WO2024001396A1 - 具有自供能和波束自追踪能力的无线能量传输系统 - Google Patents

具有自供能和波束自追踪能力的无线能量传输系统 Download PDF

Info

Publication number
WO2024001396A1
WO2024001396A1 PCT/CN2023/086751 CN2023086751W WO2024001396A1 WO 2024001396 A1 WO2024001396 A1 WO 2024001396A1 CN 2023086751 W CN2023086751 W CN 2023086751W WO 2024001396 A1 WO2024001396 A1 WO 2024001396A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
dual
circuit
polarized
solar
Prior art date
Application number
PCT/CN2023/086751
Other languages
English (en)
French (fr)
Inventor
刘震国
张超
陆卫兵
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2024001396A1 publication Critical patent/WO2024001396A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components

Definitions

  • the present invention relates to a wireless energy transmission system, and in particular to a traceable antenna array and its terminal rectenna system capable of self-powering and automatically tracking beams.
  • phased array technology may continuously adjust the maximum beam direction of the transmitting antenna to align it with the maximum beam direction of the terminal receiving antenna. This increases the complexity and cost of the system, and may not be possible. Powering fast-moving electronic devices, and complex phased array networks will also cause power loss, affecting the power loss of the entire wireless energy transmission system and reducing the efficiency of the system.
  • solar energy is the energy with the highest energy density in the environment. It is green, pollution-free and easy to use and is widely used in various fields.
  • solar antennas have gradually become a popular field of research.
  • a solar antenna combines a solar cell with an antenna system.
  • the solar cell provides energy for electronic devices by receiving solar energy.
  • This self-powered system can be widely used in outdoor communication equipment.
  • wireless charging through other arrays is a feasible solution. This can provide energy to the end system when wired charging is inconvenient.
  • the system consists of two parts: a traceback antenna array with self-power and beam self-tracking and a dual-polarized terminal rectenna.
  • the dual-polarized terminal rectenna emits a beacon signal, which is received by the traceback antenna array with self-power and beam self-tracking.
  • the traceback antenna array with self-powering and beam self-tracking sends a traceback signal to the dual-polarized terminal rectenna.
  • the backtracking antenna array with self-powering and beam self-tracking includes at least 1 ⁇ 4 dual-polarized solar microstrip antenna arrays and active phase conjugate circuits and power management circuits connected thereto; dual-polarized solar microstrip antenna arrays
  • the positive and negative poles of the solar cells in the antenna array are connected to the power management circuit through inductors and wires.
  • the output end of the power management circuit is connected to the two power amplifier power supply ports of the active phase conjugate circuit.
  • the active phase is provided by the power management circuit.
  • the power supply of the conjugate circuit; the input and output ports of the active phase conjugate circuit are respectively connected to the two feed ports of the dual-polarized solar microstrip antenna array.
  • the dual-polarized solar microstrip antenna array is composed of a solar panel, a dielectric substrate and a metal ground; the upper surface of the dielectric substrate is provided with the solar panel, the lower surface of the dielectric substrate is provided with a metal ground, and the solar panel simultaneously serves as a bipolar radiator of a solar microstrip antenna array.
  • the active phase conjugate circuit is composed of a mixer and two power amplifier circuits.
  • the signal from one end of the feed port enters the first power amplifier circuit, and the first power amplifier circuit amplifies the signal and sends it to the mixing circuit.
  • frequency converter the signal mixed by the mixer is then sent to the second power amplifier circuit, and the second power amplifier circuit sends the processed signal to the other end of the feed port; the power from the solar cell is sent to the power management circuit, the power management circuit supplies power to the mixer and two power amplifier circuits.
  • the dual-polarized terminal rectenna is composed of a dual-polarized microstrip antenna and a corresponding rectifier circuit; one of the polarization ports inputs the beacon signal and transmits it through the microstrip antenna unit, and the other polarization port transmits the microstrip signal.
  • the signal received by the antenna from the traceback antenna is connected to the rectifier circuit for rectification.
  • the output end of the dual-polarized solar microstrip antenna array is connected to the power management circuit using an inductor and wires.
  • the inductor isolates the radiation characteristics of the antenna and the DC output of the solar cell.
  • the dual-polarized solar microstrip antenna array has two feed ports, which are respectively connected to the input and output terminals of the phase conjugate circuit, thereby achieving isolation of antenna reception and transmission.
  • the mixer model is ADE-25MH, the frequency of the local oscillation signal is 1760MHz, and the input frequency is 880MHz.
  • the received beacon signal is mixed to achieve phase conjugation.
  • the model used for the two power amplifier circuits is TQP3M9008, which are connected to the input and output ends of the mixer respectively to amplify the power of the received beacon signal.
  • the model of the power management circuit used is LM2596 DC-DC, which converts the electric energy output from solar energy to a voltage point suitable for the operation of the power amplifier through DC-DC conversion.
  • This transmitter with beam backtracking function effectively meets the requirements for high gain and large beam range of array antennas in wireless energy transmission systems, and overcomes the difficulty of traditional array antennas in achieving high directivity without using a phased array mechanism. And large beam range coverage, using only a simple mixer and two power amplifiers without the need for a complex phase control network, can provide a high-gain, wide-beam-range transmitting source for wireless energy transmission systems.
  • Figure 1 is a schematic diagram of the overall structure of the system of the present invention.
  • Figure 2 is a top view of the self-powered traceback antenna array in the present invention.
  • Figure 3 is a front view of the self-powered traceback antenna array in the present invention.
  • Figure 4 shows the S parameters of the self-powered traceback antenna array in the present invention.
  • Figure 5 is an E-plane direction diagram of the self-powered backtracking antenna array in the present invention.
  • Figure 6 is an H-plane pattern of the self-powered backtracking antenna array in the present invention.
  • Figure 7 is a schematic diagram of the rectenna in the present invention.
  • Figure 8 shows the S parameters of the rectenna in the present invention.
  • Figure 9 shows the output voltage and rectification efficiency of the rectifier circuit simulation in the present invention.
  • the invention is a wireless energy transmission system with self-powering and beam self-tracking capabilities. As shown in Figure 1, it includes a traceback antenna array with self-powering beam self-tracking and a dual-polarized terminal rectenna.
  • the working principle of this invention is: first, a vertically polarized wave beacon signal is transmitted from a port of the dual-polarized microstrip antenna 4 with a rectifying function at the terminal.
  • the dual-polarized solar microstrip antenna array 1 with a traceback function receives To the beacon signal, after phase conjugation and power amplification by the active phase conjugation circuit 2, it is transmitted along the incoming square wave in another polarization mode from the other port of the traceback antenna array antenna, and the terminal has a rectifier
  • the functional dual-polarized microstrip antenna 4 can receive the amplified signal and rectify it to output a DC voltage to provide energy for the sensor operation.
  • the self-powered beam self-tracking backtracking antenna array is shown in Figures 1, 2 and 3.
  • the self-powered and automatically tracking beam antenna array structure based on solar cells includes a dual-polarized solar microstrip antenna array 1, an active It consists of phase conjugate circuit 2, power management circuit 3 and their connecting lines.
  • the dual-polarized solar microstrip antenna array 1 includes at least 1 ⁇ 4 solar cells, a dielectric substrate 7 and a metal ground 12. The size of each solar cell is 80mm ⁇ 80mm ⁇ 2mm. The floor of the antenna is all metal. The two sides are the positive and negative electrodes of the solar cell respectively.
  • the thickness of the dielectric substrate 7 is 2 mm.
  • the dielectric plate used is FR4, the dielectric constant is 4.4, and the tangent loss angle is 0.02.
  • the overall size of the array antenna is 190mm ⁇ 760mm.
  • the working frequency band of the antenna is 880MHz, and each antenna unit has two ports, corresponding to horizontal polarization and vertical polarization.
  • the terminal antenna with rectification function is shown in Figure 7 and consists of a dual-polarization microstrip antenna 4 and a rectification circuit 5.
  • the working frequency band of the antenna is the same as that of the traceback antenna, which is 880MHz.
  • the antenna has two ports, each port corresponds to a polarization method, which are the receiving end and transmitting end of the antenna.
  • the operating frequency of the rectifier circuit is 880MHz, and the S parameters are shown in Figure 8.
  • the simulated output voltage and rectification efficiency of the rectifier circuit are shown in Figure 9.
  • the active phase conjugate circuit 2 is composed of a mixer 8 and two power amplifiers 9 and its additional capacitance and inductance.
  • the model of the mixer 8 is ADE-25MH, and the frequency of the local oscillation signal is 1760MHz.
  • the received beacon is mixed to achieve phase conjugation.
  • the model of the power amplifier 9 is TQP3M9008, which is connected to the input and output ends of the mixer respectively to amplify the power of the received beacon signal.
  • the energy source of the power amplifier 9 is provided by the solar cell.
  • the solar cell converts the received solar energy into electrical energy and inputs the electrical energy into the power management circuit 3 through the inductor 11 and the wire 6.
  • the model of the power management circuit is LM2596 DC.
  • the power management circuit 3 then outputs a stable voltage source to provide energy for the power amplifier 9.
  • the use of inductor 11 can play a role in isolating the DC output of solar energy and the AC radiation of the antenna.
  • the unit of the dual-polarized solar microstrip antenna array 1 with backtracking function has two feed ports 10, each port corresponding to one polarization, realizing polarization isolation of reception and transmission. Each port is connected to the input and output terminals of the active phase conjugate circuit 2 respectively, and simultaneously realizes the functions of polarization conversion, phase conjugation, and power amplification in receiving and transmitting signals.
  • the dual-polarized solar microstrip antenna array 1 is made of a solar cell 1 that can convert the collected solar energy into electrical energy.
  • the positive and negative poles of the battery are connected to the power management circuit through an inductor 11 and a wire 6 on both sides of the antenna unit. 3 input.
  • the connection between the inductor 11 and the wire 6 allows the output of the solar cell to be connected to the power management circuit without affecting the radiation performance of the antenna.

Abstract

本发明是一种具有自供能和波束自追踪能力的无线能量传输系统,该系统包括具有自供能及波束自追踪的回溯天线阵列和双极化终端整流天线两部分组成;双极化终端整流天线发出信标信号,由具有自供能及波束自追踪的回溯天线阵列接收,经信号处理后由具有自供能及波束自追踪的回溯天线阵列发出回溯信号给双极化终端整流天线。本发明提出了一种具有自供能和波束自追踪能力的无线能量传输系统,不需要复杂的相控阵网络和人为的提供额外的能量,便可以自动定位终端整流天线,并提供功率放大的电磁能量。该系统仅仅依靠太阳能便可以追踪多个、移动中的终端,并通过终端的整流天线为终端提供能量。

Description

具有自供能和波束自追踪能力的无线能量传输系统 技术领域
[根据细则91更正 22.04.2023]
本发明涉及一种无线能量传输系统,尤其涉及一种能够自供能和具有自动追踪波束的可回溯天线阵列及其终端整流天线系统。
技术背景
[根据细则91更正 22.04.2023]
随着5G通信和物联网技术的发展,通讯基站及传感器的数量呈现了爆炸式的增长,他们的能量供应问题成为了急需解决的问题。其中,无线能量传输技术由于其方便、灵活的充电方式引起了研究人员的广泛关注。对于一个理想的无线能量传输系统,提高发射端或者接收端的天线的增益,可以明显的提高接收端的功率输出。然而,在实际中,天线的增益往往和天线的波束宽度是一个相互制约的关系:当提高天线的增益时,天线的波束宽度会有一个明显的变窄。这时,我们可能需要使用相控阵技术来不断地调整发射天线的最大波束方向使其与终端接收天线的最大波束方向对准,这造成了系统的复杂性的提高和成本的增加,可能无法为快速移动中的电子设备供电,而且复杂的相控阵网络也会造成功率损耗,影响无线能量传输整个系统的功率损耗从而降低系统的效率。
[根据细则91更正 22.04.2023]
另一方面,太阳能是环境中能量密度最大的一种能量,它具有绿色无污染且利用方便等特点被广泛的使用在各个领域。其中,太阳能天线已经逐渐成为了一个研究的热门领域。通常,太阳能天线是将太阳能电池和天线系统结合,太阳能电池通过接收太阳能为电子设备提供能量。这种自供能的系统可以广泛应用到户外的通讯设备。但在某些应用场景,当终端本身较小或无法与太阳能电池集成在一起时,通过其他阵列为其进行无线充电就是一个可行的方案。这样就能够在有线充电不方便时,为终端系统提供能量。
[根据细则91更正 22.04.2023]
发明内容
[根据细则91更正 22.04.2023]
技术问题:为了克服现有技术中的不足或改进需求并结合自供能天线的特性,本文提出了一种具有自供能和波束自追踪能力的无线能量传输系统,它将太阳能与可回溯天线结合,能够直接将太阳能电池接收到的能量转化为发射机的回溯信号的能量,从而为终端系统提供能量。
[根据细则91更正 22.04.2023]
技术方案:为了解决上述技术问题,本发明的一种具有自供能和波束自追踪能力的无线能量传输系统采用的具体方法是:
[根据细则91更正 22.04.2023]
该系统包括具有自供能及波束自追踪的回溯天线阵列和双极化终端整流天线两部分组成;双极化终端整流天线发出信标信号,由具有自供能及波束自追踪的回溯天线阵列接收,经信号处理后由具有自供能及波束自追踪的回溯天线阵列发出回溯信号给双极化终端整流天线。
[根据细则91更正 22.04.2023]
其中,所述具有自供能及波束自追踪的回溯天线阵列至少包括1×4个双极化太阳能微带天线阵列及与之连接的有源相位共轭电路和电源管理电路;双极化太阳能微带天线阵列中的太阳能电池的正负极通过电感和导线连接到电源管理电路,电源管理电路输出端连接着有源相位共轭电路的两个功率放大器供电端口,由电源管理电路提供有源相位共轭电路的电源;在有源相位共轭电路的输入输出端口分别与双极化太阳能微带天线阵列的两个馈电端口连接。
[根据细则91更正 22.04.2023]
所述双极化太阳能微带天线阵列由太阳能电池板、介质基板和金属地构成;介质基板的上表面设置所述太阳能电池板,介质基板的下表面设置金属地,太阳能电池板同时作为双极化太阳能微带天线阵列的辐射器。
[根据细则91更正 22.04.2023]
所述有源相位共轭电路由一个混频器和两个功率放大电路组成,来自馈电端口一端的信号进入第一个功率放大电路,由第一个功率放大电路将信号放大后送入混频器,经混频器混频的信号再送入第二个功率放大电路,由第二个功率放大电路将处理后的信号送入馈电端口的另一端;来自太阳能电池的电源送入电源管理电路,由电源管理电路给混频器和两个功率放大电路供电。
[根据细则91更正 22.04.2023]
所述双极化终端整流天线由一个双极化的微带天线和一个相应的整流电路组成;其中一个极化端口输入信标信号并通过微带天线单元发射,另外一个极化端口将微带天线接收的来自回溯天线的信号与整流电路相连接进行整流。
[根据细则91更正 22.04.2023]
所述双极化太阳能微带天线阵列的输出端与电源管理电路采用电感和导线连接,电感隔离了天线的辐射特性和太阳能电池的直流输出。
[根据细则91更正 22.04.2023]
所述双极化太阳能微带天线阵列的馈电端口有两个,分别与相位共轭电路的输入输出端连接,实现了天线接收与发射的隔离。
[根据细则91更正 22.04.2023]
所述混频器采用的型号为ADE-25MH,本地振荡信号的频率为1760MHz,输入频率为880MHz,将接收到的信标信号进行混频,实现了相位的共轭。
[根据细则91更正 22.04.2023]
两个功率放大电路采用的型号为TQP3M9008,分别接在混频器的输入和输出端,将接收到的信标信号进行功率放大。
[根据细则91更正 22.04.2023]
所述电源管理电路采用电路的型号为LM2596 DC-DC,它是将太阳能输出的电能经过DC-DC变换到适合功率放大器工作的电压点。
[根据细则91更正 22.04.2023]
有益效果:本发明与现有的技术相比,具有以下的特点:
[根据细则91更正 22.04.2023]
1.自供能,不需要额外的提供能量,依靠太阳能电池转化的电能为有源相位共轭电路提供能量。
[根据细则91更正 22.04.2023]
2.具有自动追踪波束的能力,不需要复杂的相控阵网络,减少了发射天线的损耗和时延。可以同时为多个、移动中的传感器供电。
[根据细则91更正 22.04.2023]
3.应用在无线能量传输系统上可以独立工作在户外,不需要人为的干涉,自动为传感器提供能量。
[根据细则91更正 22.04.2023]
这种具有波束回溯功能的发射机有效满足了无线能量传输系统中对阵列天线的高增益和大波束范围的要求,克服了传统阵列天线在不使用相控阵机制的条件下难以实现高定向性和大波束范围覆盖,在无需复杂的相位控制网络的前提下仅使用一个简单的混频器和两个功率放大器,就能为无线能量传输系统提供了一个高增益,宽波束范围的发射源。
附图说明
[根据细则91更正 22.04.2023]
图1为本发明的系统的总体结构示意图。
[根据细则91更正 22.04.2023]
图2为本发明中自供能回溯天线阵列的俯视图。
[根据细则91更正 22.04.2023]
图3为本发明中自供能回溯天线阵列的正视图。
[根据细则91更正 22.04.2023]
图4为本发明中自供能回溯天线阵列的S参数。
[根据细则91更正 22.04.2023]
图5为本发明中自供能回溯天线阵列的E面方向图。
[根据细则91更正 22.04.2023]
图6为本发明中自供能回溯天线阵列的H面方向图。
[根据细则91更正 22.04.2023]
图7为本发明中整流天线的原理图。
[根据细则91更正 22.04.2023]
图8为本发明中整流天线的S参数。
[根据细则91更正 22.04.2023]
图9为本发明中整流电路仿真的输出电压和整流效率。
[根据细则91更正 22.04.2023]
图中有:双极化太阳能微带天线阵列1、有源相位共轭电路2、电源管理电路3、双极化微带天线4、整流电路5、导线6、介质基板7、混频器8、功率放大器9、馈电端口10、电感11、金属地12。
具体实施方式
[根据细则91更正 22.04.2023]
下面结合附图对本发明作更进一步的说明。
[根据细则91更正 22.04.2023]
本发明是一种具有自供能和波束自追踪能力的无线能量传输系统,如图1所示,包括具有自供能波束自追踪的回溯天线阵列和双极化终端整流天线组成。该发明的工作原理为:首先从终端具有整流功能的双极化微带天线4的一个端口发射一个垂直极化波的信标信号,当具有回溯功能的双极化太阳能微带天线阵列1接收到该信标信号,经过有源相位共轭电路2的相位共轭和功率放大后,从回溯天线阵列天线的另一个端口以另外一种极化方式沿着来波方波发射,终端具有整流功能的双极化微带天线4便可以接收到该放大信号并进行整流输出直流电压,为传感器工作提供能量。
[根据细则91更正 22.04.2023]
所述的自供能波束自追踪的回溯天线阵列如图1、2和3所示,基于太阳能电池的自供能和自动追踪波束的天线阵列结构包括由双极化太阳能微带天线阵列1、有源相位共轭电路2、电源管理电路3及其连接线路组成。所述的双极化太阳能微带天线阵列1至少包括1×4个太阳能电池、介质基板7和金属地12,每个太阳能电池的尺寸为80mm×80mm×2mm,天线的地板为全金属,在两侧分别为太阳能电池的正负极,介质基板7的厚度为2mm,所采用的介质板为FR4,介电常数为4.4,正切损耗角为0.02。阵列天线的整体尺寸为190mm×760mm。天线的工作频段880MHz,每个天线单元分别有两个端口,对应着水平极化和垂直极化。
[根据细则91更正 22.04.2023]
所述的终端具有整流功能的天线如图7所示,由一个双极化微带天线4和一个整流电路5构成。天线的工作频段与回溯天线的工作频段相同为880MHz。天线有两个端口,每个端口对应一种极化方式,分别为天线的接收端和发射端。当天线以垂直极化波发射时,以水平极化方式接收到回溯阵列的信号时,接收端再连接一个整流电路,整流电路的工作频率为880MHz,S参数为图8所示。整流电路的仿真输出电压和整流效率如图9所示。
[根据细则91更正 22.04.2023]
所述有源相位共轭电路2由一个混频器8和两个功率放大器9构成及其附加的电容电感组成,混频器8的型号为ADE-25MH,本地振荡信号的频率为1760MHz,将接收到的信标进行混频,实现了相位的共轭,功率放大器9的型号为TQP3M9008,分别接在混频器的输入和输出端,将接收到的信标信号进行功率放大。功率放大器9的能量源由太阳能电池提供,太阳能电池将接收到的太阳能转换成电能并通过电感11和导线6将电能输入到电源管理电路3中,所述电源管理电路采用电路的型号为LM2596 DC-DC,电源管理电路3再输出了一个稳定的电压源为功率放大器9提供能量。采用电感11可以起到隔离太阳能的直流输出和天线交流辐射的作用。具有回溯功能的双极化太阳能微带天线阵列1其单元拥有两个馈电端口10,每个端口对应实现一种极化,实现了接收和发射的极化隔离。每个端口分别与有源相位共轭电路2的输入输出端相连接,在接收与发射信号中同时实现了极化转换、相位共轭、功率放大的功能。双极化太阳能微带天线阵列1由太阳能电池1制成,可以将收集到的太阳能转化成电能,其电池的正负极分别在天线单元的两侧通过电感11和导线6连接到电源管理电路3的输入端。电感11和导线6的连接方式在不会影响到天线的辐射性能的前提下,可以将太阳能电池的输出连接到电源管理电路中。
[根据细则91更正 22.04.2023]
本实施例没有详细叙述的部件和结构属本行业的公知部件和常用结构或常用手段,这里不一一叙述。
[根据细则91更正 22.04.2023]
选用仿真软件如Ansoft公司的HFSS、AGILENT公司的ADS等高频仿真软件,在计算机上模拟仿真得到:图7所示的E面的主极化和交叉极化方向图、图6所示H面的主极化和交叉极化方向图,以上得到的曲线实在给定条件下获得,若改变结构参数也可以获得相似的曲线。
[根据细则91更正 22.04.2023]
以上所述仅是本实用新型发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于该系统包括具有自供能及波束自追踪的回溯天线阵列和双极化终端整流天线两部分组成;双极化终端整流天线发出信标信号,由具有自供能及波束自追踪的回溯天线阵列接收,经信号处理后由具有自供能及波束自追踪的回溯天线阵列发出回溯信号给双极化终端整流天线。
  2. 根据权利要求1所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于,所述具有自供能及波束自追踪的回溯天线阵列至少包括1×4个双极化太阳能微带天线阵列(1)及与之连接的有源相位共轭电路(2)和电源管理电路(3);双极化太阳能微带天线阵列(1)中的太阳能电池的正负极通过电感(11)和导线(6)连接到电源管理电路(3),电源管理电路(3)输出端连接着有源相位共轭电路(2)的两个功率放大器(9)供电端口,由电源管理电路(3)提供有源相位共轭电路(2)的电源;在有源相位共轭电路(2)的输入输出端口分别与双极化太阳能微带天线阵列(1)的两个馈电端口(10)连接。
  3. 根据权利要求2所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于,所述双极化太阳能微带天线阵列(1)由太阳能电池板、介质基板(7)和金属地(12)构成;介质基板(7)的上表面设置所述太阳能电池板,介质基板(7)的下表面设置金属地(12),太阳能电池板同时作为双极化太阳能微带天线阵列(1)的辐射器。
  4. 根据权利要求2所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于,所述有源相位共轭电路(2)由一个混频器(8)和两个功率放大电路(9)组成,来自馈电端口(10)一端的信号进入第一个功率放大电路,由第一个功率放大电路将信号放大后送入混频器(8),经混频器(8)混频的信号再送入第二个功率放大电路,由第二个功率放大电路将处理后的信号送入馈电端口(10)的另一端;来自太阳能电池的电源送入电源管理电路(3),由电源管理电路(3)给混频器(8)和两个功率放大电路(9)供电。
  5. 根据权利要求1所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于,所述双极化终端整流天线由一个双极化的微带天线(4)和一个相应的整流电路(5)组成;其中一个极化端口输入信标信号并通过微带天线单元发射,另外一个极化端口将微带天线接收的来自回溯天线的信号与整流电路相连接进行整流。
  6. 根据权利要求2所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于:所述双极化太阳能微带天线阵列(1)的输出端与电源管理电路(3)采用电感(11)和导线(6)连接,电感(11)隔离了天线的辐射特性和太阳能电池的直流输出。
  7. 根据权利要求2所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于,所述双极化太阳能微带天线阵列(1)的馈电端口(10)有两个,分别与相位共轭电路(2)的输入输出端连接,实现了天线接收与发射的隔离。
  8. 根据权利要求4所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于所述混频器(8)采用的型号为ADE-25MH,本地振荡信号的频率为1760MHz,输入频率为880MHz,将接收到的信标信号进行混频,实现了相位的共轭。
  9. 根据权利要求4所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于两个功率放大电路(9)采用的型号为TQP3M9008,分别接在混频器的输入和输出端,将接收到的信标信号进行功率放大。
  10. 根据权利要求2所述的一种具有自供能和波束自追踪能力的无线能量传输系统,其特征在于所述电源管理电路(3)采用电路的型号为LM2596 DC-DC,它是将太阳能输出的电能经过DC-DC变换到适合功率放大器工作的电压点。
PCT/CN2023/086751 2022-06-27 2023-04-07 具有自供能和波束自追踪能力的无线能量传输系统 WO2024001396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210735544.7A CN115173582A (zh) 2022-06-27 2022-06-27 具有自供能和波束自追踪能力的无线能量传输系统
CN202210735544.7 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001396A1 true WO2024001396A1 (zh) 2024-01-04

Family

ID=83486996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086751 WO2024001396A1 (zh) 2022-06-27 2023-04-07 具有自供能和波束自追踪能力的无线能量传输系统

Country Status (2)

Country Link
CN (1) CN115173582A (zh)
WO (1) WO2024001396A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173582A (zh) * 2022-06-27 2022-10-11 东南大学 具有自供能和波束自追踪能力的无线能量传输系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011970A (zh) * 2011-10-18 2014-08-27 WiTricity公司 用于光伏板的无线能量传输
CN108832728A (zh) * 2018-06-24 2018-11-16 西安电子科技大学 一种基于方向回溯天线的无线能量传输系统及方法
US20190142525A1 (en) * 2017-11-15 2019-05-16 Stryker Corporation High Bandwidth And Low Latency Hybrid Communication Techniques For A Navigation System
CN111030324A (zh) * 2019-12-09 2020-04-17 南京航空航天大学 多目标移动设备跟踪无线能量传输方法与系统
CN113890204A (zh) * 2021-10-08 2022-01-04 杨士中 一种空间太阳能电站微波功率传输系统
CN115173582A (zh) * 2022-06-27 2022-10-11 东南大学 具有自供能和波束自追踪能力的无线能量传输系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011970A (zh) * 2011-10-18 2014-08-27 WiTricity公司 用于光伏板的无线能量传输
US20190142525A1 (en) * 2017-11-15 2019-05-16 Stryker Corporation High Bandwidth And Low Latency Hybrid Communication Techniques For A Navigation System
CN108832728A (zh) * 2018-06-24 2018-11-16 西安电子科技大学 一种基于方向回溯天线的无线能量传输系统及方法
CN111030324A (zh) * 2019-12-09 2020-04-17 南京航空航天大学 多目标移动设备跟踪无线能量传输方法与系统
CN113890204A (zh) * 2021-10-08 2022-01-04 杨士中 一种空间太阳能电站微波功率传输系统
CN115173582A (zh) * 2022-06-27 2022-10-11 东南大学 具有自供能和波束自追踪能力的无线能量传输系统

Also Published As

Publication number Publication date
CN115173582A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN110289488B (zh) 一种多极化双通道通信/整流多功能天线
CN101562359B (zh) 高转换效率的圆极化整流天线
WO2024001396A1 (zh) 具有自供能和波束自追踪能力的无线能量传输系统
CN108039591B (zh) 具有谐波抑制能力的双线极化整流天线
CN102510295A (zh) 降低sar峰值的无线终端及其降低sar峰值的方法
CN108923122A (zh) 一种基于电谐振器的具有高隔离度的圆极化微带阵列天线
CN112003032A (zh) 一种用于卫星导航的集成太阳能电池片的缝隙阵列天线
Kibaroglu et al. A scalable 64-element 28 GHz phased-array transceiver with 50 dBm EIRP and 8-12 Gbps 5G link at 300 meters without any calibration
CN106299689B (zh) 一种超宽带低剖面垂直极化全向天线
CN113410635A (zh) 一种一体化自供电中继补盲装置
CN113363704A (zh) 一种超宽带双槽双极化Vivaldi天线及应用
CN102769212A (zh) 一种中频模拟RoF型相控有源一体化天线
CN203644953U (zh) 具有y形馈电单元的双极化基站天线
CN108172989A (zh) 一种新型双极化全向微带天线
CN105846048A (zh) 一种太阳能电池天线
CN106684549A (zh) 一种紧凑型椭圆弯折环形双极化宽带基站天线
Pramono et al. RF energy harvesting using a compact rectenna with an antenna array at 2.45 GHz for IoT applications
CN206422228U (zh) 一种紧凑的椭圆环形双极化基站天线
Cao et al. A Highly Integrated Multi-Polarization Wideband Rectenna for Simultaneous Wireless Information and Power Transfer (SWIPT)
Baccouch et al. Adaptive ku-band solar rectenna for internet-of-things-(iot)-over-satellite applications
CN201233952Y (zh) 一种不停车收费系统阅读器天线
CN112490625B (zh) 一种基于太阳能电池片栅线结构的单极子宽带天线
Zhao et al. An ambient energy harvester using metasurface
CN111916903A (zh) 基于非对称耦合器的双通道通信整流多功能天线
CN111987430B (zh) 一种集成太阳能电池片的宽带缝隙天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829586

Country of ref document: EP

Kind code of ref document: A1