WO2024002078A1 - 发送信号的方法、接收信号的方法、装置、系统及介质 - Google Patents

发送信号的方法、接收信号的方法、装置、系统及介质 Download PDF

Info

Publication number
WO2024002078A1
WO2024002078A1 PCT/CN2023/102791 CN2023102791W WO2024002078A1 WO 2024002078 A1 WO2024002078 A1 WO 2024002078A1 CN 2023102791 W CN2023102791 W CN 2023102791W WO 2024002078 A1 WO2024002078 A1 WO 2024002078A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
optical module
electrical chip
signals
Prior art date
Application number
PCT/CN2023/102791
Other languages
English (en)
French (fr)
Inventor
吴逸文
卢彦兆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024002078A1 publication Critical patent/WO2024002078A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present application relates to the field of communications, and in particular to a method of transmitting signals, a method of receiving signals, a device, a system and a medium.
  • the device often includes a plurality of components, and the plurality of components includes a first component and a second component.
  • the first device and the second device communicate through a physical channel.
  • the first device and the second device are connected through a plurality of pins, which are physical channels between the first device and the second device, and the first device communicates with the second device through the plurality of pins.
  • Each physical channel between the first device and the second device corresponds to a different signal, and these signals include signals interacted between the first device and the second device.
  • signals include signals interacted between the first device and the second device.
  • the first device and the second device need to interact with new signals to implement the new function.
  • a physical channel needs to be added between the first device and the second device. Added physical channels to transmit new signals.
  • optical line terminal (OLT) equipment includes an electrical chip and an optical module.
  • the electrical chip and the optical module are connected through 20 pins.
  • the 20 pins are used to transmit different signals.
  • some pins are For transmitting downlink service signals, some pins are used to transmit uplink service signals, and some pins are used to transmit control signals.
  • the optical digital signal processing (oDSP) function can be added to the optical module to increase the signal processing rate.
  • two pins are added between the electrical chip and the optical module.
  • the chip sends a differential clock signal to the optical module through these two pins, and the optical module uses the differential clock signal to perform the oDSP function.
  • This application provides a method of sending signals, a method, a device, a system and a medium for receiving signals, so as to reduce costs and ensure that signals can be successfully sent.
  • the technical solutions are as follows:
  • this application discloses a method of sending signals.
  • an electronic chip combines a first signal and a second signal into a third signal.
  • the first signal is the signal corresponding to the first channel
  • the second signal is The signal is a signal corresponding to the second channel.
  • the electrical chip sends the third signal to the optical module through the first channel.
  • the electrical chip Since the electrical chip combines the first signal corresponding to the first channel and the second signal corresponding to the second channel into a third signal, it sends the third signal to the optical module through the first channel, thus freeing up the second channel.
  • the electrical chip can pass the second channel to the optical module A fourth signal is sent.
  • the fourth signal is a signal in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. That is, the fourth signal is a new signal added between the electrical chip and the optical module. In this way, there is no need to add a new physical channel between the electrical chip and the optical module.
  • the electrical chip can ensure that the first signal corresponding to the first channel and the second signal corresponding to the second channel are successfully sent to the optical module, and can also add new signals.
  • the electronic chip combines the first signal and the second signal into a third signal through time division multiplexing.
  • the electronic chip combines the first signal and the second signal into a third signal through coding. This enriches the ways to combine signals.
  • the electrical chip sends a fourth signal to the optical module through the second channel
  • the fourth signal is a signal in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. Since the second channel is a free physical channel, sending the fourth signal through the second channel eliminates the need to add a new channel between the electrical chip and the optical module, which not only reduces hardware costs but also ensures that the fourth signal can be successfully sent.
  • the electronic chip combines the fifth signal, the first signal and the second signal into a third signal, the fifth signal is a signal corresponding to the third channel, and the at least two physical channels also include a third signal.
  • the electrical chip sends the fourth signal to the optical module through the second channel and the third channel.
  • the fourth signal is a dual-channel signal.
  • the electronic chip requires two physical channels to send the dual-channel signal. Since the signals corresponding to the three physical channels are merged into the third signal, the second channel and the third channel are vacated. This ensures that the fourth signal can be successfully sent.
  • the optical module includes an optical digital signal processing oDSP function
  • the fourth signal includes a differential clock signal
  • the differential clock signal is used to cause the optical module to perform the oDSP function. Since the fourth signal is a differential clock signal, it is guaranteed that the optical module can successfully perform the oDSP function based on the differential clock signal.
  • the first signal and the second signal are service signals of different services; or the first signal is a service signal and the second signal is a control signal; or the first signal and the second signal are different control signals.
  • different types of signals can be combined, improving the flexibility of combining signals.
  • the first signal and the second signal are signals in a passive optical network (PON) network; or the first signal and the second signal are signals in an Ethernet network.
  • PON passive optical network
  • Ethernet Ethernet network
  • the first signal and the second signal are signals in a PON network
  • the first signal is a signal in a first-rate PON network
  • the second signal is a signal in a second-rate PON network.
  • this application discloses a method for receiving signals.
  • the optical module receives the third signal sent by the electrical chip through the first channel.
  • the third signal is obtained by combining the first signal and the second signal.
  • the first signal is the first
  • the second signal is the signal corresponding to the second channel
  • the optical module acquires the first signal and the second signal based on the third signal.
  • the optical module receives the third signal through the first channel, thus freeing up the second channel.
  • the optical module can receive the fourth signal sent by the electrical chip through the second channel.
  • the fourth signal is in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. That is, the fourth signal is between the electrical chip and the optical module. New signals added between modules. In this way, there is no need to add a new physical channel between the electrical chip and the optical module.
  • the optical module can ensure that the first signal corresponding to the first channel and the second signal corresponding to the second channel are successfully received, and can also receive the added new signal, reducing the cost. The cost of hardware.
  • the third signal is obtained by combining the first signal and the second signal through time division multiplexing.
  • the optical module acquires the first signal and the second signal from the third signal based on the transmission rate of the first signal and the transmission rate of the second signal.
  • the third signal is obtained by combining the first signal and the second signal through encoding.
  • the optical module decodes the third signal to obtain the first signal and the second signal. This enriches the ways to combine signals.
  • the optical module receives a fourth signal sent by the electrical chip through the second channel, and the fourth signal is a signal in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. Since the second channel is a free physical channel, receiving the fourth signal through the second channel eliminates the need to add a new physical channel between the electrical chip and the optical module, which not only reduces hardware costs but also ensures that the fourth signal can be successfully received.
  • the third signal is obtained by combining the fifth signal, the first signal and the second signal
  • the fifth signal is a signal corresponding to the third channel
  • the at least two physical channels also include a third signal.
  • the optical module receives the fourth signal sent by the electrical chip through the second channel and the third channel.
  • the fourth signal is a dual-channel signal, which requires two physical channels to transmit the dual-channel signal. Since the signals corresponding to the three physical channels are merged into the third signal to free up the second channel and the third channel, this can It is guaranteed to successfully receive the fourth signal from the second channel and the third channel.
  • the optical module includes an optical digital signal processing oDSP function
  • the fourth signal includes a differential clock signal.
  • the optical module performs oDSP functions based on this differential clock signal. Since the fourth signal is a differential clock signal, it is guaranteed that the optical module can successfully perform the oDSP function based on the differential clock signal.
  • the first signal and the second signal are service signals of different services; or the first signal is a service signal and the second signal is a control signal; or the first signal and the second signal are different control signals.
  • different types of signals can be combined, improving the flexibility of combining signals.
  • the first signal and the second signal are signals in a passive optical network (PON) network; or the first signal and the second signal are signals in an Ethernet network.
  • PON passive optical network
  • Ethernet Ethernet network
  • the first signal and the second signal are signals in a PON network
  • the first signal is a signal in a first-rate PON network
  • the second signal is a signal in a second-rate PON network.
  • this application provides a device, which includes an electrical chip and an optical module.
  • the electrical chip combines the first signal and the second signal into a third signal.
  • the first signal is the signal corresponding to the first channel
  • the second signal is the signal corresponding to the second channel.
  • the electrical chip sends the third signal to the optical module through the first channel.
  • the optical module acquires the first signal and the second signal based on the third signal.
  • the electrical chip Since the electrical chip combines the first signal corresponding to the first channel and the second signal corresponding to the second channel into a third signal, it sends the third signal to the optical module through the first channel, and the optical module obtains the first signal and the sum of the first signal based on the third signal. The second signal, thus freeing up the second channel. In this way, the electrical chip can send the fourth signal to the optical module through the second channel.
  • the fourth signal is in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. That is, the fourth signal is between the electrical chip and the optical module. New signals added between modules. In this way, there is no need to add a new physical channel between the electrical chip and the optical module.
  • the electrical chip can ensure that the first signal corresponding to the first channel and the second signal corresponding to the second channel are successfully sent to the optical module, and can also add new signals. Successfully sent to the optical module, reducing the cost of hardware. Since there is no need to add new physical channels between the electrical chip and the optical module, even if the number of physical channels between the electrical chip and the optical module has reached the maximum allowable number of channels between the electrical core and the optical module, it will not affect the connection between the electrical chip and the optical module. Sending a signal ensures that the signal can be sent successfully, which broadens the usage scenarios of this signaling method.
  • the electrical chip combines the first signal and the second signal into a third signal through time division multiplexing, and the optical module obtains the third signal based on the transmission rate of the first signal and the transmission rate of the second signal. Obtain the first signal and the second signal among the three signals.
  • the electrical chip combines the first signal and the second signal into a third signal through encoding, and the optical module decodes the third signal to obtain the first signal and the second signal. This enriches the ways to combine signals.
  • the electrical chip sends a fourth signal to the optical module through the second channel
  • the fourth signal is a signal in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. Since the second channel is a free physical channel, sending the fourth signal through the second channel eliminates the need to add a new physical channel between the electrical chip and the optical module, which not only reduces hardware costs but also ensures that the fourth signal can be successfully sent.
  • the electronic chip combines the fifth signal, the first signal and the second signal into a third signal, the fifth signal is a signal corresponding to the third channel, and the at least two physical channels also include a third signal.
  • the electrical chip sends the fourth signal to the optical module through the second channel and the third channel.
  • the fourth signal is a dual-channel signal.
  • the electronic chip requires two physical channels to send the dual-channel signal. Since the signals corresponding to the three channels are merged into the third signal, the second channel and the third channel are vacated, so It is guaranteed that the fourth signal can be successfully sent.
  • the optical module includes an optical digital signal processing oDSP function
  • the fourth signal includes a differential clock signal.
  • the optical module performs oDSP functions based on differential clock signals. Since the fourth signal is a differential clock signal, it is guaranteed that the optical module can successfully perform the oDSP function based on the differential clock signal.
  • the first signal and the second signal are service signals of different services; or, the first signal The signal is a service signal and the second signal is a control signal; or the first signal and the second signal are different control signals.
  • different types of signals can be combined, improving the flexibility of combining signals.
  • the first signal and the second signal are signals in a passive optical network (PON) network; or the first signal and the second signal are signals in an Ethernet network.
  • PON passive optical network
  • Ethernet Ethernet network
  • the first signal and the second signal are signals in a PON network
  • the first signal is a signal in a first-rate PON network
  • the second signal is a signal in a second-rate PON network.
  • this application provides a device for sending a signal, used to perform the method in the first aspect or any possible implementation of the first aspect.
  • the apparatus includes a unit for performing the method in the first aspect or any possible implementation of the first aspect.
  • this application provides a device for receiving a signal, for performing the method in the second aspect or any possible implementation of the second aspect.
  • the device includes a unit for performing the method in the second aspect or any possible implementation of the second aspect.
  • the present application provides an electrical chip.
  • the electrical chip includes a processing circuit, and the processing unit is configured to execute the method in the first aspect or any possible implementation of the first aspect.
  • the processing circuit includes a digital circuit or an analog circuit.
  • the present application provides an optical module, which includes a processing circuit configured to perform the method in the second aspect or any possible implementation of the second aspect.
  • the processing circuit includes a digital circuit or an analog circuit.
  • the present application provides a computer program product.
  • the computer program product includes a computer program, and the computing program is loaded by a computer to implement the first aspect, the second aspect, or any possible implementation of the first aspect. way method.
  • the present application provides a computer-readable storage medium for storing a computer program, which is loaded by a processor to execute the first aspect, the second aspect, or any possible implementation of the first aspect.
  • the present application provides a chip, including a memory and a processor.
  • the memory is used to store computer instructions
  • the processor is used to call and run the computer instructions from the memory to execute the first aspect, the second aspect or the third aspect.
  • any possible implementation method any possible implementation method.
  • the present application provides a system for sending signals, the system including the device described in the fourth aspect and the device described in the fifth aspect, or the system including the device described in the sixth aspect and The device described in the seventh aspect.
  • Figure 1 is a schematic structural diagram of a system for sending signals provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a PON system provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a 22-pin Combo module provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a 20-pin Combo module provided by an embodiment of the present application.
  • Figure 6 is a flow chart of a method for sending signals provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a combined signal provided by an embodiment of the present application.
  • Figure 8 is a flow chart of another method of sending signals provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of another combined signal provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of another combined signal provided by an embodiment of the present application.
  • Figure 11 is a flow chart of another method of sending signals provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a device for sending signals provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a device for receiving signals provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a device for sending signals provided by an embodiment of the present application.
  • an embodiment of the present application provides a system 100 for sending signals.
  • the system 100 includes a first device 101 and a second device 102.
  • the first device 101 and the second device 102 are connected.
  • the first device 101 can send signals to the second device 102.
  • the second device 102 sends a signal, and/or the second device 102 is able to send a signal to the first device 101 .
  • the system 100 includes one second device 102, or the system 100 includes a plurality of second devices 102, the first device 101 is connected to each second device 102, and the first device 101 is capable of communicating to each second device 102.
  • the second device 102 sends a signal, and/or each second device 102 is capable of sending a signal to the first device 101 .
  • the first device 101 and the second device 102 are connected through a cable, and the cable includes an optical fiber or a coaxial cable.
  • the system 100 is a passive optical network (PON) system
  • the first device 101 is the OLT of the PON system
  • the second device 102 is the optical network unit (ONU) of the PON system.
  • the OLT is connected to multiple ONUs through optical fibers.
  • the OLT can send optical signals to each ONU through the optical fiber, and/or, each ONU can send optical signals to the OLT through the optical fiber.
  • a first rate PON and/or a second rate PON are run on the PON system.
  • the first rate PON is a 10Gbit/s Ethernet passive optical network (10Gbit/s ethernet passive optical network, XG(S)PON), and the second rate PON is a gigabit passive optical network (gigabit-capable PON). , GPON).
  • the system 100 is applied to Ethernet, the first device 101 and the second device 102 are devices in the Ethernet, and the first device 101 and the second device 102 are connected through optical fiber or coaxial cable.
  • the first device 101 is a router, a switch, etc.
  • the second device 102 is a router, a switch, etc.
  • an embodiment of the present application provides a device 300 , which may be the first device 101 or the second device 102 in the system 100 shown in FIG. 1 .
  • the device 300 is an OLT or ONU in the PON system shown in Figure 2 above.
  • the device 300 is a router or switch in an Ethernet network.
  • the device 300 includes a first device 301 and a second device 302, the first device 301 and the second device 302 are connected through at least two physical channels, the first device 301 sends a signal to the second device 302 through the physical channels, and/or, The second device 302 sends a signal to the first device 301 through the physical channel.
  • each physical channel corresponds to a different signal
  • the signal is an interactive signal between the first device 301 and the second device 302 . That is to say, the first device 301 and the second device 302 use the physical channel corresponding to the signal to transmit the signal, that is, the first device 301 uses the physical channel corresponding to the signal to send the signal to the second device 302, or the second device 301 uses the physical channel corresponding to the signal to transmit the signal.
  • the device 302 uses the physical channel corresponding to the signal to send the signal to the first device 301.
  • the first device 301 may be a single board or chip in the device 300
  • the second device 302 may be a single board or chip in the device 300
  • the first device 301 and the second device 302 are two different single boards in the device 300
  • the first device 301 is a single board in the device 300 and the second device 302 is a chip in the device 300 .
  • the above-mentioned chip includes an electrical chip, etc.
  • the above-mentioned single board includes an optical module, etc.
  • the device 300 includes an electrical chip and an optical module.
  • the device 300 is an OLT device or an ONU device.
  • the OLT device or the ONU device includes an electrical chip and an optical module.
  • the electrical chip is a media access control layer (media access control, MAC) single board, etc.
  • a device (first device 301 or second device 302) in the device 300 includes a module with digital processing capabilities.
  • it can include OLT optical modules, ONU modules, Ethernet modules, small form-factor pluggable (SFP) modules and/or 100G packaged pluggable optical modules (centum form-factor pluggable transceiver, CFP) modules, etc.
  • the OLT optical module includes an OLT optical module with a dual-channel optical device combination or an OLT optical module with a non-dual-channel optical device combination.
  • the OLT optical module with a dual-channel optical device combination can also be called a Combo OLT module.
  • Non-dual-channel optical module The OLT optical module with a combination of devices can also be called a non-Combo OLT module.
  • the physical channel is a channel used to transmit electrical signals between the first device 301 and the second device 302 .
  • the physical channel includes one or more pins, or one or more buses, etc.
  • the physical channel between the electrical chip and the optical module is a channel used to transmit electrical signals between the electrical chip and the optical module.
  • the electrical chip and the optical module are connected through pins, and the pins are channels used to transmit electrical signals between the electrical chip and the optical module.
  • the optical module includes a plurality of pins
  • the electrical chip includes a base.
  • the plurality of pins are plugged into the base, so that the electrical chip is connected to the optical module through the plurality of pins.
  • the OLT includes an electrical chip and/or an optical module
  • the ONU includes an electrical chip and/or an optical module
  • the routers or switches in the Ethernet include electrical chips and/or optical modules.
  • the electrical chip when the device 300 is an OLT or ONU, the electrical chip includes a base, and the optical module includes a Combo module.
  • the Combo module is a circuit board, and pins are provided on both sides of the Combo module. Plug the Combo module of the optical module into the base of the electrical chip.
  • the optical module is connected to the electrical chip through the pins on both sides of the Combo module.
  • the Combo module includes 22 pins, 11 pins on the first side of the Combo module as shown in Figure 4(a), and 11 pins on the second side of the Combo module as shown in Figure 4(b). 11 pins on the side.
  • the 11 pins on the first side include transmitter ground (GND_T), XG/SPON differential terminal (XG/SPON TD-), XG/SPON differential terminal (XG/SPON TD+), GPON reset (GPON Reset), transmitter power supply (VccT), receiver power supply (VccR), GPON signal detection (GPON SD), XG/SPON differential receiver (XG/S PON RD+), XG /SPON differential receiving end (XG/S PON RD-), receiving end ground (GND_R) and rate selection (rate_select, Rate_Sel).
  • the 11 pins on the second side include G/PON differential terminal (GPON TD+), GPON differential terminal (GPON TD-), ground (GND), transmitter shutdown (TX Disable), serial data line (serial data line) , SDA), serial clock line (SCL), GPON differential reception (GPON RD-), GPON reset (XG/S PON Reset), XG/S PON signal detection (XG/S PON signal detection, XG/S PON SD), triggered received signal strength indication trig (RSSI Trig), GPON differential receiving end (GPON RD+).
  • G/PON differential terminal GPON TD+
  • GPON TD- ground
  • TX Disable transmitter shutdown
  • serial data line serial data line
  • SDA serial clock line
  • SCL serial clock line
  • GPON RD- GPON differential reception
  • XG/S PON Reset XG/S PON signal detection
  • XG/S PON signal detection XG/S
  • XG/SPON TD- and XG/SPON TD+ are used to transmit the uplink service signals of XG(S)PON sent by the optical module to the electrical chip.
  • XG/S PON RD+ and XG/S PON RD- are used to transmit the XG(S)PON downlink service signals sent by the electrical chip to the optical module.
  • GPON TD+ and GPON TD- are used to transmit GPON uplink service signals sent by the optical module to the electrical chip.
  • GPON RD+ and GPON RD- are used to transmit GPON downlink service signals sent by the electrical chip to the optical module.
  • GPON Reset is used to transmit the GPON device reset signal
  • XG(S)PON Reset is used to transmit the XG(S)GPON device reset signal
  • VccT is used to transmit the power supply signal sent by the optical module to the electrical chip
  • VccR is used to transmit the electrical chip to the light
  • the power supply signal sent by the module GND_T is used to transmit the ground signal sent by the optical module to the electrical chip
  • GPON SD is used to transmit the first indication signal sent by the optical module to the electrical chip
  • the first indication signal is used to indicate the receipt of the GPON signal
  • GND_R It is used to transmit the ground signal sent by the electrical chip to the optical module
  • Rate_Sel is used to transmit the rate selection signal.
  • GND is used to transmit ground signals
  • TX Disable is used to transmit laser lighting control signals
  • SDA and SCL are used to transmit two-wire serial bus (Inter-Integrated Circuit, I2C) bus signals
  • XG/S PON Reset is used to transmit device reset. signal.
  • the Combo module includes 20 pins, 11 pins on the first side of the Combo module as shown in Figure 5(a), and 11 pins on the second side of the Combo module as shown in Figure 5(b). 9 pins on the side.
  • the 11 pins on the first side include GND_T, signal mixed differential terminal (Mux PON TD-), signal mixed differential terminal (Mux PON TD+), GPON Reset, VccT, VccR, GPON SD, signal mixed differential receiver terminal (Mux PON RD+), differential signal mixing terminal (Mux PON RD-), GND_R and Rate_Sel.
  • the 9 pins on the second side include reference clock (REF CLK+), reference clock (REF CLK-), GND, TX Disable, SDA, SCL, XG/S PON Reset, XG/S PON SD, and RSSI Trig.
  • Mux PON TD- and Mux PON TD+ are used to transmit the PON uplink service signals sent by the optical module to the electrical chip.
  • Mux PON RD+ and Mux PON RD- are used to transmit the PON downlink service signals sent by the electrical chip to the optical module.
  • REF CLK+ and REF CLK- are used to transmit differential reference clock signals.
  • each pin between the electrical chip and the optical module corresponds to a different signal, and each pin is used to transmit its corresponding signal.
  • the first device 301 and the second device 302 need to interact with new signals to realize the new functions.
  • the new signals are in addition to the first device 301 and the second device 302.
  • the new signal can be transmitted through any of the following embodiments.
  • the oDSP function for increasing the signal processing rate can be added to the optical module.
  • the electrical chip sends a differential clock signal to the optical module through any of the following embodiments, and the optical module uses the differential clock Signals perform oDSP functions.
  • the first device 301 is an electrical chip
  • the second device 302 is Take the optical module as an example to explain in detail the process of sending signals.
  • the first device 301 may also be a module other than the electrical chip
  • the second device 302 may be a module other than the optical module.
  • this embodiment of the present application provides a method 600 for sending a signal.
  • the method 600 is applied to the first device 101 or the second device 102 in the system 100 shown in Figure 1.
  • the method is applied to The PON is on an OLT or ONU.
  • the method 600 is applied to the device 300 shown in FIG. 3 .
  • the method 600 taking the first device as an electrical chip and the second device as an optical module as an example, the method 600 is used to combine the signals corresponding to the two physical channels between the electrical chip and the optical module into one signal, using One of the physical channels is used to send the signal, and another channel is used to send the added new signal.
  • the method 600 includes the following steps 601-604.
  • Step 601 The electrical chip combines the first signal and the second signal into a third signal.
  • the first signal is the signal corresponding to the first channel
  • the second signal is the signal corresponding to the second channel.
  • step 601 the first signal corresponding to the first channel and the second signal corresponding to the second channel are combined into a third signal.
  • the third signal only needs one physical channel among the first channel and the second channel to transmit, so A physical channel is vacated, and the vacated physical channel is used to transmit new signals.
  • the new signals are signals in addition to the signals corresponding to each physical channel between the electrical chip and the optical module.
  • a new function is added to the electrical chip and the optical module, and the new signal is used to implement the new function.
  • the new signal is used to implement the new function.
  • the first channel is a dual channel and the second channel is a dual channel.
  • the first signal is a two-way signal
  • the second signal is also a two-way signal
  • the new signal added is also a two-way signal.
  • the first channel is a dual channel
  • the second channel is a single channel
  • the first signal is a dual channel signal
  • the second signal is a single channel signal
  • the added new signal is also a single channel signal.
  • the first channel is a single channel
  • the second channel is a single channel
  • the first signal is a single channel signal
  • the second signal is also a single channel signal
  • the added new signal is also a single channel signal.
  • step 601 the following two methods of merging signals are enumerated, and the two methods are the following first method and the second method.
  • the electronic chip combines the first signal and the second signal into a third signal through time division multiplexing.
  • the electronic chip combines the first signal and the second signal into a third signal through time division multiplexing based on the transmission rate of the first signal and the transmission rate of the second signal.
  • the timing relationship between the first signal and the second signal is a reference relationship, and the parameter relationship is obtained based on the transmission rate of the first signal and the transmission rate of the second signal.
  • the timing relationship between the first signal and the second signal included in the frame is a reference relationship.
  • the ratio between the amount of data belonging to the first signal and the amount of data belonging to the second signal in the frame is equal to the ratio between the transmission rate of the first signal and the transmission rate of the second signal.
  • the first signal is the downlink service signal of XG(S)PON
  • the second signal is the downlink service signal of GPON.
  • the downlink service signal of XG(S)PON and the downlink service signal of GPON are both dual-channel. Signal.
  • the first channel corresponding to the downlink service signal of XG(S)PON includes two pins, which are XG/S PON RD+ and XG/S PON RD-.
  • the second channel corresponding to the GPON downlink service signal includes two pins, which are GPON RD+ and GPON RD-.
  • the transmission rate of XG(S)PON's downlink service signal is "10Gbps", and the transmission rate of GPON's downlink service signal is 2.5 “Gbps”.
  • the new function added to the optical module is the oDSP function.
  • the electrical chip needs to send data to the optical module to implement the oDSP function.
  • the differential clock signal is a dual-channel signal.
  • the electrical chip is based on the transmission rate of XG(S)PON's downlink service signal "10Gbps" and the transmission rate of GPON's downlink service signal "2.5Gbps". It combines the downlink service signal of XG(S)PON and the GPON's downlink service signal through time division multiplexing. Downstream traffic signals are merged into a third signal. The transmission rate of the third signal is "12.5Gbps". In each frame of the third signal, the timing relationship between the downlink service signals belonging to XG(S)PON and the downlink service signals belonging to GPON is 4:1.
  • each frame of the third signal includes 500 bits, that is, the first 400 bits of each frame belong to the downlink service signal of XG(S)PON, and the last 100 bits of each frame belong to the downlink service signal of GPON.
  • the electronic chip combines the first signal and the second signal into a third signal through encoding.
  • the encoding method includes pseudo-random binary sequence (PRBS) mask or 64/66-bit encoding.
  • PRBS pseudo-random binary sequence
  • the PRBS scrambling method is used to encode the first signal and the second signal to obtain the third signal.
  • the first signal and the second signal are serially spliced into one signal.
  • the bit is called the first bit
  • the second bit and the third bit are selected from the signal.
  • the second bit and the third bit are located after the first bit
  • the interval between the first bit and the second bit is X bits
  • the interval between the first bit and the third bit is Y bits
  • X and Y are specified integer values
  • X is not equal to Y.
  • the fourth bit is calculated based on the first bit, the second bit and the third bit, replacing the first bit with the fourth bit. Replace other bits in the signal in the same manner as above to obtain the third signal.
  • the first signal includes 10 bits, and the first signal is 1100011001.
  • the second signal also includes 10 bits, and the second signal is 0011101110.
  • PRBS scrambling is used for encoding
  • the first signal and the second signal are combined into one signal.
  • the signal includes 20 bits.
  • the first 10 bits of the signal belong to the first signal, and the last 10 bits of the signal belong to the first signal. It belongs to the second signal, that is, the signal is 11000110010011101110.
  • the first bit “1” in the signal select the fifth bit “0” and the seventh bit “1” from the signal.
  • the first bit and the fifth bit are separated by 3 bits, that is, the second bit, the third bit and the fourth bit are separated.
  • the first bit and the seventh bit are separated by 5 bits, that is, the second bit, the third bit, the fourth bit, the fifth bit and the sixth bit are separated.
  • the first signal and the second signal are different traffic signals.
  • the first signal is a service signal and the second signal is a control signal.
  • the first signal and the second signal are different control signals.
  • the first signal and the second signal are signals in a PON network; or, the first signal and the second signal are signals in an Ethernet network.
  • the first signal and the second signal are signals in a PON network
  • the first signal is a signal in a first-rate PON network
  • the second signal is a signal in a second-rate PON network.
  • the first signal is the downlink service signal of XG(S)PON
  • the second signal is the downlink service signal of GPON.
  • Step 602 The electrical chip sends a third signal to the optical module through the first channel, and sends a fourth signal to the optical module through the second channel.
  • the fourth signal is in addition to the signals corresponding to each physical channel between the electrical chip and the optical module. signal of.
  • the electrical chip sends the third signal to the optical module through the first channel, and the electrical chip will not use the second channel to send the second signal. This will free up the second channel, allowing the electrical chip to use the second channel.
  • the channel sends a fourth signal to the optical module.
  • the fourth signal is a new signal, used to implement new functions between the electrical chip and the optical module.
  • the electrical chip sends the third signal as shown in Figure 7 to the optical module through XG/S PON RD+ and XG/S PON RD-.
  • the electrical chip does not use GPON RD+ and GPON RD- to send GPON downlink service signals to the optical module, which will free up GPON RD+ and GPON RD-.
  • the electrical chip uses GPON RD+ and GPON RD- to send differential clock signals to the optical module.
  • Step 603 The optical module receives the third signal through the first channel and the fourth signal through the second channel.
  • the optical module receives the third signal shown in Figure 7 sent by the electrical chip through XG/S PON RD+ and XG/S PON RD-, and receives the differential clock signal sent by the electrical chip through GPON RD+ and GPON RD-.
  • the oDSP function on the optical module is executed based on the differential clock signal.
  • Step 604 The optical module acquires the first signal and the second signal based on the third signal.
  • the third signal is obtained by combining the first signal and the second signal by the electronic chip through time division multiplexing.
  • the optical module uses the transmission rate of the first signal and the transmission rate of the second signal. , obtain the first signal and the second signal from the third signal.
  • the optical module determines the timing relationship between the first signal and the second signal in each frame of the third signal based on the transmission rate of the first signal and the transmission rate of the second signal. Based on the timing relationship, the The data belonging to the first signal and the data belonging to the second signal are acquired in each frame of the three signals, thereby obtaining the first signal and the second signal.
  • the optical module determines the downlink service signal of XG(S)PON and the downlink service signal of GPON based on the transmission rate of XG(S)PON's downlink service signal "10Gbps" and the transmission rate of GPON's downlink service signal "2.5Gbps".
  • the timing relationship between them is 4:1.
  • each frame of the third signal as shown in Figure 7 includes 500 bits.
  • the first 400 bits of data are obtained from each frame of the third signal, and the first 400 bits of data of each frame are composed of XG ( S)PON downlink service signal.
  • the last 100 bits of data are obtained from each frame of the third signal, and the last 100 bits of data of each frame are formed into a GPON downlink service signal.
  • the third signal is obtained by combining the first signal and the second signal through encoding.
  • the optical module decodes the third signal to obtain the first signal and the second signal.
  • the encoding method is the PRBS encoding method
  • the optical module decodes the third signal based on the PRBS encoding method to obtain the first signal and the second signal.
  • the bit is called the fourth bit
  • the fifth bit and the sixth bit are selected from the third signal.
  • the fifth bit and the sixth bit are located after the fourth bit.
  • the first bit is calculated based on the fourth bit, the fifth bit and the sixth bit, and the fourth bit is replaced with the first bit. Replace other bits in the third signal in the same manner as above to obtain a signal including the first signal and the second signal, and obtain the first signal and the second signal from the signal.
  • the third signal is 01110110010010001110.
  • select the fifth bit “0” and the seventh bit “1” from the third signal where the first bit is the same as
  • the fifth bit is separated by 3 bits, and the first bit and the seventh bit are separated by 5 bits.
  • the bit "1" is calculated, replacing the first bit "0" with the bit "1”.
  • the second bit in the third signal is replaced in the above manner, the third bit is replaced, ....
  • the following signal including the first signal and the second signal is obtained: 11000110010011101110.
  • the first signal 1100011001 and the second signal 0011101110 are obtained from this signal.
  • the optical module can also send signals to the electrical chip according to the above-mentioned steps 601-604.
  • the optical module combines the uplink service signals of XG(S)PON and the uplink service signals of GPON into a third signal.
  • the first channel corresponding to the uplink service signal of XG(S)PON includes two pins, which are XG/S PON TD+ and XG/S PON TD-.
  • the second channel corresponding to the GPON uplink service signal includes two pins, which are GPON TD+ and GPON TD-.
  • the transmission rate of the uplink service signal of XG(S)PON is "10Gbps", and the transmission rate of the uplink service signal of GPON is 2.5 "Gbps".
  • the optical module is based on the transmission rate of XG(S)PON's uplink service signal "10Gbps" and the transmission rate of GPON's uplink service signal "2.5Gbps".
  • the uplink service signal of XG(S)PON and the GPON's uplink service signal are combined through time division multiplexing.
  • the uplink service signals are merged into the third signal.
  • the transmission rate of the third signal is "12.5Gbps".
  • the timing relationship between the downlink service signals belonging to XG(S)PON and the downlink service signals belonging to GPON is 4:1.
  • the optical module encodes the uplink service signal of XG(S)PON and the uplink service signal of GPON into a third signal through encoding.
  • the optical module sends the third signal to the electrical chip through XG/S PON TD+ and XG/S PON TD-.
  • GPON TD+ and GPON TD- are vacant.
  • the optical module can use GPON TD+ and GPON TD- to send signals to the electrical chip in addition to the signals corresponding to each physical channel between the optical module and the electrical chip.
  • the electrical chip receives the third signal through XG/S PON TD+ and XG/S PON TD-, based on the transmission rate of the uplink service signal of XG(S)PON "10Gbps" and the transmission rate of the uplink service signal of GPON "2.5Gbps".
  • decode the third signal to obtain the uplink service signal of XG(S)PON and the uplink service signal of GPON.
  • the electronic chip since the electronic chip combines the first signal corresponding to the first channel and the second signal corresponding to the second channel into a third signal, it sends the third signal to the optical module through the first channel, thus freeing up the third signal.
  • Two channels The electrical chip sends a fourth signal to the optical module through the second channel.
  • the fourth signal is in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. That is, the fourth signal is between the electrical chip and the optical module. new signals added during the period.
  • the optical module receives the third signal through the first channel, receives the fourth signal through the second channel, and obtains the first signal and the second signal based on the third signal.
  • the electrical chip can ensure that the first signal corresponding to the first channel and the second signal corresponding to the second channel are successfully sent to the optical module, and can also add new signals. Successfully sent to the optical module, reducing the cost of hardware. Since there is no need to add new physical channels between the electrical chip and the optical module, even if the number of physical channels between the electrical chip and the optical module has reached the maximum number of physical channels allowed between the electrical chip and the optical module, it will not affect the connection between the electrical chip and the optical module. Sending signals broadens the usage scenarios of this signaling method.
  • the embodiment of the present application provides a method 800 for sending a signal.
  • the method 800 is applied to the first device 101 or the second device 102 in the system 100 shown in Figure 1.
  • the method is applied to The PON is on an OLT or ONU.
  • the method 800 is applied to the device 300 shown in FIG. 3 .
  • the method 800 taking the first device as an electrical chip and the second device as an optical module as an example, the method 800 is used to combine the signals corresponding to the three physical channels between the electrical chip and the optical module into one signal, using One of the physical channels is used to send the signal, and the other two physical channels are used to send the added new signal.
  • the method 800 includes the following steps 801-804.
  • Step 801 The electronic chip combines the first signal, the second signal and the fifth signal into a third signal.
  • the first signal is the signal corresponding to the first channel
  • the second signal is the signal corresponding to the second channel
  • the fifth signal is the signal corresponding to the second channel.
  • step 801 the first signal corresponding to the first channel, the second signal corresponding to the second channel, and the fifth signal corresponding to the third channel are combined into a third signal, and the third signal is transmitted through the first channel, so that Out two physical channels.
  • the vacant second channel and third channel are used to transmit new signals.
  • the new signals are signals in addition to the signals corresponding to each physical channel between the electrical chip and the optical module.
  • the new signals are dual-channel signals, thus ensuring that the dual signal can be transmitted successfully.
  • the first signal is a dual-channel signal
  • the first channel is a dual-channel signal
  • the second signal and the third signal are both single-channel signals
  • the second channel and the third channel are both single-channel signals.
  • the first signal, the second signal and the third signal are all single channel signal
  • the first channel, the second channel and the third channel are all single channels.
  • the new function added to the optical module is the oDSP function.
  • the electrical chip needs to send a differential clock signal to the optical module to implement the oDSP function.
  • the differential clock signal is a dual-channel signal.
  • the differential clock signal requires two single channels. To transmit, that is, the second channel and the third channel are needed for transmission.
  • the first signal is a service signal
  • the second signal and the fifth signal are different control signals.
  • the first signal, the second signal and the fifth signal are different control signals.
  • the service signal is a dual-channel signal
  • the control signal is a single-channel signal.
  • control signals are bidirectional, and the electronic chip selects the control signal that the electronic chip needs to send to the optical module as the second signal and the third signal.
  • step 801 the following two methods of merging signals are enumerated, and the two methods are the following first method and the second method.
  • the electronic chip combines the first signal, the second signal and the fifth signal into a third signal through time division multiplexing.
  • the electronic chip combines the first signal, the second signal and the fifth signal into a third signal through time division multiplexing based on the transmission rate of the first signal, the transmission rate of the second signal and the transmission rate of the fifth signal.
  • the timing relationship between the first signal, the second signal and the fifth signal is a reference relationship, and the parameter relationship is based on the transmission rate of the first signal, the transmission rate of the second signal and the transmission rate of the third signal is obtained.
  • the timing relationship between the first signal, the second signal, and the fifth signal included in the frame is a reference relationship.
  • the ratio between the amount of data belonging to the first signal, the amount of data belonging to the second signal and the amount of data belonging to the third signal in the frame is equal to the transmission rate of the first signal, the transmission rate of the second signal and The ratio between the fifth signal transmission rate.
  • the first signal is the downlink service signal of XG(S)PON
  • the second signal is the GPON device reset signal
  • the fifth signal is the XG(S)PON device reset signal.
  • the first channel corresponding to the downlink service signal of XG(S)PON includes two pins, which are XG/S PON RD+ and XG/S PON RD-.
  • the GPON device reset signal is a control signal.
  • the second channel corresponding to the GPON device reset signal includes a pin, and this pin is GPON Reset.
  • the XG(S)PON device reset signal is a control signal.
  • the third channel corresponding to the XG(S)PON device reset signal includes a pin, which is XG(S)PON Reset.
  • the transmission rate of XG(S)PON's downlink service signal is "10Gbps"
  • the transmission rate of GPON device reset signal and the transmission rate of XG(S)PON device reset signal are both 2.5 "Gbps”.
  • the transmission rate of the downlink service signal of the electrical chip based on XG(S)PON is "10Gbps", the transmission rate of the GPON device reset signal is "2.5Gbps" and the transmission rate of the XG(S)PON device reset signal is both 2.5"Gbps", through time division
  • the multiplexing method combines the XG(S)PON downlink service signal, the GPON device reset signal and the XG(S)PON device reset signal into a third signal.
  • the transmission rate of the third signal is "15Gbps".
  • the timing relationship between the XG(S)PON downlink service signal, the GPON device reset signal and the XG(S)PON device reset signal is 4: 1:1.
  • This timing relationship represents the amount of data belonging to the downlink service signal of XG(S)PON, the amount of data belonging to the reset signal of the GPON device, and the amount of data belonging to the reset signal of the XG(S)PON device in any frame of the third signal.
  • the ratio is 4:1:1.
  • the first signal is the GPON device reset signal
  • the second signal is the XG(S)PON device reset signal
  • the fifth signal is the power monitoring function trigger signal
  • the GPON device reset signal XG(S)PON
  • the device reset signal and the power monitoring function trigger signal are both control signals.
  • the first channel corresponding to the GPON device reset signal includes one pin, and this pin is GPON Reset.
  • the second channel corresponding to the XG(S)PON device reset signal includes A pin, this pin is XG(S)PON Reset.
  • the third channel corresponding to the power monitoring function trigger signal includes a pin, and this pin is RSSI Trig.
  • the transmission rate of the GPON device reset signal and the XG(S)PON device reset signal are both 2.5 "Gbps", and the transmission rate of the power monitoring function trigger signal is "1Gbps".
  • the electrical chip is based on the transmission rate of GPON device reset signal "2.5Gbps", the transmission rate of XG(S)PON device reset signal is 2.5"Gbps" and the transmission rate of power monitoring function trigger signal "1Gbps", through time division multiplexing
  • the GPON device reset signal, the XG(S)PON device reset signal and the power monitoring function trigger signal are combined into a third signal.
  • the transmission rate of the third signal is "6Gbps".
  • the timing relationship between the GPON device reset signal, the XG(S)PON device reset signal and the power monitoring function trigger signal is 2.5:2.5:1.
  • This timing relationship indicates that in any frame of the third signal, the ratio between the amount of data belonging to the GPON device reset signal, the amount of data belonging to the XG(S)PON device reset signal, and the amount of data belonging to the power monitoring function trigger signal is 2.5 :2.5:1.
  • the electronic chip combines the first signal, the second signal and the fifth signal into a third signal through encoding.
  • Step 802 The electrical chip sends a third signal to the optical module through the first channel, and sends a fourth signal to the optical module through the second channel and the third channel.
  • the fourth signal corresponds to each physical channel between the electrical elimination chip and the optical module. signal other than the signal.
  • step 802 the electrical chip sends the third signal to the optical module through the first channel, and the electrical chip will not use the second channel to send the second signal and will not use the third channel to send the fifth signal, so there will be no space.
  • the second channel and the third channel are output, so that the electrical chip uses the second channel and the third channel to send the fourth signal to the optical module.
  • the fourth signal is a new signal, used to implement new functions between the electrical chip and the optical module.
  • the electrical chip sends the third signal as shown in Figure 9 to the optical module through XG/S PON RD+ and XG/S PON RD-.
  • the electrical chip does not use GPON Reset to send the GPON device reset signal to the optical module, nor does it use the XG(S)PON Reset to send the XG(S)PON device reset signal to the optical module. This will free up the GPON Reset and XG(S )PON Reset, the electrical chip uses GPON Reset and XG(S)PON Reset to send differential clock signals to the optical module.
  • the electrical chip sends the third signal as shown in Figure 10 to the optical module through GPON Reset.
  • the electrical chip does not use XG(S)PON Reset to send the XG(S)PON device reset signal to the optical module, nor does it use RSSI Trig to send the power monitoring function trigger signal to the optical module, which will free up XG(S)PON Reset and RSSI Trig, the electrical chip uses XG(S)PON Reset and RSSI Trig to send differential clock signals to the optical module.
  • Step 803 The optical module receives the third signal through the first channel, and receives the fourth signal through the second channel and the third channel.
  • the optical module receives the third signal shown in Figure 9 sent by the electrical chip through XG/S PON RD+ and XG/S PON RD-, and receives the electrical signal through GPON Reset and XG(S)PON Reset.
  • the differential clock signal sent by the chip.
  • the oDSP function on the optical module is executed based on the differential clock signal.
  • the optical module receives the third signal shown in Figure 10 sent by the electrical chip through GPON Reset, and receives the differential clock signal sent by the electrical chip through XG(S)PON Reset and RSSI Trig.
  • the oDSP function on the optical module is executed based on the differential clock signal.
  • Step 804 The optical module acquires the first signal, the second signal and the fifth signal based on the third signal.
  • the third signal is obtained by combining the first signal, the second signal and the fifth signal by the electronic chip through time division multiplexing.
  • the optical module determines the second signal based on the transmission rate of the first signal and the second signal.
  • the transmission rate of the signal and the transmission rate of the fifth signal, and the first signal, the second signal and the fifth signal are obtained from the third signal.
  • the optical module determines the distance between the first signal, the second signal and the fifth signal in each frame of the third signal based on the transmission rate of the first signal, the transmission rate of the second signal and the transmission rate of the fifth signal. Based on the timing relationship, the data belonging to the first signal, the data belonging to the second signal and the data belonging to the fifth signal are obtained from each frame of the third signal, thereby obtaining the first signal, second signal and fifth signal.
  • the transmission rate of the downlink service signal of the optical module based on XG(S)PON is "10Gbps"
  • the transmission rate of the reset signal of the GPON device is "2.5Gbps”
  • the transmission rate of the reset signal of the XG(S)PON device is " 2.5Gbps”
  • the timing relationship between XG(S)PON's downlink service signals, GPON device reset signals, and XG(S)PON device reset signals is 4:1:1.
  • each frame of the third signal as shown in Figure 9 includes 600 bits. Based on this timing relationship, 400 bits of data belonging to the downlink service signal of XG(S)PON are obtained from each frame of the third signal, which belongs to GPON.
  • the 100-bit data of the device reset signal belongs to the 100-bit data of the XG(S)PON device reset signal, thereby obtaining the XG(S)PON downstream service signal, the GPON device reset signal and the XG(S)PON device reset. Signal.
  • the optical module determines the GPON based on the transmission rate of the GPON device reset signal "2.5Gbps", the transmission rate of the XG(S)PON device reset signal "2.5Gbps” and the device reset signal transmission rate "1Gbps".
  • the timing relationship between the device reset signal, the XG(S)PON device reset signal and the device reset signal is 2.5:2.5:1.
  • each frame of the third signal as shown in Figure 10 includes 600 bits.
  • 250 bits of data belonging to the GPON device reset signal are obtained from each frame of the third signal, which belongs to the XG(S)PON device.
  • the 250 bits of data of the reset signal belong to the 100 bits of data of the device reset signal, thus obtaining the GPON device reset signal, the XG(S)PON device reset signal and the device reset signal.
  • the third signal is obtained by combining the first signal, the second signal and the fifth signal in a coding manner.
  • the optical module decodes the third signal to obtain the first signal, the second signal and the fifth signal. signal and fifth signal.
  • the optical module can also send signals to the electrical chip according to the above-mentioned steps 801-804, that is, the electrical chip is an optical module, and the optical module is an electrical chip.
  • the optical module combines the XG(S)PON uplink service signal, the GPON device reset signal and the XG(S)PON device reset signal into a third signal.
  • the first channel corresponding to the uplink service signal of XG(S)PON includes two pins, which are XG/S PON TD+ and XG/S PON TD-.
  • the second channel corresponding to the GPON device reset signal includes one pin, which is GPON Reset.
  • the third channel corresponding to the XG/S PON device reset signal includes a pin, which is XG/S PON Reset.
  • the transmission rate of XG(S)PON's uplink service signal is "10Gbps"
  • the transmission rate of GPON device reset signal and the transmission rate of XG/S PON device reset signal are both 2.5 "Gbps”.
  • the optical module is based on the transmission rate of XG(S)PON's uplink service signal "10Gbps", the transmission rate of GPON device reset signal 2.5 “Gbps” and the transmission rate of XG/S PON device reset signal 2.5 “Gbps", through time division multiplexing
  • This method combines the XG(S)PON uplink service signal, the GPON device reset signal and the XG/S PON device reset signal into a third signal.
  • the transmission rate of the third signal is "15Gbps".
  • the optical module encodes the XG(S)PON uplink service signal, GPON device reset signal and XG/S PON device reset signal into a third signal through encoding.
  • the optical module sends the third signal to the electrical chip through XG/S PON TD+ and XG/S PON TD-. At this time, GPON Reset and XG/S PON Reset are vacant.
  • the optical module can use GPON Reset and XG/S PON Reset to send signals to the electrical chip in addition to the signals corresponding to each physical channel between the optical module and the electrical chip.
  • the electrical chip receives the third signal through XG/S PON TD+ and XG/S PON TD-.
  • the transmission rate of the uplink service signal based on XG(S)PON is "10Gbps"
  • the transmission rate of the GPON device reset signal is 2.5 "Gbps”
  • XG The transmission rate of /S PON device reset signal is 2.5 "Gbps”.
  • the XG(S)PON uplink service signal, GPON device reset signal and XG/S PON device reset signal are obtained from the third signal. Or, decode the third signal to obtain the uplink service signal of XG(S)PON, the GPON device reset signal and the XG/S PON device reset signal.
  • the electronic chip since the electronic chip combines the first signal corresponding to the first channel and the second signal corresponding to the second channel The fifth signal corresponding to the third channel is combined into a third signal, and the third signal is sent to the optical module through the first channel, thus freeing up the second channel and the third channel.
  • the electrical chip sends a fourth signal to the optical module through the second channel and the third channel.
  • the fourth signal is a signal in addition to the signal corresponding to each physical channel between the electrical chip and the optical module. That is, the fourth signal is in the electrical chip.
  • the new signal added between the chip and the optical module is a dual-channel signal.
  • the optical module receives the third signal through the first channel, receives the fourth signal through the second channel and the third channel, and obtains the first signal, the second signal and the fifth signal based on the third signal. In this way, there is no need to add a new physical channel between the electrical chip and the optical module.
  • the electrical chip can ensure that the first signal corresponding to the first channel, the second signal corresponding to the second channel, and the fifth signal corresponding to the third channel are successfully sent to the optical module. module, and can successfully send the added dual-channel new signals to the optical module, reducing the cost of the hardware.
  • the embodiment of the present application provides a method 1100 for sending a signal.
  • the method 1100 is applied to the first device 101 or the second device 102 in the system 100 shown in Figure 1.
  • the method is applied to The PON is on an OLT or ONU.
  • the method 1100 is applied to the device 300 shown in FIG. 3 .
  • the method 1100 taking the first device as an electrical chip and the second device as an optical module as an example, the method 1100 is used to combine the signal corresponding to the first channel and the added new signal into one signal, using the first The first channel is the physical channel between the electrical chip and the optical module.
  • the method 1100 includes the following steps 601-604.
  • Step 1101 The electrical chip combines the first signal and the second signal into a third signal.
  • the first signal is the signal corresponding to the first channel
  • the second signal is the signal corresponding to each physical channel between the electrical chip and the optical module. signal of.
  • step 1101 the first signal corresponding to the first channel and the added second signal are combined into a third signal.
  • the third signal only needs the first channel to transmit, so that no new physical channel is added between the electrical chip and the optical module. In this case, not only the first signal corresponding to the first channel can be successfully transmitted, but also a new signal can be successfully sent.
  • the first channel may be a dual channel, the first signal is a dual channel signal, and the second signal is also a dual channel signal.
  • the first channel may be a dual channel, with the first signal being a dual channel signal and the second signal being a single channel signal.
  • the first channel may be a single channel, the first signal may be a single channel signal, and the second signal may be a single channel signal.
  • step 1101 the following two methods of merging signals are enumerated, and the two methods are the following first method and the second method.
  • the electronic chip combines the first signal and the second signal into a third signal through time division multiplexing.
  • the electronic chip combines the first signal and the second signal into a third signal through time division multiplexing based on the transmission rate of the first signal and the transmission rate of the second signal.
  • the timing relationship between the first signal and the second signal is a reference relationship, and the parameter relationship is obtained based on the transmission rate of the first signal and the transmission rate of the second signal.
  • the timing relationship between the first signal and the second signal included in the frame is a reference relationship.
  • the ratio between the amount of data belonging to the first signal and the amount of data belonging to the second signal in the frame is equal to the ratio between the transmission rate of the first signal and the transmission rate of the second signal.
  • the electronic chip combines the first signal and the second signal into a third signal through encoding.
  • Step 1102 The electrical chip sends the third signal to the optical module through the first channel.
  • Step 1103 The optical module receives the third signal through the first channel, and obtains the first signal and the second signal based on the third signal.
  • the third signal is obtained by combining the first signal and the second signal by the electronic chip through time division multiplexing.
  • the optical module uses the transmission rate of the first signal and the transmission rate of the second signal. , obtain the first signal and the second signal from the third signal.
  • the optical module is based on the transmission rate of the first signal and the transmission rate of the second signal. rate, determine the timing relationship between the first signal and the second signal in each frame of the third signal, and based on the timing relationship, obtain the data belonging to the first signal and the data belonging to the second signal from each frame of the third signal data, thereby obtaining the first signal and the second signal.
  • the third signal is obtained by combining the first signal and the second signal through encoding.
  • the optical module decodes the third signal to obtain the first signal and the second signal.
  • the electrical chip since the electrical chip combines the first signal corresponding to the first channel and the added second signal into a third signal, the third signal is sent to the optical module through the first channel.
  • the optical module receives the third signal through the first channel, and acquires the first signal and the second signal based on the third signal. In this way, there is no need to add a new physical channel between the electrical chip and the optical module.
  • the electrical chip can ensure that the first signal corresponding to the first channel and the added second signal are successfully sent to the optical module, which reduces the cost of the hardware.
  • the embodiment of the present application provides a device 1200 for sending a signal.
  • the device 1200 is deployed on the first device or the second device of the system 100 shown in Figure 1.
  • the device 1200 is deployed on the system 100 shown in Figure 2.
  • the device 1200 is deployed on the electrical chip of the device 300 as shown in Figure 3, or the device 1200 is deployed on the electrical chip of the method 600 as shown in Figure 6 or
  • the method 800 is shown in Figure 8 on an electrical chip.
  • the device 1200 includes:
  • the processing unit 1201 is used to combine the first signal and the second signal into a third signal.
  • the first signal is the signal corresponding to the first channel
  • the second signal is the signal corresponding to the second channel.
  • the at least two physical channels include a first channel and a second channel; the communication unit 1202 is configured to send a third signal to the optical module through the first channel.
  • the processing unit 1201 is configured to combine the first signal and the second signal into a third signal through time division multiplexing; or, the processing unit 1201 is configured to combine the first signal and the second signal into a third signal through encoding. merged into a third signal.
  • the processing unit 1201 combines the first signal and the second signal into a third signal through time division multiplexing or coding.
  • the processing unit 1201 combines the first signal and the second signal into a third signal through time division multiplexing or coding.
  • step 601 of method 600 shown in Figure 6 or method 800 shown in Figure 8 The relevant content in step 801 will not be described in detail here.
  • the communication unit 1202 sends a fourth signal to the optical module through the second channel, where the fourth signal is a signal in addition to the signal corresponding to each physical channel between the device 1200 and the optical module.
  • the processing unit 1201 is configured to combine the fifth signal, the first signal and the second signal into a third signal, where the fifth signal is a signal corresponding to the third channel, and the at least two physical channels also include the third channel;
  • the communication unit 1202 is configured to send the fourth signal to the optical module through the second channel and the third channel.
  • step 801 of the method 800 shown in Figure 8 please refer to the relevant content in step 801 of the method 800 shown in Figure 8, which will not be described in detail here. .
  • the optical module includes an optical digital signal processing oDSP function
  • the fourth signal includes a differential clock signal
  • the differential clock signal is used to cause the optical module to perform the oDSP function.
  • the first signal and the second signal are service signals of different services; or the first signal is a service signal and the second signal is a control signal; or the first signal and the second signal are different control signals.
  • the first signal and the second signal are signals in a passive optical network (PON) network; or, the first signal and the second signal are signals in an Ethernet network.
  • PON passive optical network
  • the first signal and the second signal are signals in a PON network
  • the first signal is a signal in a first-rate PON network
  • the second signal is a signal in a second-rate PON network.
  • the processing unit since the processing unit combines the first signal corresponding to the first channel and the second signal corresponding to the second channel into a third signal, the communication unit sends the third signal to the optical module through the first channel, so that the Exit the second channel.
  • the communication unit can send a fourth signal to the optical module through the second channel.
  • the fourth signal is a signal in addition to the signal corresponding to each channel between the device and the optical module. That is, the fourth signal is between the device and the optical module. New signals added between modules. In this way, there is no need to add a new physical channel between the device and the optical module.
  • the communication unit can ensure that the first signal corresponding to the first channel and the second signal corresponding to the second channel are successfully sent to the optical module, and can also add the new The signal is successfully sent to the optical module, which reduces the cost of the hardware, ensures that the signal can be sent successfully, and broadens the usage scenarios of the device.
  • the embodiment of the present application provides a device 1300 for receiving signals.
  • the device 1300 is deployed on the first device or the second device of the system 100 as shown in Figure 1.
  • the device 1300 is deployed on the system 100 as shown in Figure 2.
  • the device 1300 is deployed on the optical module of the device 300 as shown in Figure 3, or the device 1300 is deployed on the optical module of the method 600 as shown in Figure 6 or On the optical module of the method 800 shown in Figure 8.
  • the device 1300 includes:
  • the communication unit 1301 is used to receive the third signal sent by the electronic chip through the first channel.
  • the third signal is obtained by combining the first signal and the second signal.
  • the first signal is the signal corresponding to the first channel
  • the second signal is For signals corresponding to the second channel, there are at least two physical channels between the electrical chip and the device 1300, and the at least two physical channels include a first channel and a second channel;
  • the processing unit 1302 is configured to obtain the first signal and the second signal based on the third signal.
  • the third signal is obtained by combining the first signal and the second signal through time division multiplexing.
  • the processing unit 1302 is configured to obtain the third signal from the third signal based on the transmission rate of the first signal and the transmission rate of the second signal. Get the first signal and the second signal.
  • the third signal is obtained by combining the first signal and the second signal through encoding, and the processing unit 1302 is configured to decode the third signal to obtain the first signal and the second signal.
  • the communication unit 1301 is configured to receive a fourth signal sent by the electrical chip through the second channel.
  • the fourth signal is a signal other than the signal corresponding to each physical channel between the electrical chip and the device 1300 .
  • the third signal is obtained by combining the fifth signal, the first signal and the second signal, the fifth signal is the signal corresponding to the third channel, and the at least two physical channels also include the third channel,
  • the communication unit 1301 is configured to receive the fourth signal sent by the electrical chip through the second channel and the third channel.
  • the device 1300 includes an optical digital signal processing oDSP function
  • the fourth signal includes a differential clock signal
  • the processing unit 1302 is further configured to perform the oDSP function based on the differential clock signal.
  • the processing unit 1302 performs a detailed implementation process of the oDSP function. Please refer to the relevant content in step 604 of the method 600 shown in FIG. 6 or step 804 of the method 800 shown in FIG. 8, which will not be described in detail here.
  • the first signal and the second signal are service signals of different services; or the first signal is a service signal and the second signal is a control signal; or the first signal and the second signal are different control signals.
  • the first signal and the second signal are signals in a passive optical network (PON) network; or, the first signal and the second signal are signals in an Ethernet network.
  • PON passive optical network
  • the first signal and the second signal are signals in a PON network
  • the first signal is a signal in a first-rate PON network
  • the second signal is a signal in a second-rate PON network.
  • the communication unit since the first signal corresponding to the first channel and the second signal corresponding to the second channel are combined into a third signal, the communication unit receives the third signal through the first channel, thus vacating the second channel.
  • the communication unit can receive the fourth signal sent by the electrical chip through the second channel.
  • the fourth signal is a signal other than the signal corresponding to each physical channel between the electrical chip and the device. That is, the fourth signal is on the electrical chip. and new signals added between said devices. In this way, there is no need to add a new physical channel between the electrical chip and the device.
  • the communication unit can ensure that the first signal corresponding to the first channel and the second signal corresponding to the second channel are successfully received, and can also receive the added new signal. The cost of hardware is reduced, signals can be successfully received, and the usage scenarios of the device are broadened.
  • an embodiment of the present application provides a schematic diagram of a device 1400 for sending signals.
  • the device 1400 may be an electrical chip provided by any of the above embodiments or the device 1400 may be an electrical chip provided by any of the above embodiments.
  • it may be the electrical chip of the device 300 as shown in Figure 3, as shown in Figure 6
  • the device 1400 includes at least one processor 1401, internal connections 1402, memory 1403 and at least one communication interface 1404.
  • the device 1400 is a hardware structure device.
  • the processing unit 1201 in the device 1200 shown in FIG. 12 can be implemented by calling the code in the memory 1403 through the at least one processor 1401.
  • the communication unit 1202 in the device 1200 shown in FIG. 12 can be implemented through the at least one communication interface 1404.
  • the device 1400 can also be used to implement the functions of the electrical chip in any of the above embodiments.
  • the processing unit 1302 in the device 1200 shown in FIG. 13 can be implemented by calling the code in the memory 1403 through the at least one processor 1401.
  • the communication unit 1301 in the device 1300 shown in Figure 13 can be implemented through the at least one communication interface 1404.
  • the device 1400 can also be used to implement the functions of the optical module in any of the above embodiments.
  • the above-mentioned processor 1401 is, for example, a general-purpose central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), a network processor (Network Processer, NP), a graphics processor, or a graphics processor.
  • Processor Graphics Processing Unit, GPU), neural network processor (Neural-network Processing Units, NPU), data processing unit (Data Processing Unit, DPU), microprocessor or one or more processors used to implement the solution of this application integrated circuit.
  • the processor 1401 includes an Application-specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • ASIC Application-specific Integrated Circuit
  • PLD Programmable Logic Device
  • PLD is, for example, a complex programmable logic device (CPLD), a field-programmable gate array (Field-programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL), or any combination thereof. It may implement or execute various logical blocks, modules and circuits described in connection with the disclosure of the embodiments of this application.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the internal connection 1402 may include a path for transmitting information between the components.
  • the internal connection 1402 may be a single board or a bus, etc.
  • the bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the above-mentioned at least one communication interface 1404 uses any device such as a transceiver for communicating with other devices or communication networks.
  • the communication network can be Ethernet, wireless access network or wireless LAN (Wireless Local Area Networks, WLAN), etc.
  • the communication interface 1404 may include a wired communication interface and may also include a wireless communication interface.
  • the communication interface 1404 can be an Ethernet interface, a Fast Ethernet (FE) interface, a Gigabit Ethernet (GE) interface, an asynchronous transfer mode (Asynchronous Transfer Mode, ATM) interface, a wireless LAN WLAN interface, a cellular Network communication interface or combination thereof.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the communication interface 1404 can be used for the device 1400 to communicate with other devices.
  • the above-mentioned memory 1403 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions.
  • type of dynamic storage device which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can Any other media accessed by a computer, without limitation.
  • the memory can exist independently and be connected to the processor through a bus. Memory 1403 may also be integrated with processor 1401.
  • the processor 1401 may include one or more CPUs, such as CPU0 and CPU1 in Figure 14. Each of these CPUs can be a single-core processor or a multi-core processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the device 1400 may include multiple processors, such as the processor 1401 and the processor 1407 in Figure 14 . Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • an embodiment of the present application also provides a system for sending signals.
  • the system includes a first device 101 and a second device 102.
  • the first device 101 and the second device 102 are connected.
  • the first device 101 and the second device 102 are connected.
  • Device 102 at least One includes an apparatus 1200 as shown in FIG. 12 and/or an apparatus 1300 as shown in FIG. 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种发送信号的方法、接收信号的方法、装置、系统及介质,属于通信领域。所述方法包括:电芯片将第一信号和第二信号合并成第三信号,所述第一信号是第一通道对应的信号,所述第二信号是第二通道对应的信号,所述电芯片和光模块之间具有至少两个物理通道,所述至少两个物理通道包括所述第一通道和所述第二通道;所述电芯片通过所述第一通道向所述光模块发送所述第三信号。本申请能够降低成本并保证信号能够成功发送。

Description

发送信号的方法、接收信号的方法、装置、系统及介质
本申请要求于2022年6月28日提交中国国家知识产权局、申请号为202210751416.1、申请名称为“发送信号的方法、接收信号的方法、装置、系统及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种发送信号的方法、接收信号的方法、装置、系统及介质。
背景技术
设备往往包括多个器件,该多个器件包括第一器件和第二器件。第一器件和第二器件之间通过物理通道通信。例如,第一器件和第二器件通过多个管脚相连,该多个管脚为第一器件和第二器件之间的物理通道,第一器件通过该多个管脚与第二器件通信。
第一器件和第二器件之间的每个物理通道对应不同的信号,这些信号包括第一器件和第二器件之间交互的信号。有时需要在第一器件和第二器件上增加新功能,第一器件和第二器件需要交互实现该新功能的新信号,此时需要在第一器件和第二器件之间增加物理通道,通过增加的物理通道来传输新信号。
例如,光线路终端(optical line terminal,OLT)设备包括电芯片和光模块,电芯片和光模块之间通过20个管脚相连,该20个管脚用于传输不同的信号,譬如有的管脚用于传输下行业务信号,有的管脚用于传输上行业务信号,有的管脚用于传输控制信号。为了提高光模块处理信号的速率,可以在光模块中增加用于提高信号处理速率的光数字信号处理(optics digital signal processing,oDSP)功能,同时在电芯片和光模块间增加两个管脚,电芯片通过该两个管脚向光模块发送差分时钟信号,光模块使用该差分时钟信号执行oDSP功能。
在电芯片与光模块之间增加两个管脚来传输新增的差分时钟信号,这样会增加硬件成本。另外,如果电芯片与光模块之间的管脚数量已经达到电芯片与光模块之间能够允许的最大管脚数量时,这种方式比较局限。
发明内容
本申请提供了一种发送信号的方法、接收信号的方法、装置、系统及介质,以降低成本并保证信号能够成功发送。所述技术方案如下:
第一方面,本申请公开了一种发送信号的方法,在所述方法中,电芯片将第一信号和第二信号合并成第三信号,第一信号是第一通道对应的信号,第二信号是第二通道对应的信号,电芯片和光模块之间具有至少两个物理通道,该至少两个物理通道包括第一通道和第二通道。电芯片通过第一通道向光模块发送第三信号。
由于电芯片将第一通道对应的第一信号和第二通道对应的第二信号合并为第三信号,通过第一通道向光模块发送第三信号,这样空出第二通道。电芯片能够通过第二通道向光模块 发送第四信号,第四信号是除电芯片与光模块之间的每个物理通道对应的信号之外的信号,即第四信号是在电芯片和光模块之间增加的新信号。如此不用在电芯片和光模块之间增加新物理通道,电芯片即能够保证将第一通道对应的第一信号和第二通道对应的第二信号成功发送给光模块,又能够将增加的新信号成功发送给光模块,降低了硬件的成本。由于不用在电芯片和光模块之间增加新物理通道,即使电芯片和光模块之间的物理通道数量已达到电芯片和光模块之间能够允许的最大物理通道数量时,也不影响电芯片向光模块发送信号,保证信号能够成功发送,拓宽了该发送信号方法的使用场景。
在一种可能的实现方式中,电芯片通过时分复用方式,将第一信号和第二信号合并成第三信号。或者,电芯片通过编码方式,将第一信号和第二信号合并成第三信号。如此丰富了合并信号的方式。
在另一种可能的实现方式中,电芯片通过第二通道向光模块发送第四信号,第四信号是除电芯片和光模块之间的每个物理通道对应的信号之外的信号。由于第二通道是空出的物理通道,通过第二通道发送第四信号,就不用在电芯片和光模块之间增加新通道,不仅降低硬件成本,还保证第四信号能够成功发送。
在另一种可能的实现方式中,电芯片将第五信号、第一信号和第二信号合并成第三信号,第五信号为第三通道对应的信号,该至少两个物理通道还包括第三通道。电芯片通过第二通道和第三通道向光模块发送第四信号。其中,第四信号是双路信号,电芯片需要两个物理通道来发送该双路信号,由于将三个物理通道对应的信号合并成第三信号,以空出第二通道和第三通道,这样可以保证能够成功发送第四信号。
在另一种可能的实现方式中,光模块包括光数字信号处理oDSP功能,第四信号包括差分时钟信号,该差分时钟信号用于使光模块执行oDSP功能。由于第四信号是差分时钟信号,保证光模块能够成功基于该差分时钟信号执行oDSP功能。
在另一种可能的实现方式中,第一信号和第二信号是不同业务的业务信号;或者,第一信号是业务信号,第二信号是控制信号;或者,第一信号和第二信号是不同的控制信号。这样可以将不同类型的信号进行合并,提高了合并信号的灵活性。
在另一种可能的实现方式中,第一信号和第二信号为无源光网络PON网络中的信号;或者,第一信号和第二信号为以太网中的信号。这样将发送信号的方法应用于PON网络或以太网,从而拓宽了该方法的应用领域。
在另一种可能的实现方式中,第一信号和第二信号为PON网络中的信号,第一信号为第一速率PON网络中的信号,第二信号为第二速率PON网络中的信号。这样可以将两个PON网络的信号进行合并,提高了合并信号的灵活性。
第二方面,本申请公开了一种接收信号的方法,在所述方法中,光模块通过第一通道接收电芯片发送的第三信号,第三信号是对第一信号和第二信号合并得到的,第一信号是第一 通道对应的信号,第二信号是第二通道对应的信号,电芯片和光模块之间具有至少两个物理通道,该至少两个物理通道包括第一通道和第二通道。光模块基于第三信号获取第一信号和第二信号。
由于将第一通道对应的第一信号和第二通道对应的第二信号合并为第三信号,光模块通过第一通道接收第三信号,这样空出第二通道。光模块能够通过第二通道接收电芯片发送的第四信号,第四信号是除电芯片与光模块之间的每个物理通道对应的信号之外的信号,即第四信号是在电芯片和光模块之间增加的新信号。如此不用在电芯片和光模块之间增加新物理通道,光模块即能够保证成功接收到第一通道对应的第一信号和第二通道对应的第二信号,又能够接收增加的新信号,降低了硬件的成本。由于不用在电芯片和光模块之间增加新物理通道,即使电芯片和光模块之间的物理通道数量已达到电芯片和光模块之间能够允许的最大物理通道数量时,也不影响接收电芯片发送的信号,保证信号能够成功接收,拓宽了该接收信号方法的使用场景。
在一种可能的实现方式中,第三信号是通过时分复用方式对第一信号和第二信号合并得到的。光模块基于第一信号的传输速率和第二信号的传输速率,从第三信号中获取第一信号和第二信号。或者,第三信号是通过编码方式对第一信号和第二信号合并得到的。光模块对第三信号进行解码,得到第一信号和第二信号。如此丰富了合并信号的方式。
在另一种可能的实现方式中,光模块通过第二通道接收电芯片发送的第四信号,第四信号是除电芯片和光模块之间的每个物理通道对应的信号之外的信号。由于第二通道是空出的物理通道,通过第二通道接收第四信号,就不用在电芯片和光模块之间增加新物理通道,不仅降低硬件成本,还保证第四信号能够成功接收。
在另一种可能的实现方式中,第三信号是对第五信号、第一信号和第二信号合并得到的,第五信号是第三通道对应的信号,该至少两个物理通道还包括第三通道。光模块通过第二通道和第三通道接收电芯片发送的第四信号。其中,第四信号是双路信号,需要两个物理通道来传输该双路信号,由于将三个物理通道对应的信号合并成第三信号,以空出第二通道和第三通道,这样可以保证能够成功从第二通道和第三通道接收第四信号。
在另一种可能的实现方式中,光模块包括光数字信号处理oDSP功能,第四信号包括差分时钟信号。光模块基于该差分时钟信号执行oDSP功能。由于第四信号是差分时钟信号,保证光模块能够成功基于该差分时钟信号执行oDSP功能。
在另一种可能的实现方式中,第一信号和第二信号是不同业务的业务信号;或者,第一信号是业务信号,第二信号是控制信号;或者,第一信号和第二信号是不同的控制信号。这样可以将不同类型的信号进行合并,提高了合并信号的灵活性。
在另一种可能的实现方式中,第一信号和第二信号为无源光网络PON网络中的信号;或者,第一信号和第二信号为以太网中的信号。这样将接收信号的方法应用于PON网络或以太网,从而拓宽了该方法的应用领域。
在另一种可能的实现方式中,第一信号和第二信号为PON网络中的信号,第一信号为第一速率PON网络中的信号,第二信号为第二速率PON网络中的信号。这样可以将两个PON网络的信号进行合并,提高了合并信号的灵活性。
第三方面,本申请提供了一种设备,所述设备包括电芯片和光模块。电芯片将第一信号和第二信号合并成第三信号,第一信号是第一通道对应的信号,第二信号是第二通道对应的信号,电芯片和光模块之间具有至少两个物理通道,该至少两个物理通道包括第一通道和第二通道。电芯片通过第一通道向光模块发送第三信号。光模块基于第三信号获取第一信号和第二信号。
由于电芯片将第一通道对应的第一信号和第二通道对应的第二信号合并为第三信号,通过第一通道向光模块发送第三信号,光模块基于第三信号得到第一信号和第二信号,这样空出第二通道。这样电芯片能够通过第二通道向光模块发送第四信号,第四信号是除电芯片与光模块之间的每个物理通道对应的信号之外的信号,即第四信号是在电芯片和光模块之间增加的新信号。如此不用在电芯片和光模块之间增加新物理通道,电芯片即能够保证将第一通道对应的第一信号和第二通道对应的第二信号成功发送给光模块,又能够将增加的新信号成功发送给光模块,降低了硬件的成本。由于不用在电芯片和光模块之间增加新物理通道,即使电芯片和光模块之间的物理通道数量已达到电芯处和光模块之间能够允许的最大通道数量时,也不影响电芯片向光模块发送信号,保证信号能够成功发送,拓宽了该发送信号方法的使用场景。
在一种可能的实现方式中,电芯片通过时分复用方式,将第一信号和第二信号合并成第三信号,光模块基于第一信号的传输速率和第二信号的传输速率,从第三信号中获取第一信号和第二信号。或者,电芯片通过编码方式,将第一信号和第二信号合并成第三信号,光模块对第三信号进行解码,得到第一信号和第二信号。如此丰富了合并信号的方式。
在另一种可能的实现方式中,电芯片通过第二通道向光模块发送第四信号,第四信号是除电芯片和光模块之间的每个物理通道对应的信号之外的信号。由于第二通道是空出的物理通道,通过第二通道发送第四信号,就不用在电芯片和光模块之间增加新物理通道,不仅降低硬件成本,还保证第四信号能够成功发送。
在另一种可能的实现方式中,电芯片将第五信号、第一信号和第二信号合并成第三信号,第五信号为第三通道对应的信号,该至少两个物理通道还包括第三通道。电芯片通过第二通道和第三通道向光模块发送第四信号。其中,第四信号是双路信号,电芯片需要两个物理通道来发送该双路信号,由于将三个通道对应的信号合并成第三信号,以空出第二通道和第三通道,这样可以保证能够成功发送第四信号。
在另一种可能的实现方式中,光模块包括光数字信号处理oDSP功能,第四信号包括差分时钟信号。光模块基于差分时钟信号执行oDSP功能。由于第四信号是差分时钟信号,保证光模块能够成功基于该差分时钟信号执行oDSP功能。
在另一种可能的实现方式中,第一信号和第二信号是不同业务的业务信号;或者,第一 信号是业务信号,第二信号是控制信号;或者,第一信号和第二信号是不同的控制信号。这样可以将不同类型的信号进行合并,提高了合并信号的灵活性。
在另一种可能的实现方式中,第一信号和第二信号为无源光网络PON网络中的信号;或者,第一信号和第二信号为以太网中的信号。这样将发送信号的方法应用于PON网络或以太网,从而拓宽了该方法的应用领域。
在另一种可能的实现方式中,第一信号和第二信号为PON网络中的信号,第一信号为第一速率PON网络中的信号,第二信号为第二速率PON网络中的信号。这样可以将两个PON网络的信号进行合并,提高了合并信号的灵活性。
第四方面,本申请提供了一种发送信号的装置,用于执行第一方面或第一方面的任意一种可能的实现方式中的方法。具体地,所述装置包括用于执行第一方面或第一方面的任意一种可能的实现方式中的方法的单元。
第五方面,本申请提供了一种接收信号的装置,用于执行第二方面或第二方面的任意一种可能的实现方式中的方法。具体地,所述装置包括用于执行第二方面或第二方面的任意一种可能的实现方式中的方法的单元。
第六方面,本申请提供了一种电芯片,所述电芯片包括处理电路,所述处理单元用于执行第一方面或第一方面的任意可能的实现方式中的方法。
在一种可能的实现方式中,所述处理电路包括数字电路或模拟电路。
第七方面,本申请提供了一种光模块,所述光模块包括处理电路,所述处理电路用于执行第二方面或第二方面的任意可能的实现方式中的方法。
在一种可能的实现方式中,所述处理电路包括数字电路或模拟电路。
第八方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括计算机程序,并且所述计算程序通过计算机进行加载来实现上述第一方面、第二方面或第一方面任意可能的实现方式的方法。
第九方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序通过处理器进行加载来执行上述第一方面、第二方面或第一方面任意可能的实现方式的方法。
第十方面,本申请提供了一种芯片,包括存储器和处理器,存储器用于存储计算机指令,处理器用于从存储器中调用并运行该计算机指令,以执行上述第一方面、第二方面或第一方面任意可能的实现方式的方法。
第十一方面,本申请提供了一种发送信号的系统,所述系统包括第四方面所述的装置和第五方面所述的装置,或者,所述系统包括第六方面所述的设备和第七方面所述的设备。
附图说明
图1是本申请实施例提供的一种发送信号的系统结构示意图;
图2是本申请实施例提供的一种PON系统结构示意图;
图3是本申请实施例提供的一种设备结构示意图;
图4是本申请实施例提供的一种22管脚的Combo模块结构示意图;
图5是本申请实施例提供的一种20管脚的Combo模块结构示意图;
图6是本申请实施例提供的一种发送信号的方法流程图;
图7是本申请实施例提供的一种合并信号的示意图;
图8是本申请实施例提供的另一种发送信号的方法流程图;
图9是本申请实施例提供的另一种合并信号的示意图;
图10是本申请实施例提供的另一种合并信号的示意图;
图11是本申请实施例提供的另一种发送信号的方法流程图;
图12是本申请实施例提供的一种发送信号的装置结构示意图;
图13是本申请实施例提供的一种接收信号的装置结构示意图;
图14是本申请实施例提供的一种发送信号的设备结构示意图。
具体实施方式
下面将结合附图对本申请实施方式作进一步地详细描述。
参见图1,本申请实施例提供了一种发送信号的系统100,该系统100包括第一设备101和第二设备102,第一设备101和第二设备102相连,第一设备101能够向第二设备102发送信号,和/或,第二设备102能够向第一设备101发送信号。
在一些实施例中,该系统100包括一个第二设备102,或者,该系统100包括多个第二设备102,第一设备101与每个第二设备102相连,第一设备101能够向每个第二设备102发送信号,和/或,每个第二设备102能够向第一设备101发送信号。
在一些实施例中,第一设备101与第二设备102通过线缆相连,该线缆包括光纤或同轴电缆等。
例如,参见图2,该系统100为无源光纤网络(passive optical network,PON)系统,第一设备101为PON系统的OLT,第二设备102为PON系统的光网络单元(optical network unit,ONU),OLT通过光纤与多个ONU相连。OLT能够通过光纤向每个ONU发送光信号,和/或,每个ONU能够通过光纤向OLT发送光信号。可选地,该PON系统上运行有第一速率PON和/或第二速率PON。可选地,第一速率PON为10Gbit/s以太网无源光网络(10Gbit/s ethernet passive optical network,XG(S)PON),第二速率PON为吉比特无源光网络(gigabit-capable PON,GPON)。
再例如,该系统100应用于以太网,第一设备101和第二设备102为以太网中的设备,第一设备101和第二设备102通过光纤或同轴电缆相连。第一设备101为路由器或交换机等,第二设备102为路由器或交换机等。
参见图3,本申请实施例提供了一种设备300,该设备300可以为上述图1所示系统100中的第一设备101或第二设备102。例如该设备300为上述图2所示PON系统中的OLT或ONU。再例如,该设备300为以太网中的路由器或交换机等。
该设备300包括第一器件301和第二器件302,第一器件301和第二器件302通过至少两个物理通道相连,第一器件301通过物理通道向第二器件302发送信号,和/或,第二器件302通过物理通道向第一器件301发送信号。
对于该至少两个物理通道,每个物理通道对应不同的信号,该信号是第一器件301和第二器件302之间交互的信号。也就是说,第一器件301和第二器件302使用该信号对应的物理通道来传输该信号,即第一器件301使用该信号对应的物理通道向第二器件302发送该信号,或者,第二器件302使用该信号对应的物理通道向第一器件301发送该信号。
在一些实施例中,第一器件301可能是该设备300中的单板或芯片等,第二器件302可能是该设备300中的单板或芯片等。例如,第一器件301和第二器件302是该设备300中的两个不同单板,或者,第一器件301是该设备300中的单板,第二器件302是该设备300中的芯片。
在一些实施例中,上述芯片包括电芯片等,上述单板包括光模块等。可选地,该设备300包括电芯片和光模块。例如,该设备300为OLT设备或ONU设备,OLT设备或ONU设备中包括电芯片和光模块,可选地,该电芯片为媒体介入控制层(media access control,MAC)单板等。
在一些实施例中,该设备300中的器件(第一器件301或第二器件302)包括具有数字处理能力的模块。例如可以包括OLT光模块、ONU模块、以太模块、小型可插拔(smal l form-factor pluggable,SFP)模块和/或100G封装可插拔光模块(centum form-factor pluggable transceiver,CFP)模块等。可选地,OLT光模块包括双通道光器件组合的OLT光模块或非双通道光器件组合的OLT光模块,双通道光器件组合的OLT光模块又可称为Combo OLT模块,非双通道光器件组合的OLT光模块又可称为非Combo OLT模块。
在一些实施例中,对于该至少两个物理通道中的任一个物理通道,该物理通道是第一器件301和第二器件302之间用于传输电信号的通道。可选地,该物理通道包括一个或多个管脚,或者,一根或多根总线等。
例如,以第一器件301为电芯片,第二器件302为光模块为例,电芯片和光模块之间的物理通道是用于传输电芯片与光模块之间的电信号的通道。如电芯片和光模块之间通过管脚相连,该管脚为用于传输电芯片与光模块之间的电信号的通道。
其中,参见图4,光模块包括多个管脚,电芯片包括底座,将该多个管脚插接在该底座上,使电芯片通过该多个管脚与光模块相连。
在一些实施例,对于PON系统中的OLT或ONU,OLT包括电芯片和/或光模块,ONU包括电芯片和/或光模块。或者,对于以太网,以太网中的路由器或交换机包括电芯片和/或光模块。
在一些实施例中,在该设备300为OLT或ONU的情况,电芯片包括底座,光模块包括Combo模块,Combo模块是一种电路板,Combo模块的两侧面上设有管脚。将光模块的Combo模块插接到电芯片的底座上,光模块通过Combo模块两侧面上的管脚与电芯片相连。
在一些实施例中,Combo模块包括22个管脚,如图4(a)所示的Combo模块的第一侧面上的11个管脚,如图4(b)所示的Combo模块的第二侧面上的11个管脚。第一侧面上的11个管脚包括发端接地(GND_T)、XG/SPON差分发端(XG/SPON TD-)、XG/SPON差分发端(XG/SPON  TD+)、GPON复位(GPON Reset)、发端供电(VccT)、收端供电(VccR)、GPON信号检测(GPON signal detection,GPON SD)、XG/SPON差分收端(XG/S PON RD+)、XG/SPON差分收端(XG/S PON RD-)、收端接地(GND_R)和速率选择(rate_select,Rate_Sel)。第二侧面上的11个管脚包括G/PON差分发端(GPON TD+)、GPON差分发端(GPON TD-)、接地(GND)、发端关断(TX Disable)、串行数据线(serial data line,SDA)、串行时钟线(serial clock line,SCL)、GPON差分收端(GPON RD-)、GPON复位(XG/S PON Reset)、XG/S PON信号检测(XG/S PON signal detection,XG/S PON SD)、触发接收信号强度功能(received signal strength indication trig,RSSI Trig)、GPON差分收端(GPON RD+)。
其中,XG/SPON TD-和XG/SPON TD+用于传输光模块向电芯片发送的XG(S)PON的上行业务信号。XG/S PON RD+和XG/S PON RD-用于传输电芯片向光模块发送的XG(S)PON的下行业务信号。GPON TD+和GPON TD-用于传输光模块向电芯片发送的GPON的上行业务信号。GPON RD+和GPON RD-用于传输电芯片向光模块发送的GPON的下行业务信号。
GPON Reset用于传输GPON器件复位信号,XG(S)PON Reset用于传输XG(S)GPON器件复位信号,VccT用于传输光模块向电芯片发送的供电信号,VccR用于传输电芯片向光模块发送的供电信号,GND_T用于传输光模块向电芯片发送的接地信号,GPON SD用于传输光模块向电芯片发送的第一指示信号,第一指示信号用于指示接收到GPON信号,GND_R用于传输电芯片向光模块发送的接地信号,Rate_Sel用于传输速率选择信号。
GND用于传输接地信号,TX Disable用于传输激光器发光控制信号,SDA和SCL用于传输两线式串行总线(Inter-Integrated Circuit,I2C)总线信号,XG/S PON Reset用于传输器件复位信号,XG/S PON SD用于传输光模块向电芯片发送的第二指示信号,第二指示信号用于指示接收到XG/SPON信号,RSSI Trig用于传输功率监测功能触发信号。
在一些实施例中,Combo模块包括20个管脚,如图5(a)所示的Combo模块的第一侧面上的11个管脚,如图5(b)所示的Combo模块的第二侧面上的9管脚。第一侧面上的11个管脚包括GND_T、信号混合的差分发端(Mux PON TD-)、信号混合的差分发端(Mux PON TD+)、GPON Reset、VccT、VccR、GPON SD、信号混合的差分收端(Mux PON RD+)、信号混合的差分收端(Mux PON RD-)、GND_R和Rate_Sel。第二侧面上的9个管脚包括参考时钟(REF CLK+)、参考时钟(REF CLK-)、GND、TX Disable、SDA、SCL、XG/S PON Reset、XG/S PON SD和RSSI Trig。
Mux PON TD-和Mux PON TD+用于传输光模块向电芯片发送的PON的上行业务信号。Mux PON RD+和Mux PON RD-用于传输电芯片向光模块发送的PON的下行业务信号。REF CLK+和REF CLK-用于传输差分参考时钟信号。
其中,GND_T、GPON Reset、VccT、VccR、GPON SD、GND_R、Rate_Sel、GND、TX Disable、SDA、SCL和RSSI Trig所传输的信号,请参见对图4的相关描述,在此不再详细说明。
参见上述图4或图5,能够得出电芯片和光模块之间的每个管脚对应不同信号,每个管脚分别用于传输各自对应的信号。
随着技术发展,需要在第一器件301和第二器件302上增加新功能,第一器件301和第二器件302需要交互实现该新功能的新信号,新信号是除第一器件301和第二器件302之间的每个物理通道对应的信号之外的信号,此时可以通过如下任意实施例来传输该新信号。
例如,为了提高光模块处理信号的速率,可以在光模块中增加用于提高信号处理速率的oDSP功能,此时电芯片通过如下任意实施例向光模块发送差分时钟信号,光模块使用该差分时钟信号执行oDSP功能。在接下来的实施例中,以第一器件301为电芯片,第二器件302为 光模块为例,来详细说明发送信号的过程。但第一器件301也可能为除电芯片之外的模块,第二器件302可能为除光模块之间的模块,将如下任意实施例中的电芯片和光模块替换为其他模块,就能够得到其他模块之间发送信号的过程。
参见图6,本申请实施例提供了一种发送信号的方法600,所述方法600应用于图1所示的系统100中的第一设备101或第二设备102上,例如所述方法应用于所述PON是有OLT或ONU上。或者,所述方法600应用于图3所示的设备300上。在所述方法600中以第一器件为电芯片,第二器件为光模块为例,所述方法600用于将电芯片和光模块之间的两个物理通道对应的信号合并为一路信号,使用其中一个物理通道来发送该一路信号,使用另一通道来发送增加的新信号。所述方法600包括如下步骤601-604。
步骤601:电芯片将第一信号和第二信号合并成第三信号,第一信号是第一通道对应的信号,第二信号是第二通道对应的信号,电芯片和光模块之间具有至少两个物理通道,该至少两个物理通道包括第一通道和第二通道。
在步骤601中,将第一通道对应的第一信号和第二通道对应的第二信号合并为第三信号,第三信号只需要第一通道和第二通道中的一个物理通道来传输,如此空出一个物理通道,该空出的物理通道用来传输新信号,新信号是除电芯片和光模块之间的每个物理通道对应的信号之外的信号。
其中,在电芯片和光模块上增加新功能,该新信号用于实现该新功能,如此在电芯片和光模块之间不增加新物理通道的情况下,不仅能成功传输第一通道对应的第一信号和第二通道对应的第二信号,还能够成功发送该新信号。
在一些实施例中,第一通道是双通道,第二通道是双通道。第一信号是双路信号,第二信号也是双路信号,增加的新信号也是双路信号。或者,第一通道是双通道,第二通道是单通道,第一信号是双路信号,第二信号是单路信号,增加的新信号也是单路信号。或者,第一通道是单通道,第二通道是单通道,第一信号是单路信号,第二信号也是单路信号,增加的新信号也是单路信号。
在步骤601中,列举了如下两种合并信号的方式,该两种方式为如下第一方式和第二方式。
第一方式,电芯片通过时分复用方式,将第一信号和第二信号合并成第三信号。
在第一方式中,电芯片基于第一信号的传输速率和第二信号的传输速率,通过时分复用方式将第一信号和第二信号合并成第三信号。
在一些实施例中,在第三信号中,第一信号和第二信号之间的时序关系为参考关系,该参数关系是基于第一信号的传输速率和第二信号的传输速率得到的。
在一些实施例中,对于第三信号中的每一帧,该帧包括的第一信号和第二信号之间的时序关系为参考关系。可选地,在该帧中属于第一信号的数据量和属于第二信号的数据量之间的比例等于第一信号的传输速率与第二信号的传输速率之间的比例。
例如,参见图7,假设第一信号为XG(S)PON的下行业务信号,第二信号为GPON的下行业务信号,XG(S)PON的下行业务信号和GPON的下行业务信号都是双路信号。XG(S)PON的下行业务信号对应的第一通道包括两个管脚,该两个管脚为XG/S PON RD+和XG/S PON RD-。GPON的下行业务信号对应的第二通道包括两个管脚,该两个管脚为GPON RD+和GPON RD-。XG(S)PON的下行业务信号的传输速率为“10Gbps”,GPON的下行业务信号的传输速率为2.5“Gbps”。在光模块上增加的新功能为oDSP功能,电芯片需要向光模块发送实现该oDSP功能 的差分时钟信号,该差分时钟信号是双路信号。
电芯片基于XG(S)PON的下行业务信号的传输速率“10Gbps”,GPON的下行业务信号的传输速率“2.5Gbps”,通过时分复用方式将XG(S)PON的下行业务信号和GPON的下行业务信号合并成第三信号。第三信号的传输速率为“12.5Gbps”,在第三信号的每帧中属于XG(S)PON的下行业务信号与属于GPON的下行业务信号之间的时序关系为4:1。该时序关系表示在第三信号的任一帧中属于XG(S)PON的下行业务信号的数据量与属于GPON的下行业务信号的数据量之间的比例为4:1。假设第三信号的每帧包括500个比特,即每帧的前400个比特属于XG(S)PON的下行业务信号,每帧的最后100个比特属于GPON的下行业务信号。
第二方式,电芯片通过编码方式,将第一信号和第二信号合并成第三信号。
在一些实施例中,该编码方式包括伪随机二进制序列(pseudo-random binary sequence,PRBS)掩码或64/66比特编码等。
例如,采用PRBS扰码方式,对第一信号和第二信号进行编码,得到第三信号。在实现时:将第一信号和第二信号串行拼接成一路信号,对于该一路信号中任一个比特,将该比特称为第一比特,从该一路信号中选择第二比特和第三比特,第二比特和第三比特位于第一比特之后,第一比特和第二比特之间间隔X个比特,第一比特和第三比特之间间隔Y个比特,X和Y为指定的整数值,且X不等于Y。基于第一比特、第二比特和第三比特计算出第四比特,将第一比特替换为第四比特。对该一路信号中的其他比特按上述相同方式进行替换,得到第三信号。
假设第一信号包括10个比特,第一信号为1100011001,第二信号也包括10个比特,第二信号为0011101110。在采用PRBS扰码方式编码时,将第一信号和第二信号组成一路信号,该一路信号包括20个比特,该一路信号的前10个比特属于第一信号,该一路信号的最后10个比特属于第二信号,即该一路信号为11000110010011101110。假设X=3,Y=5。
对于该一路信号中的第一个比特“1”,从该一路信号中选择第五个比特“0”以及第七个比特“1”。其中,第一个比特与第五个比特之间间隔3个比特,即间隔第二个比特、第三个比特和第四个比特。第一个比特与第七个比特之间间隔5个比特,即间隔第二个比特、第三个比特、第四个比特、第五个比特和第六个比特。假设基于第一个比特“1”、第五个比特“0”,第七个比特“1”计算出比特“0”,将第一个比特“1”替换为比特“0”。按上述方式对该一路信号中的第二个比特进行替换,第三个比特进行替换,……。替换后得到如下第三信号:01110110010010001110。
在一些实施例中,第一信号和第二信号是不同的业务信号。或者,第一信号是业务信号,第二信号是控制信号。或者,第一信号和第二信号是不同的控制信号。
在一些实施例中,第一信号和第二信号为PON网络中的信号;或者,第一信号和第二信号为以太网中的信号。
在一些实施例中,第一信号和第二信号为PON网络中的信号,第一信号为第一速率PON网络中的信号,第二信号为第二速率PON网络中的信号。例如,第一信号为XG(S)PON的下行业务信号,第二信号为GPON的下行业务信号。
步骤602:电芯片通过第一通道向光模块发送第三信号,通过第二通道向光模块发送第四信号,第四信号是除电芯片和光模块之间的每个物理通道对应的信号之外的信号。
在步骤602中,电芯片通过第一通道向光模块发送第三信号,且电芯片不会使用第二通道来发送第二信号,这样就会空出第二通道,从而使得电芯片使用第二通道向光模块发送第四信号。第四信号是新增信号,用于实现电芯片和光模块之间新增的功能。
例如,参见图4或图5,电芯片通过XG/S PON RD+和XG/S PON RD-向光模块发送如图7所示的第三信号。电芯片不使用GPON RD+和GPON RD-向光模块发送GPON的下行业务信号,如此就会空出GPON RD+和GPON RD-,电芯片使用GPON RD+和GPON RD-向光模块发送差分时钟信号。
步骤603:光模块通过第一通道接收第三信号,以及通过第二通道接收第四信号。
例如,光模块通过XG/S PON RD+和XG/S PON RD-接收电芯片发送的如图7所示的第三信号,以及通过GPON RD+和GPON RD-接收电芯片发送的差分时钟信号。基于该差分时钟信号执行光模块上的oDSP功能。
步骤604:光模块基于第三信号获取第一信号和第二信号。
在一些实施例中,第三信号是电芯片通过时分复用方式对第一信号和第二信号合并得到的,在步骤604中,光模块基于第一信号的传输速率和第二信号的传输速率,从第三信号中获取第一信号和第二信号。在实现时,光模块基于第一信号的传输速率和第二信号的传输速率,确定在第三信号的每帧中第一信号和第二信号之间的时序关系,基于该时序关系,从第三信号的每帧中获取属于第一信号的数据和属于第二信号的数据,从而得到第一信号和第二信号。
例如,光模块基于XG(S)PON的下行业务信号的传输速率“10Gbps”和GPON的下行业务信号的传输速率“2.5Gbps”,确定XG(S)PON的下行业务信号和GPON的下行业务信号之间的时序关系为4:1。假设如图7所示的第三信号的每帧包括500个比特,基于该时序关系从第三信号的每帧中获取前400个比特的数据,将每帧前400个比特的数据组成XG(S)PON的下行业务信号。以及,基于该时序关系从第三信号的每帧中获取最后100个比特的数据,将每帧最后100个比特的数据组成GPON的下行业务信号。
在一些实施例中,第三信号是通过编码方式对第一信号和第二信号合并得到的,在步骤604中,光模块对第三信号进行解码,得到第一信号和第二信号。
例如,假设该编码方式为PRBS编码方式,光模块基于PRBS编码方式,对第三信号进行解码得到第一信号和第二信号。在实现时,对于第三信号中任一个比特,将该比特称为第四比特,从第三信号中选择第五比特和第六比特,第五比特和第六比特位于第四比特之后,第四比特和第五比特之间间隔X个比特,第四比特和第六比特之间间隔Y个比特。基于第四比特、第五比特和第六比特计算出第一比特,将第四比特替换为第一比特。对第三信号中的其他比特按上述相同方式进行替换,得到包括第一信号和第二信号的一路信号,从该一路信号中得到第一信号和第二信号。
假设第三信号为01110110010010001110,对于第三信号中的第一个比特“0”,从第三信号中选择第五个比特“0”以及第七个比特“1”,其中,第一个比特与第五个比特之间间隔3个比特,第一个比特与第七个比特之间间隔5个比特。基于第一个比特“0”、第五个比特“0”,第七个比特“1”计算出比特“1”,将第一个比特“0”替换为比特“1”。按上述方式对第三信号中的第二个比特进行替换,第三个比特进行替换,……。替换后得到如下包括第一信号和第二信号的一路信号:11000110010011101110。从该一路信号中得到第一信号1100011001和第二信号0011101110。
其中,光模块也能够按上述步骤601-604的流程向电芯片发送信号。例如,光模块将XG(S)PON的上行业务信号和GPON的上行业务信号合并成第三信号。参见图4或图5,XG(S)PON的上行业务信号对应的第一通道包括两个管脚,该两个管脚为XG/S PON TD+和XG/S PON TD-。GPON的上行业务信号对应的第二通道包括两个管脚,该两个管脚为GPON TD+和GPON TD-。 XG(S)PON的上行业务信号的传输速率为“10Gbps”,GPON的上行业务信号的传输速率为2.5“Gbps”。
光模块基于XG(S)PON的上行业务信号的传输速率“10Gbps”,GPON的上行业务信号的传输速率“2.5Gbps”,通过时分复用方式将XG(S)PON的上行业务信号和GPON的上行业务信号合并成第三信号。第三信号的传输速率为“12.5Gbps”,在第三信号的每帧中属于XG(S)PON的下行业务信号与属于GPON的下行业务信号之间的时序关系为4:1。或者,光模块通过编码方式,将XG(S)PON的上行业务信号和GPON的上行业务信号编码成第三信号。
光模块通过XG/S PON TD+和XG/S PON TD-向电芯片发送第三信号,此时空出GPON TD+和GPON TD-。光模块能够使用GPON TD+和GPON TD-,向电芯片发送除光模块和电芯片之间的每个物理通道对应的信号之外的信号。
电芯片通过XG/S PON TD+和XG/S PON TD-接收第三信号,基于XG(S)PON的上行业务信号的传输速率“10Gbps”和GPON的上行业务信号的传输速率“2.5Gbps”,从第三信号中获取XG(S)PON的上行业务信号和GPON的上行业务信号。或者,对第三信号进行解码,得到XG(S)PON的上行业务信号和GPON的上行业务信号。
在本申请实施例中,由于电芯片将第一通道对应的第一信号和第二通道对应的第二信号合并为第三信号,通过第一通道向光模块发送第三信号,这样空出第二通道。电芯片通过第二通道向光模块发送第四信号,第四信号是除电芯片与光模块之间的每个物理通道对应的信号之外的信号,即第四信号是在电芯片和光模块之间增加的新信号。光模块通过第一通道接收第三信号,通过第二通道接收第四信号,基于第三信号获取第一信号和第二信号。如此不用在电芯片和光模块之间增加新物理通道,电芯片即能够保证将第一通道对应的第一信号和第二通道对应的第二信号成功发送给光模块,又能够将增加的新信号成功发送给光模块,降低了硬件的成本。由于不用在电芯片和光模块之间增加新物理通道,即使电芯片和光模块之间的物理通道数量已达到电芯片和光模块之间能够允许的最大物理通道数量时,也不影响电芯片向光模块发送信号,拓宽了该发送信号方法的使用场景。
参见图8,本申请实施例提供了一种发送信号的方法800,所述方法800应用于图1所示的系统100中的第一设备101或第二设备102上,例如所述方法应用于所述PON是有OLT或ONU上。或者,所述方法800应用于图3所示的设备300上。在所述方法800中以第一器件为电芯片,第二器件为光模块为例,所述方法800用于将电芯片和光模块之间的三个物理通道对应的信号合并为一路信号,使用其中一个物理通道来发送该一路信号,使用另外两个物理通道来发送增加的新信号。所述方法800包括如下步骤801-804。
步骤801:电芯片将第一信号、第二信号和第五信号合并成第三信号,第一信号是第一通道对应的信号,第二信号是第二通道对应的信号,第五信号是第四通道对应的信号,电芯片和光模块之间具有至少两个物理通道,该至少两个物理通道包括第一通道、第二通道和第三通道。
在步骤801中,将第一通道对应的第一信号、第二通道对应的第二信号和第三通道对应的第五信号合并为第三信号,第三信号通过第一通道来传输,如此空出两个物理通道。该空出的第二通道和第三通道用来传输新信号,新信号是除电芯片和光模块之间的每个物理通道对应信号之外的信号,新信号为双路信号,这样保证该双路信号能够成功被传输。
在一些实施例中,第一信号是双路信号,第一通道是双通道,第二信号和第三信号均是单路信号,第二通道和第三通道均是单通道。或者,第一信号、第二信号和第三信号均是单 路信号,第一通道、第二通道和第三通道均是单通道。
例如,在光模块上增加的新功能为oDSP功能,电芯片需要向光模块发送实现该oDSP功能的差分时钟信号,该差分时钟信号是一种双路信号,该差分时钟信号需要两个单通道来传输,即需要第二通道和第三通道来传输。
在一些实施例中,第一信号是业务信号,第二信号和第五信号为不同的控制信号。或者,第一信号、第二信号和第五信号是不同的控制信号。通常业务信号是双路信号,控制信号为单路信号。
在一些实施例中,有些控制信号是双向的,电芯片选择电芯片需要向光模块发送的控制信号作为第二信号和第三信号。
在步骤801中,列举了如下两种合并信号的方式,该两种方式为如下第一方式和第二方式。
第一方式,电芯片通过时分复用方式,将第一信号、第二信号和第五信号合并成第三信号。
在第一方式中,电芯片基于第一信号的传输速率、第二信号的传输速率和第五信号的传输速率,通过时分复用方式将第一信号、第二信号和第五信号合并成第三信号。
在一些实施例中,在第三信号中,第一信号、第二信号和第五信号之间的时序关系为参考关系,该参数关系是基于第一信号的传输速率、第二信号的传输速率和第三信号的传输速率得到的。
在一些实施例中,对于第三信号中的每一帧,该帧包括的第一信号、第二信号、第五信号之间的时序关系为参考关系。可选地,在该帧中属于第一信号的数据量、属于第二信号的数据量和属于第三信号的数据量之间的比例等于第一信号的传输速率、第二信号的传输速率和第五信号的传输速率之间的比例。
接下来列举如下第一实例和第二实例进行说明。
第一实例,参见图9,第一信号为XG(S)PON的下行业务信号,第二信号为GPON器件复位信号,第五信号为XG(S)PON器件复位信号。参见图4或图5,XG(S)PON的下行业务信号对应的第一通道包括两个管脚,该两个管脚为XG/S PON RD+和XG/S PON RD-。GPON器件复位信号是控制信号,GPON器件复位信号对应的第二通道包括一个管脚,该一个管脚为GPON Reset。XG(S)PON器件复位信号是控制信号,XG(S)PON器件复位信号对应的第三通道包括一个管脚,该一个管脚为XG(S)PON Reset。XG(S)PON的下行业务信号的传输速率为“10Gbps”,GPON器件复位信号的传输速率和XG(S)PON器件复位信号的传输速率均为2.5“Gbps”。
电芯片基于XG(S)PON的下行业务信号的传输速率“10Gbps”,GPON器件复位信号的传输速率“2.5Gbps”和XG(S)PON器件复位信号的传输速率均2.5“Gbps”,通过时分复用方式将XG(S)PON的下行业务信号、GPON器件复位信号和XG(S)PON器件复位信号合并成第三信号。第三信号的传输速率为“15Gbps”,在第三信号的每帧中XG(S)PON的下行业务信号、GPON器件复位信号和XG(S)PON器件复位信号之间的时序关系为4:1:1。该时序关系表示在第三信号的任一帧中属于XG(S)PON的下行业务信号的数据量、属于GPON器件复位信号的数据量和属于XG(S)PON器件复位信号的数据量之间的比例为4:1:1。
第二实例,参见图10,第一信号为GPON器件复位信号,第二信号为XG(S)PON器件复位信号,第五信号为功率监测功能触发信号,GPON器件复位信号、XG(S)PON器件复位信号和功率监测功能触发信号均是控制信号。参见图4或图5,GPON器件复位信号对应的第一通道包括一个管脚,该一个管脚为GPON Reset。XG(S)PON器件复位信号对应的第二通道包括 一个管脚,该一个管脚为XG(S)PON Reset。功率监测功能触发信号对应的第三通道包括一个管脚,该一个管脚为RSSI Trig。GPON器件复位信号的传输速率和XG(S)PON器件复位信号的传输速率均为2.5“Gbps”,功率监测功能触发信号的传输速率为“1Gbps”。
电芯片基于GPON器件复位信号的传输速率“2.5Gbps”、XG(S)PON器件复位信号的传输速率均2.5“Gbps”和功率监测功能触发信号的传输速率“1Gbps”,通过时分复用方式将GPON器件复位信号、XG(S)PON器件复位信号和功率监测功能触发信号合并成第三信号。第三信号的传输速率为“6Gbps”,在第三信号的每帧中GPON器件复位信号、XG(S)PON器件复位信号和功率监测功能触发信号之间的时序关系为2.5:2.5:1。该时序关系表示在第三信号的任一帧中属于GPON器件复位信号的数据量、属于XG(S)PON器件复位信号的数据量和属于功率监测功能触发信号的数据量之间的比例为2.5:2.5:1。
第二方式,电芯片通过编码方式,将第一信号、第二信号和第五信号合并成第三信号。
步骤802:电芯片通过第一通道向光模块发送第三信号,通过第二通道和第三通道向光模块发送第四信号,第四信号是除电芯片和光模块之间的每个物理通道对应的信号之外的信号。
在步骤802中,电芯片通过第一通道向光模块发送第三信号,且电芯片不会使用第二通道来发送第二信号以及不会使用第三通道来发送第五信号,这样就会空出第二通道和第三通道,从而使得电芯片使用第二通道和第三通道向光模块发送第四信号。第四信号是新增信号,用于实现电芯片和光模块之间新增的功能。
在上述第一实例中,电芯片通过XG/S PON RD+和XG/S PON RD-向光模块发送如图9所示的第三信号。电芯片不使用GPON Reset向光模块发送GPON器件复位信号,也不使用不使用XG(S)PON Reset向光模块发送XG(S)PON器件复位信号,如此就会空出GPON Reset和XG(S)PON Reset,电芯片使用GPON Reset和XG(S)PON Reset向光模块发送差分时钟信号。
在上述第二实例中,电芯片通过GPON Reset向光模块发送如图10所示的第三信号。电芯片不使用XG(S)PON Reset向光模块发送XG(S)PON器件复位信号,也不使用不使用RSSI Trig向光模块发送功率监测功能触发信号,如此就会空出XG(S)PON Reset和RSSI Trig,电芯片使用XG(S)PON Reset和RSSI Trig向光模块发送差分时钟信号。
步骤803:光模块通过第一通道接收第三信号,以及通过第二通道和第三通道接收第四信号。
在上述第一实例中,光模块通过XG/S PON RD+和XG/S PON RD-接收电芯片发送的如图9所示的第三信号,以及通过GPON Reset和XG(S)PON Reset接收电芯片发送的差分时钟信号。基于该差分时钟信号执行光模块上的oDSP功能。
在上述第二实例中,光模块通过GPON Reset接收电芯片发送的如图10所示的第三信号,以及通过XG(S)PON Reset和RSSI Trig接收电芯片发送的差分时钟信号。基于该差分时钟信号执行光模块上的oDSP功能。
步骤804:光模块基于第三信号获取第一信号、第二信号和第五信号。
在一些实施例中,第三信号是电芯片通过时分复用方式对第一信号、第二信号和第五信号合并得到的,在步骤804中,光模块基于第一信号的传输速率、第二信号的传输速率和第五信号的传输速率,从第三信号中获取第一信号、第二信号和第五信号。在实现时,光模块基于第一信号的传输速率、第二信号的传输速率和第五信号的传输速率,确定在第三信号的每帧中第一信号、第二信号和第五信号之间的时序关系,基于该时序关系,从第三信号的每帧中获取属于第一信号的数据、属于第二信号的数据和属于第五信号的数据,从而得到第一 信号、第二信号和第五信号。
在上述第一实例中,光模块基于XG(S)PON的下行业务信号的传输速率“10Gbps”、GPON器件复位信号的传输速率“2.5Gbps”和XG(S)PON器件复位信号的传输速率“2.5Gbps”,确定XG(S)PON的下行业务信号、GPON器件复位信号、XG(S)PON器件复位信号之间的时序关系为4:1:1。假设如图9所示的第三信号的每帧包括600个比特,基于该时序关系从第三信号的每帧中获取属于XG(S)PON的下行业务信号的400个比特的数据,属于GPON器件复位信号的100个比特的数据,属于XG(S)PON器件复位信号的100个比特的数据,从而得到XG(S)PON的下行业务信号、GPON器件复位信号和XG(S)PON器件复位信号。
在上述第二实例中,光模块基于GPON器件复位信号的传输速率“2.5Gbps”、XG(S)PON器件复位信号的传输速率“2.5Gbps”和器件复位信号的传输速率“1Gbps”,确定GPON器件复位信号、XG(S)PON器件复位信号和器件复位信号之间的时序关系为2.5:2.5:1。假设如图10所示的第三信号的每帧包括600个比特,基于该时序关系从第三信号的每帧中获取属于GPON器件复位信号的250个比特的数据,属于XG(S)PON器件复位信号的250个比特的数据,属于器件复位信号的100个比特的数据,从而得到GPON器件复位信号、XG(S)PON器件复位信号和器件复位信号。
在一些实施例中,第三信号是通过编码方式对第一信号、第二信号和第五信号合并得到的,在步骤804中,光模块对第三信号进行解码,得到第一信号、第二信号和第五信号。
其中,光模块也能够按上述步骤801-804的流程向电芯片发送信号,即电芯片为光模块,光模块为电芯片。例如,光模块将XG(S)PON的上行业务信号、GPON器件复位信号和XG(S)PON器件复位信号合并成第三信号。参见图4或图5,XG(S)PON的上行业务信号对应的第一通道包括两个管脚,该两个管脚为XG/S PON TD+和XG/S PON TD-。GPON器件复位信号对应的第二通道包括一个管脚,该一个管脚为GPON Reset。XG/S PON器件复位信号对应的第三通道包括一个管脚,该一个管脚为XG/S PON Reset。XG(S)PON的上行业务信号的传输速率为“10Gbps”,GPON器件复位信号的传输速率和XG/S PON器件复位信号的传输速率均为2.5“Gbps”。
光模块基于XG(S)PON的上行业务信号的传输速率“10Gbps”,GPON器件复位信号的传输速率2.5“Gbps”和XG/S PON器件复位信号的传输速率2.5“Gbps”,通过时分复用方式将XG(S)PON的上行业务信号、GPON器件复位信号和XG/S PON器件复位信号合并成第三信号。第三信号的传输速率为“15Gbps”。或者,光模块通过编码方式,将XG(S)PON的上行业务信号、GPON器件复位信号和XG/S PON器件复位信号编码成第三信号。
光模块通过XG/S PON TD+和XG/S PON TD-向电芯片发送第三信号,此时空出GPON Reset和XG/S PON Reset。光模块能够使用GPON Reset和XG/S PON Reset,向电芯片发送除光模块和电芯片之间的每个物理通道对应的信号之外的信号。
电芯片通过XG/S PON TD+和XG/S PON TD-接收第三信号,基于XG(S)PON的上行业务信号的传输速率“10Gbps”、GPON器件复位信号的传输速率2.5“Gbps”和XG/S PON器件复位信号的传输速率2.5“Gbps”,从第三信号中获取XG(S)PON的上行业务信号、GPON器件复位信号和XG/S PON器件复位信号。或者,对第三信号进行解码,得到XG(S)PON的上行业务信号、GPON器件复位信号和XG/S PON器件复位信号。
上述仅列举了将第一信号、第二信号和第三信号合并成第一信号,当然还可以将四个信号或五个信号合并成第一信号,以空出更多的物理通道还传输其他信号,在此不再详细说明。
在本申请实施例中,由于电芯片将第一通道对应的第一信号、第二通道对应的第二信号 和第三通道对应的第五信号合并为第三信号,通过第一通道向光模块发送第三信号,这样空出第二通道和第三通道。电芯片通过第二通道和第三通道向光模块发送第四信号,第四信号是除电芯片与光模块之间的每个物理通道对应的信号之外的信号,即第四信号是在电芯片和光模块之间增加的新信号且为双路信号。光模块通过第一通道接收第三信号,通过第二通道和第三通道接收第四信号,基于第三信号获取第一信号、第二信号和第五信号。如此不用在电芯片和光模块之间增加新物理通道,电芯片即能够保证将第一通道对应的第一信号、第二通道对应的第二信号和第三通道对应的第五信号成功发送给光模块,又能够将增加的双路新信号成功发送给光模块,降低了硬件的成本。由于不用在电芯片和光模块之间增加新物理通道,即使电芯片和光模块之间的物理通道数量已达到电芯片和光模块之间能够允许的最大物理通道数量时,也不影响电芯片向光模块发送信号,拓宽了该发送信号方法的使用场景。
参见图11,本申请实施例提供了一种发送信号的方法1100,所述方法1100应用于图1所示的系统100中的第一设备101或第二设备102上,例如所述方法应用于所述PON是有OLT或ONU上。或者,所述方法1100应用于图3所示的设备300上。在所述方法1100中以第一器件为电芯片,第二器件为光模块为例,所述方法1100用于将第一通道对应的信号和增加的新信号合并为一路信号,使用其中第一通道来发送该一路信号,第一通道是电芯片和光模块之间的物理通道。所述方法1100包括如下步骤601-604。
步骤1101:电芯片将第一信号和第二信号合并成第三信号,第一信号是第一通道对应的信号,第二信号是电芯片和光模块之间的每个物理通道对应的信号之外的信号。
在步骤1101中,将第一通道对应的第一信号和增加的第二信号合并为第三信号,第三信号只需要第一通道来传输,如此在电芯片和光模块之间不增加新物理通道的情况下,不仅能成功传输第一通道对应的第一信号,还能够成功发送新信号。
在一些实施例中,第一通道可能是双通道,第一信号是双路信号,第二信号也是双路信号。或者,第一通道可能是双通道,第一信号是双路信号,第二信号是单路信号。或者,第一通道可能是单通道,第一信号是单路信号,第二信号也是单路信号。
在步骤1101中,列举了如下两种合并信号的方式,该两种方式为如下第一方式和第二方式。
第一方式,电芯片通过时分复用方式,将第一信号和第二信号合并成第三信号。
在第一方式中,电芯片基于第一信号的传输速率和第二信号的传输速率,通过时分复用方式将第一信号和第二信号合并成第三信号。
在一些实施例中,在第三信号中,第一信号和第二信号之间的时序关系为参考关系,该参数关系是基于第一信号的传输速率和第二信号的传输速率得到的。
在一些实施例中,对于第三信号中的每一帧,该帧包括的第一信号和第二信号之间的时序关系为参考关系。可选地,在该帧中属于第一信号的数据量和属于第二信号的数据量之间的比例等于第一信号的传输速率与第二信号的传输速率之间的比例。
第二方式,电芯片通过编码方式,将第一信号和第二信号合并成第三信号。
步骤1102:电芯片通过第一通道向光模块发送第三信号。
步骤1103:光模块通过第一通道接收第三信号,基于第三信号获取第一信号和第二信号。
在一些实施例中,第三信号是电芯片通过时分复用方式对第一信号和第二信号合并得到的,在步骤1103中,光模块基于第一信号的传输速率和第二信号的传输速率,从第三信号中获取第一信号和第二信号。在实现时,光模块基于第一信号的传输速率和第二信号的传输速 率,确定在第三信号的每帧中第一信号和第二信号之间的时序关系,基于该时序关系,从第三信号的每帧中获取属于第一信号的数据和属于第二信号的数据,从而得到第一信号和第二信号。
在一些实施例中,第三信号是通过编码方式对第一信号和第二信号合并得到的,在步骤1103中,光模块对第三信号进行解码,得到第一信号和第二信号。
在本申请实施例中,由于电芯片将第一通道对应的第一信号和增加的第二信号合并为第三信号,通过第一通道向光模块发送第三信号。光模块通过第一通道接收第三信号,基于第三信号获取第一信号和第二信号。如此不用在电芯片和光模块之间增加新物理通道,电芯片即能够保证将第一通道对应的第一信号和增加的第二信号成功发送给光模块,降低了硬件的成本。由于不用在电芯片和光模块之间增加新通道,即使电芯片和光模块之间的物理通道数量已达到电芯片和光模块之间能够允许的最大物理通道数量时,也不影响电芯片向光模块发送信号,拓宽了该发送信号方法的使用场景。
参见图12,本申请实施例提供了一种发送信号的装置1200,所述装置1200部署在如图1所示系统100的第一设备或第二设备上,所述装置1200部署在如图2所示的PON中的OLT或ONU上,所述装置1200部署在如图3所示的设备300的电芯片上,或者,所述装置1200部署在如图6所示的方法600的电芯片或如图8所示的方法800的电芯片上。所述装置1200包括:
处理单元1201,用于将第一信号和第二信号合并成第三信号,第一信号是第一通道对应的信号,第二信号是第二通道对应的信号,所述装置1200和光模块之间具有至少两个物理通道,该至少两个物理通道包括第一通道和第二通道;通信单元1202,用于通过第一通道向光模块发送第三信号。
可选地,处理单元1201将第一信号和第二信号合并成第三信号的详细实现过程,参见图6所示方法600的步骤601或图8所示方法800的步骤801中的相关内容,在此不再详细说明。
可选地,通信单元1202发送第三信号的详细实现过程,参见图6所示方法600的步骤602或图8所示方法800的步骤802中的相关内容,在此不再详细说明。
可选地,处理单元1201,用于通过时分复用方式,将第一信号和第二信号合并成第三信号;或者,处理单元1201,用于通过编码方式,将第一信号和第二信号合并成第三信号。
可选地,处理单元1201通过时分复用方式或编码方式将第一信号和第二信号合并成第三信号的详细实现过程,参见图6所示方法600的步骤601或图8所示方法800的步骤801中的相关内容,在此不再详细说明。
可选地,通信单元1202通过所述第二通道向光模块发送第四信号,第四信号是除所述装置1200和光模块之间的每个物理通道对应的信号之外的信号。
可选地,通信单元1202发送第四信号的详细实现过程,参见图6所示方法600的步骤602或图8所示方法800的步骤802中的相关内容,在此不再详细说明。
可选地,处理单元1201,用于将第五信号、第一信号和第二信号合并成第三信号,第五信号为第三通道对应的信号,至少两个物理通道还包括第三通道;
通信单元1202,用于通过第二通道和第三通道向光模块发送第四信号。
可选地,处理单元1201将第五信号、第一信号和第二信号合并成第三信号的详细实现过程,参见图8所示方法800的步骤801中的相关内容,在此不再详细说明。
可选地,通信单元1202发送第四信号的详细实现过程,参见图8所示方法800的步骤802中的相关内容,在此不再详细说明。
可选地,光模块包括光数字信号处理oDSP功能,第四信号包括差分时钟信号,差分时钟信号用于使光模块执行oDSP功能。
可选地,第一信号和第二信号是不同业务的业务信号;或者,第一信号是业务信号,第二信号是控制信号;或者,第一信号和第二信号是不同的控制信号。
可选地,第一信号和第二信号为无源光网络PON网络中的信号;或者,第一信号和第二信号为以太网中的信号。
可选地,第一信号和第二信号为PON网络中的信号,第一信号为第一速率PON网络中的信号,第二信号为第二速率PON网络中的信号。
在本申请实施例中,由于处理单元将第一通道对应的第一信号和第二通道对应的第二信号合并为第三信号,通信单元通过第一通道向光模块发送第三信号,这样空出第二通道。通信单元能够通过第二通道向光模块发送第四信号,第四信号是除所述装置与光模块之间的每个通道对应的信号之外的信号,即第四信号是在所述装置和光模块之间增加的新信号。如此不用在所述装置和光模块之间增加新物理通道,通信单元即能够保证将第一通道对应的第一信号和第二通道对应的第二信号成功发送给光模块,又能够将增加的新信号成功发送给光模块,降低了硬件的成本,并保证信号能够成功发送,拓宽了所述装置的使用场景。
参见图13,本申请实施例提供了一种接收信号的装置1300,所述装置1300部署在如图1所示系统100的第一设备或第二设备上,所述装置1300部署在如图2所示的PON中的OLT或ONU上,所述装置1300部署在如图3所示的设备300的光模块上,或者,所述装置1300部署在如图6所示的方法600的光模块或如图8所示的方法800的光模块上。所述装置1300包括:
通信单元1301,用于通过第一通道接收电芯片发送的第三信号,第三信号是对第一信号和第二信号合并得到的,第一信号是第一通道对应的信号,第二信号是第二通道对应的信号,电芯片和所述装置1300之间具有至少两个物理通道,该至少两个物理通道包括第一通道和第二通道;
处理单元1302,用于基于第三信号获取第一信号和第二信号。
可选地,通信单元1301接收第三信号的详细实现过程,参见图6所示方法600的步骤603或图8所示方法800的步骤803中的相关内容,在此不再详细说明。
可选地,处理单元1302获取第一信号和第二信号的详细实现过程,参见图6所示方法600的步骤604或图8所示方法800的步骤804中的相关内容,在此不再详细说明。
可选地,第三信号是通过时分复用方式对第一信号和第二信号合并得到的,处理单元1302,用于基于第一信号的传输速率和第二信号的传输速率,从第三信号中获取第一信号和第二信号。
可选地,第三信号是通过编码方式对第一信号和第二信号合并得到的,处理单元1302,用于对第三信号进行解码,得到第一信号和第二信号。
可选地,通信单元1301,用于通过第二通道接收电芯片发送的第四信号,第四信号是除电芯片和所述装置1300之间的每个物理通道对应的信号之外的信号。
可选地,通信单元1301接收第四信号的详细实现过程,参见图6所示方法600的步骤603或图8所示方法800的步骤803中的相关内容,在此不再详细说明。
可选地,第三信号是对第五信号、第一信号和第二信号合并得到的,第五信号是第三通道对应的信号,至少两个物理通道还包括第三通道,
通信单元1301,用于通过第二通道和第三通道接收电芯片发送的第四信号。
可选地,通信单元1301接收第四信号的详细实现过程,参见图8所示方法800的步骤803中的相关内容,在此不再详细说明。
可选地,所述装置1300包括光数字信号处理oDSP功能,第四信号包括差分时钟信号,处理单元1302,还用于基于差分时钟信号执行oDSP功能。
可选地,处理单元1302执行oDSP功能的详细实现过程,参见图6所示方法600的步骤604或图8所示方法800的步骤804中的相关内容,在此不再详细说明。
可选地,第一信号和第二信号是不同业务的业务信号;或者,第一信号是业务信号,第二信号是控制信号;或者,第一信号和第二信号是不同的控制信号。
可选地,第一信号和第二信号为无源光网络PON网络中的信号;或者,第一信号和第二信号为以太网中的信号。
可选地,第一信号和第二信号为PON网络中的信号,第一信号为第一速率PON网络中的信号,第二信号为第二速率PON网络中的信号。
在本申请实施例中,由于将第一通道对应的第一信号和第二通道对应的第二信号合并为第三信号,通信单元通过第一通道接收第三信号,这样空出第二通道。通信单元能够通过第二通道接收电芯片发送的第四信号,第四信号是除电芯片与所述装置之间的每个物理通道对应的信号之外的信号,即第四信号是在电芯片和所述装置之间增加的新信号。如此不用在电芯片和所述装置之间增加新物理通道,通信单元即能够保证成功接收到第一通道对应的第一信号和第二通道对应的第二信号,又能够接收增加的新信号,降低了硬件的成本,保证信号能够成功接收,拓宽了所述装置的使用场景。
参见图14,本申请实施例提供了一种发送信号的设备1400示意图。所述设备1400可以是上述任意实施例提供的电芯片或该设备1400可以是上述任意实施例提供的电芯片,例如,可以是如图3所示的设备300的电芯片,如图6所示的方法600的电芯片或如图8所示的方法800的电芯片。所述设备1400包括至少一个处理器1401,内部连接1402,存储器1403以及至少一个通信接口1404。
所述设备1400是一种硬件结构的装置。
在一些实施例中,可以用于实现图12所述的装置1200中的功能模块。例如,本领域技术人员可以想到图12所示的装置1200中的处理单元1201可以通过该至少一个处理器1401调用存储器1403中的代码来实现。图12所示的装置1200中的通信单元1202可以通过该至少一个通信接口1404来实现。所述设备1400还可以用于实现上述任一实施例中电芯片的功能。
在一些实施例中,可以用于实现图13所述的装置1300中的功能模块。例如,本领域技术人员可以想到图13所示的装置1200中的处理单元1302可以通过该至少一个处理器1401调用存储器1403中的代码来实现。图13所示的装置1300中的通信单元1301可以通过该至少一个通信接口1404来实现。所述设备1400还可以用于实现上述任一实施例中光模块的功能。
上述处理器1401例如是通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、网络处理器(Network Processer,NP)、图形 处理器(Graphics Processing Unit,GPU)、神经网络处理器(Neural-network Processing Units,NPU)、数据处理单元(Data Processing Unit,DPU)、微处理器或者一个或多个用于实现本申请方案的集成电路。例如,处理器1401包括专用集成电路(Application-specific Integrated Circuit,ASIC),可编程逻辑器件(Programmable Logic Device,PLD)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。PLD例如是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种逻辑方框、模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。
上述内部连接1402可包括一通路,在上述组件之间传送信息。内部连接1402可以为单板或总线等。总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述至少一个通信接口1404使用任何收发器一类的装置,用于与其它设备或通信网络通信,通信网络可以为以太网、无线接入网或无线局域网(Wireless Local Area Networks,WLAN)等。通信接口1404可以包括有线通信接口,还可以包括无线通信接口。具体的,通信接口1404可以为以太接口、快速以太(Fast Ethernet,FE)接口、千兆以太(Gigabit Ethernet,GE)接口,异步传输模式(Asynchronous Transfer Mode,ATM)接口,无线局域网WLAN接口,蜂窝网络通信接口或其组合。以太网接口可以是光接口,电接口或其组合。在本申请实施例中,通信接口1404可以用于所述设备1400与其他设备进行通信。
上述存储器1403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrical ly erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器1403也可以和处理器1401集成在一起。
在具体实现中,作为一种实施例,处理器1401可以包括一个或多个CPU,例如图14中的CPU0和CPU1。这些CPU中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,所述设备1400可以包括多个处理器,例如图14中的处理器1401和处理器1407。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
参见图1,本申请实施例还提供了一种发送信号的系统,所述系统包括第一设备101和第二设备102,第一设备101和第二设备102相连,第一设备101和第二设备102中的至少 一个包括如图12所示的装置1200和/或如图13所示的装置1300。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种发送信号的方法,其特征在于,所述方法包括:
    电芯片将第一信号和第二信号合并成第三信号,所述第一信号是第一通道对应的信号,所述第二信号是第二通道对应的信号,所述电芯片和光模块之间具有至少两个物理通道,所述至少两个物理通道包括所述第一通道和所述第二通道;
    所述电芯片通过所述第一通道向所述光模块发送所述第三信号。
  2. 如权利要求1所述的方法,其特征在于,所述电芯片将第一信号和第二信号合并成第三信号,包括:
    所述电芯片通过时分复用方式,将所述第一信号和所述第二信号合并成所述第三信号;或者,
    所述电芯片通过编码方式,将所述第一信号和所述第二信号合并成所述第三信号。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述电芯片通过所述第二通道向所述光模块发送第四信号,所述第四信号是除所述电芯片和所述光模块之间的每个物理通道对应的信号之外的信号。
  4. 如权利要求3所述的方法,其特征在于,所述电芯片将第一信号和第二信号合并成第三信号,包括:
    所述电芯片将第五信号、所述第一信号和所述第二信号合并成所述第三信号,所述第五信号为第三通道对应的信号,所述至少两个物理通道还包括所述第三通道;
    所述电芯片通过所述第二通道向所述光模块发送第四信号,包括:
    所述电芯片通过所述第二通道和所述第三通道向所述光模块发送所述第四信号。
  5. 如权利要求3或4所述的方法,其特征在于,所述光模块包括光数字信号处理oDSP功能,所述第四信号包括差分时钟信号,所述差分时钟信号用于使所述光模块执行所述oDSP功能。
  6. 如权利要求1-5任一项所述的方法,其特征在于,
    所述第一信号和所述第二信号是不同业务的业务信号;或者,
    所述第一信号是业务信号,所述第二信号是控制信号;或者,
    所述第一信号和所述第二信号是不同的控制信号。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一信号和所述第二信号为无源光网络PON网络中的信号;或者,所述第一信号和所述第二信号为以太网中的信号。
  8. 如权利要求7所述的方法,其特征在于,所述第一信号和所述第二信号为PON网络中的信号,所述第一信号为第一速率PON网络中的信号,所述第二信号为第二速率PON网络中 的信号。
  9. 一种接收信号的方法,其特征在于,所述方法包括:
    光模块通过第一通道接收电芯片发送的第三信号,所述第三信号是对第一信号和第二信号合并得到的,所述第一信号是所述第一通道对应的信号,所述第二信号是第二通道对应的信号,所述电芯片和所述光模块之间具有至少两个物理通道,所述至少两个物理通道包括所述第一通道和所述第二通道;
    所述光模块基于所述第三信号获取所述第一信号和所述第二信号。
  10. 如权利要求9所述的方法,其特征在于,所述第三信号是通过时分复用方式对所述第一信号和所述第二信号合并得到的,
    所述光模块基于所述第三信号获取所述第一信号和所述第二信号,包括:
    所述光模块基于所述第一信号的传输速率和所述第二信号的传输速率,从所述第三信号中获取所述第一信号和所述第二信号。
  11. 如权利要求9所述的方法,其特征在于,所述第三信号是通过编码方式对所述第一信号和所述第二信号合并得到的,
    所述光模块基于所述第三信号获取所述第一信号和所述第二信号,包括:
    所述光模块对所述第三信号进行解码,得到所述第一信号和所述第二信号。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述方法还包括:
    所述光模块通过所述第二通道接收所述电芯片发送的第四信号,所述第四信号是除所述电芯片和所述光模块之间的每个物理通道对应的信号之外的信号。
  13. 如权利要求12所述的方法,其特征在于,所述第三信号是对第五信号、所述第一信号和所述第二信号合并得到的,所述第五信号是第三通道对应的信号,所述至少两个物理通道还包括所述第三通道,
    所述光模块通过所述第二通道接收所述电芯片发送的第四信号,包括:
    所述光模块通过所述第二通道和所述第三通道接收所述电芯片发送的所述第四信号。
  14. 如权利要求12或13所述的方法,其特征在于,所述光模块包括光数字信号处理oDSP功能,所述第四信号包括差分时钟信号,所述方法还包括:
    所述光模块基于所述差分时钟信号执行所述oDSP功能。
  15. 如权利要求9-14任一项所述的方法,其特征在于,
    所述第一信号和所述第二信号是不同业务的业务信号;或者,
    所述第一信号是业务信号,所述第二信号是控制信号;或者,
    所述第一信号和所述第二信号是不同的控制信号。
  16. 如权利要求9-15任一项所述的方法,其特征在于,所述第一信号和所述第二信号为 无源光网络PON网络中的信号;或者,所述第一信号和所述第二信号为以太网中的信号。
  17. 如权利要求16所述的方法,其特征在于,所述第一信号和所述第二信号为PON网络中的信号,所述第一信号为第一速率PON网络中的信号,所述第二信号为第二速率PON网络中的信号。
  18. 一种设备,其特征在于,所述设备包括电芯片和光模块;
    所述电芯片,用于将第一信号和第二信号合并成第三信号,所述第一信号是第一通道对应的信号,所述第二信号是第二通道对应的信号,所述电芯片和所述光模块之间具有至少两个物理通道,所述至少两个物理通道包括所述第一通道和所述第二通道;通过所述第一通道向所述光模块发送所述第三信号;
    所述光模块,用于基于所述第三信号获取所述第一信号和所述第二信号。
  19. 如权利要求18所述的设备,其特征在于,
    所述电芯片,用于通过时分复用方式,将所述第一信号和所述第二信号合并成所述第三信号;
    所述光模块,用于基于所述第一信号的传输速率和所述第二信号的传输速率,从所述第三信号中获取所述第一信号和所述第二信号。
  20. 如权利要求18所述的设备,其特征在于,
    所述电芯片,用于通过编码方式,将所述第一信号和所述第二信号合并成所述第三信号;
    所述光模块,用于对所述第三信号进行解码,得到所述第一信号和所述第二信号。
  21. 如权利要求18-20任一项所述的设备,其特征在于,
    所述电芯片,还用于通过所述第二通道向所述光模块发送第四信号,所述第四信号是除所述电芯片和所述光模块之间的每个物理通道对应的信号之外的信号。
  22. 如权利要求21所述的设备,其特征在于,
    所述电芯片,用于将第五信号、所述第一信号和所述第二信号合并成第三信号,所述第五信号为第三通道对应的信号,所述至少两个物理通道还包括所述第三通道;通过所述第二通道和所述第三通道向所述光模块发送所述第四信号。
  23. 如权利要求21或22所述的设备,其特征在于,所述光模块包括光数字信号处理oDSP功能,所述第四信号包括差分时钟信号,
    所述光模块,还用于基于所述差分时钟信号执行所述oDSP功能。
  24. 如权利要求18-23任一项所述的设备,其特征在于,
    所述第一信号和所述第二信号是不同业务的业务信号;或者,
    所述第一信号是业务信号,所述第二信号是控制信号;或者,
    所述第一信号和所述第二信号是不同的控制信号。
  25. 如权利要求18-24任一项所述的设备,其特征在于,所述第一信号和所述第二信号为无源光网络PON网络中的信号;或者,所述第一信号和所述第二信号为以太网中的信号。
  26. 如权利要求25所述的设备,其特征在于,所述第一信号和所述第二信号为PON网络中的信号,所述第一信号为第一速率PON网络中的信号,所述第二信号为第二速率PON网络中的信号。
  27. 一种电芯片,其特征在于,所述电芯片包括处理电路,所述处理电路用于执行如权利要求1-8任一项由所述第一件器执行的发送信号的方法。
  28. 一种光模块,其特征在于,所述光模块包括处理电路,所述处理电路用于执行如权利要求9-17任一项由所述光模块执行的接收信号的方法。
  29. 一种发送信号的系统,其特征在于,所述系统包括第一设备和第二设备,所述第一设备和所述第二设备相连,第一设备和第二设备中的至少一个包括如权利要求27所述的电芯片和/或如权利要求28所述的光模块。
  30. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被计算机执行时,实现如权利要求1-17任一项所述的方法。
PCT/CN2023/102791 2022-06-28 2023-06-27 发送信号的方法、接收信号的方法、装置、系统及介质 WO2024002078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210751416.1 2022-06-28
CN202210751416.1A CN117354648A (zh) 2022-06-28 2022-06-28 发送信号的方法、接收信号的方法、装置、系统及介质

Publications (1)

Publication Number Publication Date
WO2024002078A1 true WO2024002078A1 (zh) 2024-01-04

Family

ID=89363729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102791 WO2024002078A1 (zh) 2022-06-28 2023-06-27 发送信号的方法、接收信号的方法、装置、系统及介质

Country Status (2)

Country Link
CN (1) CN117354648A (zh)
WO (1) WO2024002078A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540231A (zh) * 2017-12-14 2018-09-14 武汉电信器件有限公司 一种自适应的olt光模块及其控制方法
CN112671468A (zh) * 2015-08-20 2021-04-16 中兴通讯股份有限公司 Olt光收发一体模块、处理多种pon的方法及系统
CN113382318A (zh) * 2020-03-09 2021-09-10 华为技术有限公司 光通信的方法和装置
CN215646796U (zh) * 2021-06-30 2022-01-25 苏州海光芯创光电科技股份有限公司 一种低成本光电集成通信芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671468A (zh) * 2015-08-20 2021-04-16 中兴通讯股份有限公司 Olt光收发一体模块、处理多种pon的方法及系统
CN108540231A (zh) * 2017-12-14 2018-09-14 武汉电信器件有限公司 一种自适应的olt光模块及其控制方法
CN113382318A (zh) * 2020-03-09 2021-09-10 华为技术有限公司 光通信的方法和装置
CN215646796U (zh) * 2021-06-30 2022-01-25 苏州海光芯创光电科技股份有限公司 一种低成本光电集成通信芯片

Also Published As

Publication number Publication date
CN117354648A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US9960899B2 (en) Full duplex transmission method for high speed backplane system
US9330043B2 (en) Multi-rate, multi-port, gigabit SERDES transceiver
US8831431B2 (en) Fast transceiver control interface
US20050111531A1 (en) System, method and device for autonegotiation
US7630446B2 (en) Apparatus and method for automatic polarity swap in a communications system
US6674971B1 (en) Optical communication network with receiver reserved channel
CN110445533A (zh) 一种双冗余光纤以太网传输系统
US9100128B2 (en) Optical burst receiver with a configurable AC and DC coupling interface
KR101077250B1 (ko) 광 입/출력 버스 시스템
Suzuki et al. Software implementation of 10G-EPON downstream physical-layer processing adopting CPU-GPU cooperative computing for flexible access systems
WO2019128953A1 (zh) 光线路终端的单板及光线路终端
WO2024002078A1 (zh) 发送信号的方法、接收信号的方法、装置、系统及介质
CN210578638U (zh) 一种5g客户前端设备
JP2015076883A (ja) 遮断用整列パターンを利用する通信装置
CN113055091B (zh) 通信组件、通信设备、通信控制方法及存储介质
US20100103954A1 (en) Multiple Infiniband Ports Within A Higher Data Rate Port Using Multiplexing
Nishimura et al. Optical interconnection subsystem used in the RWC-1 massively parallel computer
WO2018196833A1 (zh) 报文发送方法和报文接收方法及装置
KR100334417B1 (ko) 점대점 구조를 갖는 백 플랜 시스템
JP6264758B2 (ja) 光トランシーバ
CN108833000B (zh) Pon系统保护倒换信息传递方法及系统
CN117675101A (zh) 数据传输方法、装置、系统及计算机可读存储介质
Huang et al. Optical interconnecting and switching network system of 5 to 10-Gbps bandwidth for parallel computing
Goergen et al. Optics vs Copper for In-chassis Connections@ 56-112 Gbps: is copper still a viable solution?
CN107493521B (zh) 信号发送方法和装置、接收方法和装置、信号传输电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830255

Country of ref document: EP

Kind code of ref document: A1