WO2024001946A1 - 通信方法和通信装置 - Google Patents
通信方法和通信装置 Download PDFInfo
- Publication number
- WO2024001946A1 WO2024001946A1 PCT/CN2023/102082 CN2023102082W WO2024001946A1 WO 2024001946 A1 WO2024001946 A1 WO 2024001946A1 CN 2023102082 W CN2023102082 W CN 2023102082W WO 2024001946 A1 WO2024001946 A1 WO 2024001946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication
- frame
- communication frame
- frequency band
- communication device
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 655
- 238000000034 method Methods 0.000 title claims abstract description 92
- 230000003595 spectral effect Effects 0.000 claims abstract description 125
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims description 20
- 230000006872 improvement Effects 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 238000007726 management method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
- H04B3/542—Systems for transmission via power distribution lines the information being in digital form
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
Definitions
- the present application relates to the field of communication, and more specifically, to a communication method and a communication device.
- Power line communication also known as power line network, refers to the use of existing power lines to transmit data or information using digital signal processing methods.
- PLC technology uses existing low-frequency (such as 50 Hz/60 Hz) AC or DC power lines to send broadband data.
- power line communication is that the wide coverage of power lines basically does not require the re-laying of network lines.
- power lines are not designed for communication, users may add various electrical loads on the power line at any time, causing the load impedance and noise interference on the line to change in real time, affecting the reliability of power line communications.
- Embodiments of the present application provide a communication method and communication device, which can improve the reliability of power line communication.
- a communication method is provided, which method is applied to power line communication PLC communication.
- the method can be executed by a communication device or a device (such as a chip or chip module) configured in (or used for) the communication device.
- the following description takes the first communication device executing the method as an example.
- the method includes: a first communication device sending a first communication frame to a second communication device, the first communication frame being used for channel quality measurement; the first communication device receiving a second communication frame from the second communication device, and the first communication frame being used for channel quality measurement.
- the second communication frame includes first indication information.
- the first indication information is used to indicate increasing the power spectral density of at least one frequency band in a robust communication frame.
- the first indication information is used to indicate at least one frequency band, and the at least one frequency band is a frequency band that needs to increase the power spectral density in a robust communication frame.
- the receiving end i.e., the second communication device
- the sending end i.e., the first communication device
- the sending end can improve the quality of the frequency band.
- the power spectral density of the at least one frequency band in the robust communication frame Improving the power spectral density of frequency bands with better channel quality can improve communication reliability.
- the first indication information is used to indicate channel quality of at least one frequency band in a robust communication frame.
- the receiving end after the receiving end measures the first communication frame to obtain the channel quality of each frequency band, it feeds back the channel quality of at least one frequency band of the communication frame to the sending end, so that the sending end can determine that the channel quality is better based on the channel quality fed back by the receiving end.
- increasing the power spectral density of the frequency band with better channel quality in the robust communication frame can improve the transmission reliability of the communication frame and increase the probability that the communication frame is correctly received.
- a robust communication frame is used to carry a code block.
- the code block is processed and segmented into multiple slices.
- the frequency domain resource occupied by one slice in the robust communication frame is called a frequency band.
- the frequency domain resource that carries a slice in a robust communication frame is called a frequency band.
- the method further includes: the first communication device sending a third communication frame to the second communication device, the power of the at least one frequency band of the third communication frame
- the spectral density is greater than the power spectral density of the at least one frequency band in the first communication frame, and the third communication frame is a robust communication frame.
- the first communication device increases the power spectral density of at least one frequency band with better channel quality in the third communication frame according to the instruction of the first indication information, which can increase the probability that the third communication frame is correctly received.
- the first communication frame and the third communication frame are data frames, and the data in the third communication frame is a repeat of the data in the first communication frame. transfer data.
- the second communication device when the data transmission in the first communication frame fails, can notify the first communication device of at least one frequency band with better channel quality, so that the first communication device can send a retransmission data frame (ie, the third communication frame), the power spectral density of at least one frequency band with better channel quality can be increased, thereby increasing the probability that the data frame is correctly received.
- the third communication frame is a data frame, and the data in the third communication frame is initial transmission data.
- the first communication device after receiving the second communication frame, can improve the power spectrum of the at least one frequency band of the third communication frame containing the initial transmission data to be sent later according to the first indication information in the second communication frame. density. To improve the transmission reliability of data frames.
- the robust communication frame adopts a robust orthogonal frequency-division multiplexing (ROBO) method or uses a robust communication Communication frame of robust communication mode (RCM).
- ROBO orthogonal frequency-division multiplexing
- RCM robust communication Communication frame of robust communication mode
- the second communication frame is an acknowledgment (ACK) frame of the first communication frame, or the second communication frame is a management frame.
- ACK acknowledgment
- the management frame may be a management logical link control (logic link control, LLC) frame.
- logic link control, LLC logic link control
- the first communication frame is a probe frame.
- the method further includes: determining the power of the at least one frequency band in the third communication frame according to the number of frequency bands included in the at least one frequency band and the first corresponding relationship.
- Spectral density wherein the first correspondence is a correspondence between the number of frequency bands and the plurality of power spectral densities.
- the first correspondence relationship may be predefined or preconfigured.
- the first communication device can determine the power spectral density of the at least one frequency band based on the number of frequency bands indicated by the first indication information and the first corresponding relationship.
- the first indication information includes a bitmap used to indicate the at least one frequency band, and one bit in the bitmap corresponds to one frequency band in the communication frame, or, The first indication information includes an identifier of the at least one frequency band.
- the first indication information may notify the first communication device of the frequency band in which the power spectral density needs to be increased through a bitmap corresponding to the frequency band or through an identification of the frequency band, so that the first communication device and the second communication device pair need to increase the power spectral density. A consensus can be reached on the frequency band.
- the second communication frame further includes second indication information, the second indication information is used to indicate the power spectral density of the at least one frequency band, or the second The indication information is used to indicate an improvement amount of the power spectral density of the at least one frequency band.
- the second communication device can also notify the first communication device of the power spectral density or the amount of improvement of the power spectral density of the at least one frequency band through the second communication frame, so that the first communication device can increase the power spectral density according to the instructions of the second communication device.
- Power Spectral Density is also notify the first communication device of the power spectral density or the amount of improvement of the power spectral density of the at least one frequency band through the second communication frame, so that the first communication device can increase the power spectral density according to the instructions of the second communication device.
- the third communication frame is a broadcast frame or a multicast frame.
- the technical solution provided by this application can be applied in broadcast or multicast communications to improve the transmission reliability of broadcast frames or multicast frames.
- a communication method is provided, which method is applied to power line communication PLC communication.
- the method can be executed by a communication device or a device (such as a chip or chip module) configured in (or used for) the communication device.
- the following description takes the second communication device executing the method as an example.
- the method includes: the second communication device receives a first communication frame from the second communication device, the first communication frame is used for channel quality measurement; the second communication device sends a second communication frame to the first communication device, and the second communication frame is used for channel quality measurement.
- the second communication frame includes first indication information, the first indication information is used to indicate at least one frequency band to increase the power spectral density in the communication frame with robustness, or the first indication information is used to indicate communication with robustness Channel quality for at least one frequency band in the frame.
- the method further includes: the second communication device receiving a third communication frame from the first communication device, and the at least one frequency band of the third communication frame
- the power spectral density is greater than the power spectral density of the at least one frequency band in the first communication frame, and the third communication frame is the communication frame with robustness.
- the first communication frame and the third communication frame are data frames
- the data in the third communication frame is a retransmission of the data in the first communication frame. data.
- the third communication frame is a data frame, and the data in the third communication frame This is the initial transmission data.
- the robust communication frame is a communication frame using a robust orthogonal frequency division multiplexing ROBO method or a robust communication mode RCM.
- the second communication frame is an acknowledgment ACK frame of the first communication frame.
- the first communication frame is a probe frame.
- the first indication information includes a bitmap used to indicate the at least one frequency band, and one bit in the bitmap corresponds to one frequency band in the communication frame; or, The first indication information includes an identifier of the at least one frequency band.
- the second communication frame further includes second indication information, the second indication information is used to indicate the power spectral density of the at least one frequency band, or the second The indication information is used to indicate an improvement amount of the power spectral density of the at least one frequency band.
- the third communication frame is a broadcast frame or a multicast frame.
- a communication device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the first aspect.
- the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
- the device includes: a transceiver unit configured to send a first communication frame to the second communication device, where the first communication frame is used for channel quality measurement.
- the transceiver unit is also configured to receive a second communication frame from the second communication device.
- the second communication frame includes first indication information.
- the first indication information is used to indicate improving the power spectrum in the communication frame with robustness. At least one frequency band of density, or the first indication information is used to indicate the channel quality of at least one frequency band in a robust communication frame.
- the processing unit is used to control the transceiver unit to receive or send communication frames.
- the method further includes: the transceiver unit is further configured to send a third communication frame to the second communication device, and the at least one frequency band of the third communication frame
- the power spectral density is greater than the power spectral density of the at least one frequency band in the first communication frame
- the third communication frame is the communication frame with robustness.
- the first communication frame is a data frame
- the data in the third communication frame is retransmission data of the data in the first communication frame
- the robust communication frame is a communication frame using a robust orthogonal frequency division multiplexing ROBO method or a robust communication mode RCM.
- the second communication frame is an acknowledgment ACK frame of the first communication frame.
- the first communication frame is a detection frame.
- the processing unit is further configured to determine the frequency of the at least one frequency band in the third communication frame based on the number of frequency bands included in the at least one frequency band and the first corresponding relationship.
- Power spectral density wherein the first correspondence is a correspondence between the number of frequency bands and the plurality of power spectral densities.
- the first indication information includes a bitmap used to indicate the at least one frequency band, and one bit in the bitmap corresponds to one frequency band in the communication frame; or, The first indication information includes an identifier of the at least one frequency band.
- the second communication frame further includes second indication information, the second indication information is used to indicate the power spectral density of the at least one frequency band, or the second The indication information is used to indicate an improvement amount of the power spectral density of the at least one frequency band.
- the third communication frame is a broadcast frame or a multicast frame.
- the fourth aspect provides a communication device.
- the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the second aspect.
- the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
- the device includes: a transceiver unit configured to receive a first communication frame from a second communication device, where the first communication frame is used for channel quality measurement.
- the transceiver unit is also configured to send a second communication frame to the first communication device.
- the second communication frame includes first indication information.
- the first indication information is used to indicate increasing the power spectral density in the communication frame with robustness. at least one frequency band, or the first indication information is used to indicate the channel quality of at least one frequency band in the communication frame with robustness.
- the transceiver unit is further configured to receive a third communication frame from the first communication device, and the power spectral density of the at least one frequency band of the third communication frame is greater than The power spectral density of the at least one frequency band in the first communication frame, the third communication frame is the robust communication frame.
- the first communication frame is a data frame
- the data in the third communication frame It is the retransmission data of the data in the first communication frame.
- the robust communication frame is a communication frame using a robust orthogonal frequency division multiplexing ROBO method or a robust communication mode RCM.
- the second communication frame is an acknowledgment ACK frame of the first communication frame.
- the first communication frame is a probe frame.
- the first indication information includes a bitmap used to indicate the at least one frequency band, and one bit in the bitmap corresponds to one frequency band in the communication frame; or, The first indication information includes an identifier of the at least one frequency band.
- the second communication frame further includes second indication information, the second indication information is used to indicate the power spectral density of the at least one frequency band, or the second indication The information is used to indicate an improvement amount of the power spectral density of the at least one frequency band.
- the third communication frame is a broadcast frame or a multicast frame.
- a communication device including a processor.
- the processor can implement the method in the above first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect.
- the communication device further includes a memory, and the processor is coupled to the memory and can be used to execute instructions in the memory to implement the first aspect or the second aspect and any possibility of the first aspect or the second aspect. Methods in the implementation.
- the communication device further includes a communication interface, and the processor is coupled to the communication interface.
- the communication interface may be a transceiver, a pin, a circuit, a bus, a module, or other types of communication interfaces, and is not limited thereto.
- the communication device is a communication device.
- the communication interface may be a transceiver or an input/output interface.
- the communication device is a chip configured in a communication device.
- the communication interface may be an input/output interface.
- the transceiver may be a transceiver circuit.
- the input/output interface may be an input/output circuit.
- a processor including: an input circuit, an output circuit and a processing circuit.
- the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the first aspect or the second aspect and the method in any possible implementation of the first aspect or the second aspect. .
- the above-mentioned processor can be one or more chips
- the input circuit can be an input pin
- the output circuit can be an output pin
- the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
- the input signal received by the input circuit may be received and input by, for example, but not limited to, the receiver, and the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter, and the input circuit and the output A circuit may be the same circuit that functions as an input circuit and an output circuit at different times.
- the embodiments of this application do not limit the specific implementation methods of the processor and various circuits.
- a computer program product includes: a computer program (which can also be called a code, or an instruction).
- a computer program which can also be called a code, or an instruction.
- the computer program When the computer program is run, it causes the computer to execute the first aspect or the second aspect. and the method in any possible implementation manner of the first aspect or the second aspect.
- a computer-readable storage medium stores a computer program (which may also be called a code, or an instruction), and when run on a computer, causes the computer to execute the above-mentioned first aspect or The second aspect and the method in any possible implementation manner of the first aspect or the second aspect.
- a computer program which may also be called a code, or an instruction
- a communication system including the aforementioned at least one first communication device and at least one second communication device.
- Figure 1 is a schematic diagram of a power line communication system provided by an embodiment of the present application.
- Figure 2 is a schematic diagram of a robust communication frame provided by an embodiment of the present application.
- Figure 3 is a schematic diagram of the SNR of each frequency band of the communication frame transmitted by the power line channel provided by the embodiment of the present application;
- Figure 4 is a schematic flow chart of the communication method provided by the embodiment of the present application.
- Figure 5 is a PSD schematic diagram of each frequency band of the third communication frame provided by the embodiment of the present application.
- Figure 6 is another schematic flow chart of the communication method provided by the embodiment of the present application.
- Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Figure 8 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
- “/" can indicate that the related objects are in an "or” relationship.
- A/B can indicate A or B;
- and/or can be used to describe that there are three types of associated objects.
- a relationship for example, A and/or B, can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural.
- words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first”, “second” and other words do not limit the quantity and execution order, and the words “first” and “second” do not limit the number and execution order.
- FIG 1 is a schematic diagram of the PLC system applicable to the embodiment of the present application.
- the PLC system includes a communication device and a power line.
- the communication device can be the communication device 101 and the communication device 102 as shown in Figure 1.
- the communication device 101 and the communication device 102 can communicate through the power line 103.
- Various electrical loads may be added to the power line 103, and the electrical loads may include a television 104 and a printer 105 as shown in Figure 1.
- the user may add a load on the power line 103 at any time, causing the load impedance and noise interference on the line to change in real time.
- the communication device can use the solution provided by the embodiment of the present application to improve the reliability of communication on the power line.
- the standards of PLC technology mainly include the Homeplug series standards of the Homeplug Power Line Alliance (including Homeplug 1.0, Homeplug AV, Homeplug Green PHY and other standards), the Institute of Electrical and Electronics Engineers (IEEE) P1901 standard/P1901.1 standard and the International Telecommunication Union (ITU) Telecommunications Standardization Sector (ITU-T) G.hn standard.
- the orthogonal frequency-division multiplexing (OFDM) modulation method is used in the above protocols.
- the orthogonal frequency division multiplexing modulation method has advantages in ensuring stable and complete data transmission in communication environments with severe electromagnetic interference.
- the robust scheme is currently used to obtain robust communication frames by copying and interleaving to resist complex channel noise conditions.
- IEEE P1901 standard/P1901.1 standard and ITU-T G.hn and other standards the robust orthogonal frequency division multiplexing (robust OFDM, ROBO) method and robust communication mode (robust communication) are respectively defined.
- mode, RCM the forward error correction (FEC) code block is the basic unit of physical layer transmission specified in the G.hn standard.
- RCM refers to processing and segmenting an FEC code block according to processing parameters.
- SEC Multiple slices
- multiple slices are copied into multiple copies and then interleaved, and then modulated and mapped to multiple OFDM symbols.
- Each slice modulation is mapped to the frequency domain resource of one OFDM symbol.
- the frequency domain resource that carries one slice is one frequency band, so that multiple frequency bands on each OFDM symbol carry one slice respectively, and the slices carried on the same frequency band of the multiple OFDM symbols can form a complete FEC.
- Code block the specific implementation of RCM can refer to the ITU-T G.9960 standard.
- the frequency domain resource of one OFDM symbol mapped to a slice may be multiple continuous effective subcarriers, or in one implementation, the frequency domain resource of one OFDM symbol mapped to each slice modulation may be multiple discrete effective subcarriers.
- a subcarrier can also be called a frequency band.
- the frequency domain resources occupied by one slice of the code block in the communication frame are called frequency bands.
- the frequency domain resource that carries a slice in the communication frame is called a frequency band.
- a FEC code block is processed and segmented to obtain three slices with the same number of bits, namely SEC 1, SEC 2 and SEC 3.
- the three slices are copied and interleaved and then modulated and mapped.
- the modulation on each OFDM symbol carries four slices, occupying four frequency bands from frequency band 1 to frequency band 4 of one OFDM symbol.
- Each frequency band modulation carries one slice, and the number of effective subcarriers in different frequency bands is the same.
- the slices carried in the same frequency band of the three symbols are SEC 1, SEC 2 and SEC 3, that is, all slices of the FEC code block.
- band 1 of symbol 1 carries SEC 1
- band 1 of symbol 2 carries SEC 2
- band 1 of symbol 3 carries SEC 3.
- SEC 2 is carried on frequency band 2 of symbol 1
- SEC 3 is carried on frequency band 2 of symbol 2
- SEC 1 is carried on frequency band 2 of symbol 3.
- all slices composed of the FEC code block are included in 3 symbols.
- the ROBO method defined in the Homeplug standard is similar and can achieve the same effect as Figure 2. This robust modulation method allows each frequency band to contain a complete FEC code block and can withstand complex channel conditions.
- the signal to noise ratio (SNR) of different frequency bands of OFDM symbols when transmitted in the channel may vary greatly, and the FEC code blocks in some frequency bands may have limited contribution to the final successful decoding.
- SNR signal to noise ratio
- the SNR of frequency band 1, frequency band 3 and frequency band 4 is low, and the correct transmission of FEC codewords is mainly achieved by frequency band 2.
- frequency band 4 has very low SNR and its contribution to successful decoding is also very small. It can be seen that some frequency bands in the current robustness scheme have limited contribution to the performance of successful decoding, but consume the power of the transmitter, and the communication efficiency needs to be improved.
- This application proposes that the receiving end measures the channel quality of different frequency bands and feeds it back to the sending end, so that the sending end can improve the power spectrum density (power spectrum density) of the frequency band with better channel quality in the robust communication frame based on the feedback from the receiving end.
- density, PSD can improve the signal-to-noise ratio of the frequency band transmitted in the channel, increase the probability of successful decoding, and thereby improve the communication reliability of PLC.
- FIG. 4 is a schematic flow chart of the communication method 400 provided by the embodiment of the present application.
- the communication method 400 includes but is not limited to the following steps:
- the first communication device sends a first communication frame to the second communication device.
- the first communication frame is used for channel quality measurement.
- the second communication device receives the first communication frame from the first communication device.
- the first communication frame may be a data frame, which is used to carry communication data and is also used by the second communication device to measure the channel quality of each frequency band.
- the first communication frame may be a probe (PROBE) frame for channel quality measurement.
- the channel quality of the first communication frame measured by the second communication device may be SNR, signal to interference plus noise ratio (SINR) or signal received power, etc.
- the second communication device sends a second communication frame to the first communication device.
- the second communication frame includes first indication information.
- the first indication information is used to indicate at least one step of increasing the power spectral density in the robust communication frame. a frequency band.
- the first communication device receives the second communication frame from the second communication device.
- the second communication device determines, based on the first indication information in the second communication frame, at least one frequency band that increases the power spectral density in the communication frame with robustness.
- the second communication frame may be an acknowledgment (ACK) frame of the first communication frame, or the second communication frame may be a management frame.
- the management frame may be a medium access control (MAC) management frame, such as a management logical link control (LLC) frame defined in the G.hn protocol.
- MAC medium access control
- LLC management logical link control
- a robust communication frame is used to transmit a code block. Multiple slices of the code block are mapped to different frequency bands of multiple symbols in the robust communication frame through duplication, interleaving and post-modulation, and for each frequency band, Slices carried on different symbols can make up the code block.
- the communication frame with robustness may be the communication frame using the ROBO method or using the RCM introduced above.
- the frequency domain resource occupied by one slice of the code block in a robust communication frame is called a frequency band.
- the frequency domain resource that carries a slice in a robust communication frame is called a frequency band.
- a robust communication frame includes multiple frequency bands in the frequency domain, and one frequency band is used to carry one slice of the code block.
- the second communication device measures the average signal quality of the subcarriers in each frequency band of the first communication frame, compares the average signal quality of the subcarriers in each frequency band with the first threshold, and determines that the average signal quality is greater than the first threshold.
- the second communication device may notify the first communication device to increase the power spectral density of the at least one frequency band in the robust communication frame through the first indication information in the second communication frame.
- the maximum number M of frequency bands indicated by the first indication information can be predefined. If the number of frequency bands in which the average channel quality of the subcarriers in the first communication frame is greater than the first threshold is greater than M, the second communication device can perform the first communication in the first communication frame. M frequency bands with the highest average channel quality among the frequency bands of the frame are determined and indicated through the first indication information.
- the second communication device measures the channel quality of each subcarrier in each frequency band of the first communication frame, compares the channel quality of each subcarrier in each frequency band with the second threshold, and determines all subcarriers.
- the channel quality of the carriers is greater than at least one frequency band of the second threshold.
- the second communication device may notify the first communication device to increase the power spectral density of the at least one frequency band in the robust communication frame through the first indication information in the second communication frame.
- the second communication device can determine the frequency band in the first communication frame based on the average channel quality of the subcarriers in each frequency band.
- the M frequency bands with the highest average channel quality are indicated by the first indication information.
- the first threshold and the second threshold may be predefined or determined after information interaction between the first communication device and the second communication device, which is not limited in this application.
- the second communication device receives multiple communication frames from the first communication device, and the multiple communication frames include the first communication frame.
- the second communication device measures the channel quality of each frequency band in the plurality of communication frames.
- the channel quality may be the average channel quality of the subcarriers in each frequency band or the channel quality of each subcarrier in each frequency band.
- the second communication device obtains the statistical channel quality of each frequency band based on the channel quality of each frequency band in the plurality of communication frames.
- the second communication device determines, based on the statistical channel quality of each frequency band, the at least one frequency band in the robust communication frame that increases the power spectral density, and indicates it through the first indication information.
- the first indication information indicates that the indication method of at least one frequency band for improving the power spectral density in the communication frame with robustness includes but is not limited to the following methods:
- the first indication information includes a bitmap used to indicate the at least one frequency band, and one bit in the bitmap corresponds to one frequency band in the communication frame.
- the communication frame includes four frequency bands: frequency band 0, frequency band 1, frequency band 2 and frequency band 3.
- the bitmap in the first indication information includes 4 bits, and the first to fourth bits of the 4 bits correspond to frequency band 0 to frequency band 3 in sequence. For example, if a bit in the bitmap is set to "1", it means that the frequency band corresponding to the bit is indicated, that is, the frequency band is a frequency band for improving the power spectral density. If it is set to "0", it means that the frequency band corresponding to the bit is not indicated, that is, the frequency band is not improved. frequency band of power spectral density.
- the bitmap in the first indication information is "0110".
- the first communication device can determine that frequency band 1 and frequency band 2 are frequency bands that need to increase the power spectral density according to the second bit and the third bit in the bitmap being set to "1".
- the bitmap can set a bit to "0" to indicate that the frequency band corresponding to the bit is indicated, and to set "1" to indicate that the frequency band corresponding to the bit is not indicated. This application does not limit this.
- the first indication information includes an identification of at least one frequency band whose power spectral density needs to be improved.
- the communication frame includes four frequency bands: frequency band 0, frequency band 1, frequency band 2 and frequency band 3.
- the first communication device and the second communication device reach a consensus on the identification of each frequency band. If the first indication information indicates frequency band 1 and frequency band 2, the first indication information includes the identifier of frequency band 1 and the identifier of frequency band 2.
- the first communication device can determine that frequency band 1 and frequency band 2 are frequency bands for which the power spectral density needs to be improved according to the identifier of the frequency band in the first indication information.
- the first communication device determines the power spectral density of at least one frequency band in the third communication frame according to the number of frequency bands indicated by the first indication information and a first correspondence, wherein the first correspondence is Correspondence between the number of multiple frequency bands and multiple power spectral densities.
- the first correspondence relationship may be that the number of frequency bands directly corresponds to the number of power spectral densities, that is, one number of frequency bands corresponds to one power spectral density.
- the first correspondence can be an indirect correspondence between the number of multiple frequency bands and multiple power spectral densities.
- a number of frequency bands corresponds to a power spectral density improvement amount.
- the power spectral density or the number of frequency bands can be determined.
- a frequency band focus ratio can be determined, and a frequency band focus ratio can directly or indirectly correspond to a power spectral density. Examples are given below.
- the first correspondence may be a correspondence between the number of frequency bands and the amount of power spectral density (PSD) improvement.
- the communication frame includes 4 frequency bands.
- the first corresponding relationship is shown in Table 1. If the number of frequency bands indicated by the first indication information is 2, the power spectral density of the two frequency bands is increased by 3dB. If the number of frequency bands indicated by the first indication information is If the number of frequency bands is 1, then the power spectral density of this frequency band is increased by 6 dB compared with the power spectral density of this frequency band in the first communication frame.
- the improvement amount shown in Table 1 may be the improvement amount of the power spectral density of the frequency band indicated by the first indication information compared to the power spectral density of the corresponding frequency band in the first communication frame. If the first indication information indicates frequency band 1, then the first The communication device can determine to increase the power spectral density of frequency band 1 among the four frequency bands. According to the corresponding relationship shown in Table 1, the first communication device can determine that the amount of improvement to increase the power spectral density of frequency band 1 is 6dB. Then the first communication device When transmitting a robust communication frame, the device increases the power density of frequency band 1 by 6 dB compared to the power spectral density of frequency band 1 in the first communication frame.
- frequency band 1 is increased by 6dB in the robust communication frame.
- the other three frequency bands namely frequency band 0, frequency band 2 and frequency band 3 are compared with the three in the first communication frame.
- the power spectral density of the frequency band is reduced by 20 dB or more each time, as shown in FIG. 5 , which makes the total transmission power of the first communication device transmitting the robust communication frame unchanged. Unnecessary power consumption of the first communication device can be reduced.
- the power spectral density improvement amount shown in Table 1 may be an improvement amount compared to the default power spectral density of the frequency band where the power spectral density needs to be improved.
- the power spectral density of each frequency band in the first communication frame is the default power spectral density. This application does not limit this.
- the first correspondence relationship may be the correspondence relationship between the power focus ratio and the power spectral density (PSD) improvement amount.
- the power focus ratio refers to the ratio of the number of frequency bands that need to increase power to the total number of frequency bands. If the first indication information indicates a frequency band, such as frequency band 1, and the total number of frequency bands is 4, then the power focus ratio is 1/4, and the first communication device can determine that frequency band 1 is increased by 6 dB.
- the power spectral density of the corresponding frequency band in the first communication frame is used as a reference quantity for explanation. It should be understood that the present application is not limited thereto.
- the second communication frame further includes second indication information, the second indication information is used to indicate the power spectral density of the at least one frequency band, or the second indication information is used to indicate the at least one frequency band The amount of improvement in power spectral density.
- the first communication device can determine the power spectral density of at least one frequency band according to the number of frequency bands indicated by the first indication information and the first corresponding relationship.
- the second communication device may notify the first communication device through the second indication information in the second communication frame that the power spectral density of the at least one frequency band that needs to be improved or the amount of improvement of the power spectral density , so that the first communication device can obtain the power spectral density of the at least one frequency band in the communication frame with robustness from the second indication information.
- the first communication device After the first communication device determines the frequency band that needs to increase the power spectral density and the corresponding power spectral density based on the second communication frame, the first communication device sends a third communication frame to the second communication device.
- the third communication frame is robust. communication frame, the power spectral density of the at least one frequency band in the third communication frame (ie, the at least one frequency band indicated by the first indication information) is greater than the power spectral density of the at least one frequency band in the first communication frame.
- the first communication frame is a data frame
- the data in the third communication frame is retransmission data of the data in the first communication frame.
- the second communication device notifies the first communication frame through the second communication frame.
- the device fails to receive the data in the first communication frame, that is, the second communication frame is an ACK frame of the first communication frame.
- the second communication frame includes the above-mentioned first indication information, notifying the first communication device of at least one frequency band with better channel quality, so that the first communication device can improve the at least one frequency band in the third communication frame containing the retransmitted data.
- Power Spectral Density is Spectral Density.
- the first communication device reduces the power spectral density of frequency bands except at least one frequency band in the third communication frame, which can reduce unnecessary power consumption.
- the first communication frame may be a data frame
- the third communication frame may be a data frame including initially transmitted data
- the second communication device successfully receives the data in the first communication frame, and after measuring at least one frequency band with better channel quality in the first communication frame, sends the second communication frame to the first communication device, such as the second
- the communication frame may be an ACK frame indicating successful reception of the first communication frame, and after receiving the second communication frame, the first communication device may enhance a third message containing the initially transmitted data according to the first indication information in the second communication frame.
- the power spectral density of the at least one frequency band of the communication frame may be used to improve the transmission reliability of the third communication frame.
- the second communication frame is an ACK frame as an example for description.
- the second communication frame may also be a management frame (such as a management LLC frame) described above.
- the first communication frame may be a detection frame
- the second communication frame may be a management frame (such as a management LLC frame).
- the first communication device improves the robustness of the subsequent communication frame based on the first indication information.
- the power spectral density of at least one frequency band in the communication frame ie, the third communication frame).
- the embodiment shown in Figure 4 can also be applied to multicast communication. If there are multiple receiving ends, that is, multiple second communication devices, the first communication frame sent by the first communication device is transmitted by the plurality of second communication devices.
- a second communication device receives, and each communication device measures the first communication frame to obtain the channel quality of each frequency band, and determines at least one frequency band with better channel quality.
- the plurality of second communication devices respectively send a second communication frame to the first communication device, and notify the first communication device through the first indication information in the second communication frame that the channel quality determined by the plurality of second communication devices is better. at least one frequency band.
- the first communication device comprehensively counts the frequency bands with good channel quality fed back by the plurality of second communication devices, determines the frequency bands in the multicast communication frame that need to improve the communication quality and the corresponding power spectrum density, and the first communication device sends the third communication frame , the third communication frame is a robust multicast communication frame that the plurality of second communication devices need to receive, and the first communication device improves the power spectral density of some frequency bands in the third communication frame. It can improve the transmission reliability of communication frames.
- second communication device A there are three second communication devices, denoted as second communication device A, second communication device B, and second communication device C.
- the first communication device sends a first communication frame, and the three second communication devices measure and determine the frequency band with better channel quality to the receiving first communication device.
- the second communication device A determines frequency band 1, frequency band 2 and frequency band 3.
- the second communication device B determines frequency band 0 and frequency band 1, and the second communication device C determines frequency band 1 and frequency band 2.
- the three second communication devices respectively send second communication frames to the first communication device, and the first communication device determines a frequency band to increase the power spectral density based on the frequency bands fed back by the three second communication devices.
- the frequency band that provides power spectral density can be frequency band 1 in which three second communication devices all feed back better channel quality, and then the first communication device increases the power spectral density of frequency band 1 in the robust multicast communication frame.
- the first communication device determines frequency band 1 and frequency band 2 with better channel quality fed back by at least two second communication devices, and improves the power spectral density of frequency band 1 in the robust multicast communication frame. This application does not limit this.
- the receiving end i.e., the second communication device
- the sending end i.e., the first communication device
- Frequency bands with better channel quality improve the power spectral density of at least one frequency band in a robust communication frame. Improving the power spectral density of frequency bands with better channel quality can improve the reliability of multicast communications.
- This application also provides a solution in which the transmitting end determines the frequency band to increase the power spectral density based on the channel quality of each frequency band fed back by the receiving end, so as to improve the reliability of the communication frame.
- Figure 6 is a schematic flow chart of the communication method 600 provided by the embodiment of the present application.
- the communication method 600 includes but is not limited to the following steps:
- the first communication device sends a first communication frame to the second communication device.
- the first communication frame is used for channel quality measurement.
- the second communication device receives the first communication frame from the first communication device.
- the second communication device measures the channel quality of each frequency band in the first communication frame.
- the second communication device sends a second communication frame to the first communication device.
- the second communication frame includes first indication information.
- the first indication information is used to indicate the channel quality of each frequency band of the communication frame.
- the first communication device receives the second communication frame from the second communication device.
- the first communication device determines at least one frequency band in which the power spectral density needs to be improved according to the first indication information.
- the manner in which the first communication device determines at least one frequency band based on channel quality may refer to the manner in which the second communication device determines at least one frequency band based on channel quality in the embodiment shown in FIG. 4 , which will not be described again here.
- the first communication device may determine the power spectral density of the at least one frequency band in a robust communication frame based on the number of frequency bands included in the at least one frequency band and the first corresponding relationship. Or the first communication device may determine the power spectral density of at least one frequency band based on its own implementation.
- the first communication device sends a third communication frame to the second communication device, where the third communication frame is a robust communication frame.
- the power spectral density of the at least one frequency band in the third communication frame ie, the at least one frequency band determined by the first communication device based on channel quality
- the third communication frame includes retransmission data of the data in the first communication frame.
- the third communication frame may be an initial transmission data frame or other robust communication frame sent by the first communication device after receiving the second communication frame. This application does not limit this.
- the receiving end i.e., the second communication device
- the receiving end i.e., the second communication device
- the sending end i.e., the second communication device
- the end can determine the frequency band with better channel quality based on the channel quality fed back by the receiving end, and improve the power spectral density of the frequency band with better channel quality in the robust communication frame, which can improve the transmission reliability of the communication frame and improve the efficiency of the communication frame. Probability of correct reception.
- the embodiment shown in Figure 6 can also be applied to multicast communication.
- the first communication frame sent by the first communication device is received by the plurality of second communication devices, and each communication device measures the first communication After the frame obtains the channel quality of each frequency band, the second communication frame is sent to the first communication device respectively, and the first communication device is notified of the channel quality of each frequency band measured by the plurality of second communication devices.
- the first communication device comprehensively counts the channel quality fed back by the plurality of second communication devices, determines the frequency band in the multicast communication frame that needs to improve the communication quality and the corresponding power spectrum density, and the first communication device improves the channel quality in the multicast communication frame sent. Power spectral density of better quality frequency bands. It can improve the transmission reliability of communication frames.
- the base station and the terminal include corresponding hardware structures and/or software modules that perform each function.
- the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
- Figures 7 and 8 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the first communication device and the second communication device in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
- the communication device may be one of the communication device 101 and the communication device 102 as shown in FIG. 1 , or may be a module (such as a chip) applied to communication equipment.
- the communication device 700 includes a processing unit 710 and a transceiver unit 720 .
- the communication device 700 is used to implement the functions of the terminal or network equipment in the method embodiments shown in FIG. 4 and FIG. 6 .
- the transceiver unit 720 is used to send the first communication frame to the second communication device, and the first communication frame is used for the channel Quality measurement. And the transceiver unit 720 is also configured to receive a second communication frame from the second communication device.
- the second communication frame includes first indication information, and the first indication information is used to indicate that the device At least one frequency band in the robust communication frame increases the power spectral density, or the first indication information is used to indicate the channel quality of at least one frequency band in the robust communication frame.
- the processing unit 710 can be used to control the transceiver unit 720 to receive or send communication frames.
- the transceiver unit 720 is used to receive the first communication frame from the second communication device, the first communication frame Used for channel quality measurements.
- the transceiver unit 720 is also configured to send a second communication frame to the first communication device.
- the second communication frame includes first indication information.
- the first indication information is used to indicate at least 10% of the power spectral density in the robust communication frame.
- One frequency band, or the first indication information is used to indicate the channel quality of at least one frequency band in the robust communication frame.
- the processing unit 710 can be used to control the transceiver unit 720 to receive or send communication frames.
- the communication device 800 includes a processor 810 and an interface circuit 820 .
- the processor 810 and the interface circuit 820 are coupled to each other.
- the interface circuit 820 may be a transceiver or an input-output interface.
- the communication device 800 may also include a memory 830 for storing instructions executed by the processor 810 or input data required for the processor 810 to run the instructions or data generated after the processor 810 executes the instructions.
- the processor 810 is used to implement the functions of the above-mentioned processing unit 710
- the interface circuit 820 is used to implement the functions of the above-mentioned transceiver unit 720 .
- the chip implements the function of the first communication device in the above method embodiment.
- the chip receives information from other modules in the communication device (such as a radio frequency module or antenna), the information is sent by the second communication device to the first communication device; or, the chip sends information to other modules in the communication device (such as a radio frequency module or an antenna). antenna) to transmit information from the first communication device to the second communication device.
- the chip implements the function of the second communication device in the above method embodiment.
- the chip receives information from other modules in the communication device (such as radio frequency module or antenna), the information is sent by the first communication device to the second communication device; or, the chip sends information to other modules in the communication device (such as radio frequency module or antenna).
- antenna transmits information that is sent by the second communication device to the first communication device.
- the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
- a general-purpose processor can be a microprocessor or any conventional processor.
- the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
- Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
- An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
- the storage medium may also be an integral part of the processor.
- the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in a network device or terminal.
- the processor and storage media may also exist as discrete components in a network device or terminal.
- the computer program product includes one or more computer programs or instructions.
- the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
- the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
- the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
- the available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard disks.
- the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种通信方法和通信装置,该方法包括:第一通信装置向第二通信装置发送第一通信帧,第一通信帧用于信道质量测量。第一通信装置接收来自第二通信装置的第二通信帧,第二通信帧包括第一指示信息,第一指示信息用于指示在具有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。能够提高电力线通信的可靠性。
Description
本申请要求于2022年06月28日提交中国专利局、申请号为202210742857.5、申请名称为“电力线通信的功率提升重传方法和装置”的中国专利申请的优先权,以及,本申请要求于2022年11月02日提交中国专利局、申请号为202211361314.5、申请名称为“通信方法和通信装置”的中国专利申请的优先权其全部内容通过引用结合在本申请中。
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
电力线通信(power line communication,PLC)又称电力线网络,是指利用既有电力线将数据或信息以数字信号处理方法进行传输。PLC技术使用既有低频(如50赫兹/60赫兹)的交流电或直流电的电力线路发送宽带数据。
电力线通信的优势在于电力线路的覆盖广泛基本上不需要另外重新铺设网络线路。但由于电力线路并不是针对通信设计的线路,电力线路上用户可能随时添加的各种电器负载,使得线路上负载阻抗及噪声干扰实时变化,影响了利用电力线通信的可靠性。
发明内容
本申请实施例提供一种通信方法和通信装置,能够提高电力线通信的可靠性。
第一方面,提供了一种通信方法,该方法应用于电力线通信PLC通信,该方法可以由通信设备或配置于(或用于)通信设备的装置(如芯片或芯片模组)执行。以下以该第一通信装置执行该方法为例进行说明。
该方法包括:第一通信装置向第二通信装置发送第一通信帧,该第一通信帧用于信道质量测量;该第一通信装置接收来自该第二通信装置的第二通信帧,该第二通信帧包括第一指示信息。
一种实施方式中,该第一指示信息用于指示在具有鲁棒性的通信帧中提升至少一个频段的功率谱密度。
或者说,该第一指示信息用于指示至少一个频段,该至少一个频段是具有鲁棒性的通信帧中需要提升功率谱密度的频段。
根据上述方案,接收端(即第二通信装置)基于通信帧测量得到每个频段信道质量后,向发送端(即第一通信装置)反馈信道质量较好的至少一个频段,以便发送端提升具有鲁棒性的通信帧中的该至少一个频段的功率谱密度。提升信道质量较好的频段的功率谱密度,能够提高通信的可靠性。
另一种实施方式中,该第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。
根据上述方案,接收端测量第一通信帧得到每个频段的信道质量后,向发送端反馈通信帧的至少一个频段的信道质量,以便发送端可以基于接收端反馈的信道质量确定信道质量较好的频段,提升具有鲁棒性的通信帧中信道质量较好的频段的功率谱密度,能够提高通信帧的传输可靠性,提高通信帧被正确接收的概率。
示例性地,具有鲁棒性的通信帧用于承载码块,该码块被处理分段为多个切片,其中一个切片在该具有鲁棒性的通信帧中占用的频域资源称为频段。或者说,具有鲁棒性的通信帧中承载一个切片的频域资源称为频段。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一通信装置向该第二通信装置发送第三通信帧,该第三通信帧的该至少一个频段的功率谱密度大于该第一通信帧中的该至少一个频段的功率谱密度,该第三通信帧是具有鲁棒性的通信帧。
根据上述方案,第一通信装置根据第一指示信息的指示提升第三通信帧中信道质量较好的至少一个频段的功率谱密度,能够提高第三通信帧被正确接收的概率。
结合第一方面,在第一方面的某些实现方式中,该第一通信帧和该第三通信帧为数据帧,该第三通信帧中的数据是该第一通信帧中的数据的重传数据。
根据上述方案,当第一通信帧中的数据传输失败时,第二通信装置可以通知第一通信装置信道质量较好的至少一个频段,以便第一通信装置发送重传数据帧(即第三通信帧)时可以提高信道质量较好的至少一个频段的功率谱密度,从而提高数据帧被正确接收到的概率。
结合第一方面,在第一方面的某些实现方式中,该第三通信帧为数据帧,且该第三通信帧中的数据为初传数据。
根据上述方案,第一通信装置接收到第二通信帧后,可以根据第二通信帧中的第一指示信息,提升之后发送的包含初传数据的第三通信帧的该至少一个频段的功率谱密度。以提高数据帧的传输可靠性。
结合第一方面,在第一方面的某些实现方式中,该具有鲁棒性的通信帧是采用鲁棒正交频分复用(robust orthogonal frequency-division multiplexing,ROBO)方式或采用鲁棒通信模式(robust communication mode,RCM)的通信帧。
结合第一方面,在第一方面的某些实现方式中,该第二通信帧是该第一通信帧的确认(acknowledge,ACK)帧,或者,第二通信帧是管理帧。
示例性地,管理帧可以是管理逻辑链路控制(logic link control,LLC)帧。
结合第一方面,在第一方面的某些实现方式中,该第一通信帧为探测帧。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:根据该至少一个频段包含的频段数量和第一对应关系,确定该第三通信帧中的该至少一个频段的功率谱密度,其中,该第一对应关系是多个频段数量与多个功率谱密度的对应关系。
示例性地,该第一对应关系可以是预定义的或预配置的。
根据上述方案,第一通信装置根据第一指示信息指示的频段数量结合第一对应关系即可以确定该至少一个频段的功率谱密度。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息包括用于指示该至少一个频段的位图,该位图中的一个比特对应通信帧中的一个频段,或者,该第一指示信息包括该至少一个频段的标识。
根据上述方案,第一指示信息可以通过与频段对应的位图或者通过频段的标识通知第一通信装置需要提升功率谱密度的频段,使得第一通信装置与第二通信装置对需要提升功率谱密度的频段能够达成共识。
结合第一方面,在第一方面的某些实现方式中,该第二通信帧还包括第二指示信息,该第二指示信息用于指示该至少一个频段的功率谱密度,或者,该第二指示信息用于指示该至少一个频段的功率谱密度的提升量。
根据上述方案,第二通信装置还可以通过第二通信帧通知第一通信装置该至少一个频段的功率谱密度或功率谱密度的提升量,使得第一通信装置可以根据第二通信装置的指示提升功率谱密度。
结合第一方面,在第一方面的某些实现方式中,该第三通信帧为广播帧或组播帧。
根据上述方案,本申请提供的技术方案可以应用于广播或组播通信中以提升广播帧或组播帧的传输可靠性。
第二方面,提供了一种通信方法,该方法应用于电力线通信PLC通信,该方法可以由通信设备或配置于(或用于)通信设备的装置(如芯片或芯片模组)执行。以下以该第二通信装置执行该方法为例进行说明。
该方法包括:第二通信装置接收来自第二通信装置的第一通信帧,该第一通信帧用于信道质量测量;该第二通信装置向该第一通信装置发送第二通信帧,该第二通信帧包括第一指示信息,该第一指示信息用于指示在具有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者该第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第二通信装置接收来自该第一通信装置的第三通信帧,该第三通信帧的该至少一个频段的功率谱密度大于该第一通信帧中的该至少一个频段的功率谱密度,该第三通信帧是该具有鲁棒性的通信帧。
结合第二方面,在第二方面的某些实现方式中,该第一通信帧和第三通信帧为数据帧,该第三通信帧中的数据是该第一通信帧中的数据的重传数据。
结合第二方面,在第二方面的某些实现方式中,该第三通信帧是数据帧,且该第三通信帧中的数
据是初传数据。
结合第二方面,在第二方面的某些实现方式中,该具有鲁棒性的通信帧是采用鲁棒正交频分复用ROBO方式或采用鲁棒通信模式RCM的通信帧。
结合第二方面,在第二方面的某些实现方式中,该第二通信帧是该第一通信帧的确认ACK帧。
结合第二方面,在第二方面的某些实现方式中,该第一通信帧为探测帧。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括用于指示该至少一个频段的位图,该位图中的一个比特对应通信帧中的一个频段;或者,该第一指示信息包括该至少一个频段的标识。
结合第二方面,在第二方面的某些实现方式中,该第二通信帧还包括第二指示信息,该第二指示信息用于指示该至少一个频段的功率谱密度,或者,该第二指示信息用于指示该至少一个频段的功率谱密度的提升量。
结合第二方面,在第二方面的某些实现方式中,该第三通信帧为广播帧或组播帧。
第三方面,提供了一种通信装置,一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于向第二通信装置发送第一通信帧,该第一通信帧用于信道质量测量。该收发单元还用于接收来自该第二通信装置的第二通信帧,该第二通信帧包括第一指示信息,该第一指示信息用于指示在具有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者该第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。处理单元,用于控制收发单元接收或发送通信帧。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该收发单元还用于向该第二通信装置发送第三通信帧,该第三通信帧的该至少一个频段的功率谱密度大于该第一通信帧中的该至少一个频段的功率谱密度,该第三通信帧是该具有鲁棒性的通信帧。
结合第三方面,在第三方面的某些实现方式中,该第一通信帧为数据帧,该第三通信帧中的数据是该第一通信帧中的数据的重传数据。
结合第三方面,在第三方面的某些实现方式中,该具有鲁棒性的通信帧是采用鲁棒正交频分复用ROBO方式或采用鲁棒通信模式RCM的通信帧。
结合第三方面,在第三方面的某些实现方式中,该第二通信帧是该第一通信帧的确认ACK帧。
结合第三方面,在第三方面的某些实现方式中,该第一通信帧为探测帧。
结合第三方面,在第三方面的某些实现方式中,该处理单元还用于根据该至少一个频段包含的频段数量和第一对应关系,确定该第三通信帧中的该至少一个频段的功率谱密度,其中,该第一对应关系是多个频段数量与多个功率谱密度的对应关系。
结合第三方面,在第三方面的某些实现方式中,该第一指示信息包括用于指示该至少一个频段的位图,该位图中的一个比特对应通信帧中的一个频段;或者,该第一指示信息包括该至少一个频段的标识。
结合第三方面,在第三方面的某些实现方式中,该第二通信帧还包括第二指示信息,该第二指示信息用于指示该至少一个频段的功率谱密度,或者,该第二指示信息用于指示该至少一个频段的功率谱密度的提升量。
结合第三方面,在第三方面的某些实现方式中,该第三通信帧为广播帧或组播帧。
第四方面,提供了一种通信装置,一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自第二通信装置的第一通信帧,该第一通信帧用于信道质量测量。该收发单元还用于向该第一通信装置发送第二通信帧,该第二通信帧包括第一指示信息,该第一指示信息用于指示在具有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者该第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于接收来自该第一通信装置的第三通信帧,该第三通信帧的该至少一个频段的功率谱密度大于该第一通信帧中的该至少一个频段的功率谱密度,该第三通信帧是该具有鲁棒性的通信帧。
结合第四方面,在第四方面的某些实现方式中,该第一通信帧为数据帧,该第三通信帧中的数据
是该第一通信帧中的数据的重传数据。
结合第四方面,在第四方面的某些实现方式中,该具有鲁棒性的通信帧是采用鲁棒正交频分复用ROBO方式或采用鲁棒通信模式RCM的通信帧。
结合第四方面,在第四方面的某些实现方式中,该第二通信帧是该第一通信帧的确认ACK帧。
结合第四方面,在第四方面的某些实现方式中,该第一通信帧为探测帧。
结合第四方面,在第四方面的某些实现方式中,该第一指示信息包括用于指示该至少一个频段的位图,该位图中的一个比特对应通信帧中的一个频段;或者,该第一指示信息包括该至少一个频段的标识。
结合第四方面,在第四方面的某些实现方式中,第二通信帧还包括第二指示信息,该第二指示信息用于指示该至少一个频段的功率谱密度,或者,该第二指示信息用于指示该至少一个频段的功率谱密度的提升量。
结合第四方面,在第四方面的某些实现方式中,该第三通信帧为广播帧或组播帧。
第五方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请实施例中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信装置为通信设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于通信设备中的芯片。当该通信装置为配置于通信设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信系统,包括前述的至少一个第一通信装置和至少一个第二通信装置。
图1是本申请实施例提供的电力线通信系统的一个示意图;
图2是本申请实施例提供的具有鲁棒性通信帧的示意图;
图3是本申请实施例提供的电力线信道传输的通信帧的各频段的SNR的示意图;
图4是本申请实施例提供的通信方法的一个示意性流程图;
图5是本申请实施例提供的第三通信帧的各频段的PSD示意图;
图6是本申请实施例提供的通信方法的另一个示意性流程图;
图7是本申请实施例提供的通信装置的一个的示意性结构图;
图8是本申请实施例提供的通信装置的另一个示意性结构图。
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于电力线通信PLC系统,图1是适用于本申请实施例的PLC系统的一个示意图。如图1所示,该PLC系统包括通信装置和电力线,通信装置可以是如图1所示的通信装置101和通信装置102,该通信装置101和通信装置102可以通过电力线103进行通信。而电力线103上可能添加有各种电器负载,电器负载可以包括如图1所示电视机104和打印机105等。用户可能在电力线103上随时添加负载,使得线路上负载阻抗及噪声干扰实时变化,通信装置可以利用本申请实施例提供的方案提高电力线上通信的可靠性。
PLC技术的标准主要包括Homeplug电力线联盟的Homeplug系列标准(包括Homeplug 1.0、Homeplug AV、Homeplug Green PHY等标准)、电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)P1901标准/P1901.1标准和国际电信联盟(international telecommunication union,ITU)电信标准分局(ITU telecommunication standardization sector,ITU-T)G.hn标准。上述协议中均采用的正交频分复用(orthogonal frequency-division multiplexing,OFDM)调制方式。正交频分复用调制方式在严重电磁干扰的通信环境下保证数据稳定完整传输具有优势。
进一步地,目前还采用鲁棒性方案采用复制加交织的方式得到具有鲁棒性的通信帧以来抵抗复杂的信道噪声情况。在上述Homeplug标准、IEEE P1901标准/P1901.1标准和ITU-T G.hn等标准中分别定义了鲁棒性正交频分复用(robust OFDM,ROBO)方式和鲁棒通信模式(robust communication mode,RCM)。以RCM为例,前向纠错码(forward error correction,FEC)码块是G.hn标准中规定的物理层传输的基本单元,RCM是指根据处理参数对一个FEC码块进行处理、分段得到包含相同比特数的多个切片(section,SEC),将多个切片复制多份后进行交织处理,再调制映射到多个OFDM符号上,每个切片调制映射到一个OFDM符号的频域资源上,承载一个切片的频域资源为一个频段,使得每个OFDM符号上的多个频段分别承载有一个切片,并且分别承载在该多个OFDM符号的同一频段上的切片能够组成完整的该FEC码块,具体RCM的实现方式可以参考ITU-T G.9960标准。一个切片映射到的一个OFDM符号的频域资源可以是连续的多个有效子载波,或者在一种实施方式中每个切片调制映射到的一个OFDM符号的频域资源可以是离散的多个有效子载波,也可以称为一个频段。在申请中,码块的一个切片在通信帧中占用的频域资源称为频段。或者说,通信帧中承载一个切片的频域资源称为频段。
例如图2所示,按照RCM实现方式一个FEC码块被经过处理分段得到相同比特数的3个切片,分别为SEC 1、SEC 2和SEC 3,3个切片经过复制、交织处理后调制映射到3个OFDM符号上,每个OFDM符号上调制承载有四个切片,共占用一个OFDM符号的频段1至频段4四个频段。每个频段调制承载一个切片,不同频段的有效子载波数相同。承载在该三个符号的同一频段的切片分别是SEC 1、SEC 2和SEC 3,即该FEC码块的所有切片。如对于频段1,符号1的频段1上承载有SEC 1、符号2的频段1承载有SEC 2和符号3的频段1上承载有SEC 3。再如对于频段2,符号1的频段2上承载有SEC 2、符号2的频段2上承载有SEC 3和符号3的频段2上承载有SEC 1。以及,对于频段3和频段4在3个符号上均包含由该FEC码块的所有切片。Homeplug标准中定义的ROBO方式类似,能够实现与图2相同的效果。这种鲁棒性调制方式使得每个频段包含一个完整的FEC码块,能够抵抗复杂的信道情况。
然而,在实际应用中发现,OFDM符号的不同频段在信道中传输时的噪声比(signal to noise ratio,SNR)可能差异很大,部分频段内的FEC码块可能对最终成功解码的贡献有限,如图3所示,频段1、频段3和频段4的SNR较低,主要由频段2实现FEC码字的正确传输。其中,频段4由于SNR非常低,对成功解码的贡献也是非常小的。可以看出目前鲁棒性方案中一些频段对成功解码的性能贡献有限,却消耗发送端的功率,通信效率有待提高。
本申请提出接收端通过对不同频段进行信道质量测量并反馈给发送端,以便发送端可以根据接收端的反馈,提升具有鲁棒性的通信帧中信道质量较好的频段的功率谱密度(power spectrum density,PSD),能够提高该频段在信道中传输的信噪比,提高成功解码的概率,进而提高PLC的通信可靠性。
图4是本申请实施例提供的通信方法400的一个示意性流程图。该通信方法400包括但不限于如下步骤:
S401,第一通信装置向第二通信装置发送第一通信帧,该第一通信帧用于信道质量测量。
相应地,第二通信装置接收来自第一通信装置的该第一通信帧。
一个示例中,该第一通信帧可以是数据帧,该数据帧用于承载通信数据,以及还用于第二通信装置测量每个频段的信道质量。另一个示例中,该第一通信帧可以是用于信道质量测量的探测(PROBE)帧。
其中,第二通信装置测量的第一通信帧的信道质量可以是SNR、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)或信号接收功率等。
S402,第二通信装置向第一通信装置发送第二通信帧,该第二通信帧包括第一指示信息,该第一指示信息用于指示具有鲁棒性的通信帧中提升功率谱密度的至少一个频段。
相应地,第一通信装置接收来自第二通信装置的该第二通信帧。第二通信装置根据第二通信帧中的该第一指示信息,确定具有鲁棒性的通信帧中的提升功率谱密度的至少一个频段。
示例性地,该第二通信帧可以是第一通信帧的确认(acknowledge,ACK)帧,或第二通信帧可以是管理帧。其中,管理帧可以是媒体接入控制(medium access control,MAC)管理帧,如G.hn协议中定义的管理逻辑链路控制(logic link control,LLC)帧。但本申请不限于此。
具有鲁棒性的通信帧用于传输一个码块,该码块的多个切片通过复制、交织后调制映射在具有鲁棒性的通信帧中多个符号的不同频段,且对于每个频段,在不同符号上承载的切片能够组成该码块。示例性地,具有鲁棒性的通信帧可以是前文介绍的采用ROBO方式或采用RCM的通信帧。在本申请实施例中码块的一个切片在具有鲁棒性的通信帧中占用的频域资源称为频段。或者说,具有鲁棒性的通信帧中承载一个切片的频域资源称为频段。具有鲁棒性的通信帧在频域上包括多个频段,一个频段用于承载码块的一个切片。
一个示例中,第二通信装置测量得到第一通信帧的每个频段中子载波的平均信号质量,并比较每个频段的子载波平均信号质量与第一阈值的大小,确定平均信号质量大于第一阈值的至少一个频段。第二通信装置可以通过第二通信帧中的第一指示信息通知第一通信装置在具有鲁棒性的通信帧中提升功率谱密度的该至少一个频段。
以及,可以预定义第一指示信息指示的频段最大数量M,若该第一通信帧中的子载波的平均信道质量大于第一阈值的频段数量大于M,则第二通信装置可以在第一通信帧的频段中确定平均信道质量最大的M个频段,并通过第一指示信息指示。
另一个示例中,第二通信装置测量得到第一通信帧的每个频段中每个子载波的信道质量,并比较每个频段中的每个子载波的信道质量与第二阈值的大小,确定所有子载波的信道质量均大于第二阈值的至少一个频段。第二通信装置可以通过第二通信帧中的第一指示信息通知第一通信装置在具有鲁棒性的通信帧中提升功率谱密度的该至少一个频段。
以及,若该第一通信帧中所有子载波的信道质量大于第二阈值的频段数量大于M,则第二通信装置可以根据每个频段的子载波平均信道质量在第一通信帧的频段中确定平均信道质量最大的M个频段,并通过第一指示信息指示。
在上述两个示例中,第一阈值、第二阈值可以是预定义的、或是由第一通信装置和第二通信装置信息交互后确定的,本申请对此不作限定。
又一个示例中,第二通信装置接收来自第一通信装置的多个通信帧,该多个通信帧中包括第一通信帧。第二通信装置测量得到该多个通信帧中每个频段的信道质量,该信道质量可以是每个频段中子载波的平均信道质量或每个频段中每个子载波信道质量。第二通信装置根据多个通信帧中每个频段的信道质量,得到每个频段的统计信道质量。第二通信装置根据每个频段的统计信道质量,确定具有鲁棒性的通信帧中提升功率谱密度的该至少一个频段,并通过第一指示信息指示。
第一指示信息指示具有鲁棒性的通信帧中提升功率谱密度的该至少一个频段的指示方式包括但不限于如下方式:
方式一,第一指示信息包括用于指示该至少一个频段的位图,该位图中的一个比特对应通信帧中的一个频段。
例如,通信帧中包括频段0、频段1、频段2和频段3四个频段。第一指示信息中的该位图包括4个比特,该4个比特的第一个比特至第四个比特与频段0至频段3依次对应。如位图中的一个比特置“1”表示该比特对应的频段被指示,即该频段是提升功率谱密度的频段,置“0”表示该比特对应的频段未被指示,即该频段不是提升功率谱密度的频段。如第一指示信息指示的提升功率谱密度的至少一个频段是频段1和频段2,则第一指示信息中的该位图为“0110”。第一通信装置接收到第二通信帧后,根据位图中的第二比特和第三比特置“1”,可以确定频段1和频段2是需要提升功率谱密度的频段。或者,位图可以通过一个比特置“0”表示该比特对应的频段被指示,置“1”表示该比特对应的频段未被指示,本申请对此不作限定。
方式二,第一指示信息包括需要提升功率谱密度的至少一个频段的标识。
例如,通信帧中包括频段0、频段1、频段2和频段3四个频段。第一通信装置和第二通信装置对各频段的标识达成共识。如第一指示信息指示频段1和频段2,则第一指示信息包括频段1的标识和频段2的标识。第一通信装置接收到第二通信帧后,根据第一指示信息中的频段的标识,可以确定频段1和频段2是需要提升功率谱密度的频段。
在一种实施方式中,第一通信装置根据第一指示信息指示的频段的数量和第一对应关系,确定第三通信帧中的至少一个频段的功率谱密度,其中,该第一对应关系是多个频段数量与多个功率谱密度的对应关系。
该第一对应关系可以是多个频段数量与多个功率谱密度直接对应,即一个频段数量对应一个功率谱密度。或者第一对应关系可以是多个频段数量与多个功率谱密度的间接对应关系,如一个频段数量对应一个功率谱密度提升量,基于该功率谱密度提升量可以确定功率谱密度,或频段数量可以确定一个频段聚焦比例,一个频段聚焦比例可以直接或间接对应一个功率谱密度。下面进行举例说明。
示例性地,第一对应关系可以是频段数量与功率谱密度(PSD)提升量之间的对应关系。通信帧中包括4个频段,如第一对应关系如表1所示,若第一指示信息指示的频段数量为2,则该两个频段的功率谱密度提升3dB,若第一指示信息指示的频段数量为1,则该频段的功率谱密度相较于第一通信帧中该频段的功率谱密度提升6dB。表1所示的提升量可以是第一指示信息指示的频段的功率谱密度相较于第一通信帧中相应频段的功率谱密度的提升量,如第一指示信息指示频段1,则第一通信装置可以确定在4个频段中提升频段1的功率谱密度,则根据表1所示的对应关系,第一通信装置可以确定提升该频段1功率谱密度的提升量是6dB,则第一通信装置在发送具有鲁棒性的通信帧时,将频段1的功率密度相较于第一通信帧中的该频段1的功率谱密度提升6dB。
表1
为了保持通信帧的总发送功率稳定,具有鲁棒性的通信帧中对频段1提升6dB,则其他三个频段即频段0、频段2和频段3相较于第一通信帧中的该三个频段的功率谱密度降低各降低20dB或以上,如图5所示,这使得第一通信装置发送该具有鲁棒性的通信帧的总发送功率不变。能够减小第一通信装置不必要的功率消耗。
或者,表1所示的功率谱密度提升量可以是相较于需要提升功率谱密度的频段的默认功率谱密度的提升量。如第一通信帧中每个频段的功率谱密度为默认功率谱密度。本申请对此不作限定。
再例如表2所示,第一对应关系可以功率聚焦比例与功率谱密度(PSD)提升量之间的对应关系。功率聚焦比例是指需要提升功率的频段数量与总频段数量的比值。如第一指示信息指示了一个频段,如频段1,总频段数量为4,则功率聚焦比例为1/4,第一通信装置可以确定频段1提升6dB。
表2
上述功率谱密度提升量的参考量是第一通信帧中相应频段的功率谱密度,或默认功率谱密度,还是其他功率谱密度可以是预定义的或者由第一通信装置与第二通信装置通过信息交互确定的。本申请实施例中以第一通信帧相应频段的功率谱密度作为参考量为例进行说明,应理解,本申请并不限于此。
在另一种实施方式中,该第二通信帧还包括第二指示信息,该第二指示信息用于指示该至少一个频段的功率谱密度,或者该第二指示信息用于指示该至少一个频段的功率谱密度的提升量。
在上一实施方式中介绍了第一通信装置可以根据第一指示信息指示的频段数量和第一对应关系,确定至少一个频段的功率谱密度。在该实施方式中,可以由第二通信装置通过第二通信帧中的第二指示信息通知第一通信装置,需要提升功率谱密度的该至少一个频段的功率谱密度或者功率谱密度的提升量,以便第一通信装置可以第二指示信息得到具有鲁棒性的通信帧中该至少一个频段的功率谱密度。
第一通信装置基于第二通信帧确定需要提升功率谱密度的频段以及相应的功率谱密度后,第一通信装置向第二通信装置发送第三通信帧,该第三通信帧是具有鲁棒性的通信帧,该第三通信帧中的上述至少一个频段(即第一指示信息指示的至少一个频段)的功率谱密度大于第一通信帧中的上述至少一个频段的功率谱密度。
在一种实施方式中,第一通信帧是数据帧,该第三通信帧中的数据是第一通信帧中的数据的重传数据。
例如,第一通信装置向第二通信装置发送第一通信帧,而第二通信装置未成功接收到该第一通信帧中承载的数据,则第二通信装置通过第二通信帧通知第一通信装置未成功接收到第一通信帧中的数据,即该第二通信帧是第一通信帧的ACK帧。并且该第二通信帧中包括上述第一指示信息,通知第一通信装置信道质量较好的至少一个频段,以便第一通信装置对包含重传数据的第三通信帧中的该至少一个频段提升功率谱密度。通过提高信道质量较好的频段的功率谱密度,能够提高通信帧的传输可靠性,提高通信帧被正确接收到的概率。可选地,第一通信装置降低第三通信帧中除至少一个频段的其他频段的功率谱密度,能够减小不必要的功率消耗。
在另一种实施方式中,该第一通信帧可以是数据帧,第三通信帧是包含初传数据的数据帧。
例如,第二通信装置成功接收到该第一通信帧中的数据,并且测量得到第一通信帧中信道质量较好的至少一个频段后,向第一通信装置发送第二通信帧,如第二通信帧可以是指示成功接收到第一通信帧的ACK帧,而第一通信装置接收到第二通信帧后,可以根据第二通信帧中的第一指示信息,提升包含初传数据的第三通信帧的该至少一个频段的功率谱密度。以提高第三通信帧的传输可靠性。
上述两种实施方式中,以第二通信帧是ACK帧为例进行说明,但本申请不限于此,第二通信帧还可以是前文中描述的管理帧(如管理LLC帧)。
在又一种实施方式中,第一通信帧可以是探测帧,第二通信帧是管理帧(如管理LLC帧),第一通信装置根据第一指示信息,提升之后发送的具有鲁棒性的通信帧(即第三通信帧)中至少一个频段的功率谱密度。
在一种实施方式中,图4所示实施例还可以应用于组播通信中,如存在多个接收端,即多个第二通信装置,第一通信装置发送的第一通信帧由该多个第二通信装置接收,每个通信装置测量第一通信帧得到每个频段的信道质量,并确定信道质量较好的至少一个频段。该多个第二通信装置分别向第一通信装置发送第二通信帧,通过第二通信帧中的第一指示信息向第一通信装置通知该多个第二通信装置各自确定的信道质量较好的至少一个频段。第一通信装置综合统计该多个第二通信装置反馈的信道质量较好的频段,确定组播通信帧中需要提升通信质量的频段以及相应的功率谱密度,第一通信装置发送第三通信帧,该第三通信帧是该多个第二通信装置需要接收的具有鲁棒性的组播通信帧,且第一通信装置提升了该第三通信帧中的部分频段的功率谱密度。能够提高通信帧的传输可靠性。
例如,存在3个第二通信装置,记作第二通信装置A、第二通信装置B和第二通信装置C。第一通信装置发送第一通信帧,该3个第二通信装置向接收该第一通信装置测量确定信道质量较好的频段,如第二通信装置A确定频段1、频段2和频段3,第二通信装置B确定频段0和频段1、第二通信装置C确定频段1和频段2。该3个第二通信装置分别向第一通信装置发送第二通信帧,第一通信装置根据3个第二通信装置反馈的频段,确定提高功率谱密度的频段。如该提供功率谱密度的频段可以是3个第二通信装置均反馈信道质量较好的频段1,则第一通信装置提升具有鲁棒性的组播通信帧中的频段1的功率谱密度。或者,第一通信装置确定至少两个第二通信装置反馈的信道质量较好的频段1和频段2,提升具有鲁棒性的组播通信帧中的频段1的功率谱密度。本申请对此不作限定。
根据上述方案,接收端(即第二通信装置)基于通信帧测量得到每个频段信道质量后,向发送端(即第一通信装置)反馈信道质量较好的频段,发送端基于接收端反馈的信道质量较好的频段,提升具有鲁棒性的通信帧中的至少一个频段的功率谱密度。提升信道质量较好的频段的功率谱密度,能够提高组播通信的可靠性。
本申请还提供了一种方案,由发送端基于接收端反馈的各频段的信道质量,确定提升功率谱密度的频段,以提高通信帧的可靠性。
图6是本申请实施例提供的通信方法600的一个示意性流程图。如图6所示实施例中与图4所示实施例中相同的部分可以参考图4所示实施例中的介绍,在此不再赘述,下文主要介绍图6所示实施例与图4所示实施例的不同之处。该通信方法600包括但不限于如下步骤:
S601,第一通信装置向第二通信装置发送第一通信帧,该第一通信帧用于信道质量测量。
相应地,第二通信装置接收来自第一通信装置的该第一通信帧。第二通信装置测量得到第一通信帧中每个频段的信道质量。
S602,第二通信装置向第一通信装置发送第二通信帧,该第二通信帧包括第一指示信息,该第一指示信息用于指示通信帧的每个频段的信道质量。
相应地,第一通信装置接收来自第二通信装置的该第二通信帧。第一通信装置根据第一指示信息,确定需要提升功率谱密度的至少一个频段。第一通信装置基于信道质量确定至少一个频段的方式可以参考图4所示实施例中第二通信装置基于信道质量确定至少个一个频段的方式,在此不再赘述。
第一通信装置确定提升功率谱密度的至少一个频段后,可以根据该至少一个频段包含的频段的数量和第一对应关系,确定具有鲁棒性的通信帧中该至少一个频段的功率谱密度。或者第一通信装置可以基于自身实现,确定至少一个频段的功率谱密度。
第一通信装置向第二通信装置发送第三通信帧,该第三通信帧是具有鲁棒性的通信帧。该第三通信帧中的上述至少一个频段(即第一通信装置基于信道质量确定的至少一个频段)的功率谱密度大于第一通信帧中该至少一个频段的功率谱密度。
该第三通信帧中包括第一通信帧中的数据的重传数据。或者,第三通信帧可以是第一通信装置在接收到第二通信帧后发送的一个初传数据帧或其他具有鲁棒性的通信帧。本申请对此不作限定。
根据上述方案,接收端(即第二通信装置)测量第一通信帧得到每个频段的信道质量后,向发送端(即第二通信装置)反馈通信帧的每个频段的信道质量,使得发送端可以基于接收端反馈的信道质量确定信道质量较好的频段,提升具有鲁棒性的通信帧中信道质量较好的频段的功率谱密度,能够提高通信帧的传输可靠性,提高通信帧被正确接收的概率。
在一种实施方式中,图6所示实施例还可以应用于组播通信中,第一通信装置发送的第一通信帧由该多个第二通信装置接收,每个通信装置测量第一通信帧得到每个频段的信道质量后,分别向第一通信装置发送第二通信帧,向第一通信装置通知该多个第二通信装置各自测量得到的每个频段的信道质量。第一通信装置综合统计该多个第二通信装置反馈的信道质量,确定组播通信帧中需要提升通信质量的频段以及相应的功率谱密度,第一通信装置提升发送的组播通信帧中信道质量较好的频段的功率谱密度。能够提高通信帧的传输可靠性。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图7和图8为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一通信装置和第二通信装置的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的通信装置101和通信装置102中的一个,也可以是应用于通信设备的模块(如芯片)。
如图7所示,通信装置700包括处理单元710和收发单元720。通信装置700用于实现上述图4、图6中所示的方法实施例中终端或网络设备的功能。
当通信装置700用于实现图4、图6所示的方法实施例中第一通信装置的功能时:收发单元720用于向第二通信装置发送第一通信帧,第一通信帧用于信道质量测量。以及该收发单元720还用于接收来自所述第二通信装置的第二通信帧,第二通信帧包括第一指示信息,该第一指示信息用于指示在具
有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者该第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。该处理单元710可以用于控制收发单元720接收或发送通信帧。
当通信装置700用于实现图4、图6所示的方法实施例中第二通信装置的功能时:收发单元720用于接收来自第二通信装置的第一通信帧,所述第一通信帧用于信道质量测量。该收发单元720还用于向第一通信装置发送第二通信帧,第二通信帧包括第一指示信息,第一指示信息用于指示在具有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。该处理单元710可以用于控制收发单元720接收或发送通信帧。
有关上述处理单元710和收发单元720更详细的描述可以参考图4所示的方法实施例中相关描述。
如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图4所示的方法时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
当上述通信装置为应用于通信设备的芯片时,该芯片实现上述方法实施例中第一通信装置的功能。该芯片从通信设备中的其它模块(如射频模块或天线)接收信息,该信息是第二通信装置发送给第一通信装置的;或者,该芯片向通信设备中的其它模块(如射频模块或天线)发送信息,该信息是第一通信装置发送给第二通信装置的。
当上述通信装置为应用于通信设备的芯片时,该芯片实现上述方法实施例中第二通信装置的功能。该芯片从通信设备中的其它模块(如射频模块或天线)接收信息,该信息是第一通信装置发送给第二通信装置的;或者,该芯片向通信设备中的其它模块(如射频模块或天线)发送信息,该信息是第二通信装置发送给第一通信装置的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端中。处理器和存储介质也可以作为分立组件存在于网络设备或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
Claims (21)
- 一种通信方法,其特征在于,所述方法应用于电力线通信PLC通信,包括:第一通信装置向第二通信装置发送第一通信帧,所述第一通信帧用于信道质量测量;所述第一通信装置接收来自所述第二通信装置的第二通信帧,所述第二通信帧包括第一指示信息,所述第一指示信息用于指示在具有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者所述第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述第一通信装置向所述第二通信装置发送第三通信帧,所述第三通信帧的所述至少一个频段的功率谱密度大于所述第一通信帧中的所述至少一个频段的功率谱密度,所述第三通信帧是所述具有鲁棒性的通信帧。
- 根据权利要求2所述的方法,其特征在于,所述第三通信帧为数据帧,且所述第三通信帧中的数据为初传数据;或者,所述第一通信帧和所述第三通信帧均为数据帧,所述第三通信帧中的数据是所述第一通信帧中的数据的重传数据。
- 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:根据所述至少一个频段包含的频段数量和第一对应关系,确定所述第三通信帧中的所述至少一个频段的功率谱密度,其中,所述第一对应关系是多个频段数量与多个功率谱密度的对应关系。
- 根据权利要求1至4中任一项所述的方法,其特征在于,所述具有鲁棒性的通信帧是采用鲁棒正交频分复用ROBO方式或采用鲁棒通信模式RCM的通信帧。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述第二通信帧是所述第一通信帧的确认ACK帧,或者,所述第二通信帧是管理帧。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一通信帧为探测帧。
- 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一指示信息包括用于指示所述至少一个频段的位图,所述位图中的一个比特对应通信帧中的一个频段;或者,所述第一指示信息包括所述至少一个频段的标识。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二通信帧还包括第二指示信息,所述第二指示信息用于指示所述至少一个频段的功率谱密度,或者,所述第二指示信息用于指示所述至少一个频段的功率谱密度的提升量。
- 根据权利要求2至4中任一项所述的方法,其特征在于,所述第三通信帧为广播帧或组播帧。
- 一种通信方法,其特征在于,所述方法应用于电力线通信PLC通信,包括:第二通信装置接收来自第二通信装置的第一通信帧,所述第一通信帧用于信道质量测量;所述第二通信装置向所述第一通信装置发送第二通信帧,所述第二通信帧包括第一指示信息,所述第一指示信息用于指示在具有鲁棒性的通信帧中提升功率谱密度的至少一个频段,或者所述第一指示信息用于指示具有鲁棒性的通信帧中至少一个频段的信道质量。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:所述第二通信装置接收来自所述第一通信装置的第三通信帧,所述第三通信帧的所述至少一个频段的功率谱密度大于所述第一通信帧中的所述至少一个频段的功率谱密度,所述第三通信帧是所述具有鲁棒性的通信帧。
- 根据权利要求12所述的方法,其特征在于,所述第三通信帧为数据帧,且所述第三通信帧中的数据为初传数据;或者,所述第一通信帧和所述第三通信帧均为数据帧,所述第三通信帧中的数据是所述第一通信帧中的数据的重传数据。
- 根据权利要求11至13中任一项所述的方法,其特征在于,所述具有鲁棒性的通信帧是采用鲁棒正交频分复用ROBO方式或鲁棒通信模式RCM的通信帧。
- 根据权利要求11至14中任一项所述的方法,其特征在于,所述第二通信帧是所述第一通信帧 的确认ACK帧;或者,所述第二通信帧是管理帧。
- 根据权利要求11至14中任一项所述的方法,其特征在于,所述第一通信帧为探测帧。
- 根据权利要求11至16中任一项所述的方法,其特征在于,所述第一指示信息包括用于指示所述至少一个频段的位图,所述位图中的一个比特对应通信帧中的一个频段;或者,所述第一指示信息包括所述至少一个频段的标识。
- 根据权利要求11至17中任一项所述的方法,其特征在于,所述第二通信帧还包括第二指示信息,所述第二指示信息用于指示所述至少一个频段的功率谱密度,或者,所述第二指示信息用于指示所述至少一个频段的功率谱密度的提升量。
- 根据权利要求12或13所述的方法,其特征在于,所述第三通信帧为广播帧或组播帧。
- 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至10中任一项所述的方法,或者用于实现如权利要求11至19中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至10中任一项所述的方法,或者实现如权利要求11至19中任一项所述的方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210742857.5 | 2022-06-28 | ||
CN202210742857 | 2022-06-28 | ||
CN202211361314.5A CN117318762A (zh) | 2022-06-28 | 2022-11-02 | 通信方法和通信装置 |
CN202211361314.5 | 2022-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024001946A1 true WO2024001946A1 (zh) | 2024-01-04 |
Family
ID=89254123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/102082 WO2024001946A1 (zh) | 2022-06-28 | 2023-06-25 | 通信方法和通信装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117318762A (zh) |
WO (1) | WO2024001946A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101512922A (zh) * | 2006-09-08 | 2009-08-19 | 高通股份有限公司 | 无线通信系统中基于增量的功率控制的调整方法和装置 |
US20130101055A1 (en) * | 2011-10-21 | 2013-04-25 | Texas Instruments Incorporated | Sub-Band Power Scaling Reporting and Sub-Band Transmit Power Estimation |
CN110114995A (zh) * | 2016-10-24 | 2019-08-09 | 弗劳恩霍夫应用研究促进协会 | 无线通信网络中的快速ack/nack |
CN110838863A (zh) * | 2018-08-15 | 2020-02-25 | 珠海市魅族科技有限公司 | 无线局域网的通信方法及装置、通信设备 |
CN112088508A (zh) * | 2019-04-15 | 2020-12-15 | 北京小米移动软件有限公司 | 无线局域网的通信方法、装置、终端及可读存储介质 |
CN112565116A (zh) * | 2019-09-26 | 2021-03-26 | 华为技术有限公司 | 一种信号处理方法、通信芯片以及通信装置 |
-
2022
- 2022-11-02 CN CN202211361314.5A patent/CN117318762A/zh active Pending
-
2023
- 2023-06-25 WO PCT/CN2023/102082 patent/WO2024001946A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101512922A (zh) * | 2006-09-08 | 2009-08-19 | 高通股份有限公司 | 无线通信系统中基于增量的功率控制的调整方法和装置 |
US20130101055A1 (en) * | 2011-10-21 | 2013-04-25 | Texas Instruments Incorporated | Sub-Band Power Scaling Reporting and Sub-Band Transmit Power Estimation |
CN110114995A (zh) * | 2016-10-24 | 2019-08-09 | 弗劳恩霍夫应用研究促进协会 | 无线通信网络中的快速ack/nack |
CN110838863A (zh) * | 2018-08-15 | 2020-02-25 | 珠海市魅族科技有限公司 | 无线局域网的通信方法及装置、通信设备 |
CN112088508A (zh) * | 2019-04-15 | 2020-12-15 | 北京小米移动软件有限公司 | 无线局域网的通信方法、装置、终端及可读存储介质 |
CN112565116A (zh) * | 2019-09-26 | 2021-03-26 | 华为技术有限公司 | 一种信号处理方法、通信芯片以及通信装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117318762A (zh) | 2023-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12003340B2 (en) | Method for sending hybrid automatic repeat request acknowledgment information, method for receiving hybrid automatic repeat request acknowledgment information, and communications apparatus | |
CN112753192B (zh) | 用于发送或接收harq-ack反馈的方法和设备 | |
US11476972B2 (en) | Uplink control information transmission method and device | |
US9807757B2 (en) | Method and apparatus of transmitting PPDU in wireless communication system | |
US11956794B2 (en) | Data sending and receiving method and communication apparatus | |
EP2556614B1 (en) | Harq ack/nack transmission for multi-carrier operation | |
WO2018202167A1 (zh) | 通信方法和通信装置 | |
US20080133996A1 (en) | Wireless Communication Apparatus | |
KR101492928B1 (ko) | 불연속 송신의 효율적인 시그널링 방법 및 장치 | |
EP2836043A1 (en) | Method and device for allocating channel resources of wlan and wireless local area network communication system | |
WO2019096243A1 (zh) | 信息传输方法及装置 | |
US11431462B2 (en) | Indication method, network device, and user equipment | |
WO2018196787A1 (zh) | 一种信道状态的指示方法、装置及网络设备 | |
CN112771915A (zh) | 无线通信系统中监视无线电链路的方法和装置 | |
WO2020199967A1 (zh) | 一种数据的接收和发送方法及终端装置 | |
WO2022061622A1 (zh) | 通信方法、通信设备、电子设备及计算机可读存储介质 | |
WO2021083153A1 (zh) | Uci复用配置方法、装置、设备及计算机可读存储介质 | |
CN116034603A (zh) | Pucch资源选择和具有不同优先级的harq-ack在pucch上的复用 | |
WO2024001946A1 (zh) | 通信方法和通信装置 | |
US11212753B2 (en) | Transmission power control | |
WO2021228046A1 (zh) | 操作模式的协商方法、装置及芯片 | |
WO2018199643A1 (en) | Method and apparatus for determining uplink transmission timing in wireless communication system | |
WO2020220769A1 (zh) | 一种通信方法及通信装置 | |
CN111245737B (zh) | 一种物联网系统中选择传输数据块大小的方法 | |
WO2023274287A1 (zh) | 信道状态信息传输方法以及相关通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23830124 Country of ref document: EP Kind code of ref document: A1 |