WO2023286657A1 - Wavelength measurement device and wavelength measurement method - Google Patents

Wavelength measurement device and wavelength measurement method Download PDF

Info

Publication number
WO2023286657A1
WO2023286657A1 PCT/JP2022/026693 JP2022026693W WO2023286657A1 WO 2023286657 A1 WO2023286657 A1 WO 2023286657A1 JP 2022026693 W JP2022026693 W JP 2022026693W WO 2023286657 A1 WO2023286657 A1 WO 2023286657A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
led chip
reading
measurement
Prior art date
Application number
PCT/JP2022/026693
Other languages
French (fr)
Japanese (ja)
Inventor
亮 大木
祐亮 平尾
明 小坂
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202280049869.8A priority Critical patent/CN117651850A/en
Priority to KR1020247004298A priority patent/KR20240027128A/en
Priority to JP2023535257A priority patent/JPWO2023286657A1/ja
Publication of WO2023286657A1 publication Critical patent/WO2023286657A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array

Definitions

  • the present invention relates to a wavelength measuring device and wavelength measuring method for measuring a representative wavelength of an LED (light emitting diode) chip.
  • backlight LEDs used in displays such as televisions have their emission colors strictly controlled, as variations in color can cause deterioration in image quality, such as color unevenness on the display. For this reason, a so-called binning process, in which the wavelength of each LED chip is measured and classified by color, has been conventionally performed.
  • Wavelength measurement of an LED chip involves splitting the light emitted from the LED chip into different wavelengths, receiving the split light of each wavelength with a plurality of pixels of the light receiving sensor, and reading out the signal from each pixel that received the light.
  • signal readout is performed for pixels of all spectrally separated wavelengths, so the time required for signal readout increases, and it is difficult to shorten the wavelength measurement time.
  • a CCD (Charge Coupled Device) detector including a plurality of light receiving elements arranged two-dimensionally, an optical system for dispersing incident light and irradiating it on the CCD detector, and the plurality of light receiving elements
  • An optical spectrum measuring apparatus includes a limiting section that limits irradiation of light from the optical system to at least one of some rows of each row and some columns of each column of elements.
  • At least one of the number of rows and columns irradiated with light can be reduced. It is said that the time required for the charge acquisition process can be shortened.
  • the present invention has been made in view of such a technical background, and provides a wavelength measurement device that does not require a physical restriction unit for restricting light irradiation and that can shorten the measurement time of the representative wavelength of an LED chip.
  • An object is to provide an apparatus and a wavelength measurement method.
  • spectroscopy means for spectroscopy the light emitted by the excited LED chip; a light-receiving means having a plurality of pixels for receiving the light separated by the spectroscopic means for each wavelength; a plurality of reading means corresponding to each of the plurality of pixels and reading a signal from each pixel; computing means for computing a representative wavelength of the LED chip based on a signal read by some of the plurality of reading means; Wavelength measurement device with (2) The wavelength measuring apparatus according to (1) above, wherein the partial readout means forms one readout means group, and there are a plurality of readout means groups.
  • the computing means Prior to the main measurement, acquires the spectrum information of the LED chip based on the signals read by all the reading means, and from the acquired spectrum information, a part of the readout of the signal in the main measurement 3.
  • the computing means acquires the spectrum information of the LED chip based on the signals read by all the reading means prior to the main measurement, and from the acquired spectrum information, the read means group for reading out the signals in the main measurement.
  • the wavelength measuring device according to the preceding item 2 to be selected.
  • the light receiving means is an area sensor; Each pixel in one pixel row of the area sensor receives light from a plurality of regions within the light emitting surface of the LED chip, and each pixel in the other pixel row orthogonal to the one pixel row receives light from each of the regions. 5.
  • the wavelength measuring device according to any one of the preceding items 1 to 4, which receives the light emitted from and dispersed by each wavelength.
  • the wavelength measuring device according to the preceding item 5, wherein the computing means averages signals from a plurality of regions within the light emitting surface of the LED chip.
  • the wavelength measuring device according to any one of the preceding items 1 to 9, comprising a light source section that excites the LED chip to emit light.
  • the light receiving means and the reading means are composed of CMOS sensors.
  • a spectroscopic step of spectroscopically dispersing the light emitted by the excited LED chip with spectroscopic means a light-receiving step of receiving the light split by the splitting step by a plurality of pixels for each wavelength; a reading step of reading out the signals by some reading means among a plurality of reading means corresponding to the plurality of pixels and reading signals from the respective pixels; a computing step of computing a representative wavelength of the LED chip based on the signal read out by the reading step; Wavelength measurement method including.
  • the spectrum information of the LED chip is obtained based on the signals read by all the reading means, and from the obtained spectrum information, the signal in the main measurement is read out. 14.
  • the spectrum information of the LED chip is obtained based on the signals read by all the reading means, and from the obtained spectrum information, a reading means group for reading the signal in the main measurement 14. The wavelength measurement method according to 13 above.
  • the light receiving means is an area sensor; Each pixel in one pixel row of the area sensor receives light from a plurality of regions within the light emitting surface of the LED chip, and each pixel in the other pixel row orthogonal to the one pixel row receives light from each of the regions. 16.
  • the light emitted by the excited LED chip is separated by the spectroscopic means and received for each wavelength by the light receiving means having a plurality of pixels.
  • the readout means read the signals of the pixels. Then, the representative wavelength of the LED chip is calculated by the calculating means based on the read signal.
  • the emission colors of the LED chip are red (R), green (G), and blue (B), and the wavelength range required for measuring each representative wavelength is generally limited. No signal acquisition is required. For example, when measuring an LED chip for red color, it is sufficient to acquire signals in the 550 to 700 nm region. Therefore, there is no problem even if the signal from the pixel is read out by restricting the wavelength region, and the advantage of shortening the wavelength measurement time due to the shortening of the readout time can be enjoyed.
  • the LED chip is excited by the excitation light and emits light, it is necessary to eliminate the influence of the excitation light. There is also an effect that can be done.
  • some of the reading means form one reading means group, and there are a plurality of reading means groups. can read out signals in the respective limited wavelength regions.
  • the computing means acquires the spectral information of the LED chip based on the signals read by all the reading means, and from the acquired spectral information , it is possible to accurately set a part of reading means for reading signals in the main measurement.
  • the computing means acquires the spectral information of the LED chip based on the signals read by all the reading means, and from the acquired spectral information , the reading means group for reading the signal in the main measurement can be selected with high accuracy.
  • each pixel in one pixel row of the area sensor receives light from a plurality of regions in the light emitting surface of the LED chip, Each pixel in the other orthogonal pixel row receives the light emitted from each region and separated for each wavelength, thereby separating the light from the plurality of regions within the light emitting surface of the LED chip for each wavelength. can receive light.
  • the computing means averages the signals from a plurality of regions within the light emitting surface of the LED chip, so that the setting of the reading means for reading the signals is performed with high accuracy. be able to.
  • the light emitting surface of the LED chip it can receive light from a two-dimensional region within.
  • At least one of the emission peak wavelength, the centroid wavelength, and the central wavelength can be obtained as the representative wavelength.
  • the light source section can excite the LED chip to emit light.
  • the light receiving means and the reading means are composed of CMOS sensors. Readout can be realized.
  • FIG. 1 is a block diagram showing the configuration of a wavelength measuring device according to one embodiment of the present invention
  • FIG. 2 is a perspective view showing a specific configuration of part of the wavelength measurement device of FIG. 1
  • It is a circuit diagram which shows the structural example of a CMOS sensor.
  • FIG. 4 is an explanatory diagram for setting a wavelength readout range;
  • FIG. 4 is a diagram for explaining the relationship between a plurality of LED chips on the object to be measured and the pixel size of the light receiving means; It is a figure for demonstrating the determination example of the wavelength read-out range in this measurement.
  • FIG. 10 is a diagram for explaining another example of determination of the wavelength readout range in the main measurement;
  • (A), (B), and (C) are explanatory diagrams for setting the reading unit group.
  • the light received from the surface of the object to be measured the light of any wavelength, for example, the wavelength with the maximum brightness among the data of the pixel group in the appropriate area containing the measurement data of a plurality of LED chips
  • FIG. 4 is a diagram schematically showing only the data of ⁇ extracted;
  • (A) is a diagram showing a state in which measurement data for each pixel is separated for each LED chip,
  • (B) is a diagram for explaining a method of calculating a representative wavelength, and
  • (C) is an enlarged view of (B). .
  • 4 is a spectrum graph plotting the value of one pixel for each wavelength for data regions of a plurality of LED chips; It is the graph which calculated the average value of 9 pixels for every wavelength about the data area
  • FIG. 1 is a block diagram showing the configuration of a wavelength measuring device according to one embodiment of the present invention.
  • the measurement object 100 is a wafer on which a plurality of LED chips are formed will be described.
  • the light source 1 for excitation irradiates a plurality of LED chips on the measurement object 100 with excitation light to excite the plurality of LED chips to emit light.
  • the spectroscopic section 3 separates the light from each LED chip that has passed through the objective lens 2 into wavelengths, and the imaging lens 4 forms an image of the light of each wavelength separated by the spectroscopic section 3 on the area sensor 5 .
  • the light is split into respective wavelengths at a wavelength pitch of 5 nm.
  • the area sensor 5 corresponds to light receiving means, and includes a plurality of pixels 51 arranged vertically and horizontally as shown in FIG.
  • the horizontal direction of the area sensor 5 (space X direction in FIG. 2) means the horizontal direction of the physical space, and each horizontal pixel 51 corresponds to the horizontal region of the measurement object 100 .
  • the vertical direction of the area sensor 5 (wavelength Z direction in FIG. 2) corresponds to the wavelength of light. That is, each pixel 51 in the pixel row in the spatial X direction corresponds to a plurality of regions (row regions) 100a in the one-dimensional direction of the object 100 to be measured.
  • the measurement object 100 is moved (scanned) in the Z1 direction orthogonal to the row region 100a in the one-dimensional direction.
  • the wavelength measurement device including the area sensor 5 may be moved in the wavelength Z direction orthogonal to the space X direction in FIG. may be moved with a speed difference, in short, at least one of the measurement object 100 and the wavelength measurement device should be moved relative to the other.
  • the measurement object 100 Each time the measurement object 100 is relatively moved, the row regions 100a of the measurement object 100 are switched, and a plurality of frames of spectral data are obtained with the spectral data of each row region 100a as one frame, and accumulated as a spectral data cube. To go.
  • the measurement object 100 LED chip 101
  • the measurement object 100 is to be moved, and as shown in FIG. ing.
  • the plane of the measurement object 100 as described above is divided into regions each having a size corresponding to each pixel 51 of the area sensor 5 , and the light from each region is spectrally separated by each pixel 51 of the area sensor 5 .
  • a technique for obtaining spectral data by receiving light and repeating this while moving at least one of the measurement object 100 and the wavelength measurement device relative to the other is called a push bloom method, and can be used, for example, as a hyperspectral camera. It is publicly known.
  • the area sensor 5 is a sensor that has a plurality of readout units that read out signals from respective pixels and that can designate a readout range, and uses, for example, a CMOS sensor.
  • the area sensor is hereinafter also referred to as a CMOS sensor.
  • a configuration example of the CMOS sensor 5 is schematically shown in FIG.
  • each pixel 51 includes a light receiving element 511 such as a photodiode, an amplifier 512 that converts and amplifies the charge accumulated by the light receiving element 511 into a voltage, and a pixel selection switch 513.
  • a pixel selection switch 513 of each pixel 51 is connected to a corresponding vertical signal line 52 among a plurality of vertical signal lines 52 arranged for each column of pixels 51 .
  • the vertical signal line 52 is connected to the horizontal signal line 55 via the CDS circuit 53 and the column selection switch 54 .
  • the pixel selection switch 513 of the pixel 51 from which the signal is to be read is turned on to connect the light receiving element 511 and the vertical signal line 52, and the vertical signal line 52 is connected to the horizontal signal line 55 by turning on the column selection switch 54.
  • the signal of the selected pixel 51 can be read out through the vertical signal line 52 and the horizontal signal line 55 . That is, the pixel selection switch 513 of each pixel 51, the vertical signal line 52 common to the plurality of pixels 51, the horizontal signal line 55, the column selection switch 54, and the like form a signal readout portion of each pixel 51, and the signal readout is performed.
  • a signal of an arbitrary pixel 51 can be read out by controlling the unit.
  • a readout range W2 is set from the entire readout area W1 in the wavelength Z direction of the area sensor 5, and the readout portions of the plurality of pixels 51 existing within the set readout range W2 are determined. By setting them as one readout unit group, it is possible to read out only the signals of the wavelengths in the specified range W2 among the wavelengths spectroscopically separated by the spectroscopic unit 3 .
  • Measured data which are signals output from the plurality of pixels 51 of the area sensor 5 with a designated readout range, are converted to digital data through a current/voltage (IV) conversion circuit and an analog/digital (AD) conversion circuit (not shown) as necessary. It is converted into a signal and sent to the calculation unit 6 . Using the sent measurement data, the computing unit 6 computes the representative wavelength for each of the plurality of LED chips on the object to be measured by the CPU or the like. The details of the method of calculating the representative wavelength will be described later.
  • the measurement result display unit 7 displays the calculation result by the calculation unit 6. Note that the calculation unit 6 may convert the measurement data output from the area sensor 5 into a digital signal.
  • the computing unit 6 may be a dedicated device, or may be configured by a personal computer. Moreover, the measurement data output from the area sensor 5 and processed into a digital signal may be sent to the calculation unit 6 via a network. In this case, the representative wavelength of the LED chip can be measured even if the computing unit 6 is located away from the measurement location.
  • FIG. 5 is a diagram for explaining the relationship between the plurality of LED chips 101 on the measurement object 100 and the size of the pixels 51 of the area sensor 5.
  • FIG. The horizontal axis of the fine grid in FIG. 5 is the spatial X direction, and the vertical axis is the spatial Y direction produced by scanning the LED chip 101 in the wavelength Z direction.
  • the size of one grid is the measurement area and corresponds to the size of the pixel 51 .
  • the LED chips 101 are displayed as rectangles and arranged vertically and horizontally on the measurement object 100 . Also, the rectangular area becomes the light emitting surface of each LED chip 101 as it is.
  • the light emitted from a plurality of regions of a size corresponding to the pixels 51 on the light emitting surface of one LED chip 101 is obtained so that data can be obtained with a plurality of pixels 51 for the light emitting surface of one LED chip 101.
  • pre-measurement is performed to determine the readout range in the wavelength Z direction, in other words, the wavelength region to be readout.
  • signals for one line in the spatial X direction that is, measurement data for one frame are read from pixels corresponding to all wavelength ranges (380 to 780 nm) (all pixels in the wavelength Z direction in FIGS. 2 and 4).
  • the read measurement data for one frame is spectrum data (brightness data at each wavelength) with a wavelength pitch of 5 nm.
  • the wavelength ⁇ 0 of the pixel 51 having the maximum brightness is determined from the data of the pixel group of the suitable partial area containing the plurality of LED chips 101 .
  • ⁇ 0 may be the average of the wavelengths of a plurality of pixels 51 with the highest brightness, instead of the wavelength of the pixel 51 having the highest brightness. Averaging the wavelengths increases the accuracy of the wavelength ⁇ 0.
  • a preset range of, for example, ⁇ 75 nm centered on the wavelength ⁇ 0 thus determined is taken as the readout range, that is, the wavelength range in the main measurement (hereinafter also referred to as the main measurement wavelength range).
  • the main measurement wavelength range As an example, as shown in FIG. 6, when the determined wavelength ⁇ 0 is 626.0 nm, 551 nm to 701 nm, which is 626.0 ⁇ 75 nm, is determined as the main measurement wavelength range. Note that ⁇ 75 nm may be other values.
  • a readout unit group consisting of a part of the readout units that perform readout among all the readout units of the pixels 51 of the area sensor 5 is set.
  • a method of selecting from a plurality of main measurement wavelength ranges prepared in advance based on the determined value of the wavelength ⁇ 0 For example, as shown in FIG. 7, when the LED chip 101 is blue, 390 to 540 nm (center wavelength: 465 nm) is preset as the main measurement wavelength range WB, and when the LED chip 101 is green, 465 to 540 nm is set as the main measurement wavelength range WG. 615 nm (central wavelength: 540 nm) is preset, and in the case of red, 550 to 700 nm (central wavelength: 625 nm) is preset as the main measurement wavelength range WR.
  • the main measurement wavelength range WB of 390 to 540 nm set for blue is selected, and if the value of wavelength ⁇ 0 is close to 540 nm, 465 to 615 nm set for green is selected. is selected, and if the value of the wavelength ⁇ 0 is close to 625 nm, the main measurement wavelength range WR of 550 to 700 nm set for red is selected.
  • a reading unit group for reading out the pixels 51 is set by selecting the main measurement wavelength range. For example, when the main measurement wavelength range WR is determined, as shown in FIG. When the wavelength range WG is determined, as shown in FIG.
  • a reading unit group 50G for reading the measurement data of the plurality of pixels 51 corresponding to the main measurement wavelength range WG is set, and the main measurement wavelength range WB is set.
  • a reading unit group 50B for reading the measurement data of the plurality of pixels 51 corresponding to the main measurement wavelength range WB is set as shown in FIG. 8(C). In this manner, different readout unit groups are set from among the plurality of readout unit groups 50R, 50G, and 50B according to the main measurement wavelength range.
  • the main measurement wavelength ranges WB, WG, and WR may be selected. Also in this case, among the readout unit groups 50R, 50G, and 50B, the readout unit groups 50B, 50G, and 50R corresponding to the main measurement wavelength ranges WB, WG, and WR are set.
  • the main measurement is performed as follows.
  • the excitation light source 1 irradiates the measurement object 100 placed on the table 200 with excitation light, and while the table 200 is moved by the moving device 300, the LED chips 101 on the measurement object 100 emit light.
  • Each pixel 51 of the area sensor 5 receives the emitted light.
  • Light emitted from the LED chip 101 is separated into predetermined wavelengths by the spectroscopic section 3 , and the separated light of each wavelength is received by each pixel 51 .
  • the table 200 is moved after reading out the main measurement wavelength range for one frame of measurement data. If exposure has been completed, the table 200 may be moved during readout or the like.
  • readout of measurement data from the pixels 51 is performed only in the readout unit group set corresponding to the main measurement wavelength range determined in the pre-measurement.
  • the read measurement data is sent to the computing unit 6 and stored in a memory (not shown) within the computing unit 6 .
  • the measurement is performed while moving the measurement object 100 on the table 200 by the moving device 300, and one frame of measurement data is obtained each time it moves (each time it scans). Then, multiple frames of measurement data are obtained for the planar area.
  • the measurement data is read out only for the pixels 51 corresponding to the readout section group, and the measurement data for the wavelengths within the main measurement wavelength range among the spectrally separated wavelengths is obtained.
  • the calculation unit 6 obtains the representative wavelength of each LED chip 101 by calculation.
  • FIG. 9 shows the light of an arbitrary wavelength among the light received from the surface of the measurement object 100, for example, the data of the pixel group in the appropriate area containing the measurement data of the plurality of LED chips 101, the maximum Only the data of the wavelength ⁇ with the brightness of ⁇ are extracted and schematically shown.
  • a black frame 8 shown in FIG. 9 indicates a region corresponding to the light emitting surface of one LED chip 101 .
  • the darkened region 9 has high brightness, and the brightness decreases toward the periphery.
  • each pixel 51 of the area sensor 5 is separated for each LED chip 10 .
  • This separation may be performed, for example, as follows. That is, the wavelength ⁇ with the maximum brightness is obtained from the data of the pixel group in the appropriate area including the measurement data of the plurality of LED chips 101 .
  • each pixel 51 is divided into levels according to brightness, and image processing is performed using a certain brightness level as a threshold value, thereby separating each LED chip 101 .
  • FIG. 10A shows a state in which measurement data for each pixel 51 is separated for each LED chip 101 . In FIG. 10A, it is separated into nine data areas 10a to 10i indicated by black frames.
  • the pixel of interest with the maximum brightness is specified.
  • the maximum value at a certain wavelength is obtained at a target pixel 51a
  • this pixel 51a is It is specified as a pixel of interest.
  • a certain wavelength is a wavelength used only for finding a separate brightness level or a pixel of interest.
  • the wavelength with the maximum brightness, the wavelength with the maximum brightness in the measurement data of the data area for one LED chip, the design wavelength of the LED chip, and the like can be mentioned.
  • the value of the pixel of interest 51a and the value of a certain wavelength obtained from one or a plurality of pixels surrounding the pixel of interest 51a are averaged to obtain spectral data of that wavelength (brightness at that wavelength). data).
  • spectral data of that wavelength (brightness at that wavelength). data).
  • the reason why the pixels to be averaged are the pixels around the target pixel 51a is that the wavelength measurement region of the LED chip 101 is contained within the light emitting surface. value can be obtained. Specifically, by using the values of nine surrounding pixels including the target pixel 51a showing the maximum brightness, it is possible to obtain a value that is sufficiently less affected by variations.
  • FIG. 11 shows four data areas 10b, 10d, 10f, and 10h among the data areas 10a to 10i of the plurality of LED chips 101 shown in FIG. is a spectral graph plotting average values of pixels of .
  • FIG. 12 is a spectral graph plotting the values of only the pixel of interest 51a obtained for each wavelength in four data areas 10b, 10d, 10f, and 10h.
  • the horizontal axis represents wavelength and the vertical axis represents brightness. Comparing both graphs, it can be seen that the value of only the target pixel 51a shown in FIG. 12 has the shape of the spectrum distorted.
  • the brightness values of the target pixel 51a and the surrounding pixels 51b to 51i are averaged for each wavelength as described above, and the representative wavelength is obtained from the obtained average value of each wavelength. Specifically, as shown in FIG. 13, a fitting curve is obtained by Gaussian fitting or the like based on the average value of each wavelength, and the wavelength of the peak value of the fitting curve is taken as the representative wavelength. If the wavelength pitch is small, the wavelength with the largest average value among the average values of the wavelengths may be used as the representative wavelength without fitting.
  • the representative wavelength is calculated from the measurement data.
  • the representative wavelength calculated in this embodiment is the emission peak wavelength, it may be the centroid wavelength, the central wavelength, or the like.
  • the centroid wavelength is a weighted average of wavelengths weighted by the emission spectrum.
  • the centroid wavelength is a value obtained by integrating the product of each wavelength and the light intensity of that wavelength over the entire emission wavelength and dividing the value by integrating the light intensity over the entire emission wavelength.
  • the central wavelength is the average value of two half-value wavelengths that are 3 dB lower than the maximum amplitude on both sides of the peak wavelength.
  • the main measurement wavelength range for reading is determined, and the determined main measurement wavelength Signals are read out by a reading unit group composed of reading units of a part of the pixels 51 set corresponding to the range. Therefore, it is not necessary to read out the signals of all the pixels, so that the readout time can be shortened, the wavelength measurement time can be shortened, and the binning time can be shortened. Moreover, since a physical limiting section for limiting the light reception of the pixels 51 that are not read is not required, the configuration is not complicated.
  • the emission colors of the LED chip 101 are red (R), green (G), and blue (B), and the wavelength range required to measure each representative wavelength is generally limited. is unnecessary, there is no problem even if the signal from the pixel 51 is read out by limiting the wavelength region, and the advantage of shortening the wavelength measurement time due to the shortening of the readout time can be enjoyed.
  • the frame rate indicating the number of frames that can be read out per second is about 520 FPS.
  • the frame rate can be improved to around 920 FPS when the range is limited to 150 nm, and the readout time can be shortened.
  • the LED chip 101 is excited by the excitation light and emits light, it is necessary to eliminate the influence of the excitation light. There are also possible effects.
  • the present invention can be used to measure the representative wavelength of LED chips.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The present invention comprises a light-splitting means (3) that splits light emitted from an excited LED chip (101), a light-receiving means (5) that has a plurality of pixels (51) that receive each wavelength of the light split by the light-splitting means (3), a plurality of readout means (52), (54), (55), (513) that correspond to each of the plurality of pixels (51) and read out signals from each of the pixels, and a computation means (6) that computes a representative wavelength for the LED chip (101) on the basis of the signals read out by a portion of the readout means from among the plurality of readout means.

Description

波長測定装置及び波長測定方法Wavelength measuring device and wavelength measuring method
 この発明は、LED(light emitting diode)チップの代表波長を測定する波長測定装置及び波長測定方法に関する。 The present invention relates to a wavelength measuring device and wavelength measuring method for measuring a representative wavelength of an LED (light emitting diode) chip.
 例えば、テレビ等のディスプレイに使用されるバックライト用LEDは、色味のばらつきがディスプレイの色むら等の画質低下の原因となることから、発光色を厳密に管理される。このため、各LEDチップの波長を測定して色毎に分類する、いわゆるビニングという工程が従来より行われている。 For example, backlight LEDs used in displays such as televisions have their emission colors strictly controlled, as variations in color can cause deterioration in image quality, such as color unevenness on the display. For this reason, a so-called binning process, in which the wavelength of each LED chip is measured and classified by color, has been conventionally performed.
 しかし、例えば一辺100μm以下のマイクロLEDチップのように、LEDチップの大きさが小さくなると、膨大な数のLEDチップの測定が必要となることから、波長測定時間が長くなり、ひいてはビニング工程の時間(ビニング時間)が長くなってしまう。このため、製造効率やコスト面から波長測定時間の短縮が求められている。 However, when the size of the LED chip becomes smaller, for example, a micro LED chip with a side of 100 μm or less, it becomes necessary to measure a huge number of LED chips, resulting in a longer wavelength measurement time, which in turn lengthens the binning process. (Binning time) becomes longer. Therefore, shortening of the wavelength measurement time is required from the standpoint of manufacturing efficiency and cost.
 LEDチップの波長測定は、LEDチップから発光された光を波長毎に分光し、分光された各波長の光を受光センサの複数の画素で受光するとともに、受光した各画素からの信号を読み出すことにより行われる。従来では、分光された全ての波長の画素に対して、信号の読み出しが行われていたため、信号の読み出しに要する時間が長くなり、波長測定時間の短縮を図ることは難しい。 Wavelength measurement of an LED chip involves splitting the light emitted from the LED chip into different wavelengths, receiving the split light of each wavelength with a plurality of pixels of the light receiving sensor, and reading out the signal from each pixel that received the light. performed by Conventionally, signal readout is performed for pixels of all spectrally separated wavelengths, so the time required for signal readout increases, and it is difficult to shorten the wavelength measurement time.
 なお、特許文献1には、2次元配列された複数の受光素子を含むCCD(Charge  Coupled  Device)検出器と、入射光を分光して前記CCD検出器に照射する光学系と、前記複数の受光素子の各行の一部の行および各列の一部の列の少なくともいずれか一方への前記光学系からの光の照射を制限する制限部とを備えた光学スペクトル測定装置が開示されている。 In addition, in Patent Document 1, a CCD (Charge Coupled Device) detector including a plurality of light receiving elements arranged two-dimensionally, an optical system for dispersing incident light and irradiating it on the CCD detector, and the plurality of light receiving elements An optical spectrum measuring apparatus is disclosed that includes a limiting section that limits irradiation of light from the optical system to at least one of some rows of each row and some columns of each column of elements.
 この光学スペクトル測定装置によれば、光が照射される行数および列数の少なくともいずれか一方を減らすことができるので、光の照射先を制限しない構成と比べて、各受光素子において生成された電荷の取得処理に要する時間を短縮することができるとされている。 According to this optical spectrum measurement device, at least one of the number of rows and columns irradiated with light can be reduced. It is said that the time required for the charge acquisition process can be shortened.
特開2018-128326号公報JP 2018-128326 A
 しかしながら、特許文献1に記載の技術では、制限部によって光の照射が制限された受光素子には電荷が蓄積されないため、高速で読み捨てることはできるものの、これらの受光素子についても電荷の読み出し自体は行われる。このため、特許文献1に記載の技術をLEDチップの波長測定に応用したとしても、読み出し時間の短縮に限界があり、このため波長測定時間の短縮に限界があった。 However, in the technique described in Patent Document 1, charges are not accumulated in the light receiving elements whose light irradiation is restricted by the restricting portion. is done. Therefore, even if the technique described in Patent Document 1 is applied to the wavelength measurement of an LED chip, there is a limit to shortening the readout time, and thus there is a limit to shortening the wavelength measurement time.
 しかも、光の照射を制限する物理的な制限部が必要となることから、その分構成が複雑化するという問題もあった。 In addition, there was also the problem that the configuration was complicated because a physical restriction section was required to restrict the irradiation of light.
 この発明は、このような技術的背景に鑑みてなされたものであって、光の照射を制限する物理的な制限部が不要であり、しかもLEDチップの代表波長の測定時間を短縮できる波長測定装置及び波長測定方法の提供を目的とする。 The present invention has been made in view of such a technical background, and provides a wavelength measurement device that does not require a physical restriction unit for restricting light irradiation and that can shorten the measurement time of the representative wavelength of an LED chip. An object is to provide an apparatus and a wavelength measurement method.
 上記目的は、以下の手段によって達成される。
(1)LEDチップが励起されて発光した光を分光する分光手段と、
 前記分光手段によって分光された光を波長毎に受光する複数の画素を有する受光手段と、
 前記複数の画素のそれぞれに対応し、それぞれの画素からの信号を読み出す複数の読出手段と、
 前記複数の読出手段のうち、一部の読出手段で読み出した信号に基づいて、前記LEDチップの代表波長を演算する演算手段と、
 を備えた波長測定装置。
(2)前記一部の読出手段は1つの読出手段群を形成しており、読出手段群は複数存在する前項1に記載の波長測定装置。
(3)前記演算手段は、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す一部の読出手段を設定する前項1または2に記載の波長測定装置。
(4)前記演算手段は、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す読出手段群を選択する前項2に記載の波長測定装置。
(5)前記受光手段はエリアセンサであり、
 前記エリアセンサの一方の画素列の各画素は、LEDチップの発光面内の複数の領域からの光を受光し、前記一方の画素列に直交する他方の画素列の各画素は、前記各領域から発光されかつ分光された光を波長毎に受光する前項1~4のいずれかに記載の波長測定装置。
(6)前記演算手段は、前記LEDチップの発光面内の複数の領域からの信号を平均化する前項5に記載の波長測定装置。
(7)前記一方の画素列に直交する方向に前記エリアセンサを移動することで、前記LEDチップの発光面内の2次元の領域からの光を受光する前項5または6に記載の波長測定装置。
(8)前記一方の画素列に対応するLEDチップの発光面内の列領域に直交する方向にLEDチップを移動することで、LEDチップの発光面内の2次元の領域からの光を受光する前項5~7のいずれかに記載の波長測定装置。
(9)前記代表波長は発光ピーク波長、重心波長、中心波長の少なくともいずれかである前項1~8のいずれかに記載の波長測定装置。
(10)前記LEDチップを励起して発光させる光源部を備えている前項1~9のいずれかに記載の波長測定装置。
(11)前記受光手段及び読出手段は、CMOSセンサによって構成される前項1~10のいずれかに記載の波長測定装置。
(12)LEDチップが励起されて発光した光を分光手段で分光する分光ステップと、
 前記分光ステップによって分光された光を波長毎に複数の画素で受光する受光ステップと、
 前記複数の画素のそれぞれに対応し、それぞれの画素からの信号を読み出す複数の読出手段のうち、一部の読出手段で前記信号を読み出す読出ステップと、
 読出ステップにより読み出した信号に基づいて、前記LEDチップの代表波長を演算する演算ステップと、
 を含む波長測定方法。
(13)前記一部の読出手段は1つの読出手段群を形成しており、読出手段群は複数存在する前項12に記載の波長測定方法。
(14)前記演算ステップでは、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す一部の読出手段を設定する前項12または13に記載の波長測定方法。
(15)前記演算ステップでは、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す読出手段群を選択する前項13に記載の波長測定方法。
(16)前記受光手段はエリアセンサであり、
  前記エリアセンサの一方の画素列の各画素は、LEDチップの発光面内の複数の領域からの光を受光し、前記一方の画素列に直交する他方の画素列の各画素は、前記各領域から発光されかつ分光された光を波長毎に受光する前項12~15のいずれかに記載の波長測定方法。
(17)前記演算ステップでは、前記LEDチップの発光面内の複数の領域からの信号を平均化する前項16に記載の波長測定方法。
(18)前記一方の画素列に直交する方向に前記エリアセンサを移動することで、前記LEDチップの発光面内の2次元の領域からの光を受光する前項16または17に記載の波長測定方法。
(19)前記一方の画素列に対応するLEDチップの発光面内の列領域に直交する方向にLEDチップを移動することで、LEDチップの発光面内の2次元の領域からの光を受光する前項16~18のいずれかに記載の波長測定方法。
(20)前記代表波長は発光ピーク波長、重心波長、中心波長の少なくともいずれかである前項12~19のいずれかに記載の波長測定方法。
(21)前記受光手段及び読出手段は、CMOSセンサによって構成される前項12~20のいずれかに記載の波長測定方法。
The above object is achieved by the following means.
(1) spectroscopy means for spectroscopy the light emitted by the excited LED chip;
a light-receiving means having a plurality of pixels for receiving the light separated by the spectroscopic means for each wavelength;
a plurality of reading means corresponding to each of the plurality of pixels and reading a signal from each pixel;
computing means for computing a representative wavelength of the LED chip based on a signal read by some of the plurality of reading means;
Wavelength measurement device with
(2) The wavelength measuring apparatus according to (1) above, wherein the partial readout means forms one readout means group, and there are a plurality of readout means groups.
(3) Prior to the main measurement, the computing means acquires the spectrum information of the LED chip based on the signals read by all the reading means, and from the acquired spectrum information, a part of the readout of the signal in the main measurement 3. The wavelength measuring device according to the preceding item 1 or 2, wherein the means is set.
(4) The computing means acquires the spectrum information of the LED chip based on the signals read by all the reading means prior to the main measurement, and from the acquired spectrum information, the read means group for reading out the signals in the main measurement. The wavelength measuring device according to the preceding item 2 to be selected.
(5) the light receiving means is an area sensor;
Each pixel in one pixel row of the area sensor receives light from a plurality of regions within the light emitting surface of the LED chip, and each pixel in the other pixel row orthogonal to the one pixel row receives light from each of the regions. 5. The wavelength measuring device according to any one of the preceding items 1 to 4, which receives the light emitted from and dispersed by each wavelength.
(6) The wavelength measuring device according to the preceding item 5, wherein the computing means averages signals from a plurality of regions within the light emitting surface of the LED chip.
(7) The wavelength measuring device according to item 5 or 6 above, wherein the area sensor is moved in a direction orthogonal to the one pixel row to receive light from a two-dimensional region within the light emitting surface of the LED chip. .
(8) Light is received from a two-dimensional region within the light emitting surface of the LED chip by moving the LED chip in a direction perpendicular to the row region within the light emitting surface of the LED chip corresponding to the one pixel row. 8. The wavelength measuring device according to any one of 5 to 7 above.
(9) The wavelength measuring device according to any one of the preceding items 1 to 8, wherein the representative wavelength is at least one of an emission peak wavelength, a centroid wavelength, and a central wavelength.
(10) The wavelength measuring device according to any one of the preceding items 1 to 9, comprising a light source section that excites the LED chip to emit light.
(11) The wavelength measuring device according to any one of the preceding items 1 to 10, wherein the light receiving means and the reading means are composed of CMOS sensors.
(12) a spectroscopic step of spectroscopically dispersing the light emitted by the excited LED chip with spectroscopic means;
a light-receiving step of receiving the light split by the splitting step by a plurality of pixels for each wavelength;
a reading step of reading out the signals by some reading means among a plurality of reading means corresponding to the plurality of pixels and reading signals from the respective pixels;
a computing step of computing a representative wavelength of the LED chip based on the signal read out by the reading step;
Wavelength measurement method including.
(13) The wavelength measurement method according to (12) above, wherein the part of the readout means forms one readout means group, and there are a plurality of readout means groups.
(14) In the calculation step, prior to the main measurement, the spectrum information of the LED chip is obtained based on the signals read by all the reading means, and from the obtained spectrum information, the signal in the main measurement is read out. 14. The wavelength measurement method according to the preceding item 12 or 13, wherein the means is set.
(15) In the calculating step, prior to the main measurement, the spectrum information of the LED chip is obtained based on the signals read by all the reading means, and from the obtained spectrum information, a reading means group for reading the signal in the main measurement 14. The wavelength measurement method according to 13 above.
(16) the light receiving means is an area sensor;
Each pixel in one pixel row of the area sensor receives light from a plurality of regions within the light emitting surface of the LED chip, and each pixel in the other pixel row orthogonal to the one pixel row receives light from each of the regions. 16. The wavelength measuring method according to any one of the preceding items 12 to 15, wherein the light emitted from and dispersed is received for each wavelength.
(17) The wavelength measuring method according to (16) above, wherein in the computing step, signals from a plurality of regions within a light emitting surface of the LED chip are averaged.
(18) The wavelength measurement method according to item 16 or 17, wherein the area sensor is moved in a direction orthogonal to the one pixel row to receive light from a two-dimensional area within the light emitting surface of the LED chip. .
(19) Light is received from a two-dimensional region within the light emitting surface of the LED chip by moving the LED chip in a direction orthogonal to the row region within the light emitting surface of the LED chip corresponding to the one pixel row. 19. The wavelength measurement method according to any one of 16 to 18 above.
(20) The wavelength measuring method according to any one of (12) to (19) above, wherein the representative wavelength is at least one of an emission peak wavelength, a centroid wavelength, and a center wavelength.
(21) The wavelength measuring method according to any one of the preceding items 12 to 20, wherein the light receiving means and the reading means are composed of CMOS sensors.
 前項(1)及び(12)に記載の発明によれば、LEDチップが励起されて発光した光は、分光手段によって分光され、複数の画素を有する受光手段により波長毎に受光される。複数の画素のそれぞれに対応し、それぞれの画素からの信号を読み出す複数の読出手段のうち、一部の読出手段で画素の信号が読み出される。そして、読み出された信号に基づいて、LEDチップの代表波長が演算手段により演算される。 According to the inventions described in the preceding paragraphs (1) and (12), the light emitted by the excited LED chip is separated by the spectroscopic means and received for each wavelength by the light receiving means having a plurality of pixels. Among a plurality of readout means for reading out signals from the respective pixels, some of the readout means read the signals of the pixels. Then, the representative wavelength of the LED chip is calculated by the calculating means based on the read signal.
 このように、一部の読み出し手段で一部の画素からの信号のみが読み出されるから、全ての画素の信号を読み出す必要はなくなり、その分読み出し時間を短縮でき、波長測定時間を短縮できる。しかも、受光を制限するための物理的な制限部は不要であり、構成が複雑化することもない。 In this way, since only the signals from some of the pixels are read out by some of the readout means, it is not necessary to read out the signals of all the pixels, and the readout time can be shortened accordingly, and the wavelength measurement time can be shortened. Moreover, no physical limiting portion for limiting light reception is required, and the configuration is not complicated.
 特にこの発明では、LEDチップの発光色は赤色(R)、緑色(G)、青色(B)であり、それぞれの代表波長の測定に必要な波長範囲は概ね限定され、可視域の全波長の信号取得は不要である。例えば、R色のLEDチップを測定する際は、550~700nm領域の信号さえ取得できれば良い。このことから、波長領域を制限して画素からの信号を読み出しても問題はなく、読み出し時間の短縮による波長測定時間の短縮の利点を享受できる。 Especially in this invention, the emission colors of the LED chip are red (R), green (G), and blue (B), and the wavelength range required for measuring each representative wavelength is generally limited. No signal acquisition is required. For example, when measuring an LED chip for red color, it is sufficient to acquire signals in the 550 to 700 nm region. Therefore, there is no problem even if the signal from the pixel is read out by restricting the wavelength region, and the advantage of shortening the wavelength measurement time due to the shortening of the readout time can be enjoyed.
 また、LEDチップは励起光によって励起され発光するため、励起光の影響を排除する必要があるが、測定データを読み出す波長領域を制限することで、励起光の影響を可及的に排除することができる効果もある。 In addition, since the LED chip is excited by the excitation light and emits light, it is necessary to eliminate the influence of the excitation light. There is also an effect that can be done.
 前項(2)及び(13)に記載の発明によれば、一部の読出手段は1つの読出手段群を形成しており、読出手段群は複数存在するから、異なる色のLEDチップについて、複数の読出手段群でそれぞれ限定された波長領域の信号を読み出すことができる。 According to the inventions described in the preceding items (2) and (13), some of the reading means form one reading means group, and there are a plurality of reading means groups. can read out signals in the respective limited wavelength regions.
 前項(3)及び(14)に記載の発明によれば、演算手段は、本測定に先立ち、全ての読出手段で読み出した信号に基づいてLEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す一部の読出手段を精度良く設定することができる。 According to the inventions described in the preceding items (3) and (14), prior to the main measurement, the computing means acquires the spectral information of the LED chip based on the signals read by all the reading means, and from the acquired spectral information , it is possible to accurately set a part of reading means for reading signals in the main measurement.
 前項(4)及び(15)に記載の発明によれば、演算手段は、本測定に先立ち、全ての読出手段で読み出した信号に基づいてLEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す読出手段群を精度良く選択することができる。 According to the inventions described in the preceding paragraphs (4) and (15), prior to the main measurement, the computing means acquires the spectral information of the LED chip based on the signals read by all the reading means, and from the acquired spectral information , the reading means group for reading the signal in the main measurement can be selected with high accuracy.
 前項(5)及び(16)に記載の発明によれば、エリアセンサの一方の画素列の各画素は、LEDチップの発光面内の複数の領域からの光を受光し、一方の画素列に直交する他方の画素列の各画素は、各領域から発光されかつ分光された光を波長毎に受光することで、LEDチップの発光面内の複数の領域からの光を波長毎に分光し画素で受光することができる。 According to the inventions described in the preceding items (5) and (16), each pixel in one pixel row of the area sensor receives light from a plurality of regions in the light emitting surface of the LED chip, Each pixel in the other orthogonal pixel row receives the light emitted from each region and separated for each wavelength, thereby separating the light from the plurality of regions within the light emitting surface of the LED chip for each wavelength. can receive light.
 前項(6)及び(17)に記載の発明によれば、演算手段は、LEDチップの発光面内の複数の領域からの信号を平均化するから、信号を読み出す読み出し手段の設定を精度良く行うことができる。 According to the above inventions (6) and (17), the computing means averages the signals from a plurality of regions within the light emitting surface of the LED chip, so that the setting of the reading means for reading the signals is performed with high accuracy. be able to.
 前項(7)及び(18)に記載の発明によれば、一方の画素列に直交する方向にエリアセンサを移動することで、LEDチップの発光面内の2次元の領域からの光を受光することができる。 According to the inventions described in the preceding items (7) and (18), by moving the area sensor in a direction perpendicular to one pixel row, light is received from a two-dimensional area within the light emitting surface of the LED chip. be able to.
 前項(8)及び(19)に記載の発明によれば、一方の画素列に対応するLEDチップの発光面内の列領域に直交する方向にLEDチップを移動することで、LEDチップの発光面内の2次元の領域からの光を受光することができる。 According to the inventions described in the preceding items (8) and (19), by moving the LED chip in a direction perpendicular to the row region in the light emitting surface of the LED chip corresponding to one pixel row, the light emitting surface of the LED chip It can receive light from a two-dimensional region within.
 前項(9)及び(20)に記載の発明によれば、代表波長として発光ピーク波長、重心波長、中心波長の少なくともいずれかを求めることができる。 According to the inventions described in the preceding paragraphs (9) and (20), at least one of the emission peak wavelength, the centroid wavelength, and the central wavelength can be obtained as the representative wavelength.
 前項(10)に記載の発明によれば、光源部によりLEDチップを励起して発光させることができる。 According to the invention described in the preceding item (10), the light source section can excite the LED chip to emit light.
 前項(11)及び(21)に記載の発明によれば、受光手段及び読出手段は、CMOSセンサによって構成されるから、このCMOSセンサにより、一部の読み出し手段による一部の画素からの信号の読み出しを実現することができる。 According to the above inventions (11) and (21), the light receiving means and the reading means are composed of CMOS sensors. Readout can be realized.
この発明の一実施形態に係る波長測定装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a wavelength measuring device according to one embodiment of the present invention; FIG. 図1の波長測定装置の一部の具体的な構成を示す斜視図である。FIG. 2 is a perspective view showing a specific configuration of part of the wavelength measurement device of FIG. 1; CMOSセンサの構成例を示す回路図である。It is a circuit diagram which shows the structural example of a CMOS sensor. 波長読み出し範囲の設定についての説明図である。FIG. 4 is an explanatory diagram for setting a wavelength readout range; 測定対象物上の複数のLEDチップと、受光手段の画素の大きさの関係を説明するための図である。FIG. 4 is a diagram for explaining the relationship between a plurality of LED chips on the object to be measured and the pixel size of the light receiving means; 本測定での波長読み出し範囲の決定例を説明するための図である。It is a figure for demonstrating the determination example of the wavelength read-out range in this measurement. 本測定での波長読み出し範囲の他の決定例を説明するための図である。FIG. 10 is a diagram for explaining another example of determination of the wavelength readout range in the main measurement; (A)(B)(C)は、読み出し部群の設定についての説明図である。(A), (B), and (C) are explanatory diagrams for setting the reading unit group. 測定対象物の表面から受光された光のうち、任意の波長の光、例えば複数のLEDチップの測定データが包含される適当な領域の画素群のデータの中で、最大の明るさを有する波長λのデータのみを抽出して模式的に示した図である。Among the light received from the surface of the object to be measured, the light of any wavelength, for example, the wavelength with the maximum brightness among the data of the pixel group in the appropriate area containing the measurement data of a plurality of LED chips FIG. 4 is a diagram schematically showing only the data of λ extracted; (A)は各画素での測定データをLEDチップ毎に分離した状態を示す図、(B)は代表波長の算出方法を説明するための図、(C)は(B)の拡大図である。(A) is a diagram showing a state in which measurement data for each pixel is separated for each LED chip, (B) is a diagram for explaining a method of calculating a representative wavelength, and (C) is an enlarged view of (B). . 複数のLEDチップのデータ領域について、それぞれの波長毎の9個の画素の平均値プロットしたスペクトルグラフである。It is a spectrum graph obtained by plotting average values of nine pixels for each wavelength for data regions of a plurality of LED chips. 複数のLEDチップのデータ領域について、それぞれの波長毎の1個の画素の値をプロットしたスペクトルグラフである。4 is a spectrum graph plotting the value of one pixel for each wavelength for data regions of a plurality of LED chips; 1個のLEDチップのデータ領域について、波長毎に9個の画素の平均値を算出し、その平均値と、それに基づくフィッティング曲線を描いたグラフである。It is the graph which calculated the average value of 9 pixels for every wavelength about the data area|region of one LED chip, and drew the average value and the fitting curve based on it. 測定範囲が広い測定対象物についての測定方法を説明するための図である。It is a figure for demonstrating the measuring method about the measuring object with a wide measuring range.
 以下、この発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1は、この発明の一実施形態に係る波長測定装置の構成を示すブロック図である。この実施形態では、測定対象物100が複数のLEDチップが形成されたウェハーである場合について説明する。 FIG. 1 is a block diagram showing the configuration of a wavelength measuring device according to one embodiment of the present invention. In this embodiment, a case where the measurement object 100 is a wafer on which a plurality of LED chips are formed will be described.
 図1に示す波長測定装置は、励起用の光源1と、倍率を変更可能な対物レンズ2と、分光部3と、結像レンズ4と、二次元の撮像素子であるエリアセンサ5と、演算部6と、液晶表示装置等によって構成される測定結果表示部7を備えている。 The wavelength measurement device shown in FIG. 6 and a measurement result display unit 7 configured by a liquid crystal display device or the like.
 励起用の光源1は、測定対象物100上の複数のLEDチップに励起光を照射して、複数のLEDチップを励起して発光させる。 The light source 1 for excitation irradiates a plurality of LED chips on the measurement object 100 with excitation light to excite the plurality of LED chips to emit light.
 分光部3は、対物レンズ2を通過した各LEDチップからの光を波長毎に分光し、結像レンズ4は、分光部3で分光された各波長の光をエリアセンサ5に結像させる。この実施形態では、波長ピッチ5nmで各波長に分光する構成となっている。 The spectroscopic section 3 separates the light from each LED chip that has passed through the objective lens 2 into wavelengths, and the imaging lens 4 forms an image of the light of each wavelength separated by the spectroscopic section 3 on the area sensor 5 . In this embodiment, the light is split into respective wavelengths at a wavelength pitch of 5 nm.
 エリアセンサ5は受光手段に相当するものであり、図2に示すように縦横に配列された複数の画素51を備えている。エリアセンサ5の横方向(図2の空間X方向)は物理空間の横方向を意味し、横方向の各画素51は測定対象物100の横方向の領域に対応する。一方、エリアセンサ5の縦方向(図2の波長Z方向)は光の波長に対応する。つまり、空間X方向の画素列の各画素51は、測定対象物100の一次元方向の複数の領域(列領域)100aに対応し、列領域100aから発光され、対物レンズ2を通過して分光部3のスリット31に入射し分光部3で波長分解された光が、波長Z方向の画素列の各画素51で受光される。従って、測定対象物100の二次元方向(平面)の各領域について分光測定を行うためには、測定対象物100を一次元方向の列領域100aと直交するZ1方向に移動(走査)させながら行う必要がある。あるいは、測定対象物100を移動させるのではなく、エリアセンサ5を含む波長測定装置を図2の空間X方向と直交する波長Z方向に移動させても良く、あるいは測定対象物100と波長測定装置の両方を速度差をもって移動させても良く、要は測定対象物100と波長測定装置の少なくとも一方を、他方に対して相対的に移動させれば良い。 The area sensor 5 corresponds to light receiving means, and includes a plurality of pixels 51 arranged vertically and horizontally as shown in FIG. The horizontal direction of the area sensor 5 (space X direction in FIG. 2) means the horizontal direction of the physical space, and each horizontal pixel 51 corresponds to the horizontal region of the measurement object 100 . On the other hand, the vertical direction of the area sensor 5 (wavelength Z direction in FIG. 2) corresponds to the wavelength of light. That is, each pixel 51 in the pixel row in the spatial X direction corresponds to a plurality of regions (row regions) 100a in the one-dimensional direction of the object 100 to be measured. Light incident on the slit 31 of the unit 3 and wavelength-decomposed by the spectroscopic unit 3 is received by each pixel 51 of the pixel array in the wavelength Z direction. Therefore, in order to perform spectroscopic measurement on each region in the two-dimensional direction (plane) of the measurement object 100, the measurement object 100 is moved (scanned) in the Z1 direction orthogonal to the row region 100a in the one-dimensional direction. There is a need. Alternatively, instead of moving the measurement object 100, the wavelength measurement device including the area sensor 5 may be moved in the wavelength Z direction orthogonal to the space X direction in FIG. may be moved with a speed difference, in short, at least one of the measurement object 100 and the wavelength measurement device should be moved relative to the other.
 相対的に移動させる毎に、測定対象物100の列領域100aが切り替わっていき、それぞれの列領域100aについての分光データを1フレーム分として複数フレームの分光データが得られ、分光データキューブとして蓄積されていく。この実施形態では、測定対象物100(LEDチップ101)を移動させるものとし、図1に示すように、測定対象物100が載置されたテーブル200を移動させることができる移動装置300が備えられている。 Each time the measurement object 100 is relatively moved, the row regions 100a of the measurement object 100 are switched, and a plurality of frames of spectral data are obtained with the spectral data of each row region 100a as one frame, and accumulated as a spectral data cube. To go. In this embodiment, the measurement object 100 (LED chip 101) is to be moved, and as shown in FIG. ing.
 なお、上述したような測定対象物100の平面を、エリアセンサ5の各画素51に対応する大きさの各領域に分けて、各領域からの光を分光してエリアセンサ5の各画素51で受光し、これを測定対象物100と波長測定装置の少なくとも一方を他方に対して相対的に移動させながら繰り返すことで分光データを得る技術は、プッシュブルーム方式と呼ばれ、例えばハイパースペクトルカメラ等として公知である。 The plane of the measurement object 100 as described above is divided into regions each having a size corresponding to each pixel 51 of the area sensor 5 , and the light from each region is spectrally separated by each pixel 51 of the area sensor 5 . A technique for obtaining spectral data by receiving light and repeating this while moving at least one of the measurement object 100 and the wavelength measurement device relative to the other is called a push bloom method, and can be used, for example, as a hyperspectral camera. It is publicly known.
 この実施形態では、エリアセンサ5はそれぞれの画素からの信号を読み出す複数の読出部を備え、読み出し範囲を指定できるセンサであり、例えばCMOSセンサが用いられている。以下、エリアセンサをCMOSセンサともいう。CMOSセンサ5の構成例を図3に模式的に示す。 In this embodiment, the area sensor 5 is a sensor that has a plurality of readout units that read out signals from respective pixels and that can designate a readout range, and uses, for example, a CMOS sensor. The area sensor is hereinafter also referred to as a CMOS sensor. A configuration example of the CMOS sensor 5 is schematically shown in FIG.
 図3に示すCMOSセンサ5において、各画素51はそれぞれ、フォトダイオード等からなる受光素子511と、受光素子511によって蓄積された電荷を電圧に変換すると共に増幅する増幅器512と、画素選択スイッチ513を備えている。各画素51の画素選択スイッチ513は縦列の画素51毎に配置された複数の垂直信号線52の中の対応する垂直信号線52に接続されている。また、垂直信号線52はCDS回路53及び列選択スイッチ54を介して水平信号線55に接続されている。 In the CMOS sensor 5 shown in FIG. 3, each pixel 51 includes a light receiving element 511 such as a photodiode, an amplifier 512 that converts and amplifies the charge accumulated by the light receiving element 511 into a voltage, and a pixel selection switch 513. I have. A pixel selection switch 513 of each pixel 51 is connected to a corresponding vertical signal line 52 among a plurality of vertical signal lines 52 arranged for each column of pixels 51 . Also, the vertical signal line 52 is connected to the horizontal signal line 55 via the CDS circuit 53 and the column selection switch 54 .
 従って、信号を読み出したい画素51の画素選択スイッチ513をオンにして受光素子511と垂直信号線52を接続し、その垂直信号線52を列選択スイッチ54のオンにより水平信号線55と接続することにより、選択された画素51について、その信号を垂直信号線52と水平信号線55を介して読み出すことができる。つまり、各画素51の画素選択スイッチ513と複数の画素51に共通する垂直信号線52と水平信号線55と列選択スイッチ54等により、各画素51の信号読み出し部が形成されており、信号読み出し部を制御することで、任意の画素51の信号を読み出すことができるようになっている。 Therefore, the pixel selection switch 513 of the pixel 51 from which the signal is to be read is turned on to connect the light receiving element 511 and the vertical signal line 52, and the vertical signal line 52 is connected to the horizontal signal line 55 by turning on the column selection switch 54. , the signal of the selected pixel 51 can be read out through the vertical signal line 52 and the horizontal signal line 55 . That is, the pixel selection switch 513 of each pixel 51, the vertical signal line 52 common to the plurality of pixels 51, the horizontal signal line 55, the column selection switch 54, and the like form a signal readout portion of each pixel 51, and the signal readout is performed. A signal of an arbitrary pixel 51 can be read out by controlling the unit.
 このため、図4に示すように、エリアセンサ5における波長Z方向の全読み出し領域W1の中から読み出し範囲W2を設定し、設定された読み出し範囲W2内に存在する複数の画素51の読み出し部を1つの読み出し部群として設定することで、分光部3で分光された波長の内、指定された範囲W2の波長についての信号のみを読み出すことができるようになっている。 Therefore, as shown in FIG. 4, a readout range W2 is set from the entire readout area W1 in the wavelength Z direction of the area sensor 5, and the readout portions of the plurality of pixels 51 existing within the set readout range W2 are determined. By setting them as one readout unit group, it is possible to read out only the signals of the wavelengths in the specified range W2 among the wavelengths spectroscopically separated by the spectroscopic unit 3 .
 読み出し範囲を指定されたエリアセンサ5の複数の画素51から出力された信号である測定データは、必要に応じ、図示しない電流・電圧(IV)変換回路、アナログ・デジタル(AD)変換回路を通じてデジタル信号に変換され、演算部6に送られる。演算部6は、送られてきた測定データを用いて、CPU等により測定対象物上の複数のLEDチップのそれぞれについて代表波長を演算する。代表波長の演算方法の詳細については後述する。 Measured data, which are signals output from the plurality of pixels 51 of the area sensor 5 with a designated readout range, are converted to digital data through a current/voltage (IV) conversion circuit and an analog/digital (AD) conversion circuit (not shown) as necessary. It is converted into a signal and sent to the calculation unit 6 . Using the sent measurement data, the computing unit 6 computes the representative wavelength for each of the plurality of LED chips on the object to be measured by the CPU or the like. The details of the method of calculating the representative wavelength will be described later.
 測定結果表示部7は演算部6による演算結果を表示する。なお、エリアセンサ5から出力された測定データのデジタル信号への変換は、演算部6で行われても良い。 The measurement result display unit 7 displays the calculation result by the calculation unit 6. Note that the calculation unit 6 may convert the measurement data output from the area sensor 5 into a digital signal.
 演算部6は専用の装置であっても良いし、パーソナルコンピュータにより構成されていても良い。また、エリアセンサ5から出力されデジタル信号に加工された測定データは、ネットワークを介して演算部6に送られても良い。この場合は、演算部6が測定場所と離れた場所に存在していても、LEDチップの代表波長の測定を行うことができる。 The computing unit 6 may be a dedicated device, or may be configured by a personal computer. Moreover, the measurement data output from the area sensor 5 and processed into a digital signal may be sent to the calculation unit 6 via a network. In this case, the representative wavelength of the LED chip can be measured even if the computing unit 6 is located away from the measurement location.
 次に、図1に示した波長測定装置により、測定対象物100であるウェハー上の各LEDチップの代表波長を測定する方法について説明する。 Next, a method of measuring the representative wavelength of each LED chip on the wafer, which is the measurement object 100, using the wavelength measurement device shown in FIG. 1 will be described.
 図5は、測定対象物100上の複数のLEDチップ101と、エリアセンサ5の画素51の大きさとの関係を説明するための図である。図5の細かい格子の横軸は空間X方向であり、縦軸はLEDチップ101を波長Z方向にスキャンすることによって生じる空間Y方向である。1つの格子の大きさが測定領域であり、画素51の大きさに対応している。 FIG. 5 is a diagram for explaining the relationship between the plurality of LED chips 101 on the measurement object 100 and the size of the pixels 51 of the area sensor 5. FIG. The horizontal axis of the fine grid in FIG. 5 is the spatial X direction, and the vertical axis is the spatial Y direction produced by scanning the LED chip 101 in the wavelength Z direction. The size of one grid is the measurement area and corresponds to the size of the pixel 51 .
 LEDチップ101は矩形で表示され、測定対象物100上に縦横に配列されている。また矩形の領域がそのまま各LEDチップ101の発光面となる。 The LED chips 101 are displayed as rectangles and arranged vertically and horizontally on the measurement object 100 . Also, the rectangular area becomes the light emitting surface of each LED chip 101 as it is.
 1つのLEDチップ101の発光面に対し複数の画素51でデータが取得できるように、つまり1つのLEDチップ101の発光面の、画素51に対応する大きさの複数の領域から発光された光を、それぞれ対応する複数の画素51で受光できるように、LEDチップ101の配列ピッチと、エリアセンサ5の画素51のピッチと、対物レンズ2の倍率等に基づいて設定されている。この実施形態では、1つのLEDチップ101の発光面からの光を3×3=9画素以上の画素に分けて受光できるように設定されている。 The light emitted from a plurality of regions of a size corresponding to the pixels 51 on the light emitting surface of one LED chip 101 is obtained so that data can be obtained with a plurality of pixels 51 for the light emitting surface of one LED chip 101. , are set based on the array pitch of the LED chips 101, the pitch of the pixels 51 of the area sensor 5, the magnification of the objective lens 2, and the like so that the corresponding pixels 51 can receive the light. In this embodiment, the light from the light emitting surface of one LED chip 101 is divided into pixels of 3×3=9 pixels or more and set so that they can receive the light.
 次に、本測定を行う前に、波長Z方向の読み出し範囲換言すれば読み出しを行う波長領域を決定するためのプレ測定を行う。 Next, before performing the main measurement, pre-measurement is performed to determine the readout range in the wavelength Z direction, in other words, the wavelength region to be readout.
 まず、全ての波長範囲(380~780nm)に対応する画素(図2、図4の波長Z方向の全画素)から空間X方向の1ライン分の信号つまり1フレーム分の測定データを読出す。読み出された1フレーム分の測定データは、波長ピッチ5nmの分光スペクトルデータ(各波長での明るさのデータ)になっている。 First, signals for one line in the spatial X direction, that is, measurement data for one frame are read from pixels corresponding to all wavelength ranges (380 to 780 nm) (all pixels in the wavelength Z direction in FIGS. 2 and 4). The read measurement data for one frame is spectrum data (brightness data at each wavelength) with a wavelength pitch of 5 nm.
 次に、複数のLEDチップ101が包含される適当な一部領域の画素群のデータから最大の明るさを有する画素51の波長λ0を決める。なお、最大の明るさを有する画素51の波長でなくても、明るさが上位の複数の画素51の波長の平均をλ0としてもよい。波長を平均化することで、波長λ0の精度が高くなる。 Next, the wavelength λ0 of the pixel 51 having the maximum brightness is determined from the data of the pixel group of the suitable partial area containing the plurality of LED chips 101 . Note that λ0 may be the average of the wavelengths of a plurality of pixels 51 with the highest brightness, instead of the wavelength of the pixel 51 having the highest brightness. Averaging the wavelengths increases the accuracy of the wavelength λ0.
 こうして決定された波長λ0を中心に、予め設定された例えば±75nmの範囲を読み出し範囲つまり本測定での波長範囲(以下、本測定波長範囲ともいう)とする。一例として図6に示すように、決定された波長λ0が626.0nmの場合、本測定波長範囲として626.0±75nmである551nm~701nmを決定する。なお、±75nmはそれ以外の値でもよい。本測定波長範囲の決定により、エリアセンサ5の全ての画素51の読み出し部のうち、読み出しを行う一部の読み出し部からなる読み出し部群が設定される。 A preset range of, for example, ±75 nm centered on the wavelength λ0 thus determined is taken as the readout range, that is, the wavelength range in the main measurement (hereinafter also referred to as the main measurement wavelength range). As an example, as shown in FIG. 6, when the determined wavelength λ0 is 626.0 nm, 551 nm to 701 nm, which is 626.0±75 nm, is determined as the main measurement wavelength range. Note that ±75 nm may be other values. By determining the main measurement wavelength range, a readout unit group consisting of a part of the readout units that perform readout among all the readout units of the pixels 51 of the area sensor 5 is set.
 プレ測定による本測定波長範囲の他の決定方法として、予め用意されていた複数の本測定波長範囲の中から、決定された波長λ0の値に基づいて選択する方法を挙げることができる。例えば図7に示すように、LEDチップ101が青色の場合、本測定波長範囲WBとして390~540nm(中央波長:465nm)が予め設定されており、緑色の場合、本測定波長範囲WGとして465~615nm(中央波長:540nm)が予め設定されており、赤色の場合、本測定波長範囲WRとして550~700nm(中央波長:625nm)が予め設定されている。 As another method of determining the main measurement wavelength range by pre-measurement, there is a method of selecting from a plurality of main measurement wavelength ranges prepared in advance based on the determined value of the wavelength λ0. For example, as shown in FIG. 7, when the LED chip 101 is blue, 390 to 540 nm (center wavelength: 465 nm) is preset as the main measurement wavelength range WB, and when the LED chip 101 is green, 465 to 540 nm is set as the main measurement wavelength range WG. 615 nm (central wavelength: 540 nm) is preset, and in the case of red, 550 to 700 nm (central wavelength: 625 nm) is preset as the main measurement wavelength range WR.
 そして、波長λ0の値が465nmに近ければ、青色について設定されている390~540nmの本測定波長範囲WBを選択し、波長λ0の値が540nmに近ければ、緑色について設定されている465~615nmの本測定波長範囲WGを選択し、波長λ0の値が625nmに近ければ、赤色について設定されている550~700nmの本測定波長範囲WRを選択する。本測定波長範囲の選択により、画素51の読み出しを行う読み出し部群が設定される。例えば本測定波長範囲WRに決定された場合は、図8(A)に示すように、本測定波長範囲WRに対応する複数の画素51の測定データを読み出す読み出し部群50Rが設定され、本測定波長範囲WGに決定された場合は、図8(B)に示すように、本測定波長範囲WGに対応する複数の画素51の測定データを読み出す読み出し部群50Gが設定され、本測定波長範囲WBに決定された場合は、図8(C)に示すように、本測定波長範囲WBに対応する複数の画素51の測定データを読み出す読み出し部群50Bが設定される。このように、複数の読み出し部群50R、50G、50Bの中から、本測定波長範囲に応じて異なる読み出し部群が設定される。 If the value of wavelength λ0 is close to 465 nm, the main measurement wavelength range WB of 390 to 540 nm set for blue is selected, and if the value of wavelength λ0 is close to 540 nm, 465 to 615 nm set for green is selected. is selected, and if the value of the wavelength λ0 is close to 625 nm, the main measurement wavelength range WR of 550 to 700 nm set for red is selected. A reading unit group for reading out the pixels 51 is set by selecting the main measurement wavelength range. For example, when the main measurement wavelength range WR is determined, as shown in FIG. When the wavelength range WG is determined, as shown in FIG. 8B, a reading unit group 50G for reading the measurement data of the plurality of pixels 51 corresponding to the main measurement wavelength range WG is set, and the main measurement wavelength range WB is set. , a reading unit group 50B for reading the measurement data of the plurality of pixels 51 corresponding to the main measurement wavelength range WB is set as shown in FIG. 8(C). In this manner, different readout unit groups are set from among the plurality of readout unit groups 50R, 50G, and 50B according to the main measurement wavelength range.
 また、本測定波長範囲のさらに他の決定方法として、LEDチップ101の発光色が予め既知である場合は、プレ測定を行うことなく、上記と同様の青、緑、赤それぞれについて予め設定されている本測定波長範囲WB、WG、WRを選択しても良い。この場合も、読み出し部群50R、50G、50Bのうち、本測定波長範囲WB、WG、WRに対応する読み出し部群50B、50G、50Rが設定される。 Further, as still another method for determining the main measurement wavelength range, when the emission color of the LED chip 101 is known in advance, it is possible to set in advance for each of blue, green, and red similar to the above without performing pre-measurement. Alternatively, the main measurement wavelength ranges WB, WG, and WR may be selected. Also in this case, among the readout unit groups 50R, 50G, and 50B, the readout unit groups 50B, 50G, and 50R corresponding to the main measurement wavelength ranges WB, WG, and WR are set.
 こうして、本測定波長範囲を決定し、信号の読み出しを行う複数の画素51に対応する読み出し部群を設定した後、次のようにして本測定を行う。 After determining the main measurement wavelength range in this way and setting the reading unit group corresponding to the plurality of pixels 51 from which signals are to be read, the main measurement is performed as follows.
 即ち、テーブル200に載置された測定対象物100に対して励起用光源1から励起光を照射し、移動装置300によりテーブル200を移動させながら、測定対象物100上の複数のLEDチップ101から発光された光をエリアセンサ5の各画素51で受光していく。LEDチップ101から発光された光は、分光部3により所定の波長毎に分光され、分光された各波長の光が各画素51で受光される。テーブル200の移動は、1フレーム分の測定データについて本測定波長範囲を読み出した後に行われる。露光が終了している場合は、読み出し中等にテーブル200を移動しても良い。 That is, the excitation light source 1 irradiates the measurement object 100 placed on the table 200 with excitation light, and while the table 200 is moved by the moving device 300, the LED chips 101 on the measurement object 100 emit light. Each pixel 51 of the area sensor 5 receives the emitted light. Light emitted from the LED chip 101 is separated into predetermined wavelengths by the spectroscopic section 3 , and the separated light of each wavelength is received by each pixel 51 . The table 200 is moved after reading out the main measurement wavelength range for one frame of measurement data. If exposure has been completed, the table 200 may be moved during readout or the like.
 光を受光した全画素51のうち、プレ測定で決定された本測定波長範囲に対応して設定された読み出し部群においてのみ、画素51から測定データの読み出しが行われる。 Of all the pixels 51 that have received light, readout of measurement data from the pixels 51 is performed only in the readout unit group set corresponding to the main measurement wavelength range determined in the pre-measurement.
 読み出された測定データは演算部6に送られ、演算部6内の図示しないメモリに記憶される。測定は、移動装置300によりテーブル200上の測定対象物100を移動させながら行われ、移動する毎(走査する毎)に1フレームの測定データが得られるから、測定対象物100の二次元方向換言すれば平面領域について複数フレームの測定データが得られる。かつ各フレームにおいて、読み出し部群に対応する画素51についてのみ、測定データの読み出しが行われ、分光された波長のうち本測定波長範囲内の波長についての測定データが得られる。 The read measurement data is sent to the computing unit 6 and stored in a memory (not shown) within the computing unit 6 . The measurement is performed while moving the measurement object 100 on the table 200 by the moving device 300, and one frame of measurement data is obtained each time it moves (each time it scans). Then, multiple frames of measurement data are obtained for the planar area. In addition, in each frame, the measurement data is read out only for the pixels 51 corresponding to the readout section group, and the measurement data for the wavelengths within the main measurement wavelength range among the spectrally separated wavelengths is obtained.
 こうして得られた測定データに基づいて、演算部6は各LEDチップ101の代表波長を演算により求める。 Based on the measurement data thus obtained, the calculation unit 6 obtains the representative wavelength of each LED chip 101 by calculation.
 図9は、測定対象物100の表面から受光された光のうち、任意の波長の光、例えば複数のLEDチップ101の測定データが包含される適当な領域の画素群のデータの中で、最大の明るさを有する波長λのデータのみを抽出して模式的に示したものである。図9に示した黒枠8は、1つのLEDチップ101の発光面に対応する領域を示している。また、濃く示された領域9は明るさが強く、周辺に至るに従って明るさが弱くなっていることが示されている。 FIG. 9 shows the light of an arbitrary wavelength among the light received from the surface of the measurement object 100, for example, the data of the pixel group in the appropriate area containing the measurement data of the plurality of LED chips 101, the maximum Only the data of the wavelength λ with the brightness of λ are extracted and schematically shown. A black frame 8 shown in FIG. 9 indicates a region corresponding to the light emitting surface of one LED chip 101 . In addition, it is shown that the darkened region 9 has high brightness, and the brightness decreases toward the periphery.
 次に、エリアセンサ5の各画素51で受光された測定データを各LEDチップ10毎に分離する。この分離は例えば次のようにして行えば良い。即ち、複数のLEDチップ101の測定データが包含される適当な領域の画素群のデータから、最大の明るさを有する波長λを求める。次に、波長λにおいて、各画素51を明るさでレベル分けし、ある明るさレベルを閾値として画像処理を行うことで、LEDチップ101毎に分離すれば良い。図10(A)に、各画素51での測定データをLEDチップ101毎に分離した状態を示す。図10(A)では、黒枠で示される9個のデータ領域10a~10iに分離されている。 Next, the measurement data received by each pixel 51 of the area sensor 5 is separated for each LED chip 10 . This separation may be performed, for example, as follows. That is, the wavelength λ with the maximum brightness is obtained from the data of the pixel group in the appropriate area including the measurement data of the plurality of LED chips 101 . Next, with respect to the wavelength λ, each pixel 51 is divided into levels according to brightness, and image processing is performed using a certain brightness level as a threshold value, thereby separating each LED chip 101 . FIG. 10A shows a state in which measurement data for each pixel 51 is separated for each LED chip 101 . In FIG. 10A, it is separated into nine data areas 10a to 10i indicated by black frames.
 次に、分離された各LEDチップ101毎の測定データについて、明るさ(輝度値)の最大値を得た注目画素を特定する。例えば、図10(B)に示すように、1つのLEDチップ101についてのデータ領域(例えばデータ領域10b)の測定データにおいて、ある波長で最大値を注目画素51aで得たとすると、この画素51aを注目画素として特定する。ここで、ある波長は分離明るさレベルや注目画素を見つける為だけに用いる波長であり、例えば、上述のように、複数のLEDチップ101の測定データが包含される適当な領域の画素群のデータの内、最大の明るさを有する波長や、あるいは、1つのLEDチップについてのデータ領域の測定データの内、最大の明るさを有する波長や、LEDチップの設計波長、等を挙げることができる。 Next, for the separated measurement data for each LED chip 101, the pixel of interest with the maximum brightness (luminance value) is specified. For example, as shown in FIG. 10B, in the measurement data of the data area (for example, data area 10b) for one LED chip 101, if the maximum value at a certain wavelength is obtained at a target pixel 51a, this pixel 51a is It is specified as a pixel of interest. Here, a certain wavelength is a wavelength used only for finding a separate brightness level or a pixel of interest. Among them, the wavelength with the maximum brightness, the wavelength with the maximum brightness in the measurement data of the data area for one LED chip, the design wavelength of the LED chip, and the like can be mentioned.
 注目画素51aの特定後、注目画素51aの値及び注目画素51aの周囲の1個または複数個の画素で得られたある波長の値を平均化して、その波長のスペクトルデータ(その波長での明るさデータ)とする。図10(B)の例では、図10(C)に拡大して示すように、注目画素51aの周囲の8個の画素51b~51iと注目画素51aの合計9個の画素51の値を平均化している。 After specifying the pixel of interest 51a, the value of the pixel of interest 51a and the value of a certain wavelength obtained from one or a plurality of pixels surrounding the pixel of interest 51a are averaged to obtain spectral data of that wavelength (brightness at that wavelength). data). In the example of FIG. 10B, as shown in FIG. is becoming
 このように注目画素51aを含む複数の画素のデータを平均化することで、測定ノイズ低減の効果を得ることができる。 By averaging the data of a plurality of pixels including the pixel of interest 51a in this way, it is possible to obtain the effect of reducing measurement noise.
 また、平均化する画素を注目画素51aの周囲の画素とするのは、LEDチップ101の波長の測定領域を発光面内に収めるためであり、比較的少ない数のデータで、ばらつきの影響の少ない値を得ることができる。具体的には、最大の明るさを示した注目画素51aを含めた周囲9画素の値を用いれば、十分にばらつきの影響の少ない値を得ることができる。 The reason why the pixels to be averaged are the pixels around the target pixel 51a is that the wavelength measurement region of the LED chip 101 is contained within the light emitting surface. value can be obtained. Specifically, by using the values of nine surrounding pixels including the target pixel 51a showing the maximum brightness, it is possible to obtain a value that is sufficiently less affected by variations.
 図11は、図10(A)に示した複数のLEDチップ101のデータ領域10a~10iのうち、データ領域10b、10d、10f、10hの4個のデータ領域について、それぞれの波長毎の9個の画素の平均値をプロットしたスペクトルグラフである。一方、図12は、同じくデータ領域10b、10d、10f、10hの4個のデータ領域について、それぞれの波長毎に求めた注目画素51aのみの値をプロットしたスペクトルグラフである。いずれのグラフも横軸が波長、縦軸は明るさを表す。両グラフを比較すると、図12に示した注目画素51aのみの値の方が、スペクトルの形が崩れていることがわかる。 FIG. 11 shows four data areas 10b, 10d, 10f, and 10h among the data areas 10a to 10i of the plurality of LED chips 101 shown in FIG. is a spectral graph plotting average values of pixels of . On the other hand, FIG. 12 is a spectral graph plotting the values of only the pixel of interest 51a obtained for each wavelength in four data areas 10b, 10d, 10f, and 10h. In both graphs, the horizontal axis represents wavelength and the vertical axis represents brightness. Comparing both graphs, it can be seen that the value of only the target pixel 51a shown in FIG. 12 has the shape of the spectrum distorted.
 上記のような注目画素51aとその周囲の画素51b~51iの輝度値の平均化を各波長について行い、求めた各波長の平均値から代表波長を求める。具体的には、図13のように各波長の平均値を基にガウスフィッティング等によりフィッティング曲線を求め、フィッティング曲線のピーク値の波長を代表波長とする。なお、波長ピッチが小さい場合等には、フィッティングすることなく各波長の平均値のうち最も大きい平均値の波長を代表波長としても良い。 The brightness values of the target pixel 51a and the surrounding pixels 51b to 51i are averaged for each wavelength as described above, and the representative wavelength is obtained from the obtained average value of each wavelength. Specifically, as shown in FIG. 13, a fitting curve is obtained by Gaussian fitting or the like based on the average value of each wavelength, and the wavelength of the peak value of the fitting curve is taken as the representative wavelength. If the wavelength pitch is small, the wavelength with the largest average value among the average values of the wavelengths may be used as the representative wavelength without fitting.
 このようにして、測定対象物100の全てのLEDチップ101について、測定データから代表波長を算出する。この実施形態で算出した代表波長は発光ピーク波長であるが、重心波長や中心波長等であっても良い。重心波長とは、発光スペクトルを重みとする波長の加重平均である。言い換えれば、重心波長は、各波長と当該波長の光の強度との積を発光波長の全域にわたって積分した値を、光の強度を発光波長の全域にわたって積分した値で割った値をいう。また、中心波長とは、ピーク波長両側の最大振幅から3dB低下した二つの半値波長の平均値をいう。 In this way, for all the LED chips 101 of the measurement object 100, the representative wavelength is calculated from the measurement data. Although the representative wavelength calculated in this embodiment is the emission peak wavelength, it may be the centroid wavelength, the central wavelength, or the like. The centroid wavelength is a weighted average of wavelengths weighted by the emission spectrum. In other words, the centroid wavelength is a value obtained by integrating the product of each wavelength and the light intensity of that wavelength over the entire emission wavelength and dividing the value by integrating the light intensity over the entire emission wavelength. The central wavelength is the average value of two half-value wavelengths that are 3 dB lower than the maximum amplitude on both sides of the peak wavelength.
 以上のように、本実施形態では、分光された全ての範囲の波長に対応する全ての画素51の信号を読み取るのではなく、読み出しを行う本測定波長範囲を決定し、決定された本測定波長範囲に対応して設定された、一部の画素51の読み取り部で構成される読み取り部群で信号を読み出す。このため、全ての画素の信号を読み出す必要はなくなり、その分読み出し時間を短縮でき、波長測定時間を短縮でき、ひいてはビニング時間を短縮できる。しかも、読み取りを行わない画素51の受光を制限するための物理的な制限部は不要であるから、構成が複雑化することもない。 As described above, in the present embodiment, instead of reading the signals of all the pixels 51 corresponding to the wavelengths in the entire spectroscopic range, the main measurement wavelength range for reading is determined, and the determined main measurement wavelength Signals are read out by a reading unit group composed of reading units of a part of the pixels 51 set corresponding to the range. Therefore, it is not necessary to read out the signals of all the pixels, so that the readout time can be shortened, the wavelength measurement time can be shortened, and the binning time can be shortened. Moreover, since a physical limiting section for limiting the light reception of the pixels 51 that are not read is not required, the configuration is not complicated.
 特に、LEDチップ101の発光色は赤色(R)、緑色(G)、青色(B)であり、それぞれの代表波長の測定に必要な波長範囲は概ね限定され、可視域の全波長の信号取得は不要であるから、波長領域を限定して画素51からの信号を読み出しても問題はなく、読み出し時間の短縮による波長測定時間の短縮の利点を享受できる。 In particular, the emission colors of the LED chip 101 are red (R), green (G), and blue (B), and the wavelength range required to measure each representative wavelength is generally limited. is unnecessary, there is no problem even if the signal from the pixel 51 is read out by limiting the wavelength region, and the advantage of shortening the wavelength measurement time due to the shortening of the readout time can be enjoyed.
 ちなみに、CMOSセンサ5の積分時間を1msとし、測定波長範囲を可視域全域の400nmとしたときの、1秒間に読み出し可能なフレームの枚数を示すフレームレートは520FPS程度であるのに対し、波長測定範囲を150nmに制限したときのフレームレートは920FPS程度まで向上することができ、読み出し時間を短縮することができる。 Incidentally, when the integration time of the CMOS sensor 5 is 1 ms and the measurement wavelength range is 400 nm in the entire visible region, the frame rate indicating the number of frames that can be read out per second is about 520 FPS. The frame rate can be improved to around 920 FPS when the range is limited to 150 nm, and the readout time can be shortened.
 また、LEDチップ101は励起光によって励起され発光するため、励起光の影響を排除する必要があるが、測定データを読み出す波長領域を制限することで、励起光の影響を可及的に排除することができる効果もある。 In addition, since the LED chip 101 is excited by the excitation light and emits light, it is necessary to eliminate the influence of the excitation light. There are also possible effects.
 本願は、2021年7月16日付で出願された日本国特許出願の特願2021-118071号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims priority from Japanese Patent Application No. 2021-118071 filed on July 16, 2021, the disclosure of which is incorporated herein by reference. .
 本発明は、LEDチップの代表波長の測定に利用可能である。 The present invention can be used to measure the representative wavelength of LED chips.
 1 励起用の光源
 2 対物レンズ
 3 分光部
 4 結像レンズ
 5 エリアセンサ(受光手段)
 51 画素
 511 受光素子
 512 増幅器
 513 画素選択スイッチ
 52 垂直信号線
 54 列選択スイッチ
 55 水平信号線
 6 演算部
 7 測定結果表示部
 10a~10i データ領域
 100 測定対象物
 100a 列領域
 101 LEDチップ(LEDチップ)
 200 テーブル
 300 移動装置
 WB、WG、WR 本測定での波長範囲
 50B、50G、50R 読み出し部群
1 light source for excitation 2 objective lens 3 spectroscopic section 4 imaging lens 5 area sensor (light receiving means)
51 pixel 511 light receiving element 512 amplifier 513 pixel selection switch 52 vertical signal line 54 column selection switch 55 horizontal signal line 6 calculation section 7 measurement result display section 10a to 10i data area 100 measurement object 100a column area 101 LED chip (LED chip)
200 Table 300 Mobile device WB, WG, WR Wavelength range in actual measurement 50B, 50G, 50R Readout unit group

Claims (21)

  1.  LEDチップが励起されて発光した光を分光する分光手段と、
     前記分光手段によって分光された光を波長毎に受光する複数の画素を有する受光手段と、
     前記複数の画素のそれぞれに対応し、それぞれの画素からの信号を読み出す複数の読出手段と、
     前記複数の読出手段のうち、一部の読出手段で読み出した信号に基づいて、前記LEDチップの代表波長を演算する演算手段と、
     を備えた波長測定装置。
    spectroscopic means for spectroscopically dispersing the light emitted by the excited LED chip;
    a light-receiving means having a plurality of pixels for receiving the light separated by the spectroscopic means for each wavelength;
    a plurality of reading means corresponding to each of the plurality of pixels and reading a signal from each pixel;
    computing means for computing a representative wavelength of the LED chip based on a signal read by some of the plurality of reading means;
    Wavelength measurement device with
  2.  前記一部の読出手段は1つの読出手段群を形成しており、読出手段群は複数存在する請求項1に記載の波長測定装置。 The wavelength measuring device according to claim 1, wherein the partial readout means form one readout means group, and there are a plurality of readout means groups.
  3.  前記演算手段は、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す一部の読出手段を設定する請求項1または2に記載の波長測定装置。 Prior to the main measurement, the computing means acquires the spectral information of the LED chip based on the signals read by all the reading means, and from the acquired spectral information, sets a part of the reading means for reading the signal in the main measurement. The wavelength measuring device according to claim 1 or 2.
  4.  前記演算手段は、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す読出手段群を選択する請求項2に記載の波長測定装置。 Prior to the main measurement, the computing means acquires the spectral information of the LED chip based on the signals read by all the reading means, and selects a reading means group for reading the signals in the main measurement from the acquired spectral information. Item 3. The wavelength measuring device according to item 2.
  5.  前記受光手段はエリアセンサであり、
     前記エリアセンサの一方の画素列の各画素は、LEDチップの発光面内の複数の領域からの光を受光し、前記一方の画素列に直交する他方の画素列の各画素は、前記各領域から発光されかつ分光された光を波長毎に受光する請求項1~4のいずれかに記載の波長測定装置。
    The light receiving means is an area sensor,
    Each pixel in one pixel row of the area sensor receives light from a plurality of regions within the light emitting surface of the LED chip, and each pixel in the other pixel row orthogonal to the one pixel row receives light from each of the regions. 5. The wavelength measurement device according to claim 1, wherein the light emitted from and dispersed by the wavelength is received by each wavelength.
  6.  前記演算手段は、前記LEDチップの発光面内の複数の領域からの信号を平均化する請求項5に記載の波長測定装置。 The wavelength measuring device according to claim 5, wherein the computing means averages signals from a plurality of regions within the light emitting surface of the LED chip.
  7.  前記一方の画素列に直交する方向に前記エリアセンサを移動することで、前記LEDチップの発光面内の2次元の領域からの光を受光する請求項5または6に記載の波長測定装置。 The wavelength measurement device according to claim 5 or 6, wherein light from a two-dimensional area within the light emitting surface of the LED chip is received by moving the area sensor in a direction orthogonal to the one pixel row.
  8.  前記一方の画素列に対応するLEDチップの発光面内の列領域に直交する方向にLEDチップを移動することで、LEDチップの発光面内の2次元の領域からの光を受光する請求項5~7のいずれかに記載の波長測定装置。 6. Light from a two-dimensional area within the light emitting surface of the LED chip is received by moving the LED chip in a direction orthogonal to a row region within the light emitting surface of the LED chip corresponding to the one pixel row. 8. The wavelength measuring device according to any one of 1 to 7.
  9.  前記代表波長は発光ピーク波長、重心波長、中心波長の少なくともいずれかである請求項1~8のいずれかに記載の波長測定装置。 The wavelength measuring device according to any one of claims 1 to 8, wherein the representative wavelength is at least one of an emission peak wavelength, a centroid wavelength, and a central wavelength.
  10.  前記LEDチップを励起して発光させる光源部を備えている請求項1~9のいずれかに記載の波長測定装置。 The wavelength measuring device according to any one of claims 1 to 9, comprising a light source section that excites the LED chip to emit light.
  11.  前記受光手段及び読出手段は、CMOSセンサによって構成される請求項1~10のいずれかに記載の波長測定装置。 The wavelength measuring device according to any one of claims 1 to 10, wherein the light receiving means and reading means are composed of CMOS sensors.
  12.  LEDチップが励起されて発光した光を分光手段で分光する分光ステップと、
     前記分光ステップによって分光された光を波長毎に複数の画素で受光する受光ステップと、
     前記複数の画素のそれぞれに対応し、それぞれの画素からの信号を読み出す複数の読出手段のうち、一部の読出手段で前記信号を読み出す読出ステップと、
     読出ステップにより読み出した信号に基づいて、前記LEDチップの代表波長を演算する演算ステップと、
     を含む波長測定方法。
    a spectroscopic step of spectroscopically dispersing the light emitted by the excited LED chip with spectroscopic means;
    a light-receiving step of receiving the light split by the splitting step by a plurality of pixels for each wavelength;
    a reading step of reading out the signals by some reading means among a plurality of reading means corresponding to the plurality of pixels and reading signals from the respective pixels;
    a computing step of computing a representative wavelength of the LED chip based on the signal read out by the reading step;
    Wavelength measurement method including.
  13.  前記一部の読出手段は1つの読出手段群を形成しており、読出手段群は複数存在する請求項12に記載の波長測定方法。 The wavelength measurement method according to claim 12, wherein the partial reading means form one reading means group, and there are a plurality of reading means groups.
  14.  前記演算ステップでは、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す一部の読出手段を設定する請求項12または13に記載の波長測定方法。 In the calculation step, prior to the main measurement, spectral information of the LED chip is obtained based on the signals read by all the reading means, and from the obtained spectral information, a part of the reading means for reading the signal in the main measurement is set. 14. The wavelength measurement method according to claim 12 or 13.
  15.  前記演算ステップでは、本測定に先立ち、全ての読出手段で読み出した信号に基づいて前記LEDチップのスペクトル情報を取得し、取得したスペクトル情報から、本測定において信号を読み出す読出手段群を選択する請求項13に記載の波長測定方法。 In the calculating step, prior to the main measurement, spectral information of the LED chip is obtained based on the signals read by all the reading means, and from the obtained spectral information, a reading means group for reading the signals in the main measurement is selected. Item 14. The wavelength measurement method according to Item 13.
  16.  前記受光手段はエリアセンサであり、
      前記エリアセンサの一方の画素列の各画素は、LEDチップの発光面内の複数の領域からの光を受光し、前記一方の画素列に直交する他方の画素列の各画素は、前記各領域から発光されかつ分光された光を波長毎に受光する請求項12~15のいずれかに記載の波長測定方法。
    The light receiving means is an area sensor,
    Each pixel in one pixel row of the area sensor receives light from a plurality of regions within the light emitting surface of the LED chip, and each pixel in the other pixel row orthogonal to the one pixel row receives light from each of the regions. 16. The wavelength measuring method according to any one of claims 12 to 15, wherein the light emitted from and dispersed is received for each wavelength.
  17.  前記演算ステップでは、前記LEDチップの発光面内の複数の領域からの信号を平均化する請求項16に記載の波長測定方法。 17. The wavelength measuring method according to claim 16, wherein in said calculating step, signals from a plurality of regions within a light emitting surface of said LED chip are averaged.
  18.  前記一方の画素列に直交する方向に前記エリアセンサを移動することで、前記LEDチップの発光面内の2次元の領域からの光を受光する請求項16または17に記載の波長測定方法。 The wavelength measurement method according to claim 16 or 17, wherein light from a two-dimensional area within the light emitting surface of the LED chip is received by moving the area sensor in a direction orthogonal to the one pixel row.
  19.  前記一方の画素列に対応するLEDチップの発光面内の列領域に直交する方向にLEDチップを移動することで、LEDチップの発光面内の2次元の領域からの光を受光する請求項16~18のいずれかに記載の波長測定方法。 16. Light from a two-dimensional area within the light emitting surface of the LED chip is received by moving the LED chip in a direction orthogonal to the row area within the light emitting surface of the LED chip corresponding to the one pixel row. 19. The wavelength measurement method according to any one of 18.
  20.  前記代表波長は発光ピーク波長、重心波長、中心波長の少なくともいずれかである請求項12~19のいずれかに記載の波長測定方法。 The wavelength measurement method according to any one of claims 12 to 19, wherein the representative wavelength is at least one of an emission peak wavelength, a centroid wavelength, and a central wavelength.
  21.  前記受光手段及び読出手段は、CMOSセンサによって構成される請求項12~20のいずれかに記載の波長測定方法。
     
     
     
    The wavelength measuring method according to any one of claims 12 to 20, wherein said light receiving means and reading means are composed of CMOS sensors.


PCT/JP2022/026693 2021-07-16 2022-07-05 Wavelength measurement device and wavelength measurement method WO2023286657A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280049869.8A CN117651850A (en) 2021-07-16 2022-07-05 Wavelength measurement device and wavelength measurement method
KR1020247004298A KR20240027128A (en) 2021-07-16 2022-07-05 Wavelength measurement device and wavelength measurement method
JP2023535257A JPWO2023286657A1 (en) 2021-07-16 2022-07-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021118071 2021-07-16
JP2021-118071 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023286657A1 true WO2023286657A1 (en) 2023-01-19

Family

ID=84920087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026693 WO2023286657A1 (en) 2021-07-16 2022-07-05 Wavelength measurement device and wavelength measurement method

Country Status (4)

Country Link
JP (1) JPWO2023286657A1 (en)
KR (1) KR20240027128A (en)
CN (1) CN117651850A (en)
WO (1) WO2023286657A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150833A (en) * 1988-12-02 1990-06-11 Fuji Photo Film Co Ltd Light measuring instrument for photographic printer
JP2009053116A (en) * 2007-08-28 2009-03-12 Olympus Corp Image processor and image processing program
JP2010078418A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Spectral measurement apparatus, calibration apparatus, spectral measurement method and calibration method
JP2010261861A (en) * 2009-05-08 2010-11-18 Ricoh Co Ltd Spectral characteristics acquisition apparatus, image evaluation apparatus, and image forming apparatus
JP2015536459A (en) * 2012-10-23 2015-12-21 アップル インコーポレイテッド High-precision imaging colorimeter with specially designed pattern closed-loop calibration assisted by a spectrometer
JP2019020311A (en) * 2017-07-20 2019-02-07 株式会社パパラボ Color measurement method and color measurement device
US20190158824A1 (en) * 2017-11-21 2019-05-23 University Of New Hampshire Methods and systems of determining quantum efficiency of a camera
WO2020054381A1 (en) * 2018-09-14 2020-03-19 コニカミノルタ株式会社 Output device for surface features measurement data and surface features measurement device
WO2021020355A1 (en) * 2019-07-29 2021-02-04 カシオ計算機株式会社 Color estimation device, color estimation method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128326A (en) 2017-02-07 2018-08-16 大塚電子株式会社 Optical spectrum measuring device and method of measuring optical spectrum

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150833A (en) * 1988-12-02 1990-06-11 Fuji Photo Film Co Ltd Light measuring instrument for photographic printer
JP2009053116A (en) * 2007-08-28 2009-03-12 Olympus Corp Image processor and image processing program
JP2010078418A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Spectral measurement apparatus, calibration apparatus, spectral measurement method and calibration method
JP2010261861A (en) * 2009-05-08 2010-11-18 Ricoh Co Ltd Spectral characteristics acquisition apparatus, image evaluation apparatus, and image forming apparatus
JP2015536459A (en) * 2012-10-23 2015-12-21 アップル インコーポレイテッド High-precision imaging colorimeter with specially designed pattern closed-loop calibration assisted by a spectrometer
JP2019020311A (en) * 2017-07-20 2019-02-07 株式会社パパラボ Color measurement method and color measurement device
US20190158824A1 (en) * 2017-11-21 2019-05-23 University Of New Hampshire Methods and systems of determining quantum efficiency of a camera
WO2020054381A1 (en) * 2018-09-14 2020-03-19 コニカミノルタ株式会社 Output device for surface features measurement data and surface features measurement device
WO2021020355A1 (en) * 2019-07-29 2021-02-04 カシオ計算機株式会社 Color estimation device, color estimation method, and program

Also Published As

Publication number Publication date
CN117651850A (en) 2024-03-05
KR20240027128A (en) 2024-02-29
JPWO2023286657A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US11193830B2 (en) Spectrocolorimeter imaging system
EP2637004B1 (en) Multispectral imaging color measurement system and method for processing imaging signals thereof
US7489396B1 (en) Spectrophotometric camera
KR20160098083A (en) Colorimetry system for display testing
US6982744B2 (en) Multi-point calibration method for imaging light and color measurement device
US9076363B2 (en) Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution
JP7410340B2 (en) Apparatus and method
US20110031418A1 (en) Optical sensor measurement and crosstalk evaluation
JP5612894B2 (en) Imaging device
CN113037980A (en) Pixel sensing array and vision sensor
US20110249155A1 (en) Image pickup device
WO2023286657A1 (en) Wavelength measurement device and wavelength measurement method
US20070188747A1 (en) System and method for image reconstruction in a fiber array spectral translator system
US11994469B2 (en) Spectroscopic imaging apparatus and fluorescence observation apparatus
US20200105020A1 (en) Method of spectral analyzing with a color camera
WO2022097726A1 (en) Wavelength measuring device, and wavelength measuring method
CN114252947A (en) Optical filter, spectroscopic module, and spectroscopic measurement method
JP7201868B2 (en) Spectroscopic measurement device and spectroscopic measurement method
WO2023228453A1 (en) Spectroscopic device, raman spectroscopic measurement device, and spectroscopic method
WO2023228449A1 (en) Spectroscopy device, raman spectroscopic measurement device, and spectroscopy method
WO2024122133A1 (en) Film thickness measurement device and film thickness measurement method
JP7497544B1 (en) Film thickness measuring device and film thickness measuring method
CN117693668A (en) Segmented multispectral sensor with optical blur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535257

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280049869.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247004298

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004298

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842001

Country of ref document: EP

Kind code of ref document: A1