WO2024001362A9 - 显示设备、蓝牙设备和数据处理方法 - Google Patents

显示设备、蓝牙设备和数据处理方法 Download PDF

Info

Publication number
WO2024001362A9
WO2024001362A9 PCT/CN2023/085056 CN2023085056W WO2024001362A9 WO 2024001362 A9 WO2024001362 A9 WO 2024001362A9 CN 2023085056 W CN2023085056 W CN 2023085056W WO 2024001362 A9 WO2024001362 A9 WO 2024001362A9
Authority
WO
WIPO (PCT)
Prior art keywords
bis
audio
target
display device
bluetooth
Prior art date
Application number
PCT/CN2023/085056
Other languages
English (en)
French (fr)
Other versions
WO2024001362A1 (zh
Inventor
杨坤
姜晓胜
邓子敬
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210771002.5A external-priority patent/CN115278324B/zh
Priority claimed from CN202210772655.5A external-priority patent/CN115278926A/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2024001362A1 publication Critical patent/WO2024001362A1/zh
Publication of WO2024001362A9 publication Critical patent/WO2024001362A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware

Definitions

  • the present disclosure relates to the field of Bluetooth technology, and in particular, to a display device, a Bluetooth device and a data processing method.
  • TV As a large-screen device in home scenes, brings users a better audio-visual experience. Users will project the screens of multiple mobile phones to the TV to play them on the large-screen TV. In this process, many The screen projection data is transmitted between a mobile phone and the TV through WiFi, and the audio data is transmitted through Bluetooth.
  • the TV obtains the audio data from the mobile phone through the interactive method of Bluetooth broadcast, it cannot know which channel the mobile phone will send the audio data from, so the TV needs Monitoring all channels to receive audio data has the problems of high power consumption and high bandwidth resource usage.
  • the present disclosure provides a display device, including: a display configured to display images and/or user interfaces from a broadcast system and a network; an audio playback component configured to: play audio; and a WIFI communication component configured to perform according to the WIFI protocol Communicate with external devices; a Bluetooth communication component configured to communicate with external devices according to the Bluetooth protocol; a memory configured to store computer instructions and data; a processor connected to the audio playback component, WIFI communication component and Bluetooth communication component and Configured to execute the computer instructions so that the display device: receives the wheat grabbing occurrence time sent by at least one Bluetooth device; determines the target Bluetooth device with the earliest wheat grabbing occurrence time from the at least one Bluetooth device; sends the wheat grabbing success to the target Bluetooth device instruction, and after sending the wheat grabbing success instruction, receive the synchronous broadcast streaming BIS channel identifier sent by the target Bluetooth device; monitor the target BIS channel indicated by the BIS channel identifier to receive the target BIS audio; control the audio playback component to play the Describe the target BIS audio.
  • the present disclosure provides a Bluetooth device, including: a WiFi communication component, configured to: send a wheat grabbing occurrence time to a display device; after sending the wheat grabbing occurrence time, if a wheat grabbing success indication sent by the display device is received , sending the BIS channel identifier to the display device; the Bluetooth communication component is configured to: send the target BIS audio to the display device through the target BIS channel indicated by the BIS channel identifier, so that the display device listens to the The target BIS audio is received on the target BIS channel indicated by the BIS channel identification.
  • the present disclosure provides a data processing method for a display device, including: determining the target Bluetooth device with the earliest occurrence time of the wheat grabbing from the at least one Bluetooth device; sending a wheat grabbing success indication to the target Bluetooth device, and After sending the wheat grab success indication, receive the synchronous broadcast streaming BIS channel identifier sent by the target Bluetooth device; monitor the target BIS channel indicated by the BIS channel identifier to receive the target BIS audio; control the audio playback Component plays the target BIS audio.
  • Figure 1 is a schematic diagram of a scenario where a display device performs multi-channel projection
  • FIG. 2 is a schematic diagram of the working principle of BIS in related technologies
  • Figure 3 is a schematic diagram of a scene in some embodiments according to embodiments of the present disclosure.
  • FIG. 4 is a configuration block diagram of the control device 100 according to an embodiment of the present disclosure.
  • Figure 5 is a hardware configuration block diagram of the display device 200 according to an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of software configuration in the display device 200 according to an embodiment of the present disclosure.
  • Figure 7 is a schematic flowchart 1 of a BIS data transmission method according to an embodiment of the present disclosure
  • Figure 8 is a schematic diagram of a user interface of at least one Bluetooth device according to an embodiment of the present disclosure.
  • Figure 9 is a schematic diagram 1 of a multi-channel screen projection provided according to an embodiment of the present disclosure.
  • Figure 10A is a schematic diagram of a BIG according to an embodiment of the present disclosure.
  • Figure 10B is a schematic timeline diagram of an anchor point position according to an embodiment of the present disclosure.
  • Figure 10C is a schematic diagram of determining target BIS audio according to an embodiment of the present disclosure.
  • Figure 11 is a schematic flow chart 2 of a BIS data transmission method according to an embodiment of the present disclosure
  • Figure 12 is a schematic diagram 2 of a multi-channel screen projection provided according to an embodiment of the present disclosure.
  • Figure 13 is a schematic flow chart of another BIS data transmission method according to an embodiment of the present disclosure.
  • Figure 14A is a schematic flowchart 1 of a CIS audio transmission method according to some embodiments of the present disclosure
  • Figure 14B is a schematic flowchart 2 of a CIS audio transmission method according to some embodiments of the present disclosure
  • Figure 15 is a schematic diagram of code stream data bandwidth resource occupancy according to some embodiments of the present disclosure.
  • Figure 16A is a schematic diagram of playing second CIS audio according to some embodiments of the present disclosure.
  • Figure 16B is a schematic diagram of the data structure of the CIS protocol header
  • Figure 17 is a schematic flowchart of another CIS audio transmission method according to some embodiments of the present disclosure.
  • Figure 18 is a flow chart 3 of a CIS audio transmission method according to some embodiments of the present disclosure.
  • the display device provided by this disclosure is based on Bluetooth's low energy audio (Low Energy Audio) technology, LE Audio, and has the following functions and features:
  • It has a broadcast audio function, which can break through the point-to-point transmission function of Bluetooth, allowing the audio source device to broadcast one or more audio streams to countless audio receiving devices, enabling a personal-based, location-based, and even scene-based usage experience.
  • LE Audio supports stereo in a non-connected state (broadcast state).
  • the non-connected state of LE Audio is Broadcast Isochronous Stream (BIS).
  • BIS allows one audio source device to transmit to multiple audio receiving devices. Broadcast audio stream. Supports fixed or variable size BIS packets, using framed or unframed data or multiple packets on each BIS event. BIS does not need to acknowledge the unidirectional data flow from the audio source device to the audio sink device. BIS packets can be retransmitted by increasing the number of sub-events in each BIS event to improve Delivery reliability.
  • Audio receiving devices within the allowed range of broadcast audio can use two broadcast methods to join the audio stream being broadcast. One is open broadcast, which means that any receiving device within the range can start receiving broadcast audio; the other is closed broadcast , means that any receiving device within range needs to enter a key to participate in the audio stream of the audio source device.
  • the display device and the BIS audio transmission method according to the embodiment of the present disclosure are based on the low-power audio (LE Audio) technology of Bluetooth, and implement data transmission between the display device and other Bluetooth devices in the BIS mode.
  • LE Audio low-power audio
  • Multi-channel projection can be understood as synchronously displaying the images and sounds of multiple electronic terminal devices (for example, mobile phones or tablets with smaller screens) on another display device (for example, a TV with a larger screen). . Since multi-channel screencasting is mirrored screencasting, which has high requirements on the network environment and also involves delays, users may encounter problems such as screen freezes, blurred picture quality, and poor sound quality during the experience.
  • this feature can meet the needs of all gamers to watch games together.
  • traditional screencasting can only cast the screen from one device to the TV.
  • the TV can play real-time game screens from multiple devices at the same time, allowing all gamers to observe the battles of other players in real time.
  • Figure 1 is a schematic diagram of a scene where a display device performs multi-channel projection.
  • Figure 1 includes at least one Bluetooth device: Bluetooth device 101, Bluetooth device 102, Bluetooth device 103, Bluetooth device 104, and display device 200.
  • Bluetooth device 101, Bluetooth device 102, Bluetooth device 103, and Bluetooth device 104 send the displayed game screen and game audio to the display device to The display device displays the game screen of each Bluetooth device simultaneously on the monitor in split screen, and plays the game audio.
  • a display device uses multi-channel projection technology to display the images and sounds of multiple devices, it needs to receive the projection image data sent by other Bluetooth devices through the WiFi communication component in order to play the projection image data synchronously. It also needs to receive the projection image data through the Bluetooth communication component. Audio data sent by other Bluetooth devices is used to output audio data synchronously. Normally, the delay of using WiFi to transmit screen projection data is 40ms, while using Bluetooth to transmit audio data has a delay of about 50ms, which will cause the audio and video on the display device to be inconsistent. Synchronize.
  • the first solution is mainly to realize Bluetooth connection through classic Bluetooth technology, and to realize encoding and decoding through subband coding (SubBand Coding, SBC), and to optimize the encoder, so as to reduce The delay of Bluetooth transmission of audio data is small.
  • SBC subband Coding
  • the performance optimization of the encoder has an upper limit and cannot completely solve the problem of out-of-synchronization of audio and video on display devices.
  • the second solution can use LE Audio technology to reduce the delay in Bluetooth transmission of audio data to achieve synchronization of audio and video on display devices. Since the LE Audio technology in the second solution is implemented based on the Bluetooth Low Energy (BLE) protocol, compared with the use of classic Bluetooth technology to achieve Bluetooth connection in the first solution, the Bluetooth transmission strategy has been changed, and the third solution The two solutions also improve the encoding method.
  • the SBC method is improved to the low complexity communication codec (LC3) method to implement encoding and decoding, so it can effectively reduce the delay of Bluetooth transmission of audio data.
  • LC3 low complexity communication codec
  • FIG. 2 is a schematic diagram of the working principle of BIS in related technologies.
  • the figure includes an audio source device 211 and an audio receiving device 212.
  • the working principle of BIS is: the audio source device 211 first passes any main broadcast channel of Bluetooth Send a first broadcast packet, where the first broadcast packet includes first guidance information.
  • the first guidance information includes audio data type information, which is used to instruct the audio source device to send the next broadcast packet (second broadcast packet) through the first auxiliary broadcast channel.
  • the data format of the first guidance information is Advertising Set-ID.
  • the audio source device sends a second broadcast packet through the first auxiliary broadcast channel, and the second broadcast packet includes second guidance information.
  • the second guidance information includes an audio data identifier, which is used to instruct the audio source device to send the third broadcast packet through the second auxiliary broadcast channel.
  • the data format of the second guidance information is a broadcast audio announcement service unique identifier. (Broadcast Audio Announcement Service UUID(Broadcast_ID)).
  • the audio source device sends a third broadcast packet through the second auxiliary broadcast channel, and the third broadcast packet includes third guidance information.
  • the third guidance information includes code stream data.
  • the code stream data at least includes the sampling rate of the audio data, left and right channel conditions, the encoding format of the audio data, and whether there is content protection.
  • the third guidance information is used to indicate the audio
  • the source device sends audio data through a third auxiliary broadcast channel.
  • the data format of the third guidance information is a Broadcast Audio Stream Endpoint structure (BASE).
  • Bluetooth works in the 2.4GHz frequency band, with a frequency range of 2402MHz-2480MHz, one channel every 2MHz, and a total of 40 channels, of which 3 are main broadcast channels and the remaining 37 are auxiliary broadcast channels.
  • initial guidance information (such as the above-mentioned first guidance information) will be sent first through the primary broadcast channel to instruct subsequent broadcast packets to be sent in other auxiliary broadcast channels, so that In the subsequent transmission process, other auxiliary broadcast channels are used, and the resources of the main broadcast channel are no longer occupied.
  • the audio receiving device 212 initially needs to continuously monitor all broadcast channels to receive the first broadcast packet, which results in high power consumption of the audio receiving device, and continuous monitoring will occupy larger bandwidth resources; in addition, based on Figure 2
  • the schematic diagram of the working principle of BIS shown in the figure requires monitoring four broadcast channels in order to obtain real audio data. The process is cumbersome and the delay is large. In the scenario of multi-channel projection of display devices, it will cause the audio and video to be out of sync, affecting the user experience. .
  • the display device first receives the wheat grabbing occurrence time sent by at least one Bluetooth device through the WiFi communication component, wherein the wheat grabbing occurrence time is sent by each Bluetooth device to the display device through the WiFi communication component.
  • Sent represents the morning and evening when each Bluetooth device sends a signal of the wheat grabbing occurrence time to the display device.
  • the processor determines it from at least one Bluetooth device.
  • the target Bluetooth device with the earliest occurrence of wheat grabbing receives the BIS channel identifier sent by the target Bluetooth device, and further monitors the target indicated by the BIS channel identifier by the Bluetooth communication component BIS channel to receive the target BIS audio, and then the processor controls the audio playback component to play the target BIS audio.
  • the display device interacts with at least one Bluetooth device through the WiFi communication component, determines the target Bluetooth device therefrom, receives the BIS channel identifier sent by the target Bluetooth device, thereby only monitoring the target BIS channel corresponding to the target Bluetooth device, and realizes interaction through Bluetooth broadcast.
  • the bandwidth resources consumed by monitoring are reduced, and more remaining bandwidth resources are used to receive audio data, which improves the rate and quality of receiving audio data and further improves the playback sound quality of the display device.
  • Figure 3 is a schematic diagram of a scene in some embodiments according to embodiments of the present disclosure. As shown in Figure 3, Figure 3 includes a control device 100, a display device 200, a smart device 300, a server 400 and at least one Bluetooth device 500. The user can operate the display device 200 through the smart device 300 or the control device 100 to play audio and video resources on the display device 200 .
  • the WiFi communication component receives the wheat grabbing occurrence time sent by at least one Bluetooth device 500, and then the processor obtains it from at least one Bluetooth device. Determine the target Bluetooth device with the earliest occurrence of wheat grabbing, and then after sending a successful wheat grabbing indication to the target Bluetooth device through the WiFi communication component, receive the BIS channel identifier sent by the target Bluetooth device, and further monitor the BIS channel identifier indicated by the Bluetooth communication component.
  • the target BIS channel is used to receive the target BIS audio, and then the processor controls the audio playback component to play the target BIS audio.
  • the display device interacts with at least one Bluetooth device through the WiFi communication component, determines the target Bluetooth device therefrom, receives the BIS channel identifier sent by the target Bluetooth device, thereby only monitoring the target BIS channel corresponding to the target Bluetooth device, and realizes interaction through Bluetooth broadcast.
  • the bandwidth resources consumed by monitoring are reduced, and more remaining bandwidth resources are used to receive audio data, which improves the rate and quality of receiving audio data and further improves the playback sound quality of the display device.
  • control device 100 may be a remote controller, and the communication between the remote controller and the display device includes infrared protocol communication, Bluetooth protocol communication, and wireless or other wired methods to control the display device 200 .
  • the user can control the display device 200 by inputting user instructions through buttons on the remote control, voice input, control panel input, etc.
  • mobile terminals, tablets, computers, laptops, and other smart devices may also be used to control the display device 200 .
  • At least one Bluetooth device 500 can install a software application with the display device 200 to implement connection communication through a network communication protocol to achieve one-to-one control operations and data communication purposes.
  • the audio and video content displayed on at least one Bluetooth device 500 can also be transmitted to the display device 200 to realize the synchronous display function.
  • the display device 200 also performs data communication with the server 400 through various communication methods.
  • the display device 200 may be allowed to communicate via a local area network (LAN), a wireless local area network (WLAN), and other networks.
  • the server 400 can provide various content and interactions to the display device 200.
  • the display device 200 may be a liquid crystal display, an OLED display, or a projection display device.
  • the display device 200 may also additionally provide a smart network television function that provides computer support functions.
  • FIG. 4 is a configuration block diagram of the control device 100 according to an embodiment of the present disclosure.
  • the control device 100 includes a processor 110, a communication interface 130, a user input/output interface 140, a memory, and a power supply.
  • the control device 100 can receive input operation instructions from the user, convert the operation instructions into instructions that the display device 200 can recognize and respond to, and act as an interactive mediator between the user and the display device 200 .
  • the communication interface 130 is used to communicate with the outside and includes at least one of a WIFI chip, a Bluetooth module, NFC or a replaceable module.
  • the user input/output interface 140 includes at least one of a microphone, a touch pad, a sensor, a button, or a replaceable module.
  • FIG. 5 is a hardware configuration block diagram of the display device 200 according to an embodiment of the present disclosure.
  • the display device 200 includes: a tuner and demodulator 210, a communicator 220, a detector 230, an external device interface 240, a processor 250, a display 260, an audio output interface 270, a memory, a power supply, etc.
  • the processor 250 includes a central processing unit, a video processor, an audio processor, and a graphics processor.
  • the memory may be a random access memory (Random Access Memory, RAM) or a read-only memory (Read-Only Memory, ROM). For storing computer instructions or instructions and related data.
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • the display 260 may be at least one of a liquid crystal display, an OLED display, a touch display, and a projection display, and may also be a projection device and a projection screen.
  • the tuner-demodulator 210 receives broadcast television signals through wired or wireless reception methods, and demodulates audio and video signals from multiple wireless or wired broadcast television signals, such as electronic program guide (Electrical Program Guide, EPG) data signals.
  • EPG Electronic Program Guide
  • the detector 230 is used to collect signals from the external environment or interactions with the outside.
  • the processor 250 and the tuner-demodulator 210 may be located in different separate devices, that is, the tuner-demodulator 210 may also be located in an external device of the main device where the processor 250 is located, such as an external set-top box.
  • the above-mentioned display device is a terminal device with a display function, such as a television, a mobile phone, a computer, a learning machine, etc.
  • the processor 250 controls the operation of the display device and responds to user operations through various software control programs stored in the memory.
  • the processor 250 controls the overall operation of the display device 200.
  • the user may input a user command into a graphical user interface (GUI) displayed on the display 260, and the user input interface receives the user input command through the graphical user interface (GUI).
  • GUI graphical user interface
  • the user can input a user command by inputting a specific sound or gesture, and the user input interface recognizes the sound or gesture through the sensor to receive the user input command.
  • An output interface (display 260, and/or audio output interface 270) configured to output user interaction information
  • Communicator 220 is used to communicate with the server 400 or other devices.
  • An embodiment of the present disclosure provides a display device, which includes:
  • a display configured to display images and/or user interfaces from the broadcast system and network; an audio playback component configured to: play audio;
  • the audio playback component includes an audio track for receiving Bluetooth audio pulse code modulation (PCM) data, a sound encoding/mixing component, and a low-power audio source or preamplifier. After the electronic audio signal is amplified, it generates a current large enough to drive the speaker or headphone speaker for sound reproduction.
  • PCM Bluetooth audio pulse code modulation
  • AMP Audio Power Amplifier, audio power amplifier chip
  • the WiFi communication component is configured to communicate with external devices according to the WIFI protocol. For example, it can receive the wheat grabbing occurrence time sent by at least one Bluetooth device;
  • the WiFi communication component includes a WiFi hardware entity module and WiFi software logic.
  • the WiFi software logic includes a driver, a kernel, a WiFi Service for configuring and managing WiFi communication components, and a wireless security for controlling network selection, connection and configuration. Management software supplicant, etc.
  • the WiFi communication component needs to comply with the 802.11 WiFi protocol standard.
  • the Bluetooth communication component is configured to communicate with an external device according to the Bluetooth protocol, for example, listening to the target BIS channel indicated by the BIS channel identifier to receive the target BIS audio.
  • the Bluetooth communication component needs to meet Core spec 5.2 standard.
  • memory configured to store computer instructions and data
  • a processor connected to the display, the audio playback component, the WIFI communication component and the memory, is configured to execute the computer instructions so that the display device: determines the target Bluetooth device with the earliest occurrence time of wheat grabbing from at least one Bluetooth device ;Send the microphone grabbing success indication to the target Bluetooth device, and after sending the microphone grabbing success indication, receive the synchronous broadcast streaming BIS channel identifier sent by the target Bluetooth device; monitor the target BIS channel indicated by the BIS channel identifier to receive the target BIS audio ;Control the audio playback component to play the target BIS audio.
  • the above audio playback component can implement the same or similar functions as the audio output interface 270 shown in Figure 5 and can be used to play audio;
  • the WiFi communication component can implement the same or similar functions as the communicator 220 shown in Figure 5
  • the WiFi module has the same or similar functions and can communicate with other devices;
  • the Bluetooth communication component can implement the same or similar functions as the Bluetooth module in the communicator 220 shown in Figure 5 and can communicate with other devices.
  • the processor can perform the same or similar functions as the processor 250 shown in FIG. 5 and can be used to execute computer instructions.
  • the above-mentioned display device interacts with at least one Bluetooth device through the WiFi communication component, determines the target Bluetooth device, and receives the BIS channel identifier sent by the target Bluetooth device, thereby only monitoring the target BIS channel corresponding to the target Bluetooth device and realizing interaction through Bluetooth broadcast.
  • the bandwidth resources consumed by monitoring are reduced, and more remaining bandwidth resources are used to receive audio data, which improves the rate and quality of receiving audio data and further improves the playback sound quality of the display device.
  • the processor 250 is also configured to: receive screen projection data sent by multiple Bluetooth devices to receive multi-channel projection screen data; control the display to display multi-channel screen projection data in split screens;
  • the code stream data sent by the target Bluetooth device is received; the target BIS channel indicated by the BIS channel identifier is monitored, and the target BIS audio is received according to the code stream data.
  • receive the decoding information sent by the target Bluetooth device monitor the target BIS channel indicated by the BIS channel identifier to receive the first BIS audio, decrypt the first BIS audio, and obtain the decrypted target BIS audio.
  • the target Bluetooth device after sending the wheat grab success indication, receive the synchronized broadcast group BIG offset time unit and BIG offset unit number sent by the target Bluetooth device; determine the target based on the BIG offset time unit and BIG offset unit number.
  • the anchor point position of the first BIS audio data packet received in BIS audio monitor the target BIS channel indicated by the BIS channel identifier, and receive the target BIS audio according to the anchor point position.
  • the processor 250 determines the BIG offset duration according to the BIG offset time unit and the BIG offset unit number, and determines that the anchor point position of the first BIS audio data packet in the received target BIS audio is within the BIG offset duration. Then; or, the processor 250 determines the BIG offset duration based on the BIG offset time unit and the BIG offset unit number, and determines the first BIS audio in the target BIS audio to be received based on the BIG offset duration and the preset offset duration.
  • the anchor point position of the data packet is within the preset offset duration after the BIG offset duration.
  • receive the BIS number and BIS index sent by the target Bluetooth device determine the position of the target BIS audio in the BIG according to the BIS number and BIS index; monitor the BIS channel identifier indicated by The target BIS channel, and receives the target BIS audio according to the position of the target BIS audio in the BIG.
  • FIG. 6 is a schematic diagram of the software configuration in the display device 200 according to an embodiment of the present disclosure.
  • the system is divided into four layers. From top to bottom, they are the Applications layer ( (referred to as “application layer”), application framework (Application Framework) layer (referred to as “framework layer”), Android runtime (Android runtime) and system library layer (referred to as “system runtime library layer”), and kernel layer.
  • the kernel layer contains at least one of the following drivers: audio driver, display driver, Bluetooth driver, camera driver, WIFI driver, USB driver, HDMI driver, sensor driver (such as fingerprint sensor, temperature sensor, pressure sensor, etc.), and power supply Driver etc.
  • the video data transmission method can be implemented based on the above-mentioned display device, and specifically can be implemented through a player in the display device.
  • the present disclosure provides a Bluetooth device, which includes:
  • the WiFi communication component is configured to: send the wheat grabbing occurrence time to the display device; after sending the wheat grabbing occurrence time, if a successful wheat grabbing indication sent by the display device is received, send the BIS channel identifier to the display device;
  • the Bluetooth communication component is configured to: send the target BIS audio to the display device through the target BIS channel indicated by the BIS channel identifier, so that the display device receives the target BIS audio by monitoring the target BIS channel indicated by the BIS channel identifier.
  • the above-mentioned Bluetooth device interacts with the display device through WiFi communication components and Bluetooth communication components, thereby transmitting the audio and video data displayed and output on the Bluetooth device to the large-screen display device for simultaneous playback, which is suitable for scenarios where multiple users play games together.
  • Improve the fun of multi-channel projection by setting up a microphone grabbing mechanism; send the BIS channel identification to the display device to prevent the display device from continuously monitoring all channels, reducing the power consumption of monitoring and the bandwidth resources occupied by monitoring, which is conducive to improving Bluetooth
  • the BIS audio transmission rate and quality between the device and the display device enable the display device to synchronize the audio and video when projecting the screen and outputting the sound of the Bluetooth device, improving the user experience.
  • Figure 7 is a schematic flowchart 1 of a BIS data transmission method according to an embodiment of the present disclosure.
  • the method includes steps S701 to S705:
  • the time when the wheat grabbing occurs refers to the time when at least one Bluetooth device receives the user's click on the "grabbing wheat” control on their respective devices. At least one Bluetooth device packages and sends it to the display after determining the time when the user clicks the "grabbing wheat” control. equipment. In a scenario where multiple users use multiple Bluetooth devices to play games together, it can be understood that the time when the wheat grabbing occurs is when a user clicks the "grabbing wheat” control on his Bluetooth device. When the user clicks the "grabbing wheat” control, it is expected The display device outputs audio data such as game sound effects or voice from its Bluetooth device.
  • FIG. 8 is a schematic diagram of the user interface of at least one Bluetooth device provided by an embodiment of the present disclosure.
  • a "grab wheat” control 801 is displayed at the corresponding position of the user interface. The user clicks on the "Wheat Grabbing" control 801, which triggers the sending of the wheat grabbing occurrence time to the display device.
  • Figure 8 is only an exemplary illustration, and the specific position of the "Grab Wheat” control is not specifically limited by this disclosure.
  • the present disclosure provides an implementation based on multi-channel screen projection technology.
  • the display device first receives multiple The Bluetooth device sends the screen projection data to receive the multi-channel projection screen data; then the display device controls the display to display the multi-channel projection screen data in split screen.
  • Figure 9 is a schematic diagram of multi-channel screen projection provided in an embodiment of the present disclosure.
  • Figure 9 includes multiple Bluetooth devices: Bluetooth device 901, Bluetooth device 902, Bluetooth device 903, Bluetooth device 904, and a display device.
  • the display device receives the screen projection data 911 sent by the Bluetooth device 901, the screen projection data 912 sent by the Bluetooth device 902, the screen projection data 913 sent by the Bluetooth device 903, and the screen projection data sent by the Bluetooth device 904. Data 914, and then the display device controls the display to display multi-channel projection data in split screens: projection screen data 911 is displayed in area C1, projection screen data 912 is displayed in area C2, projection screen data 913 is displayed in area C3, and projection screen data 913 is displayed in area C4. Display the screen projection data 914.
  • FIG. 9 is only an exemplary illustration, and the present disclosure does not specifically limit the display position of the screen projection data corresponding to each Bluetooth device.
  • the display device controls the monitor to display multi-channel screen data in split screen. It can be understood that the display device only displays the screen data of multiple Bluetooth devices. Each screen data is muted because it has not been received.
  • the WiFi communication component is used to receive the microphone grabbing occurrence time sent by at least one Bluetooth device among the multiple Bluetooth devices, thereby achieving Display the screen projection data of multiple Bluetooth devices on the display device, and receive the microphone grabbing occurrence time sent by at least one of the Bluetooth devices to determine the target Bluetooth device, enhance the fun of multi-channel screen projection, and improve the user experience.
  • the above embodiment uses the display device to receive screen projection data sent by multiple Bluetooth devices, thereby realizing multi-channel screen projection on the display device to meet the entertainment needs of users when multiple people gather together; receiving the screen projection data sent by at least one Bluetooth device among the multiple Bluetooth devices.
  • the microphone occurrence time improves the interactivity and fun of multi-channel head screens, and determines the target Bluetooth device from at least one Bluetooth device to meet the speech needs of the user corresponding to the target Bluetooth device, adapt to multi-user communication scenarios, and improve user experience.
  • S702 Determine the target Bluetooth device with the earliest occurrence time of microphone grabbing from at least one Bluetooth device.
  • the display device compares the wheat grabbing occurrence time sent by at least one Bluetooth device, and determines the Bluetooth device with the earliest wheat grabbing occurrence time as the target Bluetooth device.
  • Bluetooth device 901, Bluetooth device 902, Bluetooth device 903, and Bluetooth device 904 all send their respective wheat grabbing occurrence times to the display device; among them, the wheat grabbing occurrence time of Bluetooth device 901 is 13:47:02 , the Bluetooth device 902's wheat grabbing occurs at 13:47:29, the Bluetooth device 903's wheat grabbing occurs at 13:48:33, and the Bluetooth device 904's wheat grabbing occurs at 13:48:57. Comparing the occurrence time of wheat grabbing corresponding to the above Bluetooth devices, it is determined that the earliest time of wheat grabbing occurrence is 13:47:02, and the corresponding Bluetooth device 901 is the target Bluetooth device.
  • any one of them is determined as the final target Bluetooth device; or, according to the data of multiple target Bluetooth devices, Priority, determine the highest priority as the final target Bluetooth device.
  • the time when the Bluetooth device 901 grabs the microphone is 13:47:02
  • the time when the Bluetooth device 902 takes place is 13:47:02
  • the time when the Bluetooth device 903 occurs is At 13:48:33
  • the wheat grabbing time of Bluetooth device 904 is 13:48:57. It can be seen that the earliest wheat grabbing time is 13:47:02, which corresponds to two Bluetooth devices: Bluetooth device 901 and Bluetooth device 902.
  • the priorities of the Bluetooth device 901 and the Bluetooth device 902 are further compared. If the priority of the Bluetooth device 901 is higher than the priority of the Bluetooth device 902 , the Bluetooth device 901 is determined to be the target Bluetooth device.
  • the above steps increase the fun of multi-channel screencasting by comparing the time of mic grabbing sent by at least one Bluetooth device, and determine the Bluetooth device with the earliest mic grabbing time as the target Bluetooth device, so as to satisfy the target Bluetooth device's output after successful mic grabbing. Audio data requirements.
  • the synchronous broadcast stream BIS channel identifier is used to identify the broadcast channel that the display device needs to monitor.
  • the display device after determining the target Bluetooth device with the earliest microphone grabbing time from at least one Bluetooth device, the display device sends a microphone grabbing success indication to the target Bluetooth device, and further receives the BIS channel identifier sent by the target Bluetooth device to determine the target Bluetooth device.
  • the BIS channel identification is accurately monitored to receive the audio data sent by the target Bluetooth device.
  • the display device in the related technology cannot know which broadcast channel to obtain the audio data sent by the Bluetooth device. Therefore, it needs to monitor all 40 broadcast channels, which consumes a lot of power and consumes a lot of bandwidth resources for monitoring.
  • the above embodiment can accurately monitor the channel identifier indicated by the BIS channel identifier by obtaining the BIS channel identifier sent by the target Bluetooth device.
  • the code stream data sent by the target Bluetooth device is also received.
  • the code stream data includes at least one of the following: sampling rate, frame interval, amount of data contained in each frame, and data rate.
  • the code stream data is used to instruct the display device to receive and process the BIS audio sent by subsequent target terminal devices. After receiving the code stream data and BIS channel identifier sent by the target Bluetooth device, monitor the target BIS channel indicated by the BIS channel identifier, and receive the target BIS audio according to the code stream data.
  • decoding information sent by the target Bluetooth device is also received.
  • the decoding information is used to decode the BIS audio sent by the target Bluetooth device.
  • the first BIS audio is encrypted, so the display device decrypts the first BIS audio according to the decoding information sent by the target Bluetooth device to obtain the decrypted target BIS audio.
  • the synchronous broadcast group (Broadcast Isochronous Group, BIG) offset time unit and BIG offset unit number sent by the target Bluetooth device are also received.
  • the synchronous broadcast group (Broadcast Isochronous Group, BIG) offset time unit and BIG offset unit number sent by the target Bluetooth device are also received.
  • LE Audio introduced BIG and BIS.
  • a synchronized broadcast group BIG can include multiple BIS.
  • FIG 10A is a schematic diagram of a BIG in an embodiment of the present disclosure.
  • the BIG shown in Figure 10A includes multiple BISs, which are respectively identified as BIS1, BIS2, BIS3, and BIS4 in Figure 10A.
  • BIS1, BIS2, BIS3, and BIS4 are respectively identified as BIS1, BIS2, BIS3, and BIS4 in Figure 10A.
  • the BIG offset time unit and the BIG offset unit number are used to instruct the display device to offset after receiving the BIS channel identifier.
  • the offset duration is the BIG offset unit number N*BIG offset time unit ⁇ t, which can be understood as After a period of N ⁇ t, the target BIS audio sent by the target display device is received.
  • the anchor point position is used to indicate the moment when the BIG where the target BIS audio is located reaches the display device, that is, the start moment of receiving the BIG.
  • the anchor point position can be determined based on the moment when the display device receives the BIS channel identifier, the BIG offset time unit, and the number of BIG offset units. It can also be determined based on the moment when the display device receives the BIS channel identifier, the BIG offset time unit
  • the anchor point position is determined by the number of BIG offset units and the preset offset duration.
  • Figure 10B is a timeline schematic diagram of the anchor point position shown in an embodiment of the present disclosure.
  • the display device can synchronously receive the target BIS audio sent by the target Bluetooth device.
  • the target Bluetooth device also needs to send the BIG offset time unit and the number of BIG offset units to the display device, so that the display device receives the BIG offset time unit. and the number of BIG offset units, determine the BIG offset duration based on the BIG offset time unit and the number of BIG offset units. It can be determined that the anchor point position of the first BIS audio data packet in the received target audio is after the BIG offset duration.
  • the display device can synchronously receive the target BIS audio sent by the target Bluetooth device. It can also determine the BIG offset based on the BIG offset time unit and the number of BIG offset units after the display device receives the BIG offset time unit and the number of BIG offset units. shift time, and then determine based on the BIG offset time and the preset offset time that the anchor point position of the first BIS audio data packet in the received target audio is after the BIG offset time, as shown in (b) in Figure 10B [T5, T6 ] within the time range.
  • the display device After the display device receives the BIS channel identifier, it will receive the target BIS audio after a period of time.
  • This period of time can be after the BIG offset duration, or within the preset offset duration after the BIG offset duration, so that Improve the fault tolerance rate of sending and receiving target BIS audio to ensure that the display device receives complete and accurate target BIS audio.
  • the target BIS audio is one of the BIGs.
  • the display device After sending the microphone grabbing success indication, the display device receives the BIS number and BIS index sent by the target Bluetooth device, and first compares the BIS number and the corresponding values of the BIS index. When the value corresponding to the BIS index is less than or equal to the value corresponding to the number of BISs, it is determined that the received BIS index is correct, and the position of the target BIS audio in the BIG is further determined based on the BIS index. After receiving the BIS channel identifier, monitor the target BIS channel indicated by the BIS channel identifier, and accurately receive the target BIS audio according to the position of the target BIS audio in the BIG.
  • Figure 10C is a schematic diagram of determining the target BIS audio in an embodiment of the present disclosure.
  • the BIG shown in Figure 10C includes multiple BISs, which are respectively identified as BIS1, BIS2, BIS3, BIS4.
  • the value corresponding to the number of BIS received by the display device is 4, and the value corresponding to the BIS index is 1.
  • the value corresponding to the BIS index is smaller than the value corresponding to the number of BIS. It can be determined that the BIS index is correct, and the target BIS audio can be determined according to the BIS index in the BIG.
  • Position The target BIS audio is BIS2, which is the position of the second BIS in the BIG.
  • the display device in order to improve the speed of determining the target BIS audio, can first receive the BIS index (such as: 0, 1, 2, 3) sent by the target Bluetooth device, and then determine the target BIS audio in the BIG based on the BIS index. position (for example: according to index 1, determine BIS2, that is, the position of the second BIS in BIG).
  • the BIS index such as: 0, 1, 2, 3
  • the target BIS audio in the BIG based on the BIS index. position (for example: according to index 1, determine BIS2, that is, the position of the second BIS in BIG).
  • Figure 11 is a schematic flow chart 2 of a BIS data transmission method according to an embodiment of the present disclosure. This embodiment is further expanded and optimized based on the above embodiment.
  • An optional implementation of S703 is as follows:
  • S703b Receive the BIS channel identifier, code stream data, decoding information, BIG offset unit and number of BIG offset units, as well as the BIS number and BIS index sent by the target Bluetooth device.
  • the BIS channel identifier is used to identify the broadcast channel that the display device needs to monitor.
  • the code stream data includes at least one of the following: sampling rate, frame interval, amount of data contained in each frame, and data rate; the code stream data is used to instruct the display device to receive and process the BIS audio sent by subsequent target terminal devices.
  • the decoding information is used to decode the BIS audio sent by the target Bluetooth device.
  • the BIG offset time unit and BIG offset unit number are used to instruct the display device to offset after receiving the BIS channel identifier.
  • the offset duration is the BIG offset unit number N*BIG offset time unit t.
  • the BIS number and BIS index are used to indicate the position in the BIG of the BIS audio sent by the target Bluetooth device.
  • S703c Determine the anchor point location of the first BIS audio data packet in the target BIS audio based on the BIG offset time unit and the BIG offset unit number; determine the location of the target BIS audio in the BIG based on the BIS number and BIS index.
  • the anchor point position is used to indicate the moment when the display device receives the target BIS audio. It is determined based on the moment when the display device receives the BIS channel identifier, the BIG offset time unit and the number of BIG offset units. It can also be determined based on the time when the display device receives the BIS channel identifier. The time of the BIS channel identification, the BIG offset time unit, the number of BIG offset units, and the preset offset duration are determined.
  • S704 An optional implementation of S704 is as follows:
  • the first BIS audio is encrypted.
  • S704d Receive the target BIS audio according to the code stream data, the anchor point position, and the position of the target BIS audio in the BIG.
  • the target BIS channel indicated by the BIS channel identifier needs to be monitored, which reduces power consumption and bandwidth resources occupied by monitoring, thus retaining more bandwidth resources for receiving target BIS audio; in addition, it is displayed
  • the device does not need to be guided to monitor multiple channels. It directly monitors the target BIS channel to obtain the code stream data, decoding information, BIG offset unit and number of BIG offset units, as well as the number of BIS and BIS index, thereby quickly determining the time and location of the target BIS audio reception.
  • receiving mode which is conducive to increasing the receiving rate and improving the quality of the received target BIS audio, allowing the display device to synchronize audio and video and output audio with higher sound quality.
  • the display device After the display device receives the target BIS audio sent by the target Bluetooth device, it controls the audio playback component to play the target BIS audio, thereby meeting the user's requirement corresponding to the target Bluetooth device that the display device outputs the target BIS audio, and improving the user experience.
  • the target Bluetooth device is Bluetooth device 901
  • the multi-channel projection data is displayed on a split screen on the display screen: projection screen data 911, projection screen data 912, Projection screen data 913 and screen projection data 914 .
  • the schematic diagram of multi-channel screen projection shown in Figure 9 is used to Figure 12.
  • Figure 12 it is a schematic diagram 2 of a multi-channel screen projection according to an embodiment of the present disclosure.
  • the display device plays the message sent by the Bluetooth device 901.
  • the target BIS audio is represented by the fact that only the projection area C1 corresponding to the Bluetooth device 901 has the existing picture output, and there is also the target BIS audio output corresponding to the picture displayed in the projection area C1, and the projection area C2 and projection area corresponding to other Bluetooth devices. Screen area C3 and projection area C4 also output images, but there is no audio output corresponding to the images and are in a mute state.
  • the BIS audio transmission method first receives the wheat grabbing occurrence time sent by at least one Bluetooth device, then determines the target Bluetooth device with the earliest wheat grabbing occurrence time from at least one Bluetooth device, and then sends the wheat grabbing occurrence time to the target Bluetooth device.
  • the microphone After the microphone successfully indicates, it receives the BIS channel identifier sent by the target Bluetooth device, and further monitors the target BIS channel indicated by the BIS channel identifier to receive the target BIS audio, and then the processor controls the audio playback component to play the target BIS audio.
  • the display device interacts with at least one Bluetooth device, determines the target Bluetooth device, receives the BIS channel identifier sent by the target Bluetooth device, thereby only monitoring the target BIS channel corresponding to the target Bluetooth device, and achieves the acquisition of the mobile phone through the interactive method of Bluetooth broadcast.
  • the bandwidth resources consumed by monitoring are reduced, and more remaining bandwidth resources are used to receive audio data, which improves the rate and quality of receiving audio data and further improves the playback sound quality of the display device.
  • Figure 13 is a schematic flow chart of another BIS data transmission method according to an embodiment of the present disclosure.
  • the method is applied to a display device.
  • the method includes steps S1301 to S1303:
  • the Bluetooth device triggers sending the wheat grabbing occurrence time to the display device based on the user's operation of touching the "mic grabbing" control 801 .
  • the BIS channel identifier after receiving the microphone grabbing success indication sent by the display device, the BIS channel identifier, code stream data, decoding information, BIG offset unit and BIG offset unit number, as well as the BIS number and BIS index are sent to the display device. .
  • the above embodiments of the present disclosure are based on the situation that LE Audio supports stereo sound in a non-connected state (broadcast state), and realizes data transmission between the display device and other Bluetooth devices in BIS mode.
  • This disclosure also provides another embodiment based on the fact that LE Audio supports stereo sound in a connected state.
  • a Connected Isochronous Stream (Connected Isochronous Stream) is provided based on the display device and Bluetooth device provided in the aforementioned embodiment.
  • CIS audio transmission method, which realizes data transmission between display devices and other Bluetooth devices in CIS mode.
  • the following is an introduction to how to implement data transmission between a display device and other Bluetooth devices in CIS mode.
  • connection state refers to the connection equal time stream CIS.
  • the connection equal time stream is between a host and a specific slave (Slave, Link Layer).
  • Point-to-point data transfer streams and is a bi-directional communication protocol with acknowledgments.
  • CIS mode enables logical transfers between connected devices to transfer data on either side of the ACL (Asynchronous Connection Link).
  • ACL Asynchronous Connection Link
  • Each CIS can use fixed or variable data sizes and framed or unframed data, with single or multiple packets, per CIS event.
  • CIS data flow Traffic can be unidirectional or bidirectional between devices, and it uses protocols to improve the reliability of packet delivery in the CIS.
  • the display device When the display device connects multiple Bluetooth devices based on CIS in low-power audio (LE Audio) technology and waits for one of the Bluetooth devices to send CIS audio, it connects multiple Bluetooth devices through the CIS with large resource usage to ensure data Transmission efficiency: Corresponding multiple CIS connections consume large bandwidth resources. However, the remaining bandwidth resources are difficult to ensure high-quality CIS audio transmission, thus affecting the sound quality of CIS audio transmission.
  • LE Audio low-power audio
  • the display device includes a Bluetooth communication component and a processor.
  • the Bluetooth communication component uses the first code stream data whose bandwidth resource occupancy is less than the preset resource amount. , establish first CIS connections with multiple Bluetooth devices respectively; then mute the first CIS audio received through the first CIS connection, and then receive the second code stream data sent by the target Bluetooth device through the first CIS connection , update the first code stream data of the first CIS connection to the second code stream data to establish the second CIS connection, and receive the second CIS audio sent by the target Bluetooth device through the second CIS connection, where the second code stream
  • the bandwidth resource occupancy corresponding to the data is greater than or equal to the preset resource amount; further, the mute for the second CIS audio is released, and the audio playback component is controlled to play the second CIS audio.
  • the display device establishes a first CIS connection with multiple Bluetooth devices through the first code stream data that occupies a small bandwidth resource, reducing the bandwidth resources consumed by the Bluetooth CIS connection, and then updates it to use a larger bandwidth resource occupancy.
  • the second CIS is connected to receive the second CIS audio, so as to receive the CIS audio through sufficient bandwidth and improve the sound quality of CIS audio transmission.
  • the Bluetooth communication component uses the first code stream data whose bandwidth resource occupancy is less than the preset resource amount to establish the first CIS connection with multiple Bluetooth devices respectively; then the first CIS audio received through the first CIS connection is Mute processing, then, receive the second code stream data sent by the target Bluetooth device through the first CIS connection, update the first code stream data of the first CIS connection to the second code stream data to establish the second CIS connection, and pass The second CIS connection receives the second CIS audio sent by the target Bluetooth device, in which the bandwidth resource occupancy corresponding to the second code stream data is greater than or equal to the preset resource amount; further, unmute the second CIS audio and control the audio playback Component plays second CIS audio.
  • the display device establishes a first CIS connection with multiple Bluetooth devices through the first code stream data that occupies a small bandwidth resource, reducing the bandwidth resources consumed by the Bluetooth CIS connection, and then updates it to use a larger bandwidth resource occupancy.
  • the second CIS connection receives CIS audio to receive CIS audio through sufficient bandwidth and improves the sound quality of CIS audio transmission.
  • the configuration block diagram of the control device can refer to the content related to Figure 4 introduced in the previous embodiment.
  • the hardware configuration block diagram of the display device reference can be made to the content related to Figure 5 introduced in the previous embodiment, and will not be described in detail here.
  • FIG. 5 Based on the hardware configuration block diagram of the display device shown in Figure 5, another embodiment of the present disclosure provides a display device for realizing data transmission between the display device and other Bluetooth devices in CIS mode.
  • the display device includes:
  • a display configured to display images from the broadcast system or network, and/or, a user interface
  • the Bluetooth communication component is configured to communicate according to the Bluetooth protocol. For example, it can be used to establish a first CIS connection with multiple Bluetooth devices using the first code stream data, and receive the first CIS sent by the multiple Bluetooth devices through the first CIS connection. For audio, the bandwidth resource usage corresponding to the first stream data is less than the preset resource amount;
  • memory configured to store computer instructions and data
  • a processor connected to the display device, the Bluetooth communication component and the memory, is configured to execute computer instructions so that the display device: mutes the first CIS audio received through the first CIS connection; receives the target Bluetooth device through The second code stream data sent by the first CIS connection updates the first code stream data of the first CIS connection to the second code stream data.
  • the second code stream data is used to establish a second CIS connection, and the second CIS audio sent by the target Bluetooth device is received through the second CIS connection.
  • the bandwidth resource occupation corresponding to the second code stream data is greater than or equal to the preset resource amount; for Unmute the CIS audio sent by the second CIS connection, and control the audio playback component to play the second CIS audio.
  • Bluetooth communication component can achieve the same or similar functions as the Bluetooth module in the communicator 220 shown in FIG. 5 , which will not be described in detail here.
  • the above-mentioned display device first establishes a first CIS connection with multiple Bluetooth devices through the first code stream data that occupies less resources, and mutes the CIS received through the first CIS connection to prevent the display device from outputting multiple CIS at the same time.
  • Audio affects the user experience; receive the resource-intensive second code stream data sent by the target Bluetooth device through the first CIS connection, and update the first code stream data of the first CIS connection to the second code stream data to establish Through the second CIS connection, the CIS audio sent by the target Bluetooth device can be received in a targeted manner through the second CIS connection with a larger bandwidth, and the display device can further unmute the CIS audio, thereby outputting high-quality CIS audio. .
  • the target device sends the second code stream data, it means that the target Bluetooth device expects to output the CIS through the connection with the display device. Audio, thereby adjusting to consume larger bandwidth resources to establish a second CIS connection between the target Bluetooth device and the display device, thereby ensuring the transmission of high-quality CIS audio between the target Bluetooth device and the display device. In addition, it can ensure that the target Bluetooth device accurately outputs high-quality CIS audio in multi-channel screen projection scenarios, avoids noise, lagging, etc., and improves user experience.
  • the processor is further configured to update the second code stream data of the second CIS connection to the first code stream data after detecting that the value of the CIE flag bit in the second CIS audio is the target value. , to establish the first CIS connection between the display device and the target Bluetooth device.
  • the display device also includes: a WiFi communication component configured to communicate according to the WIFI protocol. For example, after the Bluetooth communication component establishes a first CIS connection with multiple Bluetooth devices using the first code stream data, receive at least one Bluetooth device sent The time when wheat grabbing occurs; the processor 250 determines the target Bluetooth device with the earliest wheat grabbing occurrence time from at least one Bluetooth device, and sends a wheat grabbing success indication to the target Bluetooth device; after sending the wheat grabbing success indication to the target Bluetooth device, receives the target Bluetooth device The device sends the first CIS audio and second code stream data through the first CIS connection, and updates the first code stream data of the first CIS connection to the second code stream data to establish the second CIS connection. Receive the second CIS audio sent by the target Bluetooth device.
  • a WiFi communication component configured to communicate according to the WIFI protocol. For example, after the Bluetooth communication component establishes a first CIS connection with multiple Bluetooth devices using the first code stream data, receive at least one Bluetooth device sent The time when wheat grabbing occurs; the processor 250 determines the target
  • the display device receives screen projection data sent by multiple Bluetooth devices to receive multi-channel projection screen data; controls the display to display multi-channel projection screen data on a split screen; after the display displays multi-channel projection screen data on a split screen, it receives multiple The time of occurrence of microphone grabbing sent by at least one Bluetooth device among the Bluetooth devices.
  • WiFi communication component can implement the same or similar functions as the WiFi module in the communicator 220 shown in Figure 5, and can communicate with other devices according to the WIFI protocol.
  • the first code stream data includes: the sampling rate is 16khz, the frame interval is 10ms, the data amount contained in each frame is 40bytes, and the data rate is 32kbps; and/or the second code stream data includes: sampling The rate is 32khz, the frame interval is 10ms, the amount of data contained in each frame is 80byte, and the data rate is 64kbps.
  • the processor after the processor detects that the value of the CIE flag bit in the second CIS audio is the target value, it determines that the CIS audio transmission of the target Bluetooth device is completed, and the bandwidth resources occupied by the second CIS connection are released; determine The remaining duration of the current isochronous transmission duration controls the WiFi communication component to use the released bandwidth resources within the remaining duration.
  • the Bluetooth device includes: a Bluetooth communication component configured to: establish a first CIS connection with the display device using the first code stream data, send the second code stream data to the display device through the first CIS connection, and the first code stream data
  • the corresponding bandwidth resource occupancy is less than the preset resource amount, and the bandwidth resource occupancy corresponding to the second code stream data is greater than or equal to the preset resource amount; updated to establish a second CIS connection with the display device using the second code stream data, through the second code stream data.
  • the second CIS connection sends the second CIS audio to the display device, so that the display device receives and plays the second CIS audio sent through the second CIS connection.
  • the above-mentioned Bluetooth device first establishes a first CIS connection with the display device through the first code stream data, and sends the second code stream data to the display device through the first CIS connection to instruct the display device to switch to through the second code stream data.
  • the bandwidth resource usage of the second CIS connection is higher than that of the first CIS connection. It can ensure that the connection through the second CIS is maintained while maintaining the connection between the display device and other Bluetooth devices.
  • the sound quality of the transmitted CIS audio is provided.
  • the Bluetooth device further includes: a WiFi communication component, configured to send the wheat grabbing occurrence time to the display device after the Bluetooth communication component and the display device establish the first CIS connection using the first code stream data.
  • a WiFi communication component configured to send the wheat grabbing occurrence time to the display device after the Bluetooth communication component and the display device establish the first CIS connection using the first code stream data.
  • the Bluetooth communication component receives the successful microphone grab indication sent by the display device through the WiFi communication component, it sends the first CIS audio and second code stream data to the display device through the first CIS connection, and updates to use the second code stream with the display device.
  • the data establishes a second CIS connection, and sends the second CIS audio to the display device through the second CIS connection.
  • the Bluetooth device sends the screen projection data to the display device, so that the display device receives and displays the screen projection data; after sending the screen projection data to the display device, the Bluetooth device sends the microphone grabbing occurrence time to the display device.
  • Figure 14A is a schematic flowchart 1 of a CIS audio transmission method according to some embodiments of the present disclosure.
  • the method is applied to a display device.
  • the method includes the following steps S1401 to S1404:
  • the bandwidth resource occupancy corresponding to the first code stream data is less than the preset resource amount.
  • the first code stream data includes: at least one of the following: sampling rate, frame interval, data amount contained in each frame, and data rate.
  • the code stream data is used to instruct the display device to receive and process the CIS audio sent by subsequent target terminal devices.
  • the preset resource amount is set according to actual needs, and will not be described in detail here.
  • the first code stream data includes a sampling rate of 16khz, a frame interval of 10ms, a data amount of 40bytes per frame, and a data rate of 32kbps. It should be noted that the above settings of the first code stream data are only It is an exemplary description and is not limited in this disclosure.
  • Table 1 shows various parameters included in the code stream data.
  • Figure 15 is a schematic diagram of code stream data bandwidth resource occupation according to some embodiments of the present disclosure. As shown in Figure 15, when the code stream data is 16_2_1, the bandwidth resource occupation is 11%. It can be understood that when the multi-channel projection is four-channel projection, through the first code stream data 16_2_1 After establishing the first CIS connection between four mobile phones and the TV, the bandwidth resources occupied by the four mobile phones after connecting to the TV are less than 50%.
  • step S601 may include the following steps S1401a to S1401c:
  • the display device uses the Bluetooth communication component to receive CIS audio sent by multiple Bluetooth devices through the first CIS connection. It can be understood that in a scenario where multiple people play games together and perform multi-channel screencasting on the display device If multiple Bluetooth devices are connected to the display device, the display device will evenly allocate bandwidth resources to receive the CIS audio sent by these multiple Bluetooth devices. The number of Bluetooth devices that need to be connected is large, but the total bandwidth resources are limited, which requires each Bluetooth device to The corresponding bandwidth resources are relatively small. As mentioned above, the first CIS connection between four mobile phones and the TV is established through the first code stream data 16_2_1. Then for the scenario where four mobile phones (as Bluetooth devices) are connected to the TV (as a display device), The bandwidth resources occupied after connection are less than 50%, thus ensuring the feasibility of multi-channel screen projection.
  • the display device Since the bandwidth resources occupied by the first CIS connection are small, when the display device directly receives CIS audio sent by multiple Bluetooth devices through the first CIS connection, it is difficult to ensure the efficiency of receiving CIS audio and the sound quality of the received CIS audio. This may occur. Therefore, after the display device receives the CIS audio sent by multiple Bluetooth devices through the first CIS connection, it mutes the CIS audio to avoid outputting the CIS audio and causing delays and noise to the user. It eliminates noise and other problems and improves the user experience. It can be understood that the display device does not output or play the CIS audio sent by multiple Bluetooth devices through the first CIS.
  • the display device only displays multi-channel projection data and mutes the first CIS audio received through the first CIS connection, that is, it does not output each of the first CIS audio received through the first CIS connection.
  • the first CIS audio is not displayed.
  • the bandwidth resource occupancy corresponding to the second code stream data is greater than or equal to the preset resource amount.
  • the display device is based on LE Audio's CIS technology, in order to reduce the delay in the CIS audio transmission process and ensure the audio and video synchronization of the display device, it can maintain the CIS connection between the display device and the target Bluetooth device, and receive After receiving the second code stream data, instead of disconnecting the first CIS connection and re-establishing the second CIS connection, the second code stream data sent through the first CIS connection is used to update the previous first code stream data, thereby Updating the first CIS connection to the second CIS connection can be understood as maintaining a consistent connection state between the display device and the target Bluetooth device, thereby reducing the time consumed in disconnecting and reconnecting, and improving the efficiency of CIS audio transmission, thereby achieving Better audio and video synchronization effect.
  • the second code stream data may include: a sampling rate of 32khz, a frame interval of 10ms, an amount of data contained in each frame of 80bytes, and a data rate of 64kbps. As shown in Table 1, various parameters included in the second code stream data can also be set to other values. It should be noted that the second code stream data is larger than the first code stream data to ensure sufficient bandwidth to transmit high-quality CIS audio.
  • step S1403 may be after step S1401c.
  • receiving the target Bluetooth device through the first The second code stream data sent by the CIS connection updates the first code stream data of the first CIS connection to the second code stream data to establish a second CIS connection, and receives the data sent by the target Bluetooth device through the second CIS connection.
  • CIS audio after sending a microphone grabbing success indication to the target Bluetooth device, receiving the target Bluetooth device through the first
  • the second code stream data sent by the CIS connection updates the first code stream data of the first CIS connection to the second code stream data to establish a second CIS connection, and receives the data sent by the target Bluetooth device through the second CIS connection.
  • the display device initially mutes the first CIS audio sent through the first CIS connection. After the target Bluetooth device sends the second CIS audio through the second CIS connection, the display device first uses the second code stream data to pass through the second CIS. The connection receives the second CIS audio, and then unmutes the second CIS audio to avoid the popping sound caused by the sound quality jump, and further controls the audio playback component to play the CIS audio to ensure a good audio-visual experience for the user.
  • Figure 16A is a schematic diagram of playing the second CIS audio according to some embodiments of the present disclosure.
  • the display device unmutes the second CIS audio sent by the Bluetooth device 901 through the second CIS connection, and controls the audio playback component configured by the display device to play the second CIS audio, while other Bluetooth devices 902, Bluetooth devices 903 and Bluetooth
  • the device 904 is still connected to the display device through the first CIS connection, and the first CIS audio sent by these Bluetooth devices through the second CIS connection is still muted.
  • the CIS audio transmission of the target Bluetooth device is completed, and the bandwidth resources occupied by the second CIS connection are freed;
  • Figure 16B is a schematic diagram of the data structure of the CIS protocol header. As shown in Figure 16B, the CIS includes: preamble 91, access address 92, protocol data unit 93, and Cyclic Redundancy Checksum (CRC) 94.
  • CRC Cyclic Redundancy Checksum
  • the number of data bits of the preamble 91 is 1 or 2 octets
  • the number of data bits of the access address 92 is 4 Octets
  • the number of data bits of the protocol data unit 93 is 2-257 Octets
  • the CRC data The number of bits is 3Octets.
  • the protocol data unit 93 includes: a protocol header (header) 931, a payload (payload) 932, and a message integrity check code (Messages Integrity Check, MIC) 933.
  • the number of data bits in the protocol header 931 is 16 bits
  • the number of data bits in the payload 932 is 0-251Octets.
  • the number of data bits of the message integrity check code 933 is 10 or 14 Octets.
  • the number of data bits of the message integrity check code 933 is 11 or 15 Octets, and the number of data bits of the message integrity check code 933 depends on whether the payload of the protocol data unit 93 contains the message integrity check.
  • the protocol header 931 of the protocol data unit 93 further includes: PDU type identification (LLID), next expected sequence number (Next Expected Sequence Number, NESN), sequence number (Sequence Number, SN), close synchronization event bit (CIE), reserved Data bits (Reserved for Future Use, RFU) and Y effective length (Length).
  • PDU type identification LLID
  • next expected sequence number Next Expected Sequence Number, NESN
  • sequence number Sequence Number, SN
  • CIE close synchronization event bit
  • reserved Data bits Reserved for Future Use, RFU
  • Y effective length Length
  • CIS transmitted by CIS connections
  • data data
  • control information called LL Control PDU
  • LLID is used to distinguish the type of CIS as data or control information
  • NESN and SN is used for acknowledgment (Acknowledgement) and data flow control (Flow Control) during CIS transmission
  • the effective length is used to represent the number of data bits of valid data (the sum of the number of data bits of the payload and MIC).
  • the closing synchronization event bit is the data flag bit carried in the CIS audio protocol header.
  • the value of the CIE flag bit is 1, it means that the CIS audio transmission is completed.
  • the CIE flag value is 0, it means that the CIS audio transmission is not completed.
  • the value of the CIE flag bit is the target value, that is, when the value of the CIE flag bit is 1, it is determined that the CIS audio transmission is completed.
  • the remaining duration of the current isochronous transmission duration is determined, and the WiFi communication component is controlled to use the released bandwidth resources within the remaining duration. It can be understood that the display device has completed receiving the CIS audio within a transmission cycle, and then the bandwidth resources occupied by the Bluetooth communication component configured on the display device are released, so that the WiFi communication component can utilize this part of the bandwidth during the remaining time of the transmission cycle. Resources are used to transmit screen projection data, thereby improving the utilization of bandwidth resources and further ensuring the synchronization of audio and video on display devices.
  • the second CIS connection established between the display device and the target Bluetooth device will be displayed.
  • the second code stream data is updated to the first code stream data to establish a first CIS connection between the display device and the target Bluetooth device. It can be understood that after completing the transmission of the second CIS audio through the second CIS connection, it is updated back to the previous first CIS connection that occupied less bandwidth resources, so that other Bluetooth devices can transmit CIS audio to the display device.
  • the first code stream data whose bandwidth resource occupancy is less than the preset resource amount is used to establish the first CIS connection with multiple Bluetooth devices respectively; and then the first CIS connection is The first CIS audio received is muted.
  • the first CIS audio received through the first CIS connection with smaller bandwidth resources may have problems of large delay and poor sound quality.
  • the first CIS connection through the first CIS connection is muted.
  • the first CIS audio received is muted.
  • receive the second code stream data sent by the target Bluetooth device through the first CIS connection update the first code stream data of the first CIS connection to the second code stream data to establish the second CIS connection, and pass the second code stream data.
  • the CIS connection receives the second CIS audio sent by the target Bluetooth device, in which the bandwidth resource occupation corresponding to the second code stream data is greater than or equal to the preset resource amount; further, the mute for the second CIS audio is released, and the audio playback component is controlled to play Second CIS audio.
  • the display device first establishes the first CIS connection with multiple Bluetooth devices through the first code stream data that occupies a small bandwidth resource, reducing the bandwidth resources consumed by the Bluetooth CIS connection, and then updates it to use a larger bandwidth resource occupancy.
  • the second CIS connection receives the second CIS audio. On the one hand, it maintains the CIS connection between the target display device and the Bluetooth device to avoid the delay caused by disconnection and reconnection. On the other hand, it uses the first CIS audio connection that occupies less bandwidth resources.
  • the CIS connection is updated to the second CIS connection that consumes more bandwidth resources, allowing sufficient bandwidth to receive CIS audio and improving the sound quality of CIS audio transmission.
  • Figure 17 is a schematic flow chart of another CIS audio transmission method according to an embodiment of the present disclosure. Applied to Bluetooth devices, the method includes the following steps S1701 ⁇ S1702:
  • the bandwidth resource usage corresponding to the first code stream data is less than the preset resource amount.
  • the first code stream data includes: the sampling rate is 16khz, the frame interval is 10ms, the data amount contained in each frame is 40bytes, and the data rate is 32kbps. ;
  • the bandwidth resource occupancy corresponding to the second code stream data is greater than or equal to the preset resource amount.
  • the second code stream data includes: the sampling rate is 32khz, the frame interval is 10ms, the amount of data contained in each frame is 80byte, and the data rate is 64kbps.
  • S1702. Update to establish a second CIS connection with the display device using the second code stream data, and send the second CIS audio to the display device through the second CIS connection, so that the display device receives and plays the second CIS sent through the second CIS connection. Audio.
  • Figure 18 is a flow chart 3 of a CIS audio transmission method according to an embodiment of the present disclosure.
  • the method includes the following steps S1801 to S1812:
  • the Bluetooth device sends screen projection data through the WiFi communication component.
  • the display device receives the screen projection data and controls the display to display the screen projection data.
  • the display device uses the first code stream data to establish a first CIS connection with the display device through the Bluetooth communication component.
  • the Bluetooth device sends the first CIS audio to the display device through the first CIS connection.
  • the display device mutes the first CIS audio received through the first CIS connection.
  • the Bluetooth device sends the wheat grabbing occurrence time to the display device through the WiFi communication component.
  • the display device determines the Bluetooth device as the target Bluetooth device based on the time when wheat grabbing occurs.
  • the display device sends a microphone grabbing success indication to the target Bluetooth device.
  • the Bluetooth device After receiving the microphone grabbing success indication sent by the display device through the WiFi communication component, the Bluetooth device sends the second code stream data to the display device through the first CIS connection.
  • the display device receives the second code stream data and updates the first code stream data of the first CIS connection to the second code stream data to establish the second CIS connection.
  • the Bluetooth device sends the second CIS audio through the second CIS connection
  • the display device unmutes the second CIS audio received through the second CIS connection, and controls the audio playback component to play.
  • Embodiments of the present disclosure provide a computer-readable non-volatile storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program executes various processes performed by the above-mentioned BIS data transmission method, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the above-mentioned computer-readable storage medium can be read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Telephone Function (AREA)

Abstract

本公开涉及一种显示设备、蓝牙设备和数据处理方法,涉及蓝牙技术领域。显示设备包括:显示器,音频播放组件,WiFi通信组件,存储器;处理器,与显示器、音频播放组件,WIFI通信组件和存储器连接,被配置为执行所述存储器中的计算机指令以使得所述显示设备:从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备;向目标蓝牙设备发送抢麦成功指示,并在发送抢麦成功指示之后,接收目标蓝牙设备发送的同步广播串流BIS信道标识;监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频;控制音频播放组件播放目标BIS音频。

Description

显示设备、蓝牙设备和数据处理方法
相关申请的交叉引用
本申请要求在2022年06月30日提交中国专利局、申请号为202210771002.5;在2022年06月30日提交中国专利局、申请号为202210772655.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及蓝牙技术领域,尤其涉及一种显示设备、蓝牙设备和数据处理方法。
背景技术
目前,电视作为家居场景中的大屏设备,为用户带来了更好视听体验,用户会将多个手机的画面投屏至电视,以通过大屏的电视进行播放,在这个过程中,多个手机和电视之间通过wifi传输投屏画面数据,通过蓝牙传输音频数据,但是电视通过蓝牙广播的交互方式获取手机音频数据时,由于无法获知手机会从哪一信道发送音频数据,因此电视需要监听所有信道来接收音频数据,存在功耗大、带宽资源占用率高的问题。
发明内容
本公开提供一种显示设备,包括:显示器,被配置为显示来自广播系统和网络的图像和/或用户界面;音频播放组件,被配置为:播放音频;WIFI通信组件,被配置为根据WIFI协议与外部设备通信;蓝牙通信组件,被配置为根据蓝牙协议与外部设备通信;存储器,被配置为存储计算机指令和数据;处理器,与所述音频播放组件、WIFI通信组件和蓝牙通信组件连接并且配置为执行所述计算机指令使得所述显示设备:接收至少一个蓝牙设备发送的抢麦发生时间;从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备;向目标蓝牙设备发送抢麦成功指示,并在发送抢麦成功指示之后,接收目标蓝牙设备发送的同步广播串流BIS信道标识;监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频;控制所述音频播放组件播放所述目标BIS音频。
本公开提供一种蓝牙设备,包括:WiFi通信组件,被配置为:向显示设备发送抢麦发生时间;在发送所述抢麦发生时间之后,若接收到所述显示设备发送的抢麦成功指示,向所述显示设备发送BIS信道标识;蓝牙通信组件,被配置为:通过所述BIS信道标识所指示的目标BIS信道,向所述显示设备发送目标BIS音频,以使得显示设备通过监听所述BIS信道标识所指示的目标BIS信道接收目标BIS音频。
本公开提供一种用于显示设备的数据处理方法,包括:从所述至少一个蓝牙设备中确定所述抢麦发生时间最早的目标蓝牙设备;向所述目标蓝牙设备发送抢麦成功指示,并在发送所述抢麦成功指示之后,接收所述目标蓝牙设备发送的同步广播串流BIS信道标识;监听所述BIS信道标识所指示的目标BIS信道,以接收目标BIS音频;控制所述音频播放组件播放所述目标BIS音频。
附图说明
图1为显示设备进行多路投屏的场景示意图;
图2为相关技术中BIS的工作原理示意图;
图3为根据本公开实施例的一些实施例中的场景示意图;
图4为根据本公开实施例中的控制装置100的配置框图;
图5为根据本公开实施例中的显示设备200的硬件配置框图;
图6为根据本公开实施例中的显示设备200中软件配置示意图;
图7为根据本公开实施例的一种BIS数据传输方法的流程示意图一;
图8为根据本公开实施例的至少一个蓝牙设备的用户界面示意图;
图9为根据本公开实施例中提供的一种多路投屏的示意图一;
图10A为根据本公开实施例中BIG的示意图;
图10B为根据本公开实施例所示的锚点位置的时间轴示意图;
图10C为根据本公开实施例中确定目标BIS音频的示意图;
图11为根据本公开实施例一种BIS数据传输方法的流程示意图二;
图12为根据本公开实施例中提供的一种多路投屏的示意图二;
图13为根据本公开实施例另一种BIS数据传输方法的流程示意图;
图14A为根据本公开一些实施例的一种CIS音频传输方法的流程示意图一;
图14B为根据本公开一些实施例的一种CIS音频传输方法的流程示意图二;
图15为根据本公开一些实施例中码流数据带宽资源占用量的示意图;
图16A为根据本公开一些实施例的播放第二CIS音频的示意图;
图16B为CIS协议头的数据结构示意图;
图17为根据本公开一些实施例中的另一种CIS音频传输方法的流程示意图;
图18为根据本公开一些实施例中的一种CIS音频传输方法的流程示意图三。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
本公开所提供的显示设备基于蓝牙的低功耗音频(Low Energy Audio)技术,LE Audio,具有以下功能和特点:
(1)支持连接状态及非连接状态(广播状态)的立体声;
(2)使用复杂度通信编解码器(LC3)提供更佳的音质,即便在低码率的传输环境下,也能提供高质量的音频;
(3)拥有多重串流特性,支持音频源设备和一个或多个音频接收设备之间传输多个独立、同步的音频流;
(4)具备广播音频功能,可以突破蓝牙的点对点传输功能,使音频源设备能够向无数个音频接收设备放送一个或多个音频流,可实现基于个人、基于位置,甚至基于场景的使用体验。
本公开是建立在LE Audio支持非连接状态(广播状态)的立体声的情况,LE Audio的非连接状态是广播等时流(Broadcast Isochronous Stream,BIS),BIS允许一个音频源设备向众多音频接收设备广播音频流。支持固定大小或可变大小的BIS数据包,在每个BIS事件上使用带帧或不带帧的数据或多个数据包。BIS无需确认从音频源设备到音频接收设备的单向数据流。BIS数据包可以通过增加每个BIS事件中子事件的数量来重传,以提高 传递的可靠性。在广播音频允许范围内的音频接收设备可以使用两种广播方法加入正在广播的音频流,一种是开放广播,是指任何范围内的接收设备都可以开始接收广播音频;另一种是封闭广播,是指任何范围内的接收设备都需要输入密钥才能参与音频源设备的音频流。
基于上述说明,根据本公开实施例的显示设备和BIS音频传输方法,基于蓝牙的低功耗音频(LE Audio)技术,并且是在BIS模式下实现显示设备和其他蓝牙设备的数据传输。
多路投屏可以理解为将多个电子终端设备(例如,具有较小屏幕的手机或平板电脑等)的画面和声音,在另外的显示设备(例如,具有较大屏幕的电视)同步展示输出。由于多路投屏属于镜像投屏,对网络环境有着较高的要求,而且同样存在延迟,用户在体验过程中,可能会遇到画面卡顿、画质模糊、音质差等问题。
对于喜欢家庭聚会时一起打游戏的用户来说,这项功能够满足所有游戏玩家一起观看游戏的需求。通常情况下,传统投屏仅限一台设备投屏到电视,以至于在打游戏时,想要观看其他游戏玩家的对战情况,就需要将视线转移到另一台设备,影响用户的游戏体验感。基于多路投屏技术,电视可以同时播放多台设备的实时游戏画面,使得所有的游戏玩家能够实时观察到其他玩家的对战情况。
如图1所示,图1为显示设备进行多路投屏的场景示意图,图1中包括至少一个蓝牙设备:蓝牙设备101、蓝牙设备102、蓝牙设备103、蓝牙设备104,以及显示设备200,在前述使用电视投屏功能实现多个用户一起打游戏的场景中,上述蓝牙设备101、蓝牙设备102、蓝牙设备103、蓝牙设备104将正在显示的游戏画面和游戏音频,发送至显示设备,以由显示设备在显示器上分屏同步展示各个蓝牙设备的游戏画面,并播放游戏音频。
然而,显示设备利用多路投屏技术展示多台设备的画面和声音时,通过WiFi通信组件接收其他蓝牙设备发送的投屏画面数据,以同步播放投屏画面数据,又要通过蓝牙通信组件接收其他蓝牙设备发送的音频数据,以同步输出音频数据,通常情况下利用WiFi传输投屏画面数据延时为40ms,而利用蓝牙传输音频数据延时在50ms左右,因此会导致显示设备上音画不同步。
相关技术为解决显示设备音画不同步的问题,第一种方案主要是通过经典蓝牙技术实现蓝牙连接,以及通过子带编码(SubBand Coding,SBC)方式实现编解码,并优化编码器,使得减小蓝牙传输音频数据的延时,但是,编码器的性能优化存在上限,不能完全解决显示设备音画不同步的问题。
为了解决上述显示设备音画不同步的问题,第二种方案可以采用LE Audio技术,减小蓝牙传输音频数据的延时,以实现显示设备音画同步。由于第二种方案中LE Audio技术是基于蓝牙低能耗(Bluetooth Low Energy,BLE)协议实现的,相比于在第一种方案中采用经典蓝牙技术实现蓝牙连接,变更了蓝牙传输策略,并且第二种方案也针对编码方式进行了改进,将SBC方式改进为低复杂度通信编解码器(LC3)方式实现编解码,因此可以有效的减小蓝牙传输音频数据的延时。
但是在电视基于蓝牙的低功耗音频(LE Audio)技术中的BIS收发广播信息时,因为电视无法获知其他蓝牙设备会从哪一信道发送音频数据,所以需要时刻监听所有信道来接收音频数据,存在功耗大、带宽资源占用率高的问题。
如图2所示,图2为相关技术中BIS的工作原理示意图。图中包括音频源设备211、音频接收设备212。BIS的工作原理是:音频源设备211首先通过蓝牙的任一主广播信道 发送第一广播包,第一广播包中包括第一引导信息。其中,第一引导信息包括音频数据类型信息,用于指示音频源设备通过第一辅助广播信道发送下一广播包(第二广播包),示例性的,所述第一引导信息的数据格式为广播集ID(Advertising Set-ID)。然后,音频源设备通过第一辅助广播信道发送第二广播包,第二广播包中包括第二引导信息。其中,第二引导信息包括音频数据标识,用于指示音频源设备通过第二辅助广播信道发送第三广播包,示例性的,所述第二引导信息的数据格式为广播音频公告服务唯一标识符(Broadcast Audio Announcement Service UUID(Broadcast_ID))。进一步,音频源设备通过第二辅助广播信道发送第三广播包,第三广播包中包括第三引导信息。其中,所述第三引导信息包括码流数据,所述码流数据至少包括音频数据的采样率、左右声道情况、音频数据的编码格式及是否有内容保护,第三引导信息用于指示音频源设备通过第三辅助广播信道发送音频数据,示例性的,所述第三引导信息的数据格式为广播音频流端点结构(Broadcast Audio Stream Endpoint structure,BASE)。
需要说明的是,蓝牙工作在2.4GHz频段,频率范围为2402MHz–2480MHz,每2MHz一个信道,共40个信道,其中为3个主广播信道,剩余的37个为辅助广播信道。通常由于主广播信道较少,资源比较紧张,因此会通过主广播信道先发送初始的引导信息(如上述的第一引导信息),以指示后续在其他辅助广播信道中发送后续的广播包,这样后续传输过程中就采用其他辅助广播信道,不再占用主广播信道的资源。
可见,在音频接收设备212一侧起初需要持续监听所有的广播信道,以接收第一广播包,这导致音频接收设备功耗大,持续监听会占用较大的带宽资源;另外,基于图2所示的BIS的工作原理示意图,需要先后监听四个广播信道才能得到真正的音频数据,过程繁琐,延时大,在显示设备多路投屏的场景中,会导致音画不同步,影响用户体验。
为解决上述技术问题,本公开提供的显示设备,首先通过WiFi通信组件接收至少一个蓝牙设备发送的抢麦发生时间,其中,所述抢麦发生时间是由各蓝牙设备通过WiFi通信组件向显示设备发送的,代表各蓝牙设备给显示设备发送抢麦发生时间的信号的早晚,显示设备通过WiFi通信组件接收至少一个蓝牙设备发送的抢麦发生时间之后,再由处理器从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备,然后在通过WiFi通信组件向目标蓝牙设备发送抢麦成功指示之后,接收目标蓝牙设备发送的BIS信道标识,进一步由蓝牙通信组件监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频,再由处理器控制音频播放组件播放目标BIS音频。该显示设备通过WiFi通信组件与至少一个蓝牙设备进行交互,并从中确定目标蓝牙设备,接收目标蓝牙设备发送的BIS信道标识,从而只监听目标蓝牙设备对应的目标BIS信道,实现通过蓝牙广播的交互方式获取手机音频数据时,减少监听所消耗的带宽资源,以剩余更多的带宽资源接收音频数据,提升了接收音频数据的速率和质量,进一步提升了显示设备的播放音质。
图3为根据本公开实施例的一些实施例中的场景示意图。如图3所示,图3中包括控制装置100、显示设备200、智能设备300、服务器400以及至少一个蓝牙设备500。其中,用户可通过智能设备300或控制装置100操作显示设备200,在显示设备200上播放音视频资源。
如图3所示,以用户通过控制装置100操作显示设备200为例,用户通过控制装置100打开显示设备200中配置的WiFi通信组件和蓝牙通信组件相关功能。首先通过WiFi通信组件接收至少一个蓝牙设备500发送的抢麦发生时间,再由处理器从至少一个蓝牙设备中 确定抢麦发生时间最早的目标蓝牙设备,然后在通过WiFi通信组件向目标蓝牙设备发送抢麦成功指示之后,接收目标蓝牙设备发送的BIS信道标识,进一步由蓝牙通信组件监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频,再由处理器控制音频播放组件播放目标BIS音频。该显示设备通过WiFi通信组件与至少一个蓝牙设备进行交互,并从中确定目标蓝牙设备,接收目标蓝牙设备发送的BIS信道标识,从而只监听目标蓝牙设备对应的目标BIS信道,实现通过蓝牙广播的交互方式获取手机音频数据时,减少监听所消耗的带宽资源,以剩余更多的带宽资源接收音频数据,提升了接收音频数据的速率和质量,进一步提升了显示设备的播放音质。
在一些实施例中,控制装置100可以是遥控器,遥控器和显示设备的通信包括红外协议通信、蓝牙协议通信,无线或其他有线方式来控制显示设备200。用户可以通过遥控器上按键,语音输入、控制面板输入等输入用户指令,来控制显示设备200。在一些实施例中,也可以使用移动终端、平板电脑、计算机、笔记本电脑、和其他智能设备以控制显示设备200。
在一些实施例中,至少一个蓝牙设备500可与显示设备200安装软件应用,通过网络通信协议实现连接通信,实现一对一控制操作的和数据通信的目的。也可以将至少一个蓝牙设备500上显示音视频内容传输到显示设备200上,实现同步显示功能。显示设备200还与服务器400通过多种通信方式进行数据通信。可允许显示设备200通过局域网(LAN)、无线局域网(WLAN)和其他网络进行通信连接。服务器400可以向显示设备200提供各种内容和互动。显示设备200,可以液晶显示器、OLED显示器、投影显示设备。显示设备200除了提供广播接收电视功能之外,还可以附加提供计算机支持功能的智能网络电视功能。
图4为根据本公开实施例中的控制装置100的配置框图。如图4所示,控制装置100包括处理器110、通信接口130、用户输入/输出接口140、存储器、供电电源。控制装置100可接收用户的输入操作指令,且将操作指令转换为显示设备200可识别和响应的指令,在用户与显示设备200之间起交互中介作用。通信接口130用于和外部通信,包含WIFI芯片,蓝牙模块,NFC或可替代模块中的至少一种。用户输入/输出接口140包含麦克风,触摸板,传感器,按键或可替代模块中的至少一种。
图5为根据本公开实施例中的显示设备200的硬件配置框图。如图5所示,显示设备200包括:调谐解调器210、通信器220、检测器230、外部装置接口240、处理器250、显示器260、音频输出接口270、存储器、供电电源等。其中,处理器250包括中央处理器,视频处理器,音频处理器,图形处理器,存储器可为随机存取存储器(Random Access Memory,RAM),只读存储器(Read-Only Memory,ROM),可用于保存计算机指令或指令以及相关的数据。显示器260可为液晶显示器、OLED显示器、触控显示器以及投影显示器中的至少一种,还可以为一种投影装置和投影屏幕。调谐解调器210通过有线或无线接收方式接收广播电视信号,以及从多个无线或有线广播电视信号中解调出音视频信号,如以及电子节目指南(Electrical Program Guide,EPG)数据信号。检测器230用于采集外部环境或与外部交互的信号。处理器250和调谐解调器210可以位于不同的分体设备中,即调谐解调器210也可在处理器250所在的主体设备的外置设备中,如外置机顶盒等。
在一些实施例中,上述显示设备是具有显示功能的终端设备,例如电视机、手机、电脑、学习机等。
在一些实施例中,处理器250,通过存储在存储器上中各种软件控制程序,来控制显示设备的工作和响应用户的操作。处理器250控制显示设备200的整体操作。用户可在显示器260上显示的图形用户界面(GUI)输入用户命令,则用户输入接口通过图形用户界面(GUI)接收用户输入命令。或者,用户可通过输入特定的声音或手势进行输入用户命令,则用户输入接口通过传感器识别出声音或手势,来接收用户输入命令。
输出接口(显示器260,和/或,音频输出接口270),被配置为输出用户交互信息;
通信器220,用于与服务器400或其它设备进行通信。
本公开实施例中提供一种显示设备,该显示设备包括:
显示器,被配置为显示来自广播系统和网络的图像和/或用户界面;音频播放组件,被配置为:播放音频;
在一些实施方式中,所述音频播放组件包括用来接收蓝牙音频脉冲编码调制(Pulse Code Modulation,PCM)数据的音轨、声音编码/混音部件,以及将来自音源或者前级放大器的低功率电子音频信号放大后,产生足够大的电流去驱动扬声器或耳机音箱进行声音的重放的AMP(Audio Power Amplifier,音频功放芯片)。
WiFi通信组件,被配置为根据WIFI协议与外部设备通信,例如,可接收至少一个蓝牙设备发送的抢麦发生时间;
所述WiFi通信组件包括WiFi硬件实体模组,WiFi软件逻辑,所述WiFi软件逻辑包括驱动、内核、用于配置和管理WiFi通信组件的WiFi Service,用于控制网络选择、连接及配置的无线安全管理软件supplicant等。其中,所述WiFi通信组件需要符合802.11wifi协议标准。
蓝牙通信组件,被配置为根据蓝牙协议与外部设备通信,例如,监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频。
在一些实施方式中,其中,所述蓝牙通信组件需要满足Core spec 5.2标准。
存储器,被配置为存储计算机指令和数据;
处理器,与所述显示器、音频播放组件、WIFI通信组件和存储器连接,被配置为执行所述计算机指令以使得所述显示设备:从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备;向目标蓝牙设备发送抢麦成功指示,并在发送抢麦成功指示之后,接收目标蓝牙设备发送的同步广播串流BIS信道标识;监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频;控制音频播放组件播放目标BIS音频。
需要说明的是,上述音频播放组件能够实现与图5中所示的音频输出接口270相同或相似的功能,可以用于播放音频;WiFi通信组件能够实现与图5中所示的通信器220中WiFi模块相同或相似的功能,可以实现与其他设备进行通信;蓝牙通信组件能够实现与图5中所示的通信器220中蓝牙模块相同或相似的功能,可以实现与其他设备进行通信,上述处理器能够实现与图5中所示的处理器250相同或相似的功能,可以用于执行计算机指令。
上述显示设备通过WiFi通信组件与至少一个蓝牙设备进行交互,并从中确定目标蓝牙设备,接收目标蓝牙设备发送的BIS信道标识,从而只监听目标蓝牙设备对应的目标BIS信道,实现通过蓝牙广播的交互方式获取手机音频数据时,减少监听所消耗的带宽资源,以剩余更多的带宽资源接收音频数据,提升了接收音频数据的速率和质量,进一步提升了显示设备的播放音质。
在一些实施例中,所述处理器250,还配置为:接收多个蓝牙设备发送的投屏画面数据,以接收多路投屏画面数据;控制显示器分屏显示多路投屏画面数据;
接收多个蓝牙设备中至少一个蓝牙设备发送的抢麦发生时间。
在一些实施例中,在发送抢麦成功指示之后,接收目标蓝牙设备发送的码流数据;监听BIS信道标识所指示的目标BIS信道,并根据码流数据接收目标BIS音频。在发送抢麦成功指示之后,接收目标蓝牙设备发送的解码信息;监听BIS信道标识所指示的目标BIS信道,以接收第一BIS音频,对第一BIS音频进行解密,得到解密后的目标BIS音频。
在一些实施例中,在发送抢麦成功指示之后,接收目标蓝牙设备发送的同步广播组BIG偏移时间单元和BIG偏移单元数;根据BIG偏移时间单元和BIG偏移单元数,确定目标BIS音频中接收第一个BIS音频数据包的锚点位置;监听BIS信道标识所指示的目标BIS信道,根据锚点位置接收目标BIS音频。
在一些实施例中,处理器250根据BIG偏移时间单元和BIG偏移单元数,确定BIG偏移时长,确定接收目标BIS音频中第一个BIS音频数据包的锚点位置处于BIG偏移时长之后;或,处理器250,根据BIG偏移时间单元和BIG偏移单元数,确定BIG偏移时长,根据BIG偏移时长和预设偏移时长,确定接收目标BIS音频中第一个BIS音频数据包的锚点位置处于BIG偏移时长之后的预设偏移时长内。
在一些实施例中,在发送抢麦成功指示之后,接收目标蓝牙设备发送的BIS数量和BIS索引:根据BIS数量和BIS索引,确定目标BIS音频在BIG中的位置;监听BIS信道标识所指示的目标BIS信道,并根据目标BIS音频在BIG中的位置,接收目标BIS音频。
如图6所示,图6为根据本公开实施例中的显示设备200中软件配置示意图,如图6所示,将系统分为四层,从上至下分别为应用程序(Applications)层(简称“应用层”),应用程序框架(Application Framework)层(简称“框架层”),安卓运行时(Android runtime)和系统库层(简称“系统运行库层”),以及内核层。内核层至少包含以下驱动中的至少一种:音频驱动、显示驱动、蓝牙驱动、摄像头驱动、WIFI驱动、USB驱动、HDMI驱动、传感器驱动(如指纹传感器,温度传感器,压力传感器等)、以及电源驱动等。根据本公开实施例视频数据传输方法可以基于上述显示设备实现,具体的可以通过显示设备中的播放器实现。
本公开提供一种蓝牙设备,该蓝牙设备包括:
WiFi通信组件,被配置为:向显示设备发送抢麦发生时间;在发送抢麦发生时间之后,若接收到显示设备发送的抢麦成功指示,向显示设备发送BIS信道标识;
蓝牙通信组件,被配置为:通过BIS信道标识所指示的目标BIS信道,向显示设备发送目标BIS音频,以使得显示设备通过监听BIS信道标识所指示的目标BIS信道接收目标BIS音频。
上述蓝牙设备通过WiFi通信组件和蓝牙通信组件与显示设备进行数据交互,从而将蓝牙设备上显示和输出的音视频数据传输至大屏的显示设备同步播放,适应于多用户一起打游戏的场景,通过设置抢麦机制提升多路投屏的趣味性;将BIS信道标识发送至显示设备,避免显示设备持续监听所有的信道,减少了监听的功耗以及监听所占用的带宽资源,有利于提升蓝牙设备和显示设备之间BIS音频传输速率和质量,实现显示设备在投屏蓝牙设备的画面和输出声音时音画同步,提升用户体验感。
如图7所示,图7为根据本公开实施例的一种BIS数据传输方法的流程示意图一,该方法包括步骤S701~S705:
S701、接收至少一个蓝牙设备发送的抢麦发生时间;
其中,抢麦发生时间是指至少一个蓝牙设备在各自设备上接收到用户点击“抢麦”控件的时间,至少一个蓝牙设备在确定用户点击“抢麦”控件的时间之后将其打包发送至显示设备。在多个用户利用多台蓝牙设备一起打游戏的场景中,可以理解为抢麦发生时间是某一用户点击其蓝牙设备上“抢麦”控件的时间,用户点击“抢麦”控件,是期望显示设备输出其蓝牙设备的游戏音效或语音等音频数据。
如图8所示,图8为本公开实施例所提供的至少一个蓝牙设备的用户界面示意图。图中在用户界面的相应位置显示“抢麦”控件801。用户点击“抢麦”控件801,则触发向显示设备发送抢麦发生时间。需要说明的是,图8仅为示例性说明,“抢麦”控件的具体位置,本公开不做具体限制。
一些实施例中,在显示设备接收至少一个蓝牙设备发送的抢麦发生时间之前,为满足用户的多元化视听需求,本公开提供一种实施方式基于多路投屏技术,显示设备首先接收多个蓝牙设备发送的投屏画面数据,以接收多路投屏画面数据;然后显示设备控制显示器分屏显示多路投屏画面数据。
示例性的,如图9所示,图9为本公开实施例中提供的多路投屏的示意图,图9中包括多个蓝牙设备:蓝牙设备901、蓝牙设备902、蓝牙设备903、蓝牙设备904,以及显示设备,显示设备接收蓝牙设备901发送的投屏画面数据911,蓝牙设备902发送的投屏画面数据912,蓝牙设备903发送的投屏画面数据913,蓝牙设备904发送的投屏画面数据914,然后显示设备控制显示器分屏显示多路投屏数据:在区域C1显示投屏画面数据911,在区域C2显示投屏画面数据912,在区域C3显示投屏画面数据913,在区域C4显示投屏画面数据914。需要说明的是,图9仅为示例性说明,各个蓝牙设备对应的投屏画面数据的显示位置本公开对此不做具体限制。
需要强调的是,显示设备控制显示器分屏显示多路投屏画面数据,可以理解为显示设备仅显示多个蓝牙设备的投屏画面数据,各个投屏画面数据是静音的,因为并未接收到多个蓝牙设备发送的音频数据,为满足用户期望输出音频数据,在显示多路投屏画面数据之后,通过WiFi通信组件接收多个蓝牙设备中至少一个蓝牙设备发送的抢麦发生时间,从而实现在显示设备上显示多个蓝牙设备的投屏画面数据,并且接收其中至少一个蓝牙设备发送的抢麦发生时间,以从中确定目标蓝牙设备,增强多路投屏的趣味性,提升用户体验。
上述实施例通过显示设备接收多个蓝牙设备发送的投屏画面数据,实现显示设备的多路投屏,满足用户多人聚会时的娱乐需求;接收多个蓝牙设备中至少一个蓝牙设备发送的抢麦发生时间,提升多路头屏的交互性和趣味性,以至少一个蓝牙设备中确定目标蓝牙设备,满足该目标蓝牙设备对应的用户的发言需求,适应于多用户交际场景,提升用户体验。
S702、从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备。
一些实施例中,显示设备比较至少一个蓝牙设备发送的抢麦发生时间,从中确定抢麦发生时间最早的蓝牙设备作为目标蓝牙设备。
沿用图9中的示例,蓝牙设备901、蓝牙设备902、蓝牙设备903、蓝牙设备904均向显示设备发送各自的抢麦发生时间;其中,蓝牙设备901的抢麦发生时间为13:47:02,蓝牙设备902的抢麦发生时间为13:47:29,蓝牙设备903的抢麦发生时间为13:48:33,蓝牙设备904的抢麦发生时间为13:48:57。比较上述蓝牙设备对应的抢麦发生时间,则确定抢麦发生时间最早时刻为13:47:02,所对应的蓝牙设备901为目标蓝牙设备。
一些实施例中,在从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备数量为多个的情况下,确定其中任意一个作为最终的目标蓝牙设备;或者,根据多个目标蓝牙设备的优先级,确定其中优先级最高的作为最终的目标蓝牙设备。示例性的,沿用图9中的示例,蓝牙设备901的抢麦发生时间为13:47:02,蓝牙设备902的抢麦发生时间为13:47:02,蓝牙设备903的抢麦发生时间为13:48:33,蓝牙设备904的抢麦发生时间为13:48:57,可见抢麦时间最早为13:47:02,对应了两个蓝牙设备:蓝牙设备901与蓝牙设备902。进一步比较蓝牙设备901与蓝牙设备902的优先级,在蓝牙设备901的优先级高于蓝牙设备902的优先级的情况下,确定蓝牙设备901为目标蓝牙设备。
上述步骤通过比较至少一个蓝牙设备发送的抢麦发生时间,从中确定抢麦发生时间最早的蓝牙设备作为目标蓝牙设备,增强了多路投屏的趣味性,以满足目标蓝牙设备抢麦成功后输出音频数据的需求。
S703、向目标蓝牙设备发送抢麦成功指示,并在发送抢麦成功指示之后,接收目标蓝牙设备发送的同步广播串流BIS信道标识。
其中,同步广播串流BIS信道标识用于标识显示设备需要监听的广播信道。
S704、监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频。
一些实施例中,在从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备之后,显示设备向目标蓝牙设备发送抢麦成功指示,进一步接收目标蓝牙设备发送的BIS信道标识,以在该BIS信道标识进行准确监听,从而接收目标蓝牙设备发送的音频数据。
如前述,基于BIS,相关技术中显示设备无法获知从哪一广播信道获取蓝牙设备发送的音频数据,因此需要监听全部的40个广播信道,功耗较大,监听所占用的带宽资源较大。然而,上述实施例通过获取目标蓝牙设备发送的BIS信道标识,能够准确地对BIS信道标识所指示的信道标识进行监听。
一些实施例中,在发送抢麦成功指示之后,还接收目标蓝牙设备发送的码流数据。码流数据中包括下述至少一项:采样率、帧间隔、每个帧包含的数据量、数据速率。码流数据用于指示显示设备接收并处理后续目标终端设备发送的BIS音频的方式。在接收目标蓝牙设备发送的码流数据和BIS信道标识之后,监听BIS信道标识所指示的目标BIS信道,并根据码流数据接收目标BIS音频。
一些实施例中,在发送抢麦成功指示之后,还接收目标蓝牙设备发送的解码信息。其中,该解码信息用于解码目标蓝牙设备发送的BIS音频。在接收目标蓝牙设备发送的解码信息和BIS信道标识之后,监听BIS信道标识所指示的目标信道,以接收目标蓝牙设备发送的第一BIS音频,为保证显示设备和目标蓝牙设备之间数据传输的安全性,该第一BIS音频是经过加密处理的,因此显示设备根据目标蓝牙设备发送的解码信息对该第一BIS音频进行解密,得到解密后的目标BIS音频。
一些实施例中,在发送抢麦成功指示之后,还接收目标蓝牙设备发送的同步广播组(Broadcast Isochronous Group,BIG)偏移时间单元和BIG偏移单元数。其中,为了支持广播一个或多个音频串流,LE Audio引入了BIG和BIS,一个同步广播组BIG可以包括多个BIS。
如图10A所示,图10A为本公开实施例中BIG的示意图,图10A中所示的BIG中包括多个BIS,在图10A中分别标识为BIS1、BIS2、BIS3、BIS4。举例而言,如果一个手机通过蓝牙广播来播放音乐,需要收听音乐的多个用户中的每个用户的蓝牙耳机的左右耳 也必须接收同步的数据流,那么左右耳的数据就必须属于同一个BIG。
其中,BIG偏移时间单元和BIG偏移单元数用于指示显示设备在接收到BIS信道标识之后进行偏移,偏移时长为BIG偏移单元数N*BIG偏移时间单元Δt,可以理解为在经过N个Δt这段时间之后,接收目标显示设备发送的目标BIS音频。
锚点位置用于指示目标BIS音频所在的BIG到达显示设备的时刻,也即接收该BIG的开始时刻。具体的,可以根据显示设备接收到BIS信道标识的时刻以及BIG偏移时间单元和BIG偏移单元数确定该锚点位置,还可以根据显示设备接收到BIS信道标识的时刻、BIG偏移时间单元和BIG偏移单元数以及预设偏移时长确定该锚点位置。
示例性的,如图10B所示,图10B为本公开实施例所示的锚点位置的时间轴示意图,图10B中(a)包括显示设备接收到BIS信道标识的时刻T1,BIG偏移时间单元Δt,BIG偏移单元数N,则偏移时长t2=N*Δt。根据T1、t2可确定锚点位置T3=T1+t2。
或者,如图10B中(b)包括:显示设备接收到BIS信道标识的时刻T1,BIG偏移时间单元Δt,BIG偏移单元数N,偏移时长t2=N*Δt,以及预设偏移时长t4,则如图10B(b)所示,锚点位置在[T5,T6]所处的时间范围内,其中T5=T1+t2,T6=T5+t4。
上述实施例,显示设备能够同步接收到目标蓝牙设备发送的目标BIS音频,目标蓝牙设备还需要向显示设备发送BIG偏移时间单元和BIG偏移单元数,使得显示设备接收到BIG偏移时间单元和BIG偏移单元数之后,根据BIG偏移时间单元和BIG偏移单元数确定BIG偏移时长,可确定接收目标音频中第一个BIS音频数据包的锚点位置处于BIG偏移时长之后,如图10B中(a)所示的时刻T3。
显示设备能够同步接收到目标蓝牙设备发送的目标BIS音频,还可以在显示设备接收到BIG偏移时间单元和BIG偏移单元数之后,根据BIG偏移时间单元和BIG偏移单元数确定BIG偏移时长,再根据BIG偏移时长和预设偏移时长确定接收目标音频中第一个BIS音频数据包的锚点位置处于BIG偏移时长之后,如图10B中(b)中[T5,T6]所处的时间范围内。
可以理解,显示设备在接收到BIS信道标识之后,经过一段时间再接收目标BIS音频,这一段时间可以是BIG偏移时长之后,也可以是BIG偏移时长之后的预设偏移时长内,从而提升收发目标BIS音频的容错率,确保显示设备接收到完整、准确的目标BIS音频。
一些实施例中,目标BIS音频为BIG中的一个,在发送抢麦成功指示之后,显示设备接收到目标蓝牙设备发送的BIS数量和BIS索引,首先将BIS数量和BIS索引对应的数值进行比较,在BIS索引对应的数值小于或等于BIS数量对应的数值的情况下,确定接收到的BIS索引是正确的,进一步根据BIS索引确定目标BIS音频在BIG中的位置。在接收到BIS信道标识之后,监听BIS信道标识所指示的目标BIS信道,并根据目标BIS音频在BIG中的位置,准确接收目标BIS音频。
示例性的,如图10C所示,图10C为本公开实施例中确定目标BIS音频的示意图,图10C所示的BIG中包括多个BIS,在图10C中分别标识为BIS1、BIS2、BIS3、BIS4。显示设备接收到的BIS数量对应的数值为4,BIS索引对应的数值为1,BIS索引对应的数值小于BIS数量对应的数值,可确定BIS索引正确,能够根据BIS索引确定目标BIS音频在BIG中的位置:目标BIS音频为BIS2,即在BIG中第二个BIS的位置。
另一些实施例中,为了提升确定目标BIS音频的速率,显示设备可以先接收目标蓝牙设备发送的BIS索引(如:0、1、2、3),然后根据BIS索引确定目标BIS音频在BIG中 的位置(如:根据索引1,确定BIS2,即在BIG中第二个BIS的位置)。
如图11所示,图11为根据本公开实施例一种BIS数据传输方法的流程示意图二。本实施例是在上述实施例的基础上进一步扩展与优化,其中,S703的一种可选的实现方式如下:
S703a、向目标蓝牙设备发送抢麦成功指示。
S703b、接收目标蓝牙设备发送的BIS信道标识,码流数据,解码信息,BIG偏移单元和BIG偏移单元数,以及BIS数量和BIS索引。
其中,BIS信道标识用于标识显示设备需要监听的广播信道。
码流数据中包括下述至少一项:采样率、帧间隔、每个帧包含的数据量、数据速率;码流数据用于指示显示设备接收并处理后续目标终端设备发送的BIS音频的方式。
解码信息用于解码目标蓝牙设备发送的BIS音频。
BIG偏移时间单元和BIG偏移单元数用于指示显示设备在接收到BIS信道标识之后进行偏移,偏移时长为BIG偏移单元数N*BIG偏移时间单元t。
BIS数量和BIS索引用于指示目标蓝牙设备发送的BIS音频在BIG中的位置。
S703c、根据BIG偏移时间单元和BIG偏移单元数,确定目标BIS音频中接收第一个BIS音频数据包的锚点位置;根据BIS数量和BIS索引,确定目标BIS音频在BIG中的位置。
其中,锚点位置用于指示显示设备接收目标BIS音频的时刻,是根据显示设备接收到BIS信道标识的时刻以及BIG偏移时间单元和BIG偏移单元数确定的,还可以根据显示设备接收到BIS信道标识的时刻、BIG偏移时间单元和BIG偏移单元数以及预设偏移时长确定。
S704的一种可选的实现方式如下:
S704a、监听BIS信道标识所指示的目标BIS信道。
S704b、接收目标蓝牙设备通过目标BIS信道发送的第一BIS音频;
其中,第一BIS音频是经过加密处理的。
S704c、根据解码信息对第一BIS音频进行解密,得到解密后的目标BIS音频;
S704d、根据码流数据、锚点位置,以及目标BIS音频在BIG中的位置接收目标BIS音频。
根据码流数据确定接收目标BIS音频的方式,根据锚点位置确定接收目标BIS音频的时刻,根据目标BIS音频在BIG中的位置从BIG中准确接收目标BIS。
上述实施例,仅需要监听BIS信道标识所指示的目标BIS信道,减小了功耗,减少了监听所占用的带宽资源,从而保留了更多的带宽资源用于接收目标BIS音频;另外,显示设备无需引导监听多个信道,直接监听目标BIS信道获取码流数据、解码信息、BIG偏移单元和BIG偏移单元数,以及BIS数量和BIS索引,从而快速确定目标BIS音频接收的时刻、位置、接收方式,有利于提升接收的速率,提高接收到的目标BIS音频的质量,使得显示设备实现音画同步,输出音质更高的音频。
S705、控制音频播放组件播放目标BIS音频。
在显示设备接收到目标蓝牙设备发送的目标BIS音频之后,控制音频播放组件播放目标BIS音频,从而满足目标蓝牙设备对应的用户期望显示设备输出目标BIS音频的需求,提升用户体验。
示例性的,沿用上述图9所示的多路投屏的示意图,目标蓝牙设备为蓝牙设备901,显示屏上分屏显示多路投屏数据:投屏画面数据911、投屏画面数据912、投屏画面数据913、投屏画面数据914。进一步的,将图9所示的多路投屏的示意图沿用至图12,如图12所示,为根据本公开实施例一种多路投屏的示意图二,显示设备播放蓝牙设备901发送的目标BIS音频,表现为只有蓝牙设备901对应的投屏区域C1既有画面输出,同时有对应于投屏区域C1所显示画面对应的目标BIS音频输出,其他蓝牙设备对应的投屏区域C2、投屏区域C3,以及投屏区域C4也输出画面,但是没有对应于画面的音频输出,处于静音状态。
综上,本公开提供的BIS音频传输方法,首先接收至少一个蓝牙设备发送的抢麦发生时间,再从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备,在向目标蓝牙设备发送抢麦成功指示之后,接收目标蓝牙设备发送的BIS信道标识,进一步监听BIS信道标识所指示的目标BIS信道,以接收目标BIS音频,再由处理器控制音频播放组件播放目标BIS音频。该显示设备与至少一个蓝牙设备进行交互,并从中确定目标蓝牙设备,接收目标蓝牙设备发送的BIS信道标识,从而只监听目标蓝牙设备对应的目标BIS信道,实现在通过蓝牙广播的交互方式获取手机音频数据时,减少监听所消耗的带宽资源,以剩余更多的带宽资源接收音频数据,提升了接收音频数据的速率和质量,进一步提升了显示设备的播放音质。
如图13所示,图13为根据本公开实施例另一种BIS数据传输方法的流程示意图,该方法应用于显示设备,该方法包括步骤S1301~S1303:
S1301、向显示设备发送抢麦发生时间。
一些实施例中,参考图8,蓝牙设备根据用户触控“抢麦”控件801的操作,触发向显示设备发送抢麦发生时间。
S1302、若接收到显示设备发送的抢麦成功指示,向显示设备发送BIS信道标识。
一些实施例中,在接收到显示设备发送的抢麦成功指示之后,向显示设备发送BIS信道标识,码流数据,解码信息,BIG偏移单元和BIG偏移单元数,以及BIS数量和BIS索引。
S1303、通过BIS信道标识所指示的目标BIS信道,向显示设备发送目标BIS音频,以使得显示设备通过监听BIS信道标识所指示的目标BIS信道接收目标BIS音频。
本公开上述实施例是建立在LE Audio支持非连接状态(广播状态)的立体声的情况下,在BIS模式下实现显示设备和其他蓝牙设备的数据传输。本公开建立在LE Audio支持连接状态的立体声的情况下还提供另一实施例,在该实施例中基于前述实施例提供的显示设备和蓝牙设备,提供一种连接等时间流(Connected Isochronous Stream,CIS)音频传输方法,在CIS模式下实现显示设备和其他蓝牙设备的数据传输。
下面对如何在CIS模式下实现显示设备和其他蓝牙设备的数据传输的实施方式进行介绍。
本公开一些实施例是建立在LE Audio支持连接状态的立体声的情况下,连接状态是指连接等时间流CIS,连接等时间流是一个主机和一个特定从机(Slave,Link Layer)之间的点对点数据传输串流,并且是带有确认的双向通信协议。CIS模式使连接设备之间的逻辑传输能够在ACL(异步连接链路)的任一侧传输数据。每个CIS可以在每个CIS事件上使用固定或可变数据大小以及成帧或未成帧的数据,带有单个或多个数据包。CIS数据流 量在设备之间可单向或双向,它使用协议来提高CIS中数据包传递的可靠性。
显示设备基于低功耗音频(LE Audio)技术中的CIS连接多个蓝牙设备并等待其中某个蓝牙设备发送CIS音频的过程中,通过资源占用量较大的CIS连接多个蓝牙设备来保证数据传输效率,对应的多个CIS连接所消耗的带宽资源较大,然而剩余的带宽资源难以保证高质量的CIS音频传输,从而影响CIS音频传输的音质。
为解决上述技术问题,本公开另一实施例提供一种显示设备,该显示设备包括蓝牙通信组件、处理器,首先通过蓝牙通信组件采用带宽资源占用量小于预设资源量的第一码流数据,与多个蓝牙设备分别建立第一CIS连接;再将通过第一CIS连接所接收到的第一CIS音频进行静音处理,然后,接收目标蓝牙设备通过第一CIS连接发送的第二码流数据,将第一CIS连接的第一码流数据更新为第二码流数据,以建立第二CIS连接,并通过第二CIS连接来接收目标蓝牙设备发送的第二CIS音频,其中第二码流数据对应的带宽资源占用量大于或等于预设资源量;进一步,解除针对第二CIS音频的静音,并控制音频播放组件播放第二CIS音频。该显示设备通过带宽资源占用量较小的第一码流数据与多个蓝牙设备建立第一CIS连接,减少了基于蓝牙CIS连接所耗费的带宽资源,之后更新为通过带宽资源占用量较大的第二CIS连接来接收第二CIS音频,实现通过足够的带宽接收CIS音频,提升CIS音频传输的音质。
参照图3,在本公开另一实施例中,以用户通过控制装置100操作显示设备200为例,用户通过控制装置100打开显示设备200中配置的蓝牙通信组件。首先通过蓝牙通信组件采用带宽资源占用量小于预设资源量的第一码流数据,与多个蓝牙设备分别建立第一CIS连接;再将通过第一CIS连接所接收到的第一CIS音频进行静音处理,然后,接收目标蓝牙设备通过第一CIS连接发送的第二码流数据,将第一CIS连接的第一码流数据更新为第二码流数据,以建立第二CIS连接,并通过第二CIS连接接收目标蓝牙设备发送的第二CIS音频,其中第二码流数据对应的带宽资源占用量大于或等于预设资源量;进一步,解除针对第二CIS音频的静音,并控制音频播放组件播放第二CIS音频。该显示设备通过带宽资源占用量较小的第一码流数据与多个蓝牙设备建立第一CIS连接,减少了基于蓝牙CIS连接所耗费的带宽资源,之后更新为通过带宽资源占用量较大的第二CIS连接接收CIS音频,实现通过足够的带宽接收CIS音频,提升CIS音频传输的音质。
需要说明的是,在本公开另一实施例中,在CIS模式下实现显示设备和其他蓝牙设备的数据传输时,控制装置的配置框图可参照前述实施例中介绍的与图4相关的内容,显示设备的硬件配置框图可参照前述实施例中介绍的与图5相关的内容,这里不再详述。
基于图5所示的显示设备的硬件配置框图,在本公开另一实施例中提供一种显示设备,用于在CIS模式下实现显示设备和其他蓝牙设备的数据传输,该显示设备包括:
显示器,配置为显示来自广播系统或网络的图像,和/或,用户界面;
蓝牙通信组件,被配置为根据蓝牙协议进行通信,例如,可用于与多个蓝牙设备采用第一码流数据分别建立第一CIS连接,通过第一CIS连接接收多个蓝牙设备发送的第一CIS音频,第一码流数据对应的带宽资源占用量小于预设资源量;
存储器,配置为存储计算机指令和数据;
处理器,与所述显示设备、蓝牙通信组件和存储器连接,被配置为执行计算机指令以使得所述显示设备:对通过第一CIS连接接收的第一CIS音频进行静音处理;接收目标蓝牙设备通过第一CIS连接发送的第二码流数据,将第一CIS连接的第一码流数据更新为第 二码流数据,以建立第二CIS连接,通过第二CIS连接接收目标蓝牙设备发送的第二CIS音频,第二码流数据对应的带宽资源占用量大于或等于预设资源量;对通过第二CIS连接发送的CIS音频解除静音,并控制音频播放组件播放第二CIS音频。
需要说明的是,上述蓝牙通信组件能够实现与图5中所示的通信器220中蓝牙模块相同或相似的功能,本公开在此不做赘述。
上述显示设备首先通过资源占用量较小的第一码流数据与多个蓝牙设备建立第一CIS连接,并对通过第一CIS连接接收的CIS进行静音处理,避免显示设备同一时刻输出多个CIS音频,影响用户体验;通过第一CIS连接接收目标蓝牙设备发送的资源占用量较大第二码流数据,并将第一CIS连接的第一码流数据更新为第二码流数据,以建立第二CIS连接,从而能够通过具有较大的带宽量的第二CIS连接,有针对性的接收目标蓝牙设备发送的CIS音频,进一步显示设备对该CIS音频解除静音,从而输出高音质的CIS音频。
可以理解为,消耗较少的带宽资源维持与多个蓝牙设备之间的第一CIS连接,在目标设备发送第二码流数据的情况下,表示目标蓝牙设备期望通过与显示设备的连接输出CIS音频,从而调整为消耗较大的带宽资源建立目标蓝牙设备与显示设备之间的第二CIS连接,从而保证目标蓝牙设备和显示设备之间高品质的CIS音频的传输。另外,能够实现在多路投屏场景中,保障目标蓝牙设备准确输出高质量的CIS音频,避免嘈杂、卡顿等现象,提升用户体验。
作为本公开的一些实施方式,处理器,还用于在第二CIS音频中检测到CIE标志位的值为目标值之后,将第二CIS连接的第二码流数据更新为第一码流数据,以建立显示设备与目标蓝牙设备之间的第一CIS连接。
显示设备还包括:WiFi通信组件,被配置为根据WIFI协议进行通信,例如,在蓝牙通信组件与多个蓝牙设备采用第一码流数据分别建立第一CIS连接之后,接收至少一个蓝牙设备发送的抢麦发生时间;处理器250从至少一个蓝牙设备中确定抢麦发生时间最早的目标蓝牙设备,向目标蓝牙设备发送抢麦成功指示;在向目标蓝牙设备发送抢麦成功指示之后,接收目标蓝牙设备通过第一CIS连接发送的第一CIS音频和第二码流数据,将第一CIS连接的第一码流数据更新为第二码流数据,以建立第二CIS连接,通过第二CIS连接接收目标蓝牙设备发送的第二CIS音频。
显示设备接收多个蓝牙设备发送的投屏画面数据,以接收多路投屏画面数据;控制显示器分屏显示多路投屏画面数据;显示器分屏显示多路投屏画面数据之后,接收多个蓝牙设备中至少一个蓝牙设备发送的抢麦发生时间。
需要说明的是,上述WiFi通信组件能够实现与图5中所示的通信器220中WiFi模块相同或相似的功能,根据WIFI协议可以实现与其他设备进行通信。
本公开一些实施方式,第一码流数据包括:采样率为16khz、帧间隔为10ms、每个帧包含的数据量为40byte、数据速率为32kbps;和/或,第二码流数据包括:采样率为32khz、帧间隔为10ms、每个帧包含的数据量为80byte、数据速率为64kbps。
本公开一些实施方式中,处理器在第二CIS音频中检测到CIE标志位的值为目标值之后,确定目标蓝牙设备的CIS音频传输完成,第二CIS连接所占用的带宽资源被释放;确定当前等时传输时长的剩余时长,控制WiFi通信组件在剩余时长内使用被释放的带宽资源。
本公开一些实施例还提供一种蓝牙设备,用于在CIS模式下实现与显示设备的数据通 信,该蓝牙设备包括:蓝牙通信组件,被配置为:与显示设备采用第一码流数据建立第一CIS连接,通过第一CIS连接向显示设备发送第二码流数据,第一码流数据对应的带宽资源占用量小于预设资源量,第二码流数据对应的带宽资源占用量大于或等于预设资源量;更新为与显示设备采用第二码流数据建立第二CIS连接,通过第二CIS连接向显示设备发送第二CIS音频,以使得显示设备接收并播放通过第二CIS连接发送的第二CIS音频。
上述蓝牙设备首先通过第一码流数据建立与显示设备之间的第一CIS连接,并通过第一CIS连接向显示设备发送第二码流数据,以指示显示设备切换至通过第二码流数据所建立的第二CIS连接,第二CIS连接带宽资源占用量相较于第一CIS连接有所提升,能够在维持显示设备与其他蓝牙设备之间的连接的情况下,保证通过第二CIS连接所传输的CIS音频的音质。
本公开一些实施方式,蓝牙设备还包括:WiFi通信组件,用于在蓝牙通信组件与显示设备采用第一码流数据建立第一CIS连接之后,向显示设备发送抢麦发生时间。蓝牙通信组件在通过WiFi通信组件接收到显示设备发送的抢麦成功指示之后,向显示设备通过第一CIS连接发送第一CIS音频和第二码流数据,更新为与显示设备采用第二码流数据建立第二CIS连接,通过第二CIS连接向显示设备发送第二CIS音频。
在本公开一些实施方式,蓝牙设备向显示设备发送投屏画面数据,以使得显示设备接收和显示投屏画面数据;在向显示设备发送投屏画面数据之后,向显示设备发送抢麦发生时间。
以下将结合流程示意图进行具体说明,可以理解的是,流程示意图中所涉及的步骤在实际实现时可以包括更多的步骤,或者更少的步骤,并且这些步骤之间的顺序也可以不同。
如图14A示,图14A为根据本公开一些实施例的一种CIS音频传输方法的流程示意图一,该方法应用于显示设备,该方法包括下述步骤S1401~S1404:
S1401、与多个蓝牙设备采用第一码流数据分别建立第一CIS连接,通过第一CIS连接接收多个蓝牙设备发送的第一CIS音频。
其中,第一码流数据对应的带宽资源占用量小于预设资源量。第一码流数据中包括:下述至少一项:采样率、帧间隔、每个帧包含的数据量、数据速率。码流数据用于指示显示设备接收并处理后续目标终端设备发送的CIS音频的方式。其中,预设资源量根据实际需要进行设置,本公开在此不做赘述。
一些实施例中,第一码流数据包括采样率为16khz、帧间隔为10ms、每个帧包含的数据量为40byte、数据速率为32kbps,需要说明的是上述第一码流数据的设置仅为示例性的说明,本公开对此不做限定。
如表1所示,表1中示出码流数据中包括的各项参数。
表1

如图15所示,图15为根据本公开一些实施例的码流数据带宽资源占用量的示意图。如图15所示,在码流数据为16_2_1的情况下,带宽资源占用量为11%,可以理解的是,在多路投屏为四路投屏的情况下,通过第一码流数据16_2_1建立四个手机和电视之间的第一CIS连接,那么四个手机连接电视之后占用的带宽资源小于50%。
在一些实施例中,如图14B所示,图14B为根据本公开一些实施例的一种CIS音频传输方法的流程示意图二,步骤S601可以包括下述步骤S1401a~S1401c:
S1401a、通过WiFi通信组件接收至少一个蓝牙设备发送的抢麦发生时间。
S1401b、从所述至少一个蓝牙设备中确定所述抢麦发生时间最早的目标蓝牙设备。
S1401c、向所述目标蓝牙设备发送抢麦成功指示。
其中,抢麦发生时间以及在多路投屏技术中,根据抢麦发生时间确定目标蓝牙设备的说明可参照前述实施例,这里不再详述。
S1402、对通过第一CIS连接接收的第一CIS音频进行静音处理。
一些实施例中,显示设备由蓝牙通信组件接收多个蓝牙设备通过第一CIS连接发送的CIS音频,可以理解的是,在多人一起打游戏并在显示设备上进行多路投屏的场景中,多个蓝牙设备连接显示设备,则显示设备会均匀分配带宽资源来接收这多个蓝牙设备发送CIS音频,需要连接的蓝牙设备数量较多但是总带宽资源是有限的,这样要求每个蓝牙设备对应的带宽资源较小,如前述通过第一码流数据16_2_1建立四个手机和电视之间的第一CIS连接,那么针对四个手机(作为蓝牙设备)连接电视(作为显示设备)的场景,在连接之后占用的带宽资源小于50%,从而保证多路投屏的可实现性。
由于第一CIS连接所占用的带宽资源较小,显示设备通过第一CIS连接直接接收多个蓝牙设备发送的CIS音频时,难以保证接收CIS音频的效率以及接收到的CIS音频的音质,会出现时延较大、噪声等状况,因此在显示设备通过第一CIS连接接收到多个蓝牙设备发送的CIS音频之后,对CIS音频进行静音处理,从而避免输出该CIS音频给用户带来延时、噪声等困扰,提升用户的使用体验感。可以理解为,显示设备针对多个蓝牙设备通过第一CIS发送的CIS音频不输出、不播放。
示例性的,如图9所示,显示设备仅显示多路投屏数据,静音处理通过第一CIS连接所接收到的第一CIS音频,也就是并不输出各个通过第一CIS连接所接收到的第一CIS音频。
S1403、接收目标蓝牙设备通过第一CIS连接发送的第二码流数据,将所述第一CIS连接的第一码流数据更新为所述第二码流数据,以建立第二CIS连接,通过第二CIS连接 接收目标蓝牙设备发送的第二CIS音频。
其中,第二码流数据对应的带宽资源占用量大于或等于预设资源量。
需要说明的是,本公开提供的显示设备基于LE Audio的CIS技术为减少CIS音频传输过程中的时延以及保证显示设备音画同步,可以保持显示设备和目标蓝牙设备之间的CIS连接,接收到第二码流数据后并不是断开第一CIS连接重新建立第二CIS连接,而是利用通过第一CIS连接发送的第二码流数据,将之前的第一码流数据进行更新,从而将第一CIS连接更新为第二CIS连接,可以理解为显示设备和目标蓝牙设备之间一致保持连接状态,从而减少了断开重新连接所消耗的时间,能够提升CIS音频传输的效率,从而实现更好的音画同步效果。
一些实施例中,第二码流数据中可以包括:采样率为32khz、帧间隔为10ms、每个帧包含的数据量为80byte、数据速率为64kbps。如表1所示,第二码流数据中包括的各项参数还可以设置为其他数值。需要说明的是,第二码流数据大于第一码流数据,以保证足够的带宽传输高品质的CIS音频。
一些实施例中,参考图14B,步骤S1403可以是在步骤S1401c之后,在另外一些实施方式中,在向所述目标蓝牙设备发送抢麦成功指示之后,接收所述目标蓝牙设备通过所述第一CIS连接发送的第二码流数据,将第一CIS连接的第一码流数据更新为第二码流数据,以建立第二CIS连接,通过所述第二CIS连接接收所述目标蓝牙设备发送的CIS音频。
S1404、对通过第二CIS连接发送的CIS音频解除静音,并控制音频播放组件播放第二CIS音频。
显示设备起初对通过第一CIS连接发送的第一CIS音频都进行了静音处理,在目标蓝牙设备通过第二CIS连接发送第二CIS音频之后,显示设备首先利用第二码流数据通过第二CIS连接接收第二CIS音频,然后对该第二CIS音频进行解除静音处理的操作,以避免音质跳变产生爆破音,进一步控制音频播放组件播放该CIS音频,保证用户良好的视听体验。
沿用前例,如图16A所示,图16A为根据本公开一些实施例的播放第二CIS音频的示意图。图16A中显示设备对蓝牙设备901通过第二CIS连接发送的第二CIS音频解除静音,控制显示设备配置的音频播放组件对第二CIS音频进行播放,而其他蓝牙设备902、蓝牙设备903和蓝牙设备904仍通过第一CIS连接与显示设备连接,对这些蓝牙设备通过第二CIS连接发送的第一CIS音频仍保持静音处理。
一些实施例中,在通过第二CIS连接接收的第二CIS音频中检测到CIE标志位的值为目标值之后,确定目标蓝牙设备的CIS音频传输完成,第二CIS连接所占用的带宽资源被释放;
图16B为CIS协议头的数据结构示意图。如图16B所示,CIS中包括:前导码91、访问地址92、协议数据单元93以及循环冗余校验码(Cyclic Redundancy Checksum,CRC)94。
其中,前导码91的数据位数量为1或2个八位字节(Octets),访问地址92的数据位数量为4Octets,协议数据单元93的数据位数量为2-257个Octets,CRC的数据位数量为3Octets。协议数据单元93包括:协议头(header)931、有效载荷(payload)932以及消息完整性检查码(Messages Integrity Check,MIC)933。其中,协议头931的数据位数量为16比特(bit),有效载荷932的数据位数量为0-251Octets,当通过LE 1M PHY25(符 码率(symbol rate)为1Msps的低功耗标准)传输时,消息完整性检查码933的数据位数量为10或14Octets,当通过LE 2M PHY25(符码率为2Msps的低功耗标准)传输时,消息完整性检查码933的数据位数量为11或15Octets,且消息完整性检查码933的数据位数量取决于协议数据单元93的有效载荷中是否包含消息完整性检查。
协议数据单元93的协议头931进一步包括:PDU类型标识(LLID)、下一个预期序列号(Next Expected Sequence Number,NESN)、序列号(Sequence Number,SN)、关闭同步事件位(CIE)、保留数据位(Reserved for Future Use,RFU)以及Y有效长度(Length)。其中,CIS连接传输的CIS有两类,一类是数据,称作LL Data PDU,另一类中控制信息,称作LL Control PDU;LLID用于区分CIS的类型为数据或控制信息;NESN和SN,用于CIS传输过程中的应答(Acknowledgement)和数据流控制(Flow Control);有效长度用于表示有效数据的数据位数量(有效载荷与MIC的数据位数量之和)。
其中,关闭同步事件位(CIE)是CIS音频协议头中携带的数据标志位。CIE标志位的值为1时表示此次CIS音频发送完成,CIE标志位的值为0时表示此次CIS音频未发送完成。CIE标志位的值为目标值,也就是CIE标志位的值是1的情况下,确定此次CIS音频发送完成。
进一步,确定当前等时传输时长的剩余时长,控制WiFi通信组件在剩余时长内使用被释放的带宽资源。可以理解为显示设备在一个传输周期内已经完成对CIS音频的接收,则释放显示设备配置的蓝牙通信组件所占用的带宽资源,便于WiFi通信组件在这传输周期所剩余的时长内利用这部分带宽资源进行投屏画面数据的传输,从而提升了带宽资源的利用率,更进一步的保证显示设备音画同步。
一些实施例中,在第二CIS音频中检测到CIE标志位的值为目标值之后,确定目标蓝牙设备的CIS音频传输完成,则将显示设备与目标蓝牙设备之间建立的第二CIS连接的第二码流数据更新为第一码流数据,以建立显示设备与目标蓝牙设备之间的第一CIS连接。可以理解为,在通过第二CIS连接完成对此次第二CIS音频的传输之后,更新回到之前带宽资源占用量较小的第一CIS连接,以便于其他蓝牙设备向显示设备传输CIS音频。
根据本公开一些实施方式的CIS音频传输方法,首先采用带宽资源占用量小于预设资源量的第一码流数据,与多个蓝牙设备分别建立第一CIS连接;再将通过第一CIS连接所接收到的第一CIS音频进行静音处理,通过带宽资源较小的第一CIS连接接收到的第一CIS音频可能存在延迟大、音质差的问题,为避免影响用户体验,对通过第一CIS连接所接收到的第一CIS音频进行静音处理。然后,接收目标蓝牙设备通过第一CIS连接发送的第二码流数据,将第一CIS连接的第一码流数据更新为第二码流数据,以建立的第二CIS连接,并通过第二CIS连接接收目标蓝牙设备发送的第二CIS音频,其中第二码流数据对应的带宽资源占用量大于或等于预设资源量;进一步,解除针对第二CIS音频的静音,并控制音频播放组件播放第二CIS音频。该显示设备先通过带宽资源占用量较小的第一码流数据与多个蓝牙设备建立第一CIS连接,减少了基于蓝牙CIS连接所耗费的带宽资源,之后更新为通过带宽资源占用量较多的第二CIS连接接收第二CIS音频,一方面保持目标显示设备和蓝牙设备之间的CIS连接,避免断开重新连接所造成的时延,另一方面将带宽资源占用量较小的第一CIS连接更新为带宽资源占用量较多的第二CIS连接,实现通过足够的带宽接收CIS音频,提升了CIS音频传输的音质。
如图17所示,图17为根据本公开实施例中的另一种CIS音频传输方法的流程示意图, 应用于蓝牙设备,该方法包括下述步骤S1701~S1702:
S1701、与显示设备采用第一码流数据建立第一CIS连接,通过第一CIS连接向显示设备发送第一CIS音频和第二码流数据。
其中,第一码流数据对应的带宽资源占用量小于预设资源量,第一码流数据包括:采样率为16khz、帧间隔为10ms、每个帧包含的数据量为40byte、数据速率为32kbps;
第二码流数据对应的带宽资源占用量大于或等于预设资源量。第二码流数据包括:采样率为32khz、帧间隔为10ms、每个帧包含的数据量为80byte、数据速率为64kbps。
S1702、更新为与显示设备采用第二码流数据建立第二CIS连接,通过第二CIS连接向显示设备发送第二CIS音频,以使得显示设备接收并播放通过第二CIS连接发送的第二CIS音频。
需要说明的是,上述方法中的具体实施方式可参考前述实施例中的实施方式,在此不做赘述。
如图18所示,图18为根据本公开实施例中的一种CIS音频传输方法的流程示意图三,该方法包括下述步骤S1801~S1812:
S1801、蓝牙设备通过WiFi通信组件发送投屏画面数据。
S1802、显示设备接收投屏画面数据,并控制显示器显示投屏画面数据。
S1803、显示设备通过蓝牙通信组件与显示设备采用第一码流数据建立第一CIS连接。
S1804、蓝牙设备通过第一CIS连接向显示设备发送第一CIS音频。
S1805、显示设备对通过第一CIS连接接收的第一CIS音频进行静音处理。
S1806、蓝牙设备通过WiFi通信组件向显示设备发送抢麦发生时间。
S1807、显示设备根据抢麦发生时间确定蓝牙设备为目标蓝牙设备。
S1808、显示设备向目标蓝牙设备发送抢麦成功指示。
S1809、蓝牙设备在通过所述WiFi通信组件接收到显示设备发送的抢麦成功指示之后,并通过第一CIS连接向显示设备发送第二码流数据。
S1810、显示设备接收第二码流数据,将第一CIS连接的第一码流数据更新为第二码流数据,以建立第二CIS连接。
S1811、蓝牙设备通过第二CIS连接发送第二CIS音频;
S1812、显示设备对通过第二CIS连接接收的第二CIS音频解除静音,并控制音频播放组件进行播放。
本公开实施例提供一种计算机可读的非易失性存储介质,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现上述BIS数据传输方法执行的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,上述计算机可读存储介质可以为只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
为了方便解释,已经结合具体的实施方式进行了上述说明。但是,上述在一些实施例中讨论不是意图穷尽或者将实施方式限定到上述公开的具体形式。根据上述的教导,可以得到多种修改和变形。上述实施方式的选择和描述是为了更好的解释原理以及实际的应用,从而使得本领域技术人员更好的使用实施方式以及适于具体使用考虑的各种不同的变形的实施方式。

Claims (9)

  1. 一种显示设备,包括:
    显示器,被配置为显示来自广播系统和网络的图像和/或用户界面;
    音频播放组件,被配置为:播放音频;
    WiFi通信组件,被配置为根据WIFI协议与外部设备通信;
    蓝牙通信组件,被配置为根据蓝牙协议与外部设备通信;
    存储器,被配置为存储计算机指令和数据;
    处理器,与所述显示器,音频播放组件,WIFI通信组件,蓝牙通信组件和存储器连接,被配置为执行计算机指令以使得所述显示设备:
    从所述至少一个蓝牙设备中确定所述抢麦发生时间最早的目标蓝牙设备;
    向所述目标蓝牙设备发送抢麦成功指示,并在发送所述抢麦成功指示之后,接收所述目标蓝牙设备发送的同步广播串流BIS信道标识;
    监听所述BIS信道标识所指示的目标BIS信道,以接收目标BIS音频;
    控制所述音频播放组件播放所述目标BIS音频。
  2. 根据权利要求1所述的显示设备,所述处理器进一步配置为执行计算机指令以使得所述显示设备:
    接收多个蓝牙设备发送的投屏画面数据,以接收多路投屏画面数据;
    控制所述显示器分屏显示所述多路投屏画面数据;
    接收所述多个蓝牙设备中至少一个蓝牙设备发送的抢麦发生时间。
  3. 根据权利要求1所述的显示设备,所述处理器进一步配置为执行计算机指令以使得所述显示设备:
    在发送所述抢麦成功指示之后,接收所述目标蓝牙设备发送的码流数据;
    监听所述BIS信道标识所指示的目标BIS信道,并根据所述码流数据接收所述目标BIS音频。
  4. 根据权利要求1所述的显示设备,所述处理器进一步配置为执行计算机指令以使得所述显示设备:
    在发送所述抢麦成功指示之后,接收所述目标蓝牙设备发送的解码信息;
    监听所述BIS信道标识所指示的目标BIS信道,以接收第一BIS音频,对所述第一BIS音频进行解密,得到解密后的所述目标BIS音频。
  5. 根据权利要求1所述的显示设备,所述处理器进一步配置为执行计算机指令以使得所述显示设备:
    在发送所述抢麦成功指示之后,接收所述目标蓝牙设备发送的同步广播组BIG偏移时间单元和BIG偏移单元数;
    根据所述BIG偏移时间单元和BIG偏移单元数,确定所述目标BIS音频中接收第一个BIS音频数据包的锚点位置;
    监听所述BIS信道标识所指示的目标BIS信道,根据所述锚点位置接收所述目标BIS音频。
  6. 根据权利要求5所述的显示设备,所述处理器进一步配置为执行计算机指令以使得所述显示设备:
    根据所述BIG偏移时间单元和BIG偏移单元数,确定BIG偏移时长,确定接收所述目标BIS音频中第一个BIS音频数据包的锚点位置处于BIG偏移时长之后;
    或,
    根据所述BIG偏移时间单元和BIG偏移单元数,确定BIG偏移时长,根据所述BIG偏移时长和预设偏移时长,确定接收所述目标BIS音频中第一个BIS音频数据包的锚点位置处于BIG偏移时长之后的预设偏移时长内。
  7. 根据权利要求1所述的显示设备,所述处理器进一步配置为执行计算机指令以使得所述显示设备:
    在发送所述抢麦成功指示之后,接收所述目标蓝牙设备发送的BIS数量和BIS索引;
    根据所述BIS数量和所述BIS索引,确定所述目标BIS音频在BIG中的位置;
    监听所述BIS信道标识所指示的目标BIS信道,并根据所述目标BIS音频在BIG中的位置,接收所述目标BIS音频。
  8. 一种蓝牙设备,包括:
    WiFi通信组件,被配置为:向显示设备发送抢麦发生时间;在发送所述抢麦发生时间之后,若接收到所述显示设备发送的抢麦成功指示,向所述显示设备发送BIS信道标识;
    蓝牙通信组件,被配置为:通过所述BIS信道标识所指示的目标BIS信道,向所述显示设备发送目标BIS音频,以使得显示设备通过监听所述BIS信道标识所指示的目标BIS信道接收目标BIS音频。
  9. 一种用于显示设备的数据处理方法,包括:
    从所述至少一个蓝牙设备中确定所述抢麦发生时间最早的目标蓝牙设备;
    向所述目标蓝牙设备发送抢麦成功指示,并在发送所述抢麦成功指示之后,接收所述目标蓝牙设备发送的同步广播串流BIS信道标识;
    监听所述BIS信道标识所指示的目标BIS信道,以接收目标BIS音频;
    控制所述音频播放组件播放所述目标BIS音频。
PCT/CN2023/085056 2022-06-30 2023-03-30 显示设备、蓝牙设备和数据处理方法 WO2024001362A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210771002.5A CN115278324B (zh) 2022-06-30 2022-06-30 一种显示设备、蓝牙设备和bis音频传输方法
CN202210772655.5 2022-06-30
CN202210772655.5A CN115278926A (zh) 2022-06-30 2022-06-30 一种显示设备和cis音频传输方法
CN202210771002.5 2022-06-30

Publications (2)

Publication Number Publication Date
WO2024001362A1 WO2024001362A1 (zh) 2024-01-04
WO2024001362A9 true WO2024001362A9 (zh) 2024-02-08

Family

ID=89382681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085056 WO2024001362A1 (zh) 2022-06-30 2023-03-30 显示设备、蓝牙设备和数据处理方法

Country Status (1)

Country Link
WO (1) WO2024001362A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096412A1 (ko) * 2018-11-08 2020-05-14 엘지전자 주식회사 블루투스 기술을 이용하여 오디오 데이터를 수신하기 위한 방법 및 이에 대한 장치
WO2020213959A1 (ko) * 2019-04-16 2020-10-22 엘지전자 주식회사 블루투스 기술을 이용하여 오디오 데이터를 수신하기 위한 방법 및 이에 대한 장치
CN110381197B (zh) * 2019-06-27 2021-06-15 华为技术有限公司 多对一投屏中音频数据的处理方法、装置及系统
CN111913683A (zh) * 2020-06-28 2020-11-10 深圳市鸿合创新信息技术有限责任公司 一种多路声音控制方法、设备、电子设备及存储介质
CN111935555B (zh) * 2020-08-20 2022-01-04 腾讯科技(深圳)有限公司 一种直播互动方法、装置、系统、设备及存储介质
CN113766305A (zh) * 2021-09-27 2021-12-07 海信视像科技股份有限公司 显示设备及镜像投屏音频输出控制方法
CN115278324B (zh) * 2022-06-30 2024-07-23 海信视像科技股份有限公司 一种显示设备、蓝牙设备和bis音频传输方法

Also Published As

Publication number Publication date
WO2024001362A1 (zh) 2024-01-04

Similar Documents

Publication Publication Date Title
CN103368935B (zh) 在Wi-Fi显示网络中提供增强Wi-Fi显示会话的方法和装置
US20220263883A1 (en) Adaptive audio processing method, device, computer program, and recording medium thereof in wireless communication system
WO2014166243A1 (zh) 一种多终端多声道独立播放方法及装置
US20220321368A1 (en) Method, device, computer program, and recording medium for audio processing in wireless communication system
CN111527733A (zh) 控制双模蓝牙低能耗多媒体装置
US20240264798A1 (en) Method, device and computer program for controlling audio data in wireless communication system, and recording medium therefor
EP3979679A1 (en) Method, apparatus and computer program for broadcast discovery service in wireless communication system, and recording medium therefor
WO2024114434A1 (zh) 通过无线信道实现uac和uvc设备远程连接的系统和方法
US11647332B2 (en) Bluetooth communication system capable of avoiding voice interruption, and related Bluetooth device set
EP4057565A1 (en) Method, apparatus, and computer program for setting encryption key in wireless communication system, and recording medium for same
US12041432B2 (en) Method, device, and computer program for controlling and managing state of peripheral device in wireless communication system, and recording medium therefor
CN110149620A (zh) 一种智能耳机的控制方法、装置,智能耳机及存储介质
CN115278324B (zh) 一种显示设备、蓝牙设备和bis音频传输方法
WO2024001362A9 (zh) 显示设备、蓝牙设备和数据处理方法
US11907613B2 (en) Method, device, and computer program for audio routing in wireless communication system, and recording medium therefor
CN115278926A (zh) 一种显示设备和cis音频传输方法
CN109818979A (zh) 一种实现音频回传的方法、装置、设备及存储介质
US12101614B2 (en) Bluetooth communication system capable of avoiding voice interruption, and related Bluetooth device set
EP4106373A1 (en) Method, device and computer program for cloud-authenticated pairing in wireless communication system, and recording medium therefor
WO2023035630A1 (zh) 一种音频控制方法及显示设备
TW202234867A (zh) 傳輸音頻資料的方法
CN118488527A (zh) 无线音频数据传输方法、装置及电子设备
CN117793648A (zh) 一种音频组播方法、装置、系统、计算机设备及存储介质
CN117242758A (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829552

Country of ref document: EP

Kind code of ref document: A1