WO2024001180A1 - 一种岩溶洞穴内二氧化碳的浓度监测装置 - Google Patents

一种岩溶洞穴内二氧化碳的浓度监测装置 Download PDF

Info

Publication number
WO2024001180A1
WO2024001180A1 PCT/CN2023/073639 CN2023073639W WO2024001180A1 WO 2024001180 A1 WO2024001180 A1 WO 2024001180A1 CN 2023073639 W CN2023073639 W CN 2023073639W WO 2024001180 A1 WO2024001180 A1 WO 2024001180A1
Authority
WO
WIPO (PCT)
Prior art keywords
air inlet
carbon dioxide
concentration
air outlet
gas
Prior art date
Application number
PCT/CN2023/073639
Other languages
English (en)
French (fr)
Inventor
荆铁亚
周娟
朱明宇
张健
赵文韬
尹玉龙
刘练波
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024001180A1 publication Critical patent/WO2024001180A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • this application provides a carbon dioxide concentration monitoring device in a karst cave for real-time monitoring of the carbon dioxide concentration in a karst cave.
  • a carbon dioxide concentration monitoring device in a karst cave used for real-time monitoring of the carbon dioxide concentration in a karst cave.
  • the concentration monitoring device includes a box and a power supply unit, and also includes a data collector and a two-digit data collector installed in the box.
  • the data collector is connected to the power supply unit through a power cord, and is respectively connected to the two-position three-way solenoid valve, the gas detector, and the drive pump for outputting switching control signals, detection control signals, and
  • the driving control signal is also used to receive the concentration signal output by the gas detector and feedback the concentration information of the carbon dioxide to the user based on the concentration signal;
  • the two-position three-way solenoid valve includes an air inlet, a first air outlet and a second air outlet, and is used to connect the air inlet to the first air outlet or the first air outlet based on the switching control signal.
  • the second air outlet is connected, and the first air inlet is connected with the outside of the box through a pipeline;
  • the calibration branch is provided with a calibration air inlet and a calibration air outlet for outputting reference air from the standard air outlet to the gas when the second air outlet is connected to the air inlet.
  • a detector to enable the gas detector to perform zero setting;
  • the gas detector is provided with a detection air inlet, a standard air inlet and an exhaust port, the detection air inlet is connected to the first air outlet, and the standard air inlet is connected to the calibration air outlet, The gas detector is used to detect the concentration of carbon dioxide in the gas flowing through based on the detection control signal to obtain the concentration signal;
  • the air inlet of the driving pump is connected to the exhaust port, and the air outlet of the driving pump is connected to the outside of the box through a pipeline.
  • the driving pump is used to transfer the exhaust gas based on the driving control signal.
  • the gas exhaust from the port is drawn to the outside of the box.
  • the calibration branch includes a carbon dioxide adsorption tank, where:
  • the air inlet of the carbon dioxide adsorption tank is connected to the calibrated air inlet, and the air outlet is connected to the calibrated air outlet.
  • the calibration branch also includes a two-position two-way solenoid valve, in which:
  • the two-position two-way solenoid valve is connected to the data collector for receiving the calibration control signal output by the data collector.
  • the air inlet of the two-position two-way solenoid valve is connected to the outlet of the carbon dioxide adsorption tank.
  • the air port is connected, and the air outlet of the two-position two-way solenoid valve is connected with the calibrated air outlet.
  • the driving pump is a membrane pump.
  • a check valve arranged outside the box, wherein:
  • the air inlet of the check valve is connected with the air outlet of the drive pump.
  • a temperature sensor arranged outside the box, wherein:
  • the temperature sensor is connected to the data collector for detecting the temperature in the karst cave and outputting a temperature signal to the data collector so that the data collector obtains the temperature signal based on the temperature signal. Describe the temperature information in the karst cave and send the temperature information to the user.
  • a humidity sensor arranged outside the box, wherein:
  • the humidity sensor is connected to the data collector for detecting the humidity in the karst cave and outputting a humidity signal to the data collector so that the data collector obtains the desired humidity based on the humidity signal. Describe the humidity information in the karst cave and send the humidity information to the user.
  • a gas collection protective head arranged outside the box, wherein:
  • the other collection protection heads are connected to the air inlet through pipelines and are used to filter the air entering the two-position three-way solenoid valve.
  • filters which:
  • the filter is disposed on a pipeline connecting the gas collection protective head and the air inlet, and is used to further filter the air.
  • a condenser which:
  • the filter is disposed on a pipeline connecting the gas collection protective head and the air inlet, and is used to filter water vapor in the air.
  • this application discloses a carbon dioxide concentration monitoring device in a karst cave, used for real-time monitoring of the carbon dioxide concentration in a karst cave, including a box and a power supply unit, and also includes a device installed in the box In vivo data collector, two-position three-way solenoid valve, gas detector, calibration branch and drive pump.
  • the gas detector detects the concentration of carbon dioxide in the gas extracted from the karst cave.
  • the concentration information of carbon dioxide is obtained through the data collector and the concentration information is sent to the user, thereby realizing the detection of carbon dioxide in the karst cave.
  • the concentration is monitored in real time.
  • Figure 1 is a block diagram of a carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application
  • Figure 2 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application
  • Figure 3 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application
  • Figure 4 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application
  • Figure 5 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application.
  • Figure 6 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application.
  • Figure 7 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application.
  • Figure 8 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application.
  • Figure 9 is a block diagram of another carbon dioxide concentration monitoring device in a karst cave according to an embodiment of the present application.
  • This embodiment provides a carbon dioxide concentration monitoring device in a karst cave.
  • the concentration monitoring device is used to be installed in a karst cave to monitor the concentration of carbon dioxide in real time and to pass the monitored carbon dioxide concentration information through Sent to users via wireless or wired communication.
  • the concentration monitoring device includes a box 100 and a power supply unit 51.
  • the power supply unit is used to provide power supply to each electrical device in the device.
  • the box is equipped with a data collector 11, a two-position three-way solenoid valve 23, a gas detector 21, a calibration branch 20 and a driving pump 34.
  • the data collector is connected to the power supply unit through the power cord and the aviation plug 101, and is used to receive the electric energy output by the power supply unit and work based on the electric energy.
  • the data collector is also connected to the two-position three-way solenoid valve, gas detector, and drive pump through signal lines to output switching control signals, detection control signals, and drive control signals respectively.
  • the two-position three-way solenoid valve includes an air inlet 231, a first air outlet 232 and a second air outlet 233, and is used to connect the air inlet and the first air outlet based on the switching control signal output by the data collector. Or the second air outlet is connected, and the first air inlet is connected with the outside of the box through the pipeline and the aviation plug 102, so that the air inlet can suck air under power drive.
  • the calibration branch is provided with a calibration air inlet 201 and a calibration air outlet 202, which are used to output the reference air from the standard air outlet to the gas detector when the second air outlet is connected to the air inlet, so that the gas detector Perform zero point setting.
  • the correction branch is used to artificially remove carbon dioxide from the air discharged from the second air outlet, obtain a reference gas and send it to the gas detector, so that the gas detector performs calibration on other detectors based on a fixed period or based on artificial instructions. Perform zero point setting.
  • the gas detector is provided with a detection air inlet 211, a standard air inlet 213 and an exhaust gas port 212.
  • the detection air inlet is connected to the first air outlet, and the standard air inlet is connected to the calibration air outlet.
  • the gas detector is used to detect based on the above
  • the control signal detects the concentration of carbon dioxide in the gas flowing through it, obtains a concentration signal, and outputs the concentration signal to the above-mentioned data collector.
  • the gas collector obtains concentration information based on the concentration signal and sends the concentration information to the user.
  • the gas flowing through it here refers to the gas that enters from the detection air inlet and is discharged from the exhaust port.
  • the air inlet 341 of the driving pump is connected to the exhaust port, and the air outlet 341 of the driving pump is connected to the outside of the box through the pipeline and via the aviation plug 103.
  • the driving pump is used to extract the gas discharged from the exhaust port to the box based on the driving control signal. outside of the body. That is, the driving pump provides driving force for the gas in the entire concentration monitoring device, and the driving pump is preferably a membrane pump.
  • this embodiment provides a carbon dioxide concentration monitoring device in a karst cave, used for real-time monitoring of the carbon dioxide concentration in a karst cave, including a box and a power supply unit, and also includes a device installed in the box In vivo data collector, two-position three-way solenoid valve, gas detector, calibration branch and drive pump.
  • the gas detector detects the concentration of carbon dioxide in the gas extracted from the karst cave.
  • the concentration information of carbon dioxide is obtained through the data collector and the concentration information is sent to the user, thereby realizing the detection of carbon dioxide in the karst cave.
  • the concentration is monitored in real time.
  • the calibration branch in this embodiment includes a carbon dioxide adsorption tank 22, as shown in Figure 2, and a two-position two-way solenoid valve 24, as shown in Figure 3.
  • the air inlet of the carbon dioxide adsorption tank is connected to the calibrated air inlet, and the air outlet is connected to the calibrated air outlet.
  • the air inlet of the two-position three-way solenoid valve is connected to the second air inlet, the carbon dioxide will pass through the air inlet.
  • the carbon dioxide in the air in the adsorption tank is adsorbed, which contains limestone, caustic soda or polymer adsorption materials.
  • the two-position, two-way solenoid valve is disposed on a pipeline connecting the air outlet of the carbon dioxide adsorption tank and the calibrated air outlet. Specifically, it can be understood that the air inlet of the two-position, two-way solenoid valve is connected to the air outlet of the carbon dioxide adsorption tank. , the air outlet is connected with the calibrated air outlet. And the two-position two-way solenoid valve is connected to the data collector and is used to receive the calibration control signal output by the data collector. The calibration control signal is used to control the opening and closing of the two-position two-way solenoid valve.
  • the concentration monitoring device also includes a check valve 35.
  • the check valve is configured The pipeline used to connect the drive pump with the outside of the box is placed inside or outside the box. Generally speaking, the installation position shown in Figure 4 is placed outside the box.
  • the concentration monitoring device in this embodiment is also equipped with a temperature sensor 411. As shown in Figure 5, the temperature sensor is placed outside the box and connected to the data collector for detecting the temperature in the karst cave. , and output the temperature signal to the data collector. The data collector can obtain the temperature information in the karst cave based on the temperature signal and send the humidity information to the user.
  • the concentration monitoring device in this embodiment is also equipped with a humidity sensor 412.
  • the humidity sensor is placed outside the box and connected to the data collector for detecting the humidity in the karst cave. , and output the humidity signal to the data collector.
  • the data collector can obtain the humidity information in the karst cave based on the humidity signal and send the humidity information to the user.
  • the concentration monitoring device in this embodiment also includes a gas collection protective head 33 arranged outside the box, as shown in FIG. 7 .
  • the other collection protection heads are connected to the air inlet through pipelines and are used to filter the air entering the two-position three-way solenoid valve.
  • the concentration monitoring device in this embodiment also includes a filter 32.
  • the filter is provided on the pipeline connecting the air inlet of the gas collection protective head and the two-position three-way solenoid valve. Used to further filter the air.
  • the concentration monitoring device in this embodiment also includes a water condenser 31.
  • the filter is provided on the pipeline connecting the air inlet of the gas collection protective head and the two-position three-way solenoid valve. , used to filter water vapor in the air.
  • the concentration monitoring device of this application uses a relative measurement method to achieve online measurement of carbon dioxide gas concentration.
  • the measurement process is as follows:
  • the carbon dioxide gas in the karst cave enters the interior of the device through the gas path unit of the device, and the air enters the trachea through the exposed gas collection protective head 33.
  • the gas collection protective head can effectively prevent large particles from the outside from entering the gas pipe and play a role in gas filtration.
  • outside air enters the inside of the device through the aviation plug of the device, and is filtered by small particles through the filter 32, which can effectively filter out dust in the gas.
  • the filtered air enters the air inlet end of the condenser 31, which is a single to the intake valve,
  • the moisture in the air can be condensed through condensation and gravity, and the dry air can be discharged into the trachea, and the dry gas can enter the gas detection unit along the trachea.
  • the two-position three-way solenoid valve 23 and the two-position two-way solenoid valve 24 are responsible for switching the air path.
  • the air inlet 231 of the two-position three-way solenoid valve is connected to the first air outlet 232.
  • the inlet and outlet of the two-position two-way solenoid valve 24 are in a blocked state; when the power is on, the air inlet and the second air outlet of the two-position three-way solenoid valve are connected, and the two-position three-way solenoid valve 24 is in a blocked state.
  • the air inlet and outlet of the two-way solenoid valve are connected and in a braking state; this structure is mainly used to protect the carbon dioxide adsorption tank from contact with outside air and causing failure when it is open.
  • the air inlet of the two-position three-way solenoid valve is connected to the second air outlet, and the air enters the carbon dioxide adsorption tank through the pipeline, so that the carbon dioxide contained in the air passes through soda lime, etc.
  • Chemicals are adsorbed, and air with zero carbon dioxide concentration enters the inlet of the two-position two-way solenoid valve, is discharged from its outlet, and enters the standard air inlet of the gas detector through the trachea.
  • the gas detector realizes the detection of carbon dioxide through infrared spectrum absorption. The concentration of gas is detected, and the concentration of carbon dioxide gas detected in this test is determined to be 0, which is used as the zero point of the relative detection method.
  • the detected gas is discharged through the exhaust port of the gas detector and discharged into the air through the diaphragm pump, the aviation plug of the device housing, and the check valve.
  • the membrane pump is a one-way pump that provides power for gas in the pipeline.
  • the selection of the membrane pump is related to the gas flow rate of the entire pipeline and needs to match the adsorption speed of the carbon dioxide adsorption tank and the detection speed of the gas detector.
  • Check valves are one-way valves installed here to allow gas within the device to escape while preventing gas from entering.
  • the two-position three-way solenoid valve of the gas detection unit is responsible for switching the gas path. Air enters through the air inlet and is discharged from the first air outlet. In the gas pending state, air enters the gas through the pipe. At the detection gas port of the detector, the gas detector detects the concentration of carbon dioxide in the gas to be measured through infrared spectrum absorption, and determines that this detection result is compared with the previous zero-standard detection result as this absorption spectrum intensity detection The result is the concentration of carbon dioxide gas in the air. The detected gas is discharged to the device according to (2) outside the atmosphere.
  • the system control unit is composed of a data collector.
  • the data collector mainly completes the conversion of voltage amplitude, switching of gas circuits, control of gas detectors and data storage.
  • the main body of the data collector is STMicroelectronics' STM32F103 microcontroller. This chip has the characteristics of ultra-low power consumption and is suitable for the monitoring needs of this patent. It has many pins at the same time and is suitable for the control and collection work of this system.
  • the data collector includes a 9 ⁇ 18V to 12V voltage stabilizing chip, a 12V to 5V and a 5V to 3.3V module to realize 12V voltage stabilization of external broadband power supply and output of 5V and 3.3V power supply.
  • the data collector communicates with the gas monitor through the serial port to implement zero point setting, gas concentration detection and other tasks. All monitoring data is stored in SD card.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种岩溶洞穴内二氧化碳的浓度监测装置,用于对岩溶洞穴内二氧化碳浓度进行实时监测,包括箱体(100)和电源单元(51),还包括设置在箱体(100)内的数据采集器(11)、二位三通电磁阀(23)、气体检测器(21)、校准支路(20)和驱动泵(34)。通过驱动泵(34)的驱动,使得该气体检测器(21)对从岩溶洞穴内抽取的气体中二氧化碳的浓度进行检测,经由数据采集器(11)得到二氧化碳的浓度信息并将浓度信息发送给用户,从而实现对岩溶洞穴内二氧化碳的浓度进行实时监测。

Description

一种岩溶洞穴内二氧化碳的浓度监测装置 技术领域
本申请要求于2022年06月30日提交中国专利局、申请号为202210761974.6、发明名称为“一种岩溶洞穴内二氧化碳的浓度监测装置”的国内申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
实现“碳达峰、碳中和”,是以习近平同志为核心的党中央经过深思熟虑作出的重大战略决策,事关中华民族永续发展和构建人类命运共同体。目前,越来越多的学者开始对碳循环进行深入的研究,包括对土壤、洞穴空气、地下河中二氧化碳气体浓度与季节变化、天气变化、气候变化的关系等,研究人员通过观测得出:某岩溶洞穴二氧化碳浓度在季节交替时期会有突然的升高和降低,变化幅度可16000ppm;某岩溶洞穴二氧化碳浓度对降雨的表现为,先升高,后降低,降雨强度越大,洞穴二氧化碳升降幅度越大,且响应、平衡时间会缩短。
以上各种研究过程中,都是建立在对岩溶洞穴内二氧化碳浓度的监测结果上的。因此,开展岩溶洞穴二氧化碳浓度的在线监测是研究地球碳循环的重要组成部分,也是保护岩溶洞穴、为岩溶洞穴的科学、有效开发进行的必要技术储备。
发明内容
有鉴于此,本申请提供一种岩溶洞穴内二氧化碳的浓度监测装置,用于对岩溶洞穴内的二氧化碳的浓度进行实时监测。
为了实现上述目的,现提出的方案如下:
一种岩溶洞穴内二氧化碳的浓度监测装置,用于对岩溶洞穴内二氧化碳浓度进行实时监测,所述浓度监测装置包括箱体和电源单元,还包括设置在所述箱体内的数据采集器、二位三通电磁阀、气体检测器、校准支路 和驱动泵,其中:
所述数据采集器通过电源线与所述电源单元连接,并分别与所述二位三通电磁阀、所述气体检测器、所述驱动泵连接,用于输出切换控制信号、检测控制信号和驱动控制信号,还用于接收所述气体检测器输出的浓度信号,并基于所述浓度信号向用户反馈所述二氧化碳的浓度信息;
所述二位三通电磁阀包括空气进气口、第一空气出气口和第二空气出气口,用于基于所述切换控制信号将所述空气进气口与所述第一空气出气口或所述第二空气出气口连通,所述第一空气进气口通过管路与所述箱体的外部连通;
所述校准支路设置有校准进气口和校准出气口,用于在所述第二空气出气口与所述空气进气口连通时,将基准空气从所述标准出气口输出至所述气体检测器,以使所述气体检测器执行零点设置;
所述气体检测器设置有检测进气口、标准进气口和尾气口,所述检测进气口与所述第一空气出气口连通,所述标准进气口与所述校准出气口连通,所述气体检测器用于基于所述检测控制信号对流经的气体的二氧化碳的浓度进行检测,得到所述浓度信号;
所述驱动泵的进气口与所述尾气口连通,所述驱动泵的出气口通过管路与所述箱体的外部连通,所述驱动泵用于基于所述驱动控制信号将所述尾气口的气体排出抽出到所述箱体的外部。
可选的,所述校准支路包括二氧化碳吸附罐,其中:
所述二氧化碳吸附罐的进气口与所述校准进气口连通、出气口与所述校准出气口连通。
可选的,所述校准支路还包括二位二通电磁阀,其中:
所述二位二通电磁阀与所述数据采集器连接,用于接收所述数据采集器输出的校准控制信号,所述二位二通电磁阀的进气口与所述二氧化碳吸附罐的出气口连通,所述二位二通电磁阀的出气口与所述校准出气口连通。
可选的,所述驱动泵为薄膜泵。
可选的,还包括设置在所述箱体的外部的止逆阀,其中:
所述止逆阀的进气口与所述驱动泵的出气口连接。
可选的,还包括设置在所述箱体的外部的温度传感器,其中:
所述温度传感器与所述数据采集器连接,用于对所述岩溶洞穴内的温度进行检测,并向所述数据采集器输出温度信号,以使所述数据采集器基于所述温度信号得到所述岩溶洞穴内的温度信息,并将所述温度信息发送给用户。
可选的,还包括设置在所述箱体的外部的湿度传感器,其中:
所述湿度传感器与所述数据采集器连接,用于对所述岩溶洞穴内的湿度进行检测,并向所述数据采集器输出湿度信号,以使所述数据采集器基于所述湿度信号得到所述岩溶洞穴内的湿度信息,并将所述湿度信息发送给用户。
可选的,还包括设置在所述箱体的外部的气体采集防护头,其中:
所述其他采集防护头通过管路与所述空气进气口连通,用于对进入所述二位三通电磁阀的空气进行过滤。
可选的,还包括过滤器,其中:
所述过滤器设置在用于连通所述气体采集防护头与所述空气进气口的管路上,用于对所述空气进一步过滤。
可选的,还包括凝水器,其中:
所述过滤器设置在用于连通所述气体采集防护头与所述空气进气口的管路上,用于滤除所述空气中的水蒸气。
从上述的技术方案可以看出,本申请公开了一种岩溶洞穴内二氧化碳的浓度监测装置,用于对岩溶洞穴内二氧化碳浓度进行实时监测,包括箱体和电源单元,还包括设置在所述箱体内的数据采集器、二位三通电磁阀、气体检测器、校准支路和驱动泵。通过驱动泵的驱动,使得该气体检测器对从岩溶洞穴内抽取的气体中二氧化碳的浓度进行检测,经由数据采集器得到二氧化碳的浓度信息并将浓度信息发送给用户,从而实现对岩溶洞穴内二氧化碳的浓度进行实时监测。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图2为本申请实施例的另一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图3为本申请实施例的又一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图4为本申请实施例的又一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图5为本申请实施例的又一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图6为本申请实施例的又一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图7为本申请实施例的又一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图8为本申请实施例的又一种岩溶洞穴内二氧化碳的浓度监测装置的框图;
图9为本申请实施例的又一种岩溶洞穴内二氧化碳的浓度监测装置的框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例
本实施例提供了一种岩溶洞穴内二氧化碳的浓度监测装置,该浓度监测装置用于设置在岩溶洞穴内,用于对其中的二氧化碳的浓度进行实时监测,并将监测到的二氧化碳的浓度信息通过无线或有线通信方式发送给用户。
如图1所示,本实施例提供的浓度监测装置包括箱体100和电源单元51,电源单元用于为该装置中各个用电设备提供电力供应。该箱体内设置有数据采集器11、二位三通电磁阀23、气体检测器21、校准支路20和驱动泵34。其中,该数据采集器通过电源线并经由航空插头101与电源单元连接,用于接收电源单元输出的电能,并基于该电能工作。该数据采集器还通过信号线分别与二位三通电磁阀、气体检测器、驱动泵连接,用于分别输出切换控制信号、检测控制信号和驱动控制信号。
该二位三通电磁阀包括空气进气口231、第一空气出气口232和第二空气出气口233,用于基于数据采集器输出的切换控制信号将空气进气口与第一空气出气口或所述第二空气出气口连通,第一空气进气口通过管路并经由航空插头102与箱体的外部连通,用于使得该空气进气口在动力驱动下吸入空气。
校准支路设置有校准进气口201和校准出气口202,用于在第二空气出气口与空气进气口连通时,将基准空气从标准出气口输出至气体检测器,以使气体检测器执行零点设置。该校正支路用于将从第二空气出气口排出的空气中的二氧化碳人为去除,得到基准气体并送入该气体检测器,使得该气体检测器基于固定周期或基于人为指令对该其他检测器进行零点设置。
气体检测器设置有检测进气口211、标准进气口213和尾气口212,检测进气口与第一空气出气口连通,标准进气口与校准出气口连通,气体检测器用于基于上述检测控制信号对流经其中的气体中二氧化碳的浓度进行检测,得到浓度信号,并将浓度信号输出至上述数据采集器,气体采集器则基于该浓度信号得到浓度信息,并将浓度信息发送给用户。这里流经其中的气体是指从检测进气口进入并从该尾气口排出的气体。
驱动泵的进气口341与尾气口连通,驱动泵的出气口341通过管路并经由航空插头103与箱体的外部连通,驱动泵用于基于驱动控制信号将尾气口排出的气体抽出到箱体的外部。即该驱动泵为整个浓度监测装置中的气体提供驱动力,该驱动泵优选薄膜泵。
从上述技术方案可以看出,本实施例提供了一种岩溶洞穴内二氧化碳的浓度监测装置,用于对岩溶洞穴内二氧化碳浓度进行实时监测,包括箱体和电源单元,还包括设置在所述箱体内的数据采集器、二位三通电磁阀、气体检测器、校准支路和驱动泵。通过驱动泵的驱动,使得该气体检测器对从岩溶洞穴内抽取的气体中二氧化碳的浓度进行检测,经由数据采集器得到二氧化碳的浓度信息并将浓度信息发送给用户,从而实现对岩溶洞穴内二氧化碳的浓度进行实时监测。
另外,本实施例中的校准支路包括二氧化碳吸附罐22,如图2所示,还包括二位二通电磁阀24,如图3所示。二氧化碳吸附罐的进气口与校准进气口连通、出气口与校准出气口连通,用于在二位三通电磁阀的空气进气口与第二空气进气口连通时,将经由该二氧化碳吸附罐的空气内的二氧化碳进行吸附,其中承载有石灰石、火碱或高分子吸附材料。
该二位二通电磁阀设置在用于连通该二氧化碳吸附罐的出气口与校准出气口的管路上,具体可以理解为该二位二通电磁阀的进气口与二氧化碳吸附罐的出气口连通、出气口与校准出气口连通。且该二位二通电磁阀与数据采集器连接,用于接收数据采集器输出的校准控制信号,该校准控制信号用于控制该二位二通电磁阀的开断。
还有,该浓度监测装置还包括止逆阀35,如图4所示,该止逆阀设置 在用于将该驱动泵与箱体的外部连通的管路上,置于箱体的内部或外部,一般来说如图4所示的安装位置,即置于箱体的外部。
还有,本实施例中的浓度监测装置还设置有温度传感器411,如图5所示,温度传感器置于该箱体的外部,与数据采集器连接,用于对岩溶洞穴内的温度进行检测,并向数据采集器输出温度信号。数据采集器便可以基于温度信号得到岩溶洞穴内的温度信息,并将湿度信息发送给用户。
还有,本实施例中的浓度监测装置还设置有湿度传感器412,如图6所示,湿度传感器置于该箱体的外部,与数据采集器连接,用于对岩溶洞穴内的湿度进行检测,并向数据采集器输出湿度信号。数据采集器便可以基于湿度信号得到岩溶洞穴内的湿度信息,并将湿度信息发送给用户。
还有,本实施例中的浓度监测装置还包括设置在所述箱体的外部的气体采集防护头33,如图7所示。所述其他采集防护头通过管路与所述空气进气口连通,用于对进入所述二位三通电磁阀的空气进行过滤。
还有,本实施例中的浓度监测装置还包括过滤器32,如图8所示,过滤器设置在用于连通气体采集防护头与二位三通电磁阀的空气进气口的管路上,用于对空气进一步过滤。
还有,本实施例中的浓度监测装置还包括凝水器31,如图9所示,过滤器设置在用于连通气体采集防护头与二位三通电磁阀的空气进气口的管路上,用于滤除空气中的水蒸气。
本申请的浓度监测装置采用相对测量的方法实现二氧化碳气体浓度的在线测量,测量过程如下:
(1)空气的进入。
岩溶洞穴的二氧化碳气体通过本装置的气路单元进入装置内部,空气通过外露的气体采集防护头33进入气管中,气体采集防护头可有效防止外界的大颗粒物进去气体管道,起到气体过滤的作用,外界空气通过装置的航空插头进入装置内部,通过过滤器32进行小颗粒过滤,可有效将气体中的灰尘等过滤掉,过滤的空气进凝水器31的进气端,凝水器是单向进气阀, 可通过冷凝和重力作用将空气中的水分凝结,并将干燥空气排入气管,干燥气体顺气管进入气体检测单元。
(2)二氧化碳气体浓度零点的设置。
二位三通电磁阀23和二位二通电磁阀24负责气路的切换,在不通电的状态下,二位三通电磁阀的空气进气口231与第一空气出气口232连通,处于空开状态;在通电的情况下,而二位二通电磁阀24的入口和出口处于堵塞状态;通电状态下,二位三通电磁阀的空气进气口和第二空气出气口连通,二位二通电磁阀的进气口和出口扣连通,处于制动状态;本结构设置主要用于保护二氧化碳吸附罐在空开情况下不与外界空气接触引起失效。
在零点设置状态,处于电磁阀的通电状态下,二位三通电磁阀的空气进气口和第二空气出气口连通,空气通过管道进入二氧化碳吸附罐,使空气中含有的二氧化碳通过碱石灰等化学药品进行吸附,二氧化碳浓度为零的空气进入二位二通电磁阀的进口,由其出气口排出,通过气管进入气体检测器的标准进气口,气体检测器通过红外光谱吸收实现对二氧化碳的气体的浓度检测,并认定此项检测二氧化碳气体浓度为0,作为相对检测方式的零点。
检测后的气体通过气体检测器的尾气口排出,通过薄膜泵、本装置外壳的航空插头,以及止逆阀排到空气中。其中,薄膜泵是单向泵,提供了气体在管道中的动力,其薄膜泵的选择关系到整个管道的气体流动速度,需要与二氧化碳吸附罐的吸附速度和气体检测器的检测速度相匹配。止逆阀是单向阀,此处安装允许装置内的气体排出,而阻止气体进入。
(3)二氧化碳气体浓度的检测。
重复(1)的过程,气体检测单元的二位三通电磁阀负责气路的切换,空气通过空气进气口进入,从第一空气出气口排出,在气体待检状态,空气通过管道进入气体检测器的检测气体口,气体检测器通过红外光谱吸收实现对待测气体中的二氧化碳的气体的浓度检测,并认定此项检测结果与之前标零的检测结果进行对比,作为本次吸收光谱强度检测结果,也即为空气中二氧化碳气体的浓度。检测后的气体按照(2)的方式,排出到装置 之外的大气中。
(3)空气温湿度的检测。通过温度传感器和湿度传感器,实现对空气温湿度的在线监测。由于气体检测和温湿度检测的时间都很短,可以认为两者同时测量。
(4)系统控制。系统控制单元由数据采集器组成,数据采集器主要完成电压幅值的变换、气路的切换、气体检测器的控制和数据存储。数据采集器主体以意法半导体公司的STM32F103微控制器为主体,该芯片具有超低功耗的特点,适合本专利的监测需求,同时期管脚多,适合本系统的控制与采集工作。数据采集器内部包括9~18V转12V稳压芯片、12V转5V和5V转3.3V模块,实现对外界宽带电源的12V稳压和5V、3.3V电源的输出。数据采集器通过串口与气体监测器进行通信,实现零点设定、气体浓度检测等工作。所有监测数据存储到SD卡中。
(5)供电。本专利用于岩溶洞穴的二氧化碳气体浓度监测,采用防水电池作为电源单元供电,以12V、60AH的容量,每小时采集一次数据,可在无人值守下连续工作一个季度,具有很好的应用前景。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过 程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种岩溶洞穴内二氧化碳的浓度监测装置,用于对岩溶洞穴内二氧化碳浓度进行实时监测,其特征在于,所述浓度监测装置包括箱体和电源单元,还包括设置在所述箱体内的数据采集器、二位三通电磁阀、气体检测器、校准支路和驱动泵,其中:
    所述数据采集器通过电源线与所述电源单元连接,并分别与所述二位三通电磁阀、所述气体检测器、所述驱动泵连接,用于输出切换控制信号、检测控制信号和驱动控制信号,还用于接收所述气体检测器输出的浓度信号,并基于所述浓度信号向用户反馈所述二氧化碳的浓度信息;
    所述二位三通电磁阀包括空气进气口、第一空气出气口和第二空气出气口,用于基于所述切换控制信号将所述空气进气口与所述第一空气出气口或所述第二空气出气口连通,所述第一空气进气口通过管路与所述箱体的外部连通;
    所述校准支路设置有校准进气口和校准出气口,用于在所述第二空气出气口与所述空气进气口连通时,将基准空气从所述标准出气口输出至所述气体检测器,以使所述气体检测器执行零点设置;
    所述气体检测器设置有检测进气口、标准进气口和尾气口,所述检测进气口与所述第一空气出气口连通,所述标准进气口与所述校准出气口连通,所述气体检测器用于基于所述检测控制信号对流经的气体的二氧化碳的浓度进行检测,得到所述浓度信号;
    所述驱动泵的进气口与所述尾气口连通,所述驱动泵的出气口通过管路与所述箱体的外部连通,所述驱动泵用于基于所述驱动控制信号将所述尾气口的气体排出抽出到所述箱体的外部。
  2. 如权利要求1所述的浓度监测装置,其特征在于,所述校准支路包括二氧化碳吸附罐,其中:
    所述二氧化碳吸附罐的进气口与所述校准进气口连通、出气口与所述校准出气口连通。
  3. 如权利要求2所述的浓度监测装置,其特征在于,所述校准支路还包括二位二通电磁阀,其中:
    所述二位二通电磁阀与所述数据采集器连接,用于接收所述数据采集器输出的校准控制信号,所述二位二通电磁阀的进气口与所述二氧化碳吸附罐的出气口连通,所述二位二通电磁阀的出气口与所述校准出气口连通。
  4. 如权利要求1所述的浓度监测装置,其特征在于,所述驱动泵为薄膜泵。
  5. 如权利要求1所述的浓度监测装置,其特征在于,还包括设置在所述箱体的外部的止逆阀,其中:
    所述止逆阀的进气口与所述驱动泵的出气口连接。
  6. 如权利要求1所述的浓度监测装置,其特征在于,还包括设置在所述箱体的外部的温度传感器,其中:
    所述温度传感器与所述数据采集器连接,用于对所述岩溶洞穴内的温度进行检测,并向所述数据采集器输出温度信号,以使所述数据采集器基于所述温度信号得到所述岩溶洞穴内的温度信息,并将所述温度信息发送给用户。
  7. 如权利要求1所述的浓度监测装置,其特征在于,还包括设置在所述箱体的外部的湿度传感器,其中:
    所述湿度传感器与所述数据采集器连接,用于对所述岩溶洞穴内的湿度进行检测,并向所述数据采集器输出湿度信号,以使所述数据采集器基于所述湿度信号得到所述岩溶洞穴内的湿度信息,并将所述湿度信息发送给用户。
  8. 如权利要求1所述的浓度监测装置,其特征在于,还包括设置在所述箱体的外部的气体采集防护头,其中:
    所述其他采集防护头通过管路与所述空气进气口连通,用于对进入所述二位三通电磁阀的空气进行过滤。
  9. 如权利要求8所述的浓度监测装置,其特征在于,还包括过滤器,其中:
    所述过滤器设置在用于连通所述气体采集防护头与所述空气进气口的管路上,用于对所述空气进一步过滤。
  10. 如权利要求8所述的浓度监测装置,其特征在于,还包括凝水器,其中:
    所述过滤器设置在用于连通所述气体采集防护头与所述空气进气口的管路上,用于滤除所述空气中的水蒸气。
PCT/CN2023/073639 2022-06-30 2023-01-29 一种岩溶洞穴内二氧化碳的浓度监测装置 WO2024001180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210761974.6A CN115097077A (zh) 2022-06-30 2022-06-30 一种岩溶洞穴内二氧化碳的浓度监测装置
CN202210761974.6 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001180A1 true WO2024001180A1 (zh) 2024-01-04

Family

ID=83293895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073639 WO2024001180A1 (zh) 2022-06-30 2023-01-29 一种岩溶洞穴内二氧化碳的浓度监测装置

Country Status (2)

Country Link
CN (1) CN115097077A (zh)
WO (1) WO2024001180A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097077A (zh) * 2022-06-30 2022-09-23 中国华能集团清洁能源技术研究院有限公司 一种岩溶洞穴内二氧化碳的浓度监测装置
CN117741051A (zh) * 2023-11-22 2024-03-22 北京英视睿达科技股份有限公司 用于监测二氧化碳的传感器的校准装置及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204902896U (zh) * 2015-09-17 2015-12-23 中国地质科学院岩溶地质研究所 一种洞穴二氧化碳浓度、温度和湿度连续自动监测装置
CN205353041U (zh) * 2015-11-25 2016-06-29 中国地质调查局水文地质环境地质调查中心 一种浅层地下二氧化碳气体浓度监测系统
CN113712533A (zh) * 2021-08-18 2021-11-30 苏州创莱电子科技有限公司 一种旁流呼末呼末二氧化碳监测装置
CN216350587U (zh) * 2021-10-21 2022-04-19 山东智普测控技术有限公司 一种臭氧浓度分析仪内置的校零装置
CN115097077A (zh) * 2022-06-30 2022-09-23 中国华能集团清洁能源技术研究院有限公司 一种岩溶洞穴内二氧化碳的浓度监测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354394B (zh) * 2008-09-08 2012-10-10 尚沃医疗电子无锡有限公司 呼气一氧化氮检测装置
CN102053145B (zh) * 2010-11-03 2013-06-05 中国科学院新疆生态与地理研究所 一种根系co2原位自动测定方法
CN211825926U (zh) * 2020-02-20 2020-10-30 青岛和诚环保科技有限公司 空气质量检测装置
CN212513124U (zh) * 2020-06-29 2021-02-09 贵州黔之境农旅发展有限公司 一种洞穴二氧化碳浓度、温度和湿度连续自动监测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204902896U (zh) * 2015-09-17 2015-12-23 中国地质科学院岩溶地质研究所 一种洞穴二氧化碳浓度、温度和湿度连续自动监测装置
CN205353041U (zh) * 2015-11-25 2016-06-29 中国地质调查局水文地质环境地质调查中心 一种浅层地下二氧化碳气体浓度监测系统
CN113712533A (zh) * 2021-08-18 2021-11-30 苏州创莱电子科技有限公司 一种旁流呼末呼末二氧化碳监测装置
CN216350587U (zh) * 2021-10-21 2022-04-19 山东智普测控技术有限公司 一种臭氧浓度分析仪内置的校零装置
CN115097077A (zh) * 2022-06-30 2022-09-23 中国华能集团清洁能源技术研究院有限公司 一种岩溶洞穴内二氧化碳的浓度监测装置

Also Published As

Publication number Publication date
CN115097077A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2024001180A1 (zh) 一种岩溶洞穴内二氧化碳的浓度监测装置
CN104597949B (zh) 馆藏文物展示微环境调节控制系统
CN104586146A (zh) 馆藏文物展示柜
CN204427384U (zh) 馆藏文物展示柜
CN207730750U (zh) 一种一体化水质多参数检测仪
CN207728213U (zh) 一种智能门窗控制系统
CN206535383U (zh) 一种压缩空气干燥吸附装置
CN204360250U (zh) 馆藏文物展示微环境调节控制系统
CN109490487A (zh) 一种煤矿采空区气体组分含量快速测试装置
CN202512041U (zh) 可吸入颗粒物在线监测除湿装置
CN104297321B (zh) 一种污泥好氧发酵硫化氢智能检测装置
CN205373778U (zh) 一种太阳能在线水质复合检测分析仪
CN107389425A (zh) 一种防气态分析仪冷凝结露和防尘的装置及方法
CN208399358U (zh) 地震前兆流动观测用便携式co2监测装置
CN204028100U (zh) 一种二级控制皮托管流速计吹扫箱
CN214175261U (zh) 一种天然气泄漏检测用安全警报装置
CN115165994A (zh) 一种污水处理厂氧化亚氮排放的测定装置与方法
CN108680221A (zh) 一种带有烘干功能的防水型智能水表
CN212031407U (zh) 一种烟气监测仪
CN204256550U (zh) 地窖智能排放二氧化碳及除湿装置
CN209193688U (zh) 一种带大数据的移动应急多功能净水装置
CN209727924U (zh) 一种小型化多组份一体型水质监测系统
CN204286994U (zh) 一种适用于粉尘检测仪加热除湿装置
CN216350469U (zh) 大气自动除水除污离子检测设备
CN220438348U (zh) 一种呼出气的实时监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829373

Country of ref document: EP

Kind code of ref document: A1