WO2024000931A1 - 一种骨科手术机器人示踪装置及自补偿跟踪方法 - Google Patents

一种骨科手术机器人示踪装置及自补偿跟踪方法 Download PDF

Info

Publication number
WO2024000931A1
WO2024000931A1 PCT/CN2022/125645 CN2022125645W WO2024000931A1 WO 2024000931 A1 WO2024000931 A1 WO 2024000931A1 CN 2022125645 W CN2022125645 W CN 2022125645W WO 2024000931 A1 WO2024000931 A1 WO 2024000931A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
joint
coordinate system
pose
connecting rod
Prior art date
Application number
PCT/CN2022/125645
Other languages
English (en)
French (fr)
Inventor
刘金虎
史颖琴
Original Assignee
南京普爱医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京普爱医疗设备股份有限公司 filed Critical 南京普爱医疗设备股份有限公司
Publication of WO2024000931A1 publication Critical patent/WO2024000931A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Definitions

  • the invention relates to a robot tracking device and a tracking method, in particular to an orthopedic surgery robot tracking device and a self-compensating tracking method.
  • the basic function of the orthopedic surgery robot system is to use computers to process and display images provided by medical imaging equipment, combine them with optical trackers, and ultimately control the robot to perform surgical positioning safely and effectively.
  • the robot or optical tracker in the system needs to continuously change posture due to clinical needs, changing the relative conversion relationship between the previous systems, thereby causing the final movement position deviation of the robot.
  • the technical problem to be solved by the present invention is to provide an orthopedic surgery robot tracking device and a self-compensation tracking method in view of the deficiencies of the existing technology.
  • the present invention discloses an orthopedic surgical robot tracking device and a self-compensation tracking method.
  • an orthopedic surgery robot tracing device includes a rigid support body, and a tracer is provided on the rigid support body.
  • the rigid support body includes movable joints and connecting rods, and the position and attitude of the tracer are adjusted and fixed through the joints.
  • the tracer includes a registration point support frame and a registration point; registration points are set around the registration point support frame in a coplanar and non-collinear manner.
  • the tracking device also includes a connection component for connecting to the outside.
  • the rigid support body includes: a first joint, a second joint, a third joint, a fourth joint, a fifth joint, a first connecting rod, a second connecting rod, a third connecting rod, a fourth connecting rod and a fifth connection. rod; rod
  • the first joint connects the first connecting rod and the connecting component, and the first joint is a 360° rotating joint
  • the second joint connects the first connecting rod and the second connecting rod, and the second joint is a flip joint
  • the third joint connects the second connecting rod and the third connecting rod, and the third joint is a flip joint;
  • the fourth joint connects the third connecting rod and the fourth connecting rod, and the fourth joint is a 360° rotating joint;
  • the fifth joint connects the fourth connecting rod and the fifth connecting rod, and the fifth joint is a flip joint;
  • the fifth connecting rod is connected to the installation interface and is used to install the tracer.
  • An orthopedic surgery robot including a host computer and an orthopedic surgery robot arm.
  • the orthopedic surgery robot arm is provided with a tracer.
  • the host computer or the orthopedic surgery robot arm is provided with a rigid support body, and the rigid support body is provided with a tracer. .
  • a self-compensation tracking method for orthopedic surgical robots including the following steps:
  • Step 1 start the optical tracker
  • Step 2 Place the tracking device within the field of view of the optical tracker, obtain and save the basic pose information T_p_old corresponding to the tracking device in the optical tracker, and obtain the orthopedic surgery robot reference point cloud R_pionts and the optical tracker reference at the same time Point cloud N_points;
  • Step 3 Obtain 3D navigation image data and related position information collected by the 3D imaging equipment that meet the accuracy of the orthopedic surgery robot navigation system;
  • Step 4 Calculate the conversion relationship M_n between the coordinate system of the optical tracker and the coordinate system of the 3D navigation image data
  • Step 5 Calculate the acquisition time of the orthopedic surgery robot reference point cloud R_pionts and the optical tracker reference point cloud N_points, and the pose conversion relationship M_old between the optical tracker coordinate system and the orthopedic surgery robot coordinate system; real-time tracking of the current tracer device in the optical tracking The corresponding pose information T_p_new in the device is calculated, and the conversion relationship M_t_p with the basic pose information T_p_old is calculated. Combined with the pose conversion relationship M_old, the position between the current optical tracker coordinate system and the orthopedic surgery robot coordinate system is calculated and updated. Posture transformation relationship M_new;
  • Step 6 According to the pose conversion relationship M_new obtained in step 5, combined with the pose conversion relationship M_n obtained in step 4, convert the pose in the coordinate system of the 3D navigation image data to the pose in the robot coordinate system, and send it to Specify the pose information of the orthopedic surgical machine robot, and then control the orthopedic surgical machine robot to move to the corresponding position;
  • Step 7 Calculate the error ⁇ between the real-time display of the current orthopedic surgical robot's posture in the 3D navigation image and the actual planning point, and verify whether the current orthopedic surgical robot's motion posture meets the accuracy requirements.
  • step 7 includes:
  • Step 7-1 obtain the current posture of the orthopedic surgical robot through the optical tracker
  • Step 7-2 according to the conversion relationship M_n between the optical tracker coordinate system and the 3D navigation image coordinate system, convert the current posture of the orthopedic surgery robot into the 3D navigation image coordinate system and display it;
  • Step 7-3 Calculate the coordinate difference between the coordinates of the current orthopedic surgical robot's motion pose in the 3D navigation image and the pre-planned target motion pose in the 3D navigation image.
  • step 5 the orthopedic surgery robot reference point cloud R_pionts and the optical tracker reference point cloud N_points are calculated.
  • the pose transformation relationship M_old between the optical tracker coordinate system and the orthopedic surgery robot coordinate system is the iterative closest point algorithm, which is the ICP algorithm. Or matrix singular value decomposition algorithm.
  • the invention detects the pose changes of the robot coordinate system or the optical tracker coordinate system in real time and performs optimization in time, avoiding the impact of the clinical robot coordinate system or the optical tracker pose change on the execution accuracy of the orthopedic surgery robot system, and ensuring the system accuracy. It is stable and reliable and has extremely high application value in the application of orthopedic surgical robot systems.
  • Figure 1 is a schematic structural diagram of the orthopedic surgical robot tracking device of the present invention.
  • Figure 2 is an installation diagram of the orthopedic surgery robot tracking device of the present invention.
  • Figure 3 is a system structure diagram of the present invention.
  • Figure 4 is a flow chart of the method of the present invention.
  • the present invention provides an orthopedic surgical robot tracking device.
  • the orthopedic surgical robot tracking device includes a rigid support body: a first joint 302, a second joint 304.
  • FIG. 2 a schematic diagram of the installation of the orthopedic surgery robot tracer device, the premise is that the installation position does not affect the clinical operation.
  • the installation design is cleverly integrated with the robot 6 base through the connecting component 301, which is simple and stable, ensuring no relative posture changes and ensuring the accuracy of the system.
  • the joints can be stretched or rotated appropriately according to the position of the current system or the surgical space, so that the tracer is in a suitable position without affecting the movement of the orthopedic surgical robot 6, leaving enough space for any movement of the orthopedic surgical robot 6 .
  • the invention provides an orthopedic surgical robot tracing device system, as shown in Figure 3, including a three-dimensional C-arm 4, an optical tracker 5, an orthopedic surgical robot 6, a workstation 7, an integrated registration device 2, and a tracing device 3 .
  • Tracer device including rigid support body; tracer; connecting components, easy to disassemble and assemble.
  • the rigid body support body has five self-balancing joints and connecting rods.
  • joint 1 needs to be able to rotate 360° infinitely, and the overall rotation of the support body can be used to adjust the direction;
  • joint 4 needs to be able to rotate 360° infinitely, and joint 5 and the tracer can be rotated as a whole.
  • Joint 5 can independently adjust the position of the tracer by flipping; other joints can be flipped less than 360° and can be stretched and rotated appropriately according to the positioning needs of the current system to adjust the tracer.
  • the purpose of posture; the end connecting rod has an installation interface that is fixedly connected to the tracer.
  • the tracer includes a registration point support frame, at least three coplanar and non-collinear registration points and an installation interface.
  • the geometric structure of the registration points must meet the identification requirements of the optical tracker in the orthopedic surgical robot;
  • the material selection of the tracker must be consistent with that of the optical tracker in the orthopedic surgical robot. If the optical tracker is based on the optical principle, it must use a passive luminous tracer. If the optical tracker is based on the electromagnetic identification principle, it must use an active luminous tracer. .
  • the tracer is installed on the connecting rod at the end of the rigid support body. The fixation must be firm and cannot be loosened or rotated, otherwise it will affect the navigation accuracy of the orthopedic surgical robot system.
  • the present invention provides a self-compensation tracking method for an orthopedic surgical robot, as shown in Figure 4, which includes the following steps:
  • the reference point cloud N_p also stores the basic pose information T_p_ corresponding to the tracking device 3 in the optical tracker 5;
  • Data and related configuration information based on the principle of the orthopedic surgical robot system, using the pose information of the integrated registration device 2, calculate the conversion relationship M_n between the coordinate system of the optical tracker 5 and the image coordinate system;
  • step (3) Apply the ICP algorithm and SVD algorithm, and the workstation 7 calculates the reference point cloud acquisition time
  • the workstation 7 performs pre-planning through images, and specifies the final pose information of the movement of the orthopedic surgery robot 6 . Combining steps (4) and (5), the transformation relationship between the image coordinate system and the coordinate system of the orthopedic surgical robot 6 is calculated, and then the orthopedic surgical robot 6 is controlled to move to the target position.
  • the workstation 7 calculates the error ⁇ between the current 6 postures of the orthopedic surgery robot and the actual planning point in real time to ensure that the 6 movement postures of the orthopedic surgery robot meet the system accuracy requirements in real time.
  • the optimal matching parameters R and t are calculated to minimize the following error function.
  • n is the number of nearest neighbor point pairs
  • p2 i is a point in the target point cloud p2
  • p1 i is the closest point corresponding to p2 i in the source point cloud p1
  • R is the rotation matrix
  • t is the translation vector.
  • the present invention provides ideas and methods for an orthopedic surgery robot tracking device and a self-compensation tracking method. There are many methods and approaches to specifically implement this technical solution. The above are only preferred embodiments of the present invention. It should be pointed out that for this Those of ordinary skill in the technical field can make several improvements and modifications without departing from the principles of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention. All components not specified in this embodiment can be implemented using existing technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manipulator (AREA)

Abstract

一种骨科手术机器人示踪装置及自补偿跟踪方法,示踪装置包括钢体支撑体,在钢体支撑体上设有示踪器;方法包括:获取光学跟踪器坐标系下对应的基准点云,同时记录示踪装置在光学跟踪器中基础位姿信息;计算机器人所在坐标系与光学跟踪器坐标系间的位姿转换关系,确定位姿转换关系;在机器人导航系统中,实时检测跟踪装置的位姿变化,实时更新图像坐标系到机器人坐标系的转换关系,从而控制机器人的有效执行。上述设置可实时检测机器人坐标系或光学跟踪器坐标系的位姿变化,及时优化,避免临床中机器人坐标系或光学跟踪器位姿变换对机器人导航系统执行精度的影响,保证系统精度稳定可靠,在骨科手术机器人系统中具有极高的应用价值。

Description

一种骨科手术机器人示踪装置及自补偿跟踪方法 技术领域
本发明涉及一种机器人示踪装置及跟踪方法,特别是一种骨科手术机器人示踪装置及自补偿跟踪方法。
背景技术
近些年,导航定位系统技术成为医疗领域创新的主流,特别机器人技术的创新应用,更是提高了骨科手术的安全性和有效性。骨科手术机器人系统的基本功能是利用计算机对医学影像设备提供的图像进行处理、显示、结合光学跟踪器,最终控制机器人安全、有效地进行手术定位。
在实际临床过程中,由于操作空间有限,系统中机器人或光学跟踪器因为临床需求需要不断地发生位姿变换,改变了之前系统之间的相对转换关系,进而造成机器人最终运动位置偏差。
发明内容
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种骨科手术机器人示踪装置及自补偿跟踪方法。
为了解决上述技术问题,本发明公开了一种骨科手术机器人示踪装置及自补偿跟踪方法。
其中,一种骨科手术机器人示踪装置,包括刚体支撑体,在刚体支撑体上设有示踪器。
所述刚体支撑体包括活动关节以及连接杆,示踪器的位置和姿态通过关节进行调节并固定。
所述示踪器包括注册点支撑架和注册点;注册点支撑架四周以共面不共线的方式设置注册点。
所述注册点不少于三个。
所述示踪装置,还包括用于与外部连接的连接组件。
所述刚体支撑体包括:第一关节、第二关节、第三关节、第四关节、第五关节、第一连接杆、第二连接杆、第三连接杆、第四连接杆以及第五连接杆;
其中,第一关节连接第一连接杆与连接组件,且第一关节为360°旋转关节;
第二关节连接第一连接杆与第二连接杆,且第二关节为翻转关节;
第三关节连接第二连接杆与第三连接杆,且第三关节为翻转关节;
第四关节连接第三连接杆与第四连接杆,且第四关节为360°旋转关节;
第五关节连接第四连接杆与第五连接杆,且第五关节为翻转关节;
第五连接杆与安装接口连接,用于安装示踪器。
一种骨科手术机器人,包括主机和骨科手术机械臂,骨科手术机械臂上设有示踪器,所述主机或者骨科手术机械臂上设有刚体支撑体,在刚体支撑体上设有示踪器。
一种骨科手术机器人自补偿跟踪方法,包括以下步骤:
步骤1,启动光学跟踪器;
步骤2,将示踪装置放置于光学跟踪器的视野范围内,获取并保存示踪装置在光学跟踪器中对应的基础位姿信息T_p_old,同时获取骨科手术机器人基准点云R_pionts和光学跟踪器基准点云N_points;
步骤3,获取3D成像设备采集的满足骨科手术机器人导航系统精度的3D导航图像数据和相关位置信息;
步骤4,计算光学跟踪器坐标系与3D导航图像数据的坐标系之间的转换关系M_n;
步骤5,计算骨科手术机器人基准点云R_pionts和光学跟踪器基准点云N_points获取时刻,光学跟踪器坐标系与骨科手术机器人坐标系间的位姿转换关系M_old;实时跟踪当前示踪装置在光学跟踪器中对应的位姿信息T_p_new,并计算与基础位姿信息T_p_old之间的转换关系M_t_p,再结合位姿转换关系M_old,计算并更新当前光学跟踪器坐标系与骨科手术机器人坐标系间的位姿转换关系M_new;
步骤6,根据步骤5中得到的位姿转换关系M_new,结合步骤4得到的位姿转换关系M_n,将3D导航图像数据的坐标系下的位姿转换到机器人坐标系下的位姿,发送给骨科手术机机器人指定的位姿信息,进而控制骨科手术机机器人运动到相应的位置;
步骤7,计算当前骨科手术机器人的位姿在3D导航图像中的实时显示与实际规划点的误差δ,验证当前骨科手术机器人运动位姿是否符合精度要求。
其中,步骤7包括:
步骤7-1,通过光学跟踪器获取骨科手术机器人当前位姿;
步骤7-2,根据光学跟踪器坐标系与3D导航图像坐标系之间的转换关系M_n,将骨科手术机器人当前位姿转换到3D导航图像坐标系中并显示;
步骤7-3,计算当前骨科手术机器人的运动位姿在3D导航图像中的坐标与预规划时目标运动位姿在3D导航图像中的坐标差。
步骤5中计算骨科手术机器人基准点云R_pionts和光学跟踪器基准点云N_points获取时刻,光学跟踪器坐标系与骨科手术机器人坐标系间的位姿转换关系M_old的方法为迭代最近点算法即ICP算法或矩阵奇异值分解算法。
有益效果:
本发明实时检测机器人坐标系或光学跟踪器坐标系的位姿变化,及时进行优化,避免了临床中机器人坐标系或光学跟踪器位姿变换对骨科手术机器人系统执行精度的影响,保证了系统精度的稳定可靠,在骨科手术机器人系统的应用中具有极高的应用价值。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1是本发明的骨科手术机器人示踪装置结构示意图。
图2是本发明的骨科手术机器人示踪装置安装图。
图3是本发明的系统结构图。
图4是本发明的方法流程图。
具体实施方式
下面将结合本发明中的附图,对本发明的技术方案进行清楚、完整地描述。
本发明提供了一种骨科手术机器人示踪装置,如图1所示,为本发明中骨科手术机器人示踪装置示意图,骨科手术机器人示踪装置包括刚体支撑体:第一关节302、第二关节304、第三关节306、第四关节308、第五关节310、第一连接杆303、第二连接杆305、第三连接杆307、第四连接杆309及第五连接杆314;示踪器:注册点支撑架311、至少三个共面不共线的注册点312及安装接口313;连接组件301。
如图2所示,骨科手术机器人示踪装置安装示意图,安装的位置不影响临床手术 为前提。安装设计巧妙地通过连接组件301与机器人6基座融为一体,简易,稳固,保证了无相对位姿变化,保证了系统的精度。可根据当前系统的摆位或手术空间,适当的拉伸或旋转关节,使得示踪器位于合适的位置,不影响骨科手术机器人6的运动,为骨科手术机器人6的任何动作留有足够的空间。
本发明提供了一种骨科手术机器人示踪装置系统,如图3所示,包括三维C臂4、光学跟踪器5、骨科手术机器人6、工作站7,一体化配准装置2,示踪装置3。
示踪装置:包括刚体支撑体;示踪器;连接组件,便捷拆装。
所述的刚体支撑体,有五个自平衡的关节及连接杆。考虑结构的稳定性和功能可用性,关节1需能360°无限旋转,进行支撑体的整体旋转达到调节方向的目的;关节4需能360°无限旋转,可对关节5及示踪器进行整体旋转达到调节方向的目的;关节5可单独对示踪器进行翻转位姿调节;其它关节小于360°翻转,可根据需要当前系统的摆位需要,进行合适拉伸及旋转,以达到调节示踪器位姿的目的;末端连接杆留有与示踪器固定连接的安装接口。
所述的示踪器,示踪器包含注册点支撑架、至少三个共面不共线的注册点及安装接口,注册点的几何结构必须满足骨科手术机器人中光学跟踪器的识别要求;示踪器的材质选择必须与骨科手术机器人中光学跟踪器的一致,光学跟踪器是光学原理,则必须用被动式发光示踪器,光学跟踪器是电磁识别原理,则必须用主动式发光示踪器。示踪器安装在刚体支撑体末端连接杆,固定要求必须牢固,不可发生松动或旋转,否则会影响骨科手术机器人系统的导航精度。
本发明提供了一种骨科手术机器人的自补偿跟踪方法,如图4所示,包括如下步骤:
(1)在骨科手术机器人6基座安装示踪装置3,安装位置与机器人6有固定的结构,满足安装要求,如图2所示;
(2)根据骨科手术机器人6操作原理和相应的几何结构,记录骨科手术机器人6末端带有示踪器的特定尖端在不同平面的位姿信息,即为机器人6基准点云R_p,至少五个及以上;
(3)启动光学跟踪器5与骨科手术机器人6,保证示踪装置3和骨科手术机器人6末端带有示踪器的特定尖端在光学跟踪器5的视野范围内,保证精确获取光学跟踪器 5基准点云N_p,同时保存示踪装置3在光学跟踪器5中对应的基础位姿信息T_p_;
(4)启动三维C臂4,采集并发送3D图像数据,工作站7接收并显示3D图像
数据和相关配置信息;由骨科手术机器人系统原理,利用一体化配准装置2的位姿信息,计算光学跟踪器5坐标系与图像坐标系之间转换关系M_n;
(5)结合步骤(3),应用ICP算法及SVD算法,工作站7计算基准点云获取时
光学跟踪器5坐标系与骨科手术机器人6坐标系间的位姿转换关系M_old;光学跟踪器5实时检测示踪装置3的位姿信息,实时更新当前系统下光学跟踪器5坐标系与骨科手术机器人6坐标系间的位姿转换关系M_new。
(6)工作站7通过图像进行预规划,指定的骨科手术机器人6运动最终位姿信息。结合步骤(4)和步骤(5),计算得到图像坐标系与骨科手术机器人6坐标系转换关系,进而控制骨科手术机器人6运动到目标位置。
(7)工作站7实时计算当前骨科手术机器人6位姿与实际规划点的误差δ,保证骨科手术机器人6运动位姿实时符合系统精度要求。
ICP算法:按照一定的约束条件,计算出最优匹配参数R和t使得如下误差函数最小。
Figure PCTCN2022125645-appb-000001
其中,n为最邻近点对的个数,p2 i为目标点云p2中的一点,p1 i为源点云p1中与p2 i对应的最近点,R为旋转矩阵,t为平移向量。
算法实现步骤:
(1)在目标点云p2中取点集p2 i∈p2;
(2)找出源点云p1中的对应点集p1 i∈p1,使得||p1 i-p2 i||=min;
(3)计算旋转矩阵R和平移矩阵t,使得误差函数最小;
(4)对p1 i使用上一步求得的旋转矩阵R和平移矩阵t进行旋转和平移变换,得到新的对应点集p′={p′ i=Rp1 i+t,p1 i∈p1}
(5)计算p′与对应点集p1的平均距离;
Figure PCTCN2022125645-appb-000002
(6)如果d小于某一给定的阈值或者大于预设的最大迭代次数,则停止迭代计算。
否则返回第2步,直到满足收敛条件为止。
本发明提供了一种骨科手术机器人示踪装置及自补偿跟踪方法的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

  1. 一种骨科手术机器人示踪装置,其特征在于,包括刚体支撑体,在刚体支撑体上设有用于定位补偿的示踪器。
  2. 根据权利要求1所述的一种骨科手术机器人示踪装置,其特征在于,刚体支撑体包括活动关节以及连接杆,示踪器的位置和姿态通过活动关节以及连接杆进行调节并固定。
  3. 根据权利要求2所述的一种骨科手术机器人示踪装置,其特征在于,示踪器包括注册点支撑架(311)和注册点(312);注册点支撑架(311)四周以共面不共线的方式设置注册点(312);注册点(312)不少于三个。
  4. 根据权利要求3所述的一种骨科手术机器人示踪装置,其特征在于,包括用于与外部连接的连接组件(301);所述刚体支撑体包括:第一关节(302)、第二关节(304)、第三关节(306)、第四关节(308)、第五关节(310)、第一连接杆(303)、第二连接杆(305)、第三连接杆(307)、第四连接杆(309)以及第五连接杆(314);
    其中,第一关节(302)连接第一连接杆(303)与连接组件(301),且第一关节(302)为360°旋转关节;
    第二关节(304)连接第一连接杆(303)与第二连接杆(305),且第二关节(304)为翻转关节;
    第三关节(306)连接第二连接杆(305)与第三连接杆(307),且第三关节(306)为翻转关节;
    第四关节(308)连接第三连接杆(307)与第四连接杆(309),且第四关节(308)为360°旋转关节;
    第五关节(310)连接第四连接杆(309)与第五连接杆(314),且第五关节(310)为翻转关节;
    第五连接杆(314)与安装接口(313)连接,用于安装示踪器。
  5. 一种包含权利要求1-3中任意一项所述示踪装置的骨科手术机器人,包括主机和骨科手术机械臂,骨科手术机械臂上设有示踪器,其特征在于,所述主机或者骨科手术机械臂上设有刚体支撑体,在刚体支撑体上设有用于定位补偿的示踪器。
  6. 一种骨科手术机器人自补偿跟踪方法,其特征在于,根据定位补偿的示踪器的定位坐标以及位姿数据,结合骨科手术机器人和光学跟踪器的定位坐标以及位姿数据, 采用迭代最近点算法即ICP算法或矩阵奇异值分解算法计算各个坐标系间的位姿转换关系,实现自补偿跟踪。
  7. 根据权利要求6所述的一种骨科手术机器人自补偿跟踪方法,其特征在于,包括:
    获取示踪装置在光学跟踪器中对应的基础位姿信息、骨科手术机器人基准点云和光学跟踪器基准点云;获取3D导航图像数据和光学跟踪器的位置信息;
    计算光学跟踪器坐标系与3D导航图像数据的坐标系之间的转换关系;计算骨科手术机器人基准点云s、光学跟踪器基准点云获取时刻,以及光学跟踪器坐标系与骨科手术机器人坐标系间的位姿转换关系;实时跟踪当前示踪装置在光学跟踪器中对应的位姿信息,并计算与基础位姿信息之间的转换关系,再结合位姿转换关系,计算并更新当前光学跟踪器坐标系与骨科手术机器人坐标系间的位姿转换关系;根据得到的位姿转换关系,结合得到的位姿转换关系,将3D导航图像数据的坐标系下的位姿转换到机器人坐标系下的位姿,发送给骨科手术机机器人,进而控制骨科手术机机器人运动到相应的位置。
  8. 据权利要求6所述的一种骨科手术机器人自补偿跟踪方法,其特征在于,计算当前骨科手术机器人的位姿在3D导航图像中的实时显示与实际规划点的误差δ,验证当前骨科手术机器人运动位姿是否符合精度要求。
  9. 根据权利要求8所述的一种骨科手术机器人自补偿跟踪方法,其特征在于,计算当前骨科手术机器人的位姿在3D导航图像中的实时显示与实际规划点的误差的方法包括:
    通过光学跟踪器获取骨科手术机器人当前位姿;
    根据光学跟踪器坐标系与3D导航图像坐标系之间的转换关系,将骨科手术机器人当前位姿转换到3D导航图像坐标系中并显示;
    计算当前骨科手术机器人的运动位姿在3D导航图像中的坐标与预规划时目标运动位姿在3D导航图像中的坐标差。
  10. 根据权利要求9所述的一种骨科手术机器人自补偿跟踪方法,其特征在于,步骤5中计算骨科手术机器人基准点云和光学跟踪器基准点云获取时刻,光学跟踪器坐标系与骨科手术机器人坐标系间的位姿转换关系的方法为迭代最近点算法即ICP算 法或矩阵奇异值分解算法。
PCT/CN2022/125645 2022-06-28 2022-10-17 一种骨科手术机器人示踪装置及自补偿跟踪方法 WO2024000931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210749345.1 2022-06-28
CN202210749345.1A CN114948211A (zh) 2022-06-28 2022-06-28 一种骨科手术机器人示踪装置及自补偿跟踪方法

Publications (1)

Publication Number Publication Date
WO2024000931A1 true WO2024000931A1 (zh) 2024-01-04

Family

ID=82968261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125645 WO2024000931A1 (zh) 2022-06-28 2022-10-17 一种骨科手术机器人示踪装置及自补偿跟踪方法

Country Status (2)

Country Link
CN (1) CN114948211A (zh)
WO (1) WO2024000931A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114948211A (zh) * 2022-06-28 2022-08-30 南京普爱医疗设备股份有限公司 一种骨科手术机器人示踪装置及自补偿跟踪方法
CN115645048A (zh) * 2022-10-27 2023-01-31 南京普爱医疗设备股份有限公司 一种手术机器人末端跟踪装置及一体化配准方法
CN116616897A (zh) * 2023-07-24 2023-08-22 北京维卓致远医疗科技发展有限责任公司 一种导航系统用参考架空间位姿可调器械

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107072725A (zh) * 2014-10-27 2017-08-18 直观外科手术操作公司 用于集成手术台的系统和方法
US20190380794A1 (en) * 2012-06-21 2019-12-19 Globus Medical, Inc. Surgical robotic automation with tracking markers
CN110897717A (zh) * 2019-12-09 2020-03-24 苏州微创畅行机器人有限公司 导航手术系统及其注册方法与电子设备
CN111759463A (zh) * 2020-07-31 2020-10-13 南京普爱医疗设备股份有限公司 一种提高手术机械臂定位精度的方法
CN112971986A (zh) * 2021-03-31 2021-06-18 南京逸动智能科技有限责任公司 一种用于导航手术的示踪器及定位方法
CN113040910A (zh) * 2021-03-11 2021-06-29 南京逸动智能科技有限责任公司 一种手术导航机器人末端上示踪器的标定方法
CN113855247A (zh) * 2021-10-21 2021-12-31 南京普爱医疗设备股份有限公司 一种手术机器人一体化配准装置及操作方法
CN113974840A (zh) * 2021-12-29 2022-01-28 北京壹点灵动科技有限公司 示踪器安装组件、手术器械装置及手术用机械手
CN114569257A (zh) * 2020-12-01 2022-06-03 财团法人金属工业研究发展中心 实时定位补偿方法及可实时定位补偿的影像定位系统
CN114948211A (zh) * 2022-06-28 2022-08-30 南京普爱医疗设备股份有限公司 一种骨科手术机器人示踪装置及自补偿跟踪方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190380794A1 (en) * 2012-06-21 2019-12-19 Globus Medical, Inc. Surgical robotic automation with tracking markers
CN107072725A (zh) * 2014-10-27 2017-08-18 直观外科手术操作公司 用于集成手术台的系统和方法
CN110897717A (zh) * 2019-12-09 2020-03-24 苏州微创畅行机器人有限公司 导航手术系统及其注册方法与电子设备
CN111759463A (zh) * 2020-07-31 2020-10-13 南京普爱医疗设备股份有限公司 一种提高手术机械臂定位精度的方法
CN114569257A (zh) * 2020-12-01 2022-06-03 财团法人金属工业研究发展中心 实时定位补偿方法及可实时定位补偿的影像定位系统
CN113040910A (zh) * 2021-03-11 2021-06-29 南京逸动智能科技有限责任公司 一种手术导航机器人末端上示踪器的标定方法
CN112971986A (zh) * 2021-03-31 2021-06-18 南京逸动智能科技有限责任公司 一种用于导航手术的示踪器及定位方法
CN113855247A (zh) * 2021-10-21 2021-12-31 南京普爱医疗设备股份有限公司 一种手术机器人一体化配准装置及操作方法
CN113974840A (zh) * 2021-12-29 2022-01-28 北京壹点灵动科技有限公司 示踪器安装组件、手术器械装置及手术用机械手
CN114948211A (zh) * 2022-06-28 2022-08-30 南京普爱医疗设备股份有限公司 一种骨科手术机器人示踪装置及自补偿跟踪方法

Also Published As

Publication number Publication date
CN114948211A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2024000931A1 (zh) 一种骨科手术机器人示踪装置及自补偿跟踪方法
US11759265B2 (en) System and method for registering to a table
CN114041875B (zh) 一种一体式手术定位导航系统
CN109129466A (zh) 一种用于立体定向机器人的主动视觉装置及其控制方法
US20220079687A1 (en) Robot mounted camera registration and tracking system for orthopedic and neurological surgery
CN113855247A (zh) 一种手术机器人一体化配准装置及操作方法
CN116983086B (zh) 一种自主关节置换手术机器人导航定位系统
CN113974835A (zh) 一种基于远心不动点约束的手术机器人运动控制方法
CN114098968B (zh) 一种辅助机器人的快速定位跟踪装置
WO2022127794A1 (zh) 导航手术系统及其注册方法、计算机可读存储介质及电子设备
WO2022110573A1 (zh) 基于刚性上臂模型的功能性肩关节旋转中心定位方法
US20240148446A1 (en) Control system and method for navigation and reduction operation
Li et al. Homography-based robust pose compensation and fusion imaging for augmented reality based endoscopic navigation system
CN218528879U (zh) 一种骨科手术机器人示踪装置
CN115337072A (zh) 一种基于光学定位的髋臼磨锉角度校准方法及系统
WO2021127839A1 (zh) 一种"Eye-in-Hand"机器人-3D相机标定方法
AU2020282347B2 (en) Robot mounted camera registration and tracking system for orthopedic and neurological surgery
Zhao et al. Research on collision avoidance control of multi-arm medical robot based on c-space
CN113876433A (zh) 机器人系统以及控制方法
Pei-Lun et al. Surgical navigation system based on the visual object tracking algorithm
CN214857401U (zh) 一体化系统结构装置
CN113974831B (zh) 一种用于手术导航的医学图像配准方法
CN112807085A (zh) 一体化系统结构装置及控制方法
CN117562666A (zh) 一种腔镜手术机器人的激光方向对准方法
Hwang et al. Visual Servo Control of COVID-19 Nasopharyngeal Swab Sampling Robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949016

Country of ref document: EP

Kind code of ref document: A1