WO2024002091A1 - 针对串列式双风轮风电机组的全功率测试平台及方法 - Google Patents

针对串列式双风轮风电机组的全功率测试平台及方法 Download PDF

Info

Publication number
WO2024002091A1
WO2024002091A1 PCT/CN2023/102854 CN2023102854W WO2024002091A1 WO 2024002091 A1 WO2024002091 A1 WO 2024002091A1 CN 2023102854 W CN2023102854 W CN 2023102854W WO 2024002091 A1 WO2024002091 A1 WO 2024002091A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
test platform
full
tandem
drag
Prior art date
Application number
PCT/CN2023/102854
Other languages
English (en)
French (fr)
Inventor
逯智科
郭小江
唐巍
劳文欣
叶昭良
刘鑫
闫姝
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024002091A1 publication Critical patent/WO2024002091A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present disclosure belongs to the technical field of electric motor unit testing, and particularly relates to a full-power test platform and method for a tandem dual-rotor wind turbine unit.
  • the purpose of this disclosure is to provide a full-power test platform and method for a tandem twin-rotor wind turbine generator set, so as to solve the problem that there is currently no full-power test platform dedicated to a tandem twin-rotor wind turbine generator set.
  • Full-power test platform for tandem twin-rotor wind turbines including drag inverter, unit converter, tandem twin-rotor transmission chain, drag motor assembly, signal acquisition instrument, load simulator and hydraulic module ;
  • the two ends of the tandem double wind wheel drive chain are connected to drag motor components respectively.
  • the drag motor assemblies at both ends are connected to the drag inverter.
  • the unit converter and signal collector are connected to the tandem double wind wheel drive chain.
  • the wheel transmission chain; the signal acquisition instrument is connected to the load simulator, and the load simulator is connected to the hydraulic module; the drag frequency converter and the unit converter are connected to the external power grid respectively.
  • the external power grid is connected to the drag frequency converter and the unit converter through a first transformer, a second transformer is provided between the drag frequency converter and the first transformer, and between the unit converter and the first transformer A third transformer is provided.
  • a reactive power compensation unit is provided on the first transformer to compensate for the reactive power of the grid consumed by the test platform.
  • the drag motor assembly includes a drag motor, a torque flange, a reduction gearbox, a compensating coupling, and a Dynamic non-torque loader; the main shaft end of the tandem double wind wheel transmission chain is connected to the dynamic non-torque loader, and the dynamic non-torque loader, compensation coupling, reduction box gear, torque flange and drag motor are connected in sequence.
  • a dynamic non-torque loader is coupled to the hydraulic module.
  • the hydraulic module includes a hydraulic controller and a hydraulic station; the hydraulic controller is connected to the hydraulic station.
  • load simulator simulation parameters include wind speed, blade parameters, generator speed, and generator power.
  • a test method for a full-power test platform of a series double-rotor wind turbine includes the following steps:
  • Carry out loading tests according to different set average wind speeds record the vibration of each component of the transmission chain, the relevant temperature values of the generator, gearbox, and main bearing, and the power fluctuation of the generator in real time, and organize and analyze the operating data of each wind speed section.
  • the present disclosure has the following technical effects:
  • This disclosure proposes a full-power test platform for a tandem double-wind turbine wind turbine unit, which can consider the aerodynamic coupling effect between the two wind turbines and apply driving torque to the end sides of the two main shafts simultaneously to simulate the force of the unit in its real state. feature.
  • This disclosure can carry out full power testing for tandem twin-rotor wind turbines.
  • This disclosure can simulate the driving load under the influence of aerodynamic coupling of the front and rear wind wheels, and drag the transmission chain of the double wind turbine set to rotate through the 6-degree-of-freedom synchronous loading of the double wind wheels.
  • FIG. 3 is a flow chart of a testing method for a full-power test platform of a tandem dual-rotor wind turbine generator according to an embodiment of the present disclosure.
  • Disconnect switch 1 first transformer 2, second transformer 3, third transformer 4, reactive power compensation unit 5, drag converter 6, unit converter 7, drag motor 8, torque flange 9, reduction gear Box 10, compensation coupling 11, dynamic non-torque Moment loader 12, tandem double wind wheel transmission chain 13, signal acquisition instrument 19, load simulator 20, hydraulic controller 21, hydraulic station 22.
  • the test platform of the present disclosure includes a disconnect switch 1, a first transformer 2, a second transformer 3, a third transformer 4, a reactive power compensation unit 5, a drag converter 6, a unit converter 7, and a drag converter 6.
  • Motor 8 torque flange 9, reduction gearbox 10, compensation coupling 11, dynamic non-torque loader 12, tandem double wind wheel transmission chain 13, signal acquisition instrument 19, load simulator 20, hydraulic controller 21 , hydraulic station 22.
  • the load simulator 20 calculates the front and rear wind wheel degree of freedom loads in real time through wind speed, blade parameters, generator speed, generator power, etc., applies dynamic torque through the drag converter 6 and the drag motor 8, and applies the dynamic torque through the hydraulic controller 21 and the hydraulic station. 22 and dynamic non-torque loader 12 to apply the remaining 5 degrees of freedom dynamic loads.
  • the main shafts of the front and rear wind turbines drive the transmission chain to rotate, and the generator of the unit feeds electric energy back to the power grid, forming an energy loop on the test bench.
  • the signal acquisition system collects vibration data, temperature data, rotation speed data, power data, etc. during the test process in real time to analyze the performance of the transmission chain.
  • the full-power test platform for the series double-wind turbine wind turbine set of this application includes a drag converter 6, a unit converter 7, a series-type double-wind wheel transmission chain 13, and a drag motor.
  • Components, signal collector 19, load simulation 20 and hydraulic module The two ends of the tandem double wind wheel transmission chain 13 are respectively connected to drag motor assemblies, and the drag motor assemblies at both ends are connected to the drag inverter 6 .
  • the unit converter 7 and the signal collector 19 are both connected to the tandem double wind wheel transmission chain 13 .
  • the signal collector 19 is connected to the load simulator 20, and the load simulator 20 is connected to the hydraulic module. Drive the frequency converter 6 and the unit converter 7 to connect to the external power grid respectively.
  • the external power grid is connected to the driving frequency converter 6 and the unit converter 7 through the first transformer 2.
  • the second transformer 3 and the unit converter 7 are arranged between the drag frequency converter 6 and the first transformer.
  • a third transformer 4 is provided between the transformer and the first transformer.
  • a reactive power compensation unit is provided on the first transformer 2 to compensate for the reactive power of the power grid consumed by the test platform.
  • the drag motor assembly includes a drag motor 8 , a torque flange 9 , a reduction gearbox 10 , a compensation coupling 11 and a dynamic non-torque loader 12 .
  • the main shaft end of the tandem double wind wheel transmission chain 13 is connected to the dynamic non-torque loader 12.
  • the dynamic non-torque loader 12, the compensation coupling 11, the reduction box gear 10, the torque flange 9 and the drag motor 8 are connected in sequence.
  • the two groups of drag motor assemblies respectively located at both ends of the tandem double-wind wheel transmission chain 13 can be arranged symmetrically with respect to the tandem double-wind wheel transmission chain 13 .
  • the simulation parameters of load simulator 20 include wind speed, blade parameters, generator speed, and generator power.
  • This disclosure also proposes a test method for a full-power test platform for a tandem twin-rotor wind turbine set, which can be implemented through the above-mentioned full-power test platform for a tandem twin-turbine wind turbine set.
  • the test method includes the following steps:
  • Step 120 Insulation and static testing.
  • Step 130 No-load test.
  • Step 140 Grid connection and full power test.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.

Abstract

公开了针对串列式双风轮风电机组的全功率测试平台及方法,该测试平台包括拖动变频器、机组变流器、串列式双风轮传动链、拖动电机组件、信号采集仪、载荷模拟器和液压模块,其中串列式双风轮传动链的两端分别连接有拖动电机组件,两端的拖动电机组件均连接到拖动变频器,机组变流器和信号采集仪均连接到串列式双风轮传动链;信号采集仪连接载荷模拟器,载荷模拟器连接液压模块;拖动变频器和机组变流器分别连接外部电网。

Description

针对串列式双风轮风电机组的全功率测试平台及方法 技术领域
本公开属于电机组测试技术领域,特别涉及针对串列式双风轮风电机组的全功率测试平台及方法。
背景技术
当前,风电机组正朝着大功率、长叶片、高塔筒方向发展,在材料体系无法取得突破的情况下,其核心关键技术将受到诸多限制。在单风轮风机机组效率难以提升的困境下,亟需发展新型高效风能转换装置。串列式双风轮风电机组因其高效率受到关注。
相对于单风轮风电机组,串列式双风轮风电机组传动系统更长、更复杂,且两风轮间存在气动干涉和耦合。因此,需要在地面开展全面的功率测试以确保双风轮风电机组安全和可靠。然而国内外全功率测试平台主要针对单风轮风电机组,未有专用于串列式双风轮风电机组的全功率测试平台。现有的全功率测试平台主要针对单风轮风电机组,只能拖动单个风轮转动,无法用于双风轮风电机组的全功率测试,并且只能模拟单个风轮气动受力状态,无法模拟双风轮气动耦合受力状态。
发明内容
本公开的目的在于提供针对串列式双风轮风电机组的全功率测试平台及方法,以解决当前未有专用于串列式双风轮风电机组的全功率测试平台问题。
为实现上述目的,本公开采用以下技术方案:
针对串列式双风轮风电机组的全功率测试平台,包括拖动变频器、机组变流器、串列式双风轮传动链、拖动电机组件、信号采集仪、载荷模拟器和液压模块;串列式双风轮传动链的两端分别连接有拖动电机组件,两端的拖动电机组件均连接到拖动变频器,机组变流器和信号采集仪均连接到串列式双风轮传动链;信号采集仪连接载荷模拟器,载荷模拟器连接液压模块;拖动变频器和机组变流器分别连接外部电网。
在一些实施例中,外部电网通过第一变压器连接到拖动变频器和机组变流器,拖动变频器和第一变压器之间设置有第二变压器,机组变流器和第一变压器之间设置有第三变压器。
在一些实施例中,第一变压器上设置有无功补偿单元,用来补偿试验平台所消耗的电网无功功率。
在一些实施例中,拖动电机组件包括拖动电机、扭矩法兰、减速箱齿轮、补偿联轴器和 动态非扭矩加载器;串列式双风轮传动链主轴端连接动态非扭矩加载器,动态非扭矩加载器、补偿联轴器、减速箱齿轮、扭矩法兰和拖动电机依次连接。
在一些实施例中,动态非扭矩加载器连接液压模块。
在一些实施例中,液压模块包括液压控制器和液压站;液压控制器连接液压站。
在一些实施例中,载荷模拟器模拟参数包括风速、叶片参数、发电机转速和发电机功率。
在一些实施例中,针对串列式双风轮风电机组的全功率测试平台的测试方法,包括以下步骤:
安装双风轮机组传动链,将前后风轮主轴端分别与动态非扭矩加载器输出端连接;
在上电前对机舱柜内的线路进行绝缘测试,上电后对机组进行静态测试;
拖动电机拖动双风轮机组传动链至额定转速,空转一段时间,检查机组运行是否平稳,有误振动和漏油异常情况;
分别按照不同的设定平均风速进行加载测试,实时记录传动链各部件振动,发电机、齿轮箱、主轴承相关温度值,发电机功率波动,对各风速段运行数据进行整理和分析。
与现有技术相比,本公开有以下技术效果:
本公开提出一种针对串列式双风轮风电机组的全功率测试平台,能够考虑两风轮间气动耦合作用,分别同时给两个主轴端面侧施加驱动力矩,以模仿机组真实状态下受力特征。本公开可针对串列式双风轮风电机组开展全功率测试。本公开可模拟前后风轮气动耦合影响下的驱动载荷,并通过双风轮6自由度同步加载来拖动双风轮风电机组传动链转动。
通过该测试平台,可完成以下测试检验:(1)控制器和电气系统功能测试验证;(2)机组并网功能测试;(3)有功功率和无功功率解耦测试;(4)电能质量分析;(5)满功率部件温升测试;(6)传动链振动特性和可靠性测试。
附图说明
图1为根据本公开实施例的针对串列式双风轮风电机组的全功率测试平台的结构示意图。
图2为根据本公开实施例的串列式双风轮传动链示意图。
图3为根据本公开实施例的针对串列式双风轮风电机组的全功率测试平台的测试方法的流程图。
其中:
断网开关1、第一变压器2、第二变压器3、第三变压器4、无功补偿单元5、拖动变频器6、机组变流器7、拖动电机8、扭矩法兰9、减速齿轮箱10、补偿联轴器11、动态非扭 矩加载器12、串列式双风轮传动链13、信号采集仪19、载荷模拟器20、液压控制器21、液压站22。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
以下结合附图对本公开进一步说明。
图1是根据本公开实施例的一种针对串列式双风轮风电机组的全功率测试平台的结构示意图。本公开的测试平台考虑了两风轮间气动耦合作用,分别同时给两个主轴端面侧施加驱动力矩,以模仿机组真实状态下受力特征。通过该测试平台,可完成以下测试检验:(1)控制器和电气系统功能测试验证;(2)机组并网功能测试;(3)有功功率和无功功率解耦测试;(4)电能质量分析;(5)满功率部件温升测试;(6)传动链振动特性和可靠性测试。
参见图1,本公开的测试平台包括断网开关1、第一变压器2、第二变压器3、第三变压器4、无功补偿单元5、拖动变频器6、机组变流器7、拖动电机8、扭矩法兰9、减速齿轮箱10、补偿联轴器11、动态非扭矩加载器12、串列式双风轮传动链13、信号采集仪19、载荷模拟器20、液压控制器21、液压站22。
第二变压器3用于拖动电机与电网隔离,第三变压器4为双风轮机组并网接入点,第一变压器2在第二变压器3和第三变压器4的前端,与公共电网隔离,在此处增加1个无功补偿单元5,用来补偿试验平台所消耗的电网无功功率。拖动电机8通过扭矩法兰9与减速齿轮箱10连接,通过减速齿轮箱10降速以模拟真实风轮转速。减速齿轮箱10通过补偿联轴器11与动态非扭矩加载器12连接,动态非扭矩加载器12与被测系统(即串列式双风轮传动链13)主轴端连接。通过拖动电机8配合动态非扭矩加载器12来施加前后叶轮自由度载荷(Fx、Fy、Fz、Mx、My、Mz),参见图2。
载荷模拟器20通过风速、叶片参数、发电机转速、发电机功率等实时计算前后风轮自由度载荷,经拖动变频器6和拖动电机8施加动态扭矩,经液压控制器21、液压站22和动态非扭矩加载器12来施加其余5自由度动态载荷。前后风轮主轴带动传动链转动,机组发电机把电能回馈到电网中,在试验台上形成能量回路。信号采集系统实时采集测试过程中的振动数据、温度数据、转速数据和功率数据等,用于对传动链性能进行分析。
具体地,参见图1,本申请的针对串列式双风轮风电机组的全功率测试平台包括拖动变频器6、机组变流器7、串列式双风轮传动链13、拖动电机组件、信号采集仪19、载荷模拟 器20和液压模块。其中串列式双风轮传动链13的两端分别连接有拖动电机组件,两端的拖动电机组件均连接到拖动变频器6。机组变流器7和信号采集仪19均连接到串列式双风轮传动链13。信号采集仪19连接载荷模拟器20,载荷模拟器20连接液压模块。拖动变频器6和机组变流器7分别连接外部电网。
在一些实施例中,外部电网通过第一变压器2连接到拖动变频器6和机组变流器7,拖动变频器6和第一变压器之间设置有第二变压器3,机组变流器7和第一变压器之间设置有第三变压器4。进一步地,第一变压器2上设置有无功补偿单元,用来补偿试验平台所消耗的电网无功功率。
在一些实施例中,拖动电机组件包括拖动电机8、扭矩法兰9、减速箱齿轮10、补偿联轴器11和动态非扭矩加载器12。串列式双风轮传动链13主轴端连接动态非扭矩加载器12。动态非扭矩加载器12、补偿联轴器11、减速箱齿轮10、扭矩法兰9和拖动电机8依次连接。此外,分别处在串列式双风轮传动链13的两端的两组拖动电机组件可以相对于串列式双风轮传动链13对称布置。
在一些实施例中,动态非扭矩加载器12连接液压模块。其中液压模块包括液压控制器21和液压站22。液压控制器21连接液压站22。
在一些实施例中,载荷模拟器20的模拟参数包括风速、叶片参数、发电机转速和发电机功率。
本公开还提出了针对串列式双风轮风电机组的全功率测试平台的测试方法,其可以通过上述针对串列式双风轮风电机组的全功率测试平台实施,测试方法包括以下步骤:
安装双风轮机组传动链13,将前后风轮主轴端分别与动态非扭矩加载器12输出端连接;
在上电前对机舱柜内的线路进行绝缘测试,上电后对机组进行静态测试;
拖动电机8拖动双风轮机组传动链13至额定转速,空转一段时间,检查机组运行是否平稳,有误振动和漏油异常情况;
分别按照不同的设定平均风速进行加载测试,实时记录传动链各部件振动,发电机、齿轮箱、主轴承相关温度值,发电机功率波动,对各风速段运行数据进行整理和分析。
图3是根据本公开实施例的针对串列式双风轮风电机组的全功率测试平台的测试方法的流程图。其中所述方法包括步骤110、120、130和140。
步骤110:传动链安装及电缆敷设。
在这一步骤中,按照要求安装双风轮机组传动链,将前后风轮主轴端分别与动态非扭矩加载器输出端连接;按照要求敷设电缆和完成电装。
步骤120:绝缘及静态测试。
在这一步骤中,在上电前对机舱柜内的线路进行绝缘测试,上电后对机组进行静态测试(主要检查传感器读数是否准确,执行器是否能按要求正常动作)。
步骤130:空载测试。
在这一步骤中,拖动电机拖动双风轮机组传动链至额定转速,空转一段时间,检查机组运行是否平稳,有误振动和漏油异常情况。
步骤140:并网及全功率测试。
在这一步骤中,按照预设平均分数进行加载测试,例如分别按照4m/s、6m/s、8m/s、10m/s、12m/s平均风速进行加载测试,各风速下运行30分钟。实时记录传动链各部件振动,发电机、齿轮箱、主轴承相关温度值,发电机功率波动等,对各风速段运行数据进行整理和分析。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

  1. 一种针对串列式双风轮风电机组的全功率测试平台,包括拖动变频器(6)、机组变流器(7)、串列式双风轮传动链(13)、拖动电机组件、信号采集仪(19)、载荷模拟器(20)和液压模块,
    其中串列式双风轮传动链(13)的两端分别连接有拖动电机组件,两端的拖动电机组件均连接到拖动变频器(6),
    机组变流器(7)和信号采集仪(19)均连接到串列式双风轮传动链(13),
    信号采集仪(19)连接载荷模拟器(20),载荷模拟器(20)连接液压模块,和
    拖动变频器(6)和机组变流器(7)分别连接外部电网。
  2. 根据权利要求1所述的针对串列式双风轮风电机组的全功率测试平台,其中外部电网通过第一变压器(2)连接到拖动变频器(6)和机组变流器(7),拖动变频器(6)和第一变压器之间设置有第二变压器(3),机组变流器(7)和第一变压器之间设置有第三变压器(4)。
  3. 根据权利要求2所述的针对串列式双风轮风电机组的全功率测试平台,其中第一变压器(2)上设置有无功补偿单元,用来补偿试验平台所消耗的电网无功功率。
  4. 根据权利要求1至3中任一项所述的针对串列式双风轮风电机组的全功率测试平台,其中拖动电机组件包括拖动电机(8)、扭矩法兰(9)、减速箱齿轮(10)、补偿联轴器(11)和动态非扭矩加载器(12),其中串列式双风轮传动链(13)主轴端连接动态非扭矩加载器(12),动态非扭矩加载器(12)、补偿联轴器(11)、减速箱齿轮(10)、扭矩法兰(9)和拖动电机(8)依次连接。
  5. 根据权利要求4所述的针对串列式双风轮风电机组的全功率测试平台,其中动态非扭矩加载器(12)连接液压模块。
  6. 根据权利要求1至5中任一项所述的针对串列式双风轮风电机组的全功率测试平台,其中液压模块包括液压控制器(21)和液压站(22),液压控制器(21)连接液压站(22)。
  7. 根据权利要求1至6中任一项所述的针对串列式双风轮风电机组的全功率测试平台,其中载荷模拟器(20)模拟参数包括风速、叶片参数、发电机转速和发电机功率。
  8. 一种针对串列式双风轮风电机组的全功率测试平台的测试方法,由权利要求1至7中任一项所述的针对串列式双风轮风电机组的全功率测试平台实施,包括以下步骤:
    安装双风轮机组传动链,将前后风轮主轴端分别与动态非扭矩加载器输出端连接;
    在上电前对机舱柜内的线路进行绝缘测试,上电后对机组进行静态测试;
    拖动电机拖动双风轮机组传动链至额定转速,空转一段时间,检查机组运行是否平稳,有误振动和漏油异常情况;和
    分别按照不同的设定平均风速进行加载测试,实时记录传动链各部件振动,发电机、齿轮箱、主轴承相关温度值,发电机功率波动,对各风速段运行数据进行整理和分析。
PCT/CN2023/102854 2022-06-28 2023-06-27 针对串列式双风轮风电机组的全功率测试平台及方法 WO2024002091A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210744312.8A CN115013256A (zh) 2022-06-28 2022-06-28 针对串列式双风轮风电机组的全功率测试平台及方法
CN202210744312.8 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024002091A1 true WO2024002091A1 (zh) 2024-01-04

Family

ID=83077443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102854 WO2024002091A1 (zh) 2022-06-28 2023-06-27 针对串列式双风轮风电机组的全功率测试平台及方法

Country Status (2)

Country Link
CN (1) CN115013256A (zh)
WO (1) WO2024002091A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013256A (zh) * 2022-06-28 2022-09-06 中国华能集团清洁能源技术研究院有限公司 针对串列式双风轮风电机组的全功率测试平台及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110023629A1 (en) * 2009-07-31 2011-02-03 Mts Systems Corporation Wind turbine drive train test assembly
CN104048826A (zh) * 2014-06-10 2014-09-17 清华大学 一种风电传动系统的多向交变载荷模拟试验装置及方法
CN112324623A (zh) * 2020-11-30 2021-02-05 中国华能集团清洁能源技术研究院有限公司 一种直驱对转双风轮风电机组
CN113465961A (zh) * 2021-06-07 2021-10-01 中国电力科学研究院有限公司 风电机组传动链全尺寸地面加载测试系统及其控制方法
CN113865862A (zh) * 2021-08-26 2021-12-31 中国电力科学研究院有限公司 一种风电机组传动链全尺寸地面测试系统及其控制方法
CN114019379A (zh) * 2021-12-07 2022-02-08 中国华能集团清洁能源技术研究院有限公司 一种风力发电机组试验系统及其运行方法
CN115013256A (zh) * 2022-06-28 2022-09-06 中国华能集团清洁能源技术研究院有限公司 针对串列式双风轮风电机组的全功率测试平台及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110023629A1 (en) * 2009-07-31 2011-02-03 Mts Systems Corporation Wind turbine drive train test assembly
CN104048826A (zh) * 2014-06-10 2014-09-17 清华大学 一种风电传动系统的多向交变载荷模拟试验装置及方法
CN112324623A (zh) * 2020-11-30 2021-02-05 中国华能集团清洁能源技术研究院有限公司 一种直驱对转双风轮风电机组
CN113465961A (zh) * 2021-06-07 2021-10-01 中国电力科学研究院有限公司 风电机组传动链全尺寸地面加载测试系统及其控制方法
CN113865862A (zh) * 2021-08-26 2021-12-31 中国电力科学研究院有限公司 一种风电机组传动链全尺寸地面测试系统及其控制方法
CN114019379A (zh) * 2021-12-07 2022-02-08 中国华能集团清洁能源技术研究院有限公司 一种风力发电机组试验系统及其运行方法
CN115013256A (zh) * 2022-06-28 2022-09-06 中国华能集团清洁能源技术研究院有限公司 针对串列式双风轮风电机组的全功率测试平台及方法

Also Published As

Publication number Publication date
CN115013256A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
Ragheb et al. Wind turbine gearbox technologies
US7095129B2 (en) Methods and apparatus for rotor load control in wind turbines
WO2024002091A1 (zh) 针对串列式双风轮风电机组的全功率测试平台及方法
Cotrell A preliminary evaluation of a multiple-generator drivetrain configuration for wind turbines
CN101769227B (zh) 风力涡轮机传动轴连接装置
CN101957260A (zh) 大功率齿轮箱机械封闭式综合试验装置
CN110398380B (zh) 一种电动轮整车交流电传动试验系统及方法
CN102854463B (zh) 一种兆瓦级风力模拟试验系统及试验方法
Matzke et al. Full scale system simulation of a 2.7 MW wind turbine on a system test bench
CN111963389B (zh) 一种低风速风电机组的多场耦合整机模型建立方法
Wilkinson et al. Extracting condition monitoring information from a wind turbine drive train
CN202075127U (zh) 大功率风力发电机组变桨轴承试验台
CN102608531B (zh) 一种风力发电机的型式试验装置
CN104931265B (zh) 大型风力发电机组工作性能试验装置及其试验方法
WO2023274185A1 (zh) 一种燃气轮机多机并车装置半物理仿真试验台及试验方法
Bharti et al. Reliability assessment and performance analysis of DFIG-based WT for wind energy conversion system
CN215933015U (zh) 一种模拟风车不平衡的gtf发动机教学实验系统
CN201955236U (zh) 大功率风力发电机组整机试验台的载荷加载装置
CN113495004B (zh) 一种车辆用永磁牵引系统试验装置及其控制方法
CN202661600U (zh) 一种风力发电机的型式试验装置
CN206399651U (zh) 液力变矩器试验台
CN204535991U (zh) 一种风电齿轮箱非扭矩载荷动态加载装置
CN113623146B (zh) 风力发电机组齿轮箱疲劳状态在线监测方法
CN117780568A (zh) 用于测试风力发电机组的实验台
Molly et al. Wind Energy–Quo Vadis?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830268

Country of ref document: EP

Kind code of ref document: A1