WO2024001418A1 - 贯流风叶、空调器 - Google Patents

贯流风叶、空调器 Download PDF

Info

Publication number
WO2024001418A1
WO2024001418A1 PCT/CN2023/087840 CN2023087840W WO2024001418A1 WO 2024001418 A1 WO2024001418 A1 WO 2024001418A1 CN 2023087840 W CN2023087840 W CN 2023087840W WO 2024001418 A1 WO2024001418 A1 WO 2024001418A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cross
line
center
flow fan
Prior art date
Application number
PCT/CN2023/087840
Other languages
English (en)
French (fr)
Inventor
黄美玲
邹建煌
陈付齐
和浩浩
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024001418A1 publication Critical patent/WO2024001418A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the present disclosure belongs to the technical field of air conditioning, and specifically relates to a cross-flow fan blade and an air conditioner.
  • Cross-flow fan blades are widely used in existing split air conditioner indoor units. When the cross-flow fan blades rotate, the airflow enters and exits between the cross-flow fan blades twice. On the inlet side of the fan blades, the airflow first passes through the blades from the periphery and enters the cross-flow fan blades. Inside the flow blade, the second airflow on the side near the outlet of the air duct passes through the blade and flows out of the air duct from inside the cross-flow blade, so the blade shape of the cross-flow blade is both the air inlet end and the air outlet end.
  • the blade surface type of existing cross-flow fan blades is mostly a smooth curved surface design. The blade shape is a single arc design.
  • the blade is composed of an outer end arc, an inner end arc, a back arc and a blade basin arc.
  • Cross-flow fan blades The maximum thickness of the blade is in the middle of the blade midline, and the maximum thickness is d1, that is, the blade is small at both ends and large in the middle.
  • the degree of separation of the airflow after passing through the traditional cross-flow blade can be reduced to a certain extent, and the resulting The flow loss and internal machine power consumption are reduced, but the blades of this blade type have room for further reduction in the degree of airflow separation from the outflow side of the cross-flow fan, and the flow loss caused by the overall cross-flow fan blade to the air flow.
  • the present disclosure provides a cross-flow fan blade and an air conditioner, which can overcome the problem that the blade shape design of the cross-flow fan blade in the related art does not take into consideration the reduction of the air flow separation degree between the air inlet side and the air outlet side, the air flow loss of the fan and the indoor unit The disadvantage of large power consumption.
  • the present disclosure provides a cross-flow fan blade, which includes a plurality of blades.
  • the plurality of blades are spaced around the rotation axis of the cross-flow fan blade.
  • the blades have a blade centerline.
  • the center line of the blade is an arc line, and the thickness of the blade first gradually increases and then decreases from the middle position of the blade center line to both ends.
  • the blade has an outer end and an inner end, a minimum thickness at an intermediate position of the blade is dmin, and the blade between the intermediate position and the outer end has a first maximum thickness dmax1 , the blade between the intermediate position and the inner end has a second maximum thickness dmax2, dmin ⁇ dmax2 ⁇ dmax1.
  • the outer end is formed by an outer arc
  • the radius of the outer arc is do
  • the inner end is formed by an inner arc
  • the radius of the inner arc is di
  • dmin is not less than the smaller one of do and di.
  • the line connecting the center of the outer arc and the center line of the blade is a first line segment
  • the line between the center of the inner arc and the center line of the blade is a first line segment.
  • the connecting line is a second line segment, the first line segment and the second line segment form an included angle ⁇ , between the intersection point of the straight line where the first maximum thickness is located and the center line of the blade and the center of the circle of the center line of the blade
  • the connecting line is a third line segment, and an included angle ⁇ is formed between the third line segment and the first line segment, ⁇ /5 ⁇ /3.
  • connection between the intersection point of the straight line where the minimum thickness dmin at the intermediate position and the blade centerline and the center of the blade centerline is a fourth line segment, and the fourth line segment is connected to the third line segment.
  • the angle ⁇ is formed between the line segments, and ⁇ /2 ⁇ 3 ⁇ /4.
  • connection between the intersection point of the straight line where the second maximum thickness is located and the center line of the blade and the center of the circle of the center line of the blade is a fifth line segment, and the fifth line segment and the first line segment An angle ⁇ is formed between them, 2 ⁇ /3 ⁇ 4 ⁇ /5.
  • a leaf back curve and a leaf basin curve are respectively connected between the outer end arc and the inner end arc, and the leaf back curve and the leaf basin curve are connected respectively. Smooth transition curves respectively.
  • the present disclosure also provides an air conditioner, which is characterized in that it includes the above-mentioned cross-flow fan blade.
  • the present disclosure provides a cross-flow fan blade and an air conditioner.
  • the thickness of the blade has two thickness increasing and decreasing processes on the flow path of the airflow. That is, the blade back curve and the blade basin curve of the blade have two thicknesses respectively.
  • the increase and decrease change process causes the thickness of the blade to form a double hump-shaped distribution on the flow path of the airflow instead of a single thickness increase in the related art.
  • This can effectively reduce the degree of airflow separation on both the inflow side and the outflow side of the airflow.
  • it can reduce the air flow detachment loss when the air flow enters and exits the flow channel for the second time, thereby effectively reducing the fan air flow loss and indoor unit power consumption.
  • it can further reduce the air flow noise.
  • Figure 1 is a schematic cross-sectional structural diagram (radial cross section) of a cross-flow fan blade according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of the blade in Figure 1;
  • Figure 3a is a cloud diagram of airflow separation on the inlet and outlet sides of blades in related technology
  • Figure 3b is the airflow separation cloud diagram on the blade inlet side of Figure 3a;
  • Figure 4 is a cloud diagram of the air flow separation on the inlet side and outlet side of the blade in the technical solution of the present disclosure
  • Figure 5 is a comparison of the distribution of thickness on the blade centerline between the blades in the present disclosure and those in related technologies;
  • Figure 6 is a comparison of the relative speeds of each position point on the outer diameter of the blade circumference between the cross-flow fan in the present disclosure and the cross-flow fan in the related art;
  • Figure 7 is a comparison of the airflow noise test between the cross-flow fan in the present disclosure and the cross-flow fan in the related art.
  • the reference symbols are expressed as: 1. Blade; 11. Blade midline; 12. Outer end; 13. Inner end; 14. Leaf back curve; 15. Leaf basin curve; 2. Plate body.
  • a cross-flow fan blade which includes a plurality of blades 1 .
  • the plurality of blades 1 are spaced around the rotation axis of the cross-flow fan blade. Generally speaking, they are circumferentially adjacent. The spacing between the two blades 1 is uniform, and the corresponding ends of the multiple blades 1 are connected to the plate body 2.
  • the plate body 2 can be, for example, a partition or an end baffle.
  • the blade 1 has a blade centerline 11.
  • the blade centerline 11 is an arc line, and the thickness of the blade 1 is from the middle position of the blade centerline 11 to both ends. It first gradually increases and then gradually decreases.
  • the thickness of the blade 1 has two processes of increase and decrease in thickness along the flow path of the airflow, that is, the blade back curve 14 and the blade basin curve 15 of the blade 1 have two processes of increase and decrease in thickness respectively. , so that the thickness of the blade 1 forms a double hump-shaped distribution on the flow path of the airflow instead of a single thickness increase in the related art.
  • the blade center line 11 is a line connecting the midpoints of the thickness of the blade 1 at different positions from the inner end to the outer end.
  • the blade center line 11 is an arc line, that is, when its curvature radius is single, the blade back
  • the curve 14 and the leaf basin curve 15 respectively have two processes of increase and decrease in thickness.
  • the blade 1 has an outer end 12 and an inner end 13.
  • the minimum thickness at the middle position of the blade 1 is dmin.
  • the blade 1 between the middle position and the outer end 12 has a first maximum thickness dmax1.
  • the middle position is dmin.
  • the blade 1 between the inner ends 13 has the second maximum thickness dmax2, dmin ⁇ dmax2 ⁇ dmax1, that is, the blade thickness is designed to be higher in front and lower in the back relative to the blade leading edge, which can further reduce the airflow on the inlet side of the cross-flow fan.
  • the degree of air flow separation is reduced while reducing the degree of air flow separation of the air flow on the outlet side of the cross-flow fan.
  • the outer end 12 is formed by an outer arc, the radius of the outer arc is do, the inner end 13 is formed by an inner arc, the radius of the inner arc is di, dmin is not less than the smaller of do and di, This can ensure the overall structural strength of the blade 1.
  • connection between the center of the outer arc and the center of the blade centerline 11 is a first line segment
  • connection between the center of the inner arc and the center of the blade centerline 11 is a second line segment
  • the angle ⁇ is formed between the first line segment and the second line segment.
  • the intersection between the straight line where the first maximum thickness is located and the blade centerline 11 and the center of the blade centerline 11 is the third line segment.
  • the third line segment is connected to the first line segment.
  • the angle ⁇ is formed between the line segments, ⁇ /5 ⁇ /3; in some embodiments, the connection between the intersection point of the straight line where the minimum thickness dmin at the middle position is and the blade centerline 11 and the center of the circle of the blade centerline 11
  • the line is the fourth line segment
  • the angle ⁇ is formed between the fourth line segment and the first line segment, ⁇ /2 ⁇ 3 ⁇ /4; in some embodiments, the intersection point of the straight line where the second maximum thickness is located and the blade centerline 11 is
  • the connection line between the center lines of the blade center lines 11 is the fifth line segment.
  • the fifth line segment and the first line segment form an included angle ⁇ , 2 ⁇ /3 ⁇ 4 ⁇ /5, so, ⁇ .
  • the intersection of the aforementioned thickness line and the blade centerline 11 is described based on a view on the same cross-section, which is specifically the cross-section shown in FIG. 2 .
  • the aforementioned angle is used to control the position corresponding to the thickness of each blade.
  • the first thickness is close to the front side of the center line
  • the second thickness is close to the back side and exceeds 2/3 of the blade
  • the minimum thickness in the middle position is close to the middle and back side.
  • the blade back curve 14 and the blade basin curve 15 are respectively connected between the outer end arc and the inner end arc, and the blade back curve 14 and the blade basin curve 15 respectively make smooth transitions.
  • curve to reduce the airflow loss caused by the contact between the airflow and the blade 1. Specifically, as shown in FIG. 5 , in the direction of the blade in the present disclosure from the outer end to the inner end along the blade centerline, the thickness of the blade 1 shows a smooth thickness increase and decrease process on both sides, forming a double hump structure.
  • the cross-flow fan blade of the present disclosure is three-dimensionally designed and molded for production.
  • the processed cross-flow fan blade The blades were installed on the indoor unit of the air conditioner for experimental testing. The comparison of the actual measurement results is shown in Figure 7.
  • the disclosed fan blades can reduce the noise of the indoor unit by 1 to 2 dBA compared with the existing fan blades while maintaining basically the same air volume. As shown in FIG.
  • the relative speed of the outer ring of the blade (that is, each position point on the outer diameter of the blade circumference) is somewhat different than that of the blade in the related art. Reduced, which also means that the noise level of the corresponding cross-flow fan has also been improved.
  • an air conditioner is further provided, which is characterized in that it includes the above-mentioned cross-flow blade.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种贯流风叶以及空调器。贯流风叶包括多个叶片(1),多个叶片(1)围绕贯流风叶的旋转轴线间隔设置,叶片(1)具有叶片中线(11),在叶片(1)的横断面上,叶片中线(11)为圆弧线,叶片(1)的厚度由叶片中线(11)的中间位置向两端位置先逐渐增大后逐渐减小。该贯流风叶在气流的流动路径上厚度形成双驼峰形分布,能够减少气流的脱离损失。

Description

贯流风叶、空调器
本公开要求于2022年06月27日提交中国专利局、申请号为202210736124.0、发明名称为“贯流风叶、空调器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于空气调节技术领域,具体涉及一种贯流风叶、空调器。
背景技术
贯流风叶广泛用于现有分体空调器室内机中,贯流风叶旋转时,气流先后两次进出贯流风叶叶片之间,在风叶进口侧气流第一次从外围穿过叶片进入贯流风叶内部,第二次在靠近风道出口侧气流从贯流风叶内部穿过叶片流出风道,所以贯流风叶叶型既是进气端也是出气端。现有贯流风叶的叶片表面型式多为光滑曲面设计,叶型为单圆弧设计,叶片由外端圆弧、内端圆弧以及叶背面圆弧和叶盆面圆弧组成,贯流风叶的叶片最大厚度位置在叶片中线中间位置,最大厚度为d1,即叶片为两端小、中间大。经研究发现,传统厚度中间大、两端小的叶片,气流在流入或者流出贯流风叶时气流分离情况严重,这一分离现象产生流动损失、增加室内机的功耗,也会带来室内机噪声问题。为了克服前述不足,申请人将传统的叶片厚度的最大位置由叶片的中间向叶片外端一侧靠近,如此,能够一定程度地降低传统贯流叶片的气流流经后的分离程度,降低因此产生的流动损失及内机功耗,但是这一叶型的叶片对于气流从贯流风机的流出侧的气流分离程度,贯流风叶整体对气流产生的流动损失仍有进一步减小的空间。
发明内容
因此,本公开提供一种贯流风叶、空调器,能够克服相关技术中贯流风叶的叶片叶型设计没有兼顾降低气流进风侧与出风侧的气流分离程度,风机气流流动损失及室内机功耗较大的不足。
为了解决上述问题,本公开提供一种贯流风叶,包括多个叶片,多个所述叶片围绕所述贯流风叶的旋转轴线间隔设置,所述叶片具有叶片中线,在所述叶片的横断面上,所述叶片中线为圆弧线,所述叶片的厚度由所述叶片中线的中间位置向两端位置先逐渐增大后逐渐减小。
在一些实施方式中,所述叶片具有外端与内端,所述叶片的中间位置处的最小厚度为dmin,所述中间位置与所述外端之间的所述叶片具有第一最大厚度dmax1,所述中间位置与所述内端之间的所述叶片具有第二最大厚度dmax2,dmin<dmax2<dmax1。
在一些实施方式中,所述外端由外端圆弧形成,所述外端圆弧的半径为do,所述内端由内端圆弧形成,所述内端圆弧的半径为di,dmin不小于所述do与所述di中的较小一个。
在一些实施方式中,所述外端圆弧的圆心与所述叶片中线的圆心之间的连线为第一线段,所述内端圆弧的圆心与所述叶片中线的圆心之间的连线为第二线段,所述第一线段与所述第二线段之间形成夹角θ,所述第一最大厚度所在直线与所述叶片中线的交点与所述叶片中线的圆心之间的连线为第三线段,所述第三线段与所述第一线段之间形成夹角α,θ/5<α<θ/3。
在一些实施方式中,所述中间位置处的最小厚度dmin所在直线与所述叶片中线的交点与所述叶片中线的圆心之间的连线为第四线段,所述第四线段与所述第一线段之间形成夹角φ,θ/2<φ<3θ/4。
在一些实施方式中,所述第二最大厚度所在直线与所述叶片中线的交点与所述叶片中线的圆心之间的连线为第五线段,所述第五线段与所述第一线段之间形成夹角β,2θ/3<β<4θ/5。
在一些实施方式中,在所述叶片的横断面上,所述外端圆弧与所述内端圆弧之间分别连接有叶背曲线及叶盆曲线,所述叶背曲线及叶盆曲线分别圆滑过渡曲线。
本公开还提供一种空调器,其特征在于,包括上述的贯流风叶。
本公开提供的一种贯流风叶、空调器,叶片的厚度在气流的流动路径上具有两个厚度的增减变化过程,也即该叶片的叶背曲线以及叶盆曲线分别具有两个厚度的增减变化过程,使该叶片在气流的流动路径上厚度形成双驼峰形分布而非相关技术中的单次厚度增加,如此能够使气流在流入侧以及流出侧皆能够有效降低气流分离的程度,尤其是能够减少气流二次进出流道时气流的脱离损失,进而有效降低风机气流流动损失及室内机功耗,另外还能够进一步降低气流噪音。
附图说明
图1为本公开实施例的贯流风叶的截面结构示意图(径向横断面);
图2为图1中的叶片的结构示意图;
图3a为相关技术中的叶片进出口侧气流分离云图;
图3b为图3a的叶片进口侧气流分离云图;
图4为本公开技术方案中的叶片进口侧及出口侧气流分离云图;
图5为本公开中的叶片与相关技术中的叶片厚度在叶片中线上分布对比;
图6为本公开中的贯流风机与相关技术中的贯流风机中风叶圆周外径上各个位置点的相对速度对比;
图7为本公开中的贯流风机与相关技术中的贯流风机的气流噪声测试对比。
附图标记表示为:
1、叶片;11、叶片中线;12、外端;13、内端;14、叶背曲线;15、叶
盆曲线;2、板体。
具体实施方式
结合参见图1至图7所示,根据本公开的实施例,提供一种贯流风叶,包括多个叶片1,多个叶片1围绕贯流风叶的旋转轴线间隔设置,一般而言,周向相邻的两个叶片1的间隔是均匀的,多个叶片1的对应端部与板体2连接在一体,该板体2例如可以是隔板或者端部挡板,叶片1具有叶片中线11,在叶片1的横断面上(也可以理解为沿着贯流风叶的轴向投影形成的投影面上),叶片中线11为圆弧线,叶片1的厚度由叶片中线11的中间位置向两端位置先逐渐增大后逐渐减小。该技术方案中,叶片1的厚度在气流的流动路径上具有两个厚度的增减变化过程,也即该叶片1的叶背曲线14以及叶盆曲线15分别具有两个厚度的增减变化过程,使该叶片1在气流的流动路径上厚度形成双驼峰形分布而非相关技术中的单次厚度增加,如此能够使气流在流入侧以及流出侧皆能够有效降低气流分离的程度,尤其是能够减少气流二次进出流道时气流的脱离损失,进而有效降低风机气流流动损失及室内机功耗,另外还能够进一步降低气流噪音。
需要说明的是,叶片中线11为叶片1在其由内端向外端的不同位置处的厚度的中点的连线,而在叶片中线11为圆弧线也即其曲率半径单一时,叶背曲线14以及叶盆曲线15上分别具有两个厚度的增减变化过程。
参见图2所示,叶片1具有外端12与内端13,叶片1的中间位置处的最小厚度为dmin,中间位置与外端12之间的叶片1具有第一最大厚度dmax1,中间位置与内端13之间的叶片1具有第二最大厚度dmax2,dmin<dmax2<dmax1,也即,在叶片厚度相对叶片前缘前高后低设计,能够进一步实现降低贯流风机的进风侧气流的气流分离程度的同时降低贯流风机的出风侧气流的气流分离程度。
外端12由外端圆弧形成,外端圆弧的半径为do,内端13由内端圆弧形成,内端圆弧的半径为di,dmin不小于do与di中的较小一个,如此能够保证叶片1的整体结构强度。
在一些实施方式中,外端圆弧的圆心与叶片中线11的圆心之间的连线为第一线段,内端圆弧的圆心与叶片中线11的圆心之间的连线为第二线段,第一线段与第二线段之间形成夹角θ,第一最大厚度所在直线与叶片中线11的交点与叶片中线11的圆心之间的连线为第三线段,第三线段与第一线段之间形成夹角α,θ/5<α<θ/3;在一些实施方式中,中间位置处的最小厚度dmin所在直线与叶片中线11的交点与叶片中线11的圆心之间的连线为第四线段,第四线段与第一线段之间形成夹角φ,θ/2<φ<3θ/4;在一些实施方式中,第二最大厚度所在直线与叶片中线11的交点与叶片中线11的圆心之间的连线为第五线段,第五线段与第一线段之间形成夹角β,2θ/3<β<4θ/5,如此,α<φ<β。能够理解的是,前述的厚度所在直线与叶片中线11的交点皆基于同一横断面上的视图进行的描述,该横断面具体为图2所示出的横断面。前述角度用来控制各个叶片厚度相对应的位置,第一厚度靠近中线前侧,第二厚度靠近后侧超过叶片2/3,而中间位置最小厚度靠近中后侧。
在一些实施方式中,在叶片1的横断面上,外端圆弧与内端圆弧之间分别连接有叶背曲线14及叶盆曲线15,叶背曲线14及叶盆曲线15分别圆滑过渡曲线,减少气流与叶片1之间的接触导致的气流损耗。具体而言,参见图5所示,本公开中的叶片沿着叶片中线由外端向内端的方向上,叶片1的厚度呈现两侧圆滑的厚度增减过程,形成双驼峰的结构。
在一个具体的实施例中,叶片1的设计参数如下:dmax1=1.066mm,
dmax2=0.836mm,dmin=0.828mm,θ=69°,α=18°,Φ=39°,β=53°,将本公开的贯流风叶进行三维设计并开模生产,加工后的贯流风叶安装在空调室内机上进行了实验测试,实测结果对比见图7,本公开风叶在保持风量基本相当的情况下,相比现有风叶可以降低室内机噪声1~2dBA。如图6所示,采用本公开的贯流风机,风叶外圈(也即风叶圆周外径上各个位置点)的相对速度本公开风叶比相关技术中的风叶的相对速度有所降低,而这也说明相应的贯流风机的噪声水平也得到改善。
根据本公开的实施例,还提供一种空调器,其特征在于,包括上述的贯流风叶。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (8)

  1. 一种贯流风叶,包括多个叶片(1),多个所述叶片(1)围绕所述贯流风叶的旋转轴线间隔设置,所述叶片(1)具有叶片中线(11),在所述叶片(1)的横断面上,所述叶片中线(11)为圆弧线,所述叶片(1)的厚度由所述叶片中线(11)的中间位置向两端位置先逐渐增大后逐渐减小。
  2. 根据权利要求1所述的贯流风叶,其中,所述叶片(1)具有外端(12)与内端(13),所述叶片(1)的所述中间位置处的最小厚度为dmin,所述中间位置与所述外端(12)之间的所述叶片(1)具有第一最大厚度dmax1,所述中间位置与所述内端(13)之间的所述叶片(1)具有第二最大厚度dmax2,dmin<dmax2<dmax1。
  3. 根据权利要求2所述的贯流风叶,其中,所述外端(12)由外端圆弧形成,所述外端圆弧的半径为do,所述内端(13)由内端圆弧形成,所述内端圆弧的半径为di,dmin不小于所述do与所述di中的较小一个。
  4. 根据权利要求3所述的贯流风叶,其中,所述外端圆弧的圆心与所述叶片中线(11)的圆心之间的连线为第一线段,所述内端圆弧的圆心与所述叶片中线(11)的圆心之间的连线为第二线段,所述第一线段与所述第二线段之间形成夹角θ,所述第一最大厚度所在直线与所述叶片中线(11)的交点与所述叶片中线(11)的圆心之间的连线为第三线段,所述第三线段与所述第一线段之间形成夹角α,θ/5<α<θ/3。
  5. 根据权利要求4所述的贯流风叶,其中,所述中间位置处的最小厚度dmin所在直线与所述叶片中线(11)的交点与所述叶片中线(11)的圆心之间的连线为第四线段,所述第四线段与所述第一线段之间形成夹角φ,θ/2<φ<3θ/4。
  6. 根据权利要求4或5所述的贯流风叶,其中,所述第二最大厚度所在直线与所述叶片中线(11)的交点与所述叶片中线(11)的圆心之间的连线为第五线段,所述第五线段与所述第一线段之间形成夹角β,2θ/3<β<4θ/5。
  7. 根据权利要求3所述的贯流风叶,其中,在所述叶片(1)的横断面上,所述外端圆弧与所述内端圆弧之间分别连接有叶背曲线(14)及叶盆曲线(15),所述叶背曲线(14)及叶盆曲线(15)分别圆滑过渡曲线。
  8. 一种空调器,包括权利要求1至7中任一项所述的贯流风叶。
PCT/CN2023/087840 2022-06-27 2023-04-12 贯流风叶、空调器 WO2024001418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210736124.0 2022-06-27
CN202210736124.0A CN115234511A (zh) 2022-06-27 2022-06-27 贯流风叶、空调器

Publications (1)

Publication Number Publication Date
WO2024001418A1 true WO2024001418A1 (zh) 2024-01-04

Family

ID=83670534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087840 WO2024001418A1 (zh) 2022-06-27 2023-04-12 贯流风叶、空调器

Country Status (2)

Country Link
CN (1) CN115234511A (zh)
WO (1) WO2024001418A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234511A (zh) * 2022-06-27 2022-10-25 珠海格力电器股份有限公司 贯流风叶、空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280292A (ja) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp 多翼ファン
CN103403355A (zh) * 2011-03-02 2013-11-20 夏普株式会社 贯流风扇、成型用模具和流体输送装置
CN208831322U (zh) * 2018-09-12 2019-05-07 珠海格力电器股份有限公司 贯流风叶和空调器
CN115234511A (zh) * 2022-06-27 2022-10-25 珠海格力电器股份有限公司 贯流风叶、空调器
CN218522841U (zh) * 2022-06-27 2023-02-24 珠海格力电器股份有限公司 贯流风叶、空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280292A (ja) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp 多翼ファン
CN103403355A (zh) * 2011-03-02 2013-11-20 夏普株式会社 贯流风扇、成型用模具和流体输送装置
CN208831322U (zh) * 2018-09-12 2019-05-07 珠海格力电器股份有限公司 贯流风叶和空调器
CN115234511A (zh) * 2022-06-27 2022-10-25 珠海格力电器股份有限公司 贯流风叶、空调器
CN218522841U (zh) * 2022-06-27 2023-02-24 珠海格力电器股份有限公司 贯流风叶、空调器

Also Published As

Publication number Publication date
CN115234511A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2024001418A1 (zh) 贯流风叶、空调器
KR101607791B1 (ko) 크로스 플로우 팬
JP4896213B2 (ja) 貫流ファン及びこれを備えた空気調和機
CN109441876A (zh) 一种无蜗壳后向离心通风机
CN113175443B (zh) 高效低噪无蜗壳后向离心风机三元流叶轮
CN207554416U (zh) 一种分流叶片的离心叶轮
CN107218083A (zh) 一种用于冷气预旋结构的弯孔预旋喷嘴
JP2008223741A (ja) 遠心送風機
CN103122872B (zh) 轴流风扇
CN218522841U (zh) 贯流风叶、空调器
CN213450988U (zh) 一种离心叶轮及其通风机
WO2018196198A1 (zh) 用于燃气涡轮的叶型管式喷嘴
CN209959567U (zh) 一种离心压气机串列叶栅扩压器
CN110566500A (zh) 一种离心通风机的叶轮
CN108953222B (zh) 一种离心叶轮
CN204828039U (zh) 一种叶轮及具有该叶轮的离心通风机和空调蒸发器
CN114483648B (zh) 叶片的设计方法、叶片及离心风机
US20220205650A1 (en) Air conditioner including a centrifugal fan
CN211009265U (zh) 一种离心通风机的叶轮
CN110319039A (zh) 一种均匀进气的离心风扇
CN105020176A (zh) 风叶、离心通风机
CN105020172A (zh) 一种叶轮及具有该叶轮的离心通风机和空调蒸发器
CN205401226U (zh) 一种叶轮结构
CN209704915U (zh) 离心风叶、天井机及具有其的空调系统
CN211666938U (zh) 一种后向离心通风机的复合弧线叶片及叶轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829608

Country of ref document: EP

Kind code of ref document: A1