WO2023287010A1 - Multilevel converter - Google Patents

Multilevel converter Download PDF

Info

Publication number
WO2023287010A1
WO2023287010A1 PCT/KR2022/007371 KR2022007371W WO2023287010A1 WO 2023287010 A1 WO2023287010 A1 WO 2023287010A1 KR 2022007371 W KR2022007371 W KR 2022007371W WO 2023287010 A1 WO2023287010 A1 WO 2023287010A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
module
level converter
transformer
ripple
Prior art date
Application number
PCT/KR2022/007371
Other languages
French (fr)
Korean (ko)
Inventor
박종후
아쉬라프아흐무드
타우픽 모하메드아테프
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Publication of WO2023287010A1 publication Critical patent/WO2023287010A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a multi-level converter.
  • MMC modular multilevel converter
  • SM sub-module
  • Prior Document 2-M. S. Diab, A.M. Massoud, S. Ahmed, and B.W. Williams "A dual modular multilevel converter with high-frequency magnetic links between submodules for MV open-end stator winding machine drives," IEEE Trans. Power Electron., vol. 33, no. 6, p. 5142-5159, Jun. 2018.
  • An object of the present invention is to provide a multi-level converter capable of removing ripple power by magnetically coupling a plurality of consecutive sub-modules to the same arm.
  • the present invention is a multi-level converter capable of frequency-independent decoupling of magnetizing power to completely replace the sub-module (SM) capacitor for handling the low-frequency (LF) current of the system or motor load and greatly reduce the voltage stress of the circuit element. is to provide
  • the present invention is to provide a multi-level converter capable of forming inverted magnetization flux between a plurality of magnetically coupled sub-modules.
  • the present invention is to provide a multi-level converter capable of significantly reducing the size of a system by eliminating the need to provide a large-capacity capacitor in a sub-module.
  • the power loss of the multi-level converter switch using the power decoupling circuit of the present invention is low, the rating and number of parts are small compared to the conventional sub-module capacitor physical power balancing technology, and the arm current size is reduced compared to the cyclic current injection technology. It is intended to provide a multi-level converter that does not increase voltage and does not require high voltage isolation.
  • a multi-level converter is provided.
  • the n-th sub-module; (n+1)th submodule; and a ripple removal unit configured to remove ripples by magnetically coupling successive n-th sub-modules and (n+1)-th sub-modules connected to the same arm, wherein the n-th sub-module and the (n+1)-th sub-module are removed.
  • a multi-level converter may be provided in which the modules are connected in series and output multi-level PWM voltages.
  • the ripple canceling unit includes a transformer and two half-bridge first and second switches S 1 and S 2 in the n-th sub-module and the (n+1)-th sub-module,
  • the module and the (n+1)th sub-module may be respectively connected to the ripple removal unit through transformer windings and magnetic cores (or air cores).
  • the continuous connected n-th sub-module and the (n+1)-th sub-module of the same arm have a current having a phase difference of 180 degrees to the n-th sub-module and the (n+1)-th sub-module through the transformer. is input and reversed flux is formed inside the winding, and power is canceled inside the transformer, so that the ripple current can be removed.
  • the half-bridge first switch S 1 and the second switch S 2 may perform an on- or off-PWM switching operation so that the current of the same waveform is input to the transformer.
  • a transformer and a plurality of submodules including two half-bridge switches (S 1 and S 2 ) operating as on- or off-PWM switches to input the same current to the transformer, wherein the same arm of the plurality of submodules
  • a multi-level converter may be provided in which two consecutive connected sub-modules are wound around the core in opposite directions.
  • a current having a phase difference of 180 degrees is input through the transformer to two consecutive submodules connected to the same arm, and a reversed flux is formed inside the core, so that ripple can be removed.
  • a first multi-level converter connected to a positive dark current; And a second multi-level converter connected to a negative arm current, wherein the first and second multi-level converters are connected at a neutral point ground, and the first multi-level converter and the second multi-level converter are each connected to the same arm Including two consecutive sub-modules connected to the same arm, the two consecutive sub-modules connected to the same arm are magnetically coupled to provide a modular multi-level converter, characterized in that it includes a ripple removal unit for removing ripple power.
  • ripple power can be removed by magnetically coupling a plurality of consecutive sub-modules to the same arm and canceling the power within the magnetization element.
  • the present invention completely replaces the submodule (SM) capacitor for handling the low frequency (LF) current of the system or motor load and has the advantage of being able to decoupling the magnetizing power independently of the frequency to greatly reduce the voltage stress of the circuit element.
  • SM submodule
  • LF low frequency
  • the present invention also has the advantage of significantly reducing the size of the system because there is no need to provide a large-capacity capacitor in the sub-module.
  • the power loss of the multi-level converter switch using the power decoupling circuit of the present invention is low, the rating and number of parts are small compared to the conventional sub-module capacitor physical power balancing technology, and the arm current size is reduced compared to the cyclic current injection technology. It does not increase the voltage and has the advantage of not requiring high voltage insulation.
  • FIG. 1 is a diagram schematically illustrating a multi-level converter according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a circuit of a ripple removal unit according to an embodiment of the present invention.
  • Figure 3 is a diagram schematically showing the configuration of a modular multi-level converter according to another embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a multi-level converter according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a circuit of a ripple removal unit according to an embodiment of the present invention.
  • the multi-level converter 100 is a device for converting an independent DC voltage into a multi-level PWM voltage and outputting it to a system or an AC load. Since the structure and function of the general multi-level converter 100 are obvious to those skilled in the art, a separate description thereof will be omitted, and the main components of the present invention will be mainly described.
  • the structure of a general multi-level converter is omitted, and it should be understood that only circuits necessary for the description of the present invention are included.
  • the multi-level converter 100 includes a plurality of sub-modules (SM 1 , SM 2 , SM N-1 , SM N ) 110a, 110b, . , 110n-1, 110n).
  • SM 1 , SM 2 , SM N-1 , SM N sub-modules 110a, 110b, . , 110n-1, 110n.
  • a plurality of submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a , 110b , 110n-1 , 110n) are connected in series, and the number of submodules is not limited depending on the implementation method. can be arbitrarily determined. In one embodiment of the present invention, it is assumed that the number of a plurality of submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n) is limited to an even number I'm going to do it.
  • a plurality of sub-modules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n) are connected to DC power supply voltage (V dc ), and the top arm and bottom Since the arm current flowing in the arm is connected in series with all submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n), the current flowing from the DC power supply can be the same as
  • each sub-module includes two half-bridge IGBT switches (Insulated Gate Bipolar mode Transistor switches) (Q 1 and Q 2 ) and a capacitor (SM capacitor) whose terminals are connected to the IGBT switches. may include each.
  • IGBT switches Insulated Gate Bipolar mode Transistor switches
  • SM capacitor capacitor
  • a ripple removal unit 120 may be included to remove ripple power by magnetically connecting two consecutive sub-modules with a transformer winding and a magnetic core (or air core). As shown in FIG. 1, two consecutive sub-modules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n) in the same arm
  • the sub-modules may be magnetically connected to the transformer winding and magnetic core (or air core), respectively.
  • a plurality of submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a , 110b , 110n-1 , 110n ) is a ripple removal unit in two consecutive sub-module units connected to the same arm (120).
  • a plurality of submodules connected to the same arm (referred to collectively as the first submodule and the second submodule for convenience) absorb the current having the same phase as the ripple current and cancel the magnetizing flux with the internal transformer magnetic core.
  • a ripple removal unit 120 for removing ripples may be included.
  • the ripple removal unit 120 may include a transformer and two half-bridge switches S 1 and S 2 in each sub-module. As shown in FIG. 1, two consecutive submodules connected to the same arm are connected through a winding, and the windings may be wound in opposite directions.
  • the first and second submodules connected to the same arm will be mainly described.
  • the first sub-module and the second sub-module have windings (cores) in opposite directions.
  • the secondary side of the ripple remover eg, transformer
  • the ripple remover generates a current with a phase difference of 180 degrees from the primary side if there is no controller. Therefore, when currents of the same phase flow in successive first sub-modules and second sub-modules connected to the same arm, an inverted magnetizing flux identical to that in which currents flow 180 degrees out of phase is formed inside the transformer so that the ripple is offset and removed. do.
  • the detailed structure of the ripple removal unit 120 is as shown in FIG. 2 .
  • the transformer added for ripple removal and the half-bridge switches (S 1 , S 2 ) of the sub-module operate an on or off PWM switch operation so that the same current enters both ends of the transformer, so that the winding direction (core winding direction) is opposite to each other. Therefore, it can be operated in a direction in which magnetic energy cancels each other in the core.
  • the multi-level converter 100 includes a first submodule, a second submodule, a third submodule, a fourth submodule, a n-1th submodule, and an nth submodule do it with Since two are connected in pairs, the first submodule and the second submodule are connected to one core, the third submodule and the fourth submodule are connected to one core, and the n-1th submodule and the nth submodule are connected to each other. Submodules may be connected to one core.
  • odd-numbered submodules eg, the first submodule, the third submodule, and the n ⁇ 1th submodule
  • even-numbered submodules eg, the second submodule, the fourth submodule, the nth submodule
  • even-numbered submodules may have a winding winding direction in a second direction opposite to the first direction.
  • consecutive submodules connected to the same arm eg, the first submodule and the second submodule, the third submodule and the fourth submodule, the n ⁇ 1th submodule and the nth submodule
  • the transformer winding and the magnetic core or air core
  • winding directions may be opposite to each other. Due to this, currents having a phase difference of 180 degrees can be simultaneously received by the ripple removal unit 120, and inverted flux is formed inside the transformer core so that the ripple power can be offset and removed.
  • FIG. 3 is a diagram schematically showing the configuration of a modular multi-level converter according to another embodiment of the present invention.
  • a modular multi-level converter 300 includes a first multi-level converter 310 and a second multi-level converter 320 .
  • the power supply (V dc ) of the modular multi-level converter 300 is divided into positive and negative power, so that the upper and lower two multi-level converters (ie, the first multi-level converter 310 and the second multi-level converter 320) have a neutral point It is a form connected to the ground.
  • Each of the first multi-level converter 310 and the second multi-level converter 320 may include a plurality of sub-modules.
  • the plurality of sub-modules are connected to one core in successive two sub-modules on the same arm, and provide a current having an inverted phase to remove ripple.
  • the ripple canceling unit 120 may include a transformer and two half-bridge switches S 1 and S 2 in each sub-module. As shown in FIG. 1, two consecutive submodules connected to the same arm are connected through a winding, and the windings may be wound in opposite directions.

Abstract

A multilevel converter is disclosed. The multilevel converter may include: a n-th sub-module; a (n+1)th sub-module; and a ripple removing part for magnetically coupling the consecutive n-th sub-module and (n+1)th sub-module which are connected to an identical arm to remove ripple power, wherein the n-th sub-module and the (n+1)th sub-module are connected in series and output a multilevel PWM voltage.

Description

멀티 레벨 컨버터multi level converter
본 발명은 멀티 레벨 컨버터에 관한 것이다. The present invention relates to a multi-level converter.
모듈식 멀티 레벨 컨버터(MMC: modular multilevel converter, 이하 MMC라 칭하기로 함)는 모듈성, 확장 가능한 전압 레벨, 단일 DC 버스 등으로 인해 전기 자동차 모터 드라이브의 파워트레인과 같은 중전압 고전력 산업 애플리케이션을 위한 가장 유망한 토폴로지 중 하나로 간주되어 왔다. 그러나, MMC에는 작동 라인 주파수가 감소함에 따라 서브 모듈(SM) 커패시터 전압 저주파 리플 구성 요소가 급격히 증가하고 시스템 성능과 시스템 수명에 부정적인 영향을 미칠 수 있는 근본적인 문제가 있다. The modular multilevel converter (MMC) is the most suitable for medium-voltage and high-power industrial applications such as electric vehicle motor drive powertrain due to its modularity, scalable voltage level, and single DC bus. It has been considered as one of the promising topologies. However, MMCs have a fundamental problem in that the sub-module (SM) capacitor voltage low-frequency ripple component increases rapidly as the operating line frequency decreases, which can negatively affect system performance and system lifetime.
이러한 심각한 문제를 해결하기 위해, 선행문헌1-M. S. Irfan, M. A. Tawfik, A. Ahmed and J. -H. Park, "A Novel Electrolytic Capacitor-Less MMC With Magnetic Power Decoupling Method," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 2, pp. 1976-1993, April 2021., 선행문헌2-M. S. Diab, A.M.Massoud, S. Ahmed, and B.W.Williams, "A dual modular multilevel converter with high-frequency magnetic links between submodules for MV open-end stator winding machine drives," IEEE Trans.Power Electron., vol. 33, no. 6, pp. 5142-5159, Jun. 2018., 선행문헌3-M. S. Diab, A.M.Massoud, S. Ahmed, and B.W.Williams, "A Modular Multilevel Converter With Ripple-Power Decoupling Channels for Three-Phase MV Adjustable-Speed Drives," IEEE Trans.Power Electron., vol. 34, no. 5, pp. 4048 - 4063, May. 2019., 선행문헌4- Huang, X., Wang, Z., Kong, Z., et al. "Modular multilevel converter with three-port power channels for medium-voltage drives," IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 3, pp. 1495 - 1507, Sept. 2018 등에서 몇 가지 접근법이 제안되었다. In order to solve this serious problem, Prior Document 1-M. S. Irfan, M. A. Tawfik, A. Ahmed and J. -H. Park, "A Novel Electrolytic Capacitor-Less MMC With Magnetic Power Decoupling Method," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 2, p. 1976-1993, April 2021., Prior Document 2-M. S. Diab, A.M. Massoud, S. Ahmed, and B.W. Williams, "A dual modular multilevel converter with high-frequency magnetic links between submodules for MV open-end stator winding machine drives," IEEE Trans. Power Electron., vol. 33, no. 6, p. 5142-5159, Jun. 2018., Prior Document 3-M. S. Diab, A.M. Massoud, S. Ahmed, and B.W. Williams, "A Modular Multilevel Converter With Ripple-Power Decoupling Channels for Three-Phase MV Adjustable-Speed Drives," IEEE Trans. Power Electron., vol. 34, no. 5, p. 4048 - 4063, May. 2019., Prior literature 4- Huang, X., Wang, Z., Kong, Z., et al. "Modular multilevel converter with three-port power channels for medium-voltage drives," IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 3, p. 1495 - 1507 Sept. Several approaches have been proposed in 2018 et al.
상술한 선행문헌 1 내지 선행문헌 4에서, 리플이 더 큰 암에서 다른 암으로 리플 전력을 전달하여 커패시터 용량을 저감하고, 회로 부품 정격을 높일 수 있는 방법이 제안되었다.In the above-mentioned Prior Documents 1 to 4, a method of reducing capacitor capacitance and increasing circuit component rating by transferring ripple power from an arm having a larger ripple to another arm has been proposed.
그러나, 선행문헌 1 내지 선행문헌 4의 경우, 자화 소자의 전압 스트레스는 상향 및 하향 암 사이 또는 3 상 사이의 연결로 인해 상당히 커져서, 소자 크기가 증가하는 문제가 있다. However, in the case of Prior Documents 1 to 4, the voltage stress of the magnetizing element is significantly increased due to the connection between the upper and lower arms or between the three phases, resulting in an increase in the size of the element.
본 발명은 동일한 암에 연속된 복수의 서브 모듈을 자기적으로 결합시켜 리플 전력을 제거할 수 있는 멀티 레벨 컨버터를 제공하기 위한 것이다. An object of the present invention is to provide a multi-level converter capable of removing ripple power by magnetically coupling a plurality of consecutive sub-modules to the same arm.
또한, 본 발명은 계통이나 모터부하의 저주파수(LF) 전류를 감당하기 위한 서브모듈(SM) 커패시터를 완전히 대체하고 회로 소자의 전압 스트레스를 크게 줄이기 위해 주파수 독립적인 자화 전력 디커플링이 가능한 멀티 레벨 컨버터를 제공하기 위한 것이다. In addition, the present invention is a multi-level converter capable of frequency-independent decoupling of magnetizing power to completely replace the sub-module (SM) capacitor for handling the low-frequency (LF) current of the system or motor load and greatly reduce the voltage stress of the circuit element. is to provide
또한, 본 발명은 자기적으로 결합된 복수의 서브 모듈간에 반전된 자화 플럭스 형성이 가능케 할 수 있는 멀티 레벨 컨버터를 제공하기 위한 것이다. In addition, the present invention is to provide a multi-level converter capable of forming inverted magnetization flux between a plurality of magnetically coupled sub-modules.
또한, 본 발명은 서브 모듈에 대용량 커패시터를 구비할 필요가 없어 시스템 크기를 현저하게 줄일 수 있는 멀티 레벨 컨버터를 제공하기 위한 것이다. In addition, the present invention is to provide a multi-level converter capable of significantly reducing the size of a system by eliminating the need to provide a large-capacity capacitor in a sub-module.
또한, 본 발명은 전력 디커플링 회로를 사용하는 멀티 레벨 컨버터 스위치의 전력 손실이 낮으며, 종래의 서브 모듈 커패시터 물리적 전력 밸런싱 기술에 비해 정격 및 부품 수가 적으며, 순환 전류 주입 기술에 비해 암 전류 크기를 증가시키지 않으며, 고전압 절연이 필요치 않은 멀티 레벨 컨버터를 제공하기 위한 것이다. In addition, the power loss of the multi-level converter switch using the power decoupling circuit of the present invention is low, the rating and number of parts are small compared to the conventional sub-module capacitor physical power balancing technology, and the arm current size is reduced compared to the cyclic current injection technology. It is intended to provide a multi-level converter that does not increase voltage and does not require high voltage isolation.
본 발명의 일 측면에 따르면, 멀티 레벨 컨버터가 제공된다. According to one aspect of the present invention, a multi-level converter is provided.
본 발명의 일 실시예에 따르면, 제n 서브 모듈; 제(n+1) 서브 모듈; 및 동일한 암에 연결된 연속된 상기 제n 서브 모듈과 제(n+1) 서브 모듈을 자기적으로 결합하여 리플을 제거하는 리플 제거부를 포함하되, 상기 제n 서브 모듈과 제(n+1) 서브 모듈은 직렬로 연결되며 멀티 레벨의 PWM 전압을 출력하는 것을 특징으로 하는 멀티 레벨 컨버터가 제공될 수 있다. According to one embodiment of the present invention, the n-th sub-module; (n+1)th submodule; and a ripple removal unit configured to remove ripples by magnetically coupling successive n-th sub-modules and (n+1)-th sub-modules connected to the same arm, wherein the n-th sub-module and the (n+1)-th sub-module are removed. A multi-level converter may be provided in which the modules are connected in series and output multi-level PWM voltages.
상기 리플 제거부는, 변압기와 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈 내의 두개의 하프 브리지 제1 스위치(S1)과 제2 스위치(S2)를 포함하되, 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈은 변압기 권선 및 자기 코어(또는 공심)로 상기 리플 제거부에 각각 연결될 수 있다. The ripple canceling unit includes a transformer and two half-bridge first and second switches S 1 and S 2 in the n-th sub-module and the (n+1)-th sub-module, The module and the (n+1)th sub-module may be respectively connected to the ripple removal unit through transformer windings and magnetic cores (or air cores).
상기 동일한 암의 연결된 연속된 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈은 상기 변압기를 통해 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈에게 서로 180도 위상차를 가지는 전류가 입력되어 권선 내부에서 반전된 플럭스가 형성되어 변압기 내부에서 전력이 상쇄됨으로써 리플 전류가 제거될 수 있다. The continuous connected n-th sub-module and the (n+1)-th sub-module of the same arm have a current having a phase difference of 180 degrees to the n-th sub-module and the (n+1)-th sub-module through the transformer. is input and reversed flux is formed inside the winding, and power is canceled inside the transformer, so that the ripple current can be removed.
상기 하프 브리지 제1 스위치(S1)과 제2 스위치(S2)는 상기 변압기에 동일한 파형의 전류가 입력되도록 하는 온 또는 오프 PWM 스위치 동작을 수행할 수 있다. The half-bridge first switch S 1 and the second switch S 2 may perform an on- or off-PWM switching operation so that the current of the same waveform is input to the transformer.
본 발명의 다른 실시예에 따르면, 변압기; 및 상기 변압기로 동일한 전류가 입력되도록 하는 온 또는 오프 PWM 스위치로 동작하는 두개의 하프 브리지 스위치(S1, S2)를 포함하는 복수의 서브 모듈을 포함하되, 상기 복수의 서브 모듈 중 동일한 암에 연결되는 연속된 두개의 서브 모듈은 코어에 감는 방향이 서로 반대인 것을 특징으로 하는 멀티 레벨 컨버터가 제공될 수 있다. According to another embodiment of the present invention, a transformer; and a plurality of submodules including two half-bridge switches (S 1 and S 2 ) operating as on- or off-PWM switches to input the same current to the transformer, wherein the same arm of the plurality of submodules A multi-level converter may be provided in which two consecutive connected sub-modules are wound around the core in opposite directions.
상기 변압기를 통해 상기 동일한 암에 연결된 연속된 두개의 서브 모듈로 180도 위상차를 가지는 전류가 입력되어 코어 내부에서 반전된 플럭스가 형성되어 리플이 제거될 수 있다. A current having a phase difference of 180 degrees is input through the transformer to two consecutive submodules connected to the same arm, and a reversed flux is formed inside the core, so that ripple can be removed.
본 발명의 또 다른 실시예에 따르면, 양의 암 전류에 연결된 제1 멀티 레벨 컨버터; 및 음의 암 전류에 연결된 제2 멀티 레벨 컨버터를 포함하되, 상기 제1 및 제2 멀티 레벨 컨버터는 중성점 그라운드에서 연결되되, 상기 제1 멀티 레벨 컨버터 및 상기 제2 멀티 레벨 컨버터는 각각, 동일한 암에 연결된 연속된 두개의 서브 모듈을 포함하되, 상기 동일한 암에 연결된 연속된 두개의 서브 모듈은 자기적으로 결합되어 리플 전력을 제거하는 리플 제거부를 포함하는 것을 특징으로 하는 모듈러 멀티 레벨 컨버터가 제공될 수 있다. According to another embodiment of the present invention, a first multi-level converter connected to a positive dark current; And a second multi-level converter connected to a negative arm current, wherein the first and second multi-level converters are connected at a neutral point ground, and the first multi-level converter and the second multi-level converter are each connected to the same arm Including two consecutive sub-modules connected to the same arm, the two consecutive sub-modules connected to the same arm are magnetically coupled to provide a modular multi-level converter, characterized in that it includes a ripple removal unit for removing ripple power. can
본 발명의 일 실시예에 따른 멀티 레벨 컨버터를 제공함으로써, 동일한 암에 연속된 복수의 서브 모듈을 자기적으로 결합시켜 자화 소자 내부에서 전력을 서로 상쇄시킴으로써 리플 전력을 제거할 수 있다. By providing a multi-level converter according to an embodiment of the present invention, ripple power can be removed by magnetically coupling a plurality of consecutive sub-modules to the same arm and canceling the power within the magnetization element.
또한, 본 발명은 계통이나 모터부하의 저주파수(LF) 전류를 감당하기 위한 서브모듈(SM) 커패시터를 완전히 대체하고 회로 소자의 전압 스트레스를 크게 줄이기 위해 주파수 독립적인 자화 전력 디커플링이 가능한 이점이 있다. In addition, the present invention completely replaces the submodule (SM) capacitor for handling the low frequency (LF) current of the system or motor load and has the advantage of being able to decoupling the magnetizing power independently of the frequency to greatly reduce the voltage stress of the circuit element.
또한, 본 발명은 서브 모듈에 대용량 커패시터를 구비할 필요가 없어 시스템 크기를 현저하게 줄일 수 있는 이점도 있다. In addition, the present invention also has the advantage of significantly reducing the size of the system because there is no need to provide a large-capacity capacitor in the sub-module.
또한, 본 발명은 전력 디커플링 회로를 사용하는 멀티 레벨 컨버터 스위치의 전력 손실이 낮으며, 종래의 서브 모듈 커패시터 물리적 전력 밸런싱 기술에 비해 정격 및 부품 수가 적으며, 순환 전류 주입 기술에 비해 암 전류 크기를 증가시키지 않으며, 고전압 절연이 필요치 않은 이점이 있다. In addition, the power loss of the multi-level converter switch using the power decoupling circuit of the present invention is low, the rating and number of parts are small compared to the conventional sub-module capacitor physical power balancing technology, and the arm current size is reduced compared to the cyclic current injection technology. It does not increase the voltage and has the advantage of not requiring high voltage insulation.
도 1은 본 발명의 일 실시예에 따른 멀티 레벨 컨버터를 개략적으로 도시한 도면.1 is a diagram schematically illustrating a multi-level converter according to an embodiment of the present invention;
도 2는 본 발명의 일 실시예에 따른 리플 제거부의 회로를 도시한 도면.2 is a diagram showing a circuit of a ripple removal unit according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 모듈러 멀티 레벨 컨버터의 구성을 개략적으로 도시한 도면.Figure 3 is a diagram schematically showing the configuration of a modular multi-level converter according to another embodiment of the present invention.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.Singular expressions used herein include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "consisting of" or "comprising" should not be construed as necessarily including all of the various components or steps described in the specification, and some of the components or some of the steps It should be construed that it may not be included, or may further include additional components or steps. In addition, terms such as "...unit" and "module" described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software. .
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 멀티 레벨 컨버터를 개략적으로 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 리플 제거부의 회로를 도시한 도면이다. 1 is a diagram schematically showing a multi-level converter according to an embodiment of the present invention, and FIG. 2 is a diagram showing a circuit of a ripple removal unit according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 멀티 레벨 컨버터(100)는 독립적인 직류 전압을 멀티 레벨의 PWM 전압으로 변환하여 계통이나 AC 부하로 출력하기 위한 장치이다. 일반적인 멀티 레벨 컨버터(100)의 구조 및 기능은 당업자에게는 자명한 사항이므로, 이에 대한 별도의 설명은 생략하기로 하며, 본 발명의 핵심 구성을 중심으로 설명하기로 한다. The multi-level converter 100 according to an embodiment of the present invention is a device for converting an independent DC voltage into a multi-level PWM voltage and outputting it to a system or an AC load. Since the structure and function of the general multi-level converter 100 are obvious to those skilled in the art, a separate description thereof will be omitted, and the main components of the present invention will be mainly described.
도 1에 도시된 멀티 레벨 컨버터(100)는 일반적인 멀티 레벨 컨버터의 구조는 생략되어 있으며, 본 발명의 설명을 위해 필요한 회로만 포함되는 것으로 이해되어야 할 것이다. In the multi-level converter 100 shown in FIG. 1, the structure of a general multi-level converter is omitted, and it should be understood that only circuits necessary for the description of the present invention are included.
도 1에서 보여지는 바와 같이, 본 발명의 일 실시예에 따른 멀티 레벨 컨버터(100)는 복수의 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)(110a, 110b,쪋, 110n-1, 110n)을 포함하여 구성된다. As shown in FIG. 1, the multi-level converter 100 according to an embodiment of the present invention includes a plurality of sub-modules (SM 1 , SM 2 , SM N-1 , SM N ) 110a, 110b, . , 110n-1, 110n).
복수의 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)( 110a, 110b,쪋, 110n-1, 110n)은 직렬로 연결되며, 서브 모듈의 개수는 제약 없이 구현 방법에 따라 임의적으로 결정될 수 있다. 본 발명의 일 실시예에서는 복수의 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)( 110a, 110b,쪋, 110n-1, 110n)의 개수는 짝수로 제한되는 것을 가정하기로 한다. A plurality of submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a , 110b , 110n-1 , 110n) are connected in series, and the number of submodules is not limited depending on the implementation method. can be arbitrarily determined. In one embodiment of the present invention, it is assumed that the number of a plurality of submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n) is limited to an even number I'm going to do it.
복수의 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)( 110a, 110b,쪋, 110n-1, 110n)은 직류 전원 전압(Vdc)에 연결되며, 상단 암과 하단 암에 흐르는 암 전류는 모든 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)( 110a, 110b,쪋, 110n-1, 110n)과 직렬 연결되어 있으므로, 직류 전원으로부터 흐르는 전류와 동일 할 수 있다. A plurality of sub-modules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n) are connected to DC power supply voltage (V dc ), and the top arm and bottom Since the arm current flowing in the arm is connected in series with all submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n), the current flowing from the DC power supply can be the same as
또한, 각각의 서브 모듈들은 도 2에 도시된 바와 같이, 2개의 하프브리지 IGBT 스위치들(Insulated Gate Bipolar mode Transistor switches)(Q1, Q2)과 IGBT 스위치들에 단자들이 연결된 커패시터(SM 커패시터)를 각각 포함할 수 있다. 여기서, 하프브리지 스위치(Q1, Q2)에 인가되는 PWM 온/오프 신호는 종래의 멀티레벨 컨버터 신호와 동일하므로 중복되는 설명은 생략하기로 한다. In addition, as shown in FIG. 2, each sub-module includes two half-bridge IGBT switches (Insulated Gate Bipolar mode Transistor switches) (Q 1 and Q 2 ) and a capacitor (SM capacitor) whose terminals are connected to the IGBT switches. may include each. Here, since the PWM on/off signal applied to the half-bridge switches Q 1 and Q 2 is the same as the conventional multi-level converter signal, duplicate descriptions will be omitted.
본 발명의 일 실시예에 따르면, 복수의 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)( 110a, 110b,쪋, 110n-1, 110n)들 중 동일한 암에 연결된 인접한 연속된 두개의 서브 모듈들을 변압기 권선 및 자기 코어(또는 공심)로 자기적으로 연결하여 리플 전력을 제거하기 위한 리플 제거부(120)가 포함될 수 있다. 도 1에서 보여지는 바와 같이, 복수의 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)( 110a, 110b,쪋, 110n-1, 110n) 중 동일한 암에 연속된 두개의 서브 모듈들은 각각 변압기 권선 및 자기 코어(또는 공심)로 자기적으로 연결될 수 있다. 복수의 서브 모듈(SM1, SM2, 쪋, SMN-1, SMN)( 110a, 110b,쪋, 110n-1, 110n)은 동일한 암에 연결된 연속된 두개의 서브 모듈 단위로 리플 제거부(120)를 포함한다. According to an embodiment of the present invention, among the plurality of submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a , 110b , 110n-1 , 110n ) adjacent connected to the same arm A ripple removal unit 120 may be included to remove ripple power by magnetically connecting two consecutive sub-modules with a transformer winding and a magnetic core (or air core). As shown in FIG. 1, two consecutive sub-modules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a, 110b, , 110n-1, 110n) in the same arm The sub-modules may be magnetically connected to the transformer winding and magnetic core (or air core), respectively. A plurality of submodules (SM 1 , SM 2 , SM N-1 , SM N ) ( 110a , 110b , 110n-1 , 110n ) is a ripple removal unit in two consecutive sub-module units connected to the same arm (120).
즉, 동일한 암에 연결된 복수의 서브 모듈(편의상 제1 서브 모듈과 제2 서브 모듈로 통칭하기로 함)에서 리플전류와 동위상을 가지는 전류를 흡수하여 내부의 변압기 자기코어로 자화 플럭스를 상쇄하여 리플을 제거하기 위한 리플 제거부(120)를 포함할 수 있다. That is, a plurality of submodules connected to the same arm (referred to collectively as the first submodule and the second submodule for convenience) absorb the current having the same phase as the ripple current and cancel the magnetizing flux with the internal transformer magnetic core. A ripple removal unit 120 for removing ripples may be included.
예를 들어, 리플 제거부(120)는 변압기와 각 서브 모듈내의 두개의 하프브리지 스위치(S1, S2)를 포함할 수 있다. 도 1에 도시된 바와 같이, 동일한 암에 연결된 연속된 두개의 서브 모듈은 권선을 통해 연결되되, 권선이 서로 반대 방향으로 감길 수 있다. For example, the ripple removal unit 120 may include a transformer and two half-bridge switches S 1 and S 2 in each sub-module. As shown in FIG. 1, two consecutive submodules connected to the same arm are connected through a winding, and the windings may be wound in opposite directions.
따라서, 동일한 암에 연결된 연속된 두개의 서브 모듈(예를 들어, 제1 서브 모듈, 제2 서브 모듈)에 리플전류와 동위상을 가지는 전류를 흡수하며, 코어 내부에서 반전된 플럭스가 형성됨에 따라 리플이 상쇄돼서 제거되는 효과를 가질 수 있다. Therefore, as the current having the same phase as the ripple current is absorbed in two consecutive submodules (e.g., the first submodule and the second submodule) connected to the same arm, and the reversed flux is formed inside the core, This can have the effect of canceling out the ripple.
보다 상세히 설명하기로 한다. It will be described in more detail.
예를 들어, 동일한 암에 연결된 연속된 제1 서브 모듈과 제2 서브 모듈을 중심으로 설명하기로 한다. 제1 서브 모듈과 제2 서브 모듈은 도 1에서 보여지는 바와 같이, 권선(코어)의 감긴 방향이 서로 반대이다. 이로 인해, 리플 제거부(예를 들어, 변압기)의 2차측은 제어기가 없다면 1차측과 180도 위상차의 전류가 생성된다. 따라서, 동일한 암에 연결된 연속된 제1 서브 모듈과 제2 서브 모듈에는 동위상의 전류가 흐르면 180도 위상차로 전류가 흐르게 되는 것과 동일한, 반전된 자화 플럭스가 변압기 내부에 형성되어 리플이 상쇄되어 제거되게 된다. For example, the first and second submodules connected to the same arm will be mainly described. As shown in FIG. 1, the first sub-module and the second sub-module have windings (cores) in opposite directions. Due to this, the secondary side of the ripple remover (eg, transformer) generates a current with a phase difference of 180 degrees from the primary side if there is no controller. Therefore, when currents of the same phase flow in successive first sub-modules and second sub-modules connected to the same arm, an inverted magnetizing flux identical to that in which currents flow 180 degrees out of phase is formed inside the transformer so that the ripple is offset and removed. do.
리플 제거부(120)의 상세 구조는 도 2에 도시된 바와 같다. The detailed structure of the ripple removal unit 120 is as shown in FIG. 2 .
리플 제거를 위해 추가된 변압기와 서브 모듈의 하프브리지 스위치(S1, S2)는 변압기 양단에 동일한 전류가 들어가도록 하는 온 또는 오프 PWM 스위치 동작을 함으로써, 권선 방향(코어 감는 방향)이 서로 반대이므로 코어 내에서 자기에너지가 서로 상쇄되는 방향으로 동작될 수 있다. The transformer added for ripple removal and the half-bridge switches (S 1 , S 2 ) of the sub-module operate an on or off PWM switch operation so that the same current enters both ends of the transformer, so that the winding direction (core winding direction) is opposite to each other. Therefore, it can be operated in a direction in which magnetic energy cancels each other in the core.
예를 들어, 멀티 레벨 컨버터(100)가 제1 서브 모듈, 제2 서브 모듈, 제3 서브 모듈, 제4 서브 모듈, 쪋, 제n-1 서브 모듈, 제n 서브 모듈을 포함하는 것을 가정하기로 한다. 두개씩 페어로 연결되므로, 제1 서브 모듈과, 제2 서브 모듈이 하나의 코어로 연결되며, 제3 서브 모듈과 제4 서브 모듈이 하나의 코어로 연결되고, 제n-1 서브 모듈과 제n 서브 모듈이 하나의 코어로 연결될 수 있다.For example, assuming that the multi-level converter 100 includes a first submodule, a second submodule, a third submodule, a fourth submodule, a n-1th submodule, and an nth submodule do it with Since two are connected in pairs, the first submodule and the second submodule are connected to one core, the third submodule and the fourth submodule are connected to one core, and the n-1th submodule and the nth submodule are connected to each other. Submodules may be connected to one core.
이때, 홀수번째 서브 모듈들(예를 들어, 제1 서브 모듈, 제3 서브 모듈, 쪋, 제n-1 서브 모듈)은 권선 감는 방향이 각각 제1 방향일 수 있다. 또한, 짝수번째 서브 모듈들(예를 들어, 제2 서브 모듈, 제4 서브 모듈, 쪋, 제n 서브 모듈)은 권선 감는 방향이 제1 방향과 반대인 제2 방향일 수 있다.In this case, the odd-numbered submodules (eg, the first submodule, the third submodule, and the n−1th submodule) may each have a winding winding direction in the first direction. In addition, even-numbered submodules (eg, the second submodule, the fourth submodule, the nth submodule) may have a winding winding direction in a second direction opposite to the first direction.
따라서, 동일한 암에 연결된 연속된 서브 모듈들(예를 들어, 제1 서브 모듈과 제2 서브 모듈, 제3 서브 모듈과 제4 서브 모듈, 쪋, 제n-1 서브 모듈과 제n 서브 모듈)은 각각 변압기 권선 및 자기 코어(또는 공심)로 자기적으로 연결되되, 권선 감는 방향이 서로 반대일 수 있다. 이로 인해, 리플 제거부(120)에 의해 180도 위상차를 가지는 전류를 동시에 받을 수 있으며, 변압기 코어 내부에서 반전된 플럭스가 형성되어 리플 전력이 상쇄되어 제거될 수 있다. Therefore, consecutive submodules connected to the same arm (eg, the first submodule and the second submodule, the third submodule and the fourth submodule, the n−1th submodule and the nth submodule) are magnetically connected to the transformer winding and the magnetic core (or air core), respectively, and winding directions may be opposite to each other. Due to this, currents having a phase difference of 180 degrees can be simultaneously received by the ripple removal unit 120, and inverted flux is formed inside the transformer core so that the ripple power can be offset and removed.
도 3은 본 발명의 다른 실시예에 따른 모듈러 멀티 레벨 컨버터의 구성을 개략적으로 도시한 도면이다. 3 is a diagram schematically showing the configuration of a modular multi-level converter according to another embodiment of the present invention.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 모듈러 멀티 레벨 컨버터(300)는 제1 멀티 레벨 컨버터(310)와 제2 멀티 레벨 컨버터(320)를 포함하여 구성된다. Referring to FIG. 3 , a modular multi-level converter 300 according to another embodiment of the present invention includes a first multi-level converter 310 and a second multi-level converter 320 .
모듈러 멀티 레벨 컨버터(300)의 전원(Vdc)을 양전원과 음전원으로 나눠서 위와 아래 두개의 멀티 레벨 컨버터(즉, 제1 멀티 레벨 컨버터(310), 제2 멀티 레벨 컨버터(320))가 중성점 그라운드에서 연결된 형태이다. The power supply (V dc ) of the modular multi-level converter 300 is divided into positive and negative power, so that the upper and lower two multi-level converters (ie, the first multi-level converter 310 and the second multi-level converter 320) have a neutral point It is a form connected to the ground.
제1 멀티 레벨 컨버터(310)와 제2 멀티 레벨 컨버터(320)는 각각 복수의 서브 모듈들을 포함할 수 있다. 여기서, 복수의 서브 모듈들은 도 1 및 도 2에서 설명한 바와 같이, 동일한 암에 연속된 두개의 서브 모듈들은 하나의 코어로 연결되며, 반전된 위상을 가지는 전류를 제공하여 리플을 제거하기 위한 리플 제거부(330)를 포함할 수 있다. 이미 전술한 바와 같이, 리플 제거부(120)는 변압기와 각 서브 모듈내의 두개의 하프브리지 스위치(S1, S2)를 포함할 수 있다. 도 1에 도시된 바와 같이, 동일한 암에 연결된 연속된 두개의 서브 모듈은 권선을 통해 연결되되, 권선이 서로 반대 방향으로 감길 수 있다. Each of the first multi-level converter 310 and the second multi-level converter 320 may include a plurality of sub-modules. Here, as described in FIGS. 1 and 2, the plurality of sub-modules are connected to one core in successive two sub-modules on the same arm, and provide a current having an inverted phase to remove ripple. may include a reject 330 . As already described above, the ripple canceling unit 120 may include a transformer and two half-bridge switches S 1 and S 2 in each sub-module. As shown in FIG. 1, two consecutive submodules connected to the same arm are connected through a winding, and the windings may be wound in opposite directions.
동일한 암에 연속적으로 연결된 두개의 서브 모듈들을 자기적으로 결합시켜 리플 전력을 제거하는 구성에 대해서는 이미 전술한 바와 동일하므로 중복되는 설명은 생략하기로 한다. Since the configuration of removing ripple power by magnetically coupling two sub-modules consecutively connected to the same arm is the same as described above, a duplicate description will be omitted.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at mainly by its embodiments. Those skilled in the art to which the present invention pertains will be able to understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from a descriptive point of view rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.

Claims (8)

  1. 제n 서브 모듈;nth submodule;
    제(n+1) 서브 모듈; 및(n+1)th submodule; and
    동일한 암에 연결된 연속된 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈을 자기적으로 결합하여 리플 전력을 제거하는 리플 제거부를 포함하되, A ripple removal unit configured to remove ripple power by magnetically coupling the consecutive n-th sub-module and the (n+1)-th sub-module connected to the same arm;
    상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈은 직렬로 연결되며 멀티 레벨의 PWM 전압을 출력하는 것을 특징으로 하는 멀티 레벨 컨버터. The multi-level converter, characterized in that the n-th sub-module and the (n+1)-th sub-module are connected in series and output multi-level PWM voltages.
  2. 제1 항에 있어서, According to claim 1,
    상기 리플 제거부는, The ripple removal unit,
    변압기와 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈 내의 두개의 하프 브리지 제1 스위치(S1)과 제2 스위치(S2)를 포함하되, Including a transformer and two half-bridge first switches (S 1 ) and second switches (S 2 ) in the n-th sub-module and the (n+1)-th sub-module,
    상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈은 변압기 권선 및 자기 코어로 자기적으로 연결되되, 권선 감는 방향이 서로 반대인 것을 특징으로 하는 멀티 레벨 컨버터.The multi-level converter, characterized in that the n-th sub-module and the (n+1)-th sub-module are magnetically connected by transformer windings and magnetic cores, and winding directions are opposite to each other.
  3. 제1 항에 있어서, According to claim 1,
    상기 동일한 암의 연결된 연속된 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈은 상기 변압기를 통해 상기 제n 서브 모듈과 상기 제(n+1) 서브 모듈에게 서로 180도 위상차를 가지는 전류가 생성되는 방향으로 자기 코어 내부에서 반전된 플럭스가 형성되어 리플 전류가 제거되는 것을 특징으로 하는 멀티 레벨 컨버터.The continuous connected n-th sub-module and the (n+1)-th sub-module of the same arm have a current having a phase difference of 180 degrees to the n-th sub-module and the (n+1)-th sub-module through the transformer. A multi-level converter characterized in that the ripple current is eliminated by forming a reversed flux inside the magnetic core in a direction in which
  4. 제2 항에 있어서, According to claim 2,
    상기 하프 브리지 제1 스위치(S1)과 제2 스위치(S2)는 상기 변압기에 동일한 파형의 전류가 입력되도록 하는 온 또는 오프 PWM 스위치 동작을 수행하는 것을 특징으로 하는 멀티 레벨 컨버터.The half-bridge first switch (S 1 ) and the second switch (S 2 ) are multi-level converters, characterized in that performing an on or off PWM switch operation so that the current of the same waveform is input to the transformer.
  5. 변압기; 및 Transformers; and
    상기 변압기로 동일한 전류가 입력되도록 하는 온 또는 오프 PWM 스위치로 동작하는 두개의 하프 브리지 스위치(S1, S2)를 포함하는 복수의 서브 모듈을 포함하되,A plurality of sub-modules including two half-bridge switches (S 1 and S 2 ) operating as on or off PWM switches that allow the same current to be input to the transformer,
    상기 복수의 서브 모듈 중 동일한 암에 연결되는 연속된 두개의 서브 모듈은 코어 감는 방향이 서로 반대인 것을 특징으로 하는 멀티 레벨 컨버터.The multi-level converter, characterized in that the core winding direction of two consecutive sub-modules connected to the same arm among the plurality of sub-modules is opposite to each other.
  6. 제5 항에 있어서, According to claim 5,
    상기 변압기를 통해 상기 동일한 암에 연결된 연속된 두개의 서브 모듈로 180도 위상차를 가지는 전류가 생성되는 방향으로 코어 내부에서 반전된 플럭스가 형성되어 리플이 제거되는 것을 특징으로 하는 멀티 레벨 컨버터.A multi-level converter, characterized in that the ripple is removed by forming a reversed flux inside the core in a direction in which current having a phase difference of 180 degrees is generated in two consecutive sub-modules connected to the same arm through the transformer.
  7. 양의 암 전류에 연결된 제1 멀티 레벨 컨버터; 및a first multi-level converter connected to the positive arm current; and
    음의 암 전류에 연결된 제2 멀티 레벨 컨버터를 포함하되,A second multi-level converter connected to the negative arm current,
    상기 제1 및 제2 멀티 레벨 컨버터는 중성점 그라운드에서 연결되되, The first and second multi-level converters are connected at the neutral point ground,
    상기 제1 멀티 레벨 컨버터 및 상기 제2 멀티 레벨 컨버터는 각각,The first multi-level converter and the second multi-level converter, respectively,
    동일한 암에 연결된 연속된 두개의 서브 모듈을 포함하되, 상기 동일한 암에 연결된 연속된 두개의 서브 모듈은 자기적으로 결합되어 리플 전력을 제거하는 리플 제거부를 포함하는 것을 특징으로 하는 모듈러 멀티 레벨 컨버터. A modular multi-level converter comprising two consecutive sub-modules connected to the same arm, wherein the two consecutive sub-modules connected to the same arm are magnetically coupled to each other to remove ripple power.
  8. 제7 항에 있어서, 상기 리플 제거부는, The method of claim 7, wherein the ripple removal unit,
    변압기와 상기 동일한 암에 연결된 연속된 두개의 서브 모듈 내의 두개의 하프 브리지 제1 스위치(S1)과 제2 스위치(S2)를 포함하되, Including a transformer and two half-bridge first switches (S 1 ) and second switches (S 2 ) in two consecutive sub-modules connected to the same arm,
    상기 동일한 암에 연결된 연속된 두개의 서브 모듈은 권선으로 연결되되, 권선 감는 방향이 서로 반대인 것을 특징으로 하는 모듈러 멀티 레벨 컨버터. The modular multi-level converter, characterized in that the two consecutive sub-modules connected to the same arm are connected by windings, and winding directions are opposite to each other.
PCT/KR2022/007371 2021-07-13 2022-05-24 Multilevel converter WO2023287010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0091338 2021-07-13
KR1020210091338A KR102595965B1 (en) 2021-07-13 2021-07-13 Multilevel converter

Publications (1)

Publication Number Publication Date
WO2023287010A1 true WO2023287010A1 (en) 2023-01-19

Family

ID=84919460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007371 WO2023287010A1 (en) 2021-07-13 2022-05-24 Multilevel converter

Country Status (2)

Country Link
KR (1) KR102595965B1 (en)
WO (1) WO2023287010A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1300326A1 (en) * 2013-05-08 2013-05-15 Abb Technology Ltd Method and arrangement for controlling electric power transmission in an electric power transmission system
WO2013137749A1 (en) * 2012-03-16 2013-09-19 Auckland Uniservices Limited Electrical systems with inductive power transfer-based energy balancing
KR20200070285A (en) * 2017-10-06 2020-06-17 제네럴 일렉트릭 테크놀러지 게엠베하 Converter design
KR20210004589A (en) * 2019-07-05 2021-01-13 숭실대학교산학협력단 Multi-level converter
US10978948B2 (en) * 2014-01-15 2021-04-13 Abb Schweiz Ag Interleaved multi-channel, multi-level, multi-quadrant DC-DC converters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6692801B2 (en) * 2014-12-11 2020-05-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Multilevel inverter and method for providing multilevel output voltage by utilizing multilevel inverter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137749A1 (en) * 2012-03-16 2013-09-19 Auckland Uniservices Limited Electrical systems with inductive power transfer-based energy balancing
SE1300326A1 (en) * 2013-05-08 2013-05-15 Abb Technology Ltd Method and arrangement for controlling electric power transmission in an electric power transmission system
US10978948B2 (en) * 2014-01-15 2021-04-13 Abb Schweiz Ag Interleaved multi-channel, multi-level, multi-quadrant DC-DC converters
KR20200070285A (en) * 2017-10-06 2020-06-17 제네럴 일렉트릭 테크놀러지 게엠베하 Converter design
KR20210004589A (en) * 2019-07-05 2021-01-13 숭실대학교산학협력단 Multi-level converter

Also Published As

Publication number Publication date
KR20230010929A (en) 2023-01-20
KR102595965B1 (en) 2023-10-30

Similar Documents

Publication Publication Date Title
CN109428490B (en) Multi-cell power conversion system
US20190052177A1 (en) Power electronic conversion unit and system
KR100661473B1 (en) Power converter
WO2014104836A1 (en) Converter
TW201834375A (en) Modular power system
WO2018056506A1 (en) Voltage source converter comprising hybrid active filter
WO2018221906A1 (en) Mmc converter and sub-module thereof
CN112217408A (en) Cascaded multi-port converter and three-phase medium-voltage input system
WO2021010570A1 (en) Dc-dc converter of power conversion system
CN102904420A (en) Multi-port current transformer
WO2018221907A1 (en) Mmc converter and sub-modules thereof
CN115912925A (en) LLC resonance transformation circuit, charging equipment, energy storage equipment and consumer
CN112217407A (en) Cascaded multi-port converter and three-phase medium-voltage input system
WO2018105808A1 (en) Dc-dc converter
WO2011078424A1 (en) Load-segmentation-based full bridge inverter and method for controlling same
CN107925363A (en) Voltage source converter and its control
WO2017039090A1 (en) Power conversion system having filters exploiting the sequence of voltage harmonics
WO2023287010A1 (en) Multilevel converter
WO2013027949A2 (en) Power conversion device
WO2019059510A1 (en) Inverter system
WO2023013824A1 (en) Bidirectional dc/ac power conversion system having multiple dc links
US6067242A (en) Current balanced arms of AC/DC bridge rectifiers
WO2023146282A1 (en) Power solid-state transformer module and transformer using same
CN219087011U (en) Three-phase balance traction power supply transformer, three-phase balance traction power supply device and system
WO2020159011A1 (en) Snubber for high-voltage large-capacity power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE