窄形成肩部8103,该肩部8103用来支撑弹性件840。
支撑部8100设置于开口部8102的内壁,密封件8303设置于主体8101内部,密封件8303距离支撑部8100较远,不易受燃烧高温的影响,有利于提升密封件8303的性能,提升防火装置的稳定性。
可选地,参照图70所示,卡接件8302设置有凸起的第二导向部83022,第二导向部83022与开口部8102的内壁滑动配合。
具体而言,卡接件8302设置有凸起的第二导向部83022,第二导向部83022可以为滑片、凸台等结构,第二导向部83022能够与开口部8102的内壁滑动配合,起到导向定位的作用,避免卡接件8302在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图70所示,密封件8303朝向卡接件8302的一侧具有端面,端面的周侧朝向卡接件8302延伸形成第三导向部83031,第三导向部83031与流体通道的内壁滑动配合。
具体而言,密封件8303朝向卡接件8302的一侧具有端面,卡接件8302可通过与密封件8303的端面接触,推抵密封件8303。端面的周侧朝向卡接件8302延伸形成第三导向部83031,第三导向部83031能够与流体通道的内壁滑动配合,起到导向定位的作用,避免密封件8303在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图70所示,第三导向部83031与端面围合成限位槽83032;卡接件8302朝向密封件8303的一端延伸形成限位部83023,限位部83023至少部分嵌设于限位槽83032。
具体而言,第三导向部83031与端面围合成限位槽83032,限位槽83032呈U型,限位槽83032的开口侧朝向卡接件8302;卡接件8302朝向密封件8303的一端延伸形成限位部83023,限位部83023可以为凸台结构。在卡接件8302推抵密封件8303时,限位部83023至少部分嵌设于限位槽83032内,避免卡接件8302和密封件8303在移动时出现晃动、卡塞的问题,提升了阀体830触发的稳定性。
可选地,参照图71所示,密封件8303的外侧壁延伸形成凸起的第四导向部83033,第四导向部83033与流体通道的内壁滑动配合。
具体而言,作为一种变形,还可以在密封件8303的外侧壁延伸设置凸起的第四导向部83033,第四导向部83033可以为滑片、凸台等结构,第四导向部83033能够与流体通道的内壁滑动配合,起到导向定位的作用,避免密封件303在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图71所示,卡接件8302朝向密封件8303的一端设置有凹槽83024,密封件8303朝向卡接件8302的一端设置有凸台83034,凸台83034至少部分嵌设于凹槽83024。
具体而言,为保证卡接件8302与密封件8303之间装配的稳定性,避免出现晃动。偏斜的问题,可在卡接件8302上设置凹槽83024,密封件8303上设置凸台83034,凹槽83024与凸台83034相对设置,且形状相匹配。
可选地,参照图68至图71所示,壳体10和内壳820的装配间隙中设置有密封结构860。
具体而言,壳体10和内壳820之间具有装配间隙,为避免在内壳820通孔8201关闭的情况下,氧气由壳体10和内壳820的装配间隙中通过,在壳体10和内壳820的装配间隙中设置有密封结构860,密封结构860可以为硅胶密封圈、橡胶密封圈等,在壳体10和内壳820的挤压之下,密封结构860填充装配间隙,实现壳体10和内壳820之间的密封连接。
可选地,参照图68至图71所示,支撑部8100的数量为两个或两个以上,支撑部8100沿开口部8102内壁的周向间隔设置。
具体而言,支撑部8100用于支撑阀体830处于第一位置,支撑部8100与阀体830之间卡接的稳定性直接影响防火装置的性能。为避免出现支撑部8100与阀体830之间卡接作用失效,导致流体通道错误阻断的问题发生,支撑部8100的数量为两个或两个以上,并且,支撑部8100沿开口部8102内壁的周向间隔设置,对阀体830的卡接部实现多重卡接,提升了卡接的稳定性。同时,也能避免阀体830由于受力不均匀出现偏斜的问题,提升阀体830触发的稳定性。
可选地,参照图68至图71所示,阀体830包括第一阀体和第二阀体;第一阀体和第二阀体对称设置于通孔8201的两侧;第一阀体和第二阀体中的至少一个与通孔8201的周侧抵接时,体通道处于阻断状态。
具体而言,防火装置包括两个对称设置于流体通道内的第一阀体和第二阀体,第一阀体和第二阀体结构相同,且分别位于通孔8201的两侧。第一阀体和第二阀体与流体通道的内壁之间均设置有弹性件840;主体8101两端的开口部8102内分别设置有支撑部8100,分别用于与第一阀体和第二阀体卡接。
防火装置采用双阀体830结构,任意一个阀体830触发,均可实现流体通道的阻断,保证了防火装置触发的及时性。在安装时,无需区分防火装置的端口次序,任意开口端均可与氧疗仪或患者端的管路进行装配连通,极大的提升了安装的便利性。
可选地,参照图70和图71所示,第一阀体和第二阀体之间设置有弹性支撑件870,弹性支撑件870穿设于通孔8201;弹性支撑件870的两端分别与第一阀体以及第二阀体抵接;其中,弹性支撑件870的弹力小于弹性件840的弹力。
具体而言,第一阀体或第二阀体采用分体式结构时,分别包括卡接件8302和密封件8303,在未受到卡接件8302推抵的情况下,密封件8303与内壳820通孔8201之间会发生相对移动,密封件8303会与内壳820通孔8201的周侧发生不必要的接触,容易造成气路阻塞,影响正常通气。因此,在第一阀体和第二阀体之间设置有弹性支撑件870,弹性支撑件870可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。弹性支撑件870穿设于通孔8201内,不会阻塞氧气正常传输,弹性支撑件870的两端分别与第一阀体以及第二阀体抵接,从而对两个密封件8303实现支撑,避免密 封件8303在正常使用状态下与通孔8201周侧发生接触。
弹性支撑件870的弹力小于弹性件840的弹力,当支撑部8100和/或易熔部8301处于熔融状态下,支撑部8100失去对卡接件8302的卡接作用,弹性件840释放至少部分弹性势能,弹性支撑件870不会阻碍密封件8303的移动,能够使密封件8303与通孔8201周侧顺利抵接,以使流体通道处于阻断状态。
可选地,参照图71所示,第一阀体朝向第二阀体的一端设置有第一安装槽880,第二阀体朝向第一阀体的一端设置有第二安装槽890,第一安装槽880与第二安装槽890相对设置;弹性支撑件870至少部分嵌设于第一安装槽880和第二安装槽890。
具体而言,通过设置第一安装槽880和第二安装槽890,能够对弹性支撑件870实现收纳,同时也能起到限位作用,避免弹性支撑件870发生晃动、偏斜。
参照图69至图72所示,本公开实施例公开了一种防火装置,防火装置包括:壳体10和阀体830;壳体10具有流体通道,流体通道用于与氧疗仪或患者端的管路连通;阀体830设置于流体通道内,阀体830相对于流体通道具有第一位置和第二位置;处于第一位置时,阀体830和流体通道之间具有供气体通过的间隙;处于第二位置时,阀体830阻断流体通道;流体通道两端的内壁分别设置有至少一个凸起的可熔性支撑部850;在可熔性支撑部850处于非熔融状态下,阀体830与可熔性支撑部850卡接,以支撑阀体830处于第一位置;在可熔性支撑部850处于熔融状态下,阀体830由第一位置切换至第二位置。
具体而言,壳体10作为防火装置的主体8101框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等;也可采用防火阻燃材质制成。壳体10内具有流体通道,流体通道两端具有开口,流体通道用于与氧疗仪或患者端的管路连通,由于氧气传输过程中需要经过该流体通道,通过阻断流体通道即可阻断氧气通路,最大程度避免由于氧气加持导致的火势蔓延。
阀体830与流体通道的内壁滑动连接,阀体830相对于流体通道具有第一位置和第二位置,阀体830处于第一位置时,阀体830与流体通道之间具有供气体通过的间隙,氧气可正常通过流体通道进行传输;阀体830处于第 二位置时,流体通道处于阻断状态,具体可利用阀体830与流体通道内壁或者开口的配合实现流体通道的阻断,例如,阀体830处于第二位置时,阀体与流体通道的肩部抵接,以阻断流体通道。
阀体830用于密封阻断流体通道的一端可采用柔性密封材质制成,例如硅胶、橡胶等;阀体830也可采用刚性材质制成,仅在阀体830用于密封阻断流体通道的一端设置柔性密封圈。
流体通道两端的内壁设置有至少一个凸起的可熔性支撑部850,可熔性支撑部850能够与阀体830的另一端卡接,以使阀体830定位在第一位置,保证了在未发生火灾的情况,流体通道的通畅,可熔性支撑部850可以由熔点较低的材料制成,例如PP、PVC等材料,在受到高温时易发生熔断。
在发生火灾时,可熔性支撑部850熔融,可熔性支撑部850失去对阀体830的卡接作用,阀体830移动至第二位置实现流体通道阻断。
在本公开实施例中,采用可熔性支撑部850,在可熔性支撑部850发生熔融时,可使阀体830及时移动至第二位置并阻断气路,由于可熔性支撑部850采用易熔材质制成,响应速度较快,提高了阀体830的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。并且,防火装置结构简单,便于装配,也降低了生产成本和安装成本。
可选地,防火装置还包括:弹性件840;弹性件840设置于阀体830与流体通道的内壁之间;在阀体830处于第一位置时,弹性件840处于压缩状态;弹性件840用于在阀体830由第一位置切换至第二位置时提供弹性驱动力。
具体而言,弹性件840设置于阀体830与流体通道的内壁之间,用于驱动阀体830由第一位置移动至第二位置。弹性件840可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
当阀体830处于第一位置时,弹性件840会被流体通道的内壁以及阀体830挤压,处于压缩状态,积蓄弹性势能;当支撑部失去对阀体830的卡接作用时,受力平衡被打破,阀体830在弹性件840的弹力作用下,移动至第二位置,实现气路阻断。在弹性件840的作用下,进一步提升了阀体830的触发速度。
可选地,参照图70至图72所示,阀体830包括卡接件8302和密封件8303,卡接件8302和密封件8303为分体式结构,且卡接件8302和密封件8303分 别与流体通道的内壁滑动连接;弹性件840设置于卡接件8302与流体通道的内壁之间;卡接件8302的一端用于与可熔性支撑部850卡接,卡接件8302的另一端用于推抵密封件8303;卡接件8302与密封件8303之间具有供流体通过的装配间隙。
具体而言,阀体830包括卡接件8302和密封件8303,卡接件8302和密封件8303采用分体式结构,具有装配间隙,氧气可经装配间隙通过,能够降低阀体830所带来的气阻,提高氧气通量和舒适性。卡接件8302和密封件8303分别与流体通道的内壁滑动连接,卡接件8302的一端与可熔性支撑部850卡接时,能够实现卡接件8302的定位固定,使卡接件8302处于静止状态,卡接件8302可通过卡勾、卡接圆头等结构,与可熔性支撑部850实现卡接配合。弹性件840设置于卡接件8302与流体通道的内壁之间,在卡接件8302和流体通道内壁的压缩下,弹性件840积蓄弹性势能。密封件8303可采用柔性密封材质制成,例如硅胶、橡胶等;密封件8303也可采用刚性材质制成,仅在密封件8303的一侧设置柔性密封圈。
可选地,参照图70所示,卡接件8302靠近密封件8303的一端设置有凸起的第一导向部83021,第一导向部83021与流体通道的内壁滑动配合;弹性件840套设于卡接件8302,弹性件840一端与流体通道的内壁抵接,弹性件840另一端与第一导向部83021抵接;在卡接件8302与可熔性支撑部850卡接时,弹性件840被流体通道的内壁以及第一导向部83021压缩。
具体而言,卡接件8302靠近密封件8303的一端设置有凸起的第一导向部83021,第一导向部83021可以为滑片、凸台等结构,第一导向部83021的数量可以根据实际需求进行选择。第一导向部83021的材质可以与卡接件8302相同,采用具有防火阻燃且耐磨性质的材料制成。第一导向部83021与卡接件8302可采用一体结构,具有良好的结构强度和稳定性。第一导向部83021也可与卡接件8302分开制作,再通过粘接或者焊接的方式装配在一起。第一导向部83021具有两个功能:其一,可以为弹性件840提供稳定的支撑点;其二,第一导向部83021能够与流体通道的内壁滑动配合,起到导向定位的作用,避免卡接件8302在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
弹性件840可采用金属弹簧,金属弹簧套设于卡接件8302。在卡接件8302 与可熔性支撑件卡接时,弹性件840的两端分别与第一导向部83021以及流体通道的内壁抵接,处于压缩状态,积蓄弹性势能。当可熔性支撑部850处于熔融状态下,可熔性支撑部850失去对卡接件8302的卡接作用,弹性件840释放至少部分弹性势能,驱动阀体830处于第二位置,以使流体通道处于阻断状态。
通过设置弹性件840,能够在可熔性支撑部850熔融时,为卡接件8302和密封件8303提供驱动力,使密封件8303迅速移动并阻断气路。同时,弹性件840套设在卡接件8302上,一方面节省了流体通道内部的空间,同时也保证了弹性件840装配的稳定性。
可选地,参照图69至图72所示,流体通道包括主体8101以及设置于主体8101两端的开口部8102,其中,开口部8102的内径小于主体8101的内径;主体8101与开口部8102的连接处收窄形成肩部8103;可熔性支撑部850设置于开口部8102的内壁;弹性件840一端与肩部8103抵接,弹性件840另一端与第一导向部83021抵接。
具体而言,流体通道包括主体8101以及设置于主体8101两端的开口部8102,开口部8102用于与患者端或者氧疗仪端的管路连通,为便于装配,开口部8102的内径小于主体8101的内径,形成中间粗两端细的结构,主体8101由中间向两端过渡,在与开口部8102连接处收窄形成肩部8103,该肩部8103用来支撑弹性件840。
可熔性支撑部850设置于开口部8102的内壁,密封件8303设置于主体8101内部,密封件8303距离可熔性支撑部850较远,不易受燃烧高温的影响,有利于提升密封件8303的性能,提升防火装置的稳定性。
可选地,参照图70所示,卡接件8302设置有凸起的第二导向部83022,第二导向部83022与开口部8102的内壁滑动配合。
具体而言,卡接件8302设置有凸起的第二导向部83022,第二导向部83022可以为滑片、凸台等结构,第二导向部83022能够与开口部8102的内壁滑动配合,起到导向定位的作用,避免卡接件8302在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图70所示,密封件8303朝向卡接件8302的一侧具有端面,端面的周侧朝向卡接件8302延伸形成第三导向部83031,第三导向部83031 与流体通道的内壁滑动配合。
具体而言,密封件8303朝向卡接件8302的一侧具有端面,卡接件8302可通过与密封件8303的端面接触,推抵密封件8303。端面的周侧朝向卡接件302延伸形成第三导向部83031,第三导向部83031能够与流体通道的内壁滑动配合,起到导向定位的作用,避免密封件8303在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图70所示,第三导向部83031与端面围合成限位槽83032;卡接件8302朝向密封件8303的一端延伸形成限位部83023,限位部83023至少部分嵌设于限位槽83032。
具体而言,第三导向部83031与端面围合成限位槽83032,限位槽83032呈U型,限位槽83032的开口侧朝向卡接件8302;卡接件8302朝向密封件8303的一端延伸形成限位部83023,限位部83023可以为凸台结构。在卡接件8302推抵密封件8303时,限位部83023至少部分嵌设于限位槽83032内,避免卡接件8302和密封件8303在移动时出现晃动、卡塞的问题,提升了阀体830触发的稳定性。
可选地,参照图71所示,密封件8303的外侧壁延伸形成凸起的第四导向部83033,第四导向部83033与流体通道的内壁滑动配合。
具体而言,作为一种变形,还可以在密封件8303的外侧壁延伸设置凸起的第四导向部83033,第四导向部83033可以为滑片、凸台等结构,第四导向部83033能够与流体通道的内壁滑动配合,起到导向定位的作用,避免密封件8303在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图71所示,卡接件8302朝向密封件8303的一端设置有凹槽83024,密封件8303朝向卡接件8302的一端设置有凸台83034,凸台83034至少部分嵌设于凹槽83024。
具体而言,为保证卡接件8302与密封件8303之间装配的稳定性,避免出现晃动。偏斜的问题,可在卡接件8302上设置凹槽83024,密封件8303上设置凸台83034,凹槽83024与凸台83034相对设置,且形状相匹配。
参照图68至图69所示,本公开实施例公开了第八种防火装置,防火装置包括:壳体10和阀体830;壳体10具有流体通道,流体通道用于与氧疗仪或患者端的管路连通;阀体830设置于流体通道内,阀体830相对于流体通 道具有第一位置和第二位置;处于第一位置时,阀体830和流体通道之间具有供气体通过的间隙;处于第二位置时,阀体830阻断流体通道;流体通道两端的内壁分别设置有至少一个凸起的支撑部8100;阀体830靠近支撑部8100的一端设置有易熔部8301;在易熔部8301处于非熔融状态下,阀体830与支撑部8100卡接,以支撑阀体830处于第一位置;在易熔部8301处于熔融状态下,阀体830由第一位置切换至第二位置。
具体而言,壳体10作为防火装置的主体8101框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等;也可采用防火阻燃材质制成。壳体10内具有流体通道,流体通道两端具有开口,流体通道用于与氧疗仪或患者端的管路连通,由于氧气传输过程中需要经过该流体通道,通过阻断流体通道即可阻断氧气通路,最大程度避免由于氧气加持导致的火势蔓延。
阀体830与流体通道的内壁滑动连接,阀体830相对于流体通道具有第一位置和第二位置,阀体830处于第一位置时,阀体830与流体通道之间具有供气体通过的间隙,氧气可正常通过流体通道进行传输;阀体830处于第二位置时,流体通道处于阻断状态,具体可利用阀体830与流体通道内壁或者开口的配合实现流体通道的阻断,例如,阀体830处于第二位置时,阀体与流体通道的肩部抵接,以阻断流体通道。
阀体830用于密封阻断流体通道的一端可采用柔性密封材质制成,例如硅胶、橡胶等;阀体830也可采用刚性材质制成,仅在阀体830用于密封阻断流体通道的一端设置柔性密封圈。流体通道两端的内壁设置有至少一个凸起的支撑部8100,支撑部8100能够与阀体830的另一端卡接,以使阀体830定位在第一位置,保证了在未发生火灾的情况,流体通道的通畅,支撑部8100可以由熔点较低的材料制成,例如PP、PVC等材料。
阀体830靠近支撑部8100的一端设置有易熔部8301,易熔部8301可以由熔点较低的材料制成,例如PP、PVC等材料,也可通过结构设计实现易熔,例如易熔部8301采用直径或厚度较小的结构,易发生熔断,易熔部8301发生熔断后,支撑部8100也会失去对阀体830的卡接作用,阀体830移动至第二位置实现流体通道阻断。
在本公开实施例中,通过设置易熔部8301,在易熔部8301发生熔融时, 支撑部8100与阀体830之间的卡接作用失效,可使阀体830及时移动至第二位置并阻断气路,由于易熔部8301采用易熔材质制成,响应速度较快,提高了阀体830的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。并且,防火装置结构简单,便于装配,也降低了生产成本和安装成本。
可选地,易熔部8301的外径小于阀体其他位置的外径。
具体而言,可通过结构设计使易熔部8301相较于阀体830的其他位置优先熔融。阀体830的形状为类圆柱,在制作阀体830时,使易熔部8301处的外径小于阀体830其他位置的外径,在受到高温侵袭时,由于易熔部301处的外径较小,优先熔断,从而使支撑部8100与阀体830之间的卡接作用失效,极大的提升了阀体830的触发速度。
可选地,防火装置还包括:弹性件;弹性件设置于阀体与流体通道的内壁之间;在阀体处于第一位置时,弹性件处于压缩状态;弹性件用于在阀体由第一位置切换至第二位置时提供弹性驱动力。
具体而言,弹性件840设置于阀体830与流体通道的内壁之间,用于驱动阀体830由第一位置移动至第二位置。弹性件840可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。
当阀体830处于第一位置时,弹性件840会被流体通道的内壁以及阀体830挤压,处于压缩状态,积蓄弹性势能;当易熔部8301熔融,支撑部失去对阀体830的卡接作用时,受力平衡被打破,阀体830在弹性件840的弹力作用下,移动至第二位置,实现气路阻断。在弹性件840的作用下,进一步提升了阀体830的触发速度。
可选地,参照图70至图71所示,阀体830包括卡接件8302和密封件8303,卡接件8302和密封件8303为分体式结构,且卡接件8302和密封件8303分别与流体通道的内壁滑动连接;易熔部8301设置于卡接件8302靠近支撑部8100的一端,弹性件840设置于卡接件8302与流体通道的内壁之间;卡接件8302的一端用于与支撑部8100卡接,卡接件8302的另一端用于推抵密封件8303;卡接件8302与密封件8303之间具有供流体通过的装配间隙。
具体而言,阀体830包括卡接件8302和密封件8303,卡接件8302和密封件8303采用分体式结构,具有装配间隙,氧气可经装配间隙通过,能够降 低阀体830所带来的气阻,提高氧气通量和舒适性。卡接件8302和密封件8303分别与流体通道的内壁滑动连接,卡接件8302的一端与支撑部8100卡接时,能够实现卡接件8302的定位固定,使卡接件8302处于静止状态,卡接件8302可通过卡勾、卡接圆头等结构,与支撑部8100实现卡接配合。弹性件40设置于卡接件8302与流体通道的内壁之间,在卡接件8302和流体通道内壁的压缩下,弹性件840积蓄弹性势能;密封件8303与内壳820的通孔8201之间间隙配合,在使用时,氧气可经密封件8303与内壳820通孔8201之间间隙正常传输。密封件8303可采用柔性密封材质制成,例如硅胶、橡胶等;密封件8303也可采用刚性材质制成,仅在密封件8303靠近通孔8201的一侧设置柔性密封圈,当密封件8303与通孔8201周侧抵接时,密封圈嵌设于密封件8303与通孔8201周侧的间隙中实现密封。
卡接件8302上设置有上述的易熔部8301,易熔部8301可以由熔点较低的材料制成,例如PP、PVC等材料,也可通过结构设计实现易熔,例如易熔部8301采用直径或厚度较小的结构,易发生熔断,易熔部8301发生熔断后,卡接件8302可由易熔部8301处断裂。当易熔部8301和支撑部8100中的任意一个发生熔融时,支撑部8100失去对卡接件8302的卡接作用,从而在弹性件840释放至少部分弹性势能,在弹力作用下,卡接件8302的另一端推抵密封件8303,以使密封件8303与通孔8201的周侧抵接,实现流体通道的阻断。
可选地,参照图70所示,卡接件8302靠近密封件8303的一端设置有凸起的第一导向部83021,第一导向部83021与流体通道的内壁滑动配合;弹性件840套设于卡接件8302,弹性件840一端与流体通道的内壁抵接,弹性件840另一端与第一导向部83021抵接;在卡接件8302与支撑部8100卡接时,弹性件840被流体通道的内壁以及第一导向部83021压缩;在支撑部8100和/或易熔部8301处于熔融状态下,弹性件840释放至少部分弹性势能,驱动密封件8303与通孔8201的周侧抵接,以使流体通道处于阻断状态。
具体而言,卡接件8302靠近密封件8303的一端设置有凸起的第一导向部83021,第一导向部83021可以为滑片、凸台等结构,第一导向部83021的数量可以根据实际需求进行选择。第一导向部83021的材质可以与卡接件8302相同,采用具有防火阻燃且耐磨性质的材料制成。第一导向部83021与卡接 件8302可采用一体结构,具有良好的结构强度和稳定性。第一导向部83021也可与卡接件8302分开制作,再通过粘接或者焊接的方式装配在一起。第一导向部83021具有两个功能:其一,可以为弹性件840提供稳定的支撑点;其二,第一导向部83021能够与流体通道的内壁滑动配合,起到导向定位的作用,避免卡接件8302在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
弹性件840可采用金属弹簧,金属弹簧套设于卡接件8302。在卡接件8302与可熔性支撑件卡接时,弹性件840的两端分别与第一导向部83021以及流体通道的内壁抵接,处于压缩状态,积蓄弹性势能。当支撑部8100和/或易熔部8301处于熔融状态下,支撑部8100失去对卡接件8302的卡接作用,弹性件840释放至少部分弹性势能,驱动密封件8303与通孔8201周侧抵接,以使流体通道处于阻断状态。
通过设置弹性件840,能够在支撑部8100和/或易熔部8301熔融时,为卡接件8302和密封件8303提供驱动力,使密封件8303迅速移动并与通孔8201周侧抵接。同时,弹性件840套设在卡接件8302上,一方面节省了流体通道内部的空间,同时也保证了弹性件840装配的稳定性。
可选地,参照图68至图69所示,流体通道包括主体8101以及设置于主体8101两端的开口部8102,其中,开口部8102的内径小于主体8101的内径;主体8101与开口部8102的连接处收窄形成肩部8103;支撑部8100设置于开口部8102的内壁;弹性件840一端与肩部8103抵接,弹性件840另一端与第一导向部83021抵接。
具体而言,流体通道包括主体8101以及设置于主体8101两端的开口部8102,开口部8102用于与患者端或者氧疗仪端的管路连通,为便于装配,开口部8102的内径小于主体8101的内径,形成中间粗两端细的结构,主体8101由中间向两端过渡,在与开口部8102连接处收窄形成肩部8103,该肩部8103用来支撑弹性件840。
支撑部8100设置于开口部8102的内壁,密封件8303设置于主体8101内部,密封件8303距离支撑部8100较远,不易受燃烧高温的影响,有利于提升密封件8303的性能,提升防火装置的稳定性。
可选地,参照图70所示,卡接件8302设置有凸起的第二导向部83022, 第二导向部83022与开口部8102的内壁滑动配合。
具体而言,卡接件8302设置有凸起的第二导向部83022,第二导向部83022可以为滑片、凸台等结构,第二导向部83022能够与开口部8102的内壁滑动配合,起到导向定位的作用,避免卡接件8302在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图70所示,密封件8303朝向卡接件8302的一侧具有端面,端面的周侧朝向卡接件8302延伸形成第三导向部83031,第三导向部83031与流体通道的内壁滑动配合。
具体而言,密封件8303朝向卡接件8302的一侧具有端面,卡接件8302可通过与密封件8303的端面接触,推抵密封件8303。端面的周侧朝向卡接件8302延伸形成第三导向部83031,第三导向部83031能够与流体通道的内壁滑动配合,起到导向定位的作用,避免密封件8303在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图70所示,第三导向部83031与端面围合成限位槽83032;卡接件8302朝向密封件8303的一端延伸形成限位部83023,限位部83023至少部分嵌设于限位槽83032。
具体而言,第三导向部83031与端面围合成限位槽83032,限位槽83032呈U型,限位槽83032的开口侧朝向卡接件8302;卡接件8302朝向密封件8303的一端延伸形成限位部83023,限位部83023可以为凸台结构。在卡接件8302推抵密封件8303时,限位部83023至少部分嵌设于限位槽83032内,避免卡接件8302和密封件8303在移动时出现晃动、卡塞的问题,提升了阀体30触发的稳定性。
可选地,参照图71所示,密封件8303的外侧壁延伸形成凸起的第四导向部83033,第四导向部83033与流体通道的内壁滑动配合。
具体而言,作为一种变形,还可以在密封件8303的外侧壁延伸设置凸起的第四导向部83033,第四导向部83033可以为滑片、凸台等结构,第四导向部83033能够与流体通道的内壁滑动配合,起到导向定位的作用,避免密封件8303在移动时出现卡塞、偏斜的问题,提升了阀体830触发的稳定性。
可选地,参照图71所示,卡接件8302朝向密封件8303的一端设置有凹槽83024,密封件8303朝向卡接件8302的一端设置有凸台83034,凸台83034 至少部分嵌设于凹槽83024。
具体而言,为保证卡接件8302与密封件8303之间装配的稳定性,避免出现晃动。偏斜的问题,可在卡接件8302上设置凹槽83024,密封件8303上设置凸台83034,凹槽83024与凸台83034相对设置,且形状相匹配。
本公开实施例还公开了第八种通气治疗设备,包括第八种防火装置。
具体而言,第八种通气治疗设备包括控制装置、氧疗仪以及气体管路,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
参照图73至图75所示,本公开实施例公开了第九种防火装置,防火装置包括:壳体910、密封件920、阀体930以及弹性件940;壳体910内具有流体通道9101,流体通道9101用于与氧疗仪或患者端的管路连通;密封件920与流体通道9101的内壁连接,密封件920设置有缺口,缺口用于通过流体;阀体930与流体通道9101的内壁滑动连接,弹性件940设置于阀体930与流体通道9101的内壁之间;阀体930设置有易熔部9301,流体通道9101的内壁设置有至少一个凸起的可熔性支撑部950,阀体930的一端与缺口相对设置,阀体930的另一端用于与可熔性支撑部950卡接;阀体930相对于流体通道9101具有第一位置和第二位置;在可熔性支撑部950和易熔部9301处于非熔融状态下,阀体930与可熔性支撑部950卡接,以支撑阀体930处于第一位置,阀体930与密封件920之间具有供流体通过的间隙,弹性件940处于压缩状态;在可熔性支撑部950和/或易熔部9301处于熔融状态下,弹性件940释放至少部分弹性势能,以驱动阀体930处于第二位置,阀体930与密封件920的缺口扣合,以使流体通道9101处于阻断状态。
具体而言,壳体910作为防火装置的主体91011框架,可以采用不易与氧气发生化学反应且耐高温的材料,例如不锈钢或陶瓷材料等;也可采用防火阻燃材质制成。壳体910内具有流体通道9101,流体通道9101用于与氧疗仪或患者端的管路连通,由于氧气传输过程中需要经过该流体通道9101,通 过阻断流体通道9101即可阻断氧气通路,最大程度避免由于氧气加持导致的火势蔓延。
流体通道9101的内壁设置有密封件920,密封件920优选设置于流体通道9101的中间位置,密封件920可采用硅胶、橡胶等材质,能够起到良好的密封效果。密封件920设置有缺口,在未发生火灾的情况下,氧气能够经缺口正常传输,缺口的形状可以为圆形、椭圆形、半圆形等。在本公开实施例中,密封件920采用圆环形状,圆环的外周与流体通道9101的内壁密封连接,圆环的内周围成缺口用于通过氧气。
阀体930与流体通道9101的内壁滑动连接,阀体930相对于流体通道9101具有第一位置和第二位置,阀体930上设置有与缺口形状相对应的结构,阀体930处于第一位置时,阀体930与密封件920之间具有供流体通过的间隙,氧气可正常通过缺口进行传输;阀体930处于第二位置时,阀体930与密封件920的缺口扣合,以使流体通道9101处于阻断状态,利用阀体930与缺口的扣合,可实现流体通道9101的阻断。
弹性件940设置于阀体930与流体通道9101的内壁之间,用于驱动阀体930由第一位置移动至第二位置。弹性件940可以为铁、铜、合金等金属弹簧,也可以为硅胶、橡胶等可以储存弹性势能的软胶。流体通道9101的内壁设置有至少一个凸起的可熔性支撑部950,支撑部能够与阀体930卡接,以使阀体930定位在第一位置,保证了在未发生火灾的情况,流体通道9101的通畅,可熔性支撑部950可以由熔点较低的材料制成,例如PP、PVC等材料。
当阀体930处于第一位置时,弹性件940会被流体通道9101的内壁以及阀体930挤压,处于压缩状态,积蓄弹性势能;当可熔性支撑部950失去对阀体930的卡接作用时,受力平衡被打破,阀体930在弹性件940的弹力作用下,移动至第二位置,与缺口扣合,实现气路阻断。
在发生火灾时,阀体930的触发方式可以为:其一,可熔性支撑部950熔融,可熔性支撑部950失去对阀体930的卡接作用,在弹性件940的弹力作用下,阀体930移动至第二位置与缺口扣合,实现流体通道9101阻断;其二,阀体930设置有易熔部9301,易熔部9301可以由熔点较低的材料制成,例如PP、PVC等材料,也可通过结构设计实现易熔,例如易熔部9301采用直径或厚度较小的结构,易发生熔断,易熔部9301发生熔断后,可熔性支撑 部950也会失去对阀体930的卡接作用,在弹性件940的弹力作用下,阀体930移动至第二位置与缺口扣合,实现流体通道9101阻断;其三,可熔性支撑部950和易熔部9301同时熔融,可熔性支撑部950失去对阀体930的卡接作用,也可实现流体通道9101阻断。
在本公开实施例中,利用易熔部9301和可熔性支撑部950组合,在易熔部9301和可熔性支撑部950中的任意一个发生熔融时,均可使阀体930及时移动至第二位置并与密封件920的缺口扣合,进而阻断气路,提高了阀体930的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。并且,防火装置结构简单,便于装配,也降低了生产成本和安装成本。
可选地,参照图73所示,阀体930为一体式结构。
具体而言,阀体930的一端用于与可熔性支撑部950卡接,阀体930的另一端用于与密封件920的缺口扣合。在本公开的一种实施例中,阀体930采用一体式结构,整体的结构强度以及稳定性更好。
可选地,参照图73所示,缺口具有相对的第一侧和第二侧;缺口的至少一侧设置有阀体930,在缺口的至少一侧与阀体930扣合时,流体通道9101处于阻断状态。
具体而言,密封件920定位于流体通道9101内,密封件920的数量为一个,密封件920的缺口具有相对的第一侧和第二侧,当从任意一侧与该缺口扣合时,均可实现流体通道9101的阻断。在设置阀体930时,可在缺口的至少一侧设置上述阀体930,例如,阀体930可设置于缺口的第一侧,也可设置于缺口的第二侧,还可以在第一侧和第二侧均设置阀体930,当缺口的至少一侧与阀体扣合时,流体通道9101处于阻断状态,采用单个密封件920即可实现流体通道9101的双侧阻断,结构简单,稳定性更好。
可选地,阀体930包括卡接部9302、连接部9303以及密封部9304,卡接部9302和密封部9304通过连接部9303连接;卡接部9302用于与可熔性支撑部950卡接,以支撑阀体930处于第一位置;密封部9304与缺口相对设置,用于在阀体930处于第二位置时与缺口扣合;易熔部9301设置于连接部9303。
具体而言,阀体930包括卡接部9302、连接部9303以及密封部9304, 卡接部9302位于阀体930靠近可熔性支撑部950的一端,卡接部9302用于与可熔性支撑部950卡接,以使阀体930定位在第一位置。卡接部9302的具体结构可以为卡勾、卡接圆头等结构,能够与可熔性支撑部950实现卡接配合即可。密封部9304用于与密封件920的缺口扣合,密封部9304和卡接部9302之间通过连接部9303连接,卡接部9302、连接部9303以及密封部9304可以为一体式结构,采用相同材质制成,能够降低制作成本;也可分别制作,针对不同部位的功能需求,采用不同材质制成,再通过焊接、粘接等方式实现装配。
在本公开实施例中,卡接部9302和密封部9304的直径要略大于连接部9303的直径,形成梭子状结构的阀体930。优选地,阀体930与流通通道同轴设置,阀体930在滑动时的稳定性更好。连接部9303上设置有易熔部9301,易熔部9301可以由熔点较低的材料制成,例如PP、PVC等材料,也可通过结构设计实现易熔,例如易熔部9301采用直径或厚度较小的结构,易发生熔断,易熔部9301发生熔断后,卡接部9302和密封部9304彼此分离,可熔性支撑部950失去对密封部9304的卡接作用,在弹性件940的弹力作用下,密封部9304与缺口扣合,实现流体通道9101阻断。
可选地,弹性件940套设于连接部9303,弹性件940一端与流体通道9101的内壁抵接,弹性件940另一端与密封部9304抵接;在卡接部9302与可熔性支撑部950卡接时,弹性件940被流体通道9101的内壁以及密封部9304压缩;在可熔性支撑部950和/或易熔部9301处于熔融状态下,弹性件940释放至少部分弹性势能,驱动密封部9304与缺口扣合,以使流体通道9101处于阻断状态。
具体而言,弹性件940可采用金属弹簧,金属弹簧套设于连接部9303。在阀体930处于第一位置时,弹性件940的两端分别与密封部9304以及流体通道9101的内壁抵接,处于压缩状态,积蓄弹性势能。当可熔性支撑部950和/或易熔部9301处于熔融状态下,可熔性支撑部950失去对密封部9304的卡接作用,弹性件940释放至少部分弹性势能,驱动密封部9304与缺口扣合,以使流体通道9101处于阻断状态。
通过设置弹性件940,能够在可熔性支撑部950和/或易熔部9301熔融时,为密封部9304提供驱动力,使密封部9304迅速移动并与缺口扣合。同时, 弹性件940套设在连接部9303上,一方面节省了流体通道9101内部的空间,同时也保证了弹性件940装配的稳定性。
可选地,流体通道9101包括主体91011以及设置于主体91011两端的开口部91012,其中,开口部91012的内径小于主体91011的内径;主体91011与开口部91012的连接处收窄形成肩部91013;可熔性支撑部950设置于开口部91012的内壁,密封件920与主体91011的内壁连接;弹性件940一端与肩部91013抵接,弹性件940另一端与密封部9304抵接。
具体而言,流体通道9101包括主体91011以及设置于主体91011两端的开口部91012,开口部91012用于与患者端或者氧疗仪端的管路连通,为便于装配,开口部91012的内径小于主体91011的内径,形成中间粗两端细的结构,主体91011由中间向两端过渡,在与开口部91012连接处收窄形成肩部91013,该肩部91013用来支撑弹性件940。
可熔性支撑部950设置于开口部91012的内壁,密封件920设置于主体91011的内壁,密封件920距离可熔性支撑部950较远,不易受燃烧高温的影响,有利于提升密封件920的性能,提升防火装置的稳定性。
可选地,密封部9304设置有凸起的第一导向部9305,第一导向部9305与主体91011的内壁滑动配合;弹性件940一端与肩部91013抵接,弹性件940另一端与第一导向部9305抵接。
具体而言,密封部9304用于与密封件920的缺口扣合,密封部9304上设置有凸起的第一导向部9305,第一导向部9305可以为滑片、凸台等结构,第一导向部9305的数量可以根据实际需求进行选择。第一导向部9305的材质可以与阀体930相同,也可采用具有防火阻燃且耐磨性质的材料制成。第一导向部9305与阀体930可采用一体结构,具有良好的结构强度和稳定性。第一导向部9305也可与阀体930分开制作,再通过粘接或者焊接的方式装配在一起。第一导向部9305具有两个功能:其一,可以为弹性件940提供稳定的支撑点;其二,第一导向部9305能够与主体91011的内壁滑动配合,起到导向定位的作用,避免阀体930在移动时出现卡塞、偏斜的问题,提升了阀体30触发的稳定性。
可选地,连接部9303设置有凸起的第二导向部9306,第二导向部9306与开口部91012的内壁滑动配合。
具体而言,连接部9303设置有凸起的第二导向部9306,第二导向部9306可以为滑片、凸台等结构,第二导向部9306能够与开口部91012的内壁滑动配合,起到导向定位的作用,避免阀体930在移动时出现卡塞、偏斜的问题,提升了阀体930触发的稳定性。
可选地,可熔性支撑部950的数量为两个或两个以上,可熔性支撑部950沿开口部91012内壁的周向间隔设置。
具体而言,可熔性支撑部950用于支撑阀体930处于第一位置,可熔性支撑部950与阀体930之间卡接的稳定性直接影响防火装置的性能。为避免出现可熔性支撑部950与阀体930之间卡接作用失效,导致流体通道9101错误阻断的问题发生,可熔性支撑部950的数量为两个或两个以上,并且,可熔性支撑部950沿开口部91012内壁的周向间隔设置,对阀体930的卡接部9302实现多重卡接,提升了卡接的稳定性。同时,也能避免阀体930由于受力不均匀出现偏斜的问题,提升阀体930触发的稳定性。
可选地,壳体910包括第一壳体9102和第二壳体9103;第一壳体9102和/或第二壳体9103设置有安装卡槽9104;在第一壳体9102和第二壳体9103装配的情况下,密封件920与安装卡槽9104过盈配合。
具体而言,第一壳体9102和第二壳体9103可通过卡接或者螺栓连接的方式实现可拆卸装配,便于内部组件的安装和拆卸。第一壳体9102和第二壳体9103也可通过焊接的方式实现固定装配,有利于提升结构强度和密封性。
第一壳体9102和第二壳体9103均具有相对设置的开口,开口处设置有安装卡槽9104,密封件920嵌设于安装卡槽9104内实现装配。安装卡槽9104可单独开设于第一壳体9102或第二壳体9103,也可在第一壳体9102和第二壳体9103分别开设卡槽,第一壳体9102和第二壳体9103装配的情况下,拼合成完整的安装卡槽9104。
在第一壳体9102和第二壳体9103的拼合挤压之下,密封件920与安装卡槽9104过盈配合,能够对第一壳体9102和第二壳体9103之间的装配间隙实现密封,避免氧气传输过程中出现泄漏。
可选地,安装卡槽9104设置有扩展部9105;密封件920的边缘延伸形成嵌入部9201,嵌入部9201至少部分嵌入扩展部9105。
具体而言,安装卡槽9104设置有扩展部9105,扩展部9105与安装卡槽 9104主体91011形成台阶状槽体,密封件920的边缘延伸形成嵌入部9201,嵌入部201至少部分嵌入该扩展部9105,提升了密封件920与壳体910之间装配的牢固性,同时也提升了密封件920的密封效果。
可选地,防火装置包括两个对称设置于流体通道9101内的阀体930;两个阀体930分别位于密封件920的两侧;每个阀体930与流体通道9101的内壁之间均设置有弹性件940;主体91011两端的开口部91012内分别设置有可熔性支撑部950。
具体而言,防火装置采用双阀体930结构,任意一个阀体930触发,均可实现流体通道9101的阻断,保证了防火装置触发的及时性。在安装时,无需区分防火装置的端口次序,任意开口端均可与氧疗仪或患者端的管路进行装配连通,极大的提升了安装的便利性。
本公开实施例还公开了第九种通气治疗设备,包括第九种防火装置。
具体的,第九种通气治疗设备包括控制装置、氧疗仪以及气体管路,控制装置用于控制氧疗仪的供氧量、工作时间等,控制装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、移动上网装置、机器人、可穿戴设备等,本公开实施例不作具体限定。
在本公开实施例中,阀体930上设置有易熔部9301,流体通道9101的内壁设置有可熔性支撑部950,在可熔性支撑部950和易熔部9301处于非熔融状态下,阀体930与可熔性支撑部950卡接,以支撑阀体930处于第一位置,阀体930与密封件920之间具有供流体通过的间隙,弹性件940处于压缩状态;在可熔性支撑部950和/或易熔部9301处于熔融状态下,弹性件940释放至少部分弹性势能,以驱动阀体930处于第二位置,阀体930与密封件920的缺口扣合,以使流体通道9101处于阻断状态。利用易熔部9301和可熔性支撑部950组合,在易熔部9301和可熔性支撑部950中的任意一个发生熔融时,均可使阀体930及时移动至第二位置并与密封件920的缺口扣合,进而阻断气路,提高了阀体930的触发速度,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置的安全系数。
本公开提供了第十种通气设备,用于对用户进行通气治疗。通气设备可以包括氧气发生装置以及连通用户呼吸气道和氧气发生装置的气体输送管路,工作时氧气发生装置产生氧气,氧气通过气体输送管路提供给用户。
当用户端起火时,由于氧气的助燃性,氧气发生装置产生的氧气会使火势变大。为了避免此情况发生,气体输送管路上可以设置防火阀,防火阀可以在起火时关闭,从而切断气体输送管路中氧气的输送。
图76为相关技术中一种防火阀的剖视图,如图76所示,防火阀内设有气流通道5,气流通道5内安装有活塞2,活塞2的上端通过弹簧1弹性连接在壳体上,活塞2的下端被第一限位球3和第二限位球4限位,从而阻止活塞2在弹簧1的弹性力作用下向下运动。其中,沿气流通道5径向方向,第二限位球4远离活塞2的一侧设有挡块。当起火时,挡块受热融化,第二限位球4在活塞2的抵顶作用下沿气流通道5径向方向运动,使第二限位球4失去对活塞2的限位作用,活塞2在弹簧1的弹性力作用下向下运动并堵塞气流通道5,达到切断氧气输送的目的。
然而,相关技术中的防火阀结构复杂且零件较多,并且活塞在运动时可能偏离预定轨迹,导致不能完全堵塞气流通道。
本公开实施例中的防火阀包括壳体和安装在壳体内的密封件。壳体内设有贯穿的气流通道,气流通道内设有分隔气流通道的第一分隔件,第一分隔件上设有第一通气孔。密封件位于气流通道内,且受热前与第一通气孔之间设有第一间隙,以使气体通过第一通气孔和第一间隙从气流通道的一端流向另一端。密封件包括热收缩材料层,以使密封件受热后收缩,并封堵第一通气孔。
壳体上对应于气流通道的第一端可以设有第一接头,对应于气流通道的第二端可以设有第二接头。防火阀安装在通气设备中时,第一接头和第二接头可以与通气设备中的气体输送管路连接。例如,第一接头与用户侧的气体输送管路连接,第二接头与氧气发生装置侧的气体输送管路连接,氧气依次经过氧气发生装置侧的气体输送管路、壳体内的气流通道和用户侧的气体输送管路到达用户。
其中,气流通道的延伸方向可以整体呈直线,也可以呈折线、曲线等。为描述方便,以下仅以气流通道整体沿直线方向延伸为例进行说明。
第一分隔件分隔气流通道,使气流通道分为靠近第一接头的第一通道和靠近第二接头的第二通道。其中,分隔并非指第一通道和第二通道完全隔绝,而是指第一通道和第二通道通过第一通气孔连通。设置第一分隔件后,需要关闭防火阀时只需要封堵第一通气孔即可。
密封件包括热收缩材料层,热收缩材料层受热后可以收缩,从而带动密封件收缩并封堵第一通气孔。热收缩材料层可以由热收缩材料制成,热收缩材料又称高分子形状记忆材料,是高分子材料与辐射加工技术结合的一种智能型材料,即利用高分子聚合物“弹性记忆”原理,以橡塑材料为基料,经混炼、成型、交联、加热、扩张、冷却定型而制成的功能性高分子材料。普通高分子材料如聚乙烯、聚氯乙烯等通常是线形结构,经过电子加速器等放射源的辐射作用变成网状结构后,这些材料就会具备独特的“记忆效应”,扩张、冷却定型的材料在受热后可以重新收缩恢复原来的形状。
当用户侧起火时,燃烧源产生热量可以经过用户侧的气体输送管路进入防火阀内,使热收缩材料层受热收缩,从而封堵第一通气孔。第一通气孔被封堵后,气流通道的第一通道和第二通道完全隔绝,从而防止氧气从氧气发生装置侧经过防火阀继续向燃烧源输送。
本公开提供的防火阀,壳体内设有第一分隔件,第一分隔件将壳体内的气流通道分隔为通过第一通气孔连通的两部分。密封件在受热前与第一通气孔之间设有第一间隙,从而使气流通道的两部分之间正常连通。密封件内包括热收缩材料层,以使密封件在受热后可以封堵第一通气孔,使气流通道的两部分之间不连通,从而切断了氧气的输送通道。与相关技术中的防火阀相比,本公开提供的防火阀包括壳体和密封件,零件数量较少,且结构简单。
其中,密封件受热收缩后封堵第一通气孔的形式可以有多种。下面以具体的实施例为例对本公开提供的防火阀进行详细说明。
图77为本公开实施例提供的一种防火阀的轴测图,图78为本公开实施例提供的一种防火阀的剖视图一,图79为本公开实施例提供的一种防火阀的剖视图二,图80为本公开实施例提供的另一种防火阀的剖视图一,图81为本公开实施例提供的另一种防火阀的剖视图二,图82为本公开实施例提供的另一种防火阀的剖视图一,图83为本公开实施例提供的另一种防火阀的剖视图二,图84为本公开实施例提供的另一种防火阀的剖视图,图85为图84中 关于快插接头的局部放大图。
如图77至图84所示,防火阀包括壳体和安装在壳体内的密封件120。壳体内设有贯穿的气流通道,气流通道内设有分隔气流通道的第一分隔件,第一分隔件上设有第一通气孔14。密封件120位于气流通道内,且受热前与第一通气孔14之间设有第一间隙,以使气体通过第一通气孔14和第一间隙从气流通道的一端流向另一端。第一通气孔14朝向密封件120,且密封件120在第一通气孔14的投影完全覆盖第一通气孔14,密封件120包括热收缩材料层122,以使密封件120受热收缩后贴合在第一分隔件上并封盖第一通气孔14。
密封件120件在受热前与第一通孔之间设有第一间隙,第一间隙与第二通道连通,从而使第二通道、第一间隙、第一通气孔14以及第一通道连通形成供氧气输送的通道。
密封件120包括热收缩材料层122,在受热收缩后逐渐靠近第一通气孔14,并消除第一间隙从而贴合并封盖在第一通气孔14上,从而阻断了氧气输送的通道,防止火势因氧气的助燃而进一步扩大。并且通过密封件120贴合并封盖第一通气孔14结构简单可靠。
第一分隔件可以包括第一通气管13,第一通气孔14设置在第一通气管13的侧壁上。密封件120呈管状,套设于第一通气管13的外侧。密封件120呈管状,受热收缩后管径减小从而使密封件120的内壁贴合在第一通气管13的侧壁上,不仅可以封盖第一通气孔14,并且使第一通气孔14周边的区域也能紧密贴合,提高了密封效果。并且,管状密封件120制造简单,且收缩时管径减小,即收缩过程可预期。
示例性地,如图78和图79所示,壳体整体呈管状,第一通气管13的轴向与壳体的轴向平行,沿第一通气管13的周向间隔设有多个第一通气孔14,增加了通气面积,降低了氧气输送的阻力。
当然,密封件120也可以呈片状,受热收缩后贴合在第一分隔件上,从而封盖第一通气孔14。
第一通气管13将气流通道分隔为第一通道和第二通道,密封件120可以位于第二通道内,且密封件120的外壁与第二通道的内壁之间设有第二间隙18。即,密封件120受热前,第二间隙18、第一间隙以及第一通气孔14连通 形成供氧气输送的通道。
当第一通道与用户侧的气体输送管路连通时,燃烧产生的热量依次经过第一通道、第一通气孔14后传递给密封件120,使密封件120受热收缩。当第二通道与用户侧的气体输送管路连通时,燃烧产生的热量经过第二通道后进入第二间隙18,从而传递给密封件120,使密封件120受热收缩。也就是说,第一通道和第二通道中的任意一个与用户侧的气体输送管路连通时都能起到阻断氧气输送的作用,即防火阀的安装不区分方向。
示例性地,如图80和图81所示,第二通道内可以设有固定部17,密封件120的一端连接在固定部17上,从而使密封件120与第一通气管13之间设有第一间隙,与第二通道的内壁之间设有第二间隙18。
当然,还可以通过其他方式固定密封件120,例如第一通气管13的外壁上设以后多个凸起,通过多个凸起支撑密封件120。
另外,为实现防火阀的安装不区分方向,在气流通道内还可以设有第二分隔件,第二分隔件上设有第二通气孔16,第一分隔件和第二分隔件沿气流通道轴向间隔设置,密封件120受热收缩后封堵第二通气孔16。第二分隔件的结构以及与密封件120的作用原理可以与第一分隔件相同。
示例性地,如图82和图83所示,壳体呈对称结构,第一分隔件为第一通气管13,第二分隔件为第二通气管15,密封件120同时套设于第一通气管13和第二通气管15的外侧。为减少零件数量,降低装配难度,壳体可以包括结构相同的第一壳体10a和第二壳体10b,第一壳体10a和第二壳体10b扣合组成壳体。
参照图77至图83,示例性地,第一接头11和第二接头12的截面可以呈锯齿状结构。气体输送管路套在第一接头11和第二接头12过程中,锯齿状结构可以起导向作用,且安装完成后锯齿状结构可以起止退作用,防止气体输送管路从第一接头11和第二接头12上脱出。
参照图84和图85,示例性地,第一接头11和第二接头12上可以设有快插接头,快插接头包括外壳131、按压件132以及簧片133,外壳131和按压件132设有连通的安装孔,簧片133的一部分伸入安装孔内。安装时,将按压件132朝向外壳131按压,簧片133在按压件132的抵顶下弯曲变形,使簧片133伸入安装孔的部分从安装孔内缩回,从而可以将气体输送管路依次 穿过按压件132和簧片133伸入壳体内。将气体输送管路伸入壳体后松开按压件132,簧片133失去按压件132的抵顶恢复原状,从而使簧片133夹持气体输送管路。使用快插接头可以使防火阀与气体输送管路的连接更加简单、快捷、牢固。其中,快插接头与壳体之间可以采用超声焊接,也可以采用粘接、摩擦焊接等方式。
其中,第一接头11和第二接头12的结构可以相同,也可以不同。例如,第一接头11采用锯齿状结构,第二接头12采用快插接头;或者,第一接头11采用快插接头,第二接头12采用锯齿状结构。另外,第一接头11和第二接头12还可以采用其它结构,本公开对第一接头11和第二接头12的结构不作限定。
图86为本公开实施例提供的一种防火阀的剖视图一,图87为本公开实施例提供的一种防火阀的剖视图二,图88为本公开实施例提供的另一种防火阀的剖视图,图89为本公开实施例提供的另一种防火阀的剖视图,图90为本公开实施例提供的另一种防火阀的剖视图。
如图86至图90所示,防火阀包括壳体和安装在壳体内的密封件120。壳体内设有贯穿的气流通道,气流通道内设有分隔气流通道的第一分隔件,第一分隔件上设有第一通气孔14。密封件120位于气流通道内,且受热前与第一通气孔14之间设有第一间隙,以使气体通过第一通气孔14和第一间隙从气流通道的一端流向另一端。密封件120呈管状,且密封件120的一端连接在第一通气孔14的周缘;密封件120的另一端受热前处于开口状态,受热收缩后处于封闭状态。
密封件120的另一端受热前处于开口状态,即受热前,第二通道、管状密封件120内部、第一通气孔14、第一通道连通形成供氧气输送的通道。
密封件120的另一端受热后处于封闭状态,即密封件120的另一端受热后沿管径方向向内收缩并收缩在一起后封闭,使氧气不能通过密封件120的另一端进入密封件120内部。此时,第一分隔件和密封件120围成一个腔体,此腔体只在第一通气孔14处开口,实现了氧气输送通道的阻断,使氧气不能继续向火源输送。
示例性地,如图86至90所示,第一分隔件朝向第二通道的一侧设有凸台,密封件120套设在凸台上,从而固定密封件120的一端。为使密封件120 固定更牢固,密封件120与凸台之间可以为过盈配合。
当然,密封件120的一端也可以通过粘接等方式连接在第一分隔件上。
为了使密封件120的另一端封闭效果更好,收缩材料层122内侧可以设有热熔层121。热熔层121可以由熔点较低的材料制成,例如热熔胶等。热熔层121受热后融化,从而提高了流动性,使融化后的热熔层121可以更好的填充在收缩材料层122收缩后可能形成的间隙内。
当然,收缩材料层122内侧设置的层结构还可以为其他材料,且两层的热膨胀系数不同。
热熔层121远离第一通气孔14一端的壁厚大于靠近第一通气孔14一端的壁厚。热熔层121远离第一通气孔14的一端为厚端1212,靠近第一通气孔14的一端的薄端1211。厚端1212远离第一通气孔14,接受的热量较少,加上壁厚较厚,因此厚端1212不容易融化,当薄端1211融化后,融化产生的热熔材料被厚端1212阻挡,在厚端1212处聚集,从而使密封件120的另一端封闭。
示例性地,如图86和图87所示,厚端1212的壁厚均匀,在厚端1212和薄端1211之间形成台阶,台阶可以阻挡融化的热熔材料。
热熔层121可以设有多个朝向密封件120内部的凸起1213。热熔层121设置凸起1213部分相对不设置凸起1213部分的壁厚较厚,受热后融化较晚,当热熔层121的其他部分受热融化后,融化的热熔材料被多个凸起1213阻挡,从而在凸起1213处聚集实现对密封件120另一端的封闭。
示例性,如图88和图89所示,热熔层121朝向密封件120内部设有多个锥状凸起1213。当然,凸起1213的形状还可以为多棱柱状、圆柱状、锥台状等。
另外,为实现防火阀的安装不区分方向,在气流通道内还可以设有第二分隔件,第二分隔件上设有第二通气孔,第一分隔件和第二分隔件沿气流通道轴向间隔设置,密封件120受热收缩后封堵第二通气孔。第二分隔件的结构以及与密封件120的作用原理可以与第一分隔件相同。在此不再赘述。
相关技术例如US4887631A中公开了一种防火隔离装置,如图91所示,其用于在火灾时阻断氧气的输出通路。该防火隔离装置包括外壳1-10、端座 1-12、可熔鼻部件1-13、提升阀1-14和压缩弹簧1-15。其中,外壳1-10、端座1-12、提升阀1-14可以由316L不锈钢制成,压缩弹簧1-15可由金属材料制成,可熔鼻部件1-13可由热塑性塑料制成,例如聚醚醚酮热塑性塑料。在正常操作下,流体在入口1-16中通过围绕压缩弹簧1-15的中心孔1-17经过提升阀1-14并通过可熔鼻部件1-13上的小孔1-18流出端口1-19。压缩弹簧1-15抵靠在肩1-23上。可熔鼻部件1-13紧密的定位在端座1-12的外端内径1-20中,向上靠在端面端座1-12上的法兰1-24上,该法兰1-24与可熔鼻部件1-13是一体的,具有与可熔鼻部件1-13相同的内径。端座1-12在其内端有一个更大直径的孔1-21,流体通常通过它流动到小孔1-18和出端口1-19。这种装置设计用于暴露在大约2000度的高温下工作约15分钟。
在正常工作情况下,气体(如氧气)通过围绕压缩弹簧1-15的中心孔1-17后经过可熔鼻部件1-13的小孔1-18流出;在发生火灾时,可熔鼻部件1-13将在达到700度时熔化,因此可熔鼻部件1-13将崩溃成更大直径的孔1-21并且提升阀1-14将抵靠端座1-12的倾斜部分1-22。由此可允许压缩弹簧1-15加载的提升阀1-14关闭,从而防止液体通过任何附加组件泄漏。由于其压缩弹簧1-15由金属材料制成,金属材料的压缩弹簧1-15在长时间接触氧气后,特别在潮湿环境中,无可避免的会出现氧化等化学反应从而造成压缩弹簧1-15的失效,这将大大降低防火隔离装置的使用寿命,同时对患者的健康会造成影响。
针对上述相关技术方案中的问题,本公开提供一种应用于氧疗设备的自动防火装置,其能够避免长时间与氧气接触时失效现象的发生,从而提高自动防火装置的使用寿命。
如图92-图99所示,本公开提供一种应用于氧疗设备的自动防火装置,包括壳体1-100和设置在壳体1-100内部的密封件1-40。壳体1-100中设置有气体通道1-140,气体通道1-140一端为出气端,气体通道1-140可允许气体从其中通过。
具体地,密封件1-40包括密封部1-41,其中,密封件1-40处于第一状态时(如图93所示),密封部1-41与气体通道1-140的出气端之间具有间隙,使得气体通道1-140打开;密封件1-40与第二状态时(如图99所示),密封部1-41与气体通道1-140的出气端相贴合而密封,使得气体通道1-140关闭。
进一步地,请参考图95和图96,并请结合图94,密封件1-40还包括分别设置在密封部1-41上的第一连接件1-42和第二连接件1-43,第一连接件1-42和第二连接件1-43分别固定在气体通道1-140的出气端的两侧,换言之,第一连接件1-42位于气体通道1-140的上游侧,第二连接件1-43位于气体通道1-140的下游侧。其中,密封件1-40处于第一状态时,第一连接件1-42和第二连接件1-43均固定在壳体1-100中且均处于拉伸状态(如图96所示),使得密封部1-41远离气体通道1-140而与气体通道1-140的出气端之间形成间隙。如图94所示,此时密封部1-41与气体通道1-140的出气端之间具有一定的距离,因此气体通道1-140中的气体能够从其出气端流出。此时的状态对应于未发生意外事件(例如火灾等)时,本公开的应用于氧疗设备的自动防火装置所处的状态。
反之,密封件1-40处于第二状态时,第一连接件1-42固定在壳体1-100中且处于拉伸状态(如图99所示),第二连接件1-43断开连接且处于自然状态,使得密封部1-41靠近气体通道1-140而与气体通道1-140的出气端相贴合。如图99所示,此时第二连接件1-43原本的固定位置被破坏,因此第二连接件1-43失去约束,从而在第一连接件1-42的拉力的作用下,密封部1-41被拉至与气体通道1-140的出气端紧密贴合,因此气体通道1-140中的气体无法从其出气端流出。此时的状态对应于发生意外事件(例如火灾等)时,本公开的应用于氧疗设备的自动防火装置所处的状态。
因此,在未发生火灾时,密封部1-41与气体通道1-140不接触,气体能够通过从气体通道1-140的进气端流向出气端,并从出气端流出,通过壳体1-100的输送可到达使用者的口鼻处,从而可正常为使用者提供氧气等气体(如图3中实线箭头所示为气体的流向):反之,在发生火灾时,密封部1-41与气体通道1-140的出气端紧密贴合,因此气体通道1-140被封闭,从而阻断氧气的输送路径,以保证使用者的安全。
在一个较佳的实施例中,密封件1-40由弹性的非金属材料制成,优选地,密封件1-40用硅胶材料制成,使得密封件1-40具有弹性而可以被拉伸,而且可以避免长时间在壳体内与氧气接触,发生氧化反应,从而影响产品寿命以及产品可靠性的问题。由于在气体输送过程中,通过气体通道1-140的出气端流出的气体(例如氧气)会包围密封件1-40,使得密封件1-40会长时间地与 氧气接触,通过采用硅胶材料制成的密封件1-40,可避免氧化反应等化学反应的发生,从而可提高应用于氧疗设备的自动防火装置的使用寿命,并避免对使用者的健康造成影响。
第二连接件1-43通过固定结构固定在壳体1-100中,该固定结构构造为其在受热超过预设温度后可被熔断,使得第二连接件1-43由拉伸状态转变为自然状态。
在发生火灾时,火焰将会向着氧气源的方向逐步燃烧,如图93中的虚线箭头所示为火焰的引燃方向。由于第二连接件1-43位于气体通道1-140的下游侧,因此火焰会首先灼烧该固定结构,当其在受热超过预设温度后可被熔断,则第二连接件1-43失去固定约束,从而使得第二连接件1-43可由拉伸状态转变为自然状态,而此时由于第一连接件1-42仍固定在壳体1-100中且处于拉伸状态,因此第一连接件1-42可拉动密封部1-41移动,使其与气体通道1-140的出气端紧密贴合,从而气体通道1-140被封闭,则氧气的输送路径被阻断,以保证使用安全。密封部1-41的具体形状结构可以根据其要贴合密封的气体通道1-140的通气截面形状而具体设定,因此本公开并不对密封部1-41的具体形状结构进行限定。示例性地,本公开给出了一种较佳的构造形式,如图95所示,密封部1-41可以构造为圆盘的形式,其一侧为密封面,该密封面可与气体通道1-140的出气端相接触,因此该密封面的面积至少要大于气体通道1-140出气端的面积,从而在二者接触时,密封面能够完全地覆盖气体通道1-140的出气端,以避免漏气。
第一连接件1-42的数量可以是至少2个。如图95示出了设置有4个第一连接件1-42的实施方式,其中,4个第一连接件1-42等间距地设置在密封部1-41的侧壁上(例如可以设置在密封部1-41的周向侧壁上)。第一连接件1-42未被拉伸而处于自然状态时,即图95所示的状态下,第一连接件1-42沿密封部1-41的径向延伸,并且第一连接件1-42被拉伸时,即图96所示的状态下,第一连接件1-42则沿密封部1-41的轴向延伸。因此,第一连接件1-42和第二连接件1-43均处于自然状态下时,第一连接件1-42的延伸方向与第二连接件1-43的延伸方向垂直。
通过将第一连接件1-42设置在密封部1-41的侧壁上,能够便于安装和成形。请继续参考图5,第二连接件1-43设置在密封部1-41的端部一侧,第一 连接件1-42及第二连接件1-43分别设置在对应密封部1-41的两侧,且第一连接件1-42设置在密封部1-41远离第二连接件1-43的一侧。
其中,密封件1-40处于第一状态时,第一连接件1-42和第二连接件1-43的拉伸延伸方向相反,即第二连接件1-43在密封部1-41的轴向上沿与被拉伸的第一连接件1-42的延伸方向相反的方向延伸。也就是说,第一连接件1-42和第二连接件1-43能够在相反的方向上被拉伸,从而第一连接件1-42和第二连接件1-43可固定在气体通道1-140的两侧。
可以设想地,还可将第一连接件1-42直接设置在密封部1-41的一侧,将第二连接件1-43设置在密封部1-41的另一侧,则第一连接件1-42和第二连接件1-43均处于自然状态时,二者在密封部1-41的轴向上沿相反的方向延伸。
第一连接件1-42和第二连接件1-43的作用是,分别在密封部1-41的两侧对其施加拉力的作用,因此,在未发生火灾时,能够将密封部1-41保持在距气体通道1-140的出气端一定距离的位置处,以便于输送气体;而在发生火灾时,密封部1-41其中一侧的拉力的作用消失,则在另一侧拉力的作用下贴合在气体通道1-140的出气端,从而阻断气体通道1-140。因此,本公开的第一连接件1-42和第二连接件1-43还可以是其他的结构形式,只要能够在密封部1-41的两侧分别提供方向相反的拉力即可。
进一步地,请结合图94和图97,壳体1-100中还设置有用于安装密封件1-40的安装臂1-50,安装臂1-50包括转接块1-51、安装柱1-52和连接板1-53。
转接块1-51构造为柱状结构,转接块1-51中设置有贯通的容纳孔1-511,气体通道1-140贯穿地设置在容纳孔1-511中。因此可以理解地,气体通道1-140的出气端位于容纳孔1-511的外侧端(如图94和图97所示)。
安装柱1-52设置在转接块1-51的侧壁上(例如可以设置在转接块1-51的周向侧壁上),安装柱1-52用于第一连接件1-42相连。第一连接件1-42的数量及分布方式分别与安装柱1-52的数量及分布方式相同,即二者一一对应地设置。图97示出了设置有4个安装柱1-52的实施方式,其中,4个安装柱1-52等间距地设置在转接块1-51的侧壁上。如图98所示,4个第一连接件1-42分别与对应的4个安装柱1-52相连。
连接板1-53沿容纳孔1-511的轴向延伸,连接板1-53上远离转接块1-51的一侧设置有触发柱1-533,触发柱1-533用于与第二连接件1-43相连。其中, 当第一连接件1-42与安装柱1-52相连,且第二连接件1-43与触发柱1-533相连时,密封件1-40在壳体1-100内处于第一状态;当第一连接件1-42与安装柱1-52相连,且第二连接件1-43与触发柱1-533断开相连时,密封件1-40在壳体1-100处于第二状态。
如图95和图96所示,上文所述的用于将第二连接件1-43固定在壳体1-100中的固定结构包括设置在第二连接件1-43的端部的连接环1-431以及连接板1-53上的触发柱1-533,连接环1-431可与触发柱1-533相配合。更具体地,请结合图96和图98,连接环1-431上的第二连接孔1-432套设在触发柱1-533上,从而使第二连接件1-43与安装臂1-50的一端相固定(如图98所示)。
如图97所示,触发柱1-533的端部为圆台结构,因此第二连接孔1-432在被拉伸变形而使其直径变大时,可套设置在触发柱1-533上;随后其直径恢复,则在触发柱1-533的端部的圆台结构的阻挡下,不会从触发柱1-533上脱落。
此外,连接环1-431上的第二连接孔1-432以及圆台结构的触发柱1-533都具有尺10寸减小的部位,因此二者会较为容易地被熔断,从而使应用于氧疗设备的自动防火装置的触发速度得到提高。
其中,连接环1-431和/或触发柱1-533在超过预设温度的高温下可被熔断(烧断)。在发生火灾时,高温气体或燃烧的火焰首先蔓延至连接环1-431和/或触发柱1-533的位置处,连接环1-431或触发柱1-533被熔断,或者二者都被熔断,从而第二连接件1-43与安装臂1-50的固定处被破坏,则第二连接件1-43失去约束,从而缩回,如图99所示。密封部1-41由于在第二连接件1-43的拉伸作用下,才可离开气体通道1-140的出气端,当第二连接件1-43上的拉力消失,其开始由原来的拉伸状态缩回时,由于第一连接件1-42还对密封部1-41有拉伸作用,因此密封部1-41会被拉至与气体通道1-140的出气端紧密贴合,则气体通道1-140被密封部1-41阻断,从而高温气体或燃烧的气体无法继续通过气体通道1-140,以保证使用者的安全。
可以设想地,还可以将连接环1-431的材料设置为第二连接件1-43上其他部位的材料不同,例如连接环1-431可以采用耐高温性更低的材料,而第二连接件1-43上其他部位的材料则采用耐高温性更高的材料,从而连接环1-431更容易被熔断。此外,触发柱1-533可采用类似的设置方式。例如触发柱1-533 的材料与连接板1-53上其他部位的材料不同,触发柱533的材料耐高温性更差,而连接板1-53上其他部位的材料耐高温性更好,从而触发柱533更容易被熔断。需要说明的是,本文所述的预设温度一般是400℃及以上。
如图97所示,安装柱1-52包括连接柱1-521、止挡圆台1-522和固定柱1-523。连接柱1-521在转接块1-51的侧壁上沿容纳孔1-511的径向延伸,止挡圆台1-522设置在连接柱1-521上,止挡圆台1-522的最大外径大于连接柱1-521的外径,并且止挡圆台1-522直径沿远离转接块1-51的方向渐缩。固定柱1-523设置在止挡圆台1-522的端部,其用于与壳体1-100的内壁相连,从而将安装臂1-50固定在壳体1-100中。请结合图95和图96,第一连接件1-42上设置有贯穿其厚度方向的第一连接孔1-421,第一连接孔1-421的内径小于止挡圆台1-522的最大外径。因此将第一连接件1-42拉伸时,第一连接孔1-421的直径被拉大,从而可穿过与其对应的止挡圆台1-522并套设在连接柱1-521上;随后其直径恢复,则由于止挡圆台1-522的阻挡作用,第一连接孔1-421不能从连接柱1-521上脱落,从而使第一连接件1-42与安装臂1-50的另一端相固定。
进一步地,请继续参考图97和图98,连接板1-53包括凹陷部1-531和延伸板1-532。如图97所示,凹陷部1-531的一端与转接块1-51的侧壁相连,凹陷部1-531用于接收密封部1-41。如图8所示,当第二连接件1-43被拉伸且与安装臂1-50相固定时,密封部1-41位于凹陷部1-531中,其上的密封面与转接块1-51的端部相对设置。
延伸板1-532与凹陷部1-531的另一端相连,延伸板1-532沿容纳孔1-511的轴向延伸,触发柱1-533设置在延伸板1-532远离凹陷部1-531的一侧,例如其上侧,触发柱1-533可与延伸板1-532大致垂直。第二连接件1-43被拉伸时,其与延伸板1-532大致平行。
如图93和图94所示,壳体1-100包括第一壳体1-110和第二壳体1-120,第一壳体1-110和第二壳体1-120相连后其内部形成密封的腔室1-130,气体通道1-140从腔室1-130内的一侧延伸。密封件1-40和安装臂1-50均设置在腔室1-130中。
第一壳体1-110的一侧设置有用于与导管(未示出)相连的第一喷嘴1-111,第一喷嘴1-111通过导管与制氧机等氧气源相连;第二壳体1-120上与第一壳 体1-110相对的一侧设置有用于与导管(未示出)相连的第二喷嘴1-121,第二喷嘴1-121通过导管与患者面部佩戴的呼吸面罩相连。其中,密封件1-40处于第一状态时,第一喷嘴1-111、气体通道1-140、腔室1-130以及第二喷嘴1-121流体连通:密封件1-40处于第二状态时,经第一喷嘴1-111进入气体通道1-140的流体与气体通道1-140外的腔室1-130隔绝。因此,在正常使用时,从第一喷嘴1-111处接收氧气,氧气流经气体通道1-140和腔室1-130后进入第二喷嘴1-121,并由第二喷嘴1-121向患者提供氧气,如图93中实线箭头所示为气体的流向。
如图93所示,气体通道1-140可以从第一壳体1-110的内壁一侧延伸,并与第一喷嘴1-111相连通。密封件1-40处于第一状态时,密封部1-41与气体通道1-140的出气端之间具有一定的距离,因此,气体可从气体通道1-140的出气端流出至腔室1-130中,并流入第二喷嘴1-121中。如图99所际,密封件1-40处于第二状态时,密封部1-41与气体通道1-140的出气端相贴合,则气体不可从气体通道1-140的出气端流出,自然也就无法流入第二喷嘴1-121中。
因此,本公开的实施例中,气体通道1-140包括进气端与出气端,且第一喷嘴1-111与气体通道1-140的进气端连通。当密封件1-40处于第一状态时,即壳体1-100内温度未超过预设温度(熔断温度),密封件1-40的第二连接件1-43与安装臂1-1250保持连接状态,使得密封件1-40的密封部1-41与气体通道1-140的出气端之间保持一定间隙,因此流体可依次流经第一喷嘴1-111、气体通道1-140的进气端以及气体通道1-140的出气端后流入腔室1-130内,并由第二喷嘴1-121输出流体;当壳体1-100内温度高于预设温度时,第二连接件的连接环1-431或安装臂1-50的触发柱1-533被熔断,因此密封件1-40由第一状态切换为第二状态,即第二连接件1-43的端部与安装臂1-50的对应端部(触发柱1-533)断开连接,而第一连接件1-42的端部与安装臂的对应端部(固定柱1-523)保持连接,则密封件1-40的密封部1-41在第一连接件1-42的牵引拉力的作用下在壳体100内向靠近转接块1-51的方向移动,直至密封部1-41贴合在转接块1-51的对应端部(即气体通道1-140的出气端面)上,此时流体虽然能够经过第一喷嘴1-111和气体通道1-140的进气端进入气体通道1-140内,但是气体通道1-140的出气端上由于密封部1-41 的贴合密封作用,使得流体不能由气体通道1-140的出气端流出;同时,由于密封部1-41的贴合密封作用,使得燃烧的气体也不能通过气体通道1-140而向氧疗设备蔓延,,因此能够防止助长氧疗设备周围的火势,引发或加大火情而造成火灾事故,从而实现氧疗设备自动防火的功能。
如图93和图94所示,腔室1-130的内壁上设置有连接槽1-150,连接槽1-150用于与固定柱1-523相连。连接槽1-150可以由第一壳体1-110的内壁和第二壳体1-120的端部限定,从而可将安装臂1-50固定在腔室1-130中。
在本实施例中,触发柱1-533和连接环1-431设置在腔室1-130中。更具体地,触发柱1-533和连接环1-431设置在腔室1-130中靠近第二喷嘴1-121的位置处,因此从第二喷嘴1-121中蔓延的燃烧的气体能够最先熔断触发柱1-533和/或连接环1-431。
如图92所示,第一喷嘴1-111和第二喷嘴1-121的外壁上均设置有防脱部。具体地,第一喷嘴1-111的外壁上设置有第一防脱部1-112,第二喷嘴1-121的外壁上设置有第二防脱部1-122。
在一个较佳的实施例中,第一防脱部1-112可构造为沿朝向第一壳体1-110的方向直径逐渐增大的锥形台阶,防止第一喷嘴1-111与导管相连后从导管中脱出。此外,第二防脱部1-122可采用与第一防脱部1-112类似的结构,即其也为沿朝向第二壳体1-120的方向直径逐渐增大的锥形台阶,以避免第二喷嘴1-121与导管相连后从导管中脱出。
可以设想地,第一防脱部1-112还可构造为沿第一喷嘴1-111的轴向螺旋地设置1-13在第一喷嘴1-111的外壁上的螺旋凸起,以起到防脱的作用。
或者还可以设想,第一防脱部1-112可构造为沿第一喷嘴1-111的周向设置多个模形块,以起到防脱的作用。
第二防脱部1-122可采用与第一防脱部1-112类似的结构,在此不再赘述。
第一壳体1-110和第二壳体1-120之间通过密封卡扣、焊接或螺纹连接的方式相连。如图3所示,第一壳体1-110和第二壳体1-120之间通过卡扣相连,并且二者的连接处还设置有密封圈1-30,以保证腔室1-130的密封性。
实施例2
如图100所示,本实施例是在上述实施例的基础上的改型。下文将说明本实施例与上述实施例的不同之处,相同之处将不再赘述。
如图100所示,连接板1-53和第二连接件1-43均延伸至第二喷嘴1-121中,使得连接环1-431和触发柱1-533位于第二喷嘴1-121中。如上所述,在发生火灾时,火焰将会从第二喷嘴1-121开始向着氧气源的方向逐步燃烧,因此本实施例中的此种设置方式,在发生火灾时,具有更快的触发速度,即连接环1-431和/或触发柱1-533可被更快地熔断。
虽然已经参考优选实施例对本公开进行了描述,但在不脱离本公开的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
如图101至图108所示,第十种防火装置2-100包括:壳体10、第一阀体2-20、第二阀体2-30以及弹性件2-40,壳体10内部具有流体通道2-11,且壳体10的一端具有第一开孔,壳体10的第二端具有第二开孔,第一开孔、第二开孔均与流体通道2-11连通,第一开孔、第二开孔用于与氧疗仪的管路或供氧端的管路连通;第一阀体2-20与第二阀体2-30均位于流体通道2-11中,且第一阀体2-20与第二阀体2-30沿第一开孔至第二开孔的方向间隔分布,第一开孔的孔壁上固定有第一限位筋2-12,第二开孔的孔壁上固定有第二限位筋2-13,第一阀体2-20的第一端与第一限位筋2-12抵接,第二阀体2-30的第一端与第二限位筋2-13抵接,弹性件2-40位于第一阀体2-20与第二阀体2-30之间,且弹性件2-40的两端分别与第一阀体2-20的第二端以及第二阀体2-30的第二端抵接,弹性件2-40处于压缩状态,第一阀体2-20的周部、第二阀体2-30的周部均与流体通道2-11的通道壁之间具有供气体流通的间隙;在第一限位筋2-12处于熔融状态的情况下,弹性件2-40伸长,第一阀体2-20位于第一位置,第一阀体2-20与流体通道2-11的通道壁密封连接,以阻断流体通道2-11;在第二限位筋2-13处于熔融状态的情况下,弹性件2-40伸长,第二阀体2-30位于第二位置,第二阀体2-30与流体通道2-11的通道壁密封连接,以阻断流体通道2-11。
在本公开实施例中,第十种防火装置2-100包括壳体10、第一阀体2-20、第二阀体2-30以及弹性件2-40,壳体10内部具有流体通道2-11,壳体10的 一端具有第一开孔,壳体10的第二端具有第二开孔,由于第一开孔、第二开孔均与流体通道2-11连通,因此,第一开孔、流体通道2-11、第二开孔可以形成用于使得气体流通的通道。其中,第一开孔、第二开孔用于与氧疗仪的管路或供氧端的管路连通,从而可以通过第一开孔、第二开孔使得流体通道2-11的一端与氧疗仪的管路连接,使得流体通道2-11的另一端与供氧端的管路连接,氧疗仪可以通过供氧端向患者输送氧气。第一开孔的孔壁上固定有第一限位筋2-12,第二开孔的孔壁上固定有第二限位筋2-13,第一阀体2-20的第一端与第一限位筋2-12抵接,第二阀体2-30的第二端与第二限位筋2-13抵接,第一阀体2-20的第二端与第二阀体2-30的第二端之间连接有弹性件2-40,从而可以使得第一阀体2-20、第二阀体2-30沿第一开孔至第二开孔的方向间隔分布,由于弹性件2-40处于压缩状态,且弹性件2-40的伸缩方向与流体通道2-11的延伸方向一致,因此,弹性件2-40可以对第一阀体2-20、第二阀体2-30施力,以使第一阀体2-20具有向朝向第一开孔的方向移动的趋势,第二阀体2-30具有朝向第二开孔移动的趋势,此时,第一限位筋2-12可以对第一阀体2-20进行阻挡,第二限位筋2-13可以对第二阀体2-30进行阻挡。由于第一阀体2-20的周部、第二阀体2-30的周部均与流体通道2-11的通道壁之间具有供气体流通的间隙,因此,在正常使用时,气体可以通过间隙流动,以使氧疗仪可以正常使用。在第一限位筋2-12在被火焰燃烧处于熔融状态情况下,第一限位筋2-12对第一阀体2-20丧失阻挡作用,此时弹性件2-40伸长,相当于弹性件2-40会释放弹性势能,第一阀体2-20在弹性件2-40的弹力作用下向第一开孔的方向移动至第一位置,使得第一阀体2-20与流体通道2-11的通道壁密封连接,从而可以阻断流体通道2-11,防止氧气继续在流体通道2-11中流动;在第二限位筋2-13在被火焰燃烧下处于熔融状态的情况下,第二限位筋2-13对第二阀体2-30丧失阻挡作用,此时弹性件2-40伸长,相当于弹性件2-40会释放弹性势能,第二阀体2-30在弹性件2-40的弹力作用下向第二开孔的方向移动至第二位置,使得第二阀体2-30与流体通道2-11的通道壁密封连接,从而可以阻断流体通道2-11,防止氧气继续在流体通道2-11中流动。
也即是,在本公开实施例中,在氧疗过程中,若由于操作不当引发火焰,第一限位筋2-12或第二限位筋2-13燃烧处于熔融状态,此时第一阀体2-20 与第二阀体2-30之间设置的弹性件2-40可以推动第一阀体2-20或第二阀体2-30移动,使得第一阀体2-20或第二阀体2-30与流体通道2-11密封连接,从而可以阻断流体通道2-11。防火装置2-100可以防止氧气继续在流体通道2-11中流动,避免火焰随氧气管逐步向机身燃烧,容易造成火势蔓延,最终引燃制氧机发生严重火灾的问题出现。
其中,在第一限位筋2-12在被火焰燃烧处于熔融状态时,弹性件2-40伸长,具体可以为,弹性件2-40由压缩状态伸长至自然状态,此时,弹性件2-40释放其具有的所有弹性势能,弹性件2-40处于原长;或者,还可以为弹性件2-40释放部分弹性势能,此时的弹性件2-40相比初始状态下的弹性件2-40有伸长,但此时弹性件2-40依然处于压缩状态。同样,在第二限位筋2-13在被火焰燃烧处于熔融状态时,弹性件2-40的伸长也可以为上述两种状态,本公开实施例在此不再赘述。在上述说明中,初始状态为第一限位筋2-12、第二限位筋2-13均处于非熔融状态时的状态。
需要说明的是,弹性件2-40设置于流体通道2-11内,弹性件2-40可以为铁、铜、合金等金属弹簧或金属弹片,也可以为硅胶、橡胶等可以储存弹性势能的软胶。弹性件2-40能够储存弹性势能,并在发生火灾时推动第一阀体2-20或第二阀体2-30,阻断立体通道,阻塞氧气通过,进而可以达到防止火灾蔓延的效果。
还需要说明的是,第一限位筋2-12、第二限位筋2-13可以均为可熔件,可以由熔点较低的材料制成,例如,聚甲醛(polyformaldehyde,POM)、乙烯-醋酸乙烯共聚物(Ethylene Vinyl Acetate,EVA)三元乙丙橡胶(Ethylene Propylene Diene Monomer,EPDM)等等,对于第一限位筋2-12、第二限位筋2-13的具体材料,本公开实施例在此不作具体限定。从而在患者正常使用氧疗仪时,第一限位筋2-12、第二限位筋2-13均处于非熔融状态,此时第一限位筋2-12、第二限位筋2-13均未被燃烧,处于非熔融状态,第一限位筋2-12支撑第一阀体2-20、第二限位筋2-13支撑第二阀体2-30,弹性件2-40处于压缩装置,此时流体通道2-11未被阻断,氧气可以正常流通;在患者使用氧疗仪且有火焰产生时,第一限位筋2-12或第二限位筋2-13熔融,此时第一限位筋2-12或第二限位筋2-13处于熔融状态,弹性件2-40恢复至初始状态,此时流体通道2-11被阻断,防止氧气流通,避免火灾出现。
另外,在本公开实施例中,第一开孔或第二开孔与供氧端的管路连接,与用户使用的供氧端距离较近,在第一开孔与供氧端的管路连接的情况下,由于第一限位筋2-12设置在第一开孔的孔壁处,因此,若患者不慎将与供氧端的管路引燃,火焰可以较快的达到第一限位筋2-12,使得第一限位筋2-12较快得被破快,对流体通道2-11得阻断较快,可以及时阻断氧气流动,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置2-100的安全系数。在第二开孔与供氧端的管路连接的情况下,由于第二限位筋2-13设置在第二开孔的孔壁处,因此,若患者不慎将与供氧端的管路引燃,火焰可以较快的达到第二限位筋2-13,使得第二限位筋2-13较快得被破快,对流体通道2-11得阻断较快,可以及时阻断氧气流动,降低了由于触发不及时造成火势蔓延的风险,进而提升了防火装置2-100的安全系数。
为了使得防火装置2-100在温度较高、有发生火灾的趋势时,第一阀体2-20、第二阀体2-30可以正常移动,阻挡流体通道2-11,第一阀体2-20、第二阀体2-30、弹性件2-40、壳体10可以均为熔点较高,不易燃烧的部件。且,由于防火装置2-100使用在富氧环境中,第一阀体2-20、第二阀体2-30、弹性件2-40、壳体10等还可以为不易氧化的部件。
另外,由于第一限位筋2-12、第二限位筋2-13分布在防火装置2-100的两端,因此,在安装防火装置2-100时,可以将第一开口安装于供氧端的管路上,也可以将第二开口安装于供氧端的管路上,便于安装,避免了区分防火装置2-100正反的问题。
为了避免第一限位筋2-12对氧气的流通产生影响,第一限位筋2-12可以为条状,也可以为其他不影响通气量的形状,例如,锯齿状、半圆形等等,第一限位筋2-12的两端分别于第一开孔的孔壁连接,氧气可以通过第一限位筋2-12的两侧向流体通道2-11内部流动,如图103所示。同样,第二限位筋2-13也为条状,可以参照上述对第一限位筋2-12的说明,本公开实施例在此不作赘述。
另外,在一些实施例中,如图101、图102、图106所示,第一阀体2-20可以包括第一安装杆2-21以及第一安装座2-22,第一安装杆2-21的轴线方向与弹性件2-40的伸缩方向一致,第一安装杆2-21的一端与第一安装座2-22连接,第一安装杆2-21的另一端与第一限位筋2-12抵接,弹性件2-40的一 端与第一安装座2-22抵接;第二阀体2-30包括第二安装杆2-31以及第二安装座2-32,第二安装杆2-31的轴线方向与弹性件2-40的伸缩方向一致,第二安装杆2-31的一端与第二安装座2-32连接,第二安装杆2-31的另一端与第二限位筋2-13抵接,弹性件2-40的另一端与第二安装座2-32抵接;在第一限位筋2-12处于熔融状态的情况下,第一安装座2-22流体通道2-11的通道壁密封连接;在第二限位筋2-13处于熔融状态的情况下,第二安装座2-32流体通道2-11的通道壁密封连接。
第一阀体2-20包括第一安装杆2-21以及第一安装座2-22,第一安装杆2-21的轴线方向与弹性件2-40的伸缩方向一致,其中,第一安装杆2-21的一端与第一安装座2-22连接,第一安装杆2-21的另一端与第一限位筋2-12抵接,从而第一阀体2-20可以通过第一安装杆2-21与第一限位筋2-12抵接;第二阀体2-30包括第二安装杆2-31以及第二安装座2-32,第二安装杆2-31的轴线方向与弹性件2-40的伸缩方向一致,第二安装杆2-31的一端与第二安装座2-32连接,第二安装杆2-31的另一端与第二限位筋2-13抵接,从而第二阀体2-30可以通过第二安装杆2-31与第二限位筋2-13抵接。弹性件2-40的一端与第一安装座2-22抵接,弹性件2-40的另一端与第二安装座2-32抵接,以通过弹性件2-40连接第一阀体2-20与第二阀体2-30,从而在第一限位筋2-12处于熔融状态的情况下,第一安装杆2-21与第一限位筋2-12分离,弹性件2-40由压缩装置向初始状态的伸展过程中,弹性件2-40可以推动第一安装座2-22,使得第一安装座2-22与通道壁密封连接阻断流体通道2-11;或者,在第二限位筋2-13处于熔融状态的情况下,第二安装杆2-31与第二限位筋2-13分离,弹性件2-40由压缩装置向初始状态的伸展过程中,弹性件2-40可以推动第二安装座2-32,使得第二安装座2-32与通道壁密封连接阻断流体通道2-11。
另外,在一些实施例中,如图101、图102、图106所示,第一安装座2-22远离第一安装杆2-21的一端可以设置有第一安装腔2-23,第二安装座2-32远离第二安装杆2-31的一端可以设置有第二安装腔2-33,第一安装腔2-23与第二安装腔2-33的位置相对,弹性件2-40的一端与第一安装腔2-23的腔底抵接,弹性件2-40的另一端与第二安装腔2-33的腔底抵接。
第一安装座2-22远离第一安装杆2-21的一端设置有第一安装腔2-23,第 二安装座2-32远离第二安装杆2-31的一端设置有第二安装腔2-33,从而第一安装腔2-23与第二安装腔2-33的位置相对,第一安装腔2-23、第二安装腔2-33能形成容纳弹性件2-40的空间,可以将弹性件2-40设置在第一安装腔2-23与第二安装腔2-33中,并使得弹性件2-40的一端与第一安装腔2-23的腔底抵接,弹性件2-40的另一端与第二安装腔2-33的腔底抵接,从而设置在第一阀体2-20与第二阀体2-30之间的弹性件2-40可以以第一安装腔2-23、第二安装腔2-33为安装空间,减小第一阀体2-20与第二阀体2-30之间的距离,使得第一安装杆2-21与第二安装杆2-31之间的距离较小,从而第一限位筋2-12、第二限位筋2-13之间的距离较小,可以减少壳体10在第一开孔至第二开孔之间的尺寸,减少防火装置2-100在第一开孔至第二开孔之间的尺寸,使得防火装置2-100较小,便于安装、携带。
如图107、图108所示,第一安装腔2-23可以具有不同的形式,例如,可以在第一安装座2-22上设置开孔,开孔可以形成第一安装腔2-23,且开孔的孔壁可以为平滑的孔壁,如图107;或者开孔的孔壁也可以不平滑,如图108所示,可以在孔壁上设置筋条、螺纹等等,只要其不会阻碍弹性件2-40的安装以及伸缩即可。同样,在第二安装腔2-23也可以具有不同的形式,可以参考上述对第一安装腔2-23的说明,本公开实施例在此不再赘述。
另外,在一些实施例中,如图101、图102、图106所示,第一安装腔2-23的腔底可以连接有第一导向杆2-24,和/或第二安装腔2-33的腔底可以连接有第二导向杆2-34,弹性件2-40套设于第一导向杆2-24和/或第二导向杆2-34,第一导向杆2-24、第二导向杆2-34用于对弹性件2-40的伸缩进行导向。
第一安装腔2-23的腔底连接有第一导向杆2-24,弹性件2-40可以套设于第一导向杆2-24,第一导向杆2-24可以对弹性件2-40的伸缩进行导向,从而在弹性件2-40可以沿着第一导向杆2-24伸缩,可以避免弹性件2-40在伸缩时发生偏移,导致弹性件2-40对第一阀体2-20或第二阀体2-30施加的力发生偏移,使得第一阀体2-20或第二阀体2-30在移动时偏移,对流体通道2-11的密封效果较差,对火灾的抑制效果较差的问题出现。
和/或,第二安装腔2-33的腔底连接有第二导向杆2-34,弹性件2-40可以套设于第二导向杆2-34,第二导向杆2-34可以对弹性件2-40的伸缩进行导向,从而在弹性件2-40可以沿着第二导向杆2-34伸缩,可以避免弹性件2-40 在伸缩时发生偏移,导致弹性件2-40对第一阀体2-20或第二阀体2-30施加的力发生偏移,使得第一阀体2-20或第二阀体2-30在移动时偏移,对流体通道2-11的密封效果较差,对火灾的抑制效果较差的问题出现。
在本公开实施例中,第一安装腔2-23的腔底可以连接有第一导向杆2-24,或者第二安装腔2-33的腔底可以连接有第二导向杆2-34,再或者,第一安装腔2-23的腔底可以连接有第一导向杆2-24,第二安装腔2-33的腔底可以连接有第二导向杆2-34,弹性件2-40套设于第一导向杆2-24以及第二导向杆2-34,对弹性件2-40的伸缩的导向效果较好。
另外,为了在第一安装腔2-23的腔底连接有第一导向杆2-24的情况下,第一导向杆2-24对弹性件2-40的导向效果较好,可以使得第一导向杆2-24较长,并伸入至第二安装腔2-33中,同样,为了在第二安装腔2-33的腔底连接有第二导向杆2-34的情况下,第二导向杆2-34对弹性件2-40的导向效果较好,可以使得第二导向杆2-34较长,并伸入至第一安装腔2-23中。
需要说明的是,第一安装座2-22上也可以不设置第一安装腔2-23,第二安装座2-32上也可以不设置第二安装腔2-33,第一安装座2-22朝向第二安装座2-32的表面、第二安装座2-32朝向第一安装座2-22的表面可以直接分别与弹性件2-40抵接,通过弹性件2-40推动第一安装座2-22或第二安装座2-32。为了避免弹性件2-40直接与第一安装座2-22朝向第二安装座2-32的表面、第二安装座2-32朝向第一安装座2-22的表面抵接时弹性件2-40易偏移的问题,第一安装座2-22朝向第二安装座2-32的表面可以设置导向轴2-26,并使得导向轴2-26延伸至第二安装座2-32朝向至第一安装座2-22的表面,此时可以通过导向轴2-26对弹性件2-40的伸缩进行导向;或者,第二安装座2-32朝向第一安装座2-22的表面可以设置导向轴2-26,并使得导向轴2-26延伸至第一安装座2-22朝向至第二安装座2-32的表面,如图105所示。
另外,在一些实施例中,也可以只在第一安装座2-22上设置第一安装腔2-23,在第一安装腔2-23中设置第一导向杆2-24,使得弹性件2-40的两端分别与第一安装腔2-23的腔底、第二安装座2-32朝向第一安装座2-22的表面抵接;再或者,也可以只在第二安装座2-32上设置第二安装腔2-33,在第二安装腔2-33中设置第二导向杆2-34,使得弹性件2-40的两端分别与第二安装腔2-33的腔底、第一安装座2-22朝向第二安装座2-32的表面抵接。
另外,在一些实施例中,如图101、图102、图106所示,第一安装座2-22的周部设置有第一定位部2-25,流体通道2-11的内壁上设置第一定位槽2-14,第一定位槽2-14的延伸方向与弹性件2-40的伸缩方向一致,第一定位部2-25可以嵌设于第一定位槽2-14,第一定位槽2-14用于在第一限位筋2-12处于熔融状态的情况下,对第一安装座2-22的移动方向进行限位;和/或,第二安装座2-32的周部设置有第二定位部2-35,流体通道2-11的内壁上设置第二定位槽2-15,第二定位槽2-15的延伸方向与弹性件2-40的伸缩方向一致,第二定位部2-35可以嵌设于第二定位槽2-15,第二定位槽2-15用于在第二限位筋2-13处于熔融状态的情况下,对第二安装座2-32的移动方向进行限位。
第一安装座2-22的周部设置有第一定位部2-25,流体通道2-11的内壁上设置第一定位槽2-14,第一定位部2-25可以嵌设于第一定位槽2-14,由于第一定位槽2-14的延伸方向与弹性件2-40的伸缩方向一致,因此,在第一阀体2-20移动的情况下,第一定位部2-25可以在第一定位槽2-14中移动,在本实施例中,可以通过第一定位槽2-14对第一定位部2-25进行限位,以对第一安装座2-22的移动方向进行限位,可以进一步对第一阀体2-20的移动方向进行限位,防止第一安装座2-22在移动的时候发生偏移,对流体通道2-11的密封效果较差的问题出现。
和/或,第二安装座2-32的周部设置有第二定位部2-35,流体通道2-11的内壁上设置第二定位槽2-15,第二定位部2-35可以嵌设于第二定位槽2-15,由于第二定位槽2-15的延伸方向与弹性件2-40的伸缩方向一致,因此,在第二阀体2-30移动的情况下,第二定位部2-35可以在第二定位槽2-15中移动,在本实施例中,可以通过第二定位槽2-15对第二定位部2-35进行限位,以对第二安装座2-32的移动方向进行限位,可以进一步对第二阀体2-30的移动方向进行限位,防止第二安装座2-32在移动的时候发生偏移,对流体通道2-11的密封效果较差的问题出现。
需要说明的是,第一定位部2-25可以设置有多个,多个第一定位部2-25间隔分布在第一安装座2-22的周部,对应的,第一定位槽2-14也可以设置多个,每个第一定位部2-25均嵌设于一个定位槽,可以在多个位置对第一安装座2-22的移动进行限位,对第一安装座2-22的限位效果较好。具体的,第一定位部2-25的数量可以为4,此时,4个第一定位部2-25间隔分布在第一安 装座2-22的周部,每两个相邻的第一定位部2-25之间的角度可以为90°,如图106所示,或者,第一定位部2-25的数量还可以为其他数量,例如,3、2、5、6、7等等,对于第一定位部2-25的具体数量,本公开实施例在此不作具体限定。
当然,第二定位部2-35的数量也可以为多个,具体的可以参照上述对第一定位部2-25的说明,本公开实施例不再赘述。
另外,在一些实施例中,如图101、图102所示,流体通道2-11的内壁上可以设置有第一安装槽2-16,第一安装槽2-16沿着流体通道2-11的周向方向延伸且环绕流体通道2-11,第一安装槽2-16内设置有第一密封件2-17,且第一密封件2-17的部分外伸于第一安装槽2-16,第一密封件2-17与第一阀体2-20相对,第一密封件2-17用于在第一限位筋2-12处于处于熔融状态的情况下,与第一阀体2-20抵接,以使第一阀体2-20与流体通道2-11的通道壁密封连接;和/或,流体通道2-11的内壁上可以设置有第二安装槽2-18,第二安装槽2-18沿着流体通道2-11的周向方向延伸且环绕流体通道2-11,第二安装槽2-18内设置有第二密封件2-19,且第二密封件2-19的部分外伸于第二安装槽2-18,第二密封件2-19与第二阀体2-30相对,第二密封件2-19用于在第二限位筋2-13处于处于熔融状态的情况下,与第二阀体2-30抵接,以使第二阀体2-30与流体通道2-11的通道壁密封连接。
流体通道2-11的内壁上设置有第一安装槽2-16,第一安装槽2-16沿着流体通道2-11的周向方向延伸且环绕流体通道2-11,可以在第一安装槽2-16内设置第一密封件2-17,由于第一密封件2-17的部分外伸于第一安装槽2-16,因此第一密封件2-17外伸于流体通道2-11的通道壁,从而在第一安装座2-22移动的情况下,第一安装座2-22可以与第一密封件2-17抵接,可以实现第一安装座2-22与流体通道2-11的密封连接,使得第一安装座2-22对流体通道2-11的阻断效果较好,避免还有少量氧气流通,对火灾的抑制效果较差的问题粗线。
流体通道2-11的内壁上设置有第二安装槽2-18,第二安装槽2-18沿着流体通道2-11的周向方向延伸且环绕流体通道2-11,可以在第二安装槽2-18内设置第二密封件2-19,由于第二密封件2-19的部分外伸于第二安装槽2-18,因此第二密封件2-19外伸于流体通道2-11的通道壁,从而在第二安装座2-32 移动的情况下,第二安装座2-32可以与第二密封件2-19抵接,可以实现第二安装座2-32与流体通道2-11的密封连接,使得第二安装座2-32对流体通道2-11的阻断效果较好,避免还有少量氧气流通,对火灾的抑制效果较差的问题出现。
需要说明的是,第一密封件2-17、第二密封件2-19可以为具有弹性的密封圈,从而在第一安装座2-22与第一密封圈2-17抵接、第二安装座2-32与第二密封圈2-19抵接的情况下,第一密封件2-17、第二密封件2-19可以被压缩,使得第一安装座2-22与第一密封圈2-17之间紧密接触、第二安装座2-32与第二密封圈2-19之间紧密接触。第一密封件2-17、第二密封件2-19可以为由硅橡胶、乙丙橡胶、氯丁橡胶、丁腈橡胶等等,对于第一密封件2-17、第二密封件2-19的具体材料,本公开实施例在此不作具体限定。
另外,在一些实施例中,如图101、图102所示,流体通道2-11的通道壁上沿流体通道2-11的周向方向可以具有第一阻挡台2-111以及第二阻挡台2-112,且第一阻挡台2-111与第二阻挡台2-112沿第一开孔至第二开孔的方向间隔分布,第一阀体2-20与第二阀体2-30位于第一阻挡台2-111与第二阻挡台2-112之间,在第一开孔至第二开孔的方向上,第一阻挡台2-111的投影与第一阀体2-20的投影具有重叠部分,第二阻挡台2-112的投影与第二阀体2-30的投影具有重叠部分;第一阻挡台2-111在第一开孔至第二开孔的方向上具有朝向第一阀体2-20的第一表面2-1111,第一安装槽2-16设置在第一表面2-1111上,第一安装槽2-16沿着流体通道2-11的周向方向延伸,且在第一开孔至第二开孔的方向上,第一安装槽2-16的投影位于第一阀体2-20的投影内部;和/或,第二阻挡台2-112在第一开孔至第二开孔的方向上具有朝向第二阀体2-30的第二表面2-1121,第二安装槽2-18设置在第二表面2-1121上,第二安装槽2-18沿着流体通道2-11的周向方向延伸,且在第一开孔至第二开孔的方向上,第二安装槽2-18的投影位于第二阀体2-30的投影内部。
流体通道2-11的通道壁上沿流体通道2-11的周向方向可以具有第一阻挡台2-111以及第二阻挡台2-112,第一阻挡台2-111与第二阻挡台2-112沿第一开孔至第二开孔的方向间隔分布,第一阀体2-20与第二阀体2-30位于第一阻挡台2-111与第二阻挡台2-112之间。由于在第一开孔至第二开孔的方向上,第一阻挡台2-111的投影与第一阀体2-20的投影具有重叠部分,因此,在第 一限位筋2-12处于熔融状态的情况下,第一阀体2-20可以移动至与第一阻挡台2-111抵接,从而使得第一阀体2-20通过第一阻挡台2-111对流体通道2-11进行密封;由于第二阻挡台2-112的投影与第二阀体2-30的投影具有重叠部分,因此,在第二限位筋2-13处于熔融状态的情况下,第二阀体2-30可以移动至与第二阻挡台2-112抵接,从而使得第二阀体2-30通过第二阻挡台2-112对流体通道2-11进行密封。
其中,第一阻挡台2-111在第一开孔至第二开孔的方向上具有朝向第一阀体2-20的第一表面2-1111,第一安装槽2-16设置在第一表面2-1111上,从而第一表面2-1111与弹性件2-40的延伸方向之间具有角度,第一阀体2-20移动时可以与第一表面2-1111抵接。由于在第一开孔至第二开孔的方向上,第一安装槽2-16的投影位于第一阀体2-20的投影内部,因此,第一阀体2-20移动时,第一阀体2-20可以与第一密封件2-17抵接,在第一阀体2-20移动至与第一密封件2-17抵接的情况下,第一阀体2-20向第一密封件2-17施力,使得第一密封件2-17向第一安装槽2-16形变,使得第一密封件2-17与第一阀体2-20接触良好,对流体通道2-11的阻断效果较好。第一安装槽2-16沿着流体通道2-11的周向方向延伸,第一密封件2-17也环绕流体通道2-11的周向方向延伸,第一阀体2-20沿着流体通道2-11的各个方向均可以与第一密封件2-17抵接,对流体通道2-11的阻断效果较好。
和/或,第二阻挡台2-112在第一开孔至第二开孔的方向上具有朝向第二阀体2-30的第二表面2-1121,第二安装槽2-18设置在第二表面2-1121上,从而第二表面2-1121与弹性件2-40的延伸方向之间具有角度,第二阀体2-30移动时可以与第二表面2-1121抵接。由于在第一开孔至第二开孔的方向上,第二安装槽2-18的投影位于第二阀体2-30的投影内部,因此,第二阀体2-30移动时,第二阀体2-30可以与第二密封件2-19抵接,在第二阀体2-30移动至与第二密封件2-19抵接的情况下,第二阀体2-30向第二密封件2-19施力,使得第二密封件2-19向第二安装槽2-18形变,使得第二密封件2-19与第二阀体2-30接触良好,对流体通道2-11的阻断效果较好。第二安装槽2-18沿着流体通道2-11的周向方向延伸,第二密封件2-19也环绕流体通道2-11的周向方向延伸,第二阀体2-30沿着流体通道2-11的各个方向均可以与第二密封件2-19抵接,对流体通道2-11的阻断效果较好。
在本公开实施例中,第一密封件2-17设置在第一表面2-1111上,在第一阀体2-20移动时,第一密封件2-17向第一表面2-1111发生形变;第二密封件2-19设置在第二表面2-1121上,在第二阀体2-30移动时,第二密封件2-19向第二表面2-1121发生形变。可以避免将第一密封件2-17直接设置在流体通道2-11的通道壁、将第二密封件2-19直接设置在流体通道2-11的通道壁上时,可以避免第一阀体2-20或第二阀体2-30移动挤压第一密封件2-17、第二密封件2-19时,第一密封件2-17、第二密封件2-19沿着弹性件2-40的伸缩方向变形,第一阀体2-20有越过第一密封件2-17的风险,第二阀体2-30有越过第二密封件2-19的风险,导致第一阀体2-20、第二阀体2-30丧失对流体通道2-11的密封效果的问题出现。
另外,在一些实施例中,如图101、图102所示,壳体10可以包括第一子壳体2-122以及第二子壳体2-124,第一子壳体2-122与第二子壳体2-124相对设置,第一子壳体2-122内部设置有第一通道2-123,第二子壳体2-124内设置有第二通道2-125,第一子壳体2-122与第二子壳体2-124连接,且第一通道2-123与第二通道2-125连通形成流体通道2-11,第一阀体2-20设置在第一壳体10中,第二阀体2-30设置在第二壳体10中。
壳体10可以包括第一子壳体2-122以及第二子壳体2-124,第一子壳体2-122与第二子壳体2-124相对设置,第一子壳体2-122内部设置有第一通道2-123,第二子壳体2-124内设置有第二通道2-125,从而第一子壳体2-122与第二子壳体2-124连接后,第一通道2-123与第二通道2-125连通可以形成流体通道2-11,第一阀体2-20设置在第一壳体10中,第二阀体2-30设置在第二壳体10中。
需要说明的是,由于氧疗仪的管路、供氧端的管路一般较小,因此,壳体10整体的两端也较小,可以将壳体10做成中间粗两边细的结构,相应的,流体通道2-11的也可以为中间粗两边细的结构,壳体10的中部可以为第一安装座2-22、第二安装座2-32提供安装空间,如图101、图102、图104所示。并且,中部较大的流体通道2-11还可以避免对氧气的流动产生影响,由于防火装置2-100连接的管路较小,氧气在流动至流体通道2-11的中部时,可以从第一安装座2-22与流体通道2-11的通道壁之间的间隙、第二安装座2-32与流体通道2-11的通道壁之间的间隙中流动,由于流体通道2-11的中部也比 较大,第一安装座2-22、第二安装座2-32与流体通道2-11的通道壁之间的间隙中流通的氧气与管路中流通的氧气的量相当,可以避免第一阀体2-20、第二阀体2-30的设置对氧气的流通产生影响。
在本公开实施例中,壳体10分体设置,具体包括第一子壳体2-122与第二子壳体2-124,可以便于安装第一阀体2-20以及第二阀体2-30,避免第一安装座2-22、第二安装座2-32尺寸较大,从较小的两端难以安装的问题出现。
另外,在一些实施例中,如图101所示,第一开孔可以连接有第一接头2-51,第一接头2-51与流体通道2-11连通;第二开孔可以连接有第二接头2-52,第二接头2-52与流体通道2-11连通;第一接头2-51、第二接头2-52用于与氧疗仪的管路或供氧端的管路连通。
第一开孔连接有第一接头2-51,第二开孔连接有第二接头2-52,由于第一接头2-51与流体通道2-11连通,第二接头2-52与流体通道2-11连通,因此,防火装置2-100可以通过第一接头2-51、第二接头2-52与氧疗仪的管路或供氧端的管路连通,以将防火装置2-100应用在氧疗过程中。
需要说明的是,由于氧疗仪的管路、供氧端的管路一般较小,因此,壳体10整体的两端也较小,可以将壳体10做成中间粗两边细的结构,相应的,流体通道2-11的也可以为中间粗两边细的结构,壳体10的中部可以为第一安装座2-22、第二安装座2-32提供安装空间。并且,中部较大的流体通道2-11还可以避免对氧气的流动产生影响,由于防火装置2-100连接的管路较小,氧气在流动至流体通道2-11的中部时,可以从第一安装座2-22与流体通道2-11的通道壁之间的间隙、第二安装座2-32与流体通道2-11的通道壁之间的间隙中流动,由于流体通道2-11的中部也比较大,第一安装座2-22、第二安装座2-32与流体通道2-11的通道壁之间的间隙中流通的氧气与管路中流通的氧气的量相当,可以避免第一阀体2-20、第二阀体2-30的设置对氧气的流通产生影响。
在本公开实施例中,防火装置2-100包括壳体10、第一阀体2-20、第二阀体2-30以及弹性件2-40,壳体10内部具有流体通道2-11,壳体10的一端具有第一开孔,壳体10的第二端具有第二开孔,由于第一开孔、第二开孔均与流体通道2-11连通,因此,第一开孔、流体通道2-11、第二开孔可以形成用于使得气体流通的通道。其中,第一开孔、第二开孔用于与氧疗仪的管路 或供氧端的管路连通,从而可以通过第一开孔、第二开孔使得流体通道2-11的一端与氧疗仪的管路连接,使得流体通道11的另一端与供氧端的管路连接,氧疗仪可以通过供氧端向患者输送氧气。第一开孔的孔壁上固定有第一限位筋2-12,第二开孔的孔壁上固定有第二限位筋2-13,第一阀体2-20的第一端与第一限位筋2-12抵接,第二阀体2-30的第二端与第二限位筋2-13抵接,第一阀体2-20的第二端与第二阀体2-30的第二端之间连接有弹性件40,从而可以使得第一阀体2-20、第二阀体2-30沿第一开孔至第二开孔的方向间隔分布,由于弹性件2-40处于压缩状态,且弹性件2-40的伸缩方向与流体通道2-11的延伸方向一致,因此,弹性件2-40可以对第一阀体2-20、第二阀体2-30施力,以使第一阀体2-20具有向朝向第一开孔的方向移动的趋势,第二阀体2-30具有朝向第二开孔移动的趋势,此时,第一限位筋2-12可以对第一阀体2-20进行阻挡,第二限位筋2-13可以对第二阀体2-30进行阻挡。由于第一阀体2-20的周部、第二阀体2-30的周部均与流体通道2-11的通道壁之间具有供气体流通的间隙,因此,在正常使用时,气体可以通过间隙流动,以使氧疗仪可以正常使用。在第一限位筋2-12处于熔融状态的情况下,第一限位筋2-12对第一阀体2-20丧失阻挡作用,此时弹性件2-40伸长,相当于弹性件2-40会释放弹性势能,第一阀体2-20在弹性件2-40的弹力作用下向第一开孔的方向移动至第一位置,使得第一阀体2-20与流体通道2-11的通道壁密封连接,从而可以阻断流体通道2-11,防止氧气继续在流体通道2-11中流动;在第二限位筋2-13处于熔融状态的情况下,第二限位筋13对第二阀体2-30丧失阻挡作用,此时弹性件2-40伸长,相当于弹性件2-40会释放弹性势能,第二阀体2-30在弹性件2-40的弹力作用下向第二开孔的方向移动至第二位置,使得第二阀体2-30与流体通道2-11的通道壁密封连接,从而可以阻断流体通道2-11,防止氧气继续在流体通道2-11中流动。
也即是,在本公开实施例中,在氧疗过程中,若由于操作不当引发火焰,第一限位筋2-12或第二限位筋2-13燃烧处于熔融状态,此时第一阀体2-20与第二阀体2-30之间设置的弹性件2-40可以推动第一阀体2-20或第二阀体2-30移动,使得第一阀体2-20或第二阀体2-30与流体通道2-11密封连接,从而可以阻断流体通道2-11。防火装置2-100可以防止氧气继续在流体通道2-11中流动,避免火焰随氧气管逐步向机身燃烧,容易造成火势蔓延,最终 引燃制氧机发生严重火灾的问题出现。
另外,本公开实施例还包括了一种通气治疗设备,包括:氧疗仪、供氧端以及上述实施例中任一实施例中的防火装置2-100;第一开孔与氧疗仪连接,第二开孔与供氧端连接;或,第二开孔与氧疗仪连接,第一开孔与供氧端连接。
设置有上述防火装置2-100的通气治疗设备,在失火的情况下,第一阀体2-20或第二阀体2-30可以与流体通道2-11密封连接,从而可以阻断流体通道2-11。防火装置2-100可以防止氧气继续在流体通道2-11中流动,避免火焰随氧气管逐步向机身燃烧,容易造成火势蔓延,最终引燃制氧机发生严重火灾的问题出现。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (10)

  1. 一种防火装置,其特征在于,包括:壳体、阀体、扭簧以及可熔构件;
    所述壳体内具有流体通道,所述流体通道设置有第一开口和第二开口,所述第一开口和所述第二开口分别用于与氧疗仪或患者端的管路连通;
    所述阀体位于所述流体通道内,且与所述壳体转动连接;
    所述阀体设置有容纳腔,所述流体通道与所述容纳腔为相互独立的两个空间;
    所述扭簧嵌设于所述容纳腔内,以驱动所述阀体与所述壳体相对转动;
    所述可熔构件设置于所述流体通道的内壁;
    在所述可熔构件处于非熔融状态下,所述可熔构件支撑所述阀体处于第一位置,所述第一开口和所述第二开口均处于开启状态;
    在所述可熔构件处于熔融状态下,所述扭簧驱动所述阀体转动至第二位置,所述第一开口和所述第二开口中的至少一个处于关闭状态。
  2. 根据权利要求1所述的防火装置,其特征在于,所述阀体包括安装部、第一连接部以及第一密封部;
    所述安装部包括内轴套和外轴套,所述容纳腔位于所述内轴套和外轴套之间;
    所述流体通道内设置有转轴,所述内轴套套设于所述转轴,且与所述转轴转动连接;
    所述第一连接部的一端与所述外轴套的侧壁连接,所述第一连接部的另一端与所述第一密封部连接;
    在所述阀体处于所述第二位置时,所述第一密封部与所述第一开口接合,以使所述第一开口处于关闭状态。
  3. 根据权利要求2所述的防火装置,其特征在于,所述阀体还包括第二连接部和第二密封部;
    所述第二连接部的一端与所述外轴套的侧壁连接,所述第二连接部的另一端与所述第二密封部连接;
    在所述阀体处于所述第二位置时,所述第二密封部与所述第二开口接合,以使所述第二开口处于关闭状态。
  4. 根据权利要求3所述的防火装置,其特征在于,所述第一连接部和/或所述第二连接部设置有缺口,所述缺口用于通过流体。
  5. 根据权利要求1所述的防火装置,其特征在于,所述流体通道的内壁设置有至少一个限位部,所述限位部位于所述阀体的转动路径上;
    在所述阀体处于所述第二位置时,所述阀体与所述限位部抵接。
  6. 根据权利要求1所述的防火装置,其特征在于,所述壳体设置有第一管路接头和第二管路接头;
    所述第一管路接头设置有第一通孔,所述第一通孔与所述第一开口连通;
    所述第二管路接头设置有第二通孔,所述第二通孔与所述第二开口连通;
    所述第一管路接头和所述第二管路接头分别用于与所述氧疗仪或所述患者端的管路连接。
  7. 根据权利要求6所述的防火装置,其特征在于,所述第一管路接头和/或所述第二管路接头的外侧壁设置有至少一个卡接部,所述卡接部用于与所述氧疗仪或所述患者端的管路卡接。
  8. 根据权利要求6所述的防火装置,其特征在于,所述可熔构件具有延伸部,所述延伸部穿设于所述第一通孔或所述第二通孔。
  9. 一种氧疗仪,其特征在于,包括权利要求1-8任一项所述的防火装置。
  10. 一种通气治疗系统,其特征在于,包括:权利要求9所述的氧疗仪。
PCT/CN2023/105040 2022-06-30 2023-06-30 防火装置、氧疗仪及通气治疗系统 WO2024002359A1 (zh)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
CN202210761499.2A CN115089828A (zh) 2022-06-30 2022-06-30 防火装置、氧疗仪及通气治疗系统
CN202221696132.9U CN219001549U (zh) 2022-06-30 2022-06-30 防火阀、通气设备
CN202210761499.2 2022-06-30
CN202210761502.0 2022-06-30
CN202221696132.9 2022-06-30
CN202210761502.0A CN115089829A (zh) 2022-06-30 2022-06-30 防火装置、氧疗仪及通气治疗系统
CN202221696322.0 2022-06-30
CN202221696321.6U CN219001550U (zh) 2022-06-30 2022-06-30 防火装置、氧疗仪及通气治疗系统
CN202210761495.4A CN115105699A (zh) 2022-06-30 2022-06-30 防火装置及通气治疗设备
CN202221696322.0U CN219001551U (zh) 2022-06-30 2022-06-30 防火装置、氧疗仪及通气治疗系统
CN202221696321.6 2022-06-30
CN202210761495.4 2022-06-30
CN202210769833.9 2022-07-01
CN202210769833.9A CN115105700A (zh) 2022-07-01 2022-07-01 防火装置及通气治疗设备
CN202223598962.0U CN219375799U (zh) 2022-12-29 2022-12-29 防火装置及通气治疗设备
CN202223598962.0 2022-12-29
CN202223598765.9U CN219963788U (zh) 2022-12-29 2022-12-29 应用于氧疗设备的自动防火装置
CN202223598765.9 2022-12-29
CN202223599609.4U CN219595512U (zh) 2022-12-30 2022-12-30 防火装置及通气治疗设备
CN202223599609.4 2022-12-30
CN202211733732.2A CN115998999A (zh) 2022-12-30 2022-12-30 防火装置及通气治疗设备
CN202211733732.2 2022-12-30
CN202321658850.1U CN220558374U (zh) 2023-06-27 2023-06-27 防火装置及通气治疗设备
CN202321658850.1 2023-06-27

Publications (1)

Publication Number Publication Date
WO2024002359A1 true WO2024002359A1 (zh) 2024-01-04

Family

ID=89383337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105040 WO2024002359A1 (zh) 2022-06-30 2023-06-30 防火装置、氧疗仪及通气治疗系统

Country Status (1)

Country Link
WO (1) WO2024002359A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862641A (en) * 1972-05-30 1975-01-28 John L Follett Heat and flow sensitive safety shut-off valve
DE3436582A1 (de) * 1983-10-21 1985-05-02 Georg Fischer AG, Schaffhausen, CH, Niederlassung: Georg Fischer AG, 7700 Singen Thermisches sicherheitsventil
JPH06137447A (ja) * 1992-10-23 1994-05-17 Yoko Eng Shiya:Kk 感熱自動閉止ガスコック
EP2133113A1 (en) * 2008-05-23 2009-12-16 The BOC Group Limited Oxygen administration apparatus
CN104519939A (zh) * 2012-08-03 2015-04-15 Bpr医学有限公司 防火型联接器
CN106812985A (zh) * 2015-11-30 2017-06-09 调节技术塔尔萨有限责任公司 销释放热力阀
CN107327607A (zh) * 2017-08-31 2017-11-07 芜湖凡达机械科技有限公司 一种自动降落阀片的防火止回阀
CN216666559U (zh) * 2021-12-16 2022-06-03 浙江豪业机械制造有限公司 一种可调节水速的阀门结构
CN115089829A (zh) * 2022-06-30 2022-09-23 天津怡和嘉业医疗科技有限公司 防火装置、氧疗仪及通气治疗系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862641A (en) * 1972-05-30 1975-01-28 John L Follett Heat and flow sensitive safety shut-off valve
DE3436582A1 (de) * 1983-10-21 1985-05-02 Georg Fischer AG, Schaffhausen, CH, Niederlassung: Georg Fischer AG, 7700 Singen Thermisches sicherheitsventil
JPH06137447A (ja) * 1992-10-23 1994-05-17 Yoko Eng Shiya:Kk 感熱自動閉止ガスコック
EP2133113A1 (en) * 2008-05-23 2009-12-16 The BOC Group Limited Oxygen administration apparatus
CN104519939A (zh) * 2012-08-03 2015-04-15 Bpr医学有限公司 防火型联接器
CN106812985A (zh) * 2015-11-30 2017-06-09 调节技术塔尔萨有限责任公司 销释放热力阀
CN107327607A (zh) * 2017-08-31 2017-11-07 芜湖凡达机械科技有限公司 一种自动降落阀片的防火止回阀
CN216666559U (zh) * 2021-12-16 2022-06-03 浙江豪业机械制造有限公司 一种可调节水速的阀门结构
CN115089829A (zh) * 2022-06-30 2022-09-23 天津怡和嘉业医疗科技有限公司 防火装置、氧疗仪及通气治疗系统

Similar Documents

Publication Publication Date Title
US20190262571A1 (en) Swivel elbow and connector assembly for patient interface systems
US10406391B2 (en) Firesafe coupling
CN102133447B (zh) 用于cpap装置的加湿器和/或气流发生器
EP2102538B1 (en) Safety valve
US7731244B2 (en) Make-brake connector assembly with opposing latches
US5927312A (en) Method and apparatus for extinguishing combustion within combustible tubing
EP0992259B1 (en) A connector, in particular for use in a breathing circuit
WO2024002359A1 (zh) 防火装置、氧疗仪及通气治疗系统
EP2520837B1 (en) Fire safety valve
GB2418239A (en) Thermally activated safety coupling for oxygen supply
JP2022107688A (ja) コネクタ
CN219963788U (zh) 应用于氧疗设备的自动防火装置
US20220280819A1 (en) Firebreak device
CN219001549U (zh) 防火阀、通气设备
CN220558374U (zh) 防火装置及通气治疗设备
CN220110220U (zh) 患者接口装置
JP2022055856A (ja) 逆火防止用ガス継手
JP2024523153A (ja) 呼気弁アセンブリ及び呼気弁アセンブリを備えた呼吸ガスラインアセンブリ
CN219595512U (zh) 防火装置及通气治疗设备
CN115089828A (zh) 防火装置、氧疗仪及通气治疗系统
JP5621379B2 (ja) 酸素供給遮断器具
CN116557604A (zh) 一种阻燃装置以及具有阻燃功能的制氧机
NZ619618B2 (en) Swivel elbow and connector assembly for patient interface systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18580177

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830521

Country of ref document: EP

Kind code of ref document: A1