WO2023286670A1 - Boron-containing compound, light-emitting material and light-emitting element using same - Google Patents

Boron-containing compound, light-emitting material and light-emitting element using same Download PDF

Info

Publication number
WO2023286670A1
WO2023286670A1 PCT/JP2022/026819 JP2022026819W WO2023286670A1 WO 2023286670 A1 WO2023286670 A1 WO 2023286670A1 JP 2022026819 W JP2022026819 W JP 2022026819W WO 2023286670 A1 WO2023286670 A1 WO 2023286670A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
derivatives
layer
emitting
mmol
Prior art date
Application number
PCT/JP2022/026819
Other languages
French (fr)
Japanese (ja)
Inventor
琢麿 安田
仁燮 朴
旻朗 楊
悟 谷中
Original Assignee
国立大学法人九州大学
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日本曹達株式会社 filed Critical 国立大学法人九州大学
Priority to KR1020247000176A priority Critical patent/KR20240035434A/en
Priority to CN202280048666.7A priority patent/CN117616101A/en
Priority to JP2023535264A priority patent/JPWO2023286670A1/ja
Publication of WO2023286670A1 publication Critical patent/WO2023286670A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • the present invention relates to a boron-containing compound, a light-emitting material, and a light-emitting device using the same. More specifically, the present invention relates to a boron-containing compound, a light-emitting material, and a light-emitting device using the same, which are excellent in light-emitting properties.
  • This application claims priority based on Japanese Patent Application No. 2021-118345 filed in Japan on July 16, 2021, the content of which is incorporated herein.
  • Patent Document 1 proposes the following boron-containing compound.
  • Patent Document 2 proposes the following boron-containing compound.
  • An object of the present invention is to provide a novel boron-containing compound, a light-emitting material, and a light-emitting device using the same, which have excellent light-emitting properties.
  • X is NR, O or S;
  • R is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
  • Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
  • the boron-containing compound of the present invention is useful as a luminescent material. Some of the luminescent materials according to the present invention emit delayed fluorescence. A light-emitting device containing the light-emitting material according to the present invention can achieve excellent luminous efficiency.
  • FIG. 3 is a diagram showing an example of voltage-current density-luminance characteristics of a light-emitting element according to this embodiment
  • FIG. 4 is a diagram showing an example of luminance-external quantum efficiency characteristics of a light-emitting device according to this embodiment.
  • the boron-containing compound contained in the luminescent material according to this embodiment is a compound represented by formula (I).
  • X is NR, O or S;
  • R is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
  • Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4.
  • the boron-containing compound according to this embodiment is a compound represented by formula (II).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
  • the alkyl group for R, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 in formula (I) or (II) may be linear or , may be branched.
  • the number of constituent carbon atoms is preferably 1 to 4.
  • alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl and t-butyl groups.
  • Substituents on the "alkyl group” include halogeno groups such as a fluoro group, a chloro group, a bromo group and an iodo group; a hydroxyl group; C1-6 alkoxy groups such as s-butoxy group, i-butoxy group and t-butoxy group; C1-6 haloalkoxy groups such as 2-chloro-n-propoxy group, 2,3-dichlorobutoxy group and trifluoromethoxy group group; phenyl group; phenyl group substituted with halogeno group, C1-6 haloalkyl group, or C1-6 haloalkoxy group such as 4-chlorophenyl group, 4-trifluoromethylphenyl group, 4-trifluoromethoxyphenyl group ; or a cyano group;
  • boron-containing compound according to this embodiment include the following.
  • the present invention is not limited to the exemplified compounds.
  • the boron-containing compound according to the present embodiment can be obtained by combining known synthesis reactions (eg, coupling reaction, substitution reaction, etc.) described in Patent Document 1, Patent Document 2, and the like.
  • Purification of the synthesized compound can be performed by purification by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, etc., recrystallization by solvent, crystallization method, etc. Identification of the compound can be performed by NMR analysis or the like.
  • the light-emitting material according to the present embodiment can provide light-emitting elements such as organic photoluminescence elements and organic electroluminescence elements.
  • the boron-containing compound used in the light-emitting material according to this embodiment has a function of assisting light emission of another light-emitting material (host material), so it can be used by doping it in another light-emitting material.
  • the boron-containing compound used in the light-emitting material according to the present embodiment include the following, in addition to the boron-containing compounds exemplified according to the present embodiment.
  • the boron-containing compound used in the light-emitting material of the present invention is not limited to the exemplified compounds.
  • the organic photoluminescence element according to the present embodiment has a light-emitting layer containing the light-emitting material according to the present embodiment provided on a substrate.
  • the light-emitting layer can be obtained by a coating method such as spin coating, a printing method such as an inkjet printing method, a vapor deposition method, or the like.
  • the organic electroluminescence element according to this embodiment has an organic layer between an anode and a cathode.
  • organic layer means a layer that is positioned between an anode and a cathode and is substantially composed of an organic substance. You can stay.
  • the structure of an embodiment of the organic electroluminescence device of the present invention comprises, on a substrate, an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, Examples include those consisting of a cathode and those having an electron injection layer between the electron transport layer and the cathode.
  • a hole injection layer injection layer
  • a hole transport layer an electron blocking layer
  • a light emitting layer a hole blocking layer
  • an electron transport layer Examples include those consisting of a cathode and those having an electron injection layer between the electron transport layer and the cathode.
  • it is possible to omit some organic layers for example an anode, a hole-transporting layer, a light-emitting layer, an electron-transporting layer, an electron-injecting layer, and a cathode, in sequence on the substrate.
  • the luminescent material according to this embodiment may be doped not only in the luminescent layer, but also in the hole injection layer, the hole transport layer, the electron blocking layer, the hole blocking layer, the electron transport layer, or the electron injection layer.
  • the substrate serves as a support for the light-emitting element, and silicon plates, quartz plates, glass plates, metal plates, metal foils, resin films, resin sheets, etc. are used. Glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are particularly preferred.
  • synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too low, the light emitting device may deteriorate due to outside air passing through the substrate. Therefore, it is preferable to provide a dense silicon oxide film or the like on one side or both sides of the synthetic resin substrate to ensure gas barrier properties.
  • An anode is provided on the substrate.
  • a material with a large work function is generally used for the anode.
  • anode materials include metals such as aluminum, gold, silver, nickel, palladium, and platinum; metal oxides such as indium oxide, tin oxide, ITO, zinc oxide, In 2 O 3 --ZnO, and IGZO;
  • metal halides such as copper chloride, carbon black, and conductive polymers such as poly(3-methylthiophene), polypyrrole and polyaniline.
  • Formation of the anode is usually carried out by a sputtering method, a vacuum deposition method, or the like.
  • fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • they are dispersed in a suitable binder resin solution and coated on the substrate.
  • An anode can also be formed by coating.
  • a conductive polymer a thin film can be formed directly on a substrate by electrolytic polymerization, or a conductive polymer can be applied onto a substrate to form an anode.
  • the anode can also be formed by laminating two or more different substances.
  • the thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 10 to 1000 nm, preferably 10 to 200 nm. If opaque is acceptable, the anode may be as thick as the substrate.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or more.
  • triphenylamine trimers and tetramers such as arylamine compounds having a structure linked by a divalent group that does not contain a heteroatom, acceptor heterocyclic compounds such as hexacyanoazatriphenylene, and coating-type polymer materials can be used. Thin films of these materials can be formed by known methods such as the spin coating method and the inkjet method in addition to the vapor deposition method.
  • the hole transport material used for the hole transport layer provided as necessary, it is preferable that the hole injection efficiency from the anode is high and the injected holes can be efficiently transported. To achieve this, the ionization potential should be small, the transparency to visible light should be high, the hole mobility should be high, the stability should be excellent, and impurities that would become traps should not easily occur during manufacturing and use. preferable. In addition to the above general requirements, it is preferable that the element has higher heat resistance when considering the application for in-vehicle display. Therefore, a material having a Tg value of 70° C. or higher is desirable.
  • triazole derivatives As hole transport layers provided as necessary, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and the like.
  • a compound containing an m-carbazolylphenyl group N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (hereinafter abbreviated as TPD), N,N' -diphenyl-N,N'-di( ⁇ -naphthyl)-benzidine (hereinafter abbreviated as NPD), benzidine derivatives such as N,N,N',N'-tetrabiphenylylbenzidine, 1,1-bis[ Examples include (di-4-tolylamino)phenyl]cyclohexane (hereinafter abbreviated as TAPC), various triphenylamine trimers and tetramers, and carbazole derivatives.
  • TPD N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine
  • NPD N,N' -diphenyl-N,N'-di( ⁇ -naphth
  • the hole transport layer may be a single-layer structure film or a multilayer structure film.
  • a coating type such as poly(3,4-ethylenedioxythiophene) (hereinafter abbreviated as PEDOT)/poly(styrene sulfonate) (hereinafter abbreviated as PSS) of polymeric materials can be used. Thin films of these materials can be formed by known methods such as the spin coating method and the inkjet method in addition to the vapor deposition method.
  • the material usually used for the above layer is further P-doped with trisbromophenylamine hexachloroantimony, or a polymer having a PD structure as a partial structure.
  • a compound or the like can be used.
  • CBP, TCTA, carbazole derivatives such as mCP, and the like can be used.
  • Preferred compounds (hi1) to (hi7) that can be used as hole injection materials are listed below.
  • Preferable compounds (ht1) to (ht38) that can be used as hole transport materials are listed below.
  • TCTA 4,4′,4′′-tri(N-carbazolyl)triphenylamine
  • mCP 9,9-bis[4-(carbazole-9- yl)phenyl]fluorene
  • mCP 1,3-bis(carbazol-9-yl)benzene
  • Ad-Cz 2,2-bis(4-carbazol-9-ylphenyl)adamantane
  • a compound having an electron-blocking effect such as a compound having a arylamine structure can be used. These can be used alone or in combination of two or more.
  • the electron-blocking layer is a film having a single-layer structure. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method, in addition to a vapor deposition method.
  • Preferred compounds (es1) to (es5) that can be used as electron blocking materials are listed below.
  • the light-emitting layer is a layer that emits light by generating excitons through recombination of holes and electrons injected from the anode and the cathode, respectively.
  • the light-emitting layer may be formed solely from the light-emitting material according to this embodiment, or may be formed by doping a host material with the light-emitting material according to this embodiment.
  • host materials include metal complexes of quinolinol derivatives such as tris(8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq3), anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, and polyparaphenylenevinylene derivatives.
  • the light-emitting layer may contain known dopants.
  • Dopants include quinacridone, coumarin, rubrene, anthracene, perylene and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives and the like.
  • a phosphorescent light-emitting material such as a green phosphorescent light-emitting material such as Ir(ppy)3, a blue phosphorescent light-emitting material such as FIrpic and FIr6, and a red phosphorescent light-emitting material such as Btp2Ir(acac) may be used. These can be used individually by 1 type or in combination of 2 or more types.
  • the light-emitting layer may be a film having a single-layer structure or a film having a laminated structure. Thin films of these materials can be formed by known methods such as a spin coating method and an ink jet method in addition to the vapor deposition method.
  • the amount of the light-emitting material according to the present embodiment that can be contained in the light-emitting layer has a lower limit of preferably 0.1% by mass, more preferably 1% by mass, and an upper limit of preferably is 50% by mass, more preferably 20% by mass, still more preferably 10% by mass.
  • Preferred compounds (el1) to (el40) that can be used as the host material of the light-emitting layer are listed below.
  • a compound having a bipyridyl group and an ortho-terphenyl structure a phenanthroline derivative such as bathocuproine (hereinafter abbreviated as BCP), aluminum (III) bis(2-methyl-8- Quinolinato)-4-phenylphenolate (hereinafter abbreviated as BAlq) and other metal complexes of quinolinol derivatives, various rare earth complexes, oxazole derivatives, triazole derivatives, triazine derivatives, and other compounds having a hole-blocking action.
  • BCP bathocuproine
  • BAlq aluminum (III) bis(2-methyl-8- Quinolinato)-4-phenylphenolate
  • BAlq aluminum (III) bis(2-methyl-8- Quinolinato)-4-phenylphenolate
  • BAlq aluminum (III) bis(2-methyl-8- Quinolinato)-4-phenylphenolate
  • BAlq aluminum (III) bis(2-methyl-8- Quinolinato)-4-phenyl
  • the electron transport layer As the electron transport layer provided as necessary, in addition to metal complexes of quinolinol derivatives such as Alq3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, Phenanthroline derivatives, silole derivatives and the like can be used. These can be used individually by 1 type or in combination of 2 or more types.
  • the electron transport layer may be a film having a single layer structure or a film having a laminated structure. Thin films of these materials can be formed by known methods such as a spin coating method and an ink jet method in addition to the vapor deposition method.
  • alkali metal salts such as lithium fluoride and cesium fluoride
  • alkaline earth metal salts such as magnesium fluoride
  • metal oxides such as aluminum oxide
  • the electron injection layer or the electron transport layer it is possible to use a material that is N-doped with a metal such as cesium in addition to the materials normally used for the above layers.
  • Preferred compounds (et1) to (et30) that can be used as electron transport materials are listed below.
  • Preferred compounds (ei1) to (ei4) that can be used as electron injection materials are listed below.
  • Preferred compounds (st1) to (st5) that can be used as stabilizing materials are listed below.
  • a material with a small work function is generally used for the cathode.
  • Cathode materials such as sodium, sodium-potassium alloys, lithium, tin, magnesium, magnesium/copper mixtures, magnesium/aluminum mixtures, magnesium/indium mixtures, aluminum/aluminum oxide mixtures, indium, calcium, aluminum, silver, lithium /aluminum mixture, magnesium-silver alloy, magnesium-indium alloy, aluminum-magnesium alloy, etc. are used.
  • a transparent or translucent cathode can be obtained by using a transparent conductive material.
  • the thickness of the cathode is usually 10-5000 nm, preferably 50-200 nm.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or more.
  • a cathode interfacial layer may also be provided between the cathode and an adjacent organic layer (eg, an electron-transporting layer or an electron-injecting layer) to improve contact between the two.
  • Materials used for the cathode interface layer include aromatic diamine compounds, quinacridone compounds, naphthacene derivatives, organic silicon compounds, organic phosphorus compounds, compounds having an N-phenylcarbazole skeleton, N-vinylcarbazole polymers, and the like. .
  • the light-emitting element according to this embodiment can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which anodes and cathodes are arranged in an XY matrix.
  • Emission characteristics were evaluated using a source meter (manufactured by Keithley: 2400 series), a spectral radiance meter (manufactured by Konica Minolta: CS-2000), a spectrofluorometer (manufactured by JASCO Corporation: FP-8600), and 100 mm ⁇ integration.
  • a ball (ILF-835 manufactured by JASCO Corporation) was used.
  • Example 2 A 10 ⁇ 5 M toluene solution of BOBO, BOBS or BSBS was prepared in a nitrogen atmosphere glove box. PL spectra were measured for these solutions. Table 1 shows the results. FIG. 1 shows the absorption spectrum. FIG. 2 shows the PL spectrum. FIG. 3 shows transient PL characteristics. "IRF" in FIG. 3 indicates the device response function.
  • Example 3 2,3,6,7,10,11-Hexacyano-1,4,5,8,9 with a thickness of 10 nm was deposited on a glass substrate on which an anode (50 nm thickness) made of indium tin oxide (ITO) was formed. , 12-hexaazatriphenylene (HAT-CN) film, 40 nm thick 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane (TAPC) film, 10 nm thick mMCP film.
  • HAT-CN 12-hexaazatriphenylene
  • TAPC 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane
  • an 8-hydroxyquinolitritium film with a thickness of 1 nm and an aluminum film with a thickness of 100 nm were laminated in this order by a vacuum vapor deposition method to form a cathode to obtain an organic electroluminescence device.
  • the properties of the organic electroluminescence device were measured.
  • Table 2 shows the emission characteristics.
  • FIG. 4 shows the EL spectrum.
  • FIG. 5 shows voltage-current density-luminance characteristics.
  • FIG. 6 shows luminance-external quantum efficiency characteristics.
  • Example 4 2,3,6,7,10,11-Hexacyano-1,4,5,8,9 with a thickness of 10 nm was deposited on a glass substrate on which an anode (50 nm thickness) made of indium tin oxide (ITO) was formed. , 12-hexaazatriphenylene (HAT-CN) film, 40 nm thick 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane (TAPC) film, 10 nm thick mMCP film.
  • HAT-CN 12-hexaazatriphenylene
  • TAPC 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane
  • an 8-hydroxyquinolitritium film with a thickness of 1 nm and an aluminum film with a thickness of 100 nm were laminated in this order by a vacuum vapor deposition method to form a cathode to obtain an organic electroluminescence device.
  • the properties of the organic electroluminescence device were measured.
  • Table 2 shows the emission characteristics.
  • FIG. 4 shows the EL spectrum.
  • FIG. 5 shows voltage-current density-luminance characteristics.
  • FIG. 6 shows luminance-external quantum efficiency characteristics.
  • Example 5 2,3,6,7,10,11-Hexacyano-1,4,5,8,9 with a thickness of 10 nm was deposited on a glass substrate on which an anode (50 nm thickness) made of indium tin oxide (ITO) was formed. , 12-hexaazatriphenylene (HAT-CN) film, 40 nm thick 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane (TAPC) film, 10 nm thick mMCP film.
  • HAT-CN 12-hexaazatriphenylene
  • TAPC 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane
  • an 8-hydroxyquinolitritium film with a thickness of 1 nm and an aluminum film with a thickness of 100 nm were laminated in this order by a vacuum vapor deposition method to form a cathode to obtain an organic electroluminescence device.
  • the properties of the organic electroluminescence device were measured.
  • Table 2 shows the emission characteristics.
  • FIG. 4 shows the EL spectrum.
  • FIG. 5 shows voltage-current density-luminance characteristics.
  • FIG. 6 shows luminance-external quantum efficiency characteristics.
  • the light-emitting device of the present invention emitted narrow-band blue light with high external quantum efficiency.
  • a novel boron-containing compound, a light-emitting material, and a light-emitting device using the same can be provided that have excellent light-emitting properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided are: a compound represented by formula (II); a luminescent material containing this compound; and a luminescent element containing this luminescent material. (In formula (II), R1, R2, R3, R4, R5, R6, R7 and R8 are each independently a straight chain or branched chain alkyl group having 1-4 carbon atoms, m values are each independently an integer between 0 and 5, and n values are each independently an integer between 0 and 4.)

Description

ホウ素含有化合物、発光材料およびそれを用いた発光素子Boron-containing compound, light-emitting material, and light-emitting device using the same
 本発明は、ホウ素含有化合物、発光材料およびそれを用いた発光素子に関する。より詳細に、本発明は、発光特性に優れるホウ素含有化合物、発光材料およびそれを用いた発光素子に関する。
 本願は、2021年7月16日に、日本に出願された特願2021-118345号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a boron-containing compound, a light-emitting material, and a light-emitting device using the same. More specifically, the present invention relates to a boron-containing compound, a light-emitting material, and a light-emitting device using the same, which are excellent in light-emitting properties.
This application claims priority based on Japanese Patent Application No. 2021-118345 filed in Japan on July 16, 2021, the content of which is incorporated herein.
 発光性を有するホウ素含有化合物として、例えば、特許文献1は、次のようなホウ素含有化合物を、提案している。 As a luminescent boron-containing compound, for example, Patent Document 1 proposes the following boron-containing compound.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 特許文献2は、次のようなホウ素含有化合物を、提案している。 Patent Document 2 proposes the following boron-containing compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
WO2020/040298AWO2020/040298A WO2018/212169AWO2018/212169A
 本発明の課題は、発光特性に優れる新規なホウ素含有化合物、発光材料およびそれを用いた発光素子を提供することである。 An object of the present invention is to provide a novel boron-containing compound, a light-emitting material, and a light-emitting device using the same, which have excellent light-emitting properties.
 上記課題を解決するために鋭意検討した結果、以下の形態を包含する本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present invention including the following aspects has been completed.
 すなわち、本発明は、
〔1〕 式(I)で表される化合物を含む発光材料。
Figure JPOXMLDOC01-appb-C000006
〔式(I)中、
 Xは、N-R、OまたはSであり、
 Rは、水素原子または炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
 R1、R2、R3、R4、R5、R6、R7およびR8はそれぞれ独立して炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
 mはそれぞれ独立して0~5のいずれかの整数であり、且つ
 nはそれぞれ独立して0~4のいずれかの整数である。〕
That is, the present invention
[1] A luminescent material containing a compound represented by formula (I).
Figure JPOXMLDOC01-appb-C000006
[In formula (I),
X is NR, O or S;
R is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms,
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
〔2〕 〔1〕に記載の発光材料を含有する発光素子。 [2] A light-emitting device containing the light-emitting material described in [1].
〔3〕 式(II)で表される化合物。
Figure JPOXMLDOC01-appb-C000007
〔式(II)中、
 R1、R2、R3、R4、R5、R6、R7およびR8はそれぞれ独立して炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
 mはそれぞれ独立して0~5のいずれかの整数であり、且つ
 nはそれぞれ独立して0~4のいずれかの整数である。〕
[3] A compound represented by the formula (II).
Figure JPOXMLDOC01-appb-C000007
[In formula (II),
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
 本発明のホウ素含有化合物は、発光材料として有用である。本発明に係る発光材料には、遅延蛍光を放射するものがある。本発明に係る発光材料を含有する発光素子は、優れた発光効率を実現し得る。 The boron-containing compound of the present invention is useful as a luminescent material. Some of the luminescent materials according to the present invention emit delayed fluorescence. A light-emitting device containing the light-emitting material according to the present invention can achieve excellent luminous efficiency.
本実施形態に係る発光材料の吸収スペクトルの一例を示す図である。It is a figure which shows an example of the absorption spectrum of the light emitting material which concerns on this embodiment. 本実施形態に係る発光材料のPLスペクトルの一例を示す図である。It is a figure which shows an example of PL spectrum of the light emitting material which concerns on this embodiment. 本実施形態に係る発光材料の過渡PL特性の一例(左図は右図の拡大)を示す図である。It is a figure which shows an example of the transient PL characteristic of the light emitting material which concerns on this embodiment (the left figure is the enlargement of the right figure). 本実施形態に係る発光素子のELスペクトルの一例を示す図である。It is a figure which shows an example of the EL spectrum of the light emitting element which concerns on this embodiment. 本実施形態に係る発光素子の電圧-電流密度-輝度特性の一例を示す図である。FIG. 3 is a diagram showing an example of voltage-current density-luminance characteristics of a light-emitting element according to this embodiment; 本実施形態に係る発光素子の輝度-外部量子効率特性の一例を示す図である。FIG. 4 is a diagram showing an example of luminance-external quantum efficiency characteristics of a light-emitting device according to this embodiment.
 本実施形態に係る発光材料に含まれるホウ素含有化合物は、式(I)で表される化合物である。 The boron-containing compound contained in the luminescent material according to this embodiment is a compound represented by formula (I).
Figure JPOXMLDOC01-appb-C000008
〔式(I)中、
 Xは、N-R、OまたはSであり、
 Rは、水素原子または炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
 R1、R2、R3、R4、R5、R6、R7およびR8はそれぞれ独立して炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
 mはそれぞれ独立して0~5のいずれかの整数であり、且つ
 nはそれぞれ独立して0~4のいずれかの整数である。〕
Figure JPOXMLDOC01-appb-C000008
[In formula (I),
X is NR, O or S;
R is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms,
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
 本実施形態に係るホウ素含有化合物は、式(II)で表される化合物である。 The boron-containing compound according to this embodiment is a compound represented by formula (II).
Figure JPOXMLDOC01-appb-C000009
〔式(II)中、
 R1、R2、R3、R4、R5、R6、R7およびR8はそれぞれ独立して炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
 mはそれぞれ独立して0~5のいずれかの整数であり、且つ
 nはそれぞれ独立して0~4のいずれかの整数である。〕
Figure JPOXMLDOC01-appb-C000009
[In formula (II),
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
 式(I)または(II)中の、R、R1、R2、R3、R4、R5、R6、R7およびR8における、アルキル基は、直鎖であってもよいし、分岐鎖であってもよい。構成炭素数は1~4個であることが好ましい。アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基などを挙げることができる。 The alkyl group for R, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 in formula (I) or (II) may be linear or , may be branched. The number of constituent carbon atoms is preferably 1 to 4. Examples of alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl and t-butyl groups.
 「アルキル基」上に置換基を有してもよい。「アルキル基」上の置換基としては、フルオロ基、クロロ基、ブロモ基、イオド基などのハロゲノ基; 水酸基; メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基などのC1~6アルコキシ基; 2-クロロ-n-プロポキシ基、2,3-ジクロロブトキシ基、トリフルオロメトキシ基などのC1~6ハロアルコキシ基; フェニル基; 4-クロロフェニル基、4-トリフルオロメチルフェニル基、4-トリフルオロメトキシフェニル基などの、ハロゲノ基、C1~6ハロアルキル基、またはC1~6ハロアルコキシ基で置換されたフェニル基; またはシアノ基;を挙げることができる。 You may have a substituent on the "alkyl group". Substituents on the "alkyl group" include halogeno groups such as a fluoro group, a chloro group, a bromo group and an iodo group; a hydroxyl group; C1-6 alkoxy groups such as s-butoxy group, i-butoxy group and t-butoxy group; C1-6 haloalkoxy groups such as 2-chloro-n-propoxy group, 2,3-dichlorobutoxy group and trifluoromethoxy group group; phenyl group; phenyl group substituted with halogeno group, C1-6 haloalkyl group, or C1-6 haloalkoxy group such as 4-chlorophenyl group, 4-trifluoromethylphenyl group, 4-trifluoromethoxyphenyl group ; or a cyano group;
 本実施形態に係るホウ素含有化合物の具体例としては、次のようなものを挙げることができる。但し、本発明は例示した化合物に限定されない。 Specific examples of the boron-containing compound according to this embodiment include the following. However, the present invention is not limited to the exemplified compounds.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 本実施形態に係るホウ素含有化合物は、特許文献1、特許文献2などに記載の公知の合成反応(例えば、カップリング反応、置換反応など)を組み合わせて行うことによって得ることができる。 The boron-containing compound according to the present embodiment can be obtained by combining known synthesis reactions (eg, coupling reaction, substitution reaction, etc.) described in Patent Document 1, Patent Document 2, and the like.
 合成された化合物の精製は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行うことができる。化合物の同定は、NMR分析などによって行なうことができる。 Purification of the synthesized compound can be performed by purification by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, etc., recrystallization by solvent, crystallization method, etc. Identification of the compound can be performed by NMR analysis or the like.
 本実施形態に係る発光材料は、有機フォトルミネッセンス素子、有機エレクトロルミネッセンス素子などの発光素子を提供することができる。本実施形態に係る発光材料に用いられるホウ素含有化合物は、他の発光材料(ホスト材料)の発光をアシストする機能を有するので、他の発光材料にドープして用いることができる。 The light-emitting material according to the present embodiment can provide light-emitting elements such as organic photoluminescence elements and organic electroluminescence elements. The boron-containing compound used in the light-emitting material according to this embodiment has a function of assisting light emission of another light-emitting material (host material), so it can be used by doping it in another light-emitting material.
 本実施形態に係る発光材料に用いられるホウ素含有化合物の具体例としては、本実施形態に係るホウ素含有化合物として例示したものに加えて、次のようなものを挙げることができる。但し、本発明の発光材料に用いられるホウ素含有化合物は例示した化合物に限定されない。 Specific examples of the boron-containing compound used in the light-emitting material according to the present embodiment include the following, in addition to the boron-containing compounds exemplified according to the present embodiment. However, the boron-containing compound used in the light-emitting material of the present invention is not limited to the exemplified compounds.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本実施形態に係る有機フォトルミネッセンス素子は、基板上に本実施形態に係る発光材料を含有する発光層を設けてなる。発光層は、スピンコートなどのような塗布法、インクジェット印刷法などのような印刷法、蒸着法などによって得ることができる。 The organic photoluminescence element according to the present embodiment has a light-emitting layer containing the light-emitting material according to the present embodiment provided on a substrate. The light-emitting layer can be obtained by a coating method such as spin coating, a printing method such as an inkjet printing method, a vapor deposition method, or the like.
 本実施形態に係る有機エレクトロルミネッセンス素子は陽極と陰極との間に有機層を設けてなる。本明細書における「有機層」とは、陽極と陰極の間に位置する、実質的に有機物からなる層を意味し、これらの層は本発明の発光素子の性能を損なわない範囲で無機物を含んでいてもよい。 The organic electroluminescence element according to this embodiment has an organic layer between an anode and a cathode. As used herein, the term “organic layer” means a layer that is positioned between an anode and a cathode and is substantially composed of an organic substance. You can stay.
 本発明の有機エレクトロルミネッセンス素子の一実施形態における構造としては、基板上に順次に、陽極、正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、陰極からなるもの、また、電子輸送層と陰極の間にさらに電子注入層を有するものを挙げることができる。これらの多層構造においては有機層を何層か省略することが可能であり、例えば、基板上に順次に、陽極、正孔輸送層、発光層、電子輸送層、電子注入層、陰極とすることや、陽極、正孔輸送層、発光層、電子輸送層、陰極とすることもできる。本実施形態に係る発光材料は、発光層のみならず、正孔注入層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層、または電子注入層にドープさせてもよい。 The structure of an embodiment of the organic electroluminescence device of the present invention comprises, on a substrate, an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, Examples include those consisting of a cathode and those having an electron injection layer between the electron transport layer and the cathode. In these multi-layer structures, it is possible to omit some organic layers, for example an anode, a hole-transporting layer, a light-emitting layer, an electron-transporting layer, an electron-injecting layer, and a cathode, in sequence on the substrate. Alternatively, it can be an anode, a hole-transporting layer, a light-emitting layer, an electron-transporting layer, or a cathode. The luminescent material according to this embodiment may be doped not only in the luminescent layer, but also in the hole injection layer, the hole transport layer, the electron blocking layer, the hole blocking layer, the electron transport layer, or the electron injection layer.
 基板は発光素子の支持体となり、シリコン板、石英板、ガラス板、金属板、金属箔、樹脂フィルム、樹脂シートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が低すぎると、基板を通過する外気により発光素子が劣化することがある。このため、合成樹脂基板のどちらか片側もしくは両側に緻密なシリコン酸化膜等を設けてガスバリア性を確保することが好ましい。 The substrate serves as a support for the light-emitting element, and silicon plates, quartz plates, glass plates, metal plates, metal foils, resin films, resin sheets, etc. are used. Glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are particularly preferred. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too low, the light emitting device may deteriorate due to outside air passing through the substrate. Therefore, it is preferable to provide a dense silicon oxide film or the like on one side or both sides of the synthetic resin substrate to ensure gas barrier properties.
 基板上には陽極が設けられる。陽極には仕事関数の大きい材料が一般に用いられる。陽極用材料として、例えば、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム酸化物、スズ酸化物、ITO、酸化亜鉛、In23-ZnO、IGZOなどの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或は、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などを挙げることができる。陽極の形成は、通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の場合は電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成したりすることもできる。 An anode is provided on the substrate. A material with a large work function is generally used for the anode. Examples of anode materials include metals such as aluminum, gold, silver, nickel, palladium, and platinum; metal oxides such as indium oxide, tin oxide, ITO, zinc oxide, In 2 O 3 --ZnO, and IGZO; Examples include metal halides such as copper chloride, carbon black, and conductive polymers such as poly(3-methylthiophene), polypyrrole and polyaniline. Formation of the anode is usually carried out by a sputtering method, a vacuum deposition method, or the like. In the case of fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., they are dispersed in a suitable binder resin solution and coated on the substrate. An anode can also be formed by coating. Furthermore, in the case of a conductive polymer, a thin film can be formed directly on a substrate by electrolytic polymerization, or a conductive polymer can be applied onto a substrate to form an anode.
 陽極は異なる2種以上の物質を積層して形成することも可能である。陽極の厚さは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常、60%以上、好ましくは80%以上とすることが望ましく、この場合、厚みは、通常、10~1000nm、好ましくは10~200nmである。不透明でよい場合、陽極は基板の厚みと同程度でもよい。陽極のシート抵抗は数百Ω/□以上であることが好ましい。 The anode can also be formed by laminating two or more different substances. The thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 10 to 1000 nm, preferably 10 to 200 nm. If opaque is acceptable, the anode may be as thick as the substrate. The sheet resistance of the anode is preferably several hundred Ω/□ or more.
 必要に応じて設けられる正孔注入層として、銅フタロシアニンに代表されるポルフィリン化合物のほか、ナフタレンジアミン誘導体、スターバースト型のトリフェニルアミン誘導体、分子中にトリフェニルアミン構造を3個以上、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物などのトリフェニルアミン3量体および4量体、ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。 As a hole injection layer provided as necessary, in addition to porphyrin compounds typified by copper phthalocyanine, naphthalenediamine derivatives, starburst type triphenylamine derivatives, three or more triphenylamine structures in the molecule, and single bonds. Alternatively, triphenylamine trimers and tetramers such as arylamine compounds having a structure linked by a divalent group that does not contain a heteroatom, acceptor heterocyclic compounds such as hexacyanoazatriphenylene, and coating-type polymer materials can be used. Thin films of these materials can be formed by known methods such as the spin coating method and the inkjet method in addition to the vapor deposition method.
 必要に応じて設けられる正孔輸送層に用いられる正孔輸送材料としては、陽極からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができることが好ましい。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子にはさらに耐熱性が高いことが好ましい。従って、Tgとして70℃以上の値を有する材料が望ましい。 As for the hole transport material used for the hole transport layer provided as necessary, it is preferable that the hole injection efficiency from the anode is high and the injected holes can be efficiently transported. To achieve this, the ionization potential should be small, the transparency to visible light should be high, the hole mobility should be high, the stability should be excellent, and impurities that would become traps should not easily occur during manufacturing and use. preferable. In addition to the above general requirements, it is preferable that the element has higher heat resistance when considering the application for in-vehicle display. Therefore, a material having a Tg value of 70° C. or higher is desirable.
 必要に応じて設けられる正孔輸送層として、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマーなどを挙げることができる。より具体的に、m-カルバゾリルフェニル基を含有する化合物、N,N’-ジフェニル-N,N’-ジ(m-トリル)-ベンジジン(以後、TPDと略称する)、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)-ベンジジン(以後、NPDと略称する)、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以後、TAPCと略称する)、種々のトリフェニルアミン3量体および4量体やカルバゾール誘導体などを挙げることができる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。正孔輸送層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。また、正孔の注入・輸送層として、ポリ(3,4-エチレンジオキシチオフェン)(以後、PEDOTと略称する)/ポリ(スチレンスルフォネート)(以後、PSSと略称する)などの塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。 As hole transport layers provided as necessary, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and the like. More specifically, a compound containing an m-carbazolylphenyl group, N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (hereinafter abbreviated as TPD), N,N' -diphenyl-N,N'-di(α-naphthyl)-benzidine (hereinafter abbreviated as NPD), benzidine derivatives such as N,N,N',N'-tetrabiphenylylbenzidine, 1,1-bis[ Examples include (di-4-tolylamino)phenyl]cyclohexane (hereinafter abbreviated as TAPC), various triphenylamine trimers and tetramers, and carbazole derivatives. These can be used individually by 1 type or in combination of 2 or more types. The hole transport layer may be a single-layer structure film or a multilayer structure film. Further, as a hole injection/transport layer, a coating type such as poly(3,4-ethylenedioxythiophene) (hereinafter abbreviated as PEDOT)/poly(styrene sulfonate) (hereinafter abbreviated as PSS) of polymeric materials can be used. Thin films of these materials can be formed by known methods such as the spin coating method and the inkjet method in addition to the vapor deposition method.
 また、正孔注入層あるいは正孔輸送層において、前記層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンをPドーピングしたものや、PDの構造をその部分構造に有する高分子化合物などを用いることができる。正孔注入・輸送性のホスト材料として、CBPやTCTA、mCPなどのカルバゾール誘導体などを用いることができる。 In addition, in the hole injection layer or the hole transport layer, the material usually used for the above layer is further P-doped with trisbromophenylamine hexachloroantimony, or a polymer having a PD structure as a partial structure. A compound or the like can be used. As the hole-injecting/transporting host material, CBP, TCTA, carbazole derivatives such as mCP, and the like can be used.
 正孔注入材料として用いることができる好ましい化合物(hi1)~(hi7)を以下に挙げる。 Preferred compounds (hi1) to (hi7) that can be used as hole injection materials are listed below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 正孔輸送材料として用いることができる好ましい化合物(ht1)~(ht38)を以下に挙げる。 Preferable compounds (ht1) to (ht38) that can be used as hole transport materials are listed below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 必要に応じて設けられる電子阻止層として、4,4’,4”-トリ(N-カルバゾリル)トリフェニルアミン(以後、TCTAと略称する)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(以後、mCPと略称する)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以後、Ad-Czと略称する)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。電子阻止層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。 As an optional electron blocking layer, 4,4′,4″-tri(N-carbazolyl)triphenylamine (hereinafter abbreviated as TCTA), 9,9-bis[4-(carbazole-9- yl)phenyl]fluorene, 1,3-bis(carbazol-9-yl)benzene (hereinafter abbreviated as mCP), 2,2-bis(4-carbazol-9-ylphenyl)adamantane (hereinafter Ad-Cz abbreviated as), triphenylsilyl groups and triphenylsilyl A compound having an electron-blocking effect such as a compound having a arylamine structure can be used.These can be used alone or in combination of two or more.The electron-blocking layer is a film having a single-layer structure. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method, in addition to a vapor deposition method.
 電子阻止材料として用いることができる好ましい化合物(es1)~(es5)を以下に挙げる。 Preferred compounds (es1) to (es5) that can be used as electron blocking materials are listed below.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 発光層は、陽極および陰極のそれぞれから注入される正孔および電子が再結合することにより励起子が生成して、発光する機能を有する層である。発光層は本実施形態に係る発光材料単独で形成してもよいし、ホスト材料に本実施形態に係る発光材料をドープして形成してもよい。ホスト材料の例としては、トリス(8-ヒドロキシキノリン)アルミニウム(以後、Alq3と略称する)などのキノリノール誘導体の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体、ビピリジル基とオルトターフェニル構造を有する化合物、mCP、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを挙げることができる。発光層には公知のドーパントが含まれていてもよい。ドーパントとしては、キナクリドン、クマリン、ルブレン、アントラセン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを挙げることができる。また、Ir(ppy)3などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、Btp2Ir(acac)などの赤色の燐光発光体などの燐光性の発光体を用いてもよい。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。発光層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 ホスト材料を用いた場合、発光層に含有させることができる本実施形態に係る発光材料の量は、下限が、好ましくは0.1質量%、より好ましくは1質量%であり、上限が、好ましくは50質量%、より好ましくは20質量%、さらに好ましくは10質量%である。
The light-emitting layer is a layer that emits light by generating excitons through recombination of holes and electrons injected from the anode and the cathode, respectively. The light-emitting layer may be formed solely from the light-emitting material according to this embodiment, or may be formed by doping a host material with the light-emitting material according to this embodiment. Examples of host materials include metal complexes of quinolinol derivatives such as tris(8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq3), anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, and polyparaphenylenevinylene derivatives. , a compound having a bipyridyl group and an ortho-terphenyl structure, mCP, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, and the like. The light-emitting layer may contain known dopants. Dopants include quinacridone, coumarin, rubrene, anthracene, perylene and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives and the like. Further, a phosphorescent light-emitting material such as a green phosphorescent light-emitting material such as Ir(ppy)3, a blue phosphorescent light-emitting material such as FIrpic and FIr6, and a red phosphorescent light-emitting material such as Btp2Ir(acac) may be used. These can be used individually by 1 type or in combination of 2 or more types. The light-emitting layer may be a film having a single-layer structure or a film having a laminated structure. Thin films of these materials can be formed by known methods such as a spin coating method and an ink jet method in addition to the vapor deposition method.
When a host material is used, the amount of the light-emitting material according to the present embodiment that can be contained in the light-emitting layer has a lower limit of preferably 0.1% by mass, more preferably 1% by mass, and an upper limit of preferably is 50% by mass, more preferably 20% by mass, still more preferably 10% by mass.
 発光層のホスト材料として用いることができる好ましい化合物(el1)~(el40)を以下に挙げる。 Preferred compounds (el1) to (el40) that can be used as the host material of the light-emitting layer are listed below.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 必要に応じて設けられる正孔阻止層として、ビピリジル基とオルトターフェニル構造を有する化合物、バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体、各種の希土類錯体、オキサゾール誘導体、トリアゾール誘導体、トリアジン誘導体など、正孔阻止作用を有する化合物を挙げることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。正孔阻止層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。 As a hole blocking layer provided as necessary, a compound having a bipyridyl group and an ortho-terphenyl structure, a phenanthroline derivative such as bathocuproine (hereinafter abbreviated as BCP), aluminum (III) bis(2-methyl-8- Quinolinato)-4-phenylphenolate (hereinafter abbreviated as BAlq) and other metal complexes of quinolinol derivatives, various rare earth complexes, oxazole derivatives, triazole derivatives, triazine derivatives, and other compounds having a hole-blocking action. can. These materials may also serve as materials for the electron transport layer. These can be used individually by 1 type or in combination of 2 or more types. The hole blocking layer may be a film having a single layer structure or a film having a laminated structure. Thin films of these materials can be formed by known methods such as a spin coating method and an ink jet method in addition to the vapor deposition method.
 正孔阻止材料として用いることができる好ましい化合物(hs1)~(hs11)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000103
Preferred compounds (hs1) to (hs11) that can be used as hole blocking materials are listed below.
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 必要に応じて設けられる電子輸送層として、Alq3、BAlqをはじめとするキノリノール誘導体の金属錯体のほか、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。電子輸送層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。 As the electron transport layer provided as necessary, in addition to metal complexes of quinolinol derivatives such as Alq3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, Phenanthroline derivatives, silole derivatives and the like can be used. These can be used individually by 1 type or in combination of 2 or more types. The electron transport layer may be a film having a single layer structure or a film having a laminated structure. Thin films of these materials can be formed by known methods such as a spin coating method and an ink jet method in addition to the vapor deposition method.
 必要に応じて設けられる電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。 As the electron injection layer provided as necessary, alkali metal salts such as lithium fluoride and cesium fluoride, alkaline earth metal salts such as magnesium fluoride, and metal oxides such as aluminum oxide can be used. In the preferred selection of electron-transporting layer and cathode, this can be omitted.
 電子注入層あるいは電子輸送層において、前記層に通常使用される材料に対し、さらにセシウムなどの金属をNドーピングしたものを用いることができる。 In the electron injection layer or the electron transport layer, it is possible to use a material that is N-doped with a metal such as cesium in addition to the materials normally used for the above layers.
 電子輸送材料として用いることができる好ましい化合物(et1)~(et30)を以下に挙げる。 Preferred compounds (et1) to (et30) that can be used as electron transport materials are listed below.
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
 電子注入材料として用いることができる好ましい化合物(ei1)~(ei4)を以下に挙げる。 Preferred compounds (ei1) to (ei4) that can be used as electron injection materials are listed below.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
 安定化材料として用いることができる好ましい化合物(st1)~(st5)を以下に挙げる。 Preferred compounds (st1) to (st5) that can be used as stabilizing materials are listed below.
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
 陰極には仕事関数の小さい材料が一般に用いられる。陰極用材料として、例えば、ナトリウム、ナトリウム-カリウム合金、リチウム、スズ、マグネシウム、マグネシウム/銅混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、インジウム、カルシウム、アルミニウム、銀、リチウム/アルミニウム混合物、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金などが用いられる。透明導電性材料を用いることによって透明または半透明な陰極を得ることができる。陰極の厚さは、通常、10~5000nm、好ましくは50~200nmである。陰極のシート抵抗は数百Ω/□以上であることが好ましい。 A material with a small work function is generally used for the cathode. Cathode materials such as sodium, sodium-potassium alloys, lithium, tin, magnesium, magnesium/copper mixtures, magnesium/aluminum mixtures, magnesium/indium mixtures, aluminum/aluminum oxide mixtures, indium, calcium, aluminum, silver, lithium /aluminum mixture, magnesium-silver alloy, magnesium-indium alloy, aluminum-magnesium alloy, etc. are used. A transparent or translucent cathode can be obtained by using a transparent conductive material. The thickness of the cathode is usually 10-5000 nm, preferably 50-200 nm. The sheet resistance of the cathode is preferably several hundred Ω/□ or more.
 低仕事関数金属から成る陰極を保護する目的で、この上にさらに、アルミニウム、銀、ニッケル、クロム、金、白金等の、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性を増すため好ましい。また、陰極と、隣接する有機層(例えば電子輸送層や、電子注入層)とのコンタクトを向上させるために、両者の間に陰極界面層を設けてもよい。陰極界面層に用いられる材料としては、芳香族ジアミン化合物、キナクリドン化合物、ナフタセン誘導体、有機シリコン化合物、有機リン化合物、N-フェニルカルバゾール骨格を有する化合物、N-ビニルカルバゾール重合体などを挙げることができる。 For the purpose of protecting the cathode made of a low work function metal, if a metal layer with a high work function and stable to the atmosphere, such as aluminum, silver, nickel, chromium, gold, platinum, etc., is laminated thereon, the device will Preferred for increased stability. A cathode interfacial layer may also be provided between the cathode and an adjacent organic layer (eg, an electron-transporting layer or an electron-injecting layer) to improve contact between the two. Materials used for the cathode interface layer include aromatic diamine compounds, quinacridone compounds, naphthacene derivatives, organic silicon compounds, organic phosphorus compounds, compounds having an N-phenylcarbazole skeleton, N-vinylcarbazole polymers, and the like. .
 本実施形態に係る発光素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。 The light-emitting element according to this embodiment can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which anodes and cathodes are arranged in an XY matrix.
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されない。 The present invention will be described in more detail below with specific examples. However, the present invention is by no means limited to the examples shown below.
 式(I)で表される化合物を、次のようにして得た。 The compound represented by formula (I) was obtained as follows.
(例1)
Figure JPOXMLDOC01-appb-C000153
(Example 1)
Figure JPOXMLDOC01-appb-C000153
〔1の合成〕
 窒素置換したフラスコに1,3-ジブロモ-5-メトキシベンゼン(2.66g,10.0mmol)、ジフェニルアミン(4.23g,25.0mmol)、酢酸パラジウム(II)(0.11g,0.50mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(0.44g,1.50mmol)、ナトリウムtert-ブトキシド(2.40g,25.0mmol)、およびトルエン(40mL)を加え、110℃で24時間攪拌した。反応後室温に戻し、水を加えた後セライトを用いて不純物を取り除いた。その後ジクロロメタンを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:4)により精製し、白色固体の1(3.74g,85%)を得た。
1H-NMR(400MHz,CDCl3,δ): 7.21-7.16(m,8H), 7.08-7.05(m,8H), 6.95(t,J=7.4Hz,4H), 6.43(t,J=2.0Hz,1H), 6.22(d,J=2.0Hz,2H), 3.57(s,3H)
[Synthesis of 1]
A nitrogen-purged flask was charged with 1,3-dibromo-5-methoxybenzene (2.66 g, 10.0 mmol), diphenylamine (4.23 g, 25.0 mmol), palladium(II) acetate (0.11 g, 0.50 mmol), and tri-tert-butyl. Phosphonium tetrafluoroborate (0.44 g, 1.50 mmol), sodium tert-butoxide (2.40 g, 25.0 mmol) and toluene (40 mL) were added and stirred at 110°C for 24 hours. After the reaction, the temperature was returned to room temperature, water was added, and impurities were removed using celite. After that, dichloromethane was added for extraction. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:dichloromethane=1:4) to obtain 1 (3.74 g, 85%) as a white solid.
1 H-NMR (400 MHz, CDCl 3 , δ): 7.21-7.16 (m, 8H), 7.08-7.05 (m, 8H), 6.95 (t, J = 7.4 Hz, 4H), 6.43 (t, J = 2.0 Hz,1H), 6.22(d,J=2.0Hz,2H), 3.57(s,3H)
〔2の合成〕
 窒素置換したフラスコに1(6.63g,15.0 mmol)およびジクロロメタン(50mL)を加え、0℃で三臭化ほう素(4.4mL,45.0mmol)を滴下した。その後、室温で12時間攪拌した。反応後0℃でメタノールを滴下し、ジクロロメタンと水を加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:酢酸エチル=1:4)により精製し、白色固体の2(3.56g,55%)を得た。
1H-NMR(400MHz,CDCl3,δ): 7.23-7.18(m,8H), 7.08-7.05(m,8H), 6.97(t,J=7.4Hz,4H), 6.40(t,J=1.9Hz,1H), 6.10(d,J=1.8Hz,2H), 4.41(s,1H)
[Synthesis of 2]
1 (6.63 g, 15.0 mmol) and dichloromethane (50 mL) were added to a flask purged with nitrogen, and boron tribromide (4.4 mL, 45.0 mmol) was added dropwise at 0°C. After that, the mixture was stirred at room temperature for 12 hours. After the reaction, methanol was added dropwise at 0°C, and dichloromethane and water were added for extraction. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:ethyl acetate=1:4) to obtain 2 (3.56 g, 55%) as a white solid.
1 H-NMR (400 MHz, CDCl 3 , δ): 7.23-7.18 (m, 8H), 7.08-7.05 (m, 8H), 6.97 (t, J = 7.4 Hz, 4H), 6.40 (t, J = 1.9 Hz,1H), 6.10(d,J=1.8Hz,2H), 4.41(s,1H)
〔3の合成〕
 窒素置換したフラスコに1,5-ジブロモ-2,4-ジフルオロベンゼン(2.04g,7.5mmol)、2(7.71 g,18.0mmol)、炭酸カリウム(3.11g,22.5mmol)、およびトリエチレングリコールジメチルエーテル(75mL)を加え、180℃で48時間攪拌した。反応後室温に戻し、ジクロロメタンと水を加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、ロータリーエバポレーターで濃縮し、得られた固体をジクロロメタンとメタノールで再結晶させ、白色固体の3(5.67g,70%)を得た。
1H-NMR(400MHz,CDCl3,δ): 7.60(s,1H), 7.18-7.13(m,16H), 7.04-7.01(m,16H), 6.97-6.93(m,8H), 6.55(t,J=2.0Hz,2H), 6.46(s,1H), 6.22(d,J=2.0Hz,4H)
[Synthesis of 3]
1,5-Dibromo-2,4-difluorobenzene (2.04 g, 7.5 mmol), 2 (7.71 g, 18.0 mmol), potassium carbonate (3.11 g, 22.5 mmol), and triethylene glycol dimethyl ether ( 75 mL) was added, and the mixture was stirred at 180° C. for 48 hours. After the reaction, the temperature was returned to room temperature, and extraction was performed by adding dichloromethane and water. The organic layer was dried by adding sodium sulfate, concentrated by a rotary evaporator, and the obtained solid was recrystallized with dichloromethane and methanol to obtain 3 (5.67 g, 70%) as a white solid.
1 H-NMR (400 MHz, CDCl 3 , δ): 7.60(s, 1H), 7.18-7.13(m, 16H), 7.04-7.01(m, 16H), 6.97-6.93(m, 8H), 6.55(t ,J=2.0Hz,2H), 6.46(s,1H), 6.22(d,J=2.0Hz,4H)
〔4の合成〕
 窒素置換したフラスコに1,3,5-トリブロモベンゼン(74.9g,238mmol)、ジフェニルアミン(72.4g,428mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(4.36g,4.76mmol)、2-ジシクロヘキシルホスフィノ-2',6'-ジメトキシビフェニル(1.95g,4.76mmol)、ナトリウム tert-ブトキシド(68.6g,714mmol)、およびトルエン(400mL)を加え、110℃で12時間攪拌した。反応後室温に戻し、水(400mL)を加えた後てセライトを用いて不純物を取り除いた。その後ジクロロメタンを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:5)により精製し、白色固体の4(36.2g,31%)を得た。
1H-NMR(400MHz,CDCl3,δ): 7.24-7.20(m,8H), 7.06-7.04(m,8H), 7.00(t,J=7.4Hz,4H), 6.71(d,J=2.0Hz,2H), 6.68(t,J=2.0Hz,1H)
[Synthesis of 4]
1,3,5-tribromobenzene (74.9 g, 238 mmol), diphenylamine (72.4 g, 428 mmol), tris(dibenzylideneacetone) dipalladium(0) (4.36 g, 4.76 mmol), 2- Dicyclohexylphosphino-2',6'-dimethoxybiphenyl (1.95 g, 4.76 mmol), sodium tert-butoxide (68.6 g, 714 mmol) and toluene (400 mL) were added and stirred at 110°C for 12 hours. After the reaction, the temperature was returned to room temperature, water (400 mL) was added, and impurities were removed using celite. After that, dichloromethane was added for extraction. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:dichloromethane=1:5) to obtain 4 (36.2 g, 31%) as a white solid.
1 H-NMR (400 MHz, CDCl 3 , δ): 7.24-7.20 (m, 8H), 7.06-7.04 (m, 8H), 7.00 (t, J = 7.4 Hz, 4H), 6.71 (d, J = 2.0 Hz,2H), 6.68(t,J=2.0Hz,1H)
〔5の合成〕
 窒素置換したフラスコに4(28.0g,57.0mmol)およびジエチルエーテル(400mL)を加え、-70℃でn-ブチルリチウム(1.6M,39mL,62.7mmol)を滴下した。-70℃で1時間攪拌した後、硫黄(2.38g,74.1mmol)を加えして室温で12時間攪拌した。反応後、水(200mL)を加えて得られた固体をメタノールで洗浄し、白色固体の5(36.2g,31%)を得た。
1H-NMR(400MHz,CDCl3,δ): 7.21-7.16 (m,8H), 7.02-6.94(m,12H), 6.66(d,J=2.0Hz,2H), 6.58(t,J=2.0Hz,1H)
[Synthesis of 5]
4 (28.0 g, 57.0 mmol) and diethyl ether (400 mL) were added to a nitrogen-purged flask, and n-butyllithium (1.6 M, 39 mL, 62.7 mmol) was added dropwise at -70°C. After stirring at -70°C for 1 hour, sulfur (2.38 g, 74.1 mmol) was added and the mixture was stirred at room temperature for 12 hours. After the reaction, the solid obtained by adding water (200 mL) was washed with methanol to obtain 5 (36.2 g, 31%) as a white solid.
1 H-NMR (400 MHz, CDCl 3 , δ): 7.21-7.16 (m, 8H), 7.02-6.94 (m, 12H), 6.66 (d, J = 2.0 Hz, 2H), 6.58 (t, J = 2.0 Hz, 1H)
〔6の合成〕
 窒素置換したフラスコに5(5.69g,12.8mmol)、1,3-ジブロモ-4,6-ジヨードベンゼン(3.12g,6.40mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.59g,0.64mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(0.34g,0.64mmol)、ナトリウム tert-ブトキシド(2.46g,25.6mmol)、およびo-キシレン(150mL)を加え、140℃で48時間攪拌した。反応後室温に戻し、セライトを用いて不純物を取り除いた。その後、ジクロロメタンと水を加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:3)を用いて不純物を取り除いた。溶媒を除去した後、得られた固体をジクロロメタンとメタノールで再結晶し、得られた6を次の反応で使用した。
[Synthesis of 6]
5 (5.69 g, 12.8 mmol), 1,3-dibromo-4,6-diiodobenzene (3.12 g, 6.40 mmol), tris(dibenzylideneacetone)dipalladium(0) (0.59 g, 0.64mmol), bis[2-(diphenylphosphino)phenyl]ether (0.34g, 0.64mmol), sodium tert-butoxide (2.46g, 25.6mmol), and o-xylene (150mL) were added and stirred at 140°C for 48 hours. Stirred for hours. After the reaction, the temperature was returned to room temperature, and impurities were removed using celite. After that, dichloromethane and water were added for extraction. Sodium sulfate was added to the organic layer to dry it, and impurities were removed using column chromatography (hexane:dichloromethane=1:3). After removing the solvent, the solid obtained was recrystallized with dichloromethane and methanol and the obtained 6 was used in the next reaction.
〔7の合成〕
 窒素置換したフラスコに5(6.67g,15.0mmol)、1,5-ジブロモ-2,4-ジフルオロベンゼン(8.16g,30.0mmol)、炭酸カリウム(8.29g,60.0mmol)、およびトリエチレングリコールジメチルエーテル(100mL)を加え、140℃で12時間攪拌した。反応後室温に戻し、ジクロロメタンと水を加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:3)により精製し、白色固体の7(3.33g,32%)を得た。
1H-NMR(400MHz,DMSO-d6,δ): 8.02 (d,J=6.5Hz,1H), 7.30-7.26(m,8H), 7.07-7.04(m,12H), 7.03(t,J=1.1Hz,1H), 6.56(t,J=2.0Hz,1H), 6.36(d,J=2.0Hz,2H)
[Synthesis of 7]
5 (6.67 g, 15.0 mmol), 1,5-dibromo-2,4-difluorobenzene (8.16 g, 30.0 mmol), potassium carbonate (8.29 g, 60.0 mmol), and triethylene glycol dimethyl ether ( 100 mL) was added and stirred at 140° C. for 12 hours. After the reaction, the temperature was returned to room temperature, and extraction was performed by adding dichloromethane and water. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:dichloromethane=1:3) to obtain 7 (3.33 g, 32%) as a white solid.
1 H-NMR (400 MHz, DMSO-d 6 , δ): 8.02 (d, J = 6.5 Hz, 1 H), 7.30-7.26 (m, 8 H), 7.07-7.04 (m, 12 H), 7.03 (t, J =1.1Hz,1H), 6.56(t,J=2.0Hz,1H), 6.36(d,J=2.0Hz,2H)
〔8の合成〕
 窒素置換したフラスコに7(3.05g,4.4mmol)、2(4.54g,10.6mmol)、炭酸カリウム(1.82g,13.2mmol)、およびトリエチレングリコールジメチルエーテル(100mL)を加え、140℃で12時間攪拌した。反応後室温に戻し、ジクロロメタンと水を加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:3)により精製し、白色固体の8(2.14g,44%)を得た。
1H-NMR(400MHz,DMSO-d6,δ): 7.86(s,1H), 7.22-7.17(m,16H), 7.03-6.95(m,24H), 6.61(t,J=2.0Hz,1H), 6.59(s,1H), 6.36-6.35(m,3H),6.00 (d,J=2.0Hz,2H)
[Synthesis of 8]
Add 7 (3.05g, 4.4mmol), 2 (4.54g, 10.6mmol), potassium carbonate (1.82g, 13.2mmol), and triethylene glycol dimethyl ether (100mL) to a flask purged with nitrogen, and stir at 140°C for 12 hours. bottom. After the reaction, the temperature was returned to room temperature, and extraction was performed by adding dichloromethane and water. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:dichloromethane=1:3) to obtain 8 (2.14 g, 44%) as a white solid.
1 H-NMR (400 MHz, DMSO-d 6 , δ): 7.86 (s, 1H), 7.22-7.17 (m, 16H), 7.03-6.95 (m, 24H), 6.61 (t, J=2.0Hz, 1H ), 6.59(s,1H), 6.36-6.35(m,3H),6.00 (d,J=2.0Hz,2H)
〔BOBOの合成〕
 窒素置換したフラスコに3(3.26g,3.00mmol)およびtert-ブチルベンゼン(360mL)を加え、0℃でn-ブチルリチウム(1.6M,5.6mL,9.0mmol)を滴下した。その後、60℃で2時間攪拌した。温度を0℃まで下げて、三臭化ほう素(0.9mL,9.0mmol)を滴下し、90℃で2時間攪拌した。その後、0℃でペンピジン(2.4mL,13.5mmol)を加え、160℃で24時間攪拌した。反応後室温に戻し、水とトルエンを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:2)により精製し、黄色固体のBOBO(0.56g,20%)を得た。
1H-NMR(400MHz,CDCl3,δ): 10.17(s,1H), 9.12(dd,J=7.8,1.5Hz,2H), 7.52-7.44(m,6H), 7.39(t,J=7.5Hz,2H), 7.34(t,J=7.2Hz,2H), 7.31(s,1H), 7.25-7.21(m,12H), 7.13-7.10(m,8H), 7.06(t,J=7.4Hz,4H), 6.80(d,J=8.5Hz,2H), 6.70(d,J=1.8Hz,2H), 5.79(d,J=1.8Hz,2H)
[Synthesis of BOBO]
3 (3.26 g, 3.00 mmol) and tert-butylbenzene (360 mL) were added to a nitrogen-purged flask, and n-butyllithium (1.6 M, 5.6 mL, 9.0 mmol) was added dropwise at 0°C. After that, the mixture was stirred at 60°C for 2 hours. The temperature was lowered to 0°C, boron tribromide (0.9 mL, 9.0 mmol) was added dropwise, and the mixture was stirred at 90°C for 2 hours. After that, penpidine (2.4 mL, 13.5 mmol) was added at 0°C, and the mixture was stirred at 160°C for 24 hours. After the reaction, the temperature was returned to room temperature, and water and toluene were added for extraction. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:dichloromethane=1:2) to obtain BOBO (0.56 g, 20%) as a yellow solid.
1 H-NMR (400 MHz, CDCl 3 , δ): 10.17 (s, 1H), 9.12 (dd, J = 7.8, 1.5 Hz, 2H), 7.52-7.44 (m, 6H), 7.39 (t, J = 7.5 Hz,2H), 7.34(t,J=7.2Hz,2H), 7.31(s,1H), 7.25-7.21(m,12H), 7.13-7.10(m,8H), 7.06(t,J=7.4Hz ,4H), 6.80(d,J=8.5Hz,2H), 6.70(d,J=1.8Hz,2H), 5.79(d,J=1.8Hz,2H)
〔BOBSの合成〕
 窒素置換したフラスコに8(1.89g,1.70mmol)およびtert-ブチルベンゼン(250mL)を加え、-10℃でn-ブチルリチウム(1.6M,4.7mL,7.48mmol)を滴下した。その後、60℃で3時間攪拌した。温度を-10℃まで下げて、三臭化ほう素(0.4mL,4.10mmol)を滴下し、室温で2時間攪拌した。その後、ペンピジン(1.2mL,6.80mmol)を加え、170℃で12時間攪拌した。反応後室温に戻し、水とジクロロメタンを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:3)により精製し、黄色固体のBOBS(0.33g,20%)を得た。
1H-NMR(400MHz,DMSO-d6,δ): 9.83 (s,1H), 8.85(d,J=7.8Hz,1H), 8.73(d,J=6.8Hz,1H), 7.62(s,1H), 7.61-7.52(m,6H), 7.50-7.45(m,2H), 7.39-7.25(m,14H), 7.19-7.08(m,12H), 6.75-6.69(m,3H), 6.36(d,J=1.8Hz,1H), 5.93(d,J=2.0Hz,1H), 5.73(d,J=2.0Hz,1H)
[Synthesis of BOBS]
8 (1.89 g, 1.70 mmol) and tert-butylbenzene (250 mL) were added to a nitrogen-purged flask, and n-butyl lithium (1.6 M, 4.7 mL, 7.48 mmol) was added dropwise at -10°C. After that, the mixture was stirred at 60°C for 3 hours. The temperature was lowered to -10°C, boron tribromide (0.4 mL, 4.10 mmol) was added dropwise, and the mixture was stirred at room temperature for 2 hours. After that, penpidine (1.2 mL, 6.80 mmol) was added and stirred at 170°C for 12 hours. After the reaction, the temperature was returned to room temperature, and water and dichloromethane were added for extraction. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:dichloromethane=1:3) to obtain BOBS (0.33 g, 20%) as a yellow solid.
1 H-NMR (400 MHz, DMSO-d 6 , δ): 9.83 (s, 1H), 8.85 (d, J = 7.8 Hz, 1H), 8.73 (d, J = 6.8 Hz, 1H), 7.62 (s, 1H), 7.61-7.52(m,6H), 7.50-7.45(m,2H), 7.39-7.25(m,14H), 7.19-7.08(m,12H), 6.75-6.69(m,3H), 6.36( d,J=1.8Hz,1H), 5.93(d,J=2.0Hz,1H), 5.73(d,J=2.0Hz,1H)
〔BSBSの合成〕
 窒素置換したフラスコに6(1.91g,1.70mmol)およびtert-ブチルベンゼン(250mL)を加え、-10℃でn-ブチルリチウム(1.6M,4.7mL,7.57mmol)を滴下した。その後、60℃で3時間攪拌した。温度を-10℃まで下げて、三臭化ほう素(0.4mL,4.13mmol)を滴下し、室温で2時間攪拌した。その後、ペンピジン(1.2mL,6.88mmol)を加え、170℃で12時間攪拌した。反応後室温に戻し、水とジクロロメタンを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:3)により精製し、黄色固体のBSBS(0.23g,14%)を得た。
1H-NMR(400MHz,DMSO-d6,δ): 9.63(s,1H), 8.71(d,J=7.5Hz,2H), 7.88(s,1H), 7.59-7.44(m,8H), 7.34-7.29(m,14H), 7.15(t,J=7.4Hz,4H), 7.09(d,J=7.5Hz,8H), 6.70-6.68(m,4H), 5.91(d,J=1.8Hz,2H)
[Synthesis of BSBS]
6 (1.91 g, 1.70 mmol) and tert-butylbenzene (250 mL) were added to a flask purged with nitrogen, and n-butyllithium (1.6 M, 4.7 mL, 7.57 mmol) was added dropwise at -10°C. After that, the mixture was stirred at 60°C for 3 hours. The temperature was lowered to -10°C, boron tribromide (0.4 mL, 4.13 mmol) was added dropwise, and the mixture was stirred at room temperature for 2 hours. After that, penpidine (1.2 mL, 6.88 mmol) was added and stirred at 170°C for 12 hours. After the reaction, the temperature was returned to room temperature, and water and dichloromethane were added for extraction. The organic layer was dried by adding sodium sulfate and purified by column chromatography (hexane:dichloromethane=1:3) to obtain BSBS (0.23 g, 14%) as a yellow solid.
1 H-NMR (400 MHz, DMSO-d 6 , δ): 9.63 (s, 1H), 8.71 (d, J = 7.5 Hz, 2H), 7.88 (s, 1H), 7.59-7.44 (m, 8H), 7.34-7.29(m,14H), 7.15(t,J=7.4Hz,4H), 7.09(d,J=7.5Hz,8H), 6.70-6.68(m,4H), 5.91(d,J=1.8Hz ,2H)
 発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、分光放射輝度計(コニカミノルタ社製:CS-2000)、分光蛍光光度計(日本分光社製:FP-8600)、および100mmΦ積分球(日本分光社製:ILF-835)を用いて行った。 Emission characteristics were evaluated using a source meter (manufactured by Keithley: 2400 series), a spectral radiance meter (manufactured by Konica Minolta: CS-2000), a spectrofluorometer (manufactured by JASCO Corporation: FP-8600), and 100 mmΦ integration. A ball (ILF-835 manufactured by JASCO Corporation) was used.
(例2)
 窒素雰囲気のグローブボックス中で、BOBO、BOBS若しくはBSBSの10-5Mトルエン溶液をそれぞれ調製した。これらの溶液についてPLスペクトルを測定した。その結果を表1に示す。図1に吸収スペクトルを示す。図2にPLスペクトルを示す。図3に過渡PL特性を示す。図3中の「IRF」は装置応答関数を示す。
(Example 2)
A 10 −5 M toluene solution of BOBO, BOBS or BSBS was prepared in a nitrogen atmosphere glove box. PL spectra were measured for these solutions. Table 1 shows the results. FIG. 1 shows the absorption spectrum. FIG. 2 shows the PL spectrum. FIG. 3 shows transient PL characteristics. "IRF" in FIG. 3 indicates the device response function.
BOBO:
Figure JPOXMLDOC01-appb-C000154
BOBO:
Figure JPOXMLDOC01-appb-C000154
BOBS:
Figure JPOXMLDOC01-appb-C000155
BOBS:
Figure JPOXMLDOC01-appb-C000155
BSBS:
Figure JPOXMLDOC01-appb-C000156
BSBS:
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000157
(例3)
 インジウム・スズ酸化物(ITO)からなる陽極(50nm厚)が形成されたガラス基板上に、10nm厚の2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HAT―CN)膜、40nm厚の1,1-ビス[4-[N,N-ジ(p-トリル)アミノ]フェニル]シクロヘキサン(TAPC)膜、10nm厚のmMCP膜、20nm厚の3重量%BOBO:mCBP膜、10nm厚の2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]フラン(PPF)膜、40nm厚の1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン(B3PyPB)膜をこの順で真空蒸着法(5.0×10-4Pa以下)によって積層させた。
(Example 3)
2,3,6,7,10,11-Hexacyano-1,4,5,8,9 with a thickness of 10 nm was deposited on a glass substrate on which an anode (50 nm thickness) made of indium tin oxide (ITO) was formed. , 12-hexaazatriphenylene (HAT-CN) film, 40 nm thick 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane (TAPC) film, 10 nm thick mMCP film. , 20 nm thick 3 wt% BOBO:mCBP film, 10 nm thick 2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF) film, 40 nm thick 1,3-bis[3,5-di (Pyridin-3-yl)phenyl]benzene (B3PyPB) films were laminated in this order by a vacuum deposition method (5.0×10 −4 Pa or less).
 次いで、1nm厚の8-ヒドロキシキノリトリチウム膜、および100nm厚のアルミニウム膜をこの順で真空蒸着法にて積層させることにより陰極を形成させて、有機エレクトロルミネッセンス素子を得た。
 有機エレクトロルミネッセンス素子の特性を測定した。表2に発光特性を示す。図4にELスペクトルを示す。図5に電圧-電流密度-輝度特性を示す。図6に輝度-外部量子効率特性を示す。
Next, an 8-hydroxyquinolitritium film with a thickness of 1 nm and an aluminum film with a thickness of 100 nm were laminated in this order by a vacuum vapor deposition method to form a cathode to obtain an organic electroluminescence device.
The properties of the organic electroluminescence device were measured. Table 2 shows the emission characteristics. FIG. 4 shows the EL spectrum. FIG. 5 shows voltage-current density-luminance characteristics. FIG. 6 shows luminance-external quantum efficiency characteristics.
(例4)
 インジウム・スズ酸化物(ITO)からなる陽極(50nm厚)が形成されたガラス基板上に、10nm厚の2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HAT―CN)膜、40nm厚の1,1-ビス[4-[N,N-ジ(p-トリル)アミノ]フェニル]シクロヘキサン(TAPC)膜、10nm厚のmMCP膜、30nm厚の3重量%BOBS:mCBP膜、10nm厚の2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]フラン(PPF)膜、30nm厚の1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン(B3PyPB)膜をこの順で真空蒸着法(5.0×10-4Pa以下)によって積層させた。
(Example 4)
2,3,6,7,10,11-Hexacyano-1,4,5,8,9 with a thickness of 10 nm was deposited on a glass substrate on which an anode (50 nm thickness) made of indium tin oxide (ITO) was formed. , 12-hexaazatriphenylene (HAT-CN) film, 40 nm thick 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane (TAPC) film, 10 nm thick mMCP film. , 30 nm thick 3 wt% BOBS:mCBP film, 10 nm thick 2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF) film, 30 nm thick 1,3-bis[3,5-di (Pyridin-3-yl)phenyl]benzene (B3PyPB) films were laminated in this order by a vacuum deposition method (5.0×10 −4 Pa or less).
 次いで、1nm厚の8-ヒドロキシキノリトリチウム膜、および100nm厚のアルミニウム膜をこの順で真空蒸着法にて積層させることにより陰極を形成させて、有機エレクトロルミネッセンス素子を得た。
 有機エレクトロルミネッセンス素子の特性を測定した。表2に発光特性を示す。図4にELスペクトルを示す。図5に電圧-電流密度-輝度特性を示す。図6に輝度-外部量子効率特性を示す。
Next, an 8-hydroxyquinolitritium film with a thickness of 1 nm and an aluminum film with a thickness of 100 nm were laminated in this order by a vacuum vapor deposition method to form a cathode to obtain an organic electroluminescence device.
The properties of the organic electroluminescence device were measured. Table 2 shows the emission characteristics. FIG. 4 shows the EL spectrum. FIG. 5 shows voltage-current density-luminance characteristics. FIG. 6 shows luminance-external quantum efficiency characteristics.
(例5)
 インジウム・スズ酸化物(ITO)からなる陽極(50nm厚)が形成されたガラス基板上に、10nm厚の2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HAT―CN)膜、40nm厚の1,1-ビス[4-[N,N-ジ(p-トリル)アミノ]フェニル]シクロヘキサン(TAPC)膜、10nm厚のmMCP膜、30nm厚の3重量%BSBS:mCBP膜、10nm厚の2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]フラン(PPF)膜、30nm厚の1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン(B3PyPB)膜をこの順で真空蒸着法(5.0×10-4Pa以下)によって積層させた。
(Example 5)
2,3,6,7,10,11-Hexacyano-1,4,5,8,9 with a thickness of 10 nm was deposited on a glass substrate on which an anode (50 nm thickness) made of indium tin oxide (ITO) was formed. , 12-hexaazatriphenylene (HAT-CN) film, 40 nm thick 1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane (TAPC) film, 10 nm thick mMCP film. , 30 nm thick 3 wt% BSBS:mCBP film, 10 nm thick 2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF) film, 30 nm thick 1,3-bis[3,5-di (Pyridin-3-yl)phenyl]benzene (B3PyPB) films were laminated in this order by a vacuum deposition method (5.0×10 −4 Pa or less).
 次いで、1nm厚の8-ヒドロキシキノリトリチウム膜、および100nm厚のアルミニウム膜をこの順で真空蒸着法にて積層させることにより陰極を形成させて、有機エレクトロルミネッセンス素子を得た。
 有機エレクトロルミネッセンス素子の特性を測定した。表2に発光特性を示す。図4にELスペクトルを示す。図5に電圧-電流密度-輝度特性を示す。図6に輝度-外部量子効率特性を示す。
Next, an 8-hydroxyquinolitritium film with a thickness of 1 nm and an aluminum film with a thickness of 100 nm were laminated in this order by a vacuum vapor deposition method to form a cathode to obtain an organic electroluminescence device.
The properties of the organic electroluminescence device were measured. Table 2 shows the emission characteristics. FIG. 4 shows the EL spectrum. FIG. 5 shows voltage-current density-luminance characteristics. FIG. 6 shows luminance-external quantum efficiency characteristics.
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000158
 本発明の発光素子は、狭帯域の青色の光を高い外部量子効率で発した。 The light-emitting device of the present invention emitted narrow-band blue light with high external quantum efficiency.
 発光特性に優れる新規なホウ素含有化合物、発光材料およびそれを用いた発光素子を提供することができる。 A novel boron-containing compound, a light-emitting material, and a light-emitting device using the same can be provided that have excellent light-emitting properties.

Claims (3)

  1.  式(I)で表される化合物を含む発光材料。
    Figure JPOXMLDOC01-appb-C000001
    〔式(I)中、
     Xは、N-R、OまたはSであり、
     Rは、水素原子または炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
     R1、R2、R3、R4、R5、R6、R7およびR8はそれぞれ独立して炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
     mはそれぞれ独立して0~5のいずれかの整数であり、且つ
     nはそれぞれ独立して0~4のいずれかの整数である。〕
    A luminescent material containing a compound represented by formula (I).
    Figure JPOXMLDOC01-appb-C000001
    [In formula (I),
    X is NR, O or S;
    R is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms,
    R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
    Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
  2.  請求項1に記載の発光材料を含有する発光素子。 A light-emitting device containing the light-emitting material according to claim 1.
  3.  式(II)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002
    〔式(II)中、
     R1、R2、R3、R4、R5、R6、R7およびR8はそれぞれ独立して炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、
     mはそれぞれ独立して0~5のいずれかの整数であり、且つ
     nはそれぞれ独立して0~4のいずれかの整数である。〕
    A compound represented by formula (II).
    Figure JPOXMLDOC01-appb-C000002
    [In formula (II),
    R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms,
    Each m is independently an integer of 0 to 5, and each n is independently an integer of 0 to 4. ]
PCT/JP2022/026819 2021-07-16 2022-07-06 Boron-containing compound, light-emitting material and light-emitting element using same WO2023286670A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247000176A KR20240035434A (en) 2021-07-16 2022-07-06 Boron-containing compounds, light-emitting materials, and light-emitting devices using them
CN202280048666.7A CN117616101A (en) 2021-07-16 2022-07-06 Boron-containing compound, light-emitting material, and light-emitting element using the same
JP2023535264A JPWO2023286670A1 (en) 2021-07-16 2022-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-118345 2021-07-16
JP2021118345 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023286670A1 true WO2023286670A1 (en) 2023-01-19

Family

ID=84920092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026819 WO2023286670A1 (en) 2021-07-16 2022-07-06 Boron-containing compound, light-emitting material and light-emitting element using same

Country Status (5)

Country Link
JP (1) JPWO2023286670A1 (en)
KR (1) KR20240035434A (en)
CN (1) CN117616101A (en)
TW (1) TWI819690B (en)
WO (1) WO2023286670A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (en) * 2014-02-18 2015-07-09 学校法人関西学院 Polycyclic aromatic compound
WO2018212169A1 (en) * 2017-05-16 2018-11-22 学校法人関西学院 Polycyclic aromatic compound
US20190115538A1 (en) * 2017-10-16 2019-04-18 Samsung Display Co., Ltd. Organic light-emitting device and flat display apparatus including the same
WO2020101001A1 (en) * 2018-11-15 2020-05-22 学校法人関西学院 Organic electroluminescence element, display device, and lighting device
US20200395550A1 (en) * 2019-06-13 2020-12-17 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US20210126196A1 (en) * 2019-10-28 2021-04-29 Samsung Display Co., Ltd. Compound and light-emitting device including the same
US20210159411A1 (en) * 2019-11-25 2021-05-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US20210184123A1 (en) * 2019-12-13 2021-06-17 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
US20220115595A1 (en) * 2020-10-06 2022-04-14 Samsung Display Co., Ltd. Light emitting device
US20220140243A1 (en) * 2020-11-04 2022-05-05 Samsung Display Co., Ltd. Light emitting device
US20220181551A1 (en) * 2020-12-08 2022-06-09 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US20220209117A1 (en) * 2020-12-30 2022-06-30 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210050537A (en) 2018-08-23 2021-05-07 가꼬우 호징 관세이 가쿠잉 Organic electroluminescent device, display device, lighting device, composition for forming light emitting layer, and compound

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (en) * 2014-02-18 2015-07-09 学校法人関西学院 Polycyclic aromatic compound
WO2018212169A1 (en) * 2017-05-16 2018-11-22 学校法人関西学院 Polycyclic aromatic compound
US20190115538A1 (en) * 2017-10-16 2019-04-18 Samsung Display Co., Ltd. Organic light-emitting device and flat display apparatus including the same
WO2020101001A1 (en) * 2018-11-15 2020-05-22 学校法人関西学院 Organic electroluminescence element, display device, and lighting device
US20200395550A1 (en) * 2019-06-13 2020-12-17 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US20210126196A1 (en) * 2019-10-28 2021-04-29 Samsung Display Co., Ltd. Compound and light-emitting device including the same
US20210159411A1 (en) * 2019-11-25 2021-05-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US20210184123A1 (en) * 2019-12-13 2021-06-17 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
US20220115595A1 (en) * 2020-10-06 2022-04-14 Samsung Display Co., Ltd. Light emitting device
US20220140243A1 (en) * 2020-11-04 2022-05-05 Samsung Display Co., Ltd. Light emitting device
US20220181551A1 (en) * 2020-12-08 2022-06-09 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US20220209117A1 (en) * 2020-12-30 2022-06-30 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK IN SEOB, YANG MINLANG, SHIBATA HIROMOTO, AMANOKURA NATSUKI, YASUDA TAKUMA: "Achieving Ultimate Narrowband and Ultrapure Blue Organic Light‐Emitting Diodes Based on Polycyclo‐Heteraborin Multi‐Resonance Delayed‐Fluorescence Emitters", ADVANCED MATERIALS, vol. 34, no. 9, 1 March 2022 (2022-03-01), DE , pages 1 - 9, XP093024481, ISSN: 0935-9648, DOI: 10.1002/adma.202107951 *

Also Published As

Publication number Publication date
CN117616101A (en) 2024-02-27
KR20240035434A (en) 2024-03-15
TW202304940A (en) 2023-02-01
JPWO2023286670A1 (en) 2023-01-19
TWI819690B (en) 2023-10-21

Similar Documents

Publication Publication Date Title
KR102005723B1 (en) Organic electroluminescent element
KR101719173B1 (en) Organic electroluminescent element
KR101838675B1 (en) Organic electroluminescent element
JP4830750B2 (en) Light emitting device material and light emitting device
KR101800869B1 (en) Organic electroluminescent element
JP5723764B2 (en) Organic electroluminescence device
KR101707799B1 (en) Organic electroluminescent element
TWI464231B (en) Light emitting element material and light emitting element
JP6051864B2 (en) Light emitting device material and light emitting device
KR101768763B1 (en) Heterocyclic compounds and organic electroluminescent devices using the same
KR20160089693A (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
KR20110071061A (en) Organoselenium materials and their uses in organic light emitting devices
WO2011049063A1 (en) Organic electroluminescent element
KR20150063462A (en) Compound for organic electroluminescent elements, and organic electroluminescent element
KR20110113469A (en) Heterocyclic compounds and organic light-emitting diode including the same
WO2017033927A1 (en) Organic electroluminescent element
KR20130079890A (en) Novel compound and organic light emitting device containing same
TW201840811A (en) Organic electroluminescent device
JP2008159843A (en) Light-emitting element material and light-emitting element
WO2014024750A1 (en) Light emitting element material and light emitting element
TWI795042B (en) Boron-containing compound, light-emitting material and light-emitting element using the same
WO2023286670A1 (en) Boron-containing compound, light-emitting material and light-emitting element using same
JP2008184566A (en) Luminescent element material and luminescent element
JP7285663B2 (en) Triazine compound having a 2'-arylbiphenylyl group
WO2024071332A1 (en) Compound, organic electroluminescent element, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535264

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280048666.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE