WO2024001673A1 - 火电储能黑启动系统 - Google Patents

火电储能黑启动系统 Download PDF

Info

Publication number
WO2024001673A1
WO2024001673A1 PCT/CN2023/098107 CN2023098107W WO2024001673A1 WO 2024001673 A1 WO2024001673 A1 WO 2024001673A1 CN 2023098107 W CN2023098107 W CN 2023098107W WO 2024001673 A1 WO2024001673 A1 WO 2024001673A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transformer
thermal power
energy storage
unit
Prior art date
Application number
PCT/CN2023/098107
Other languages
English (en)
French (fr)
Inventor
薛晓峰
蒋金容
曾垂栋
杜武荣
吴祥国
黄秀晶
徐挺进
姜滨
梁晓斌
戴海鹏
林怡玢
王冰礁
杨沛豪
兀鹏越
寇水潮
王小辉
燕云飞
郭昊
殷悦
李志鹏
张立松
王劼文
代本谦
李菁华
Original Assignee
华能罗源发电有限责任公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能罗源发电有限责任公司, 西安热工研究院有限公司 filed Critical 华能罗源发电有限责任公司
Publication of WO2024001673A1 publication Critical patent/WO2024001673A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Definitions

  • the present disclosure relates to the technical field of power system black start, and in particular to a thermal power energy storage black start system.
  • Black-start means that when a certain power system causes all the power supplies in the system to stop operating due to a fault and is in a completely "black” state, the entire power system can be started without relying on external starting power from other systems. Back to normal.
  • "black start” can assist power outage areas to quickly restore power and reduce economic losses.
  • the auxiliary equipment of the thermal power plant on the opposite side of the transmission line is started, so that the thermal power units can resume operation, gradually expanding the scope of power system recovery, and ultimately realizing the recovery of the entire power system.
  • thermal power energy storage systems are mostly used to store excess electric energy generated by electric fields such as thermal power plants, and to participate in frequency modulation when the power system needs frequency modulation.
  • the role of thermal power energy storage systems is relatively single, and the existing black There is a lack of coordinated participation of thermal power storage in startup technology.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • embodiments of the present disclosure propose a thermal power energy storage black start system to solve the technical problem of the lack of coordinated participation of thermal power energy storage in the existing black start technology.
  • the first embodiment of the present disclosure provides a thermal power energy storage black start system, including: a thermal power grid-connected start-up transformer unit, a thermal power high-voltage factory unit and a thermal power energy storage power supply black start unit.
  • the high-voltage factory unit is connected to the thermal power energy storage power supply black start unit;
  • the thermal power grid-connected start-up transformer unit includes a generator, and the generator is used to generate electricity;
  • the thermal power energy storage power supply black start unit is used to supply power to the thermal power high-voltage factory unit when the power grid loses power and causes the generator to shut down;
  • the thermal power high-voltage factory unit includes a backup auxiliary machine, and the thermal power high-voltage factory unit is used to start the backup auxiliary machine using the electric energy provided by the thermal power energy storage black start unit to restore the operation of the generator, and Complete power grid black start;
  • the thermal power grid-connected start-up and standby transformer unit also includes a thermal power grid-connected bus, a generator main transformer, a split-winding start-up and standby transformer, a first branch busbar on the low-voltage side of the start-up and standby transformer, a second branch busbar on the low-voltage side of the start-up and standby transformer, and a factory reserve bus.
  • Busbar wherein the generator is connected to the thermal power grid-connected bus through the generator main transformer, the high-voltage side of the split winding standby transformer is connected to the thermal power grid-connected bus, and the split winding standby transformer is connected to the thermal power grid-connected bus.
  • the low-voltage side is respectively connected to the first branch busbar on the low-voltage side of the starter transformer and the second branch busbar on the low-voltage side of the starter transformer.
  • the first branch busbar on the low-voltage side of the starter transformer is connected to all the spare busbars through the factory backup bus.
  • the thermal power high-voltage factory unit is connected, and the second branch busbar on the low-voltage side of the starter substation is connected to the thermal power energy storage power supply black start unit;
  • the low-voltage side of the split winding high-voltage transformer is respectively connected to the first branch busbar of the low-voltage side of the high-voltage transformer and the second branch busbar of the low-voltage side of the high-voltage transformer.
  • the first-class load of the plant is connected through all
  • the factory-used Class I load grid-connected switch is connected to the first branch busbar of the low-voltage side of the high-power transformer
  • the factory-used Class II load is connected to the low-voltage side of the high-power transformer through the factory-used Class II load grid-connected switch.
  • a second branch busbar, the second branch busbar on the low-voltage side of the high-power transformer is also connected to the factory backup busbar;
  • the thermal power energy storage power supply black start unit also includes an energy storage grid-connected switch, a high-voltage converter, a high-voltage side filter capacitor, a high-frequency DCDC transformer, a low-voltage side filter capacitor, a low-voltage converter, and an energy storage equipment isolation switch connected in sequence. , energy storage equipment converter device, energy storage equipment, energy storage plant load power supply bus and black start power supply switch, wherein the energy storage grid-connected switch is connected to the second branch bus on the low voltage side of the start-up substation, and the black start power supply switch The start-up power supply switch is set on the load power supply bus for the energy storage plant.
  • One end of the load power supply bus for the energy storage plant is connected to the high-voltage converter, and the other end of the load power supply bus for the energy storage plant is connected to the load power supply bus for the energy storage plant.
  • the second branch busbar on the low-voltage side of the high-voltage substation is described above.
  • the thermal power grid-connected start-up transformer unit is connected to the thermal power energy storage power supply black start unit, and the thermal power energy storage power supply black start unit is also used when the generator is no-load. state, power is supplied to the thermal power grid-connected start-up transformer unit to restore the reference voltage in the thermal power grid-connected start-up transformer unit to the set value;
  • the thermal power grid-connected start-up transformer unit also includes an excitation system, so The excitation system is used to control the output voltage of the generator based on a reference voltage when the generator is running normally, and the reference voltage is equal to the set value; the excitation system is also used to control the output voltage of the generator based on the recovery after the generator is in an no-load state.
  • the reference voltage controls the output voltage of the generator so that the generator is connected to the grid and ends the no-load state.
  • the high-voltage converter adopts an energy-storage power electronic transformer high-voltage DC-DC converter
  • the low-voltage converter adopts an energy-storage power electronic transformer low-voltage AC-DC converter
  • the high-voltage side filter capacitor adopts an energy storage power electronic transformer high-voltage side filter capacitor
  • the high-frequency DCDC transformer adopts an energy storage power electronic transformer high-frequency DCDC transformer
  • the low-voltage side filter capacitor adopts an energy storage power electronic transformer high-frequency DCDC transformer.
  • the wave capacitor uses the low-voltage side filter capacitor of the energy storage power electronic transformer.
  • the thermal power energy storage power supply black start unit is also used to close the energy storage grid connection switch to perform frequency modulation if a frequency modulation command is received when the generator is running normally.
  • the thermal power energy storage black start system includes a thermal power grid-connected start-up transformer unit, a thermal power high-voltage factory unit and a thermal power energy storage power supply black start unit.
  • the thermal power high-voltage factory unit is connected to the thermal power energy storage unit.
  • the power supply black start unit; the thermal power grid-connected start-up and backup transformer unit includes a generator, the thermal power grid-connected start-up and backup transformer unit, which is used to generate electricity from the generator; the thermal power energy storage power supply black start unit, which is used when the power grid loses power and the generator shuts down.
  • the thermal power high-voltage factory unit includes backup auxiliary machines, and the thermal power high-voltage factory unit is used to start the backup auxiliary machines using the power provided by the thermal power energy storage power supply black start unit to restore the operation of the generator and complete the power grid. Black start.
  • the thermal power energy storage power supply black start unit is used to solve the black start problem when the power grid loses power and the generator shuts down. This makes the thermal power energy storage function more abundant and solves the lack of thermal power in the existing black start technology. Technical issues in the coordinated participation of energy storage.
  • Figure 1 is a block diagram of a thermal power energy storage black start system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a thermal power grid-connected start-up and backup transformer unit provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a thermal power high-voltage factory unit provided by an embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of a thermal power energy storage power supply black start unit provided by an embodiment of the present disclosure
  • Figure 5 is a schematic structural diagram of a thermal power energy storage black start system provided by an embodiment of the present disclosure
  • 1 Thermal power grid-connected start-up standby transformer unit
  • 2 Thermal power high-voltage factory unit
  • 3 Thermal power energy storage power supply black start unit
  • 1-1 Thermal power grid-connected busbar
  • 1-2 Generator main transformer
  • 1-3 Generator
  • 1-4 Split winding starter transformer
  • 1-5 First branch busbar on the low-voltage side of the starter transformer
  • 1-6 Second branch busbar on the low-voltage side of the starter transformer
  • 1-7 Factory backup bus
  • 2-1 High-voltage busbar of high-voltage transformer
  • 2-2 Split-winding high-voltage busbar of high-voltage transformer
  • 2-3 First branch busbar of low-voltage side of high-voltage transformer
  • 2-4 Second branch busbar of low-voltage side of high-voltage transformer
  • 2- 5 Grid-connected switch for Class I load for factory use
  • 2-6 Grid-connected switch for Class II load for factory use
  • 2-7 Class I load for factory use
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials, or features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited. It will also be understood that the term “and/or” as used in this disclosure refers to and includes any and all possible combinations of one or more of the associated listed items.
  • FIG. 1 is a block diagram of a thermal power energy storage black start system provided by an embodiment of the present disclosure.
  • the thermal power energy storage black start system involved in the present disclosure may be referred to as a black start system.
  • the thermal power energy storage black start system includes a thermal power grid-connected startup and backup transformer unit 1, a thermal power high-voltage factory unit 2 and a thermal power energy storage power supply black start unit 3.
  • the high-voltage factory unit 2 is connected to the thermal power energy storage power supply black start unit 3, and the thermal power high voltage factory unit 2 is connected to the thermal power energy storage power supply black start unit 3.
  • FIG. 2 is a schematic structural diagram of a thermal power grid-connected startup and transformation unit provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of a thermal power high-voltage factory unit provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a thermal power energy storage power supply black start unit provided by an embodiment of the present disclosure.
  • Figure 5 is an implementation of the present disclosure. The example provides a structural schematic diagram of a thermal power energy storage black start system.
  • the thermal power grid-connected start-up and transformation unit 1 includes generators 1-3.
  • Generators 1-3 are used to generate electricity.
  • generators 1-3 can generate 20kV alternating current;
  • the thermal power grid-connected backup transformer unit 1 also includes a generator 1-3 Supporting auxiliary machines, including water circulation pumps, oil circulation pumps, coal mills, boilers and other equipment. The auxiliary machines are used to convert coal into mechanical energy, and the generator converts mechanical energy into electrical energy.
  • Auxiliary engines and generators 1-3 together form a thermal power unit. If the power grid loses power, the auxiliary engine will shut down, causing the generator to shut down, that is, the thermal power unit will shut down.
  • the thermal power grid-connected start-up and transformation unit 1 also includes an excitation system.
  • the excitation system controls the output voltage of the generators 1-3 based on the reference voltage.
  • the output voltage of generator 1-3 is the voltage at the outlet of generator 1-3. Taking the output voltage of generator 1-3 as a set value of 20kV as an example, specifically, due to the reactive load current, it is easy to cause generator 1 to The output voltage of -3 drops, so in the regulator control system of the excitation system, the voltage control link adjusts the excitation current of the generator based on the reference voltage to keep the output voltage of generators 1-3 stable.
  • the reference voltage is generally the output voltage of generator 1-3. If generator 1-3 is running normally, the output voltage of generator 1-3 is the set value of 20kV.
  • the excitation system follows the reference voltage to achieve voltage increase. In this way, the excitation system can be connected to the grid to build voltage. If the generator 1-3 is generating power in a no-load state and the output voltage of generator 1-3 is 0, there will be no grid connection to build voltage. At this time, black start unit 3 is powered by thermal power energy storage. Power transmission, thermal power energy storage power supply The electric energy in the black start unit 3 passes through the split winding start-up transformer 1-4 and the generator main transformer 1-2 to increase the voltage at the outlet of the generator 1-3 to 20kV, thereby providing the excitation system with the required reference voltage.
  • the electric energy generated by the thermal power grid-connected start-up transformer unit 1 is provided by the transmission line to the load on the user side.
  • the electric energy generated by the thermal power grid-connected start-up transformer unit 1 can also be provided to the thermal power high-voltage factory unit 2. Electrical equipment.
  • the thermal power grid-connected start-up and backup transformer unit 1 also includes a thermal power grid-connected bus 1-1 and a generator main transformer 1-2.
  • the thermal power grid-connected bus 1-1 is the thermal power unit grid-connected bus, and the generator main transformer 1-2 mainly plays a voltage boosting role.
  • the generator main transformer 1-2 boosts the 20kV AC output from the generator 1-3 to 220kV alternating current; generator 1-3 is connected to the thermal power grid connection bus 1-1 through generator main transformer 1-2, so the electricity generated by generator 1-3 is boosted by generator main transformer 1-2 and then integrated into the grid.
  • the thermal power grid-connected bus 1-1 is connected to the large power grid (i.e., the local power grid).
  • the electric energy generated by the generator 1-3 enters the thermal power grid-connected bus 1-1 through the generator main transformer 1-2, and then passes through the main power grid in the large power grid.
  • the transmission line reaches the user side.
  • the thermal power grid-connected start-up transformer unit 1 also includes a split winding start-up transformer 1-4, a first branch busbar 1-5 on the low-voltage side of the start-up transformer, a third branch busbar 1-5 on the low-voltage side of the start-up transformer.
  • the basic function of the split winding transformers 1-4 is to convert the electric energy in the power grid into the electric energy required by the factory load in the power plant when the whole plant is out of power for maintenance.
  • the high-voltage side of the split winding transformer 1-4 is connected to the thermal power grid-connected bus 1-1, and the low-voltage side of the split winding transformer 1-4 is connected to the low-voltage transformer respectively.
  • the first branch busbar 1-5 on the low-voltage side of Qibei transformer is connected to the second branch busbar 1-6 on the low-voltage side of Qibei transformer.
  • the first branch busbar on the low-voltage side of Qibei transformer (also called the section A bus on the low-voltage side of Qibei transformer) 1-5 are connected to the thermal power high-voltage factory unit 2 through the factory backup busbar 1-7, and the second branch busbar on the low-voltage side of the Qibei transformer (also called the B section busbar on the low-voltage side of the Qibei transformer) 1-6 is connected to the thermal power energy storage power supply Black Start Unit 3.
  • the first branch bus 1-5 on the low-voltage side of Qibei transformer is the first branch bus on the 6kV low-voltage side of Qibei transformer
  • the second branch busbars 1-6 on the low-voltage side of the Qibei substation can be the second branch buses on the 6kV low-voltage side of the Qibei substation
  • the factory backup busbars 1-7 can be the 6kV factory spare busbars.
  • the thermal power high-voltage plant unit 2 includes backup auxiliary equipment.
  • the backup auxiliary equipment may be, for example, a backup water circulation pump, an oil circulation pump, a coal mill, a boiler and other equipment.
  • these spare auxiliary machines can be divided into first-class auxiliary machines, second-class auxiliary machines, etc., and are arranged in different bus sections.
  • the first-category auxiliary machines are, for example, water circulation pumps, oil circulation pumps and other equipment
  • the second-category auxiliary machines are, for example, coal mills, boilers and other equipment.
  • the thermal power high-voltage utility unit 2 also includes a high-voltage busbar 2-1 of a high-voltage transformer, a split-winding high-voltage transformer 2-2, and a first branch busbar 2-3 on the low-voltage side of the high-voltage transformer.
  • the second branch busbar 2-4 on the low-voltage side of the high-power transformer, the grid-connected switch 2-5 for the first-class load for the factory and the grid-connected switch 2-6 for the second-class load for the factory.
  • the standby auxiliary machine is, for example, the first-class load 2-6 for the factory.
  • the split winding high factory transformer 2-2 mainly plays the role of reducing voltage, such as the split winding high factory transformer 2 -2 Step down the 20kV AC power output from generators 1-3 to 6kV AC power.
  • Factory first-class load 2-7 and factory second-class load 2-8 are the loads that need to be started during black start. Among them, factory first-class load 2-7 is started first, and factory second-class load 2-8 is started later.
  • the high-voltage side of the split-winding high-voltage transformer 2-2 is connected to the outlet of the generator 1-3 through the high-voltage busbar 2-1 of the split-winding high-voltage transformer 2-2.
  • the low-voltage side of the high-power transformer is connected to the first branch bus 2-3 of the low-voltage side of the high-power transformer and the second branch bus 2-4 of the low-voltage side of the high-power transformer.
  • the first-class factory load 2-7 is connected to the factory-use first-class load grid-connected switch 2 -5 is connected to the first branch bus 2-3 on the low-voltage side of the high-power transformer, and the second-category load 2-8 is connected to the second branch bus 2-4 on the low-voltage side of the high-power transformer through the second-category load grid connection switch 2-6.
  • the high-voltage busbar 2-1 of the high-power transformer is connected to the outlet of the generator 1-3 in the thermal power grid-connected start-up transformer unit 1.
  • the electric energy generated by the generator 1-3 can enter the thermal power high-voltage plant unit 2 through the high-voltage plant transformer bus 2-1 to supply power to the electrical equipment in the thermal power high-voltage plant unit 2.
  • the second branch busbar on the low-voltage side of the high-power transformer (also called low-voltage factory bus section B) 2-4 is also connected to the factory backup bus 1-7.
  • the electric energy generated by the generator 1-3 can enter the thermal power high voltage through the generator main transformer 1-2, the split winding start-up transformer 1-4, the first branch busbar 1-5 on the low-voltage side of the start-up transformer and the factory backup busbar 1-7
  • the factory unit 2 supplies power to the electrical equipment in the thermal power high-voltage factory unit 2.
  • the thermal power high-voltage factory unit 2 is used to start the backup auxiliary machine using the electric energy provided by the thermal power energy storage black start unit 3 to restore the operation of the generators 1-3 and complete the grid black start.
  • the factory-used Class I load grid-connected switch 2-5 and the factory-used Class II load grid-connected switch 2-6 are disconnected; when the power grid loses power and the generator 1-3 is shut down. , the voltage of the thermal power grid-connected bus 1-1 in the thermal power grid-connected standby transformer unit 1 dropped rapidly.
  • the factory Class I load grid-connected switch 2-5 was connected to the factory Class II load.
  • Grid switch 2-6 is closed, and the energy storage grid connection switch 3-1 in thermal power energy storage black start unit 3 is disconnected.
  • the black start power supply switch 3-3 in thermal power energy storage black start unit 3 is closed, and thermal power supply black Start unit 3 supplies the high-voltage plant load in thermal power high-voltage plant unit 2 (For example, factory first-class load and factory second-class load) supply power to start the backup auxiliary machine. After the backup auxiliary machine is started, the generators 1-3 start to generate electricity, thus restoring the operation of the thermal power unit.
  • the high-voltage bus 2-1 of the high-voltage transformer is a 20kV high-voltage bus of the high-voltage transformer
  • the first branch bus 2-3 of the low-voltage side of the high-voltage transformer is the first branch bus of the 6kV low-voltage side of the high-voltage transformer.
  • the high-voltage transformer is low-voltage.
  • the second branch busbar 2-4 on the side is the second branch busbar on the low-voltage side of the high-power substation 6kV.
  • the thermal power energy storage power supply black start unit 3 is used to supply power to the thermal power high-voltage factory unit 2 when the power grid loses power and the generator 1-3 is shut down.
  • the thermal power energy storage power supply black start unit 3 includes an energy storage grid-connected switch 3-1, a high-voltage converter 3-4, a high-voltage side filter capacitor 3-5, and a high-voltage converter connected in sequence.
  • the energy storage grid-connected switch 3-1 is connected to the second branch bus 1-6 on the low-voltage side of the Qibei substation.
  • the high-voltage converter 3-4 is used to realize the direct-exchange flow function.
  • the high-frequency DCDC transformer 3-6 is used to realize the voltage transformation function. Compared with other DCDC transformers, the high-frequency DCDC transformer is small in size. Therefore, the size of the thermal power energy storage power supply black start unit 3 can be reduced.
  • Low-voltage converters 3-8 are used to realize AC-DC conversion function. High-voltage side filter capacitors 3-5 and low-voltage side filter capacitors 3-7 can improve efficient and smooth DC output.
  • the energy storage equipment converter device 3-10 is used to realize the direct-exchange flow function, and the energy storage equipment 3-11 is used to store electric energy.
  • the high-voltage converter 3-4 adopts an energy-storage power electronic transformer (PET) high-voltage DC-DC converter
  • the low-voltage converter 3-8 adopts an energy-storage PET low-voltage AC-DC converter.
  • the high-voltage side filter capacitor 3-5 adopts an energy storage PET high-voltage side filter capacitor
  • the high-frequency DCDC transformer 3-6 adopts an energy-storage PET high-frequency DCDC transformer (DC to DC transformer)
  • the low-voltage side filter capacitor 3-6 adopts an energy storage PET high-frequency DCDC transformer (DC to DC transformer). 7.
  • the energy storage device 3-11 can be directly connected to the low-voltage side of the split winding transformer 1-4 in the thermal power grid-connected transformer unit 1 through the high-voltage power electronic transformer (PET).
  • PET high-voltage power electronic transformer
  • the cost is lower.
  • the installation of energy storage PET high-voltage side filter capacitors and energy storage PET low-voltage side filter capacitors can achieve fault isolation between ports, and there is no need to configure harmonic suppression and reactive power compensation devices. .
  • the energy storage equipment converter device, the energy storage PET low-voltage AC-DC converter and the energy storage PET high-voltage DC-AC converter realize the mutual conversion between AC and DC respectively.
  • High frequency DCDC transformer is used to convert the received DC power into the required DC power.
  • the thermal power energy storage power supply black start unit 3 also includes an energy storage plant load power supply bus (also called an auxiliary machine power supply bus) 3-2 and a black start power supply switch 3- 3;
  • the black start power supply switch 3-3 is set on the load power supply bus 3-2 for the energy storage plant.
  • One end of the load power supply bus 3-2 for the energy storage plant is connected to the high-voltage converter 3-4, and the load power supply for the energy storage plant is The other end of busbar 3-2 is connected to the second branch busbar 2-4 on the low-voltage side of the high-voltage substation.
  • the black start power supply switch 3-3 is a black start 6kV power supply switch. When the generator 1-3 is running normally, the black start power supply switch 3-3 is in a disconnected state.
  • the thermal power energy storage power supply black start unit 3 supplies power to the first-class factory loads 2-7 and the second-class factory loads 2-8 in the thermal power high-voltage factory unit 2, completing the first-class factory loads 2-7 and The factory uses Class II loads 2-8 to start, and finally realizes the start-up of thermal power units.
  • the whole process can be divided into: the thermal power energy storage power supply black start unit 3 supplies power to the thermal power plant oil system (such as oil circulation pump), water system (such as water circulation pump) and other backup auxiliary machines.
  • the water vapor drives The rotor of the steam turbine generator 1-3 rotates to generate a magnetic field, and the stator cuts the magnetic induction lines to generate electric energy, which is then connected to the grid through the main transformer of the generator 1-2, the booster station and the grid-connected switch. After the thermal power plant is connected to the grid, the black Start the recovery surface.
  • the energy storage grid connection switch 3-1 when the generator 1-3 is in the no-load state, the energy storage grid connection switch 3-1 is closed, the energy storage equipment isolation switch 3-9 is closed, and the black start power supply switch 3-3 is opened.
  • the thermal power energy storage power supply black start unit 3 is also used to supply power to the thermal power grid-connected start-up transformer unit 1 when the generator 1-3 is in the no-load state; the excitation in the thermal power grid-connected start-up transformer unit 1
  • the system obtains a reference voltage based on the electric energy provided by the thermal power energy storage black start unit 3 to connect the generators 1-3 to the grid and end the no-load state.
  • the voltage of the thermal power grid connection bus 1-1 in the thermal power grid connection start-up transformer unit 1 is established.
  • the black start power supply switch 3-3 in the thermal power energy storage power supply black start unit 3 is turned off and closed.
  • the energy storage grid connection switch 3-1 in the thermal power energy storage power supply black start unit 3, the thermal power energy storage power supply black start unit 3 serves as a voltage source and reversely sends power through the split winding starter transformer 1-4 to provide a reference voltage for the excitation system. Ensure the smooth connection of thermal power units to the grid.
  • the thermal power energy storage power supply black start unit 3 is also used to close the energy storage grid connection switch 3-1 when the generator 1-3 is running normally. Can be connected to grid switch 3-1 for frequency modulation.
  • the thermal power energy storage power supply black start unit 3 can reverse the electric energy through the split winding start-up transformers 1-4, thereby realizing the joint response of the energy storage and thermal power units to the grid frequency modulation command, and during the frequency modulation, the power change is compared with
  • the traditional power frequency transformer is faster and more accurate, which improves the unit's ability to respond to grid frequency regulation instructions; in addition, it involves fewer voltage boosting links, and the power loss is effectively controlled.
  • the energy storage equipment isolation switches 3-9 are closed, and the electric energy stored in the energy storage equipment 3-11 passes through the energy storage equipment commutation device. 3-10 and the energy storage equipment isolation switch 3-9 enter the low-voltage converter 3-8.
  • the black start system includes a thermal power grid-connected start-up transformer unit, a thermal power high-voltage factory unit and a thermal power energy storage power supply black start unit.
  • the thermal power high-voltage factory unit is connected to the thermal power energy storage unit.
  • the power supply black start unit; the thermal power grid-connected start-up and standby transformer unit includes a generator, the thermal power grid-connected start-up and standby transformer unit, which is used to generate electricity from the generator; the thermal power energy storage power supply black start unit, which is used when the power grid loses power and the generator shuts down.
  • the thermal power high-voltage factory unit includes backup auxiliary machines, and the thermal power high-voltage factory unit is used to start the backup auxiliary machines using the power provided by the thermal power energy storage power supply black start unit to restore the operation of the generator and complete the power grid.
  • Black start in this case, with the help of fire
  • the electric energy storage power supply black start unit solves the black start problem when the power grid loses power and the generator shuts down. It makes the thermal power energy storage function more abundant and solves the technical problem of the lack of coordinated participation of thermal power energy storage in the existing black start technology.
  • the black start system of the embodiment of the present disclosure usually combines energy storage with the operation of thermal power units to improve the unit's ability to respond to grid frequency regulation instructions; when the regional power grid loses power and the thermal power units shut down, in order to restore power to the thermal power units, black start of the grid is achieved, and the energy storage is used to high-voltage
  • the factory load supplies power, starts the auxiliary engines, and resumes the operation of the thermal power units; in order to realize the voltage build-up of the power grid, the energy storage equipment serves as a voltage source and sends power in reverse through the start-up transformer, providing a reference voltage for the excitation system of the thermal power units to ensure the smooth connection of the thermal power units to the grid. , assisting thermal power units to achieve black start.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

公开了一种火电储能黑启动系统,该火电储能黑启动系统包括火电并网启备变单元、火电高压厂用单元和火电储能供电黑启动单元,火电高压厂用单元连接火电储能供电黑启动单元;火电并网启备变单元包括发电机,发电机用于发电;火电储能供电黑启动单元,用于在电网失电导致发电机停机时向火电高压厂用单元供电;火电高压厂用单元包括备用辅机,火电高压厂用单元,用于利用火电储能供电黑启动单元提供的电能启动备用辅机,以恢复发电机运行、完成电网黑启动。

Description

火电储能黑启动系统
相关申请的交叉引用
本申请要求在2022年06月29日在中国提交的中国专利申请号2022107482118的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及电力系统黑启动技术领域,尤其涉及一种火电储能黑启动系统。
背景技术
黑启动(Black-start)是指当某电力系统因故障导致系统内的电源全部退出运行,处于全“黑”状态时,在不依赖其他系统的外来启动电源的情况下,实现整个电力系统的恢复正常。“黑启动”作为电网应急响应辅助服务之一,可以协助停电区域快速恢复供电、减少经济损失。通过新能源场站储能设备启动输电线路对侧火电厂辅机设备,使火电机组恢复运行,逐步扩大电力系统恢复范围,最终实现整个电力系统的恢复。
另外,随着储能产业的发展,储能系统多用来对电场例如火电厂生成的多余电能进行存储,以及在电力系统需要调频时参与调频,火电储能系统的作用比较单一,现有的黑启动技术中缺少火电储能的协调参与。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开实施例提出一种火电储能黑启动系统,以解决现有的黑启动技术中缺少火电储能的协调参与的技术问题。
为了实现上述目的,本公开第一方面实施例提供了一种火电储能黑启动系统,包括:火电并网启备变单元、火电高压厂用单元和火电储能供电黑启动单元,所述火电高压厂用单元与所述火电储能供电黑启动单元相连;
所述火电并网启备变单元包括发电机,所述发电机用于发电;
所述火电储能供电黑启动单元,用于在电网失电导致所述发电机停机时向所述火电高压厂用单元供电;
所述火电高压厂用单元包括备用辅机,所述火电高压厂用单元用于利用所述火电储能供电黑启动单元提供的电能启动所述备用辅机,以恢复所述发电机运行,并完成电网黑启动;
所述火电并网启备变单元还包括火电并网母线、发电机主变、分裂绕组启备变、启备变低压侧第一分支母线、启备变低压侧第二分支母线和厂用备用母线,其中,所述发电机经所述发电机主变连接至所述火电并网母线,所述分裂绕组启备变的高压侧与所述火电并网母线连接,所述分裂绕组启备变的低压侧分别与所述启备变低压侧第一分支母线、所述启备变低压侧第二分支母线连接,所述启备变低压侧第一分支母线通过所述厂用备用母线与所述火电高压厂用单元连接,所述启备变低压侧第二分支母线与所述火电储能供电黑启动单元连接;
所述火电高压厂用单元还包括高厂变高压母线、分裂绕组高厂变、高厂变低压侧第一分支母线、高厂变低压侧第二分支母线、厂用一类负荷并网开关和厂用二类负荷并网开关;所述备用辅机具有厂用一类负荷和厂用二类负荷,其中,所述分裂绕组高厂变的高压侧经所述高厂变高压母线连接所述发电机的出口,所述分裂绕组高厂变的低压侧分别连接所述高厂变低压侧第一分支母线、所述高厂变低压侧第二分支母线,所述厂用一类负荷经所述厂用一类负荷并网开关连接至所述高厂变低压侧第一分支母线,所述厂用二类负荷经所述厂用二类负荷并网开关连接至所述高厂变低压侧第二分支母线,所述高厂变低压侧第二分支母线还连接所述厂用备用母线;
所述火电储能供电黑启动单元还包括依次连接的储能并网开关、高压换流器、高压侧滤波电容、高频DCDC变压器、低压侧滤波电容、低压换流器、储能设备隔离开关、储能设备换流装置、储能设备、储能厂用负荷供电母线和黑启动供电开关,其中,所述储能并网开关连接所述启备变低压侧第二分支母线,所述黑启动供电开关设置在所述储能厂用负荷供电母线上,所述储能厂用负荷供电母线的一端连接所述高压换流器,且所述储能厂用负荷供电母线的另一端连接所述高厂变低压侧第二分支母线。
在本公开的一个实施例中,所述火电并网启备变单元与所述火电储能供电黑启动单元相连,且所述火电储能供电黑启动单元,还用于在发电机处于空载状态时向所述火电并网启备变单元供电,以使所述火电并网启备变单元中的参考电压恢复至设定值;所述火电并网启备变单元还包括励磁系统,所述励磁系统用于在发电机正常运行时基于参考电压控制所述发电机的输出电压,所述参考电压等于设定值;所述励磁系统还用于在发电机处于空载状态时基于恢复后的参考电压控制所述发电机的输出电压,以使所述发电机并网,并结束空载状态。
在本公开的一个实施例中,所述高压换流器采用储能电力电子变压器高压直-交换流器,所述低压换流器采用储能电力电子变压器低压交-直换流器。
在本公开的一个实施例中,所述高压侧滤波电容采用储能电力电子变压器高压侧滤波电容,所述高频DCDC变压器采用储能电力电子变压器高频DCDC变压器,所述低压侧滤 波电容采用储能电力电子变压器低压侧滤波电容。
在本公开的一个实施例中,所述火电储能供电黑启动单元,还用于在发电机正常运行时,若接收到调频指令,则闭合所述储能并网开关进行调频。
在本公开一个或多个实施例中,该火电储能黑启动系统包括火电并网启备变单元、火电高压厂用单元和火电储能供电黑启动单元,火电高压厂用单元连接火电储能供电黑启动单元;火电并网启备变单元包括发电机,火电并网启备变单元,用于利用发电机发电;火电储能供电黑启动单元,用于在电网失电导致发电机停机时向火电高压厂用单元供电;火电高压厂用单元包括备用辅机,火电高压厂用单元,用于利用火电储能供电黑启动单元提供的电能启动备用辅机,以恢复发电机运行、完成电网黑启动,在这种情况下,借助火电储能供电黑启动单元实现电网失电导致发电机停机时的黑启动问题,使得火电储能功能更加丰富,解决了现有的黑启动技术中缺少火电储能的协调参与的技术问题。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例所提供的一种火电储能黑启动系统的框图;
图2为本公开实施例所提供的一种火电并网启备变单元的结构示意图;
图3为本公开实施例所提供的一种火电高压厂用单元的结构示意图;
图4为本公开实施例所提供的一种火电储能供电黑启动单元的结构示意图;
图5为本公开实施例所提供的一种火电储能黑启动系统的结构示意图;
附图标记说明:
1—火电并网启备变单元;2—火电高压厂用单元;3—火电储能供电黑启动单元;1-1—火电并网母线;1-2—发电机主变;1-3—发电机;1-4—分裂绕组启备变;1-5—启备变低压侧第一分支母线;1-6—启备变低压侧第二分支母线;1-7—厂用备用母线;2-1—高厂变高压母线;2-2—分裂绕组高厂变;2-3—高厂变低压侧第一分支母线;2-4—高厂变低压侧第二分支母线;2-5—厂用一类负荷并网开关;2-6—厂用二类负荷并网开关;2-7—厂用一类负荷;2-8—厂用二类负荷;3-1—储能并网开关;3-2—储能厂用负荷供电母线;3-3—黑启动供电开关;3-4—高压换流器;3-5—高压侧滤波电容;3-6—高频DCDC变压器;3-7—低压侧滤波电容;3-8—低压换流器;3-9—储能设备隔离开关;3-10—储能设备换流装置;3-11—储能设备。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是本公开实施例的一些方面相一致的装置和方法的例子。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。还应当理解,本公开中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在第一个实施例中,图1为本公开实施例所提供的一种火电储能黑启动系统的框图。本公开涉及的火电储能黑启动系统可以简称为黑启动系统。如图1所示,该火电储能黑启动系统包括火电并网启备变单元1、火电高压厂用单元2和火电储能供电黑启动单元3,火电并网启备变单元1分别与火电高压厂用单元2和火电储能供电黑启动单元3连接,火电高压厂用单元2与火电储能供电黑启动单元3连接。
图2为本公开实施例所提供的一种火电并网启备变单元的结构示意图。图3为本公开实施例所提供的一种火电高压厂用单元的结构示意图,图4为本公开实施例所提供的一种火电储能供电黑启动单元的结构示意图,图5为本公开实施例所提供的一种火电储能黑启动系统的结构示意图。
在本实施例中,如图2所示,火电并网启备变单元1包括发电机1-3。发电机1-3用于发电。例如发电机1-3可以发出20kV交流电;另外火电并网启备变单元1还包括与发电机 1-3配套的辅机,辅机包括水循环泵、油循环泵、磨煤机、锅炉等设备,辅机用于将煤转化成机械能,发电机将机械能转化成电能。辅机与发电机1-3一起构成火电机组。若电网失电,则辅机停机从而导致发电机停机,即火电机组停机。
在本实施例中,火电并网启备变单元1还包括励磁系统。励磁系统基于参考电压控制发电机1-3的输出电压。发电机1-3的输出电压即为发电机1-3出口处的电压,以发电机1-3的输出电压为设定值20kV为例,具体地,由于无功负荷电流容易造成发电机1-3的输出电压下降,故在励磁系统的调节器控制系统中,电压控制环节基于参考电压调节发电机的励磁电流,以使发电机1-3的输出电压保持稳定。其中参考电压一般为发电机1-3的输出电压,若发电机1-3正常运行时,发电机1-3的输出电压为设定值20kV,此时励磁系统跟随参考电压实现电压升高,从而实现励磁系统并网建压,若发电机1-3发电处于空载状态,发电机1-3的输出电压为0,则没有并网建压,此时通过火电储能供电黑启动单元3送电,火电储能供电黑启动单元3中的电能经过分裂绕组启备变1-4和发电机主变1-2将发电机1-3出口处的电压提升为20kV,从而给励磁系统提供了所需的参考电压。
在本实施例中,火电并网启备变单元1生成的电能提供输电线路提供给用户侧的负载,火电并网启备变单元1生成的电能还可以提供给火电高压厂用单元2中的用电设备。
在本实施例中,如图2所示,火电并网启备变单元1还包括火电并网母线1-1和发电机主变1-2。火电并网母线1-1即为火电机组并网电网母线,发电机主变1-2主要起升压作用,例如发电机主变1-2将发电机1-3输出的20kV交流电升压至220kV交流电;发电机1-3经发电机主变1-2连接至火电并网母线1-1,因此发电机1-3发出的电经过发电机主变1-2升压后并入电网。其中火电并网母线1-1与大电网(即局域电网)连接,发电机1-3生成的电能通过发电机主变1-2进入火电并网母线1-1,进而通过大电网中的输电线路到达用户侧。
在本实施例中,如图2所示,火电并网启备变单元1还包括分裂绕组启备变1-4、启备变低压侧第一分支母线1-5、启备变低压侧第二分支母线1-6和厂用备用母线1-7。其中分裂绕组启备变1-4的基本功能是在全厂停电检修时,将电网中的电能转换成电厂中的厂用负荷所需的电能。
在本实施例中,如图2所示,分裂绕组启备变1-4的高压侧与火电并网母线1-1连接,分裂绕组启备变1-4的低压侧分别与启备变低压侧第一分支母线1-5和启备变低压侧第二分支母线1-6连接,如图5所示,启备变低压侧第一分支母线(也称启备变低压侧A段母线)1-5通过厂用备用母线1-7连接至火电高压厂用单元2,启备变低压侧第二分支母线(也称启备变低压侧B段母线)1-6连接至火电储能供电黑启动单元3。
在一些实施例中,启备变低压侧第一分支母线1-5是启备变6kV低压侧第一分支母线, 启备变低压侧第二分支母线1-6可以是启备变6kV低压侧第二分支母线,厂用备用母线1-7可以是6kV厂用备用母线。
在本实施例中,火电高压厂用单元2包括备用辅机,备用辅机例如可以是备用的水循环泵、油循环泵、磨煤机、锅炉等设备。在本实施例中,可以将这些备用辅机分为一类辅机、二类辅机等,设置在不同的母线段中。一类辅机例如为水循环泵、油循环泵等设备,二类辅机例如为磨煤机、锅炉等设备。
在本实施例中,如图3所示,火电高压厂用单元2还包括高厂变高压母线2-1、分裂绕组高厂变2-2、高厂变低压侧第一分支母线2-3、高厂变低压侧第二分支母线2-4、厂用一类负荷并网开关2-5和厂用二类负荷并网开关2-6,备用辅机例如为厂用一类负荷2-7(也称一类辅机)和厂用二类负荷2-8(也称二类辅机);其中,分裂绕组高厂变2-2主要起降压作用,例如分裂绕组高厂变2-2将发电机1-3输出的20kV交流电降压至6kV交流电。厂用一类负荷2-7和厂用二类负荷2-8为黑启动时需要启动的负荷,其中厂用一类负荷2-7先启动,厂用二类负荷2-8后启动。
在本实施例中,如图3所示,分裂绕组高厂变2-2的高压侧经高厂变高压母线2-1连接至发电机1-3的出口,分裂绕组高厂变2-2的低压侧分别与高厂变低压侧第一分支母线2-3和高厂变低压侧第二分支母线2-4连接,厂用一类负荷2-7经厂用一类负荷并网开关2-5连接至高厂变低压侧第一分支母线2-3,厂用二类负荷2-8经厂用二类负荷并网开关2-6连接至高厂变低压侧第二分支母线2-4。
在本实施例中,高厂变高压母线2-1与火电并网启备变单元1中发电机1-3的出口连接。发电机1-3生成的电能可以通过高厂变高压母线2-1进入火电高压厂用单元2为火电高压厂用单元2中的用电设备供电。
在本实施例中,如图5所示,高厂变低压侧第二分支母线(也称低压厂用母线B段)2-4还与厂用备用母线1-7连接。发电机1-3生成的电能可以通过发电机主变1-2、分裂绕组启备变1-4、启备变低压侧第一分支母线1-5和厂用备用母线1-7进入火电高压厂用单元2为火电高压厂用单元2中的用电设备供电。
在本实施例中,火电高压厂用单元2,用于利用火电储能供电黑启动单元3提供的电能启动备用辅机,以恢复发电机1-3运行,并完成电网黑启动。具体地,在发电机1-3正常运行时厂用一类负荷并网开关2-5和厂用二类负荷并网开关2-6断开;在电网失电导致发电机1-3停机时,火电并网启备变单元1中火电并网母线1-1电压迅速降低,为了恢复火电机组供电,实现电网黑启动,厂用一类负荷并网开关2-5和厂用二类负荷并网开关2-6闭合,断开火电储能供电黑启动单元3中的储能并网开关3-1火电储能供电黑启动单元3中黑启动供电开关3-3闭合,火电储能供电黑启动单元3向火电高压厂用单元2中的高压厂用负荷 (例如厂用一类负荷和厂用二类负荷)供电,以启动备用辅机,备用辅机启动后发电机1-3开始发电,从而恢复了火电机组运行。
在一些实施例中,高厂变高压母线2-1为高厂变20kV高压母线,高厂变低压侧第一分支母线2-3为高厂变6kV低压侧第一分支母线,高厂变低压侧第二分支母线2-4为高厂变6kV低压侧第二分支母线。
在本实施例中,火电储能供电黑启动单元3,用于在电网失电导致发电机1-3停机时向火电高压厂用单元2供电。
在本实施例中,如图4所示,火电储能供电黑启动单元3包括依次连接的储能并网开关3-1、高压换流器3-4、高压侧滤波电容3-5、高频DCDC变压器3-6、低压侧滤波电容3-7、低压换流器3-8、储能设备隔离开关3-9、储能设备换流装置3-10和储能设备3-11。如图5所示,储能并网开关3-1与启备变低压侧第二分支母线1-6连接。其中,高压换流器3-4用于实现直-交换流功能。高频DCDC变压器3-6用于实现变压功能,相对于其他的DCDC变压器,高频DCDC变压器体积小,由此,能够减小火电储能供电黑启动单元3的体积。低压换流器3-8用于实现交-直换流功能。高压侧滤波电容3-5和低压侧滤波电容3-7能够提升高效平滑直流输出。储能设备换流装置3-10用于实现直-交换流功能,储能设备3-11用于储存电能。
在一些实施例中,高压换流器3-4采用储能电力电子变压器(Power Electronic Transformer,PET)高压直-交换流器,低压换流器3-8采用储能PET低压交-直换流器。在一些实施例中,高压侧滤波电容3-5采用储能PET高压侧滤波电容,高频DCDC变压器3-6采用储能PET高频DCDC变压器(直流转直流变压器),低压侧滤波电容3-7采用储能PET低压侧滤波电容。由此,能够将储能设备3-11通过高压电力电子变压器(PET)直挂到火电并网启备变单元1中分裂绕组启备变1-4的低压侧。另外相较于传统工频变压器,造价更低,在设置储能PET高压侧滤波电容和储能PET低压侧滤波电容,能够实现端口间的故障隔离,无需再配置谐波抑制、无功补偿装置。其中,储能设备换流装置、储能PET低压交-直换流器和储能PET高压直-交换流器分别实现交直流间的相互转化。高频DCDC变压器用于将接收的直流电转化成所需的直流电。
在本实施例中,如图4或图5所示,火电储能供电黑启动单元3还包括储能厂用负荷供电母线(也称辅机供电母线)3-2和黑启动供电开关3-3;黑启动供电开关3-3设置在储能厂用负荷供电母线3-2上,储能厂用负荷供电母线3-2的一端连接高压换流器3-4,储能厂用负荷供电母线3-2的另一端连接高厂变低压侧第二分支母线2-4。
在一些实施例中,黑启动供电开关3-3为黑启动6kV供电开关。发电机1-3正常运行时,黑启动供电开关3-3处于断开状态。
在本实施例中,在电网失电导致发电机1-3停机时,进入黑启动,储能并网开关3-1断开,黑启动供电开关3-3闭合,储能设备隔离开关3-9闭合,火电储能供电黑启动单元3就向火电高压厂用单元2中的厂用一类负荷2-7和厂用二类负荷2-8供电,完成厂用一类负荷2-7和厂用二类负荷2-8启动,最终实现火电机组启动。例如整个过程可分为:通过火电储能供电黑启动单元3给火电厂油系统(例如油循环泵)、水系统(例如水循环泵)等备用辅机供电,备用辅机启动后,水蒸气推动汽轮机带发电机1-3的转子旋转产生磁场,定子切割磁感线产生电能,然后通过发电机主变1-2、升压站及并网开关接入电网,火电厂并网后,扩大黑启动恢复面。
在本实施例中,在发电机1-3处于空载状态时,储能并网开关3-1闭合,储能设备隔离开关3-9闭合,黑启动供电开关3-3断开。
在本实施例中,火电储能供电黑启动单元3,还用于在发电机1-3处于空载状态时向火电并网启备变单元1供电;火电并网启备变单元1中励磁系统根据火电储能供电黑启动单元3提供的电能获得参考电压,以使发电机1-3并网、结束空载状态。具体地,为了实现火电并网,火电并网启备变单元1中火电并网母线1-1电压建立,此时断开火电储能供电黑启动单元3中黑启动供电开关3-3,闭合火电储能供电黑启动单元3中储能并网开关3-1,火电储能供电黑启动单元3作为电压源通过分裂绕组启备变1-4反向送电,为励磁系统提供参考电压,保证火电机组顺利并网。
在本实施例中,火电储能供电黑启动单元3,还用于在发电机1-3正常运行时,储能并网开关3-1处于断开状态,若接收到调频指令,则闭合储能并网开关3-1进行调频。具体地,火电储能供电黑启动单元3可以通过分裂绕组启备变1-4将电能进行倒送,从而实现储能与火电机组联合响应电网调频指令,且在调频中,功率变化相较于传统工频变压器更加快速、准确,提高了机组响应电网调频指令能力;另外牵扯到升压环节较少,电能损失得到了有效控制。
在本实施例中,在需要火电储能供电黑启动单元3供电或参与调频时,储能设备隔离开关3-9均闭合,储能设备3-11中存储的电能经过储能设备换流装置3-10和储能设备隔离开关3-9进入低压换流器3-8中。
在本公开实施例的火电储能黑启动系统中,该黑启动系统包括火电并网启备变单元、火电高压厂用单元和火电储能供电黑启动单元,火电高压厂用单元连接火电储能供电黑启动单元;火电并网启备变单元包括发电机,火电并网启备变单元,用于利用发电机发电;火电储能供电黑启动单元,用于在电网失电导致发电机停机时向火电高压厂用单元供电;火电高压厂用单元包括备用辅机,火电高压厂用单元,用于利用火电储能供电黑启动单元提供的电能启动备用辅机,以恢复发电机运行、完成电网黑启动,在这种情况下,借助火 电储能供电黑启动单元实现电网失电导致发电机停机时的黑启动问题,使得火电储能功能更加丰富,解决了现有的黑启动技术中缺少火电储能的协调参与的技术问题。另外本公开实施例的黑启动系统平时储能联合火电机组运行,提高机组响应电网调频指令能力;当局域电网失电,火电机组停机,为了恢复火电机组供电,实现电网黑启动,储能向高压厂用负荷供电,启动辅机,恢复火电机组运行;为了实现电网建压,储能设备作为电压源通过启备变反向送电,为火电机组励磁系统提供参考电压,保证火电机组顺利并网,辅助火电机组实现黑启动。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本公开在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (5)

  1. 一种火电储能黑启动系统,其特征在于,包括:火电并网启备变单元、火电高压厂用单元和火电储能供电黑启动单元,所述火电高压厂用单元与所述火电储能供电黑启动单元相连;
    所述火电并网启备变单元包括发电机,所述发电机用于发电;
    所述火电储能供电黑启动单元,用于在电网失电导致所述发电机停机时向所述火电高压厂用单元供电;
    所述火电高压厂用单元包括备用辅机,所述火电高压厂用单元用于利用所述火电储能供电黑启动单元提供的电能启动所述备用辅机,以恢复所述发电机运行,并完成电网黑启动;
    所述火电并网启备变单元还包括火电并网母线、发电机主变、分裂绕组启备变、启备变低压侧第一分支母线、启备变低压侧第二分支母线和厂用备用母线,其中,所述发电机经所述发电机主变连接至所述火电并网母线,所述分裂绕组启备变的高压侧与所述火电并网母线连接,所述分裂绕组启备变的低压侧分别与所述启备变低压侧第一分支母线、所述启备变低压侧第二分支母线连接,所述启备变低压侧第一分支母线通过所述厂用备用母线与所述火电高压厂用单元连接,所述启备变低压侧第二分支母线与所述火电储能供电黑启动单元连接;
    所述火电高压厂用单元还包括高厂变高压母线、分裂绕组高厂变、高厂变低压侧第一分支母线、高厂变低压侧第二分支母线、厂用一类负荷并网开关和厂用二类负荷并网开关;所述备用辅机具有厂用一类负荷和厂用二类负荷,其中,所述分裂绕组高厂变的高压侧经所述高厂变高压母线连接所述发电机的出口,所述分裂绕组高厂变的低压侧分别连接所述高厂变低压侧第一分支母线、所述高厂变低压侧第二分支母线,所述厂用一类负荷经所述厂用一类负荷并网开关连接至所述高厂变低压侧第一分支母线,所述厂用二类负荷经所述厂用二类负荷并网开关连接至所述高厂变低压侧第二分支母线,所述高厂变低压侧第二分支母线还连接所述厂用备用母线;
    所述火电储能供电黑启动单元还包括依次连接的储能并网开关、高压换流器、高压侧滤波电容、高频DCDC变压器、低压侧滤波电容、低压换流器、储能设备隔离开关、储能设备换流装置、储能设备、储能厂用负荷供电母线和黑启动供电开关,其中,所述储能并网开关连接所述启备变低压侧第二分支母线,所述黑启动供电开关设置在所述储能厂用负荷供电母线上,所述储能厂用负荷供电母线的一端连接所述高压换流器,且所述储能厂用负荷供电母线的另一端连接所述高厂变低压侧第二分支母线。
  2. 如权利要求1所述的火电储能黑启动系统,其特征在于,其中,所述火电并网启备变单元与所述火电储能供电黑启动单元相连,且所述火电储能供电黑启动单元,还用于在发电机处于空载状态时向所述火电并网启备变单元供电,以使所述火电并网启备变单元中的参考电压恢复至设定值;所述火电并网启备变单元还包括励磁系统,所述励磁系统用于在发电机正常运行时基于参考电压控制所述发电机的输出电压,所述参考电压等于设定值;所述励磁系统还用于在发电机处于空载状态时基于恢复后的参考电压控制所述发电机的输出电压,以使所述发电机并网,并结束空载状态。
  3. 如权利要求1所述的火电储能黑启动系统,其特征在于,所述高压换流器采用储能电力电子变压器高压直-交换流器,所述低压换流器采用储能电力电子变压器低压交-直换流器。
  4. 如权利要求1所述的火电储能黑启动系统,其特征在于,所述高压侧滤波电容采用储能电力电子变压器高压侧滤波电容,所述高频DCDC变压器采用储能电力电子变压器高频DCDC变压器,所述低压侧滤波电容采用储能电力电子变压器低压侧滤波电容。
  5. 如权利要求1所述的火电储能黑启动系统,其特征在于,所述火电储能供电黑启动单元,还用于在发电机正常运行时,若接收到调频指令,则闭合所述储能并网开关进行调频。
PCT/CN2023/098107 2022-06-29 2023-06-02 火电储能黑启动系统 WO2024001673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210748211.8 2022-06-29
CN202210748211.8A CN114825452B (zh) 2022-06-29 2022-06-29 火电高压直挂储能黑启动系统

Publications (1)

Publication Number Publication Date
WO2024001673A1 true WO2024001673A1 (zh) 2024-01-04

Family

ID=82522569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098107 WO2024001673A1 (zh) 2022-06-29 2023-06-02 火电储能黑启动系统

Country Status (2)

Country Link
CN (1) CN114825452B (zh)
WO (1) WO2024001673A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825452B (zh) * 2022-06-29 2022-09-20 西安热工研究院有限公司 火电高压直挂储能黑启动系统
CN116073435B (zh) * 2023-03-30 2023-07-18 西安热工研究院有限公司 一种柴发联合燃机的黑启动系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242397A (ja) * 2003-02-04 2004-08-26 Hitachi Ltd 発電プラント用の非常用電動機用電源設備
CN113852141A (zh) * 2021-10-28 2021-12-28 西安热工研究院有限公司 一种联合风光储的具有fcb功能火电厂黑启动系统及方法
CN216599025U (zh) * 2021-12-01 2022-05-24 北京京能电力股份有限公司 在电力现货市场中实现火电机组黑启动的分布式储能系统
CN216851318U (zh) * 2022-02-17 2022-06-28 华能洋浦热电有限公司 一种电化学储能火电调频系统
CN114825452A (zh) * 2022-06-29 2022-07-29 西安热工研究院有限公司 火电高压直挂储能黑启动系统
CN217882851U (zh) * 2022-06-29 2022-11-22 西安热工研究院有限公司 火电储能黑启动系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065065B (zh) * 2014-07-16 2016-04-06 福建省电力勘测设计院 利用黑启动用柴油发电机兼做保安电源用柴油发电机的方法
CN105846463B (zh) * 2016-05-09 2018-12-18 东南大学 一种多源协调的黑启动方法及系统
CN105958551A (zh) * 2016-06-01 2016-09-21 河北省电力建设调整试验所 一种利用储能提高火力发电厂agc响应的方法
CN106992537B (zh) * 2017-03-29 2019-10-15 中国电力科学研究院 一种电网黑启动方法及装置
WO2020131005A1 (en) * 2018-12-17 2020-06-25 General Electric Company Fault current control sub-system and related method
CN112311014A (zh) * 2020-11-19 2021-02-02 西安热工研究院有限公司 一种220kV电压等级单元接线水电站自储能黑启动系统及方法
CN113991731B (zh) * 2021-09-14 2023-11-28 广东大唐国际肇庆热电有限责任公司 一种大型燃机储能系统黑启动方法
CN113922495A (zh) * 2021-10-13 2022-01-11 阳光电源(南京)有限公司 一种储能电站及黑启动方法
CN113864014A (zh) * 2021-10-26 2021-12-31 西安热工研究院有限公司 火电换热熔融盐储能黑启动系统
CN216851315U (zh) * 2022-02-17 2022-06-28 华能洋浦热电有限公司 一种升压联合火电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242397A (ja) * 2003-02-04 2004-08-26 Hitachi Ltd 発電プラント用の非常用電動機用電源設備
CN113852141A (zh) * 2021-10-28 2021-12-28 西安热工研究院有限公司 一种联合风光储的具有fcb功能火电厂黑启动系统及方法
CN216599025U (zh) * 2021-12-01 2022-05-24 北京京能电力股份有限公司 在电力现货市场中实现火电机组黑启动的分布式储能系统
CN216851318U (zh) * 2022-02-17 2022-06-28 华能洋浦热电有限公司 一种电化学储能火电调频系统
CN114825452A (zh) * 2022-06-29 2022-07-29 西安热工研究院有限公司 火电高压直挂储能黑启动系统
CN217882851U (zh) * 2022-06-29 2022-11-22 西安热工研究院有限公司 火电储能黑启动系统

Also Published As

Publication number Publication date
CN114825452A (zh) 2022-07-29
CN114825452B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2024001673A1 (zh) 火电储能黑启动系统
JP6951542B2 (ja) チェーンマルチポートグリッド接続インターフェース装置及び制御方法
CN108964115B (zh) 燃料电池电力系统的直流耦合电力电子系统
Zhao et al. Next-generation multi-functional modular intelligent UPS system for smart grid
JP2018198525A (ja) 燃料電池動力システム用ac結合型動力エレクトロニクスシステム
CN110690731A (zh) 一种适用于混合微电网的电力电子变压器及其协调控制和模式切换方法
JP7419397B2 (ja) 電気グリッドをブラックスタートするための方法
CN218415828U (zh) 一种风光储火联合运行系统黑启动系统
CN110336326B (zh) 一种定子回路单独直配高压电网的双馈风力/水力发电系统
CN114825597B (zh) 火电高压直挂储能后备厂用电源系统
CN112736891B (zh) 航空发动机多电控制系统的供电装置
CN105978008A (zh) 一种具有风场黑启动功能的液流电池储能系统及其工作方法
CN115189382A (zh) 一种风光储火联合运行系统黑启动系统及方法
CN217882851U (zh) 火电储能黑启动系统
CN114481179A (zh) 中压直流汇集型可再生能源发电制氢系统及其工作方法
WO2024000997A1 (zh) 一种火电直挂储能调频厂用备用电源系统
CN113864015A (zh) 熔融盐储热背压机辅助火电黑启动系统
WO2024001681A1 (zh) 混合储能辅助火电调频系统
CN104377730A (zh) 用于变速恒频双馈风力发电系统的储能式励磁变频器
CN219611404U (zh) 风力发电机组的备用电源系统及风力发电机组
WO2024000996A1 (zh) 一种新型电力系统配置储能黑启动系统及方法
CN103441528A (zh) 双馈型风力发电机组用变流器拓扑结构
CN110289636A (zh) 一种基于分频/低频电网运行的直驱式双馈风力发电机组
EP2463978A1 (en) Power factor correction for multiple generators
CN107508320A (zh) 一种风力发电站及其黑启动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829857

Country of ref document: EP

Kind code of ref document: A1