WO2024000178A1 - 无线通信的方法及装置 - Google Patents

无线通信的方法及装置 Download PDF

Info

Publication number
WO2024000178A1
WO2024000178A1 PCT/CN2022/101989 CN2022101989W WO2024000178A1 WO 2024000178 A1 WO2024000178 A1 WO 2024000178A1 CN 2022101989 W CN2022101989 W CN 2022101989W WO 2024000178 A1 WO2024000178 A1 WO 2024000178A1
Authority
WO
WIPO (PCT)
Prior art keywords
central node
terminal device
indication information
pei
terminal
Prior art date
Application number
PCT/CN2022/101989
Other languages
English (en)
French (fr)
Inventor
赵铮
吕玲
杨中志
钱鹏鹤
Original Assignee
上海移远通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移远通信技术股份有限公司 filed Critical 上海移远通信技术股份有限公司
Priority to CN202280002769.XA priority Critical patent/CN115349284A/zh
Priority to PCT/CN2022/101989 priority patent/WO2024000178A1/zh
Publication of WO2024000178A1 publication Critical patent/WO2024000178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a wireless communication method and device.
  • the terminal device can be connected to the central node, and the central node can provide network services for the terminal device.
  • the central node can provide wireless fidelity (WiFi) signals to terminal devices.
  • WiFi wireless fidelity
  • this application provides a wireless communication method and device, which can save the power consumption of terminal equipment.
  • a wireless communication method including: a terminal device receiving first indication information sent by a central node, where the first indication information is used to instruct a network device to page the terminal device.
  • a wireless communication method including: a central node sending first indication information to a terminal device, where the first indication information is used to instruct a network device to page the terminal device.
  • a wireless communication method including: an access network device sending second indication information to a central node, so that the central node sends first indication information to a terminal device, where the first indication information is Instructing the network device to page the terminal device.
  • a wireless communication method including: a core network sending third indication information to a central node, so that the central node sends first indication information to a terminal device, where the first indication information is used to indicate The network device pages the terminal device.
  • a wireless communication method including: a terminal device sending a request message to a central node, where the request message is used to request the central node to send a preamble of the terminal device to a network device.
  • a wireless communication method including: a central node receiving a request message sent by a terminal device, the request message being used to request the central node to send a preamble of the terminal device to a network device; responding to In the request message, the central node sends the preamble of the terminal device to the network device.
  • a wireless communication device is provided.
  • the device is a terminal device.
  • the device includes: a receiving unit configured to receive first indication information sent by a central node, where the first indication information is used to instruct the network.
  • the device pages the terminal device.
  • a wireless communication device is provided.
  • the device is a central node.
  • the device includes: a sending unit configured to send first indication information to a terminal device, where the first indication information is used to instruct a network device. Paging the terminal device.
  • a wireless communication device is provided.
  • the device is an access network device.
  • the device includes: a sending unit configured to send second indication information to a central node, so that the central node sends a message to a terminal device.
  • Send first indication information where the first indication information is used to instruct the network device to page the terminal device.
  • a wireless communication device where the device is a core network, and the device includes: a sending unit configured to send third indication information to a central node, so that the central node sends the third indication information to a terminal device.
  • An indication information, the first indication information is used to instruct the network device to page the terminal device.
  • a wireless communication device is provided.
  • the device is a terminal device.
  • the device includes: a sending unit configured to send a request message to a central node.
  • the request message is used to request the central node to send a request message to a central node.
  • the network device sends the preamble of the terminal device.
  • a wireless communication device is provided.
  • the device is a central node.
  • the device includes: a receiving unit configured to receive a request message sent by a terminal device.
  • the request message is used to request the central node.
  • a sending unit configured to respond to the request message, and the central node sends the preamble of the terminal device to the network device.
  • a wireless communication device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the The terminal device performs the method described in any one of the first to sixth aspects.
  • a fourteenth aspect provides a device, including a processor, for calling a program from a memory to execute the method described in any one of the first to sixth aspects.
  • a chip including a processor for calling a program from a memory, so that a device equipped with the chip executes the method described in any one of the first to sixth aspects.
  • a sixteenth aspect provides a computer-readable storage medium on which a program is stored, the program causing a computer to execute the method described in any one of the first to sixth aspects.
  • a computer program product including a program that causes a computer to execute the method described in any one of the first to sixth aspects.
  • An eighteenth aspect provides a computer program that causes a computer to perform the method described in any one of the first to sixth aspects.
  • the central node helps the terminal device perform paging detection or send a random access preamble, which can save the power consumption of the terminal device.
  • FIG. 1 is an example system architecture diagram of a communication system applicable to embodiments of the present application.
  • Figure 2 is an example diagram of a CPE communication system.
  • Figure 3 is a schematic diagram of the relative positional relationship between CPE, terminal equipment, and base stations.
  • Figure 4 is an example diagram of the architecture of a V2X communication system.
  • Figure 5 is a schematic flow chart of a wireless communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a four-step random access process.
  • Figure 7 is a schematic flow chart of a two-step random access process.
  • Figure 8 is a schematic flow chart of another wireless communication method provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a central node provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a core network provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a central node provided by another embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal 120.
  • Network device 110 may be a device that communicates with terminal 120.
  • Network device 110 may provide communications coverage for a specific geographic area and may communicate with terminals 120 located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and other numbers of terminals may be included within the coverage of each network device. This application implements This example does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (mobile Terminal, MT) , remote station, remote terminal, mobile device, user terminal, terminal, wireless communications device, user agent or user device.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communications device
  • user agent or user device user agent or user device.
  • the terminal in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, or a virtual reality (VR) ) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grids Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal to the wireless network.
  • radio access network radio access network, RAN
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminals are located are not limited.
  • the terminal device can be connected to the central node, and the central node can provide network services for the terminal device.
  • a central node can provide WiFi signals to end devices. Terminal devices can communicate with network devices using WiFi.
  • the central node can also provide wired network services for terminal devices.
  • the central node in the embodiment of this application may be a customer premise equipment (CPE), a WiFi base station, a road side unit (RSU) in a side communication system, or a central node in a side communication system. wait.
  • CPE customer premise equipment
  • WiFi base station WiFi base station
  • RSU road side unit
  • wait a central node in a side communication system. wait.
  • the WiFi base station in the embodiment of the present application can provide WiFi signals for terminal devices.
  • the WiFi base station may have the ability to perform uplink synchronization and/or downlink synchronization with network equipment.
  • Downlink synchronization capabilities may include obtaining the cell ID or physical cell identities (PCI/PCID) of the access cell, or obtaining the cell ID or PCI/PCID of the cell with the highest received power.
  • the uplink synchronization capability may include obtaining the TA sent by the base station.
  • the RSU and/or central node in the side communication system are responsible for the management of the communication network in the community and the upload and delivery of signaling.
  • the RSU can send data such as traffic lights, traffic signs and obstacles on the road to the vehicle.
  • the central node may refer to the terminal in the vehicle.
  • CPE is a mobile signal access device that receives mobile signals on the network side and forwards them as wireless WiFi signals. It can convert high-speed mobile signals on the network side (such as 4G signals or 5G signals or 6G signals) into WiFi signals to communicate with terminals. , that is, the connection between the terminal and the network side is achieved through WiFi signals.
  • CPE can be widely used in wireless network access in rural areas, towns, hospitals, units, factories, communities, etc., and can save the cost of laying wired networks.
  • CPE can be used to re-relay operator network signals. As shown in Figure 3, CPE 130 can receive mobile signals sent by base station 110 and convert the mobile signals into WiFi signals. For network equipment, CPE is a terminal device, and CPE can insert a subscriber identity module (SIM) card. Because the CPE antenna has stronger gain and higher power, its signal sending and receiving capabilities are more powerful than the terminal equipment. Therefore, in some places where the terminal device does not have a signal, it may have a signal. In addition, CPE can serve as a mobile relay to ensure that terminal equipment has a good connection during movement.
  • SIM subscriber identity module
  • the terminal equipment in the embodiment of the present application is within the coverage area of both the base station and the CPE.
  • the terminal device may be located on the connection line between the CPE and the base station, such as the terminal device 120A in Figure 4 .
  • the terminal equipment may be located on the extension line of the connection between the CPE and the base station, such as the terminal equipment 120B in Figure 4 .
  • Terminal equipment 120A (or terminal equipment 120B), CPE, and base station are located on a straight line.
  • a triangle is formed between the terminal equipment, the CPE and the base station, such as the terminal equipment 120C and 120D in Figure 4 .
  • Terminal devices within the coverage of the CPE can obtain the network based on the WiFi signal sent by the CPE, so that they can communicate with other devices.
  • the CPE is a terminal.
  • CPE is equivalent to a WiFi base station.
  • CPE and terminal equipment are both terminals. They communicate with network equipment independently, such as downlink synchronization, reading broadcast information, uplink random access, paging, etc.
  • V2X system according to the embodiment of the present application will be introduced below with reference to Figure 4 .
  • terminals can communicate with each other through sidelinks (SL).
  • Sidelink communication can also be called proximity services (ProSe) communication, unilateral communication, side chain communication, device to device (D2D) communication.
  • ProSe proximity services
  • D2D device to device
  • sidelink data is transmitted between terminals through sidelinks.
  • the sideline data may include data and/or control signaling.
  • the sidelink data can be, for example, a physical sidelink control channel (PSCCH), a physical sidelink shared channel (physical sidelink control channel, PSSCH), or a PSCCH demodulation reference signal (demodulation reference signal, DMRS), PSSCH DMRS, physical sidelink feedback channel (feedback channel, PSFCH), etc.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • DMRS demodulation reference signal
  • DMRS physical sidelink feedback channel
  • feedback channel PSFCH
  • the V2X system is one of the supporting technologies for smart cars and smart transportation.
  • the V2X system can include one or more of the following communication application scenarios: vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, vehicle-to-pedestrian (V2P) Communication, vehicle to network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle to network
  • Vehicles based on V2V communications can realize forward collision warning, lane change assistance, left turn assistance, collaborative adaptive cruise control, etc.
  • applications such as speed advice, traffic priority, road condition warning, red light warning, current weather impact warning, parking space and charging pile location finding, etc. can be realized.
  • services such as early warning and protection for vulnerable road users can be realized.
  • V2N communication real-time traffic route planning, map updating and other services can be realized.
  • the V2X system supports centralized network models, distributed network models and hybrid network models.
  • the centralized network model continues the traditional communication network model, as shown in Figure 4.
  • the vehicle nodes perform vehicle-to-vehicle communication connections through a central node 410 (such as a road side unit (RSU or base station)).
  • the RSU can send data such as traffic lights, traffic signs and obstacles on the road to the vehicle.
  • the central node is responsible for the management of the communication network in the community and the upload and delivery of signaling.
  • the advantage of this is that vehicle nodes can easily access the network at any time and can connect with vehicle nodes in far away places (refer to the similar principle of mobile phone communication).
  • due to the effective scheduling of the central node communication quality can be effectively guaranteed.
  • vehicles flexibly form network components in a self-organized manner.
  • the distributed network model structure can be shown in the figure. Vehicles can join or exit the network at any time in a distributed network structure without affecting the overall performance of the network. In terms of communication performance, the distributed network architecture can make more efficient use of network bandwidth.
  • the hybrid network model can be understood as including RSU or base station as the central node of the area for unified regulation, while also allowing D2D connections between vehicles. It is compatible with the advantages of the centralized network model and the distributed network model, and can reduce the cost of network deployment. cost.
  • the vehicle can establish a connection with the RSU. Communication between the RSU and the vehicle can occur through wireless signals.
  • the wireless signal may be a WiFi signal, a mobile signal, etc. If there is a WiFi connection between the vehicle and the RSU, the vehicle can turn off mobile data and communicate with the network side via WiFi.
  • DRX discontinuous reception
  • the terminal only receives paging messages during the PO period and does not receive paging messages outside of paging opportunities to achieve the purpose of power saving.
  • the terminal can determine whether there is a paging call by detecting the physical downlink control channel (PDCCH) scrambled using the paging radio network temporary identifier (P-RNTI). Call message.
  • PDCCH physical downlink control channel
  • P-RNTI paging radio network temporary identifier
  • the network device can cause the terminal device to switch to the RRC connected state through paging.
  • the paging process can be used to send a paging request to the terminal in the RRC idle state, or the paging process can also be used to notify the terminal of system information updates, or the paging process can also notify the terminal to receive the earthquake and tsunami early warning system (earthquake and tsunami warning system (ETWS) and commercial mobile alert system (CMAS).
  • EWS earthquake and tsunami early warning system
  • CMAS commercial mobile alert system
  • the paging process can be triggered by the core network or the base station.
  • the core network can be, for example, an access and mobility management function (AMF). If the paging message is initiated by the core network, the core network will send the paging message to all base stations in the tracking area (TA) registered by the terminal. After receiving the paging message sent by the core network, the base station will interpret the content, obtain the tracking area identity (TAI) list of the paged terminal, and search within the cells belonging to the tracking areas in the list. Perform air interface paging.
  • AMF access and mobility management function
  • the base station can summarize the paging messages corresponding to the terminals with the same PO into one paging message, and finally transmit it to the relevant terminals through the paging channel. .
  • the terminal in the RRC idle state can initiate the RRC connection establishment process to receive data or signaling.
  • the above paging message is carried through the physical downlink shared channel (PDSCH).
  • the terminal Before receiving the paging message, the terminal needs to receive the paging parameters through the system message, and calculate the frame number and PO of the paging frame (paging frame, PF) in which the paging message is located based on the respective UE_ID. Then, in the PO on the PF, the terminal monitors the PDCCH scrambled by the P-RNTI to receive the paging indication information, and finally receives the paging message based on the paging indication information.
  • the paging indication information is carried in the PDCCH, and the paging message can be used to indicate the resource location of the PDSCH that carries the paging message.
  • the terminal can detect the PDCCH in the PO to obtain the downlink control information format (downlink control information, DCI).
  • DCI downlink control information
  • the cyclic redundancy check (CRC) of the DCI is scrambled by P-RNTI.
  • the terminal device detects the DCI, it can receive the PDSCH at the resource location indicated by the DCI (such as the time domain resource location and/or the frequency domain resource location).
  • the terminal device can use the temporary mobile subscriber identity (TMSI) (such as 5G-S-TMSI) to decode the PDSCH. If the decoding is successful, it means that the terminal device is paged and the terminal obtains the paging from the PDSCH. message; if decoding fails, it means that the terminal device has not been paged.
  • TMSI temporary mobile subscriber identity
  • the network device does not know which transmit beam to use to send paging messages to the terminal. In order to ensure that the terminal can receive the paging message, the network device uses wave speed scanning to send the paging message.
  • PO can be defined as a set of PDCCH monitoring occasions (PDCCH monitoring occasions). Different PDCCH monitoring occasions correspond to paging indication information sent through different transmission beams.
  • a PF can include one or more POs or PO starting time points.
  • each synchronization signal block (SSB) index corresponds to a PDCCH monitoring occasion, and different SSB indexes correspond to different beams, in this way, multiple PDCCH monitoring opportunities in a PO can be sent corresponding to different SSB indexes.
  • the SSB required to complete a beam scan constitutes an "SSB burst set" (SSB burst).
  • PDCCH monitoring occurrences are a series of time domain positions determined by the paging search space.
  • the terminal will use a method similar to the DRX mechanism to perform paging detection. Taking the paging cycle as a period, the terminal will periodically monitor the PDCCH in the PO to obtain paging indication information. However, for some terminals, they may not be paged for a long period of time, but they still need to wake up periodically to monitor the PDCCH that may carry paging indication information. There is room for further optimization of energy-saving methods for this type of terminal.
  • the network device sends PEI to the terminal.
  • the PEI can be sent before the arrival of the PO in each paging cycle, or it can be sent once in multiple paging cycles, or it can be sent in one paging cycle. repeatedly.
  • the PEI may be used to indicate whether the terminal receives the PDCCH carrying paging indication information, or the PEI may be used to indicate whether the terminal receives paging indication information, or the PEI may be used to indicate whether the terminal is awakened. The terminal will be awakened only when the PEI indicates that the terminal needs to receive paging indication information. Otherwise, if the PEI indicates that the terminal does not need to receive paging indication information, the terminal will remain in the sleep state to save energy.
  • the terminal device When there is a connection link between the terminal device and the central node, the terminal device usually turns off the communication module (hereinafter referred to as the mobile communication module) that communicates with the base station (or access network device).
  • the mobile communication module may be, for example, an LTE module or an NR module.
  • the terminal device will turn off the data service of the mobile signal, that is, the terminal device can disconnect from the base station.
  • the data of the terminal device reaches the terminal device through the core network and WiFi.
  • the mobile communication module in the terminal device only needs to support voice services.
  • the network device can send a paging message to the terminal device.
  • the paging message can be triggered by one or more of the following events: system information changes, there is an early warning signal, and the voice service of the terminal device arrives.
  • terminal equipment needs to perform paging detection according to a certain period.
  • the maximum paging cycle is 2.56s. That is to say, the terminal device needs to wake up every 2.56s for paging detection.
  • the terminal equipment may be out of synchronization in uplink and downlink.
  • the terminal equipment also needs to perform uplink and downlink synchronization. Terminal equipment consumes a large amount of power when performing uplink and downlink synchronization.
  • the embodiment of the present application can detect the paging message of the terminal device through the central node. Only when it is detected that the terminal device is being paged, the terminal device will be notified, thereby preventing the terminal device from frequently waking up for paging. Call detection helps save the power consumption of terminal equipment. Since the central node itself is also a terminal device, the central node can use its own ability to connect to network devices to assist the terminal device in performing paging detection, thereby achieving the purpose of energy saving.
  • step S510 the central node sends first indication information to the terminal device.
  • the first indication information is used to instruct the network device to page the terminal device.
  • the terminal device in the embodiment of this application may be a terminal device in the RRC_IDLE state, or a terminal device that has not yet accessed the network, or there is no RRC connection between the terminal device and the access network device.
  • the communication signal between the central node and the terminal device is a non-mobile signal.
  • Mobile signals may refer to network signals provided by operators, and non-mobile signals may refer to network signals provided by non-operators.
  • the mobile signal may be, for example, an LTE signal, an NR signal, a 6G signal, or the like.
  • Non-mobile signals may refer to WiFi signals or wired network signals, for example.
  • the central node can provide WiFi or wired network services to terminal devices.
  • the central node may be one or more of the above-described CPE, WiFi base station, roadside unit in the side communication system, and central node in the side communication system.
  • the WiFi base station in the embodiment of the present application can provide WiFi signals for terminal devices.
  • the WiFi base station may have the ability to perform uplink synchronization and/or downlink synchronization with network equipment.
  • the downlink synchronization capability may include obtaining the cell ID or PCI/PCID of the access cell, or obtaining the cell ID or PCI/PCID of the cell with the largest received power, or obtaining the cell IDs or PCI/PCID of several cells with optimal received power.
  • the uplink synchronization capability may include obtaining the TA sent by the base station.
  • the central node may send first indication information to the terminal device to indicate that the terminal device is paged by the network device.
  • the network device in the embodiment of this application may be an access network device or a core network. In other words, the paging of the terminal device can be triggered by the access device or by the core network.
  • the access network device in the embodiment of this application may be a base station.
  • the central node can detect messages from the access network device to determine whether the terminal device is paged. Alternatively, the central node can detect messages from the core network to determine whether the terminal device is paged. Alternatively, the central node may forward paging messages or voice communication data from the core network to the terminal equipment.
  • the sending of the first indication information may be triggered by one or more of the following events: the central node receives the second indication information sent by the access network device, the second indication information is used to instruct the network device Paging the terminal device; the central node receives the third instruction information sent by the core network, and the third instruction information is used to instruct the network device to page the terminal device.
  • the core network or the access network device in order to ensure that the core network or the access network device can send the paging indication of the terminal device to the appropriate CPE, can obtain the terminal device information within the coverage of the CPE.
  • Information about terminal devices within the coverage of the CPE can be reported by the CPE to the network device, or by the terminal device to the access network device.
  • the CPE can report the ID information of all terminal devices within its coverage to the access network device.
  • the terminal device can report the CPE information where it is located to the access network device.
  • the method shown in Figure 5 may further include step S504.
  • the access network device may send second indication information to the central node, so that the central node sends the first indication information to the terminal device.
  • the central node may determine that the terminal device is paged. Further, in response to the second indication information, the central node sends the first indication information to the terminal device.
  • the second indication information may be carried by the PEI of the terminal device, and the PEI indicates that the terminal device needs to receive paging indication information (or paging message).
  • the central node can receive the PEI for the terminal device sent by the access network device. If the PEI indicates that the terminal device needs to receive paging indication information, the central node may send the first indication information to the terminal device. If the PEI indicates that the terminal device does not need to receive paging indication information, the central node may not send the first indication information to the terminal device.
  • the PEIs of all terminal devices covered by the central node are carried in the same control information.
  • the sequence number of the PEI of the terminal device in all PEI bits corresponding to the central node can be determined based on the first information.
  • the first information may include one or more of the following information: the serial number of the terminal device among all terminal devices covered by the central node, the number of bits of the PEI corresponding to the central node, the PEI of the first terminal device in the central node The bit sequence number in the corresponding PEI bit.
  • the number of bits of the PEI corresponding to the central node is too small to allocate a dedicated PEI to each terminal device.
  • multiple terminal devices can share one PEI, that is, the one PEI can be used for Indicate whether the plurality of terminal devices receive paging indication information.
  • the PEI corresponding to the central node can be understood as the PEI occupied by all terminal devices covered by the central node, or can be understood as the PEI occupied by the central node and all terminal devices covered by the central node.
  • the first terminal device can be understood as the terminal device with the first serial number among all terminal devices covered by the central node.
  • the bit sequence number in the PEI bits corresponding to the central node of the first terminal device's PEI can also be called the starting bit sequence number. Assuming that the PEI bits corresponding to the central node are bits 0 to 20, the starting bit sequence number can be any one from 0 to 20. That is to say, the central node or network device can configure the PEI bits for the terminal device starting from bit 0, or configure the PEI bits for the terminal device starting from other bit positions.
  • the central node or network device can configure the PEI bits for the terminal device in the order of the identification (or serial number) of the terminal device. For example, the central node can sort the identifiers of the terminal devices from large to small or from small to large, and allocate PEI bits to the terminal devices in sequence.
  • the PEI sequence number i PEI of the terminal device in all PEI bits corresponding to the central node is determined according to the following formula:
  • N is the number of PEI bits corresponding to the central node
  • i begin is the bit sequence number of the PEI of the first terminal device in the PEI bits corresponding to the central node
  • n intraUEID is all terminals covered by the central node. The serial number in the device.
  • the N value can be notified to the central node by the base station.
  • the i begin value can be notified by the base station to the central node, or the central node can calculate it according to the existing protocol based on the UE ID of the central node.
  • the central node can notify the base station of the n intraUEID value.
  • the PEI of each terminal can also be indicated in accordance with existing standards.
  • the central node detects the PEI of each terminal. If the corresponding PEI is detected, the central node notifies the terminal that it needs to wake up to detect paging messages or receive communication data.
  • the access network device When the access network device configures the PEI of the terminal device, it can notify the central node of the PEI corresponding to each terminal device. Taking the CPE system as an example, the access network equipment can notify the CPE of the PEI corresponding to all terminal equipment within the coverage of the CPE.
  • the PEI may indicate whether a terminal device needs to receive paging indication information, or the PEI may indicate whether a group of terminal devices need to receive paging indication information. In other words, a PEI can correspond to a terminal device or a group of terminal devices.
  • the PEI of the terminal device can be carried in the same control information as the PEI of other devices.
  • the control information can be PDCCH or DCI.
  • the PEI of the terminal device is carried in the first control information, and the first control information may also include one or more of the following information: the PEI of the central node and the PEI of other terminal devices.
  • Other terminal devices may be devices connected to the central node, or other terminal devices may be other terminal devices within the coverage of the central node.
  • the central node can detect the PEI of the central node and other devices by receiving a piece of control information, thereby reducing the complexity of PEI detection.
  • PDCCH or DCI is physical layer signaling. It indicates whether the terminal has paging through physical layer signaling and has a lower delay.
  • the second indication information is carried in the paging message of the central node.
  • the central node can detect on its own paging opportunity to determine whether the terminal device is paged.
  • the second indication information may be carried in the paging PDSCH of the central node.
  • the paging PDSCH may refer to the PDSCH scheduled by the PDCCH on the paging opportunity of the central node, and the PDSCH is used to carry the paging message of the central node.
  • the central node may receive the PDCCH on the central node's paging opportunity and receive the paging message on the PDSCH scheduled by the PDCCH.
  • the PDSCH contains indication information indicating whether the terminal equipment is paged. If the PDSCH contains indication information that the terminal equipment is paged, that is, contains second indication information, the central node sends the first indication information to the terminal equipment. If the PDSCH does not contain indication information that the terminal equipment is paged, the central node does not send the first indication information to the terminal equipment.
  • the second indication information is indicated by an identification of the terminal device. For example, if the paging message of the central node includes the identification of the terminal device, it means that the terminal device is paged. If the paging message of the central node does not include the identification of the terminal device, it means that the terminal device has not been paged.
  • the identifier of the terminal device may be the ID of the terminal device.
  • the identification of the terminal device may be the serial number of the terminal device among the terminal devices covered by the central node. Since the number of terminal devices covered by the central node is relatively small compared with the terminal devices covered by the base station, using the serial number of the terminal device among the terminal devices covered by the central node as identification information can save signaling load.
  • the identification information of the terminal device may be reported to the base station by the central node, or the identification information of the terminal device may be determined by the base station itself.
  • the central node can number the terminal devices within its coverage and report the numbering information of the terminal devices to the base station.
  • the base station and the central node can sort the IDs of the terminal devices based on the same sorting method, thereby determining the number of the terminal device.
  • the sorting method may be negotiated between the base station and the central node, or the base station may notify the central node, or the central node may notify the base station.
  • the second indication information may be obtained by the central node performing paging detection based on the paging configuration information of the terminal device. For example, the central node can detect the paging opportunity of the terminal device based on the paging configuration information of the terminal device to determine whether the terminal device is paged. If it is detected that the terminal device is paged, the central node sends first indication information to the terminal device. If it is not detected that the terminal device is paged, the central node may not send the first indication information to the terminal device.
  • the paging opportunity of the terminal device may be determined by the paging configuration parameters of the terminal device.
  • the paging configuration parameters may be sent by the base station to the central node, or may also be sent by the terminal device to the central node.
  • the paging configuration parameters may include one or more of the following information: PDCCH search space, paging cycle, paging opportunity, and ID of the terminal device.
  • the central node may determine the paging opportunities of the terminal device based on the paging configuration parameters of the terminal device.
  • This solution does not change the base station side, and the base station can page the terminal device according to the original method of sending paging messages.
  • the method shown in Figure 5 may further include step S502.
  • the core network may send third indication information to the central node to indicate that the terminal device is paged. Sending instruction information to the central node through the core network can reduce changes to the network side and achieve low implementation complexity.
  • the third indication information may also include one or more of the following information: the Internet Protocol (IP) address of the terminal device, the IP address of the central node, The identity of the terminal device and the identity of the central node.
  • IP Internet Protocol
  • the IP address of the central node or the identification of the central node may be used to send the second indication information to the central node.
  • the IP address of the terminal device or the identification of the terminal device may be used by the central node to transmit the first indication information to the terminal device.
  • the IP address can be maintained by the called operator, the calling operator, or a third-party organization in real time.
  • the central node may send the first indication information through WiFi signals and/or WiFi sequences.
  • the WiFi sequence may be, for example, a WiFi beacon.
  • the WiFi signal may be a WiFi pilot signal.
  • the first indication information may be received by a wake-up device in the terminal device.
  • the central node may send the first indication information to the wake-up device in the terminal device.
  • the wake-up device can wake up the terminal device.
  • Receiving the first indication information through hardware has a lower transmission delay, thereby ensuring the transmission delay of data.
  • the power consumption of the wake-up device is extremely low (at the nanowatt level), and the receiving sensitivity can reach tens of meters. Therefore, using the wake-up device to receive the first indication information will not have a great impact on the power consumption of the terminal device.
  • the power consumption of the wake-up device will also vary. Since the base station is far away from the terminal equipment, if the wake-up device detects the paging indication information sent by the base station, a large power consumption is required. Since the central node is relatively close to the terminal device, the terminal device can use a wake-up device with lower power consumption to receive the first indication information sent by the central node.
  • the wake-up device in the terminal device can periodically detect the signal sent by the central node.
  • the central node may send the first indication information in the form of a sequence.
  • the central node can configure a sequence for each terminal device in advance.
  • the central node can send a sequence corresponding to the terminal device.
  • the wake-up device of the terminal device can match the received sequence. If the match is successful (for example, the value after matching is greater than a preset threshold), the terminal device is considered to be paged. If the match is unsuccessful, the terminal device may be considered not to be paged.
  • the control module of the wake-up device in the terminal device can receive the sequence code assigned by the central node to the terminal device.
  • the terminal device configures the serial code for the control module.
  • the terminal device can use the serial code for detection.
  • the terminal device can use a matching correlation algorithm to perform matching calculations on the received sequence code and the local sequence code to determine the detection result.
  • the terminal device determines whether the terminal device is paged based on the detection result. For example, if the detection result is greater than a preset threshold, the terminal device may determine to be paged. If the detection result is less than or equal to the preset threshold, the terminal device may determine that it is not paged.
  • the terminal device may receive the paging message.
  • the embodiment of this application does not specifically limit the method of receiving paging messages.
  • the terminal device can receive paging messages through the central node.
  • the terminal device may receive the paging message through the access network device.
  • the terminal device receives the paging message through the access network device, after receiving the first indication information, the terminal device is awakened, and the terminal device can wake up to receive or detect the paging message. Since the terminal device only wakes up to receive paging messages after it is determined to be paged, instead of periodically waking up to perform paging detection, the power consumption of the terminal device can be saved. In some embodiments, the terminal device can turn on the mobile communication module, establish a connection with the access network device, and thereby receive the paging message sent by the access network device. By receiving paging messages through access network equipment, data security can be ensured.
  • the terminal device can detect the PDCCH on its own paging opportunity, and then detect the paging message on the PDSCH scheduled by the PDCCH, thereby completing the reception of the paging message.
  • the terminal device Before receiving the paging message, the terminal device needs to establish a connection with the access network device.
  • the terminal equipment can complete uplink and downlink synchronization with the access network equipment, random access, signal measurement, etc.
  • the wake-up device can wake up the mobile communication module of the terminal device, that is, turn on the mobile communication module of the terminal device.
  • the wake-up device and the mobile communication module can be electrically connected. For example, after receiving the first indication information, the wake-up device can output a high level to trigger the mobile communication module to turn on.
  • the terminal device can keep the mobile communication module in a closed state and receive the paging message through the WiFi signal with the central node. Receiving paging messages through the central node can save communication costs of terminal equipment and reduce communication costs.
  • a network device (such as an access network device or a core network) can send a paging message to a central node, and then the central node transmits the paging message to the terminal device.
  • the central node may transmit the paging message to the terminal device through transparent transmission. In this case, the central node does not need to perform any processing on the paging message, thereby ensuring the security of the terminal device data.
  • the central node can convert the format of the paging message into data that can be recognized by the terminal device, for example, into an APP data packet.
  • the core network or central node can convert the paging message into Data packets that can be recognized by the terminal device, for example, paging messages can be converted into APP data packets.
  • the data format conversion by the core network can ensure the security of data transmission.
  • the central node only needs to transparently transmit the data packets sent by the core network to the terminal equipment.
  • the APP can be an APP dedicated to receiving paging messages, or the APP can reuse an existing APP to receive paging messages. Reusing existing APPs can further save the power consumption of terminal devices. In addition, receiving paging messages through APP data packets can also avoid blind detection of paging opportunities by terminal devices and reduce the detection power consumption of terminal devices.
  • the paging cycle of the central node can be shorter than the paging cycle of the terminal device. This allows the central node to obtain information on whether the terminal device is paged earlier and avoids increasing the paging delay of the terminal device. Since the central node (such as CPE) is large in size and usually operates in an active state or has a large battery capacity, the CPE can support a lower paging cycle.
  • the solution adopted in the embodiment of the present application can overcome the shortcoming of the long paging cycle of the existing terminal equipment and provide a smaller paging cycle for the terminal equipment.
  • some communication systems such as LTE systems
  • LTE systems require an end-to-end delay of 3 seconds for voice services, of which the paging delay requirement is 1 second.
  • the terminal The paging cycle of the device should be less than 1s. Therefore, the paging cycle of the central node in the embodiment of this application should be less than 1 s.
  • the central node when the central node receives paging instructions for multiple terminal devices, the start and end times of the paging cycles of these terminal devices may not overlap. Therefore, the central node may need to configure a smaller paging cycle to facilitate detection of all terminals.
  • the device's paging indication when the central node receives paging instructions for multiple terminal devices, the start and end times of the paging cycles of these terminal devices may not overlap. Therefore, the central node may need to configure a smaller paging cycle to facilitate detection of all terminals. The device's paging indication.
  • the network equipment (access network equipment or core network) or terminal equipment in the embodiment of the present application can determine whether to implement the solution of the embodiment of the present application based on whether there is a connection between the terminal equipment and the central node.
  • the terminal device can report the indication information of whether to connect to the central node to the access network device or the core network. For example, if the terminal device is connected to the central node, the terminal device may send fourth indication information to the access network device or the core network. The fourth indication information is used to instruct the terminal device to connect to the access network device.
  • the access network device may send the second indication information to the central node.
  • the core network may send the third indication information to the central node.
  • the paging information can be transmitted in a traditional way.
  • the access network device sends paging indication information to the terminal device, and the terminal device wakes up periodically to perform paging detection.
  • whether there is a connection between the terminal device and the central node may be indicated by the terminal device having a WiFi connection. For example, if the terminal device has a WiFi connection, it means that the terminal device is connected to the central node.
  • the terminal device can report information about whether it has a WiFi connection to the network device, so that the network device can determine whether to adopt the solution of the embodiment of the present application.
  • the network device can determine whether the terminal device has activated the mobile communication module according to the service type of the terminal device. Further, the network device can determine whether to adopt the solution of the embodiment of the present application according to whether the terminal device has activated the mobile communication module. . If the terminal device has a mobile communication module activated, the solutions in the embodiments of this application may not be implemented; if the terminal device does not have a mobile communication module activated, the solutions in the embodiments of this application may or may not be implemented.
  • the network device may not implement the solution of the embodiment of the present application.
  • the terminal device may or may not have activated the mobile communication module.
  • the network device can determine whether to adopt the solution of the embodiment of the present application based on the status information reported by the terminal device. For example, the network device may determine whether to adopt the solution of the embodiment of the present application based on whether the terminal device has a WiFi connection.
  • the solution in the embodiment of the present application does not need to be implemented, and the terminal device still performs paging detection in a traditional manner.
  • both the access network equipment and the core network can send a paging indication to the central node, that is, the access network equipment can send the second indication information to the central node, and the core network can also send the third indication information to the central node.
  • the access network equipment can send the second indication information to the central node
  • the core network can also send the third indication information to the central node.
  • the solution of the core network sending data to the terminal device through the central node does not depend on the paging scenario and can be applied in any scenario, such as a voice call scenario.
  • the data sent by the core network can be paging data or other data.
  • the core network may send the first data to the central node. After receiving the first data, the central node may send the first data to the terminal device. Optionally, the central node may send the first data to the terminal device through transparent transmission.
  • the first data may be paging data or other data, such as voice service data.
  • the core network can encapsulate the data for the terminal device into a data packet, such as APP data, and then send the data packet to the terminal device through the central node.
  • the terminal device in the embodiment of this application may be in the RRC_IDLE state, the RRC_CONNECTED state, or the RRC_INACTIVE state.
  • the core network can directly send data to the terminal device through the central node.
  • Events that trigger terminal equipment to perform random access include one or more of the following: initial RRC connection; RRC connection reestablishment; cell handover; arrival of downlink data (such as PDCCH arrival); arrival of uplink data; when there is no scheduling request (scheduling request)
  • PUCCH physical uplink control channel
  • the terminal device enters the RRC_CONNECTED state from the RRC_INACTIVE state; specific system information is requested; for non-independent networking ( non-standalone, NSA) activate NR cell; beam recovery, etc.
  • Figure 6 is a flow chart of a contention-based random access method provided by an embodiment of the present application. The method includes steps S610 to S640.
  • step S610 the terminal device sends message 1 (MSG1) in the random access process to the network device.
  • the message 1 includes a preamble.
  • the terminal device can select random access channel (RACH) resources and preambles, and send the selected preambles on the selected resources.
  • RACH random access channel
  • the RACH resource may also be called a physical random access channel (physical random access channel, PRACH) resource.
  • the network device can send RACH configuration information to the terminal device in the form of broadcast.
  • the RACH configuration information may include RACH time-frequency resource configuration information and starting preamble root sequence configuration information.
  • Network equipment can configure a shared preamble pool for end devices.
  • the preambles in the preamble pool are shared by multiple terminal devices.
  • the terminal device can select the preamble based on certain policies. Since the preamble is shared by multiple terminal devices, there may be a conflict situation in which multiple terminal devices select the same preamble. To resolve the conflict, the network device can use subsequent resolution mechanisms to handle the conflict.
  • step S620 the network device sends MSG2 to the terminal device.
  • the MSG2 may also be called a random access response (random access response, RAR).
  • RAR random access response
  • the MSG2 can be carried through PDCCH.
  • the terminal device After the terminal device sends MSG1, it can open a random access response time window and monitor the PDCCH scrambled by the random access-radio network temporary identifier (RA-RNTI) within the time window.
  • RA-RNTI is related to the time-frequency resources of RACH used by the terminal equipment to send MSG1.
  • the terminal equipment After receiving the PDCCH, the terminal equipment can use the RA-RNTI to decode the PDCCH.
  • MSG2 can also include the preamble sent by the terminal device. If the terminal device receives the PDCCH scrambled with RA-RNTI and MSG2 contains the preamble sent by itself, the terminal device can consider that the random access response has been successfully received.
  • the terminal device can obtain the physical downlink shared channel (PDSCH) scheduled by the PDCCH, where the PDSCH contains the RAR.
  • the RAR can contain multiple pieces of information.
  • the subheader of RAR can contain a backoff indicator (BI), which can be used to indicate the backoff time for retransmitting MSG1;
  • the random access preamble identifier (random access preamble identification) in RAR , RAPID) instructs the network device to respond to the received preamble index;
  • the payload in RAR can include a timing advance group (TAG), which can be used to adjust the uplink timing;
  • the RAR can also include uplink authorization (UL grant), used to schedule the uplink resource indication of MSG3;
  • the RAR can also include a temporary cell-radio network temporary identifier (C-RNTI).
  • C-RNTI temporary cell-radio network temporary identifier
  • the terminal device does not receive the RAR within the random access response time window, or fails to verify successfully, the response fails. In this case, if the number of random access attempts by the terminal device is less than the upper limit (eg, 10 times), the terminal device can continue to attempt random access. If the number of attempts is greater than the upper limit, the random access fails.
  • the upper limit eg, 10 times
  • Step S630 The terminal device sends MSG3 to the network device.
  • the terminal device can send MSG3 on the uplink grant scheduled by the network device.
  • This MSG3 may also be called an RRC connection establishment request message.
  • the MSG3 is mainly used to notify the network device of what event triggered the random access process.
  • MSG3 includes the C-RNTI of the terminal device.
  • the MSG3 sent by the terminal device will be different. Below are some examples of scenarios.
  • the terminal device can send an RRC connection establishment request message through MSG3.
  • the RRC connection establishment request message can carry the non-access stratum (NAS) UE_ID.
  • the RRC connection establishment request message can be transmitted through the common control channel (CCCH) in the radio link control (radio link control, RLC) layer transmission (transmitting, TM).
  • CCCH common control channel
  • RLC radio link control
  • the terminal device can send an RRC re-establishment request message through MSG3.
  • the RRC re-establishment request message does not carry the NAS message.
  • the RRC re-establishment request message can be transmitted using TM through the CCCH of the RLC layer. The message is not segmented.
  • MSG3 can also carry buffer status report (buffer status report, BSR).
  • Step S640 The network device sends MSG4 to the terminal device.
  • the MSG4 has two functions, one is for contention conflict resolution, and the other is to send RRC configuration messages to the terminal device. If the terminal equipment carries the C-RNTI in MSG3, MSG4 uses the PDCCH scrambled by the C-RNTI. Correspondingly, the terminal equipment can use the C-RNTI in MSG3 to decode the PDCCH to obtain MSG4. If the terminal equipment does not carry C-RNTI in MSG3, such as initial access, MSG4 can use temporary C-RNTI scrambled PDCCH scheduling. Correspondingly, the terminal equipment can use the temporary C-RNTI in MSG2 to decode the PDCCH. Got MSG4. After the terminal equipment successfully decodes the PDCCH, it obtains the PDSCH carrying MSG4. The terminal equipment can compare the common control channel (CCCH) service data unit (SDU) in the PDSCH with the CCCH SDU in MSG3. If the two are the same, it means that the contention resolution is successful.
  • CCCH common control channel
  • SDU
  • Figure 7 is a flow chart of a non-contention-based random access method provided by an embodiment of the present application. The method includes steps S710 to S730.
  • the network device sends preamble configuration information to the terminal device.
  • the configuration information includes the preamble and RACH resources required in the random access process.
  • This preamble is a dedicated preamble assigned by the network device to the terminal device.
  • the dedicated preamble can be notified to the terminal device through RRC signaling or physical layer (physical, PHY) signaling (such as DCI in PDCCH). Using a dedicated preamble will not cause conflicts with other terminal devices
  • step S720 the terminal device can send the MSGA to the network device according to the preamble configuration information. That is to say, the terminal device can send the preamble to the network device on the RACH resource.
  • step S730 the network device sends MSGB to the terminal device, and the MSGB may include RAR. After the terminal device receives the RAR, it indicates that the random access process is over.
  • the terminal device can be connected to the central node, and the central node provides services for the terminal device.
  • the central node provides services for the terminal device.
  • embodiments of the present application provide a wireless communication method.
  • the central node send the preamble instead of the terminal device, the power consumption of the terminal device in sending the preamble can be saved, thereby saving the terminal device in the random access process. power consumption.
  • the central node Since the central node itself is also a terminal device, the central node can use its own ability to connect to network devices to assist terminal devices in random access, thereby achieving the purpose of energy saving.
  • the wireless communication method according to the embodiment of the present application will be introduced below with reference to Figure 8 .
  • the method shown in Figure 8 includes steps S810 to S820.
  • step S810 the terminal device sends a request message to the central node.
  • This request message is used to request the central node to send the preamble of the terminal device to the network device.
  • the preamble may be a preamble of a contention-based random access process or a preamble of a non-contention-based random access process.
  • the central node in the embodiment of this application may be one or more of the following devices: CPE, WiFi base station, roadside unit in the side communication system, or central node in the side communication system.
  • the WiFi base station in the embodiment of the present application can provide WiFi signals for terminal devices.
  • the WiFi base station may have the ability to perform uplink synchronization and/or downlink synchronization with network equipment.
  • the downlink synchronization capability may include obtaining the cell ID or PCI/PCID of the access cell, or obtaining the cell ID or PCI/PCID of the cell with the largest received power, or obtaining the cell IDs or PCI/PCID of several cells with optimal received power.
  • the uplink synchronization capability may include obtaining the TA sent by the base station.
  • the terminal device may send a request message to the central node through WiFi signals and/or WiFi sequences.
  • the WiFi sequence can be a WiFi beacon, for example.
  • the WiFi signal may be a WiFi pilot signal.
  • step S820 in response to the request message, the central node sends the preamble of the terminal device to the network device.
  • the power consumption required for the terminal device to send messages to the central node is less than the power consumption required for the terminal device to send messages to the network device. Therefore, the central node sends the preamble instead of the terminal device, which can save the power consumption of the terminal device.
  • the request message may include one or more of the following information: preamble format and preamble sequence.
  • network devices can broadcast a pool of preambles to end devices.
  • the central node can also receive the preamble pool configured by the network device. Therefore, the terminal device needs to indicate the format of the preamble and/or the sequence of the preamble to be sent to the central node, and the central node can select an appropriate preamble from the preamble pool based on the format of the preamble and/or the sequence of the preamble. code to send.
  • the terminal device can also directly send the preamble to the central node, and the central node transmits the preamble to the network device.
  • the central node can send the preamble to the network device through transparent transmission.
  • the request message may also include indication information, the indication information being used to instruct the central node to send the preamble sending time window.
  • the central node can send the time window of the terminal device to the network device within the sending time window.
  • the sending time window may be predefined in the protocol, may be configured by the network device to the terminal device and/or the central node, or may be negotiated by the terminal device and the central node. This application The embodiment does not specifically limit this.
  • Subsequent steps in the random access process can be performed by the terminal device or by the central node.
  • the above request message may also be used to indicate whether the central node performs the first operation in the random access process on behalf of the terminal device.
  • the first operation includes one or more of the following operations: receiving MSG2; sending MSG3; receiving MSG4.
  • the central node will perform the first operation until the first operation and will not perform the operations after the first operation in the random access process.
  • the operation is performed by the terminal device itself. For example, if the request message indicates that the central node receives MSG2 on behalf of the terminal device, the central node will not send MSG3 and receive MSG4 on behalf of the terminal device.
  • the RAR in the embodiment of this application can be detected by the terminal device or by the central node. If the RAR is detected by the central node, the central node sends the information received in the RAR to the terminal device. For example, the central node can notify the terminal device of the received ULGrant, TA, temporary C-RNTI and other information. The terminal device can use this information to perform subsequent steps of random access.
  • the entire random access of the terminal device can be performed by the central node.
  • the terminal device needs to inform the central node of the purpose and related parameters of random access.
  • the purpose of performing random access may include, for example, RRC connection establishment, RRC connection reestablishment, cell handover, etc.
  • the terminal device can use the temporary NAS UE ID, that is, the terminal device sends the temporary NAS UE ID to the central node, so that the central node can use the temporary NAS UE ID to help the terminal device complete random access. .
  • the terminal device can change the temporary NAS UE ID to the UE ID of the terminal device.
  • the central node can notify the terminal device that the random access is completed. In this way, the central node only needs to notify the terminal device of the random access result, which can maximize the power consumption of the terminal device.
  • the terminal device can detect the RAR sent by the network device after sending the request message to the central node.
  • the terminal device may detect the RAR after the sending time window. For example, the terminal device may detect the RAR sent by the network device in a first period, which is located after the sending time window. The detection of RAR by the terminal device can ensure the security of the data.
  • Figure 9 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the device may be a terminal device.
  • the terminal device shown in Figure 9 can be any terminal device described above.
  • the terminal device 900 includes a receiving unit 910.
  • the receiving unit 910 may be configured to receive first indication information sent by the central node, where the first indication information is used to instruct the network device to page the terminal device.
  • the sending of the first indication information is triggered by one or more of the following events: the central node receives the second indication information sent by the access network device, and the second indication information is Instructing the network device to page the terminal device; the central node receives third instruction information sent by the core network, and the third instruction information is used to instruct the network device to page the terminal device.
  • the second indication information is carried by the paging advance indication PEI of the terminal device, and the PEI of the terminal device instructs the terminal device to receive the paging indication information.
  • the PEI of the terminal device is carried in the first control information, and the first control information also includes one or more of the following information: the PEI of the central node, the PEI of other terminal devices P.E.I.
  • the PEI of all terminal devices covered by the central node is carried in the same control information, and the sequence number i PEI of the PEI of the terminal device in the PEI bit corresponding to the central node is determined according to the following formula :
  • i PEI mod(n intraUEID ,N)+i begin
  • N is the number of PEI bits corresponding to the central node
  • i begin is the bit sequence number of the PEI of the first terminal device in the PEI bits corresponding to the central node
  • n intraUEID is the number of PEI bits of the first terminal device in the center node.
  • the second indication information is carried in a paging message of the central node.
  • the second indication information includes an identification of the terminal device.
  • the second indication information is obtained by the central node performing paging detection based on the paging configuration information of the terminal device.
  • the third indication information includes one or more of the following information: the Internet Protocol IP address of the central node, the identity of the central node, the IP address of the terminal device, the identity of the terminal device .
  • the receiving unit 910 is further configured to: receive a paging message through the central node in response to the first indication information.
  • the paging message is sent by the core network to the central node.
  • the apparatus 900 further includes an enabling unit 920, configured to enable a communication module that communicates with the access network device in response to the first indication information; and the receiving unit 910, configured to communicate through the communication The module receives the paging message sent by the access network device.
  • the apparatus 900 further includes: a sending unit 930, configured to send fourth indication information to the network device, where the fourth indication information is used to instruct the terminal device to connect to the central node.
  • the first indication information is received by a wake-up device in the terminal device.
  • the paging cycle of the central node is less than or equal to the paging cycle of the terminal device.
  • the central node is one or more of the following devices: user front-end equipment CPE, wireless fidelity WiFi base station, roadside unit in the side communication system, center in the side communication system node.
  • FIG 10 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the device can be a central node.
  • the central node shown in Figure 10 can be any of the central nodes described above.
  • the central node 1000 includes a sending unit 1010.
  • the sending unit 1010 may be configured to send first indication information to the terminal device, where the first indication information is used to instruct the network device to page the terminal device.
  • the sending of the first indication information is triggered by one or more of the following events: the central node receives the second indication information sent by the access network device, and the second indication information is Instructing the network device to page the terminal device; the central node receives third instruction information sent by the core network, and the third instruction information is used to instruct the network device to page the terminal device.
  • the second indication information is carried by the paging advance indication PEI of the terminal device, and the PEI of the terminal device instructs the terminal device to receive the paging indication information.
  • the PEI of the terminal device is carried in the first control information, and the first control information also includes one or more of the following information: the PEI of the central node, the PEI of other terminal devices P.E.I.
  • the PEI of all terminal devices covered by the central node is carried in the same control information, and the sequence number i PEI of the PEI of the terminal device in the PEI bit corresponding to the central node is determined according to the following formula :
  • N is the number of PEI bits corresponding to the central node
  • i begin is the bit sequence number of the PEI of the first terminal device in the PEI bits corresponding to the central node
  • n intraUEID is the number of PEI bits of the first terminal device in the center node.
  • the second indication information is carried in a paging message of the central node.
  • the second indication information includes the identification of the terminal device.
  • the second indication information is obtained by the central node performing paging detection based on the paging configuration information of the terminal device.
  • the third indication information includes one or more of the following information: the Internet Protocol IP address of the central node, the identity of the central node, the IP address of the terminal device, the identity of the terminal device .
  • the sending unit 1010 is also configured to send a paging message to the terminal device.
  • the paging message is sent by the core network to the central node.
  • the first indication information is received by a wake-up device in the terminal device.
  • the paging cycle of the central node is less than or equal to the paging cycle of the terminal device.
  • the central node is one or more of the following devices: user front-end equipment CPE, wireless fidelity WiFi base station, roadside unit in the side communication system, center in the side communication system node.
  • Figure 11 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the device may be access network equipment.
  • the access network device shown in Figure 11 can be any access network device described above.
  • the access network device 1100 includes a sending unit 1110.
  • the sending unit 1110 may be configured to send the second indication information to the central node, so that the central node sends the first indication information to the terminal device, and the first indication information is used to instruct the network device to page the terminal device.
  • the second indication information is carried by the paging advance indication PEI of the terminal device, and the PEI of the terminal device instructs the terminal device to receive the paging indication information.
  • the PEI of the terminal device is carried in the first control information, and the first control information also includes one or more of the following information: the PEI of the central node, the PEI of other terminal devices P.E.I.
  • the PEI of all terminal devices covered by the central node is carried in the same control information, and the sequence number i PEI of the PEI of the terminal device in the PEI bit corresponding to the central node is determined according to the following formula :
  • N is the number of PEI bits corresponding to the central node
  • i begin is the bit sequence number of the PEI of the first terminal device in the PEI bits corresponding to the central node
  • n intraUEID is the number of PEI bits of the first terminal device in the center. Serial numbers in all terminal devices covered by the node.
  • the second indication information is carried in a paging message of the central node.
  • the second indication information includes the identification of the terminal device.
  • the second indication information is obtained by the central node performing paging detection based on the paging configuration information of the terminal device.
  • the sending unit 1110 is also configured to send a paging message to the terminal device.
  • the first indication information is received by a wake-up device in the terminal device.
  • the paging cycle of the central node is less than or equal to the paging cycle of the terminal device.
  • the central node is one or more of the following devices: user front-end equipment CPE, wireless fidelity WiFi base station, roadside unit in the side communication system, center in the side communication system node.
  • the sending unit 1110 is configured to: upon receiving the fourth indication information sent by the terminal device, send the second indication information to the central node, wherein the fourth indication information Used to instruct the terminal device to connect to the central node.
  • Figure 12 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the device may be a core network.
  • the core network shown in Figure 12 can be any of the core networks described above.
  • the core network 1200 includes a sending unit 1210.
  • the sending unit 1210 may be used to send third indication information to the central node, so that the central node sends first indication information to the terminal device, and the first indication information is used to instruct the network device to page the terminal. equipment.
  • the sending unit 1210 is further configured to: send a paging message to the central node, so that the central node transmits the paging message to the terminal device.
  • the first indication information is received by a wake-up device in the terminal device.
  • the paging cycle of the central node is less than or equal to the paging cycle of the terminal device.
  • the central node is one or more of the following devices: user front-end equipment CPE, wireless fidelity WiFi base station, roadside unit in the side communication system, center in the side communication system node.
  • the sending unit 1210 is configured to: upon receiving the fourth indication information sent by the terminal device, send the third indication information to the central node, wherein the fourth indication information Used to instruct the terminal device to connect to the central node.
  • Figure 13 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the device may be a terminal device.
  • the terminal device shown in Figure 13 can be any terminal device described above.
  • the terminal device 1300 includes a sending unit 1310.
  • the sending unit 1310 may be configured to send a request message to the central node, where the request message is used to request the central node to send the preamble of the terminal device to the network device.
  • the request message includes one or more of the following information: a preamble format and a preamble sequence.
  • the request message is also used to indicate whether the central node performs the first operation in the random access process.
  • the first operation includes one or more of the following operations: receiving MSG2; Send MSG3; receive MSG4.
  • the request message includes indication information, and the indication information is used to indicate a sending time window for the central node to send the preamble.
  • the apparatus 1300 further includes a detection unit 1320, configured to detect the random access response sent by the network device in a first period, wherein the first period is located in the sending time window. after.
  • the central node is one or more of the following devices: user front-end equipment CPE, wireless fidelity WiFi base station, roadside unit in the side communication system, center in the side communication system node.
  • Figure 14 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the device can be a central node.
  • the central node shown in Figure 14 can be any of the central nodes described above.
  • the central node 1400 includes a receiving unit 1410 and a sending unit 1420.
  • the receiving unit 1410 may be configured to receive a request message sent by a terminal device, where the request message is used to request the central node to send the preamble of the terminal device to the network device.
  • the sending unit 1420 may be configured to respond to the request message, and the central node sends the preamble of the terminal device to the network device.
  • the request message includes one or more of the following information: a preamble format and a preamble sequence.
  • the request message is also used to indicate whether the central node performs the first operation in the random access process.
  • the first operation includes one or more of the following operations: receiving MSG2; Send MSG3; receive MSG4.
  • the request message includes indication information, and the indication information is used to indicate the sending time window for the central node to send the preamble; the sending unit 1420 is configured to: The network device sends the preamble of the terminal device.
  • the central node is one or more of the following devices: user front-end equipment CPE, wireless fidelity WiFi base station, roadside unit in the side communication system, center in the side communication system node.
  • Figure 15 is a schematic structural diagram of the device according to the embodiment of the present application.
  • the dashed line in Figure 15 indicates that the unit or module is optional.
  • the device 1500 can be used to implement the method described in the above method embodiment.
  • the device 1500 may be one or more of a chip, a terminal device, a central node, an access network device, and a core network.
  • Apparatus 1500 may include one or more processors 1510.
  • the processor 1510 can support the device 1500 to implement the method described in the foregoing method embodiments.
  • the processor 1510 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 1500 may also include one or more memories 1520.
  • the memory 1520 stores a program, which can be executed by the processor 1510, so that the processor 1510 executes the method described in the foregoing method embodiment.
  • the memory 1520 may be independent of the processor 1510 or integrated in the processor 1510.
  • Apparatus 1500 may also include a transceiver 1530.
  • Processor 1510 may communicate with other devices or chips through transceiver 1530.
  • the processor 1510 can transmit and receive data with other devices or chips through the transceiver 1530.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be read by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法及装置,能够节省终端设备的功耗。所述方法包括:终端设备接收中心节点发送的第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。

Description

无线通信的方法及装置 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种无线通信的方法及装置。
背景技术
为了提高终端设备的通信性能,终端设备可以接入到中心节点,中心节点可以为终端设备提供网络服务。例如,中心节点可以为终端设备提供无线保真(wireless fidelity,WiFi)信号。在具有中心节点的通信系统中,如何通过中心节点的辅助,有效节省终端设备的功耗,是目前亟需解决的问题。
发明内容
针对上述问题,本申请提供一种无线通信的方法及装置,能够节省终端设备的功耗。
第一方面,提供了一种无线通信的方法,包括:终端设备接收中心节点发送的第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第二方面,提供了一种无线通信的方法,包括:中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第三方面,提供了一种无线通信的方法,包括:接入网设备向中心节点发送第二指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第四方面,提供了一种无线通信的方法,包括:核心网向中心节点发送第三指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第五方面,提供了一种无线通信的方法,包括:终端设备向中心节点发送请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码。
第六方面,提供了一种无线通信的方法,包括:中心节点接收终端设备发送的请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码;响应于所述请求消息,所述中心节点向所述网络设备发送所述终端设备的前导码。
第七方面,提供了一种无线通信的装置,所述装置为终端设备,所述装置包括:接收单元,用于接收中心节点发送的第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第八方面,提供了一种无线通信的装置,所述装置为中心节点,所述装置包括:发送单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第九方面,提供了一种无线通信的装置,所述装置为接入网设备,所述装置包括:发送单元,用于向中心节点发送第二指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第十方面,提供了一种无线通信的装置,所述装置为核心网,所述装置包括:发送单元,用于向中心节点发送第三指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
第十一方面,提供了一种无线通信的装置,所述装置为终端设备,所述装置包括:发送单元,用于向中心节点发送请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码。
第十二方面,提供了一种无线通信的装置,所述装置为中心节点,所述装置包括:接收单元,用于接收终端设备发送的请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码;发送单元,用于响应于所述请求消息,所述中心节点向所述网络设备发送所述终端设备的前导码。
第十三方面,提供一种无线通信的装置,包括处理器、存储器、通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面至第六方面中任一方面所述的方法。
第十四方面,提供一种装置,包括处理器,用于从存储器中调用程序,以执行第一方面至第六方面中任一方面所述的方法。
第十五方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第一方面至第六方面中任一方面所述的方法。
第十六方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第一方面至第六方面中任一方面所述的方法。
第十七方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第一方面至第六方面中任一方面所述的方法。
第十八方面,提供一种计算机程序,所述计算机程序使得计算机执行第一方面至第六方面中任一方面所述的方法。
本申请实施例中,通过中心节点帮助终端设备进行寻呼检测或发送随机接入前导码,可以节省终端设备的功耗。
附图说明
图1是可应用于本申请实施例的通信系统的系统架构示例图。
图2是CPE通信系统的示例图。
图3是CPE、终端设备、基站之间的相对位置关系的示意图。
图4是一种V2X通信系统的架构示例图。
图5是本申请实施例提供的无线通信方法的示意性流程图。
图6是四步随机接入过程的示意性流程图。
图7是两步随机接入过程的示意性流程图。
图8是本申请实施例提供的另一种无线通信方法的示意性流程图。
图9是本申请一实施例提供的终端设备的结构示意图。
图10是本申请一实施例提供的中心节点的结构示意图。
图11是本申请一实施例提供的接入网设备的结构示意图。
图12是本申请一实施例提供的核心网的结构示意图。
图13是本申请另一实施例提供的终端设备的结构示意图。
图14是本申请另一实施例提供的中心节点的结构示意图。
图15是本申请一实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端120。网络设备110可以是与终端120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一 代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
为了提高终端设备的通信性能,终端设备可以接入到中心节点,中心节点可以为终端设备提供网络服务。例如,中心节点可以为终端设备提供WiFi信号。终端设备可以利用WiFi与网络设备进行通信。当然,在一些实施例中,中心节点也可以为终端设备提供有线网络服务。本申请实施例中的中心节点可以为用户前置设备(customer premise equipment,CPE)、WiFi基站、侧行通信系统中的路侧单元(road side unit,RSU)、侧行通信系统中的中心节点等。
本申请实施例中的WiFi基站能够为终端设备提供WiFi信号。该WiFi基站可以具有与网络设备进行上行同步和/或下行同步的能力。下行同步能力可以包括获取接入小区的小区ID或物理小区标识(physical cell identities,PCI/PCID),或者获取接收功率最大的小区的小区ID或PCI/PCID。上行同步能力可以包括获取基站发送的TA。
侧行通信系统中的RSU和/或中心节点肩负着该小区内通信网络的管理\信令的上传下达。RSU可以将交通灯、交通标志和道路上的障碍物等数据发送给车辆。中心节点可以指车辆中的终端。
下面结合图2和图3,对本申请实施例中的CPE系统进行介绍。
CPE系统
CPE是一种接收网络侧的移动信号并以无线WiFi信号转发出来的移动信号接入设备,可以将网络侧高速的移动信号(如4G信号或者5G信号或者6G信号)转换成WiFi信号与终端通信,即通过WiFi信号实现终端与网络侧的连接。CPE可大量应用于农村,城镇,医院,单位,工厂,小区等无线网络接入,能节省铺设有线网络的费用。
采用CPE可以对运营商网络信号进行二次中继。如图3所示,CPE 130可以接收基站110发送的移动信号,并将移动信号转化为WiFi信号。对于网络设备来说,CPE就是一个终端设备,CPE可以插入用户识别模块(subscriber identity module,SIM)卡。由于CPE天线增益更强,功率更高,其信号收发能力比终端设备更为强大。因此,有些地方终端设备没有信号,它可能就有信号。另外,CPE可以作为移动中继,保证终端设备在移动的过程中,具有较好的连接。
本申请实施例中的终端设备既在基站的覆盖范围内,也在CPE的覆盖范围内。CPE 130、终端设备120、基站110之间的相对位置关系可以有多种,本申请实施例对此不作具体限定。例如,终端设备可以位于CPE与基站的连线上,如图4中的终端设备120A。又例如,终端设备可以位于CPE与基站的连线的延长线上,如图4中的终端设备120B。终端设备120A(或终端设备120B)、CPE、基站位于一条直线上。又例如,终端设备、CPE和基站之间形成一个三角形,如图4中的终端设备120C、120D。
处于CPE覆盖范围内的终端设备,可以基于CPE发出的WiFi信号获得网络,从而可以与其他设备进行通信。在当前的CPE系统中,从网络设备的角度来看,CPE是一个终端。而对于CPE覆盖下的终端设备来说,CPE相当于一个WiFi基站。从无线通信的角度看,CPE和终端设备都属于终端,两者各自独立与网络设备进行通信,如进行下行同步、读取广播信息、上行随机接入、寻呼等。
下面结合图4,对本申请实施例的V2X系统进行介绍。
V2X系统
在V2X系统中,终端与终端之间可以通过侧行链路(sidelink,SL)进行通信。侧行链路通信也可称为邻近服务(proximity services,ProSe)通信、单边通信、旁链通信、设备到设备(device to device,D2D)通信。
或者说,终端和终端之间通过侧行链路传输侧行数据。其中侧行数据可以包括数据和/或控制信令。在一些实现方式中,侧行数据例如可以是物理侧行控制信道(physical sidelink control channel,PSCCH)、物理侧行共享信道(physical sidelink control channel,PSSCH)、PSCCH解调参考信号(demodulation reference signal,DMRS)、PSSCH DMRS、物理侧行反馈信道(feedback channel,PSFCH)等。
V2X系统是智能汽车和智能交通的支撑技术之一。V2X系统可以包括以下通信应用场景中的一种或多种:车辆间(vehicle to vehicle,V2V)通信、车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与人(vehicle to pedestrian,V2P)通信、车辆与网络(vehicle to network,V2N)通信等。
基于V2V通信车辆能实现前方碰撞预警、变道辅助、左转辅助、协同式自适应巡航控制等。基于V2I通信可以实现速度建议、交通优先权、路况预警、闯红灯预警、当前天气影响预警、停车位和充电桩寻位等应用。基于V2P通信,能实现弱势道路使用者的预警和防护等服务。基于V2N通信可实现实时交通路线规划、地图更新等服务。
V2X系统支持集中式网络模型、分布式网络模型和混合式网络模型。集中式网络模型延续了传统的通信网络模型,如图4所示。车辆节点通过中心节点410(如路侧单元(road side unit,RSU或基站))来进行车与车的通信连接。RSU可以将交通灯、交通标志和道路上的障碍物等数据发送给车辆。中心节点肩负着该小区内通信网络的管理,信令的上传下达。这样做的优点是,车辆节点随时可以方便的接入网络中,并且可以与很远的地方的车辆节点进行连接(参考手机通信的原理类似)。另外,由于中心节点的有效调度,通信质量可以得到有效的保障。
分布式网络模型中,车辆以自组织的形式灵活地组件网络。分布式网络模型结构可以如图所示。车辆在分布式的网络结构中可以随时地加入或这退出网络,而不会对网络的整体性能造成影响。从通信性能来讲,分布式网络架构可以更有效地利用网络带宽。
混合式网络模型可以理解为既包括RSU或基站作为区域的中心节点去统一地调控,同时又允许车辆间进行D2D连接,兼容了集中式网络模型和分布式网络模型的优点,能够降低网络部署的成本。
在集中式网络模型和混合式网络模型中,如果中心节点为RSU,则车辆可以与RSU建立连接。RSU和车辆之间可以通过无线信号进行通信。该无线信号可以是WiFi信号,也可以是移动信号等。如果车辆和RSU之间具有WiFi连接,则车辆可以关闭移动数据,而通过WiFi与网络侧进行通信。
寻呼
对于处于无线资源控制(radio resource control,RRC)空闲态(idle)的终端而言,通常会采取与非连续接收(discontinuous reception,DRX)机制类似的方式,来接收寻呼消息。在一个DRX周期内存在一个寻呼时机(paging occasion,PO)。终端只在PO期间内接收寻呼消息,而在寻呼时机之外的时间不接收寻呼消息,来达到省电的目的。另外,在PO期间内,终端可以通过检测使用寻呼无线网络临时标识(paging radio network temporary identifier,P-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH),来判断是否有寻呼消息。
对于处于RRC空闲态的终端设备来说,如果网络设备想要给终端设备发送下行消息或下行数据的时候,网络设备可以通过寻呼的方式让终端设备切换到RRC连接态。该寻呼过程可以用于向处于RRC空闲态的终端发送寻呼请求,或者寻呼过程还可以用于通知终端系统信息更新,又或者,寻呼过程还可以通知终端接收地震海啸预警系统(earthquake and tsunami warning system,ETWS)以及商用移动警报系统(commercial mobile alert system,CMAS)发送的报警信息。
寻呼过程可以由核心网触发或者基站触发。该核心网例如可以为接入及移动性管理功能(access and mobility management function,AMF)。如果寻呼消息是由核心网发起,核心网会向终端所注册的跟踪区(tracking area,TA)内的所有基站发送寻呼消息。基站在接收到核心网发送的寻呼消息后,会解读其中的内容,得到被寻呼终端的跟踪区域标识(tracking area identity,TAI)列表,并在其下属于列表中的跟踪区域的小区内进行空口的寻呼。通常,为了节约传输寻呼消息的开销,基站收到核心网发送的寻呼消息之后,可以将PO相同的终端对应的寻呼消息汇总成一条寻呼消息,最终通过寻呼信道传输给相关终端。处于RRC空闲态的终端接收到寻呼消息后,可以发起RRC连接建立过程以便接收数据或信令。
上述寻呼消息是通过物理下行共享信道(physical downlink shared channel,PDSCH)承载的。终端在接收寻呼消息之前,需要先通过系统消息接收寻呼参数,并结合各自的UE_ID计算寻呼消息所在的 寻呼帧(paging frame,PF)的帧号、以及PO。然后,终端在PF上的PO内,监听通过P-RNTI加扰的PDCCH来接收寻呼指示信息,并最终基于寻呼指示信息来接收寻呼消息。可以理解的是,该寻呼指示信息承载在PDCCH中,该寻呼消息可用于指示承载寻呼消息的PDSCH的资源位置。
例如,终端可以检测PO内的PDCCH,以获取下行控制信息格式(downlink control information,DCI),DCI的循环冗余校验(cyclic redundancy check,CRC)被P-RNTI加扰。如果终端设备检测到DCI,则可以在DCI指示的资源位置(如时域资源位置和/或频域资源位置)接收PDSCH。终端设备可以使用临时移动用户识别码(temporary mobile subscriber identity,TMSI)(如5G-S-TMSI)对PDSCH进行解码,如果解码成功,则表示终端设备被寻呼,终端从该PDSCH中获取寻呼消息;如果解码失败,则表示终端设备没有被寻呼。
另外,在一些通信系统中(如NR系统),对于处于RRC空闲态的终端而言,网络设备并不知道该用哪个发送波束为终端发送寻呼消息。为了保证终端可以接收到该寻呼消息,网络设备采用波速扫描的方式发送寻呼消息。为了支持寻呼消息的多波束发送,可以将PO定义为一组PDCCH监听时机(PDCCH monitoring occasions),不同的PDCCH监听时机对应通过不同发送波束发送的寻呼指示信息。一个PF可以包括一个或多个PO或者PO的起始时间点。
由于每个同步信号块(synchronization signal block,SSB)索引对应一个PDCCH monitoring occasions,并且不同SSB索引对应不同的波束,这样,便可以将一个PO中的多个PDCCH监听时机与不同SSB索引对应的发送波束关联,以支持寻呼消息的多波束发送。其中,每个SSB波束上发送的消息完全相同。通常,完成一次波束扫描所需要的SSB便组成了“SSB突发集”(SSB burst)。PDCCH monitoring occasions是由寻呼搜索空间(paging search space)所确定的一系列时域位置。
基于上文的介绍可知,终端会采用类似DRX机制的方式进行寻呼检测。以寻呼周期为周期,终端会周期性地在PO内监听PDCCH来获得寻呼指示信息。但是,对于一些终端而言,可能在一段较长的时间内并不会被寻呼,但仍然需要保持周期性地唤醒,来监听可能承载寻呼指示信息的PDCCH。对于这类终端的节能方式,有进一步优化的空间。
为了进一步优化终端的节能方式,讨论了一种基于寻呼预先指示(paging early indication,PEI)来进一步节约终端能量的方案。在该方案中,网络设备向终端发送PEI,该PEI可以是在每个寻呼周期内的PO到来之前发送,或者也可以多个寻呼周期发送一次,或者也可以是在一个寻呼周期发送多次。该PEI可用于指示终端是否接收承载寻呼指示信息的PDCCH,或者,PEI可用于指示终端是否接收寻呼指示信息,或者PEI可用于指示终端是否被唤醒。只有当PEI指示终端需要接收寻呼指示信息时,终端才会被唤醒。否则,如果PEI指示终端无需接收寻呼指示信息时,终端会保持睡眠态,以节省能量。
当终端设备与中心节点之间具有连接链路时,终端设备通常会关闭与基站(或接入网设备)进行通信的通信模块(下文称为移动通信模块)。移动通信模块例如可以为LTE模块或NR模块。例如,当终端设备中的移动信号和WiFi信号共存时,终端设备会将移动信号的数据业务关闭,即终端设备可以断开与基站的连接。终端设备的数据经过核心网、WiFi到达终端设备。在有WiFi连接时,终端设备中的移动通信模块只需支持话音业务即可。
当终端设备与中心节点之间具有连接链路时,如果有终端设备的消息到达,则网络设备可以向终端设备发送寻呼消息。寻呼消息可由以下事件中的一种或多种触发:系统消息发生改变,有预警信号,终端设备的话音业务到达。
以寻呼用于进行话音业务为例,为了支持话音业务,终端设备需要按照一定的周期进行寻呼检测。以LTE通信协议为例,最大的寻呼周期为2.56s,也就是说,终端设备需要每间隔2.56s醒来进行寻呼检测。在寻呼检测前,终端设备可能存在上下行失步的情况,此时,终端设备还需要进行上下行同步。终端设备在进行上下行同步时,会消耗较大的功率。
另外,近些年来,随着如微信、Teams、Skype等的通信应用程序(application,APP)的普及,其通信费用远低于运营商话音业务,使得运营商话音业务的使用频率大大降低。尽管话音业务很少,终端设备仍需要按照上文描述的周期醒来进行寻呼检测。当终端的WiFi模块和移动通信模块同时开启时,终端设备的移动通信模块为了支持频率极低的话音业务,至少每2.56s就需要醒来进行寻呼检测,这为终端设备带来了不必要的功率消耗。
为了解决上述问题,本申请实施例可以通过中心节点对终端设备的寻呼消息进行检测,只有在检测到终端设备被寻呼时,再通知终端设备,从而可以避免终端设备频繁地醒来进行寻呼检测,有利于节省终端设备的功耗。由于中心节点本身也为终端设备,中心节点可以利用自身具有与网络设备连接能力的特点,辅助终端设备进行寻呼检测,从而可以达到节能的目的。
下面结合图5,对本申请实施例的方案进行介绍。
参见图5,在步骤S510、中心节点向终端设备发送第一指示信息。第一指示信息用于指示网络设 备寻呼终端设备。
本申请实施例中的终端设备可以为处于RRC_IDLE状态的终端设备,或者还没进行网络接入的终端设备,或者终端设备与接入网设备之间没有RRC连接。
本申请中,中心节点与终端设备之间的通信信号为非移动信号。移动信号可以指由运营商提供的网络信号,非移动信号可以指由非运营商提供的网络信号。移动信号例如可以为LTE信号或NR信号或6G信号等。非移动信号例如可以指WiFi信号,或有线网络信号。中心节点与终端设备之间具有WiFi连接,或者中心节点与终端设备之间具有有线连接。中心节点可以为终端设备提供WiFi或有线网络服务。中心节点可以是上文描述的CPE、WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点中的一种或多种。
本申请实施例中的WiFi基站能够为终端设备提供WiFi信号。该WiFi基站可以具有与网络设备进行上行同步和/或下行同步的能力。下行同步能力可以包括获取接入小区的小区ID或PCI/PCID,或者获取接收功率最大的小区的小区ID或PCI/PCID,或者获取接收功率最优的若干个小区的小区ID或PCI/PCID。上行同步能力可以包括获取基站发送的TA。
中心节点可以在检测到终端设备被网络设备寻呼时,向终端设备发送第一指示信息,以指示终端设备被网络设备寻呼。本申请实施例中的网络设备可以为接入网设备,也可以为核心网。换句话说,终端设备的寻呼可以由接入设备触发,也可以由核心网触发。本申请实施例中的接入网设备可以为基站。
中心节点可以对来自接入网设备的消息进行检测,以确定终端设备是否被寻呼。或者,中心节点可以对来自核心网的消息进行检测,以确定终端设备是否被寻呼。或者,中心节点可以向终端设备转发来自核心网的寻呼消息或话音通信数据。在一些实施例中,第一指示信息的发送可以由以下事件中的一种或多种触发:中心节点接收到接入网设备发送的第二指示信息,该第二指示信息用于指示网络设备寻呼终端设备;中心节点接收到核心网发送的第三指示信息,该第三指示信息用于指示网络设备寻呼终端设备。
在一些实施例中,为了保证核心网或接入网设备可以将终端设备的寻呼指示发送给合适的CPE,核心网或接入网设备可以获取CPE覆盖范围内的终端设备信息。CPE覆盖范围内的终端设备的信息可以由CPE上报给网络设备,也可以由终端设备上报给接入网设备。例如,CPE可以将其覆盖范围内的所有终端设备的ID信息上报给接入网设备。又例如,终端设备可以将其所在的CPE信息上报给接入网设备。
在一些实施例中,如图5所示,图5所示的方法还可以包括步骤S504。在步骤S504、接入网设备可以向中心节点发送第二指示信息,以使中心节点向终端设备发送第一指示信息。中心节点在接收到第二指示信息后,可以确定终端设备被寻呼。进一步地,响应于所述第二指示信息,中心节点向终端设备发送第一指示信息。
在一些实施例中,第二指示信息可以由终端设备的PEI承载,且该PEI指示终端设备需要接收寻呼指示信息(或寻呼消息)。中心节点可以接收接入网设备发送的针对终端设备的PEI。如果该PEI指示终端设备需要接收寻呼指示信息,则中心节点可以向终端设备发送第一指示信息。如果该PEI指示终端设备不需要接收寻呼指示信息,则中心节点可以不向终端设备发送第一指示信息。
在一些实施例中,中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中。终端设备的PEI在中心节点对应的所有PEI比特中的序号可以根据第一信息确定。第一信息可以包括以下信息中的一种或多种:终端设备在中心节点覆盖下的所有终端设备中的序号,中心节点对应的PEI的比特个数,第一个终端设备的PEI在中心节点对应的PEI比特中的比特序号。
在一些实施例中,中心节点对应的PEI的比特个数较少,不足以为每个终端设备分配一个专用的PEI,在该情况下,多个终端设备可以共用一个PEI,即该一个PEI可用于指示该多个终端设备是否接收寻呼指示信息。中心节点对应的PEI可以理解为中心节点覆盖下的所有终端设备占用的PEI,或者可以理解为中心节点以及中心节点覆盖下的所有终端设备占用的PEI。
第一个终端设备可以理解为中心节点覆盖下的所有终端设备中序号排在第一个的终端设备。第一个终端设备的PEI在中心节点对应的PEI比特中的比特序号也可以称为起始比特序号。假设中心节点对应的PEI比特为比特0~比特20,则起始比特序号可以是0~20中的任意一个。也就是说,中心节点或网络设备可以从比特0开始为终端设备配置PEI比特,也可以从其他比特位置开始为终端设备配置PEI比特。
在为终端设备配置PEI比特时,中心节点或网络设备可以按照终端设备的标识(或序号)顺序,为终端设备配置PEI比特。例如,中心节点可以将终端设备的标识按照从大到小或从小到大的顺序进行排序,依次为终端设备分配PEI比特。
在一些实施例中,终端设备的PEI在中心节点对应的所有PEI比特中的序号i PEI根据如下公式确 定:
i PEI=mod(nintraUEID,N)+i begin
其中,N为中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是终端设备在中心节点覆盖下的所有终端设备中的序号。
N值可以由基站通知中心节点。i begin值可由基站通知中心节点,或者中心节点可以根据中心节点的UE ID按照现有协议计算得到。中心节点可以将n intraUEID值通知给基站。
当然,在一些实施例中,各个终端的PEI也可以按照现有标准方式进行指示。中心节点对各个终端的PEI进行检测,如果检测到相应的PEI,则中心节点通知终端需要醒来,以检测寻呼消息或接收通信数据。
接入网设备在对终端设备的PEI进行配置时,可以向中心节点通知各个终端设备对应的PEI。以CPE系统为例,接入网设备可以向CPE通知CPE覆盖范围内的所有终端设备对应的PEI。在一些实施例中,该PEI可以指示一个终端设备是否需要接收寻呼指示信息,或者该PEI可以指示一组终端设备是否需要接收寻呼指示信息。也就是说,一个PEI可以对应一个终端设备或一组终端设备。
为了降低PEI的检测复杂度,终端设备的PEI可以与其他设备的PEI承载在一个控制信息中。该控制信息可以为PDCCH或DCI。例如,终端设备的PEI承载在第一控制信息中,该第一控制信息中还可以包括以下信息中的一种或多种:中心节点的PEI、其他终端设备的PEI。其他终端设备可以为与中心节点相连接的设备,或者说,其他终端设备可以为中心节点覆盖范围内的其他终端设备。这样,中心节点通过对一个控制信息进行接收,即可对中心节点以及其他设备的PEI进行检测,从而可以降低PEI检测的复杂度。PDCCH或DCI为物理层的信令,通过物理层信令指示终端是否有寻呼,有较低的时延。
在一些实施例中,第二指示信息承载于中心节点的寻呼消息中。中心节点可以在自己的寻呼机会上进行检测,以确定终端设备是否被寻呼。
第二指示信息可以承载在中心节点的寻呼PDSCH中。寻呼PDSCH可以指中心节点的寻呼机会上的PDCCH调度的PDSCH,该PDSCH用于承载中心节点的寻呼消息。例如,中心节点可以在中心节点的寻呼机会上接收PDCCH,并在该PDCCH调度的PDSCH上接收寻呼消息。该PDSCH中包含终端设备是否被寻呼的指示信息。如果该PDSCH中包含终端设备被寻呼的指示信息,即包含第二指示信息,则中心节点向终端设备发送第一指示信息。如果PDSCH中不包含终端设备被寻呼的指示信息,则中心节点不向终端设备发送第一指示信息。
在一些实施例中,第二指示信息由终端设备的标识指示。例如,如果中心节点的寻呼消息中包括终端设备的标识,则表示该终端设备被寻呼。如果中心节点的寻呼消息中不包括终端设备的标识,则表示该终端设备没有被寻呼。
终端设备的标识可以为终端设备的ID。或者,终端设备的标识可以为终端设备在中心节点所覆盖的终端设备中的序号。由于与基站覆盖的终端设备相比,中心节点所覆盖的终端设备的数量相对较少,因此,以终端设备在中心节点所覆盖的终端设备中的序号作为标识信息,可以节省信令负载。
终端设备的标识信息可以由中心节点上报给基站,或者终端设备的标识信息可以由基站自己确定。例如,中心节点可以对其覆盖范围内的终端设备进行编号,并将终端设备的编号信息上报给基站。又例如,基站和中心节点可以基于相同的排序方式对终端设备的ID进行排序,从而确定终端设备的编号。该排序方式可以是基站和中心节点协商的,或者基站通知给中心节点的,或者中心节点通知给基站的。
在一些实施例中,第二指示信息可以由中心节点基于终端设备的寻呼配置信息进行寻呼检测得到。例如,中心节点可以基于终端设备的寻呼配置信息,在终端设备的寻呼机会进行检测,以确定终端设备是否被寻呼。如果检测到终端设备被寻呼,则中心节点向终端设备发送第一指示信息。如果没有检测到终端设备被寻呼,则中心节点可以不向终端设备发送第一指示信息。
终端设备的寻呼机会可以由终端设备的寻呼配置参数确定。该寻呼配置参数可以由基站发送至中心节点,或者,也可以由终端设备发送至中心节点。该寻呼配置参数可以包括以下信息中的一种或多种:PDCCH的搜索空间、寻呼周期、寻呼机会、终端设备的ID。中心节点可以基于终端设备的寻呼配置参数确定终端设备的寻呼机会。
该方案对基站侧没有改动,基站可以按照原有的发送寻呼消息的方式来对终端设备进行寻呼。
在一些实施例中,如图5所示,图5所示的方法还可以包括步骤S502。在步骤S502、核心网可以向中心节点发送第三指示信息,以指示终端设备被寻呼。通过核心网向中心节点发送指示信息,可以减小对网络侧的改动,实现复杂度较低。
为了使得核心网发送的消息能够到达终端设备,该第三指示信息中还可以包括以下信息中的一种或多种:终端设备的因特网协议(internet protocol,IP)地址、中心节点的IP地址、终端设备的标识、 中心节点的标识。中心节点的IP地址或中心节点的标识可用于将第二指示信息发送至中心节点。终端设备的IP地址或终端设备的标识可用于中心节点将第一指示信息传输至终端设备。
以寻呼用于话音通话为例,IP地址的维护可以实时被叫运营商,也可以是主叫运营商,或者也可以是第三方机构。
本申请实施例对中心节点向终端设备发送第一指示信息的方式不做具体限定。例如,中心节点可以通过WiFi信号和/或WiFi序列来发送第一指示信息。WiFi序列例如可以为WiFi信标(beacon)。WiFi信号可以为WiFi导频信号。
在一些实施例中,第一指示信息可以由终端设备中的唤醒器件接收。中心节点可以将第一指示信息发送给终端设备中的唤醒器件。接收到第一指示信息后,唤醒器件可以唤醒终端设备。通过硬件接收第一指示信息具有较低的传输时延,从而可以保证数据的传输时延。另外,唤醒器件的功耗极低(为纳瓦级),接收灵敏度可达几十米,因此,使用唤醒器件接收第一指示信息不会对终端设备的功耗产生很大影响。
唤醒器件的功耗越大,接收灵敏度越高,支持收发的距离越远。根据中心节点的覆盖范围不同,唤醒器件的功耗也会有所不同。由于基站距离终端设备较远,如果唤醒器件对基站发送的寻呼指示信息进行检测,则需要的功耗较大。由于中心节点距离终端设备较近,因此,终端设备可以利用较低功耗的唤醒器件接收中心节点发送的第一指示信息。
终端设备中的唤醒器件可以周期性地对中心节点发送的信号进行检测。
中心节点发送第一指示信息可以是以序列的形式发送。当中心节点的覆盖范围内有多个终端设备时,中心节点可以事先为每个终端设备配置一个序列。当某个终端设备被寻呼时,中心节点可以向终端设备发送与其对应的序列。终端设备的唤醒器件可以对接收到的序列进行匹配,如果匹配成功(如匹配后的数值大于一个预设阈值),则认为终端设备被寻呼。如果匹配不成功,则可以认为终端设备没有被寻呼。
具体地,终端设备中唤醒器件的控制模块可以接收中心节点为终端设备分配的序列码。终端设备为控制模块配置该序列码。终端设备可以利用该序列码进行检测。例如,终端设备可以使用匹配相关算法对接收到的序列码和本地序列码进行匹配计算,确定检测结果。终端设备根据检测结果确定终端设备是否被寻呼。例如,如果检测结果大于预设阈值,则终端设备可以确定被寻呼。如果检测结果小于或等于预设阈值,则终端设备可以确定没有被寻呼。
在接收到第一指示信息后,终端设备可以接收寻呼消息。本申请实施例对寻呼消息的接收方式不做具体限定。例如,终端设备可以通过中心节点接收寻呼消息。又例如,终端设备可以通过接入网设备接收寻呼消息。
如果终端设备通过接入网设备接收寻呼消息,则在接收到第一指示信息后,终端设备被唤醒,终端设备可以醒来进行寻呼消息的接收或检测。由于终端设备只有在确定被寻呼后,才醒来进行寻呼消息的接收,而不是周期性地醒来进行寻呼检测,从而可以节省终端设备的功耗。在一些实施例中,终端设备可以开启移动通信模块,建立与接入网设备之间的连接,从而接收接入网设备发送的寻呼消息。通过接入网设备接收寻呼消息,可以保证数据的安全性。例如,终端设备可以在自己的寻呼机会上检测PDCCH,然后在PDCCH调度的PDSCH检测寻呼消息,从而完成寻呼消息的接收。在接收寻呼消息之前,终端设备需要先建立与接入网设备的连接。例如,终端设备可以完成与接入网设备的上下行同步、随机接入、信号测量等。
如果第一指示信息由唤醒器件接收,唤醒器件接收到第一指示信息后,可以对终端设备的移动通信模块进行唤醒,即打开终端设备的移动通信模块。唤醒器件和移动通信模块之间可以电连接。例如,唤醒器件接收到第一指示信息后,可以输出高电平,以触发移动通信模块开启。
如果终端设备通过中心节点接收寻呼消息,则终端设备可以将移动通信模块保持在关闭状态,通过与中心节点之间的WiFi信号接收寻呼消息。通过中心节点接收寻呼消息可以节省终端设备的通信费用,降低通信成本。
在一些实施例中,网络设备(如接入网设备或核心网)可以将寻呼消息发送至中心节点,然后再由中心节点将寻呼消息传输至终端设备。在一些实施例中,中心节点可以通过透传的方式将寻呼消息传输至终端设备。在该情况下,中心节点可以不对寻呼消息做任何处理,可以保证终端设备数据的安全性。当然,在一些实施例中,中心节点可以对寻呼消息进行格式转换,转换成终端设备可识别的数据,例如,转换成APP数据包。
如果寻呼消息通过核心网发送(即核心网直接发送给中心节点,不经过接入网设备),为了保证终端设备能够正确接收到寻呼消息,核心网或中心节点可以将寻呼消息转换成终端设备可以识别的数据包,例如可以将寻呼消息转换成APP数据包。由核心网进行数据格式的转换可以保证数据传输的安全 性,中心节点只需将核心网发来的数据包透传给终端设备即可。
该APP可以为专用于接收寻呼消息的APP,或者该APP可以复用现有的APP,以进行寻呼消息的接收。复用现有的APP可以进一步节省终端设备的功耗。另外,通过APP数据包的方式接收寻呼消息,也可以避免终端设备在寻呼机会上的盲检测,可以降低终端设备的检测功耗。
本申请实施例中,中心节点的寻呼周期可以小于终端设备的寻呼周期,这样可以使得中心节点早些获取终端设备是否被寻呼的信息,避免增加终端设备的寻呼时延。由于中心节点(如CPE)体积较大,通常工作在有源状态或者电池容量较大,因此,CPE可以支持较低的寻呼周期。采用本申请实施例的方案可以克服现有终端设备寻呼周期长的缺点,可以为终端设备提供更小的寻呼周期。
以话音业务为例,一些通信系统(如LTE系统)对话音业务端到端的时延要求为3s,其中寻呼时延的要求为1s,考虑到寻呼检测以及ACK/NACK反馈等时间,终端设备的寻呼周期应小于1s。因此,本申请实施例中的中心节点的寻呼周期应小于1s。
另外,当中心节点接收针对多个终端设备的寻呼指示时,这些终端设备的寻呼周期的起止时间可能不重叠,因此,中心节点可能需要配置更小的寻呼周期,以便于检测所有终端设备的寻呼指示。
本申请实施例中的网络设备(接入网设备或核心网)或终端设备可以根据终端设备与中心节点之间是否具有连接,确定是否实施本申请实施例的方案。终端设备可以将是否与中心节点连接的指示信息上报给接入网设备或核心网。例如,如果终端设备与中心节点连接,则终端设备可以向接入网设备或核心网发送第四指示信息。该第四指示信息用于指示终端设备与接入网设备连接。在接收到终端设备发送的第四指示信息的情况下,接入网设备可以向中心节点发送第二指示信息。在接收到终端设备发送的第四指示信息的情况下,核心网可以向中心节点发送第三指示信息。
如果终端设备与中心节点之间没有连接,则可以采用传统的方式来传输寻呼信息。例如,接入网设备向终端设备发送寻呼指示信息,终端设备周期性地醒来进行寻呼检测。
在一些实施例中,终端设备与中心节点之间是否具有连接可以通过终端设备具有WiFi连接来指示。例如,如果终端设备具有WiFi连接,则表示终端设备与中心节点连接。终端设备可以将是否具有WiFi连接的信息上报给网络设备,以便于网络设备判断是否采用本申请实施例的方案。
在一些实施例中,网络设备可以根据终端设备的业务类型确定终端设备是否开通了移动通信模块,进一步地,网络设备可以根据终端设备是否开通了移动通信模块,确定是否采用本申请实施例的方案。如果终端设备开通了移动通信模块,则可以不实施本申请实施例的方案;如果终端设备没有开通移动通信模块,则可以实施本申请实施例的方案,也可以不实施本申请实施例的方案。
例如,如果终端设备有数据业务,则终端设备开通了移动通信模块,网络设备可以不实施本申请实施例的方案。
又例如,如果终端设备只有语音业务,没有数据业务,则终端设备可能开通了移动通信模块,也可能没有开通移动通信模块。在该情况下,网络设备可以基于终端设备上报的状态信息确定是否采用本申请实施例的方案。例如,网络设备可以根据终端设备是否具有WiFi连接,确定是否采用本申请实施例的方案。
另外,考虑到安全问题,如果终端设备连接的是公共WiFi,则可以不实施本申请实施例的方案,终端设备仍按照传统的方式进行寻呼检测。
上文介绍的方案可以单独实施,也可以相互结合实施,本申请实施例对此不做具体限定。例如,接入网设备和核心网均可以向中心节点发送寻呼指示,即接入网设备可以向中心节点发送第二指示信息,核心网也可以向中心节点发送第三指示信息。通过两种方式传输寻呼指示,可以保证消息传输的可靠性。
核心网通过中心节点向终端设备发送数据的方案可以不依赖于寻呼场景,可以应用在任意一个场景,如话音通话场景。也就是说,核心网发送的数据可以是寻呼数据,也可以是其他数据。为简化描述,下文中未详细描述的方案可以参见上文的描述。
在一些实施例中,核心网可以向中心节点发送第一数据。接收到第一数据后,中心节点可以向终端设备发送第一数据。可选地,中心节点可以通过透传的方式向终端设备发送第一数据。该第一数据可以为寻呼数据,也可以是其他数据,如话音业务数据。在本申请实施例中,核心网可以将针对终端设备的数据封装成一个数据包,如APP数据,然后将该数据包通过中心节点发送给终端设备。
本申请实施例中的终端设备可以处于RRC_IDLE状态,也可以处于RRC_CONNECTED状态,或者处于RRC_INACTIVE状态。也就是说,不论终端设备处于何种状态,核心网都可以通过中心节点直接向终端设备发送数据。
上文对终端设备的寻呼过程进行了介绍,下面对终端设备的随机接入过程进行介绍。触发终端设备进行随机接入的事件包括以下中的一种或多种:初始RRC连接;RRC连接重建;小区切换;下行数 据到达(如PDCCH到达);上行数据到达;当没有调度请求(scheduling request,SR)的物理上行控制信道(physical uplink control channel,PUCCH)资源可用时,上行链路数据到达;调度请求失败;终端设备从RRC_INACTIVE状态进入RRC_CONNECTED状态;特定系统信息请求;为非独立组网(non-standalone,NSA)激活NR小区;波束恢复等。
随机接入的方式有两种,一种是基于竞争的随机接入,另一种是基于非竞争的随机接入。下面结合图6和图7对这两种随机接入方式进行描述。
图6是本申请实施例提供的一种基于竞争的随机接入方法的流程图,该方法包括步骤S610~步骤S640。
在步骤S610中、终端设备向网络设备发送随机接入过程中的消息1(message 1,MSG1),该消息1中包括前导码(preamble)。
终端设备可以选择随机接入信道(random access channel,RACH)资源和前导码,并在选择的资源上发送选择的前导码。该RACH资源也可以称为物理随机接入信道(physical random access channel,PRACH)资源。
网络设备可以通过广播的形式向终端设备发送RACH的配置信息。RACH的配置信息可以包括RACH的时频资源的配置信息以及起始的前导码根序列的配置信息。
网络设备可以为终端设备配置一个共享的前导码池。该前导码池中的前导码由多个终端设备共享。终端设备可以基于一定的策略选择前导码。由于前导码为多个终端设备共享,因此,会存在多个终端设备选择相同的前导码的冲突情况。为了解决该冲突,网络设备可以使用后续的解决机制来处理这种冲突。
在步骤S620中、网络设备向终端设备发送MSG2,该MSG2也可以称为随机接入响应(random access response,RAR)。该MSG2可以通过PDCCH承载。
终端设备发送MSG1后,可以开启一个随机接入响应时间窗,并在该时间窗内监测随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)加扰的PDCCH。RA-RNTI与终端设备发送MSG1所使用的RACH的时频资源有关。终端设备接收到PDCCH后,可以使用RA-RNTI对该PDCCH进行解码。
MSG2中还可以包括终端设备发送的前导码,如果终端设备接收到用RA-RNTI加扰的PDCCH,并且MSG2中包含自己发送的前导码,则终端设备可以认为成功接收到随机接入响应。
终端设备成功接收到PDCCH后,终端设备能够获得该PDCCH调度的物理下行共享信道(physical downlink shared channel,PDSCH),其中,该PDSCH中包含了RAR。该RAR可以包含多个信息。例如,RAR的子头(subheader)中可以包含回退指示(backoff indicator,BI),该BI可用于指示重传MSG1的回退时间;RAR中的随机接入前导码标识符(random access preamble identification,RAPID)指示网络设备响应收到的前导码索引;RAR中的负载(payload)中可以包含定时提前组(timing advance group,TAG),该TAG可用于调整上行定时;RAR中还可以包括上行授权(UL grant),用于调度MSG3的上行资源指示;RAR中还可以包括临时小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI),对于初始接入的终端设备来说,终端设备可以使用该临时C-RNTI解码MSG4的PDCCH。
如果终端设备在随机接入响应时间窗内未接收到RAR,或者未能验证成功,则表示响应失败。在该情况下,如果终端设备随机接入的尝试次数小于上限值(如10次),则终端设备可以继续尝试进行随机接入。如果尝试次数大于上限值,则表示随机接入失败。
步骤S630、终端设备向网络设备发送MSG3。终端设备可以在网络设备调度的上行授权上发送MSG3。该MSG3也可以称为RRC连接建立请求消息。
该MSG3主要用于通知网络设备该随机接入过程是由什么事件触发的。MSG3中包括终端设备的C-RNTI。在不同的场景中,终端设备发送的MSG3会有所不同。下面对一些场景进行举例说明。
例如,对于RRC连接建立场景,终端设备可以通过MSG3发送RRC连接建立请求消息,该RRC连接建立请求消息可以携带非接入层(non-access stratum,NAS)UE_ID。该RRC连接建立请求消息可以通过无线链路控制(radio link control,RLC)层传输(transmitting,TM)中的公共控制信道(common control channel,CCCH)传输。该消息没有分段。
又例如,对于RRC连接重建请求,终端设备可以通过MSG3发送RRC重建请求消息,该RRC重建请求消息不携带NAS消息,该RRC重建请求消息可以通过RLC层的CCCH用TM传输。该消息没有分段。
再例如,对于小区切换场景,如果终端设备接入目标小区,并且在切换过程中没有专用的前导码,则可以触发基于竞争的随机接入。终端设备可以通过MSG3发送RRC切换确认消息和C-RNTI。RRC 切换确认消息和C-RNTI可以通过专用控制信道(dedicated control channel,DCCH)传输。在一些实施例中,MSG3还可以携带缓冲区状态报告(buffer status report,BSR)。
步骤S640、网络设备向终端设备发送MSG4。
该MSG4具有两个作用,一个是用于竞争冲突解决,另一个是向终端设备发送RRC配置消息。如果终端设备在MSG3中携带了C-RNTI,则MSG4采用该C-RNTI加扰的PDCCH调度,相应地,终端设备可以使用MSG3中的C-RNTI对PDCCH进行解码,得到MSG4。如果终端设备在MSG3中没有携带C-RNTI,如初始接入,则MSG4可以采用临时C-RNTI加扰的PDCCH调度,相应地,终端设备可以使用MSG2中的临时C-RNTI对PDCCH进行解码,得到MSG4。终端设备在解码PDCCH成功后,得到承载MSG4的PDSCH。终端设备可以将该PDSCH中的公共控制信道(common control channel,CCCH)服务数据单元(service data unit,SDU)与MSG3中的CCCH SDU进行比较,如果两者相同,则表示竞争解决成功。
图7是本申请实施例提供的一种基于非竞争的随机接入方法的流程图。该方法包括步骤S710~S730。
在步骤S310中,网络设备向终端设备发送前导码配置信息,该配置信息中包括随机接入过程中需要的前导码和RACH资源。该前导码为网络设备为终端设备分配的专用前导码。专用前导码可以通过RRC信令或物理层(physical,PHY)信令(如PDCCH中的DCI)通知给终端设备。使用专用前导码不会存在与其他终端设备发生冲突的问题
在步骤S720中,终端设备可以根据该前导码配置信息,向网络设备发送MSGA,也就是说,终端设备可以在该RACH资源上向网络设备发送该前导码。
在步骤S730中,网络设备向终端设备发送MSGB,该MSGB中可以包括RAR。终端设备接收到该RAR后,表示该随机接入过程结束。
如前文所述,为了提高终端设备的通信性能,终端设备可以接入到中心节点,由中心节点为终端设备提供为了服务。对于终端设备与中心节点连接的场景,如何节省终端设备在随机接入过程中的功耗,是目前亟需解决的问题。
基于此,本申请实施例提供一种无线通信的方法,通过由中心节点代替终端设备发送前导码,从而可以节省终端设备发送前导码的功耗,从而可以节省终端设备在随机接入过程中的功耗。由于中心节点本身也为终端设备,中心节点可以利用自身具有与网络设备连接能力的特点,辅助终端设备进行随机接入,从而可以达到节能的目的。
下面结合图8,对本申请实施例的无线通信方法进行介绍。图8所示的方法包括步骤S810~S820。
在步骤S810、终端设备向中心节点发送请求消息。该请求消息用于请求中心节点向网络设备发送终端设备的前导码。该前导码可以为基于竞争的随机接入过程的前导码,也可以为基于非竞争的随机接入过程的前导码。
本申请实施例中的中心节点可以为以下设备中的一种或多种:CPE、WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
本申请实施例中的WiFi基站能够为终端设备提供WiFi信号。该WiFi基站可以具有与网络设备进行上行同步和/或下行同步的能力。下行同步能力可以包括获取接入小区的小区ID或PCI/PCID,或者获取接收功率最大的小区的小区ID或PCI/PCID,或者获取接收功率最优的若干个小区的小区ID或PCI/PCID。上行同步能力可以包括获取基站发送的TA。
本申请实施例对终端设备向中心节点发送请求消息的方式不做具体限定。例如,终端设备可以通过WiFi信号和/或WiFi序列向中心节点发送请求消息。WiFi序列例如可以为WiFi beacon。WiFi信号可以为WiFi导频信号。
在步骤S820、响应于该请求消息,中心节点向网络设备发送终端设备的前导码。
由于终端设备与中心节点之间的距离较近,因此,终端设备向中心节点发消息需要的功耗小于终端设备向网络设备发送消息需要的功耗。因此,由中心节点代替终端设备发送前导码,可以节省终端设备的功耗。
在一些实施例中,该请求消息中可以包括以下信息中的一种或多种:前导码的格式、前导码的序列。对于基于竞争的随机接入,网络设备可以向终端设备广播前导码池。中心节点作为一种终端设备,其也可以接收到网络设备配置的前导码池。因此,终端设备需要将需要发送的前导码的格式和/或前导码的序列指示给中心节点,中心节点可以基于前导码的格式和/或前导码的序列,从前导码池中选择合适的前导码进行发送。
当然,在一些实施例中,终端设备也可以直接将前导码发送给中心节点,由中心节点将该前导码传输给网络设备。在该过程中,中心节点可以通过透传的方式将前导码发送给网络设备。
在一些实施例中,该请求消息中还可以包括指示信息,该指示信息用于指示中心节点发送前导码 的发送时间窗。中心节点可以在该发送时间窗内向网络设备发送终端设备的时间窗。
当然,在一些实施例中,该发送时间窗可以是协议中预定义的,也可以是网络设备配置给终端设备和/或中心节点的,或者也可以是终端设备和中心节点协商的,本申请实施例对此不做具体限定。
随机接入过程中的后续步骤可以由终端设备执行,也可以由中心节点代为执行。在一些实施例中,上述请求消息还可用于指示是否由中心节点代替终端设备执行随机接入过程中的第一操作。该第一操作包括以下操作中的一种或多种:接收MSG2;发送MSG3;接收MSG4。
如果请求消息指示中心节点代替终端设备执行随机接入过程中的第一操作,则中心节点执行到第一操作为止,不会执行随机接入过程中第一操作之后的操作,第一操作之后的操作由终端设备自己执行。例如,如果请求消息指示中心节点代替终端设备接收MSG2,则中心节点不会代替终端设备发送MSG3和接收MSG4。
本申请实施例中的RAR可以由终端设备进行检测,也可以由中心节点进行检测。如果RAR由中心节点进行检测,中心节点将RAR中接收到的信息发送给终端设备。例如,中心节点可以将收到的ULGrant、TA、临时C-RNTI等信息通知给终端设备。终端设备可以利用这些信息执行随机接入的后续步骤。
在一些实施例中,终端设备的整个随机接入都可以由中心节点代为执行。对于这种情况,终端设备需要告知中心节点进行随机接入的目的和相关参数。进行随机接入的目的例如可以包括RRC连接建立、RRC连接重建、小区切换等。对于设计到安全的参数如NAS UE ID,终端设备可以使用临时NAS UE ID,即终端设备将临时NAS UE ID发送给中心节点,以使中心节点利用该临时NAS UE ID帮助终端设备完成随机接入。在终端设备随机接入完成后,终端设备可以将临时NAS UE ID更改为终端设备的UE ID。中心节点在随机接入竞争成功后,可以向终端设备通知随机接入完成。这样,中心节点只需要将随机接入结果通知给终端设备即可,这样可以最大化地节省终端设备的功耗。
如果RAR由终端设备进行检测,则终端设备在向中心节点发送请求消息后,可以对网络设备发送的RAR进行检测。在一些实施例中,终端设备可以在发送时间窗之后再对RAR进行检测。例如,终端设备可以在第一时段对网络设备发送的RAR进行检测,该第一时段位于发送时间窗之后。由终端设备进行RAR的检测,可以保证数据的安全性。
上文结合图1至图8,详细描述了本申请的方法实施例,下面结合图9至图15,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图9是本申请一个实施例提供的无线通信的装置的示意性结构图。该装置可以为终端设备。图9所示的终端设备可以为上文描述的任意一种终端设备。所述终端设备900包括接收单元910。
参见图9,接收单元910,可用于接收中心节点发送的第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
在一些实施例中,所述第一指示信息的发送由以下事件中的一种或多种触发:所述中心节点接收到接入网设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备寻呼所述终端设备;所述中心节点接收到核心网发送的第三指示信息,所述第三指示信息用于指示所述网络设备寻呼所述终端设备。
在一些实施例中,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
在一些实施例中,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
在一些实施例中,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
i PEI=mod(n intraUEID,N)+i begin
其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
在一些实施例中,所述第二指示信息承载于所述中心节点的寻呼消息中。
在一些实施例中,所述第二指示信息包含所述终端设备的标识。
在一些实施例中,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
在一些实施例中,所述第三指示信息包括以下信息中的一种或多种:中心节点的因特网协议IP地址、中心节点的标识、所述终端设备的IP地址、所述终端设备的标识。
在一些实施例中,所述接收单元910还用于:响应于所述第一指示信息,通过所述中心节点接收寻呼消息。
在一些实施例中,所述寻呼消息由核心网发送至所述中心节点。
在一些实施例中,所述装置900还包括开启单元920,用于响应于所述第一指示信息,开启与接入网设备通信的通信模块;所述接收单元910,用于通过所述通信模块接收所述接入网设备发送的寻呼消息。
在一些实施例中,所述装置900还包括:发送单元930,用于向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
在一些实施例中,所述第一指示信息由所述终端设备中的唤醒器件接收。
在一些实施例中,所述中心节点的寻呼周期小于或等于所述终端设备的寻呼周期。
在一些实施例中,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
图10是本申请一个实施例提供的无线通信的装置的示意性结构图。该装置可以为中心节点。图10所示的中心节点可以为上文描述的任意一种中心节点。所述中心节点1000包括发送单元1010。
参见图10,发送单元1010,可用于向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
在一些实施例中,所述第一指示信息的发送由以下事件中的一种或多种触发:所述中心节点接收到接入网设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备寻呼所述终端设备;所述中心节点接收到核心网发送的第三指示信息,所述第三指示信息用于指示所述网络设备寻呼所述终端设备。
在一些实施例中,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
在一些实施例中,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
在一些实施例中,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
i PEI=mod(n intraUEID,N)+i begin
其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
在一些实施例中,所述第二指示信息承载于所述中心节点的寻呼消息中。
在一些实施例中,所述第二指示信息包含所述终端设备的标识。
在一些实施例中,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
在一些实施例中,所述第三指示信息包括以下信息中的一种或多种:中心节点的因特网协议IP地址、中心节点的标识、所述终端设备的IP地址、所述终端设备的标识。
在一些实施例中,所述发送单元1010还用于:向所述终端设备发送寻呼消息。
在一些实施例中,所述寻呼消息由核心网发送至所述中心节点。
在一些实施例中,所述第一指示信息由所述终端设备中的唤醒器件接收。
在一些实施例中,所述中心节点的寻呼周期小于或等于所述终端设备的寻呼周期。
在一些实施例中,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
图11是本申请一个实施例提供的无线通信的装置的示意性结构图。该装置可以为接入网设备。图11所示的接入网设备可以为上文描述的任意一种接入网设备。所述接入网设备1100包括发送单元1110。
发送单元1110,可用于用于向中心节点发送第二指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
在一些实施例中,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
在一些实施例中,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
在一些实施例中,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
i PEI=mod(nintraUEID,N)+i begin
其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
在一些实施例中,所述第二指示信息承载于所述中心节点的寻呼消息中。
在一些实施例中,所述第二指示信息包含所述终端设备的标识。
在一些实施例中,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
在一些实施例中,所述发送单元1110还用于:向所述终端设备发送寻呼消息。
在一些实施例中,所述第一指示信息由所述终端设备中的唤醒器件接收。
在一些实施例中,所述中心节点的寻呼周期小于或等于所述终端设备的寻呼周期。
在一些实施例中,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
在一些实施例中,所述发送单元1110用于:在接收到所述终端设备发送的第四指示信息的情况下,向所述中心节点发送第二指示信息,其中,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
图12是本申请一个实施例提供的无线通信的装置的示意性结构图。该装置可以为核心网。图12所示的核心网可以为上文描述的任意一种核心网。所述核心网1200包括发送单元1210。
参见图12,发送单元1210,可用于向中心节点发送第三指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
在一些实施例中,所述发送单元1210还用于:向所述中心节点发送寻呼消息,以使所述中心节点将所述寻呼消息传输至所述终端设备。
在一些实施例中,所述第一指示信息由所述终端设备中的唤醒器件接收。
在一些实施例中,所述中心节点的寻呼周期小于或等于所述终端设备的寻呼周期。
在一些实施例中,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
在一些实施例中,所述发送单元1210用于:在接收到所述终端设备发送的第四指示信息的情况下,向所述中心节点发送第三指示信息,其中,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
图13是本申请一个实施例提供的无线通信的装置的示意性结构图。该装置可以为终端设备。图13所示的终端设备可以为上文描述的任意一种终端设备。所述终端设备1300包括发送单元1310。
参见图13,发送单元1310,可用于向中心节点发送请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码。
在一些实施例中,所述请求消息中包括以下信息中的一种或多种:前导码的格式、前导码的序列。
在一些实施例中,所述请求消息还用于指示是否由所述中心节点执行随机接入过程中的第一操作,所述第一操作包括以下操作中的一种或多种:接收MSG2;发送MSG3;接收MSG4。
在一些实施例中,所述请求消息中包括指示信息,所述指示信息用于指示所述中心节点发送前导码的发送时间窗。
在一些实施例中,所述装置1300还包括检测单元1320,用于:在第一时段对所述网络设备发送的随机接入响应进行检测,其中,所述第一时段位于所述发送时间窗之后。
在一些实施例中,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
图14是本申请一个实施例提供的无线通信的装置的示意性结构图。该装置可以为中心节点。图14所示的中心节点可以为上文描述的任意一种中心节点。所述中心节点1400包括接收单元1410和发送单元1420。
参见图14,接收单元1410,可用于接收终端设备发送的请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码。
发送单元1420,可用于响应于所述请求消息,所述中心节点向所述网络设备发送所述终端设备的前导码。
在一些实施例中,所述请求消息中包括以下信息中的一种或多种:前导码的格式、前导码的序列。
在一些实施例中,所述请求消息还用于指示是否由所述中心节点执行随机接入过程中的第一操作,所述第一操作包括以下操作中的一种或多种:接收MSG2;发送MSG3;接收MSG4。
在一些实施例中,所述请求消息中包括指示信息,所述指示信息用于指示所述中心节点发送前导码的发送时间窗;所述发送单元1420用于:在所述发送时间窗内向所述网络设备发送所述终端设备的前导码。
在一些实施例中,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
图15是本申请实施例的装置的示意性结构图。图15中的虚线表示该单元或模块为可选的。该装置1500可用于实现上述方法实施例中描述的方法。装置1500可以是芯片、终端设备、中心节点、接入网设备、核心网中的一种或多种。
装置1500可以包括一个或多个处理器1510。该处理器1510可支持装置1500实现前文方法实施例所描述的方法。该处理器1510可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1500还可以包括一个或多个存储器1520。存储器1520上存储有程序,该程序可以被处理器1510执行,使得处理器1510执行前文方法实施例所描述的方法。存储器1520可以独立于处理器1510也可以集成在处理器1510中。
装置1500还可以包括收发器1530。处理器1510可以通过收发器1530与其他设备或芯片进行通信。例如,处理器1510可以通过收发器1530与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能 够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (114)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收中心节点发送的第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息的发送由以下事件中的一种或多种触发:
    所述中心节点接收到接入网设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备寻呼所述终端设备;
    所述中心节点接收到核心网发送的第三指示信息,所述第三指示信息用于指示所述网络设备寻呼所述终端设备。
  3. 根据权利要求2所述的方法,其特征在于,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
  5. 根据权利要求4所述的方法,其特征在于,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
    i PEI=mod(n intraUEID,N)+i begin
    其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
  6. 根据权利要求2所述的方法,其特征在于,所述第二指示信息承载于所述中心节点的寻呼消息中。
  7. 根据权利要求6所述的方法,其特征在于,所述第二指示信息包含所述终端设备的标识。
  8. 根据权利要求2所述的方法,其特征在于,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
  9. 根据权利要求2所述的方法,其特征在于,所述第三指示信息包括以下信息中的一种或多种:中心节点的因特网协议IP地址、中心节点的标识、所述终端设备的IP地址、所述终端设备的标识。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述第一指示信息,所述终端设备通过所述中心节点接收寻呼消息。
  11. 根据权利要求10所述的方法,其特征在于,所述寻呼消息由核心网发送至所述中心节点。
  12. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述第一指示信息,所述终端设备开启与接入网设备通信的通信模块;
    所述终端设备通过所述通信模块接收所述接入网设备发送的寻呼消息。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  16. 一种无线通信的方法,其特征在于,包括:
    中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息的发送由以下事件中的一种或多种触发:
    所述中心节点接收到接入网设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备寻呼所述终端设备;
    所述中心节点接收到核心网发送的第三指示信息,所述第三指示信息用于指示所述网络设备寻呼所述终端设备。
  18. 根据权利要求17所述的方法,其特征在于,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
  19. 根据权利要求18所述的方法,其特征在于,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
  20. 根据权利要求19所述的方法,其特征在于,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
    i PEI=mod(n intraUEID,N)+i begin
    其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
  21. 根据权利要求17所述的方法,其特征在于,所述第二指示信息承载于所述中心节点的寻呼消息中。
  22. 根据权利要求21所述的方法,其特征在于,所述第二指示信息包含所述终端设备的标识。
  23. 根据权利要求17所述的方法,其特征在于,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
  24. 根据权利要求17所述的方法,其特征在于,所述第三指示信息包括以下信息中的一种或多种:中心节点的因特网协议IP地址、中心节点的标识、所述终端设备的IP地址、所述终端设备的标识。
  25. 根据权利要求16-24中任一项所述的方法,其特征在于,所述方法还包括:
    所述中心节点向所述终端设备发送寻呼消息。
  26. 根据权利要求25所述的方法,其特征在于,所述寻呼消息由核心网发送至所述中心节点。
  27. 根据权利要求16-26中任一项所述的方法,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  28. 根据权利要求16-27中任一项所述的方法,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  29. 一种无线通信的方法,其特征在于,包括:
    接入网设备向中心节点发送第二指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  30. 根据权利要求29所述的方法,其特征在于,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
  31. 根据权利要求30所述的方法,其特征在于,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
  32. 根据权利要求31所述的方法,其特征在于,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
    i PEI=mod(n intraUEID,N)+i begin
    其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
  33. 根据权利要求29所述的方法,其特征在于,所述第二指示信息承载于所述中心节点的寻呼消息中。
  34. 根据权利要求33所述的方法,其特征在于,所述第二指示信息包含所述终端设备的标识。
  35. 根据权利要求29所述的方法,其特征在于,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
  36. 根据权利要求29-35中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端设备发送寻呼消息。
  37. 根据权利要求29-36中任一项所述的方法,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  38. 根据权利要求29-37中任一项所述的方法,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  39. 根据权利要求29-38中任一项所述的方法,其特征在于,所述接入网设备向中心节点发送第二指示信息,包括:
    在接收到所述终端设备发送的第四指示信息的情况下,所述接入网设备向所述中心节点发送第二指示信息,其中,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
  40. 一种无线通信的方法,其特征在于,包括:
    核心网向中心节点发送第三指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  41. 根据权利要求40所述的方法,其特征在于,所述方法还包括:
    所述核心网向所述中心节点发送寻呼消息,以使所述中心节点将所述寻呼消息传输至所述终端设备。
  42. 根据权利要求40或41所述的方法,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  43. 根据权利要求40-42中任一项所述的方法,其特征在于,所述中心节点的寻呼周期小于或等于所述终端设备的寻呼周期。
  44. 根据权利要求40-43中任一项所述的方法,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  45. 根据权利要求40-44中任一项所述的方法,其特征在于,所述核心网向中心节点发送第三指示信息,包括:
    在接收到所述终端设备发送的第四指示信息的情况下,所述核心网向所述中心节点发送第三指示信息,其中,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
  46. 一种无线通信的方法,其特征在于,包括:
    终端设备向中心节点发送请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码。
  47. 根据权利要求46所述的方法,其特征在于,所述请求消息中包括以下信息中的一种或多种:前导码的格式、前导码的序列。
  48. 根据权利要求46或47所述的方法,其特征在于,所述请求消息还用于指示是否由所述中心节点代替所述终端设备执行随机接入过程中的第一操作,所述第一操作包括以下操作中的一种或多种:
    接收MSG2;
    发送MSG3;
    接收MSG4。
  49. 根据权利要求46-48中任一项所述的方法,其特征在于,所述请求消息中包括指示信息,所述指示信息用于指示所述中心节点发送前导码的发送时间窗。
  50. 根据权利要求46-49中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在第一时段对所述网络设备发送的随机接入响应进行检测,其中,所述第一时段位于所述发送时间窗之后。
  51. 根据权利要求46-50中任一项所述的方法,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  52. 一种无线通信的方法,其特征在于,包括:
    中心节点接收终端设备发送的请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码;
    响应于所述请求消息,所述中心节点向所述网络设备发送所述终端设备的前导码。
  53. 根据权利要求52所述的方法,其特征在于,所述请求消息中包括以下信息中的一种或多种:前导码的格式、前导码的序列。
  54. 根据权利要求52或53所述的方法,其特征在于,所述请求消息还用于指示是否由所述中心节点执行随机接入过程中的第一操作,所述第一操作包括以下操作中的一种或多种:
    接收MSG2;
    发送MSG3;
    接收MSG4。
  55. 根据权利要求52-54中任一项所述的方法,其特征在于,所述请求消息中包括指示信息,所述指示信息用于指示所述中心节点发送前导码的发送时间窗;
    所述中心节点向所述网络设备发送所述终端设备的前导码,包括:
    所述中心节点在所述发送时间窗内向所述网络设备发送所述终端设备的前导码。
  56. 根据权利要求52-55中任一项所述的方法,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  57. 一种无线通信的装置,其特征在于,所述装置为终端设备,所述装置包括:
    接收单元,用于接收中心节点发送的第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  58. 根据权利要求57所述的装置,其特征在于,所述第一指示信息的发送由以下事件中的一种或多种触发:
    所述中心节点接收到接入网设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备寻呼所述终端设备;
    所述中心节点接收到核心网发送的第三指示信息,所述第三指示信息用于指示所述网络设备寻呼所述终端设备。
  59. 根据权利要求58所述的装置,其特征在于,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
  60. 根据权利要求59所述的装置,其特征在于,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
  61. 根据权利要求60所述的装置,其特征在于,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
    i PEI=mod(n intraUEID,N)+i begin
    其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
  62. 根据权利要求58所述的装置,其特征在于,所述第二指示信息承载于所述中心节点的寻呼消息中。
  63. 根据权利要求62所述的装置,其特征在于,所述第二指示信息包含所述终端设备的标识。
  64. 根据权利要求58所述的装置,其特征在于,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
  65. 根据权利要求58所述的装置,其特征在于,所述第三指示信息包括以下信息中的一种或多种:中心节点的因特网协议IP地址、中心节点的标识、所述终端设备的IP地址、所述终端设备的标识。
  66. 根据权利要求57-65中任一项所述的装置,其特征在于,所述接收单元还用于:
    响应于所述第一指示信息,通过所述中心节点接收寻呼消息。
  67. 根据权利要求66所述的装置,其特征在于,所述寻呼消息由核心网发送至所述中心节点。
  68. 根据权利要求57-65中任一项所述的装置,其特征在于,所述装置还包括开启单元,用于响应于所述第一指示信息,开启与接入网设备通信的通信模块;
    所述接收单元,用于通过所述通信模块接收所述接入网设备发送的寻呼消息。
  69. 根据权利要求57-68中任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
  70. 根据权利要求57-69中任一项所述的装置,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  71. 根据权利要求57-70中任一项所述的装置,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  72. 一种无线通信的装置,其特征在于,所述装置为中心节点,所述装置包括:
    发送单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  73. 根据权利要求72所述的装置,其特征在于,所述第一指示信息的发送由以下事件中的一种或多种触发:
    所述中心节点接收到接入网设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备寻呼所述终端设备;
    所述中心节点接收到核心网发送的第三指示信息,所述第三指示信息用于指示所述网络设备寻呼 所述终端设备。
  74. 根据权利要求73所述的装置,其特征在于,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
  75. 根据权利要求74所述的装置,其特征在于,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
  76. 根据权利要求75所述的装置,其特征在于,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
    i PEI=mod(n intraUEID,N)+i begin
    其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
  77. 根据权利要求73所述的装置,其特征在于,所述第二指示信息承载于所述中心节点的寻呼消息中。
  78. 根据权利要求77所述的装置,其特征在于,所述第二指示信息包含所述终端设备的标识。
  79. 根据权利要求73所述的装置,其特征在于,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
  80. 根据权利要求73所述的装置,其特征在于,所述第三指示信息包括以下信息中的一种或多种:中心节点的因特网协议IP地址、中心节点的标识、所述终端设备的IP地址、所述终端设备的标识。
  81. 根据权利要求72-80中任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送寻呼消息。
  82. 根据权利要求81所述的装置,其特征在于,所述寻呼消息由核心网发送至所述中心节点。
  83. 根据权利要求72-82中任一项所述的装置,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  84. 根据权利要求72-83中任一项所述的装置,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  85. 一种无线通信的装置,其特征在于,所述装置为接入网设备,所述装置包括:
    发送单元,用于向中心节点发送第二指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  86. 根据权利要求85所述的装置,其特征在于,所述第二指示信息由所述终端设备的寻呼预先指示PEI承载,且所述终端设备的PEI指示所述终端设备接收寻呼指示信息。
  87. 根据权利要求86所述的装置,其特征在于,所述终端设备的PEI承载在第一控制信息中,所述第一控制信息中还包括以下信息中的一种或多种:所述中心节点的PEI、其他终端设备的PEI。
  88. 根据权利要求87所述的装置,其特征在于,所述中心节点覆盖下的所有终端设备的PEI承载在相同的控制信息中,所述终端设备的PEI在所述中心节点对应的PEI比特中的序号i PEI根据如下公式确定:
    i PEI=mod(n intraUEID,N)+i begin
    其中,N为所述中心节点对应的PEI比特个数,i begin为第一个终端设备的PEI在所述中心节点对应的PEI比特中的比特序号,n intraUEID是所述终端设备在所述中心节点覆盖下的所有终端设备中的序号。
  89. 根据权利要求85所述的装置,其特征在于,所述第二指示信息承载于所述中心节点的寻呼消息中。
  90. 根据权利要求89所述的装置,其特征在于,所述第二指示信息包含所述终端设备的标识。
  91. 根据权利要求85所述的装置,其特征在于,所述第二指示信息由所述中心节点基于所述终端设备的寻呼配置信息进行寻呼检测得到。
  92. 根据权利要求85-91中任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送寻呼消息。
  93. 根据权利要求85-92中任一项所述的装置,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  94. 根据权利要求85-93中任一项所述的装置,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心 节点。
  95. 根据权利要求85-94中任一项所述的装置,其特征在于,所述发送单元用于:
    在接收到所述终端设备发送的第四指示信息的情况下,向所述中心节点发送第二指示信息,其中,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
  96. 一种无线通信的装置,其特征在于,所述装置为核心网,所述装置包括:
    发送单元,用于向中心节点发送第三指示信息,以使所述中心节点向终端设备发送第一指示信息,所述第一指示信息用于指示网络设备寻呼所述终端设备。
  97. 根据权利要求96所述的装置,其特征在于,所述发送单元还用于:
    向所述中心节点发送寻呼消息,以使所述中心节点将所述寻呼消息传输至所述终端设备。
  98. 根据权利要求96或97所述的装置,其特征在于,所述第一指示信息由所述终端设备中的唤醒器件接收。
  99. 根据权利要求96-98中任一项所述的装置,其特征在于,所述中心节点的寻呼周期小于或等于所述终端设备的寻呼周期。
  100. 根据权利要求96-99中任一项所述的装置,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  101. 根据权利要求96-100中任一项所述的装置,其特征在于,所述发送单元用于:
    在接收到所述终端设备发送的第四指示信息的情况下,向所述中心节点发送第三指示信息,其中,所述第四指示信息用于指示所述终端设备与所述中心节点连接。
  102. 一种无线通信的装置,其特征在于,所述装置为终端设备,所述装置包括:
    发送单元,用于向中心节点发送请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码。
  103. 根据权利要求102所述的装置,其特征在于,所述请求消息中包括以下信息中的一种或多种:前导码的格式、前导码的序列。
  104. 根据权利要求102或103所述的装置,其特征在于,所述请求消息还用于指示是否由所述中心节点执行随机接入过程中的第一操作,所述第一操作包括以下操作中的一种或多种:
    接收MSG2;
    发送MSG3;
    接收MSG4。
  105. 根据权利要求102-104中任一项所述的装置,其特征在于,所述请求消息中包括指示信息,所述指示信息用于指示所述中心节点发送前导码的发送时间窗。
  106. 根据权利要求102-105中任一项所述的装置,其特征在于,所述装置还包括检测单元,用于:
    在第一时段对所述网络设备发送的随机接入响应进行检测,其中,所述第一时段位于所述发送时间窗之后。
  107. 根据权利要求102-106中任一项所述的装置,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  108. 一种无线通信的装置,其特征在于,所述装置为中心节点,所述装置包括:
    接收单元,用于接收终端设备发送的请求消息,所述请求消息用于请求所述中心节点向网络设备发送所述终端设备的前导码;
    发送单元,用于响应于所述请求消息,所述中心节点向所述网络设备发送所述终端设备的前导码。
  109. 根据权利要求108所述的装置,其特征在于,所述请求消息中包括以下信息中的一种或多种:前导码的格式、前导码的序列。
  110. 根据权利要求108或109所述的装置,其特征在于,所述请求消息还用于指示是否由所述中心节点执行随机接入过程中的第一操作,所述第一操作包括以下操作中的一种或多种:
    接收MSG2;
    发送MSG3;
    接收MSG4。
  111. 根据权利要求108-110中任一项所述的装置,其特征在于,所述请求消息中包括指示信息,所述指示信息用于指示所述中心节点发送前导码的发送时间窗;
    所述发送单元用于:
    在所述发送时间窗内向所述网络设备发送所述终端设备的前导码。
  112. 根据权利要求108-111中任一项所述的装置,其特征在于,所述中心节点为以下设备中的一种或多种:用户前置设备CPE、无线保真WiFi基站、侧行通信系统中的路侧单元、侧行通信系统中的中心节点。
  113. 一种无线通信的装置,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使得所述终端设备执行如权利要求1-56中任一项所述的方法。
  114. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使得所述装置执行如权利要求1-56中任一项所述的方法。
PCT/CN2022/101989 2022-06-28 2022-06-28 无线通信的方法及装置 WO2024000178A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002769.XA CN115349284A (zh) 2022-06-28 2022-06-28 无线通信的方法及装置
PCT/CN2022/101989 WO2024000178A1 (zh) 2022-06-28 2022-06-28 无线通信的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101989 WO2024000178A1 (zh) 2022-06-28 2022-06-28 无线通信的方法及装置

Publications (1)

Publication Number Publication Date
WO2024000178A1 true WO2024000178A1 (zh) 2024-01-04

Family

ID=83957344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101989 WO2024000178A1 (zh) 2022-06-28 2022-06-28 无线通信的方法及装置

Country Status (2)

Country Link
CN (1) CN115349284A (zh)
WO (1) WO2024000178A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729566A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 一种信息传输方法和设备
CN113170416A (zh) * 2019-03-28 2021-07-23 华为技术有限公司 一种数据传输方法及装置
CN114449516A (zh) * 2020-11-05 2022-05-06 华为技术有限公司 一种通信方法及装置
WO2022127777A1 (zh) * 2020-12-15 2022-06-23 华为技术有限公司 一种通信方法及通信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286966B (zh) * 2017-07-21 2020-08-04 维沃移动通信有限公司 寻呼方法、终端、网络设备及计算机可读存储介质
WO2019104526A1 (en) * 2017-11-29 2019-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes, paging network node and methods performed therein for handling communication
EP4005304A1 (en) * 2019-07-23 2022-06-01 Nokia Technologies Oy Handling of paging messages in communication endpoint to network relaying scenarios
CN112911727B (zh) * 2019-12-04 2023-04-18 华为技术有限公司 无线通信方法、客户前置设备、用户设备以及网络侧设备
US11510147B2 (en) * 2019-12-27 2022-11-22 Qualcomm Incorporated Sidelink resource selection assistance and paging
US20230100843A1 (en) * 2020-03-31 2023-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Inter-frequency re-direction via paging
US20230217413A1 (en) * 2020-07-16 2023-07-06 Qualcomm Incorporated Paging adaptation in sidelink relay systems
CN114257991A (zh) * 2020-09-25 2022-03-29 北京紫光展锐通信技术有限公司 车载短距离通信寻呼节点的指示方法及装置、存储介质、终端
CN114339995A (zh) * 2020-09-30 2022-04-12 展讯通信(上海)有限公司 寻呼方法、唤醒方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729566A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 一种信息传输方法和设备
CN113170416A (zh) * 2019-03-28 2021-07-23 华为技术有限公司 一种数据传输方法及装置
CN114449516A (zh) * 2020-11-05 2022-05-06 华为技术有限公司 一种通信方法及装置
WO2022127777A1 (zh) * 2020-12-15 2022-06-23 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
CN115349284A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
JP7435870B2 (ja) ユーザ装置、通信装置、及びこれらの方法
US11700571B2 (en) Method and apparatus for recovering RRC connection, and computer storage medium
JP2023078319A (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
WO2018019001A1 (zh) 一种终端状态转换方法及装置
EP4207844A1 (en) Methods and apparatus for support of mt-sdt considering cu-du split
WO2024082634A1 (zh) 用于定位的方法、终端设备及网络设备
US20220408495A1 (en) Method and apparatus for small data transmission in a wireless communication system
WO2024000178A1 (zh) 无线通信的方法及装置
WO2023142108A1 (zh) 无线通信的方法和装置
WO2023066915A1 (en) Cell wake-up signal or receiver
WO2015089770A1 (zh) Wlan系统中sta状态转移的方法和设备
US11864113B2 (en) Techniques for reducing wakeup latency
WO2023231005A1 (zh) 无线通信的方法及装置
WO2023108416A1 (zh) 无线通信的方法、终端设备及网络设备
WO2023197292A1 (zh) 无线通信的方法及装置
WO2023133832A1 (zh) 无线通信的方法和装置
WO2023004619A1 (zh) 信息传输方法、设备及存储介质
WO2024065462A1 (zh) 通信方法、终端设备和网络设备
WO2022267883A1 (zh) 一种通信方法及装置
WO2023205959A1 (zh) 通信方法及通信装置
CN117812728A (zh) 一种上行唤醒的方法及装置
WO2024105651A1 (en) Aligning user equipment (ue) discontinuous reception (drx) to cell discontinuous transmission (dtx)
CN118055395A (zh) 信息传输方法和通信装置
CN115299080A (zh) 无线通信的方法和通信装置
CN117099403A (zh) 小区切换的方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948298

Country of ref document: EP

Kind code of ref document: A1