WO2023286915A1 - Electrolyte-preserving zinc-air battery - Google Patents

Electrolyte-preserving zinc-air battery Download PDF

Info

Publication number
WO2023286915A1
WO2023286915A1 PCT/KR2021/013332 KR2021013332W WO2023286915A1 WO 2023286915 A1 WO2023286915 A1 WO 2023286915A1 KR 2021013332 W KR2021013332 W KR 2021013332W WO 2023286915 A1 WO2023286915 A1 WO 2023286915A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
electrolyte
air battery
catalyst
present
Prior art date
Application number
PCT/KR2021/013332
Other languages
French (fr)
Korean (ko)
Inventor
권순철
발라무루간찬드란
조규상
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Publication of WO2023286915A1 publication Critical patent/WO2023286915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • H01M50/1385Hybrid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte-preserving zinc-air battery, and more specifically, to a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent electrolyte leakage, and to a silver/manganese (Ag/Mn) catalyst using nickel It relates to an electrolyte-preserving zinc-air battery in which high energy efficiency and electrochemical stability are improved by introducing vanadium oxide (NiV 2 O 6 ).
  • lithium-sulfur batteries and lithium-air batteries can increase the theoretically possible capacity by at least five times by changing the anode and cathode to materials that can increase the energy density compared to lithium ion batteries.
  • Zinc is a more common metal than lithium, and zinc-air batteries using it have the advantage of having a much higher energy density and less risk of explosion than lithium-ion batteries. So, in the United States, it has already been developed for military use over 20 years ago, and Electro Fuel Cell is exclusively supplying it.
  • aqueous electrolytes cause electrolyte loss due to evaporation, which adversely affects cycle stability.
  • the inventors of the present invention apply a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of electrolyte, and nickel vanadium oxide (NiV) to a silver / manganese (Ag / Mn) catalyst 2 O 6 ) was introduced to complete the invention of an electrolyte-preserving zinc-air battery with improved energy efficiency and electrochemical stability.
  • PTFE polytetrafluoroethylene
  • NiV nickel vanadium oxide
  • Ag / Mn silver / manganese
  • Patent Document 1 Korea Patent Registration No. 10-1365980
  • Patent Document 2 Korean Patent Registration No. 10-1574004
  • the present invention applies a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of electrolyte, and nickel vanadium oxide (Ag/Mn) catalyst to
  • PTFE polytetrafluoroethylene
  • Ag/Mn nickel vanadium oxide
  • An object of the present invention is to provide an electrolyte-preserving zinc-air battery in which high energy efficiency and electrochemical stability are improved by introducing NiV 2 O 6 ).
  • an electrolyte preservation type zinc-air battery includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
  • PTFE polytetrafluoroethylene
  • GDL gas diffusion layer
  • the electrolyte preservation type zinc air battery may be a pouch type cell or a coin type cell.
  • first case and the second case may be heat-sealed to each other within a temperature range of 80 to 180 °C.
  • the hydrophobic membrane may be attached to shield all of the porous regions of the first case.
  • the catalyst coated on the gas diffusion layer may be a silver/manganese (Ag/Mn) catalyst including nickel vanadium oxide (NiV 2 O 6 ).
  • the specific surface area of the silver/manganese catalyst may be increased by being formed on the nickel vanadium oxide.
  • the separator may be any one selected from the group consisting of a glass fiber separator, a polyethylene separator, and a polypropylene separator.
  • the separator may selectively transmit hydroxide ions (OH - ).
  • the zinc metal layer may include any one selected from the group consisting of zinc metal, a zinc metal composite treated with an organic or inorganic compound, and a zincated metal-carbon composite.
  • any one electrolyte selected from the group consisting of potassium hydroxide, lithium hydroxide and sodium hydroxide may be further included.
  • the electrolyte-preserving zinc air battery of the present invention uses a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of the electrolyte, and nickel vanadium oxide to a silver/manganese (Ag/Mn) catalyst. (NiV 2 O 6 ) can be introduced to improve high energy efficiency and electrochemical stability.
  • PTFE polytetrafluoroethylene
  • Au/Mn silver/manganese
  • the electrolyte preservation type zinc-air battery of the present invention has characteristics of high output and high capacity, and can improve the life of the battery.
  • FIG. 1 is a schematic diagram of a pouch cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a coin cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
  • FIG. 3 is a photographic illustration of each configuration of the pouch cell-type electrolyte-preserving zinc-air battery of the present invention and the actual state of the manufactured battery.
  • SEM scanning microscope
  • FIG. 5 is a graph showing the measured OCV (Open Circuit Voltage), power density, and discharge capacity for each catalyst composition of the electrolyte preservation type zinc-air battery of the present invention.
  • FIG. 6 is a graph showing the measured discharge capacity according to the current density of the electrolyte preservation type zinc-air battery of the present invention.
  • FIG. 7 is a graph showing the measured charge and discharge cycle characteristics for each catalyst composition of the electrolyte-preserving zinc-air battery of the present invention.
  • the present specification includes a first case including a porous region capable of entering and exiting air; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
  • PTFE polytetrafluoroethylene
  • GDL gas diffusion layer
  • the electrolyte preservation type zinc-air battery of the present invention is preferably a pouch-type cell or a coin-type cell, but is not limited thereto.
  • the electrolyte preservation type zinc-air battery of the present invention may be manufactured in a cylindrical shape, a prismatic shape, or the like, and may be manufactured in a bulk type or a thin film type depending on the size.
  • the pouch cell-type electrolyte-preserving zinc-air battery of the present invention can be manufactured in various sizes and shapes, and has a high energy density and excellent electrochemical stability.
  • FIG. 1 is a schematic diagram of a pouch cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
  • the pouch cell type electrolyte preservation type zinc air battery of the present invention includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
  • PTFE polytetrafluoroethylene
  • GDL gas diffusion layer
  • the first case and the second case of the present invention may be heat-sealed to each other, and thus the pouch cell-type electrolyte-preserving zinc-air battery of the present invention may be manufactured in a sealed form.
  • the thermal fusion temperature of the first case and the second case of the present invention is preferably 80 to 180 ° C, more preferably 120 to 140 ° C.
  • the thermal fusion temperature is less than 80° C.
  • thermal fusion between the first case and the second case of the present invention is not sufficiently performed, and thus electrolyte leakage may occur.
  • the thermal fusion temperature exceeds 180 °C, the first case and the second case of the present invention may be thermally damaged, resulting in deterioration in electrochemical stability.
  • the first case and the second case of the present invention are preferably aluminum foil, more preferably aluminum foil coated with a film.
  • the first case of the present invention includes a porous region through which air can flow in and out, and can be manufactured by drilling a plurality of holes in the central portion of the first case so that air can flow in and out of the electrode.
  • the hydrophobic membrane of the present invention preferably includes polytetrafluoroethylene (PTFE), but is not limited thereto. Since the hydrophobic membrane of the present invention includes PTFE, it has an effect of preventing leakage of electrolyte (aqueous electrolyte solution) and increasing the lifespan of a battery.
  • PTFE polytetrafluoroethylene
  • the hydrophobic membrane of the present invention is preferably attached so as to shield all of the porous regions of the first case.
  • the gas diffusion layer (GDL) of the present invention may be coated with a catalyst.
  • the catalyst coated on the gas diffusion layer is preferably a silver/manganese (Ag/Mn) catalyst including nickel vanadium oxide (NiV 2 O 6 ), but is not limited thereto.
  • the gas diffusion layer of the present invention is a place where air (oxygen) moves, and can play a role of uniformly distributing air (oxygen) moved from the outside.
  • the silver/manganese catalyst coated on the gas diffusion layer of the present invention may increase the specific surface area by being formed on the nickel vanadium oxide. That is, the catalyst coated on the gas diffusion layer of the present invention can increase the activity of the silver/manganese (Ag/Mn) catalyst through the surface structure of nickel vanadium oxide.
  • the electrolyte preservation type zinc-air battery of the present invention can improve high energy efficiency and electrochemical stability by using a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide.
  • a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide As aforementioned, specific details will be described in detail in the following ⁇ Examples and Evaluation ⁇ .
  • Oxygen reduction can be performed by the catalyst coated on the gas diffusion layer of the present invention, and can directly affect the reaction for generating electricity in the battery.
  • the gas diffusion layer of the present invention may additionally form an aluminum (Al) tab. More specifically, it is preferable to attach the aluminum tab of the present invention to the gas diffusion layer of the present invention using a copper (Cu) tape, but is not limited thereto.
  • Al aluminum
  • Cu copper
  • the gas diffusion layer of the present invention may further include a metal current collector.
  • the metal current collector may include aluminum (Al), nickel (Ni), iron (Fe), titanium (Ti), or stainless steel, but is not limited thereto.
  • the shape of the metal current collector may be a foil shape, a plate shape, a mesh (or grid) shape, a foam (or sponge) shape, and the like, but is not limited thereto.
  • the catalyst-coated portion of the gas diffusion layer faces the separator of the present invention so that gas exchange can occur smoothly through the gas diffusion layer.
  • the separator of the present invention is preferably any one selected from the group consisting of a glass fiber separator, a polyethylene separator, and a polypropylene separator, but is not limited thereto.
  • the separator of the present invention may use a material that is excellent in ionic conductivity and hydrophilicity, is electrically non-conductive, and has excellent stability in aqueous caustic alkali.
  • the separator of the present invention is not limited thereto as long as it can withstand the use range of a zinc-air battery.
  • the separator of the present invention may use a polymer non-woven fabric such as a polypropylene non-woven fabric or a polyphenylene sulfide non-woven fabric, or a porous film of olefin-based resin such as polyethylene or polypropylene, using two or more of these in combination It is also possible to do
  • the separator of the present invention can selectively transmit hydroxide ions (OH - ) in the electrolyte preservation type zinc-air battery of the present invention.
  • the zinc metal layer of the present invention preferably includes one selected from the group consisting of zinc metal, zinc metal composites treated with organic or inorganic compounds, and zincated metal-carbon composites, but is not limited thereto.
  • the metal of the zincated metal-carbon composite of the present invention is any one or more metals selected from the group consisting of Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, and Hg. It is preferred, but is not limited thereto.
  • the zincated metal-carbon composite of the present invention is preferably a zincated silicon carbon composite or a zincated tin carbon composite.
  • the zincated metal-carbon composite electrode since zinc forms an alloy with the metal and is inserted into the crystal structure of carbon to form a complex with a stable structure, the cycle characteristics do not deteriorate as the volume change of the metal is small during the charging and discharging process. charge and discharge capacity can be improved. In addition, irreversible capacity can be controlled during initial charging and discharging, and stability can be increased.
  • the zinc metal layer of the present invention may additionally form an aluminum (Al) tab. More specifically, it is preferable to attach the aluminum tab of the present invention to the zinc metal layer of the present invention using a copper (Cu) tape, but is not limited thereto.
  • Al aluminum
  • Cu copper
  • the electrolyte-preserving zinc-air battery of the present invention may further include any one electrolyte selected from the group consisting of potassium hydroxide (KOH), lithium hydroxide (LiOH), and sodium hydroxide (NaOH).
  • KOH potassium hydroxide
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • the electrolyte of the present invention includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane including polytetrafluoroethylene (PTFE); a gas diffusion layer coated with a catalyst (gas diffusion layer, GDL); separator; zinc metal layer; And in the state including the second case, it is preferable to heat-seal the first case and the second case to each other and then inject in a sealed state.
  • PTFE polytetrafluoroethylene
  • GDL catalyst
  • separator zinc metal layer
  • FIG. 2 is a schematic diagram of a coin cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
  • the coin cell type electrolyte preservation type zinc-air battery of the present invention includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
  • PTFE polytetrafluoroethylene
  • GDL gas diffusion layer
  • the coin cell type electrolyte preservation type zinc-air battery of the present invention further includes an electrolyte, a gasket, a spacer disk, and a wave spring.
  • the spacer disk of the present invention is preferably a metal plate made of stainless material inserted between the coin cell cap and the metal chip to maintain a gap, but is not limited thereto.
  • the coin cell type electrolyte preservation type zinc-air battery of the present invention may be sealed by combining a coin cell case and a coin cell cap with a gasket interposed therebetween.
  • the coin cell case and the coin cell cap may be formed in a circular, elliptical or polygonal shape.
  • Example 1 Electrolyte preservation type zinc-air battery coated with silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide of the present invention
  • Film-coated aluminum (Al) foil was used for the first case (first pouch) and the second case (second pouch), and the first case formed a porous zone by punching a hole in the center to allow air to flow in and out. did
  • a hydrophobic membrane comprising polytetrafluoroethylene (PTFE) was attached to shield all of the porous regions of the first case.
  • a gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide (NiV 2 O 6 ) was prepared in a size of 3x3 cm 2 , and an aluminum (Al) tab was coated with a copper (Cu) ) was connected to the gas diffusion layer (GDL) using a tape, and the gas diffusion layer (GDL) serving as an electrode was attached to the pouch using a double-sided tape. At this time, it is preferable to arrange the catalyst-coated portion to face the separation membrane so that smooth gas exchange occurs through the gas diffusion layer (GDL).
  • a glass fiber separator having a size of 3.5x3.5 cm 2 is formed to cover the entire gas diffusion layer (GDL).
  • a zinc metal layer was prepared in the same size (3x3 cm 2 ) as the gas diffusion layer (GDL) coated with the catalyst, and similarly, an aluminum (Al) tab was connected. The connection of the aluminum (Al) tab was attached so that there was no electrical resistance and was physically stable using an Ultrasonic Welding Machine.
  • a gas diffusion layer (GDL) coated with a catalyst and a zinc metal layer were overlapped with the separator interposed therebetween.
  • both the first case and the second case were bonded by thermal fusion at 120 °C.
  • the top of the heat-sealed case is heat-sealed leaving a space for the injection needle to enter, and a 6 M potassium hydroxide (KOH) aqueous solution electrolyte is added using a syringe to finish sealing, so that the pouch cell-type electrolyte-preserving zinc of the present invention
  • KOH potassium hydroxide
  • FIG. 3 is a photographic illustration of each configuration of the pouch cell-type electrolyte-preserving zinc-air battery of the present invention and the actual state of the manufactured battery. More specifically, FIG. 3A shows each configuration of a pouch cell-type electrolyte-preserving zinc-air battery, and FIG. 3B shows the manufactured pouch-cell-type electrolyte-preserving zinc-air battery.
  • the upper left component in the drawing is the outer surface of the first case (first pouch) on which the porous region is formed
  • the upper right component in the drawing is the inner surface of the first case to which the hydrophobic membrane containing PTFE is attached. You can see that the side is shown.
  • FIG. 3A the upper left component in the drawing is the outer surface of the first case (first pouch) on which the porous region is formed
  • the upper right component in the drawing is the inner surface of the first case to which the hydrophobic membrane containing PTFE is attached. You can see that the side is shown.
  • FIG. 3A the upper left component in the drawing is the outer surface of
  • the central structure on the drawing is a 3x3 cm 2 zinc metal layer in which an aluminum (Al) tab is welded, and the lower structure on the drawing is a 3x3 cm 2 size coated with a catalyst.
  • GDL gas diffusion layer
  • NiV 2 O 6 nickel vanadium oxide
  • the catalyst coated on the gas diffusion layer (GDL) is a silver (Ag) catalyst containing nickel vanadium oxide (NiV 2 O 6 ), prepared in the same manner as in Example 1 and containing nickel vanadium oxide A zinc-air battery coated with a silver (Ag) catalyst (hereinafter referred to as 'Comparative Example 2') was obtained.
  • the catalyst coated on the gas diffusion layer (GDL) is a manganese (Mn) catalyst containing nickel vanadium oxide (NiV 2 O 6 ), prepared in the same manner as in Example 1 and containing nickel vanadium oxide A zinc-air battery coated with a manganese (Mn) catalyst (hereinafter referred to as 'Comparative Example 3') was obtained.
  • SEM scanning microscope
  • FIG. 4a shows a scanning microscope image of the nickel vanadium oxide catalyst of Comparative Example 1, and it can be confirmed that a wide surface structure is formed on the catalyst.
  • FIG. 4B shows a scanning microscope image of the silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide of Example 1, and silver (Ag) and manganese (Mn) are present on the widened surface structure due to nickel vanadium oxide ) (manganese oxide (MnO)) sticks well, and it can be assumed that the interaction will be active.
  • Ag/Mn silver/manganese
  • MnO manganese
  • the silver/manganese (Ag/Mn) catalyst coated on the gas diffusion layer of the present invention is formed on nickel vanadium oxide, the specific surface area can be increased. In other words, it can be confirmed that the catalyst coated on the gas diffusion layer of the present invention can increase the activity of the silver/manganese (Ag/Mn) catalyst through the surface structure of nickel vanadium oxide.
  • OCV Open Circuit Voltage
  • power density Power Density
  • discharge capacity evaluation etc.
  • FIG. 5 is a graph showing the measured OCV (Open Circuit Voltage), power density, and discharge capacity for each catalyst composition of the electrolyte preservation type zinc-air battery of the present invention. More specifically, FIG. 5A is a graph showing the measured OCV and power density according to the increase in current density of the zinc-air batteries of Example 1 and Comparative Examples 1 to 3.
  • OCV Open Circuit Voltage
  • FIG. 5A is a graph showing the measured OCV and power density according to the increase in current density of the zinc-air batteries of Example 1 and Comparative Examples 1 to 3.
  • the electrolyte preservation type zinc-air battery of Example 1 including a gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide (NiV 2 O 6 ) has a current When the density is 176.1 mA/cm 2 , the power density is 118.9 mW/cm 2 , and the zinc-air battery of Comparative Example 1 including the gas diffusion layer coated with the catalyst containing only nickel vanadium oxide has a current density of 143.0 mA/cm 2 When , it can be seen that the power density is 80.1 mW/cm 2 .
  • the electrolyte-preserving zinc-air battery of Example 1 exhibits excellent cell (battery) performance in that the power density according to the increase in current density is higher than that of the zinc-air battery of Comparative Example 1.
  • the electrolyte preservation type zinc-air battery of Example 1 exhibits improved output characteristics compared to the zinc-air battery of Comparative Example 1 because the OCV corresponding to the initial voltage of the battery (battery) is higher.
  • the cell (battery) performance is better when using a catalyst coated with silver (Ag) or manganese (Mn) in combination than a catalyst coated with silver (Ag) or manganese (Mn) alone. It can be seen that this is excellent.
  • FIG. 5B is a graph showing discharge capacities according to discharge of the zinc-air batteries of Example 1 and Comparative Examples 1 to 3 measured.
  • the electrolyte preservation type zinc-air battery of Example 1 including a gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide has a catalyst containing only nickel vanadium oxide Comparative Example 1 including a gas diffusion layer coated with , Comparative Example 2 including a gas diffusion layer coated with a silver (Ag) catalyst containing nickel vanadium oxide, and gas coated with a manganese (Mn) catalyst containing nickel vanadium oxide It can be seen that the discharge capacity according to discharge is relatively greater than that of the zinc-air battery of Comparative Example 3 including the diffusion layer.
  • Table 1 summarizes the results of measuring the discharge capacity and energy density according to the discharge of the zinc-air batteries of Example 1 and Comparative Examples 1 to 3.
  • the discharge capacity and energy density of the electrolyte preservation type zinc-air battery of Example 1 are about twice as large as those of Comparative Example 1. That is, the electrolyte-preserving zinc-air battery of Example 1 can exhibit an effect of increasing the capacity by about twice as compared to the zinc-air battery of Comparative Example 1.
  • the electrolyte-preserving zinc-air battery of Example 1 is similar to that of Comparative Example 2. and 3, since the discharge capacity and energy density are higher than those of the zinc air battery, even if nickel vanadium oxide is included as a catalyst, silver / manganese (Ag / Mn) is more than a catalyst coated with silver (Ag) or manganese (Mn) alone. ) It can be seen that the cell (battery) performance is excellent when the catalyst coated with the complex is used.
  • FIG. 6 is a graph showing the measured discharge capacity according to the current density of the electrolyte preservation type zinc-air battery of the present invention.
  • Table 2 summarizes the results of measuring the discharge capacity according to the current density of the electrolyte preservation type zinc-air battery of Example 1.
  • the electrolytic preservation type zinc-air battery of Example 1 has similar discharge characteristics for each current density and consistently exhibits high capacity characteristics.
  • the electrolyte preservation type zinc air battery of 1 has high energy density and excellent electrochemical stability from the fact that the discharge capacity is 795.5, 734.4 and 660.3 mAh / g zn when the current density is 10, 20 and 30 mA / cm 2 , respectively. can confirm that Furthermore, in view of these characteristics, the electrolyte preservation type zinc-air battery of the present invention can be applied to batteries such as electric vehicles (EVs), energy storage systems (ESSs), smart phones, smart watches, and laptops. expected to be able to batteries
  • EVs electric vehicles
  • ESSs energy storage systems
  • smart phones smart watches, and laptops. expected to be able to
  • FIG. 7 is a graph showing the measured charge and discharge cycle characteristics for each catalyst composition of the electrolyte-preserving zinc-air battery of the present invention.
  • FIG. 7A is a graph showing the measured charge/discharge cycle characteristics of the zinc-air battery of Comparative Example 1
  • FIG. 7B is a measurement of the charge-discharge cycle characteristics of the electrolyte preservation type zinc-air battery of Example 1. It is shown graphically.
  • a graph separately shown inside of FIG. 7A shows measurement results of charge/discharge cycle characteristics of a standard air battery using Pt/C + RuO 2 .
  • the standard air battery using Pt/C + RuO 2 has an operating voltage range of 0.7 to 2.0 V (round-trip efficiency: 35.0%), and the life of the battery is about 18 h (hours), whereas
  • the first and final discharge/charge voltages (1st/End discharge/charge potential) were 1.05/2.00 V (round- trip efficiency: 52.5%), and it can be confirmed that the life span of the battery is about 95 h (hours).
  • the electrolyte preservation type zinc-air battery of Example 1 including a gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide has first and final discharge / It can be seen that the charge voltage (1st/End discharge/charge potential) is 1.12/2.04 V (round-trip efficiency: 54.9%), and the life span of the battery is about 147 h (hours).
  • the charging and discharging voltage and round trip efficiency (RTE) of the zinc air battery of Comparative Example 1 are relatively more stable and excellent performance compared to the standard air battery using Pt/C + RuO 2 .
  • RTE charge/discharge voltage and round trip efficiency
  • the electrolyte-preserving zinc-air battery of Example 1 has a lifespan that is about 1.5 times improved compared to the zinc-air battery of Comparative Example 1, so that the electrolyte-preserving zinc-air battery of the present invention is commercially viable It can be estimated that battery performance is maintained for a long period of time.
  • the electrolyte-preserving zinc air battery of the present invention uses a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of the electrolyte, and nickel vanadium oxide to a silver/manganese (Ag/Mn) catalyst. (NiV 2 O 6 ) can be introduced to improve high energy efficiency and electrochemical stability.
  • PTFE polytetrafluoroethylene
  • Au/Mn silver/manganese
  • the electrolyte preservation type zinc-air battery of the present invention has characteristics of high output and high capacity, and can improve the life of the battery.
  • the electrolyte preservation type zinc-air battery of the present invention according to the above has characteristics of high output and high capacity, and can improve the lifespan of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)

Abstract

An electrolyte-preserving zinc-air battery of the present invention comprises: a first case comprising a porous area through which air can enter and exit; a hydrophobic membrane formed on the first case and comprising polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane, and having a catalyst coated thereon; a separator formed on the GDL; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer. According to the present invention, the hydrophobic membrane comprising PTFE is applied to prevent the leakage of an electrolyte, and nickel vanadium oxide (NiV2O6) is introduced into a silver/manganese (Ag/Mn) catalyst so that high energy efficiency and electrochemical stability can be enhanced.

Description

전해질 보존형 아연 공기전지Electrolyte Preservation Type Zinc Air Battery
본 발명은 전해질 보존형 아연 공기전지에 관한 것으로, 보다 구체적으로 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인을 적용하여 전해질의 누액을 방지하고, 은/망간(Ag/Mn) 촉매에 니켈 바나듐 옥사이드(NiV2O6)를 도입하여 높은 에너지 효율 및 전기화학적 안정성을 향상시킨 전해질 보존형 아연 공기전지에 관한 것이다.The present invention relates to an electrolyte-preserving zinc-air battery, and more specifically, to a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent electrolyte leakage, and to a silver/manganese (Ag/Mn) catalyst using nickel It relates to an electrolyte-preserving zinc-air battery in which high energy efficiency and electrochemical stability are improved by introducing vanadium oxide (NiV 2 O 6 ).
전기차용 구동 전원이 갖는 기술적 이슈들을 해결하기 위하여 현존 리튬 이온 배터리의 기술적 진보와 함께 리튬 이온 배터리의 한계를 넘어 근원적 혁신이 가능한, 이른바 포스트-리튬 이온 배터리(Post Lithium-ion Battery)라고 명칭되는 차세대 이차 전지 시스템이 전세계적으로 활발한 연구·개발되고 있다.In order to solve the technical issues of the driving power source for electric vehicles, it is possible to fundamentally innovate beyond the limits of lithium ion batteries along with technological advances of existing lithium ion batteries, so-called post-lithium-ion batteries. Secondary battery systems are being actively researched and developed worldwide.
리튬-황 배터리와 리튬-공기 배터리는 양극과 음극을 리튬 이온 배터리 대비 에너지 밀도를 높일 수 있는 재료로 바꿔 이론적으로 가능한 용량을 최소 5배 이상 높일 수 있다는데 가장 큰 장점이 있다.The biggest advantage of lithium-sulfur batteries and lithium-air batteries is that they can increase the theoretically possible capacity by at least five times by changing the anode and cathode to materials that can increase the energy density compared to lithium ion batteries.
그러나 리튬 이온전지의 폭발성 위험 때문에 안전의 위협이 존재하며, 따라서 사용방법, 온도 등 제한된 환경에 한하여 활용이 가능하다는 단점이 있다. 또한, 리튬의 높은 수요로 이하여 리튬의 단가가 매우 높아지고 있으며, 따라서 상대적으로 다른 흔한 금속 원소로 대체할 수 있는 기술이 필요한 실정이다.However, there is a safety threat due to the risk of explosion of the lithium ion battery, and therefore, there is a disadvantage that it can be used only in limited environments such as usage and temperature. In addition, the unit price of lithium is very high due to the high demand for lithium, and therefore, a technology capable of replacing it with a relatively common metal element is required.
아연은 리튬보다 흔한 금속이며 이를 이용한 아연 공기전지는 리튬 이온전지보다 폭발 위험성이 적으며서 에너지 밀도는 훨씬 높다는 장점이 있다. 그래서 미국에서는 이미 20여년 전부터 군사용으로 개발하여 일렉트로 퓨얼셀사가 독점적으로 공급하고 있다.Zinc is a more common metal than lithium, and zinc-air batteries using it have the advantage of having a much higher energy density and less risk of explosion than lithium-ion batteries. So, in the United States, it has already been developed for military use over 20 years ago, and Electro Fuel Cell is exclusively supplying it.
아연 공기전지의 가장 큰 문제점은 에너지 저장 재료 및 알칼리 수계 전해질에 의하여 발생하는데, 특히 수계 전해질은 증발로 인한 전해질 유실이 발생하고 이는 사이클 안정성에 악영향을 미친다.The biggest problem of zinc-air batteries is caused by energy storage materials and alkaline aqueous electrolytes. In particular, aqueous electrolytes cause electrolyte loss due to evaporation, which adversely affects cycle stability.
이러한 문제점을 해결하기 위하여, 본 발명의 발명자들은 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인을 적용하여 전해질의 누액을 방지하고, 은/망간(Ag/Mn) 촉매에 니켈 바나듐 옥사이드(NiV2O6)를 도입하여 높은 에너지 효율 및 전기화학적 안정성을 향상시킨 전해질 보존형 아연 공기전지에 관한 발명을 완성하였다.In order to solve this problem, the inventors of the present invention apply a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of electrolyte, and nickel vanadium oxide (NiV) to a silver / manganese (Ag / Mn) catalyst 2 O 6 ) was introduced to complete the invention of an electrolyte-preserving zinc-air battery with improved energy efficiency and electrochemical stability.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국등록특허 제10-1365980호(Patent Document 1) Korea Patent Registration No. 10-1365980
(특허문헌 2) 한국등록특허 제10-1574004호(Patent Document 2) Korean Patent Registration No. 10-1574004
상술한 바와 같은 문제점을 해결하기 위하여, 본 발명은 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인을 적용하여 전해질의 누액을 방지하고, 은/망간(Ag/Mn) 촉매에 니켈 바나듐 옥사이드(NiV2O6)를 도입하여 높은 에너지 효율 및 전기화학적 안정성을 향상시킨 전해질 보존형 아연 공기전지를 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention applies a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of electrolyte, and nickel vanadium oxide (Ag/Mn) catalyst to An object of the present invention is to provide an electrolyte-preserving zinc-air battery in which high energy efficiency and electrochemical stability are improved by introducing NiV 2 O 6 ).
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 전해질 보존형 아연 공기전지는 공기의 입출입이 가능한 다공성 구역을 포함하는 제1 케이스; 상기 제1 케이스 상에 형성되고, 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인; 상기 소수성 멤브레인 상에 형성되고, 촉매가 코팅된 가스 확산층(gas diffusion layer, GDL); 상기 가스 확산층 상에 형성되는 분리막; 상기 분리막 상에 형성되는 아연 금속층; 및 상기 아연 금속층 상에 형성되는 제2 케이스를 포함한다.In order to achieve the above object, an electrolyte preservation type zinc-air battery according to the present invention includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
여기서, 상기 전해질 보존형 아연 공기전지는 파우치형 셀 또는 코인형 셀일 수 있다.Here, the electrolyte preservation type zinc air battery may be a pouch type cell or a coin type cell.
여기서, 상기 제1 케이스 및 상기 제2 케이스는 80 내지 180 ℃의 온도 범위 이내에서 서로 열융착될 수 있다.Here, the first case and the second case may be heat-sealed to each other within a temperature range of 80 to 180 °C.
여기서, 상기 소수성 멤브레인은 상기 제1 케이스의 다공성 구역을 모두 차폐하도록 부착될 수 있다.Here, the hydrophobic membrane may be attached to shield all of the porous regions of the first case.
여기서, 상기 가스 확산층에 코팅된 촉매는 니켈 바나듐 옥사이드(NiV2O6)를 포함하는 은/망간(Ag/Mn) 촉매일 수 있다.Here, the catalyst coated on the gas diffusion layer may be a silver/manganese (Ag/Mn) catalyst including nickel vanadium oxide (NiV 2 O 6 ).
여기서, 상기 은/망간 촉매는 상기 니켈 바나듐 옥사이드 상에 형성됨으로써 비표면적이 증가할 수 있다.Here, the specific surface area of the silver/manganese catalyst may be increased by being formed on the nickel vanadium oxide.
여기서, 상기 분리막은 유리섬유 분리막, 폴리에틸렌 분리막 및 폴리프로필렌 분리막으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.Here, the separator may be any one selected from the group consisting of a glass fiber separator, a polyethylene separator, and a polypropylene separator.
여기서, 상기 분리막은 수산화 이온(OH-)을 선택적으로 투과시킬 수 있다.Here, the separator may selectively transmit hydroxide ions (OH - ).
여기서, 상기 아연 금속층은 아연 금속, 유기물 또는 무기화합물로 처리된 아연 금속 복합체 및 아연화된 금속-카본 복합체로 이루어진 군으로부터 선택되는 어느 하나를 포함할 수 있다.Here, the zinc metal layer may include any one selected from the group consisting of zinc metal, a zinc metal composite treated with an organic or inorganic compound, and a zincated metal-carbon composite.
여기서, 수산화칼륨, 수산화리튬 및 수산화나트륨으로 이루어진 군으로부터 선택되는 어느 하나의 전해질을 더 포함할 수 있다.Here, any one electrolyte selected from the group consisting of potassium hydroxide, lithium hydroxide and sodium hydroxide may be further included.
상술한 바에 따른 본 발명의 전해질 보존형 아연 공기전지는 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인을 적용하여 전해질의 누액을 방지하고, 은/망간(Ag/Mn) 촉매에 니켈 바나듐 옥사이드(NiV2O6)를 도입하여 높은 에너지 효율 및 전기화학적 안정성을 향상시킬 수 있다.As described above, the electrolyte-preserving zinc air battery of the present invention uses a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of the electrolyte, and nickel vanadium oxide to a silver/manganese (Ag/Mn) catalyst. (NiV 2 O 6 ) can be introduced to improve high energy efficiency and electrochemical stability.
나아가, 본 발명의 전해질 보존형 아연 공기전지는 고출력 및 고용량의 특성을 갖고, 전지의 수명을 향상시킬 수 있다.Furthermore, the electrolyte preservation type zinc-air battery of the present invention has characteristics of high output and high capacity, and can improve the life of the battery.
도 1은 본 발명의 일 실시예에 따른 파우치 셀 타입의 전해질 보존형 아연 공기전지의 모식도를 도시한 것이다.1 is a schematic diagram of a pouch cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 코인 셀 타입의 전해질 보존형 아연 공기전지의 모식도를 도시한 것이다.2 is a schematic diagram of a coin cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
도 3은 본 발명의 파우치 셀 타입의 전해질 보존형 아연 공기전지의 각 구성과 제조된 전지의 실제 모습을 촬영하여 도시한 것이다.3 is a photographic illustration of each configuration of the pouch cell-type electrolyte-preserving zinc-air battery of the present invention and the actual state of the manufactured battery.
도 4는 본 발명의 일 실시예에 따른 니켈 바나듐 옥사이드를 포함하는 은/망간(Ag/Mn) 촉매와 본 발명의 일 비교예에 따른 니켈 바나듐 옥사이드만을 포함하는 촉매의 주사현미경(SEM) 이미지를 도시한 것이다.4 is a scanning microscope (SEM) image of a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide according to an embodiment of the present invention and a catalyst containing only nickel vanadium oxide according to a comparative example of the present invention. it is depicted
도 5은 본 발명의 전해질 보존형 아연 공기전지의 촉매 구성별 OCV(Open Circuit Voltage), 출력 밀도 및 방전 용량을 측정하여 그래프로 도시한 것이다.5 is a graph showing the measured OCV (Open Circuit Voltage), power density, and discharge capacity for each catalyst composition of the electrolyte preservation type zinc-air battery of the present invention.
도 6은 본 발명의 전해질 보존형 아연 공기전지의 전류 밀도에 따른 방전 용량을 측정하여 그래프로 도시한 것이다.6 is a graph showing the measured discharge capacity according to the current density of the electrolyte preservation type zinc-air battery of the present invention.
도 7은 본 발명의 전해질 보존형 아연 공기전지의 촉매 구성별 충·방전 사이클 특성을 측정하여 그래프로 도시한 것이다.7 is a graph showing the measured charge and discharge cycle characteristics for each catalyst composition of the electrolyte-preserving zinc-air battery of the present invention.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다"등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.Terms used in this application are only used to describe specific examples. Therefore, for example, expressions in the singular number include plural expressions unless the context clearly requires them to be singular. In addition, the terms "include" or "have" used in this application are used to clearly indicate that the features, steps, functions, components, or combinations thereof described in the specification exist, but other features It should be noted that it is not intended to be used to preliminarily exclude the presence of any steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다.Meanwhile, unless otherwise defined, all terms used in this specification should be regarded as having the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention belongs. Accordingly, certain terms should not be interpreted in an overly idealistic or formal sense unless clearly defined herein.
본 발명자들은 상술한 과제를 해결하기 위하여 연구한 결과, 하기와 같은 발명을 안출하기에 이르렀다. 본 명세서는 공기의 입출입이 가능한 다공성 구역을 포함하는 제1 케이스; 상기 제1 케이스 상에 형성되고, 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인; 상기 소수성 멤브레인 상에 형성되고, 촉매가 코팅된 가스 확산층(gas diffusion layer, GDL); 상기 가스 확산층 상에 형성되는 분리막; 상기 분리막 상에 형성되는 아연 금속층; 및 상기 아연 금속층 상에 형성되는 제2 케이스를 포함하는 전해질 보존형 아연 공기전지를 개시한다.As a result of research in order to solve the above-mentioned problems, the inventors of the present invention came up with the following invention. The present specification includes a first case including a porous region capable of entering and exiting air; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
본 발명의 전해질 보존형 아연 공기전지는 파우치형 셀 또는 코인형 셀인 것이 바람직하나, 이에 한정되는 것은 아니다. 이외에도 본 발명의 전해질 보존형 아연 공기전지는 원통형, 각형 등으로 제조될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 제조될 수 있다.The electrolyte preservation type zinc-air battery of the present invention is preferably a pouch-type cell or a coin-type cell, but is not limited thereto. In addition, the electrolyte preservation type zinc-air battery of the present invention may be manufactured in a cylindrical shape, a prismatic shape, or the like, and may be manufactured in a bulk type or a thin film type depending on the size.
다만, 본 발명의 파우치 셀 타입의 전해질 보존형 아연 공기전지는 다른 타입의 배터리와 비교하여 다양한 크기와 모양으로 제작 가능하고, 높은 에너지 밀도 및 우수한 전기화학적 안정성을 갖는다는 장점이 있다. However, compared to other types of batteries, the pouch cell-type electrolyte-preserving zinc-air battery of the present invention can be manufactured in various sizes and shapes, and has a high energy density and excellent electrochemical stability.
도 1은 본 발명의 일 실시예에 따른 파우치 셀 타입의 전해질 보존형 아연 공기전지의 모식도를 도시한 것이다.1 is a schematic diagram of a pouch cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 파우치 셀 타입의 전해질 보존형 아연 공기전지는 공기의 입출입이 가능한 다공성 구역을 포함하는 제1 케이스; 상기 제1 케이스 상에 형성되고, 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인; 상기 소수성 멤브레인 상에 형성되고, 촉매가 코팅된 가스 확산층(gas diffusion layer, GDL); 상기 가스 확산층 상에 형성되는 분리막; 상기 분리막 상에 형성되는 아연 금속층; 및 상기 아연 금속층 상에 형성되는 제2 케이스를 포함하는 것을 확인할 수 있다.Referring to FIG. 1 , the pouch cell type electrolyte preservation type zinc air battery of the present invention includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
본 발명의 제1 케이스 및 제2 케이스는 서로 열융착될 수 있으며, 이에 따라 본 발명의 파우치 셀 타입의 전해질 보존형 아연 공기전지는 밀봉된 형태로 제조될 수 있다.The first case and the second case of the present invention may be heat-sealed to each other, and thus the pouch cell-type electrolyte-preserving zinc-air battery of the present invention may be manufactured in a sealed form.
본 발명의 제1 케이스 및 제2 케이스의 열 융착 온도는 80 내지 180 ℃인 것이 바람직하고, 120 내지 140 ℃인 것이 더욱 바람직하다. 가령, 상기 열 융착 온도가 80 ℃미만인 경우 본 발명의 제1 케이스 및 제2 케이스의 열 융착이 충분이 이루어지지 않아 전해액이 누액되는 문제가 발생할 수 있다. 반대로, 상기 열 융착 온도가 180 ℃초과인 경우 본 발명의 제1 케이스 및 제2 케이스가 열 손상되어 전기화학적 안정성이 저하되는 문제가 발생할 수 있다.The thermal fusion temperature of the first case and the second case of the present invention is preferably 80 to 180 ° C, more preferably 120 to 140 ° C. For example, when the thermal fusion temperature is less than 80° C., thermal fusion between the first case and the second case of the present invention is not sufficiently performed, and thus electrolyte leakage may occur. Conversely, when the thermal fusion temperature exceeds 180 °C, the first case and the second case of the present invention may be thermally damaged, resulting in deterioration in electrochemical stability.
본 발명의 제1 케이스 및 제2 케이스는 알루미늄 포일인 것이 바람직하고, 필름이 코팅된 알루미늄 포일인 것이 더욱 바람직하다.The first case and the second case of the present invention are preferably aluminum foil, more preferably aluminum foil coated with a film.
본 발명의 제1 케이스는 공기의 입출입이 가능한 다공성 구역을 포함하는데, 상기 제1 케이스 중앙 부분에 다수의 구멍을 뚫어 공기가 전극에 입출입할 수 있도록 제조될 수 있다.The first case of the present invention includes a porous region through which air can flow in and out, and can be manufactured by drilling a plurality of holes in the central portion of the first case so that air can flow in and out of the electrode.
본 발명의 소수성 멤브레인은 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 것이 바람직하나, 이에 한정되는 것은 아니다. 본 발명의 소수성 멤브레인은 PTFE을 포함함에 따라 전해질(수계 전해액)의 누액을 방지하고 전지의 수명을 증대시킬 수 있는 효과가 있다.The hydrophobic membrane of the present invention preferably includes polytetrafluoroethylene (PTFE), but is not limited thereto. Since the hydrophobic membrane of the present invention includes PTFE, it has an effect of preventing leakage of electrolyte (aqueous electrolyte solution) and increasing the lifespan of a battery.
본 발명의 소수성 멤브레인은 상기 제1 케이스의 다공성 구역을 모두 차폐하도록 부착되는 것이 바람직하다.The hydrophobic membrane of the present invention is preferably attached so as to shield all of the porous regions of the first case.
본 발명의 가스 확산층(gas diffusion layer, GDL)은 촉매가 코팅될 수 있다. 상기 가스 확산층에 코팅된 촉매는 니켈 바나듐 옥사이드(NiV2O6)를 포함하는 은/망간(Ag/Mn) 촉매인 것이 바람직하나, 이에 한정되는 것은 아니다. The gas diffusion layer (GDL) of the present invention may be coated with a catalyst. The catalyst coated on the gas diffusion layer is preferably a silver/manganese (Ag/Mn) catalyst including nickel vanadium oxide (NiV 2 O 6 ), but is not limited thereto.
본 발명의 가스 확산층은 공기(산소)의 이동이 이루어지는 곳으로써 외부로부터 이동된 공기(산소)를 균일하게 분산하는 역할을 수행할 수 있다.The gas diffusion layer of the present invention is a place where air (oxygen) moves, and can play a role of uniformly distributing air (oxygen) moved from the outside.
본 발명의 가스 확산층에 코팅된 상기 은/망간 촉매는 상기 니켈 바나듐 옥사이드 상에 형성됨으로써 비표면적이 증가할 수 있다. 즉, 본 발명의 가스 확산층에 코팅된 촉매는 니켈 바나듐 옥사이드의 표면 구조를 통하여 은/망간(Ag/Mn) 촉매의 활성이 증대될 수 있다. The silver/manganese catalyst coated on the gas diffusion layer of the present invention may increase the specific surface area by being formed on the nickel vanadium oxide. That is, the catalyst coated on the gas diffusion layer of the present invention can increase the activity of the silver/manganese (Ag/Mn) catalyst through the surface structure of nickel vanadium oxide.
따라서, 본 발명의 전해질 보존형 아연 공기전지는 니켈 바나듐 옥사이드를 포함하는 은/망간(Ag/Mn) 촉매를 사용함에 따라 높은 에너지 효율 및 전기화학적 안정성을 향상시킬 수 있다. 이와 관련하여 구체적인 내용은 하기 {실시예 및 평가}에서 상세하게 설명한다.Therefore, the electrolyte preservation type zinc-air battery of the present invention can improve high energy efficiency and electrochemical stability by using a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide. In this regard, specific details will be described in detail in the following {Examples and Evaluation}.
본 발명의 가스 확산층에 코팅된 촉매에 의하여 산소의 환원 반응이 수행될 수 있으며, 전지의 전기를 발생시키는 반응에 직접적으로 영향을 미칠 수 있다.Oxygen reduction can be performed by the catalyst coated on the gas diffusion layer of the present invention, and can directly affect the reaction for generating electricity in the battery.
본 발명의 가스 확산층은 알루미늄(Al) 탭(tab)을 추가로 형성할 수 있다. 보다 구체적으로, 본 발명의 알루미늄 탭을 구리(Cu) 테이프를 이용하여 본 발명의 가스 확산층에 부착하는 것이 바람직하나, 이에 한정되는 것은 아니다.The gas diffusion layer of the present invention may additionally form an aluminum (Al) tab. More specifically, it is preferable to attach the aluminum tab of the present invention to the gas diffusion layer of the present invention using a copper (Cu) tape, but is not limited thereto.
본 발명의 가스 확산층은 금속집전체를 더 포함할 수 있다. 상기 금속집전체는 알루미늄(Al), 니켈(Ni), 철(Fe), 티타늄(Ti), 스테인레스 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.The gas diffusion layer of the present invention may further include a metal current collector. The metal current collector may include aluminum (Al), nickel (Ni), iron (Fe), titanium (Ti), or stainless steel, but is not limited thereto.
상기 금속집전체의 형상은 박 형상, 판 형상, 메쉬(또는 그리드) 형상, 폼(또는 스펀지) 형상 등일 수 있으나, 이에 한정되는 것은 아니다. The shape of the metal current collector may be a foil shape, a plate shape, a mesh (or grid) shape, a foam (or sponge) shape, and the like, but is not limited thereto.
또한, 본 발명의 전해질 보존형 아연 공기전지는 상기 가스 확산층을 통하여 원활한 기체 교환이 일어날 수 있도록, 상기 가스 확산층의 촉매가 코팅된 부분이 본 발명의 분리막을 향하여 배치되는 것이 바람직하다.In addition, in the electrolyte preservation type zinc-air battery of the present invention, it is preferable that the catalyst-coated portion of the gas diffusion layer faces the separator of the present invention so that gas exchange can occur smoothly through the gas diffusion layer.
본 발명의 분리막은 유리섬유 분리막, 폴리에틸렌 분리막 및 폴리프로필렌 분리막으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하나, 이에 한정되는 것은 아니다. 예를 들어, 본 발명의 분리막은 이온 전도성 및 친수성이 우수하고, 전기적으로 부도체이며 가성알칼리 수용액에 대하여 안정성이 우수한 소재를 사용할 수 있다.The separator of the present invention is preferably any one selected from the group consisting of a glass fiber separator, a polyethylene separator, and a polypropylene separator, but is not limited thereto. For example, the separator of the present invention may use a material that is excellent in ionic conductivity and hydrophilicity, is electrically non-conductive, and has excellent stability in aqueous caustic alkali.
본 발명의 분리막은 아연 공기전지의 사용 범위에 견딜 수 있는 조성이라면 이에 한정되지 않는다. 예를 들어, 본 발명의 분리막은 폴리프로필렌 소재의 부직포나 폴리페닐렌 설파이드 소재의 부직포 등의 고분자 부직포, 폴리에틸렌이나 폴리프로필렌 등의 올레핀계 수지의 다공성 필름 등을 사용할 수 있으며, 이들을 2종 이상 병용하는 것도 가능하다.The separator of the present invention is not limited thereto as long as it can withstand the use range of a zinc-air battery. For example, the separator of the present invention may use a polymer non-woven fabric such as a polypropylene non-woven fabric or a polyphenylene sulfide non-woven fabric, or a porous film of olefin-based resin such as polyethylene or polypropylene, using two or more of these in combination It is also possible to do
또한, 본 발명의 분리막은 본 발명의 전해질 보존형 아연 공기전지 내 수산화 이온(OH-)을 선택적으로 투과시킬 수 있다.In addition, the separator of the present invention can selectively transmit hydroxide ions (OH - ) in the electrolyte preservation type zinc-air battery of the present invention.
본 발명의 아연 금속층은 아연 금속, 유기물 또는 무기화합물로 처리된 아연 금속 복합체 및 아연화된 금속-카본 복합체로 이루어진 군으로부터 선택되는 어느 하나를 포함하는 것이 바람직하나, 이에 한정되는 것은 아니다.The zinc metal layer of the present invention preferably includes one selected from the group consisting of zinc metal, zinc metal composites treated with organic or inorganic compounds, and zincated metal-carbon composites, but is not limited thereto.
본 발명의 아연화된 금속-카본 복합체의 금속은 Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, 및 Hg으로 이루어진 군으로부터 선택되는 어느 하나 이상의 금속인 것이 바람직하나, 이에 한정되는 것은 아니다.The metal of the zincated metal-carbon composite of the present invention is any one or more metals selected from the group consisting of Mg, Ca, Al, Si, Ge, Sn, Pb, As, Bi, Ag, Au, Zn, Cd, and Hg. It is preferred, but is not limited thereto.
본 발명의 아연화된 금속-카본 복합체는 아연화된 실리콘 카본 복합체 또는 아연화된 주석 카본 복합체인 것이 바람직하다. 아연화된 금속-카본 복합체 전극은 아연이 금속과 합금을 형성하면서 동시에 탄소의 결정 구조 속에 삽입되어 안정된 구조의 복합체를 형성하기 때문에, 충방전 과정에서 금속의 부피 변화가 적음에 따라 사이클 특성이 저하되지 않고 충방전 용량이 향상될 수 있다. 뿐만 아니라, 초기 충방전시 비가역 용량을 제어할 수 있고, 안정성 증대될 수 있다.The zincated metal-carbon composite of the present invention is preferably a zincated silicon carbon composite or a zincated tin carbon composite. In the zincated metal-carbon composite electrode, since zinc forms an alloy with the metal and is inserted into the crystal structure of carbon to form a complex with a stable structure, the cycle characteristics do not deteriorate as the volume change of the metal is small during the charging and discharging process. charge and discharge capacity can be improved. In addition, irreversible capacity can be controlled during initial charging and discharging, and stability can be increased.
본 발명의 아연 금속층은 알루미늄(Al) 탭(tab)을 추가로 형성할 수 있다. 보다 구체적으로, 본 발명의 알루미늄 탭을 구리(Cu) 테이프를 이용하여 본 발명의 아연 금속층에 부착하는 것이 바람직하나, 이에 한정되는 것은 아니다.The zinc metal layer of the present invention may additionally form an aluminum (Al) tab. More specifically, it is preferable to attach the aluminum tab of the present invention to the zinc metal layer of the present invention using a copper (Cu) tape, but is not limited thereto.
또한, 본 발명의 전해질 보존형 아연 공기전지는 수산화칼륨(KOH), 수산화리튬(LiOH) 및 수산화나트륨(NaOH)으로 이루어진 군으로부터 선택되는 어느 하나의 전해질을 더 포함할 수 있다. In addition, the electrolyte-preserving zinc-air battery of the present invention may further include any one electrolyte selected from the group consisting of potassium hydroxide (KOH), lithium hydroxide (LiOH), and sodium hydroxide (NaOH).
본 발명의 전해질은 공기의 입출입이 가능한 다공성 구역을 포함하는 제1 케이스; 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인; 촉매가 코팅된 가스 확산층(gas diffusion layer, GDL); 분리막; 아연 금속층; 및 제2 케이스를 포함한 상태에서, 제1 케이스 및 제2 케이스를 상호 열 융착한 후 밀봉된 상태에서 주입하는 것이 바람직하다.The electrolyte of the present invention includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane including polytetrafluoroethylene (PTFE); a gas diffusion layer coated with a catalyst (gas diffusion layer, GDL); separator; zinc metal layer; And in the state including the second case, it is preferable to heat-seal the first case and the second case to each other and then inject in a sealed state.
도 2는 본 발명의 일 실시예에 따른 코인 셀 타입의 전해질 보존형 아연 공기전지의 모식도를 도시한 것이다.2 is a schematic diagram of a coin cell type electrolyte preservation type zinc-air battery according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 코인 셀 타입의 전해질 보존형 아연 공기전지는 공기의 입출입이 가능한 다공성 구역을 포함하는 제1 케이스; 상기 제1 케이스 상에 형성되고, 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인; 상기 소수성 멤브레인 상에 형성되고, 촉매가 코팅된 가스 확산층(gas diffusion layer, GDL); 상기 가스 확산층 상에 형성되는 분리막; 상기 분리막 상에 형성되는 아연 금속층; 및 상기 아연 금속층 상에 형성되는 제2 케이스를 포함하는 것을 확인할 수 있다.Referring to FIG. 2 , the coin cell type electrolyte preservation type zinc-air battery of the present invention includes a first case including a porous region through which air can flow in and out; a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE); a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst; a separation film formed on the gas diffusion layer; a zinc metal layer formed on the separator; and a second case formed on the zinc metal layer.
본 발명의 코인 셀 타입의 전해질 보존형 아연 공기전지의 구성 중 상술한 파우치 셀 타입의 전해질 보존형 아연 공기전지와 중복되는 사항은 이를 준용한다.Among the configurations of the coin cell-type electrolyte-preserving zinc-air battery of the present invention, matters overlapping those of the pouch cell-type electrolyte-preserving zinc-air battery described above apply mutatis mutandis.
나아가, 도 2를 참조하면, 본 발명의 코인 셀 타입의 전해질 보존형 아연 공기전지는 전해질, 가스켓, 스페이서 디스크 및 웨이브 스프링을 더 포함하는 것을 확인할 수 있다.Furthermore, referring to FIG. 2 , it can be seen that the coin cell type electrolyte preservation type zinc-air battery of the present invention further includes an electrolyte, a gasket, a spacer disk, and a wave spring.
본 발명의 스페이서 디스크는 코인셀 캡과 금속 칩 사이에 삽입되어 간격을 유지하는 스테인레스 재질의 금속판인 것이 바람직하나, 이에 한정되는 것은 아니다. The spacer disk of the present invention is preferably a metal plate made of stainless material inserted between the coin cell cap and the metal chip to maintain a gap, but is not limited thereto.
본 발명의 코인 셀 타입의 전해질 보존형 아연 공기전지는 코인셀 케이스와 코인셀 캡이 가스켓을 사이에 두고 결합되어 밀봉될 수 있다. 여기서, 코인셀 케이스와 코인셀 캡은 원형, 타원형 또는 다각형의 형태로 형성될 수 있다.The coin cell type electrolyte preservation type zinc-air battery of the present invention may be sealed by combining a coin cell case and a coin cell cap with a gasket interposed therebetween. Here, the coin cell case and the coin cell cap may be formed in a circular, elliptical or polygonal shape.
이하, 첨부한 도면 및 실시예들을 참조하여 본 명세서가 청구하는 바에 대하여 더욱 자세히 설명한다. 다만, 본 명세서에서 제시하고 있는 도면 내지 실시예 등은 통상의 기술자에게 의하여 다양한 방식으로 변형되어 여러 가지 형태를 가질 수 있는 바, 본 명세서의 기재사항은 본 발명을 특정 개시 형태에 한정되는 것이 아니고 본 발명의 사상 및 기술 범위에 포함되는 모든 균등물 내지 대체물을 포함하고 있는 것으로 보아야 한다. 또한, 첨부된 도면은 본 발명을 통상의 기술자로 하여금 더욱 정확하게 이해할 수 있도록 돕기 위하여 제시되는 것으로서 실제보다 과장되거나 축소되어 도시될 수 있다.Hereinafter, with reference to the accompanying drawings and embodiments will be described in more detail with respect to what the present specification claims. However, the drawings or embodiments presented in this specification can be modified in various ways by those skilled in the art and have various forms, and the description in this specification is not limited to the specific disclosure form of the present invention. It should be regarded as including all equivalents or substitutes included in the spirit and technical scope of the present invention. In addition, the accompanying drawings are presented to help those skilled in the art to more accurately understand the present invention, and may be exaggerated or reduced than actual.
{실시예 및 평가}{Example and evaluation}
실시예 1. 본 발명의 니켈 바나듐 옥사이드를 포함하는 은/망간(Ag/Mn) 촉매가 코팅된 전해질 보존형 아연 공기전지Example 1. Electrolyte preservation type zinc-air battery coated with silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide of the present invention
제1 케이스(제1 파우치) 및 제2 케이스(제2 파우치)는 필름 코팅된 알루미늄(Al) 포일을 사용하였고, 상기 제1 케이스는 공기의 입출입이 가능하도록 중앙부에 구멍을 뚫어 다공성 구역을 형성하였다.Film-coated aluminum (Al) foil was used for the first case (first pouch) and the second case (second pouch), and the first case formed a porous zone by punching a hole in the center to allow air to flow in and out. did
폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인을 상기 제1 케이스의 다공성 구역을 모두 차폐하도록 부착시켰다.A hydrophobic membrane comprising polytetrafluoroethylene (PTFE) was attached to shield all of the porous regions of the first case.
니켈 바나듐 옥사이드(NiV2O6)를 포함하는 은/망간(Ag/Mn) 촉매가 코팅된 가스 확산층(GDL)을 3x3 cm2 크기로 준비하고, 알루미늄(Al) 탭(tab)을 구리(Cu) 테이프를 이용하여 상기 가스 확산층(GDL)에 연결하고, 양면 테이프를 사용하여 상기 파우치에 전극 역할을 수행하는 가스 확산층(GDL)을 부착하였다. 이 때, 상기 가스 확산층(GDL)을 통하여 원활한 기체 교환이 일어나도록 촉매가 코팅된 부분이 분리막을 마주보도록 배치하는 것이 바람직하다.A gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide (NiV 2 O 6 ) was prepared in a size of 3x3 cm 2 , and an aluminum (Al) tab was coated with a copper (Cu) ) was connected to the gas diffusion layer (GDL) using a tape, and the gas diffusion layer (GDL) serving as an electrode was attached to the pouch using a double-sided tape. At this time, it is preferable to arrange the catalyst-coated portion to face the separation membrane so that smooth gas exchange occurs through the gas diffusion layer (GDL).
3.5x3.5 cm2 크기의 유리섬유 분리막을 상기 가스확산층(GDL)을 모두 덮도록 형성한다.A glass fiber separator having a size of 3.5x3.5 cm 2 is formed to cover the entire gas diffusion layer (GDL).
아연 금속층을 촉매가 코팅된 가스확산층(GDL)과 같은 크기(3x3 cm2)로 준비하여 마찬가지로, 알루미늄(Al) 탭을 연결하였다. 상기 알루미늄(Al) 탭의 연결은 Ultrasonic Welding Machine을 사용하여 전기적 저항이 없고 물리적으로 안정하도록 부착하였다.A zinc metal layer was prepared in the same size (3x3 cm 2 ) as the gas diffusion layer (GDL) coated with the catalyst, and similarly, an aluminum (Al) tab was connected. The connection of the aluminum (Al) tab was attached so that there was no electrical resistance and was physically stable using an Ultrasonic Welding Machine.
상기 분리막을 사이에 두고 촉매가 코팅된 가스 확산층(GDL)과 아연 금속층을 포개었다.A gas diffusion layer (GDL) coated with a catalyst and a zinc metal layer were overlapped with the separator interposed therebetween.
상기 제2 케이스를 덮고 Sealing Machine을 사용하여 밀봉 작업을 수행한 후, 상기 제1 케이스 및 제2 케이스 양쪽을 120 ℃에서 열 융착하여 접착하였다. 다만, 열 융착된 케이스 위쪽은 주사 바늘이 들어갈 공간을 남기고 열 융착하고, 주사기를 사용하여 6 M의 수산화칼륨(KOH) 수용액 전해질을 넣고 밀봉을 마무리 하여 본 발명의 파우치 셀 타입의 전해질 보존형 아연 공기전지(이하, '실시예 1'이라 한다)를 얻을 수 있었다.After covering the second case and performing a sealing operation using a sealing machine, both the first case and the second case were bonded by thermal fusion at 120 °C. However, the top of the heat-sealed case is heat-sealed leaving a space for the injection needle to enter, and a 6 M potassium hydroxide (KOH) aqueous solution electrolyte is added using a syringe to finish sealing, so that the pouch cell-type electrolyte-preserving zinc of the present invention An air battery (hereinafter referred to as 'Example 1') was obtained.
도 3은 본 발명의 파우치 셀 타입의 전해질 보존형 아연 공기전지의 각 구성과 제조된 전지의 실제 모습을 촬영하여 도시한 것이다. 보다 구체적으로, 도 3a는 파우치 셀 타입의 전해질 보존형 아연 공기전지의 각 구성을 나타낸 것이고, 도 3b는 제조된 파우치 셀 타입의 전해질 보존형 아연 공기전지를 나타낸 것이다. 도 3a를 참조하면, 도면 상의 왼쪽 위의 구성은 다공성 구역이 형성된 제1 케이스(제1 파우치)의 외부면이고, 도면 상의 오른쪽 위의 구성은 PTFE을 포함하는 소수성 멤브레인이 부착된 제1 케이스 내부면을 나타낸 것을 확인할 수 있다. 또한, 도 3a를 참조하면, 도면 상의 가운데 구성은 알루미늄(Al) 탭(tab)이 웰딩(welding)된 3x3 cm2 크기의 아연 금속층이고, 도면 상의 아래의 구성은 촉매가 코팅된 3x3 cm2 크기의 가스확산층(GDL)을 나타낸 것을 확인할 수 있다. 나아가, 도 3b를 참조하면, 수용액 전해질을 주입하기 위하여 파우치 셀 타입의 전해질 보존형 아연 공기전지에 주사 바늘이 연결된 것을 확인할 수 있다.3 is a photographic illustration of each configuration of the pouch cell-type electrolyte-preserving zinc-air battery of the present invention and the actual state of the manufactured battery. More specifically, FIG. 3A shows each configuration of a pouch cell-type electrolyte-preserving zinc-air battery, and FIG. 3B shows the manufactured pouch-cell-type electrolyte-preserving zinc-air battery. Referring to FIG. 3A, the upper left component in the drawing is the outer surface of the first case (first pouch) on which the porous region is formed, and the upper right component in the drawing is the inner surface of the first case to which the hydrophobic membrane containing PTFE is attached. You can see that the side is shown. In addition, referring to FIG. 3A, the central structure on the drawing is a 3x3 cm 2 zinc metal layer in which an aluminum (Al) tab is welded, and the lower structure on the drawing is a 3x3 cm 2 size coated with a catalyst. It can be seen that the gas diffusion layer (GDL) of Furthermore, referring to FIG. 3B , it can be confirmed that the injection needle is connected to the electrolyte-preserving zinc-air battery of the pouch cell type in order to inject the aqueous electrolyte.
비교예 1. 니켈 바나듐 옥사이드 촉매가 코팅된 아연 공기전지Comparative Example 1. Zinc air battery coated with nickel vanadium oxide catalyst
가스 확산층(GDL)에 코팅된 촉매가 니켈 바나듐 옥사이드(NiV2O6)만을 포함한 촉매인 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하여 니켈 바나듐 옥사이드 촉매가 코팅된 아연 공기전지(이하, '비교예 1'이라 한다)를 얻을 수 있었다.Zinc air battery prepared in the same manner as in Example 1 and coated with a nickel vanadium oxide catalyst, except that the catalyst coated on the gas diffusion layer (GDL) is a catalyst containing only nickel vanadium oxide (NiV 2 O 6 ) Hereinafter referred to as 'Comparative Example 1') was obtained.
비교예 2. 니켈 바나듐 옥사이드를 포함하는 은(Ag) 촉매가 코팅된 아연 공기전지Comparative Example 2. Zinc air battery coated with silver (Ag) catalyst containing nickel vanadium oxide
가스 확산층(GDL)에 코팅된 촉매가 니켈 바나듐 옥사이드(NiV2O6)를 포함하는 은(Ag) 촉매인 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하여 니켈 바나듐 옥사이드를 포함하는 은(Ag) 촉매가 코팅된 아연 공기전지(이하, '비교예 2'이라 한다)를 얻을 수 있었다.Except for the fact that the catalyst coated on the gas diffusion layer (GDL) is a silver (Ag) catalyst containing nickel vanadium oxide (NiV 2 O 6 ), prepared in the same manner as in Example 1 and containing nickel vanadium oxide A zinc-air battery coated with a silver (Ag) catalyst (hereinafter referred to as 'Comparative Example 2') was obtained.
비교예 3. 니켈 바나듐 옥사이드를 포함하는 망간(Mn) 촉매가 코팅된 아연 공기전지Comparative Example 3. Zinc air battery coated with manganese (Mn) catalyst containing nickel vanadium oxide
가스 확산층(GDL)에 코팅된 촉매가 니켈 바나듐 옥사이드(NiV2O6)를 포함하는 망간(Mn) 촉매인 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하여 니켈 바나듐 옥사이드를 포함하는 망간(Mn) 촉매가 코팅된 아연 공기전지(이하, '비교예 3'이라 한다)를 얻을 수 있었다.Except for the fact that the catalyst coated on the gas diffusion layer (GDL) is a manganese (Mn) catalyst containing nickel vanadium oxide (NiV 2 O 6 ), prepared in the same manner as in Example 1 and containing nickel vanadium oxide A zinc-air battery coated with a manganese (Mn) catalyst (hereinafter referred to as 'Comparative Example 3') was obtained.
평가 1. 주사현미경 이미지를 통한 촉매의 표면구조 분석 Evaluation 1. Analysis of the surface structure of the catalyst through scanning microscope images
상기 제조된 아연 공기전지에서 가스확산층(GDL)에 코팅된 촉매의 표면구조를 분석하기 위하여 주사현미경 이미지를 촬영하여 아래와 같이 그 특성을 비교 및 평가하였다.In order to analyze the surface structure of the catalyst coated on the gas diffusion layer (GDL) in the prepared zinc-air battery, scanning microscope images were taken, and their characteristics were compared and evaluated as follows.
도 4는 본 발명의 일 실시예에 따른 니켈 바나듐 옥사이드를 포함하는 은/망간(Ag/Mn) 촉매와 본 발명의 일 비교예에 따른 니켈 바나듐 옥사이드만을 포함하는 촉매의 주사현미경(SEM) 이미지를 도시한 것이다.4 is a scanning microscope (SEM) image of a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide according to an embodiment of the present invention and a catalyst containing only nickel vanadium oxide according to a comparative example of the present invention. it is depicted
보다 구체적으로, 도 4a는 비교예 1의 니켈 바나듐 옥사이드 촉매의 주사현미경 이미지를 나타낸 것으로써, 촉매에 넓은 표면 구조가 형성되어 있는 것을 확인할 수 있다.More specifically, FIG. 4a shows a scanning microscope image of the nickel vanadium oxide catalyst of Comparative Example 1, and it can be confirmed that a wide surface structure is formed on the catalyst.
또한, 도 4b는 실시예 1의 니켈 바나듐 옥사이드를 포함하는 은/망간(Ag/Mn) 촉매의 주사현미경 이미지를 나타낸 것으로써, 니켈 바나듐 옥사이드로 인해 넓어진 표면 구조에 은(Ag) 및 망간(Mn)(산화망간(MnO))이 잘 달라 붙음에 따라 상호작용이 활발히 이루어질 것임을 추정할 수 있다.In addition, FIG. 4B shows a scanning microscope image of the silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide of Example 1, and silver (Ag) and manganese (Mn) are present on the widened surface structure due to nickel vanadium oxide ) (manganese oxide (MnO)) sticks well, and it can be assumed that the interaction will be active.
즉, 본 발명의 가스 확산층에 코팅된 은/망간(Ag/Mn) 촉매는 니켈 바나듐 옥사이드 상에 형성됨으로써 비표면적이 증가할 수 있다. 다시 말해, 본 발명의 가스 확산층에 코팅된 촉매는 니켈 바나듐 옥사이드의 표면 구조를 통하여 은/망간(Ag/Mn) 촉매의 활성이 증대될 수 있음을 확인할 수 있다.That is, since the silver/manganese (Ag/Mn) catalyst coated on the gas diffusion layer of the present invention is formed on nickel vanadium oxide, the specific surface area can be increased. In other words, it can be confirmed that the catalyst coated on the gas diffusion layer of the present invention can increase the activity of the silver/manganese (Ag/Mn) catalyst through the surface structure of nickel vanadium oxide.
평가 2. 아연 공기전지의 성능 측정 및 분석 Evaluation 2. Performance measurement and analysis of zinc air battery
상기 제조된 아연 공기전지의 성능 측정 및 분석을 위하여 OCV(Open Circuit Voltage) 평가, 출력 밀도(Power Density) 평가, 방전 용량 평가 등을 수행하여 아래와 같이 그 특성을 비교 및 평가하였다.In order to measure and analyze the performance of the manufactured zinc-air battery, OCV (Open Circuit Voltage) evaluation, power density (Power Density) evaluation, discharge capacity evaluation, etc. were performed, and the characteristics were compared and evaluated as follows.
도 5은 본 발명의 전해질 보존형 아연 공기전지의 촉매 구성별 OCV(Open Circuit Voltage), 출력 밀도 및 방전 용량을 측정하여 그래프로 도시한 것이다. 보다 구체적으로, 도 5a는 실시예 1, 비교예 1 내지 3의 아연 공기전지의 전류밀도 증가에 따른 OCV 및 출력 밀도를 측정하여 그래프로 나타낸 것이다. 5 is a graph showing the measured OCV (Open Circuit Voltage), power density, and discharge capacity for each catalyst composition of the electrolyte preservation type zinc-air battery of the present invention. More specifically, FIG. 5A is a graph showing the measured OCV and power density according to the increase in current density of the zinc-air batteries of Example 1 and Comparative Examples 1 to 3.
도 5a를 참조하면, 니켈 바나듐 옥사이드(NiV2O6)를 포함하는 은/망간(Ag/Mn) 촉매가 코팅된 가스 확산층(GDL)을 포함하는 실시예 1의 전해질 보존형 아연 공기전지는 전류 밀도가 176.1 mA/cm2일 때 출력 밀도가 118.9 mW/cm2이고, 니켈 바나듐 옥사이드만을 포함하는 촉매가 코팅된 가스확산층을 포함하는 비교예 1의 아연 공기전지는 전류 밀도가 143.0 mA/cm2일 때, 출력 밀도가 80.1 mW/cm2인 것을 확인할 수 있다. Referring to FIG. 5A, the electrolyte preservation type zinc-air battery of Example 1 including a gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide (NiV 2 O 6 ) has a current When the density is 176.1 mA/cm 2 , the power density is 118.9 mW/cm 2 , and the zinc-air battery of Comparative Example 1 including the gas diffusion layer coated with the catalyst containing only nickel vanadium oxide has a current density of 143.0 mA/cm 2 When , it can be seen that the power density is 80.1 mW/cm 2 .
즉, 실시예 1의 전해질 보존형 아연 공기전지는 비교예 1의 아연 공기전지에 비하여 전류 밀도 증가에 따른 출력 밀도가 더 큰 점으로부터 전지(배터리) 성능이 우수한 것을 확인할 수 있다.That is, it can be confirmed that the electrolyte-preserving zinc-air battery of Example 1 exhibits excellent cell (battery) performance in that the power density according to the increase in current density is higher than that of the zinc-air battery of Comparative Example 1.
또한, 도 5a를 참조하면, 실시예 1의 전해질 보존형 아연 공기전지는 비교예 1의 아연 공기전지에 비하여 전지(배터리) 초기 전압에 해당하는 OCV가 더 높은 점으로부터 향상된 출력 특성을 나타내는 것을 확인할 수 있다.In addition, referring to FIG. 5A, it can be confirmed that the electrolyte preservation type zinc-air battery of Example 1 exhibits improved output characteristics compared to the zinc-air battery of Comparative Example 1 because the OCV corresponding to the initial voltage of the battery (battery) is higher. can
또한, 니켈 바나듐 옥사이드를 포함하는 은(Ag) 촉매가 코팅된 가스 확산층을 포함하는 비교예 2 및 니켈 바나듐 옥사이드를 포함하는 망간(Mn) 촉매가 코팅된 가스 확산층을 포함하는 비교예 3의 아연 공기전지에 비하여 실시예 1의 전해질 보존형 아연 공기의 OCV 및 출력 밀도가 상대적으로 더 높은 것을 확인할 수 있다.In addition, zinc air of Comparative Example 2 including a gas diffusion layer coated with a silver (Ag) catalyst containing nickel vanadium oxide and Comparative Example 3 including a gas diffusion layer coated with a manganese (Mn) catalyst containing nickel vanadium oxide It can be seen that the OCV and power density of the electrolyte preservation type zinc air of Example 1 are relatively higher than those of the battery.
즉, 촉매로써 니켈 바나듐 옥사이드를 포함하더라도 은(Ag)이나 망간(Mn)이 단독으로 코팅된 촉매보다 은/망간(Ag/Mn)이 함께 복합적으로 코팅된 촉매를 사용하는 경우 전지(배터리) 성능이 우수하다는 것을 알 수 있다.In other words, even if nickel vanadium oxide is included as a catalyst, the cell (battery) performance is better when using a catalyst coated with silver (Ag) or manganese (Mn) in combination than a catalyst coated with silver (Ag) or manganese (Mn) alone. It can be seen that this is excellent.
한편, 도 5b는 실시예 1, 비교예 1 내지 3의 아연 공기전지의 방전에 따른 방전 용량을 측정하여 그래프로 나타낸 것이다.Meanwhile, FIG. 5B is a graph showing discharge capacities according to discharge of the zinc-air batteries of Example 1 and Comparative Examples 1 to 3 measured.
도 5b를 참조하면, 니켈 바나듐 옥사이드를 포함하는 은/망간(Ag/Mn) 촉매가 코팅된 가스 확산층(GDL)을 포함하는 실시예 1의 전해질 보존형 아연 공기전지가 니켈 바나듐 옥사이드만을 포함하는 촉매가 코팅된 가스확산층을 포함하는 비교예 1, 니켈 바나듐 옥사이드를 포함하는 은(Ag) 촉매가 코팅된 가스 확산층을 포함하는 비교예 2 및 니켈 바나듐 옥사이드를 포함하는 망간(Mn) 촉매가 코팅된 가스 확산층을 포함하는 비교예 3의 아연 공기전지에 비하여 방전에 따른 방전 용량이 상대적으로 더 큰 것을 확인할 수 있다.Referring to FIG. 5B, the electrolyte preservation type zinc-air battery of Example 1 including a gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide has a catalyst containing only nickel vanadium oxide Comparative Example 1 including a gas diffusion layer coated with , Comparative Example 2 including a gas diffusion layer coated with a silver (Ag) catalyst containing nickel vanadium oxide, and gas coated with a manganese (Mn) catalyst containing nickel vanadium oxide It can be seen that the discharge capacity according to discharge is relatively greater than that of the zinc-air battery of Comparative Example 3 including the diffusion layer.
하기 표 1은 실시예 1, 비교예 1 내지 3의 아연 공기전지의 방전에 따른 방전 용량 및 에너지 밀도를 측정한 결과를 정리한 것이다.Table 1 below summarizes the results of measuring the discharge capacity and energy density according to the discharge of the zinc-air batteries of Example 1 and Comparative Examples 1 to 3.
실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
방전 용량(mAh/gzn)Discharge capacity (mAh/g zn ) 795.3795.3 461.2461.2 603.4603.4 681.6681.6
에너지 밀도(Wh/kgzn)Energy density (Wh/kg zn ) 954954 553553 724724 818818
상기 표 1을 참조하면, 실시예 1의 전해질 보존형 아연 공기전지는 방전 용량 및 에너지 밀도가 비교예 1의 방전 용량 및 에너지 밀도에 비하여 약 2 배가량 더 큰 것을 확인할 수 있다. 즉, 실시예 1의 전해질 보존형 아연 공기전지는 비교예 1의 아연 공기전지에 비하여 약 2 배의 용량 증대 효과가 나타날 수 있다.또한, 실시예 1의 전해질 보존형 아연 공기전지는 비교예 2 및 3의 아연 공기전지에 비하여 방전 용량 및 에너지 밀도가 더 큰 점으로부터, 촉매로써 니켈 바나듐 옥사이드를 포함하더라도 은(Ag)이나 망간(Mn)이 단독으로 코팅된 촉매보다 은/망간(Ag/Mn)이 함께 복합적으로 코팅된 촉매를 사용하는 경우 전지(배터리) 성능이 우수하다는 것을 알 수 있다.Referring to Table 1, it can be seen that the discharge capacity and energy density of the electrolyte preservation type zinc-air battery of Example 1 are about twice as large as those of Comparative Example 1. That is, the electrolyte-preserving zinc-air battery of Example 1 can exhibit an effect of increasing the capacity by about twice as compared to the zinc-air battery of Comparative Example 1. In addition, the electrolyte-preserving zinc-air battery of Example 1 is similar to that of Comparative Example 2. and 3, since the discharge capacity and energy density are higher than those of the zinc air battery, even if nickel vanadium oxide is included as a catalyst, silver / manganese (Ag / Mn) is more than a catalyst coated with silver (Ag) or manganese (Mn) alone. ) It can be seen that the cell (battery) performance is excellent when the catalyst coated with the complex is used.
한편, 도 6은 본 발명의 전해질 보존형 아연 공기전지의 전류 밀도에 따른 방전 용량을 측정하여 그래프로 도시한 것이다.Meanwhile, FIG. 6 is a graph showing the measured discharge capacity according to the current density of the electrolyte preservation type zinc-air battery of the present invention.
하기 표 2는 실시예 1의 전해질 보존형 아연 공기전지의 전류 밀도에 따른 방전 용량을 측정한 결과를 정리한 것이다.Table 2 below summarizes the results of measuring the discharge capacity according to the current density of the electrolyte preservation type zinc-air battery of Example 1.
전류 밀도
(mA/cm2)
current density
(mA/cm 2 )
10 mA/cm2 10 mA/cm 2 20 mA/cm2 20 mA/cm 2 50 mA/cm2 50 mA/cm 2
방전 용량(mAh/gzn)Discharge capacity (mAh/g zn ) 795.5795.5 734.4734.4 660.3660.3
도 6 및 상기 표 2를 참조하면, 실시예 1의 전해질 보존형 아연 공기전지는 전류 밀도별 방전 특성의 거동이 모두 유사하며, 꾸준하게 높은 용량 특성을 나타내는 것을 확인할 수 있다.보다 구체적으로, 실시예 1의 전해질 보존형 아연 공기전지는 전류 밀도가 각각 10, 20 및 30 mA/cm2일 때 방전 용량이 각각 795.5, 734.4 및 660.3 mAh/gzn인 점으로부터 높은 에너지 밀도 및 우수한 전기화학적 안정성을 갖는 것을 확인할 수 있다. 나아가, 이러한 특성에 비추어 본 발명의 전해질 보존형 아연 공기전지는 실제 전기자동차(Electronic Vehicle, EV), 에너지 저장 장치(Energy Storage System, ESS), 스마트폰, 스마트워치, 노트북 등의 배터리에 적용할 수 있을 것으로 예상된다.Referring to FIG. 6 and Table 2, it can be seen that the electrolytic preservation type zinc-air battery of Example 1 has similar discharge characteristics for each current density and consistently exhibits high capacity characteristics. The electrolyte preservation type zinc air battery of 1 has high energy density and excellent electrochemical stability from the fact that the discharge capacity is 795.5, 734.4 and 660.3 mAh / g zn when the current density is 10, 20 and 30 mA / cm 2 , respectively. can confirm that Furthermore, in view of these characteristics, the electrolyte preservation type zinc-air battery of the present invention can be applied to batteries such as electric vehicles (EVs), energy storage systems (ESSs), smart phones, smart watches, and laptops. expected to be able to
평가 3. 아연 공기전지의 충·방전 사이클 특성 측정 및 분석Evaluation 3. Measurement and analysis of charge/discharge cycle characteristics of zinc-air batteries
상기 제조된 아연 공기전지의 충·방전 사이클 특성 측정 및 분석을 위하여 충·방전 전압, 충·방전 총 효율 및 전지의 수명의 측정 등을 수행하여 아래와 같이 그 특성을 비교 및 평가하였다.In order to measure and analyze the charge/discharge cycle characteristics of the prepared zinc-air battery, the charge/discharge voltage, total charge/discharge efficiency, and battery life were measured, and the characteristics were compared and evaluated as follows.
도 7은 본 발명의 전해질 보존형 아연 공기전지의 촉매 구성별 충·방전 사이클 특성을 측정하여 그래프로 도시한 것이다.7 is a graph showing the measured charge and discharge cycle characteristics for each catalyst composition of the electrolyte-preserving zinc-air battery of the present invention.
보다 구체적으로, 도 7a는 비교예 1의 아연 공기전지의 충·방전 사이클 특성을 측정하여 그래프로 도시한 것이고, 도 7b는 실시예 1의 전해질 보존형 아연 공기전지의 충·방전 사이클 특성을 측정하여 그래프로 도시한 것이다. 한편, 도 7a의 내부에 별도로 도시된 그래프는 Pt/C + RuO2를 사용한 표준 공기전지의 충·방전 사이클 특성을 측정 결과를 나타낸 것이다.More specifically, FIG. 7A is a graph showing the measured charge/discharge cycle characteristics of the zinc-air battery of Comparative Example 1, and FIG. 7B is a measurement of the charge-discharge cycle characteristics of the electrolyte preservation type zinc-air battery of Example 1. It is shown graphically. Meanwhile, a graph separately shown inside of FIG. 7A shows measurement results of charge/discharge cycle characteristics of a standard air battery using Pt/C + RuO 2 .
도 7a를 참조하면, Pt/C + RuO2를 사용한 표준 공기전지는 0.7 내지 2.0 V의 작동 전압 범위를 갖고(round-trip efficiency: 35.0 %), 전지의 수명의 약 18 h(시간)인 반면에, 니켈 바나듐 옥사이드만을 포함하는 촉매가 코팅된 가스확산층을 포함하는 비교예 1의 아연 공기전지는 1차 및 최종 방전/충전 전압(1st/End discharge/charge potential)이 1.05/2.00 V(round-trip efficiency: 52.5 %), 전지의 수명의 약 95 h(시간)인 것을 확인할 수 있다.Referring to FIG. 7A, the standard air battery using Pt/C + RuO 2 has an operating voltage range of 0.7 to 2.0 V (round-trip efficiency: 35.0%), and the life of the battery is about 18 h (hours), whereas In the zinc-air battery of Comparative Example 1 including a gas diffusion layer coated with a catalyst containing only nickel vanadium oxide, the first and final discharge/charge voltages (1st/End discharge/charge potential) were 1.05/2.00 V (round- trip efficiency: 52.5%), and it can be confirmed that the life span of the battery is about 95 h (hours).
또한, 7b를 참조하면, 니켈 바나듐 옥사이드를 포함하는 은/망간(Ag/Mn) 촉매가 코팅된 가스 확산층(GDL)을 포함하는 실시예 1의 전해질 보존형 아연 공기전지는 1차 및 최종 방전/충전 전압(1st/End discharge/charge potential)이 1.12/2.04 V(round-trip efficiency: 54.9 %), 전지의 수명의 약 147 h(시간)인 것을 확인할 수 있다.In addition, referring to 7b, the electrolyte preservation type zinc-air battery of Example 1 including a gas diffusion layer (GDL) coated with a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide has first and final discharge / It can be seen that the charge voltage (1st/End discharge/charge potential) is 1.12/2.04 V (round-trip efficiency: 54.9%), and the life span of the battery is about 147 h (hours).
위의 결과를 종합하면, Pt/C + RuO2를 사용한 표준 공기전지에 비하여 비교예 1의 아연 공기전지의 충방전 전압 및 총효율(round trip efficiency, RTE)이 상대적으로 더 안정적이고 우수한 성능을 나타내는 것을 알 수 있다. 나아가, 이러한 비교예 1의 아연 공기전지에 비하여 실시예 1의 전해질 보존형 아연 공기전지의 충방전 전압 및 총효율(round trip efficiency, RTE)이 훨씬 더 안정적이고 우수한 성능을 나타내는 것을 확인할 수 있다. 전지의 수명을 대비하는 경우 실시예 1의 전해질 보존형 아연 공기전지는 비교예 1의 아연 공기전지에 비하여 약 1.5 배 향상된 수명을 갖는 점으로부터, 본 발명의 전해질 보존형 아연 공기전지는 상용화 가능할 정도로 오랜 기간 배터리 성능이 유지되는 것을 추정할 수 있다. Summarizing the above results, the charging and discharging voltage and round trip efficiency (RTE) of the zinc air battery of Comparative Example 1 are relatively more stable and excellent performance compared to the standard air battery using Pt/C + RuO 2 . can be seen to indicate Furthermore, it can be seen that the charge/discharge voltage and round trip efficiency (RTE) of the electrolyte-preserving zinc-air battery of Example 1 are much more stable and exhibit excellent performance compared to the zinc-air battery of Comparative Example 1. In contrast to the life of the battery, the electrolyte-preserving zinc-air battery of Example 1 has a lifespan that is about 1.5 times improved compared to the zinc-air battery of Comparative Example 1, so that the electrolyte-preserving zinc-air battery of the present invention is commercially viable It can be estimated that battery performance is maintained for a long period of time.
상술한 바에 따른 본 발명의 전해질 보존형 아연 공기전지는 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인을 적용하여 전해질의 누액을 방지하고, 은/망간(Ag/Mn) 촉매에 니켈 바나듐 옥사이드(NiV2O6)를 도입하여 높은 에너지 효율 및 전기화학적 안정성을 향상시킬 수 있다.As described above, the electrolyte-preserving zinc air battery of the present invention uses a hydrophobic membrane containing polytetrafluoroethylene (PTFE) to prevent leakage of the electrolyte, and nickel vanadium oxide to a silver/manganese (Ag/Mn) catalyst. (NiV 2 O 6 ) can be introduced to improve high energy efficiency and electrochemical stability.
나아가, 본 발명의 전해질 보존형 아연 공기전지는 고출력 및 고용량의 특성을 갖고, 전지의 수명을 향상시킬 수 있다.Furthermore, the electrolyte preservation type zinc-air battery of the present invention has characteristics of high output and high capacity, and can improve the life of the battery.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.The above description is merely an example of the technical idea of the present invention, and various modifications and variations can be made to those skilled in the art without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed according to the following claims, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.
상술한 바에 따른 본 발명의 전해질 보존형 아연 공기전지는 고출력 및 고용량의 특성을 갖고, 전지의 수명을 향상시킬 수 있다.The electrolyte preservation type zinc-air battery of the present invention according to the above has characteristics of high output and high capacity, and can improve the lifespan of the battery.

Claims (10)

  1. 공기의 입출입이 가능한 다공성 구역을 포함하는 제1 케이스;A first case including a porous region through which air can flow in and out;
    상기 제1 케이스 상에 형성되고, 폴리 테트라 플루오로 에틸렌(PTFE)을 포함하는 소수성 멤브레인;a hydrophobic membrane formed on the first case and containing polytetrafluoroethylene (PTFE);
    상기 소수성 멤브레인 상에 형성되고, 촉매가 코팅된 가스 확산층(gas diffusion layer, GDL);a gas diffusion layer (GDL) formed on the hydrophobic membrane and coated with a catalyst;
    상기 가스 확산층 상에 형성되는 분리막;a separation film formed on the gas diffusion layer;
    상기 분리막 상에 형성되는 아연 금속층; 및a zinc metal layer formed on the separator; and
    상기 아연 금속층 상에 형성되는 제2 케이스를 포함하는, 전해질 보존형 아연 공기전지.An electrolyte preservation type zinc-air battery comprising a second case formed on the zinc metal layer.
  2. 제1항에 있어서,According to claim 1,
    상기 전해질 보존형 아연 공기전지는 파우치형 셀 또는 코인형 셀인 것을 특징으로 하는, 전해질 보존형 아연 공기전지.The electrolyte-preserving zinc-air battery is characterized in that the pouch-type cell or coin-type cell.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 케이스 및 상기 제2 케이스는 80 내지 180 ℃의 온도 범위 이내에서 서로 열융착되는 것을 특징으로 하는, 전해질 보존형 아연 공기전지.The first case and the second case are heat-sealed to each other within a temperature range of 80 to 180 ℃, characterized in that, the electrolyte preservation type zinc-air battery.
  4. 제1항에 있어서,According to claim 1,
    상기 소수성 멤브레인은 상기 제1 케이스의 다공성 구역을 모두 차폐하도록 부착되는 것을 특징으로 하는, 전해질 보존형 아연 공기전지.The hydrophobic membrane is characterized in that attached to shield all the porous region of the first case, the electrolyte preservation type zinc-air battery.
  5. 제1항에 있어서,According to claim 1,
    상기 가스 확산층에 코팅된 촉매는 니켈 바나듐 옥사이드(NiV2O6)를 포함하는 은/망간(Ag/Mn) 촉매인 것을 특징으로 하는, 전해질 보존형 아연 공기전지.The catalyst coated on the gas diffusion layer is a silver/manganese (Ag/Mn) catalyst containing nickel vanadium oxide (NiV 2 O 6 ).
  6. 제5항에 있어서,According to claim 5,
    상기 은/망간 촉매는 상기 니켈 바나듐 옥사이드 상에 형성됨으로써 비표면적이 증가하는 것을 특징으로 하는, 전해질 보존형 아연 공기전지.The electrolyte preservation type zinc-air battery, characterized in that the specific surface area is increased by being formed on the nickel vanadium oxide, the silver / manganese catalyst.
  7. 제1항에 있어서,According to claim 1,
    상기 분리막은 유리섬유 분리막, 폴리에틸렌 분리막 및 폴리프로필렌 분리막으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는, 전해질 보존형 아연 공기전지.The electrolyte preservation type zinc-air battery, characterized in that the separator is any one selected from the group consisting of a glass fiber separator, a polyethylene separator and a polypropylene separator.
  8. 제7항에 있어서,According to claim 7,
    상기 분리막은 수산화 이온(OH-)을 선택적으로 투과시키는 것을 특징으로 하는, 전해질 보존형 아연 공기전지.The electrolyte-preserving zinc-air battery, characterized in that the separator selectively transmits hydroxide ions (OH - ).
  9. 제1항에 있어서,According to claim 1,
    상기 아연 금속층은 아연 금속, 유기물 또는 무기화합물로 처리된 아연 금속 복합체 및 아연화된 금속-카본 복합체로 이루어진 군으로부터 선택되는 어느 하나를 포함하는, 전해질 보존형 아연 공기전지.wherein the zinc metal layer comprises any one selected from the group consisting of zinc metal, a zinc metal composite treated with an organic or inorganic compound, and a zincated metal-carbon composite.
  10. 제1항에 있어서,According to claim 1,
    수산화칼륨, 수산화리튬 및 수산화나트륨으로 이루어진 군으로부터 선택되는 어느 하나의 전해질을 더 포함하는, 전해질 보존형 아연 공기전지.An electrolyte preservation type zinc-air battery, further comprising any one electrolyte selected from the group consisting of potassium hydroxide, lithium hydroxide and sodium hydroxide.
PCT/KR2021/013332 2021-07-12 2021-09-29 Electrolyte-preserving zinc-air battery WO2023286915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210091138A KR102576174B1 (en) 2021-07-12 2021-07-12 Electrolyte preservation type zinc air battery
KR10-2021-0091138 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023286915A1 true WO2023286915A1 (en) 2023-01-19

Family

ID=84919370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013332 WO2023286915A1 (en) 2021-07-12 2021-09-29 Electrolyte-preserving zinc-air battery

Country Status (2)

Country Link
KR (1) KR102576174B1 (en)
WO (1) WO2023286915A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098718A1 (en) * 2005-03-10 2006-09-21 Eveready Battery Company, Inc. Air cell with improved leakage resistance
KR20170094961A (en) * 2016-02-12 2017-08-22 주식회사 이엠따블유에너지 Air-Zinc secondary battery
JP2019012685A (en) * 2017-06-29 2019-01-24 学校法人近畿大学 Air electrode catalyst and manufacturing method therefor
KR20190074485A (en) * 2017-12-20 2019-06-28 현대자동차주식회사 A metal air battery system
KR20200010873A (en) * 2018-07-23 2020-01-31 현대자동차주식회사 Pouch type metal air battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127596A1 (en) 2011-06-24 2014-05-08 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Lithium-air battery
KR101574004B1 (en) 2014-01-27 2015-12-02 울산대학교 산학협력단 Zinc-air secondary cell battery and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098718A1 (en) * 2005-03-10 2006-09-21 Eveready Battery Company, Inc. Air cell with improved leakage resistance
KR20170094961A (en) * 2016-02-12 2017-08-22 주식회사 이엠따블유에너지 Air-Zinc secondary battery
JP2019012685A (en) * 2017-06-29 2019-01-24 学校法人近畿大学 Air electrode catalyst and manufacturing method therefor
KR20190074485A (en) * 2017-12-20 2019-06-28 현대자동차주식회사 A metal air battery system
KR20200010873A (en) * 2018-07-23 2020-01-31 현대자동차주식회사 Pouch type metal air battery

Also Published As

Publication number Publication date
KR20230010503A (en) 2023-01-19
KR102576174B1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2016048002A1 (en) Prismatic battery cell comprising two or more case members
WO2014062016A1 (en) Electrode lead and secondary battery having same
WO2019098545A1 (en) Secondary battery, manufacturing method therefor, pouch for secondary battery, and manufacturing method therefor
WO2016167457A1 (en) Electrode assembly having space part in which tab-lead coupling part of electrode tabs and electrode lead is located
WO2011062419A9 (en) Bipolar electrode pair/separation membrane assembly, bipolar battery including same, and production method thereof
WO2019107814A1 (en) Pouch forming method and apparatus
WO2015126074A1 (en) Battery cell including hole
WO2017082530A1 (en) Battery cell comprising electrode lead having protruding extension and tab connector
WO2016056875A2 (en) Electrode assembly and method for manufacturing same
WO2012026705A2 (en) Improved jelly-roll structure, and secondary battery having same
WO2017099333A1 (en) Battery cell having electrode lead comprising gas adsorbent
WO2017188605A1 (en) Battery cell having excellent manufacturing processability based on standardized structure and improved insulating properties of electrode lead, and battery pack including same
WO2013019039A2 (en) Electrode assembly including separation film for enhancing safety, and lithium secondary battery comprising same
WO2017122967A1 (en) Battery pack having minimized loading space for device
WO2019045310A1 (en) Pouch-type secondary battery
WO2021025358A1 (en) Electrochemical element for inducing internal short circuit, and method for evaluating safety using same
WO2021187726A1 (en) Electrode assembly and method for manufacturing same
WO2018182228A1 (en) Pouch type secondary battery having structure for changing bidirectional cell into unidirectional cell
WO2015190848A1 (en) Electrochemical device and method for manufacturing same
WO2020153604A1 (en) Electrode and electrode assembly
WO2023286915A1 (en) Electrolyte-preserving zinc-air battery
WO2018199511A1 (en) Pouch-type secondary battery comprising electrode lead using conductive polymer
WO2021162346A1 (en) Electrode and electrode assembly
WO2021182741A1 (en) Secondary battery and lithium precipitation detection method therefor
WO2021153922A1 (en) Secondary battery and manufacturing method of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE