WO2023286349A1 - Vehicular heat management system - Google Patents

Vehicular heat management system Download PDF

Info

Publication number
WO2023286349A1
WO2023286349A1 PCT/JP2022/010966 JP2022010966W WO2023286349A1 WO 2023286349 A1 WO2023286349 A1 WO 2023286349A1 JP 2022010966 W JP2022010966 W JP 2022010966W WO 2023286349 A1 WO2023286349 A1 WO 2023286349A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling water
heat exchanger
circuit
heat
Prior art date
Application number
PCT/JP2022/010966
Other languages
French (fr)
Japanese (ja)
Inventor
榎島史修
深沼哲彦
横井佑樹
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2023286349A1 publication Critical patent/WO2023286349A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine

Definitions

  • the present invention relates to a thermal management system for vehicles.
  • Vehicles that mainly run on electric power such as electric vehicles (EV) and plug-in hybrid vehicles (PHV), use lithium-ion batteries as power storage devices that store the power supplied to the motors for running.
  • EV electric vehicles
  • PSV plug-in hybrid vehicles
  • a secondary battery, a nickel metal hydride secondary battery, etc. are installed.
  • a cooling system such as a cooling water circuit for cooling batteries and electrical parts.
  • heating using a PTC heater that uses an in-vehicle battery as an energy source has the problem of relatively low energy consumption efficiency and a short cruising range.
  • heating using a heat pump circuit uses air heat as an energy source in addition to the vehicle battery, so energy consumption efficiency is higher than heating using a PTC heater, but it is sufficient when the outside temperature is low in cold regions. There is a problem that heating cannot be done at
  • Patent Literature 1 discloses a conventional vehicle heat management system suitable for application to electric vehicles and the like.
  • the heat pump circuit air-conditions the interior of the vehicle, and the cooling water circuit cools the battery and electrical components.
  • a refrigerant/cooling water heat exchanger connects the heat pump circuit and the cooling water circuit, and the refrigerant/cooling water heat exchanger functions as an evaporator in the heating mode of the heat pump circuit.
  • the present invention has been made in view of the above circumstances.
  • a technical problem to be solved is to provide a vehicle thermal management system that can appropriately cool vehicle-mounted electrical components by reducing the temperature.
  • the vehicle heat management system of the present invention includes: A first compressor that compresses a first refrigerant and circulates the first refrigerant in a circuit, a first expansion valve, and an internal air cooler that exchanges heat between the first refrigerant and indoor air supplied to the vehicle interior.
  • a cooling water circuit for cooling vehicle-mounted electrical components comprising a water pump for circulating cooling water in the circuit and a radiator for exchanging heat between the cooling water and outside air; a second compressor that compresses a second refrigerant and circulates the second refrigerant in a circuit; a second refrigerant/outside air heat exchanger that exchanges heat between the second refrigerant and the outside air; and a second expansion valve.
  • a first refrigerant/cooling water heat exchanger connected to the first refrigerant circuit and the cooling water circuit for exchanging heat between the first refrigerant and the cooling water
  • a second refrigerant/cooling water heat exchanger connected to the second refrigerant circuit and the cooling water circuit to exchange heat between the second refrigerant and the cooling water
  • a control unit that controls operations of the first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit
  • the first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit operate in a vehicle interior cooling water cooling mode for cooling the vehicle interior and cooling the cooling water under the control of the control unit, In the first refrigerant circuit in the vehicle interior cooling water cooling mode, the first refrigerant compressed by the first compressor functions as a condenser of the first refrigerant circuit for heat exchange between the first refrigerant and the cooling water.
  • the first refrigerant decompressed by the first expansion valve after heat dissipation absorbs heat from the room air in the inside air cooler functioning as an evaporator of the first refrigerant circuit;
  • the cooling water circuit in the vehicle interior cooling cooling water cooling mode absorbs heat from the first refrigerant in the first refrigerant/cooling water heat exchanger, and is transferred to the radiator.
  • the second refrigerant/outside air heat exchanger in which the second refrigerant compressed by the second compressor functions as a condenser of the second refrigerant circuit. and the second refrigerant decompressed by the second expansion valve after the heat is released into the cooling water by the second refrigerant/cooling water heat exchanger that functions as an evaporator of the second refrigerant circuit. It is characterized by absorbing heat from
  • the first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit operate in the vehicle interior cooling water cooling mode under the control of the control unit.
  • the first refrigerant circuit that air-conditions the passenger compartment operates to cool the passenger compartment
  • the second refrigerant circuit that adjusts the temperature of the on-board battery cools the cooling water in the cooling water circuit. to operate.
  • the second refrigerant absorbs heat from the cooling water in the cooling water circuit in the second refrigerant/cooling water heat exchanger that functions as an evaporator, thereby cooling the cooling water. do.
  • the second refrigerant is compressed by the second compressor, becomes hot, and releases heat to the outside air by the second refrigerant/outside air heat exchanger functioning as a condenser.
  • the second refrigerant is depressurized by the second expansion valve and introduced into the second refrigerant/cooling water heat exchanger.
  • the cooling water circulating in the circuit absorbs heat from the first refrigerant in the first refrigerant/cooling water heat exchanger, absorbs heat from the on-vehicle electrical components, and heats the radiator. , heat is released to the outside air, and heat is released to the second refrigerant at the second refrigerant/cooling water heat exchanger.
  • In-vehicle electrical components can be appropriately cooled by the cooling water that has been cooled by radiating heat to the outside air in the radiator and radiating heat to the second refrigerant in the second refrigerant/cooling water heat exchanger.
  • the first refrigerant absorbs heat from the indoor air in the inside air cooler that functions as an evaporator, thereby cooling the passenger compartment. After absorbing the heat, the first refrigerant is compressed by the first compressor to a high temperature, and radiates heat to the cooling water of the cooling water circuit in the first refrigerant/cooling water heat exchanger functioning as a condenser. After heat release, the first refrigerant is decompressed by the first expansion valve and introduced into the internal air cooler.
  • the cooling water in the cooling water circuit can be cooled by the second refrigerant circuit while the inside of the passenger compartment is cooled by the first refrigerant circuit. Therefore, it is possible to cool the cooling water in the cooling water circuit according to the cooling capacity of the second refrigerant circuit and lower the temperature of the cooling water, while cooling the vehicle interior even in hot summer weather. can be cooled to
  • the second refrigerant circulating in the second refrigerant circuit can cool the on-board battery according to the cooling capacity of the second refrigerant circuit, so the on-board battery can be cooled appropriately. become.
  • this vehicle heat management system in a battery-equipped vehicle, it is possible to appropriately cool the on-board battery and air-condition the vehicle interior. It can be lowered to properly cool the on-vehicle electrical components.
  • the control unit may execute the vehicle interior cooling water cooling mode when the temperature of the cooling water exceeds a predetermined range, and may not execute the vehicle interior cooling water cooling mode when the temperature of the cooling water is within the predetermined range. preferable.
  • the power consumption of the second compressor can be omitted because the second compressor of the second refrigerant circuit does not operate when the temperature of the cooling water is within the predetermined range.
  • cooling of the cooling water in the cooling water circuit may be performed only by the radiator.
  • the first refrigerant circuit preferably has a first refrigerant/inside air heat exchanger that exchanges heat between the first refrigerant and the indoor air, and a third expansion valve. It is preferable to have a battery heat exchanger for exchanging heat with a vehicle-mounted battery, and a fourth expansion valve.
  • the control unit includes a first normal mode in which heat is exchanged between the first refrigerant and room air in the first refrigerant/inside air heat exchanger and the first refrigerant is expanded in the third expansion valve; It is possible to switch between a first stop mode in which heat exchange between the first refrigerant and room air is stopped in the heat exchanger and the first refrigerant is circulated in a state where expansion in the third expansion valve is stopped. is preferred.
  • the control unit performs heat exchange between the first refrigerant and the room air in the inside air cooler, and expands the first refrigerant in the first expansion valve in a second normal mode. It is preferable to switch between a second stop mode in which heat exchange with air is stopped and the first refrigerant is circulated in a state in which expansion in the first expansion valve is stopped.
  • the control unit operates in a third normal mode in which heat is exchanged between the second refrigerant and the on-vehicle battery in the battery heat exchanger and the second refrigerant expands in the fourth expansion valve, and in which the second refrigerant in the battery heat exchanger. It is preferable to be able to switch between a third stop mode in which the second refrigerant is circulated in a state in which the heat exchange with the vehicle battery is stopped and the expansion in the fourth expansion valve is stopped.
  • the controller controls a fourth normal mode in which the second refrigerant/coolant heat exchanger heat-exchanges the second refrigerant and the cooling water and the second expansion valve expands the second refrigerant; It is possible to switch between a fourth stop mode in which the heat exchange between the second refrigerant and the cooling water is stopped in the cooling water heat exchanger and the second refrigerant is circulated while the expansion in the second expansion valve is stopped. is preferably
  • control unit performs control to operate in the first stop mode, the second normal mode, the third stop mode, and the fourth normal mode in the passenger compartment cooling water cooling mode.
  • a first refrigerant circuit having a first refrigerant/inside air heat exchanger and a third expansion valve
  • heat exchange between the first refrigerant and the inside air in the first refrigerant/inside air heat exchanger in a vehicle interior cooling water cooling mode. is stopped and the first refrigerant is circulated in a state in which expansion at the third expansion valve is stopped, and heat is exchanged between the first refrigerant and the room air in the inside air cooler
  • the first refrigerant circulating in the first refrigerant circuit is operated in the second normal mode in which the first refrigerant is expanded by the first expansion valve together with the first refrigerant/cooling water heat exchanger functioning as a condenser.
  • the internal air cooler functioning as an evaporator absorbs heat from the indoor air to cool the vehicle interior.
  • a second refrigerant circuit having a battery heat exchanger and a fourth expansion valve
  • the battery heat exchanger stops heat exchange between the second refrigerant and the vehicle battery
  • the fourth expansion valve is operated in a third stop mode in which the second refrigerant is circulated while the expansion is stopped, and heat is exchanged between the second refrigerant and the cooling water in the second refrigerant/cooling water heat exchanger, and the second
  • the fourth normal mode in which the second refrigerant is expanded by the second expansion valve
  • the second refrigerant circulating in the second refrigerant circuit is transferred to the outside air by the second refrigerant/outside air heat exchanger functioning as a condenser.
  • heat is absorbed from the cooling water by the second refrigerant/cooling water heat exchanger functioning as an evaporator to cool the cooling water.
  • the first refrigerant circuit is operated in the first stop mode and the second normal mode
  • the second refrigerant circuit is operated in the third stop mode and the fourth normal mode, whereby the first refrigerant circuit, the cooling water
  • the circuit and the second refrigerant circuit operate in the passenger compartment cooling water cooling mode, and the cooling water in the cooling water circuit can be effectively cooled while cooling the passenger compartment.
  • the second refrigerant circuit operates in a battery cooling mode for cooling the onboard battery under the control of the control unit.
  • control unit performs control to operate in the battery cooling mode, the third normal mode, and the fourth stop mode.
  • the second refrigerant compressed by the second compressor radiates heat to the outside air in the second refrigerant/outside air heat exchanger that functions as a condenser of the second refrigerant circuit. It is preferable that the second refrigerant decompressed by the four expansion valves absorbs heat from the onboard battery in the battery heat exchanger functioning as an evaporator of the second refrigerant circuit.
  • the second refrigerant circuit is operated in a third normal mode in which heat is exchanged between the second refrigerant and the onboard battery in the battery heat exchanger and the second refrigerant is expanded in the fourth expansion valve, and the second refrigerant/ Operation is performed in a fourth stop mode in which the second refrigerant is circulated while stopping the heat exchange between the second refrigerant and the cooling water in the cooling water heat exchanger and stopping the expansion in the second expansion valve.
  • the second refrigerant circulating in the second refrigerant circuit releases heat to the outside air through the second refrigerant/outside air heat exchanger that functions as a condenser, and absorbs heat from the vehicle battery through the battery heat exchanger that functions as an evaporator. Then, the vehicle battery can be cooled.
  • the first refrigerant circuit and the cooling water circuit operate in a vehicle interior heating mode for heating the vehicle interior under the control of the control unit.
  • control unit performs control to operate in the vehicle interior heating mode, the first normal mode, and the second stop mode.
  • the first refrigerant compressed by the first compressor releases heat to the indoor air in the first refrigerant/inside air heat exchanger that functions as a condenser of the first refrigerant circuit, and heats up. It is preferable that the first refrigerant depressurized later by the third expansion valve absorbs heat from the cooling water in the first refrigerant/cooling water heat exchanger functioning as an evaporator of the first refrigerant circuit.
  • the cooling water circulating in the circuit preferably absorbs heat from the vehicle-mounted electrical components and releases heat to the first refrigerant in the first refrigerant/cooling water heat exchanger.
  • heat may be absorbed from the outside air by the radiator while absorbing heat from the on-vehicle electric parts, or the heat may be absorbed from the outside air by the radiator instead of absorbing heat from the on-vehicle electric parts.
  • the first refrigerant circuit can effectively heat the first refrigerant using the waste heat of the vehicle-mounted electrical components that has absorbed heat from the vehicle-mounted electrical components in the cooling water circuit as a heat source.
  • the interior of the vehicle can be effectively heated. Also, it is possible to prevent the cooling water from becoming excessively low temperature due to the air heat absorbed from the outside air by the radiator.
  • the second refrigerant circuit preferably has a direction switching section that reverses the circulation direction of the second refrigerant.
  • the second refrigerant circuit operates in a battery warm-up mode in which the vehicle battery is warmed up under the control of the controller.
  • the control unit controls to operate in the third normal mode and the fourth stop mode in the battery warm-up mode, and in the second refrigerant circuit, the second refrigerant compressed by the second compressor heats the battery. It is preferable that the circulation direction of the second refrigerant is controlled by the direction switching unit so as to head toward the exchanger.
  • the second refrigerant compressed by the second compressor radiates heat to the on-vehicle battery in the battery heat exchanger that functions as a condenser of the second refrigerant circuit, and after the heat is released, the second refrigerant expands to the fourth expansion.
  • the second refrigerant depressurized by the valve absorbs heat from outside air in the second refrigerant/outside air heat exchanger that functions as an evaporator of the second refrigerant circuit.
  • the direction switching unit controls the circulation direction of the second refrigerant so that the second refrigerant compressed by the second compressor is directed to the battery heat exchanger, and the second refrigerant is directed to the battery heat exchanger. It is operated in a third normal mode in which the refrigerant and the battery are heat-exchanged and the second refrigerant is expanded by the fourth expansion valve, and the second refrigerant and the cooling water are exchanged by the second refrigerant/cooling water heat exchanger.
  • the fourth stop mode in which the second refrigerant is circulated in a state where heat exchange is stopped and expansion at the second expansion valve is stopped, the second refrigerant circulating in the second refrigerant circuit does not evaporate.
  • the second refrigerant/outside air heat exchanger that functions as a condenser absorbs heat from the outside air, and the battery heat exchanger that functions as a condenser dissipates heat to the onboard battery to warm up the onboard battery.
  • the first refrigerant circuit includes a first refrigerant/internal air heat exchanger bypass that bypasses the first refrigerant/inside air heat exchanger and the third expansion valve, and a first refrigerant/inside air heat exchanger bypassing the first refrigerant/inside air heat exchanger and the third expansion valve. It is preferable to have a first refrigerant/inside air heat exchanger bypass switching unit for switching between flowing to the first refrigerant/internal air heat exchanger bypass side and flowing to the first refrigerant/inside air heat exchanger bypass side.
  • the control unit causes the first refrigerant/inside air heat exchanger bypass switching unit to flow the first refrigerant to the first refrigerant/inside air heat exchanger and the third expansion valve side in the first normal mode, and the first stop mode. , it is preferable to flow the first refrigerant to the first refrigerant/internal air heat exchanger bypass side by the first refrigerant/inside air heat exchanger bypass switching unit.
  • the first refrigerant is switched by the first refrigerant/inside air heat exchanger bypass switching unit in the first normal mode.
  • the first refrigerant/inside air heat exchanger can function as a condenser in which the first refrigerant releases heat to the indoor air in the vehicle interior heating mode.
  • the second 1, the refrigerant/air heat exchanger can be deactivated.
  • the first refrigerant circuit switches between the internal air cooler bypass that bypasses the internal air cooler and the first expansion valve, and whether the first refrigerant flows to the internal air cooler and the first expansion valve side or to the internal air cooler bypass side. It is preferable to have an inside air cooler bypass switching part.
  • the control unit causes the inside air cooler bypass switching unit to flow the first refrigerant to the inside air cooler and the first expansion valve side in the second normal mode, and causes the inside air cooler bypass switching unit to flow in the second stop mode. It is preferable to flow the first refrigerant to the internal air cooler bypass side.
  • the internal air cooler bypass switching unit causes the first refrigerant to flow toward the internal air cooler and the first expansion valve
  • the inside air cooler In the vehicle interior cooling water cooling mode, the inside air cooler can be made to function as an evaporator in which the first refrigerant absorbs heat from the room air, and in the second stop mode, the inside air cooler bypass switching unit allows the first refrigerant to be transferred to the inside air. By flowing the air to the cooler bypass side, the function of the inside air cooler can be stopped in the passenger compartment heating mode.
  • the second refrigerant circuit includes a battery heat exchanger bypass that bypasses the battery heat exchanger and the fourth expansion valve, and a second refrigerant that flows to the battery heat exchanger and the fourth expansion valve side or to the battery heat exchanger bypass side. It is preferable to have a battery heat exchanger bypass switching unit for switching whether to flow or not.
  • the control unit causes the battery heat exchanger bypass switching unit to flow the second refrigerant to the battery heat exchanger and the fourth expansion valve side in the third normal mode, and the battery heat exchanger bypass in the third stop mode. It is preferable that the switching unit causes the second refrigerant to flow to the battery heat exchanger bypass side.
  • the second refrigerant circuit having the battery heat exchanger bypass and the battery heat exchanger bypass switching unit in the third normal mode, the second refrigerant is switched to the battery heat exchanger and the fourth expansion valve side by the battery heat exchanger bypass switching unit.
  • the battery heat exchanger functions as an evaporator in which the second refrigerant absorbs heat from the vehicle battery, and in the battery warm-up mode, the battery heat exchanger is a condenser in which the second refrigerant releases heat to the vehicle battery. and the battery heat exchanger in the vehicle interior cooling water cooling mode by flowing the second refrigerant to the battery heat exchanger bypass side by the battery heat exchanger bypass switching unit in the third stop mode function can be stopped.
  • the second refrigerant circuit includes a second refrigerant/coolant heat exchanger bypass that bypasses the second refrigerant/coolant heat exchanger and the second expansion valve, and a second refrigerant/coolant heat exchanger that bypasses the second refrigerant/coolant heat exchanger and the second refrigerant/coolant heat exchanger. It is preferable to have a second refrigerant/cooling water heat exchanger bypass switching unit for switching between flowing to the second expansion valve side and flowing to the second refrigerant/cooling water heat exchanger bypass side.
  • control unit causes the second refrigerant/cooling water heat exchanger bypass switching unit to flow the second refrigerant to the second refrigerant/cooling water heat exchanger and the second expansion valve side, and In the stop mode, it is preferable to flow the second refrigerant to the second refrigerant/cooling water heat exchanger bypass side by the front two refrigerant/cooling water heat exchanger bypass switching unit.
  • the second refrigerant/cooling water heat exchanger bypass switching unit By flowing the second refrigerant to the side of the second refrigerant/cooling water heat exchanger and the second expansion valve, the second refrigerant absorbs heat from the cooling water in the second refrigerant/cooling water heat exchanger in the vehicle interior cooling water cooling mode.
  • the second refrigerant/cooling water heat exchanger bypass switching unit causes the second refrigerant to flow to the second refrigerant/cooling water heat exchanger bypass side.
  • the function of the second refrigerant/coolant heat exchanger can be deactivated in the battery cooling mode and the battery warming mode.
  • the vehicle heat management system of the present invention it is possible to appropriately cool the on-board battery and air-condition the interior of the vehicle in a battery-equipped vehicle. It can be lowered to properly cool the on-vehicle electrical components.
  • FIG. 1 is a system configuration diagram schematically showing the overall configuration of a vehicle heat management system according to an embodiment.
  • FIG. 2 is a system configuration diagram that relates to the vehicle heat management system of the embodiment and explains a vehicle interior cooling water cooling mode.
  • FIG. 3 is a system configuration diagram for explaining a vehicle interior cooling mode, relating to the vehicle heat management system of the embodiment.
  • FIG. 4 relates to the vehicle heat management system of the embodiment, and is a system configuration diagram for explaining the vehicle interior heating mode.
  • FIG. 5 is a system configuration diagram for explaining a battery cooling mode, relating to the vehicle heat management system of the embodiment.
  • FIG. 6 is a system configuration diagram for explaining a battery warm-up mode, relating to the vehicle heat management system of the embodiment.
  • FIG. 7 relates to the vehicle heat management system of the embodiment, and is a system configuration diagram illustrating a vehicle interior cooling battery cooling mode.
  • FIG. 8 relates to the vehicle heat management system of the embodiment, and is a system configuration diagram for explaining the vehicle interior
  • the vehicle thermal management system of the embodiment is mounted on a battery-equipped vehicle that obtains driving force for running from an electric motor.
  • battery-equipped vehicles include electric vehicles and plug-in hybrid vehicles.
  • the vehicle thermal management system of the embodiment performs air conditioning in the vehicle interior, temperature control of the vehicle battery, and cooling of the vehicle electrical components.
  • the vehicle heat management system includes a first refrigerant circuit 1, a cooling water circuit 2, a second refrigerant circuit 3, and a first refrigerant/cooling water heat exchanger. 4 , a second refrigerant/cooling water heat exchanger 5 , and a control unit 6 .
  • the first refrigerant/cooling water heat exchanger 4 is incorporated in both the first refrigerant circuit 1 and the cooling water circuit 2 to connect the first refrigerant circuit 1 and the cooling water circuit 2 .
  • the second refrigerant/cooling water heat exchanger 5 is incorporated in both the cooling water circuit 2 and the second refrigerant circuit 3 to connect the cooling water circuit 2 and the second refrigerant circuit 3 .
  • the first refrigerant circuit 1 air-conditions the vehicle interior by heat exchange between the first refrigerant R1 circulating in the circuit and the indoor air sent into the vehicle interior. Further, the first refrigerant circuit 1 absorbs heat from the cooling water L by heat exchange between the first refrigerant R1 circulating in the circuit and the cooling water L of the cooling water circuit 2 to cool the cooling water L, or Heat is radiated to L to heat the cooling water L.
  • the first refrigerant circuit 1 includes a cooling water heating circuit that cools the vehicle interior by cooling the indoor air and heats the vehicle interior to the cooling water L, and a cooling water heating circuit that heats the vehicle interior by heating the indoor air and absorbs heat from the cooling water L. It is configured to be switchable to a vehicle interior heating cooling water cooling circuit. Cooling the vehicle interior by cooling the indoor air also includes dehumidifying the vehicle interior.
  • the first refrigerant circuit 1 includes a first refrigerant line 1a, a first refrigerant/internal air heat exchanger bypass line 1b as a first refrigerant/internal air heat exchanger bypass, and an internal air cooler bypass as an internal air cooler bypass. and a pipeline 1c.
  • the first refrigerant circuit 1 includes a first compressor 10, a first three-way valve 11, a first refrigerant/inside air heat exchanger 12, a third expansion valve 13, a second three-way valve 14, and a first expansion valve. 15 and an internal air cooler 16, which are arranged in this order in the first refrigerant pipe line 1a.
  • a first refrigerant/cooling water heat exchanger 4 is incorporated between the third expansion valve 13 and the second three-way valve 14 .
  • the first compressor 10 and a second compressor 30 described later are electric compressors whose refrigerant discharge capacities are controlled by control signals output from the control unit 6 .
  • the first compressor 10 compresses the first refrigerant R ⁇ b>1 and circulates it through the first refrigerant circuit 1 .
  • the circulation direction of the first refrigerant R1 in the first refrigerant circuit 1 is the counterclockwise direction in FIG. That is, the first refrigerant R ⁇ b>1 compressed by the first compressor 10 goes to the first three-way valve 11 .
  • first refrigerant/inside air heat exchanger bypass line 1b is connected to the first three-way valve 11, and the other end of the first refrigerant/internal air heat exchanger bypass line 1b is connected to the third expansion valve 13 and the first refrigerant/ It is connected to the first connecting portion 1d of the first refrigerant pipe line 1a located between the cooling water heat exchanger 4 and the cooling water heat exchanger 4 .
  • the first refrigerant/inside air heat exchanger bypass line 1 b bypasses the first refrigerant/inside air heat exchanger 12 and the third expansion valve 13 .
  • the internal air cooler bypass line 1c bypasses the internal air cooler 16 and the first expansion valve 15 .
  • the first three-way valve 11 and the second three-way valve 14, as well as a third three-way valve 33, a fourth three-way valve 35, a fifth three-way valve 36 and a sixth three-way valve 39, which will be described later, are operated according to control signals from the control unit 6. It is an electric three-way valve that switches the pipeline through which the refrigerant flows.
  • the first three-way valve 11 switches between flowing the first refrigerant R1 to the side of the first refrigerant/inside air heat exchanger 12 and the third expansion valve 13, or to the side of the first refrigerant/inside air heat exchanger bypass line 1b. This is the first refrigerant/inside air heat exchanger bypass switching section.
  • the second three-way valve 14 is an inside air cooler bypass switching unit that switches between flowing the first refrigerant R1 to the inside air cooler 16 and first expansion valve 15 side or to the inside air cooler bypass line 1c side.
  • the first refrigerant/inside air heat exchanger 12 and the inside air cooler 16 exchange heat between the first refrigerant R1 and indoor air sent into the vehicle compartment by a blower fan (not shown).
  • the first refrigerant/internal air heat exchanger 12 functions as the condenser of the first refrigerant circuit 1
  • the first refrigerant R1 releases heat to the indoor air in the first refrigerant/internal air heat exchanger 12 .
  • the indoor air heated by heat exchange with the first refrigerant R1 is sent into the passenger compartment by a blower fan (not shown) to heat the passenger compartment.
  • the function of the first refrigerant/inside air heat exchanger 12 is stopped.
  • the internal air cooler 16 functions as an evaporator of the first refrigerant circuit 1
  • the internal air cooler 16 absorbs heat from the indoor air to the first refrigerant R1.
  • the indoor air cooled by heat exchange with the first refrigerant R1 is sent into the passenger compartment by a blower fan (not shown) to cool the passenger compartment.
  • the function of the internal air cooler 16 is stopped.
  • the cooling water circuit 2 cools the vehicle-mounted electrical components by heat exchange between the cooling water L circulating in the circuit and the vehicle-mounted electrical components.
  • the cooling water circuit 2 absorbs heat from the outside air to heat the cooling water L, and radiates heat to the outside air to cool the cooling water L by heat exchange between the cooling water L circulating in the circuit and the outside air.
  • the heat exchange between the cooling water L circulating in the circuit and the outside air is controlled, so that the heat dissipation from the cooling water L to the outside air and the heat absorption from the outside air to the cooling water L are controlled.
  • the cooling water circuit 2 is configured to be switchable between a heat radiation circuit in which the cooling water L releases heat to the outside air and a non-heat radiation circuit in which the cooling water L does not release heat to the outside air.
  • the non-radiating circuit includes that the cooling water L does not radiate heat to the outside air, but absorbs heat from the outside air to the cooling water L.
  • the cooling water circuit 2 has a cooling water pipeline 2a.
  • cooling water L circulates in the circuit to cool the vehicle-mounted electrical components.
  • in-vehicle electrical components include a motor for driving a vehicle, a PCU, and the like.
  • the cooling water circuit 2 includes a water pump 20, an electric component 21, and a radiator 22, which are arranged in this order in the cooling water pipe 2a.
  • the cooling water pipe 2a is connected to a cooling channel built in or adjacent to the on-vehicle electrical component, and the cooling water L flows through the cooling channel of the on-vehicle electrical component in the electrical component 21 to cool the on-vehicle electrical component. do.
  • the first refrigerant/coolant heat exchanger 4 is installed between the electrical component 21 and the radiator 22, and the second refrigerant/coolant heat exchanger 5 is installed between the radiator 22 and the water pump 20. embedded between.
  • the circulation direction of the cooling water L in the cooling water circuit 2 is the counterclockwise direction in FIG. That is, the cooling water L pressure-fed by the water pump 20 is directed to the electrical component 21 and reaches the radiator 22 via the first refrigerant/cooling water heat exchanger 4 .
  • Cooling water in this specification includes so-called coolant (LLC: Long Life Coolant).
  • a cooling fan 23 that blows outside air to the radiator 22 is provided near the radiator 22 .
  • heat is exchanged between the outside air sent by the cooling fan 23 and the cooling water L in the radiator 22 . If the cooling fan 23 is stopped, the cooling water L does not substantially exchange heat with the outside air.
  • the cooling water circuit 2 serves as a heat dissipation circuit in which the cooling water L releases heat to the outside air when the cooling fan 23 is operating or when the vehicle is running. It becomes a non-heat-dissipating circuit that does not need to be replaced.
  • the second refrigerant circuit 3 controls the temperature of the vehicle battery by heat exchange between the second refrigerant R2 circulating in the circuit and the vehicle battery.
  • the second refrigerant circuit 3 cools the cooling water L by absorbing heat from the cooling water L through heat exchange between the second refrigerant R2 circulating in the circuit and the cooling water L of the cooling water circuit 2 .
  • the second refrigerant circuit 3 includes a cooling water cooling circuit that cools the cooling water L without adjusting the temperature of the vehicle-mounted battery, a battery warming circuit that absorbs heat from the outside air and warms up the vehicle-mounted battery, and a circuit that dissipates heat to the outside air. It is configured to be switchable to a battery cooling circuit that cools the on-vehicle battery.
  • the second refrigerant circuit 3 has a second refrigerant line 3a, a battery heat exchanger bypass line 3b, and a second refrigerant/cooling water heat exchanger bypass line 3c.
  • the second refrigerant circuit 3 includes a second compressor 30, a four-way valve 31, a second refrigerant/outside air heat exchanger 32, a third three-way valve 33, a second expansion valve 34, and a fourth three-way valve 35. , a fifth three-way valve 36, a fourth expansion valve 37, a battery heat exchanger 38, and a sixth three-way valve 39, which are arranged in this order in the second refrigerant line 3a.
  • a second refrigerant/cooling water heat exchanger 5 is incorporated between the second expansion valve 34 and the fourth three-way valve 35 .
  • the second compressor 30 compresses the second refrigerant R2 and circulates it in the second refrigerant circuit 3 .
  • the circulation direction of the second refrigerant R2 in the second refrigerant circuit 3 is reversed by the four-way valve 31, and the second refrigerant R2 circulates clockwise and counterclockwise in FIG.
  • the four-way valve 31 is an electric four-way valve that switches between a first state and a second state according to a control signal from the control unit 6, and reverses the direction in which the second refrigerant R2 circulates in the second refrigerant pipe 3. It is a direction switching part.
  • the four-way valve 31 in the first state connects the suction side of the second compressor 30 to the battery heat exchanger 38 side and connects the discharge side of the second compressor 30 to the second refrigerant/outside air heat exchanger 32 side. do. If the four-way valve 31 is in the first state, the direction of circulation of the second refrigerant R2 in the second refrigerant circuit 3 is clockwise in FIG. 2 toward the refrigerant/outside air heat exchanger 32 side. The four-way valve 31 in the second state connects the suction side of the second compressor 30 to the second refrigerant/outside air heat exchanger 32 side, and connects the discharge side of the second compressor 30 to the battery heat exchanger 38 side. do. When the four-way valve 31 is in the second state, the circulation direction of the second refrigerant R2 in the second refrigerant circuit 3 is counterclockwise in FIG. It goes to the battery heat exchanger 38 side.
  • the battery heat exchanger bypass line 3b is a battery heat exchanger bypass that bypasses the battery heat exchanger 38 and the fourth expansion valve 37 .
  • One end of the second refrigerant/cooling water heat exchanger bypass line 3c is connected to the third three-way valve 33, and the other end of the second refrigerant/cooling water heat exchanger bypass line 3c is connected to the fourth three-way valve 35.
  • the second refrigerant/coolant heat exchanger bypass line 3 c is a second refrigerant/coolant heat exchanger bypass that bypasses the second refrigerant/coolant heat exchanger 5 and the second expansion valve 34 .
  • the fifth three-way valve 36 and the sixth three-way valve 39 switch the flow of the second refrigerant R2 to the side of the battery heat exchanger 38 and the fourth expansion valve 37 or to the side of the battery heat exchanger bypass pipe 3b.
  • the third three-way valve 33 and the fourth three-way valve 35 flow the second refrigerant R2 to the side of the second refrigerant/cooling water heat exchanger 5 and the second expansion valve 34, or the second refrigerant/cooling water heat exchanger bypass pipe. It is a second refrigerant/cooling water heat exchanger bypass switching unit that switches whether to flow to the path 3c side.
  • the battery heat exchanger 38 exchanges heat between the second refrigerant R2 and the vehicle-mounted battery.
  • the battery heat exchanger 38 functions as an evaporator of the second refrigerant circuit 3
  • the second refrigerant R2 absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery.
  • the battery heat exchanger 38 functions as a condenser for the second refrigerant circuit 3
  • the second refrigerant R2 releases heat to the vehicle battery in the battery heat exchanger 38 to warm the vehicle battery.
  • the second refrigerant R2 passes through the battery heat exchanger bypass line 3b, the function of the battery heat exchanger 33 stops.
  • the second refrigerant pipe 3a is connected to a temperature control passage built in or adjacent to the vehicle battery. Adjust the temperature.
  • the second refrigerant/outside air heat exchanger 32 exchanges heat between the second refrigerant R2 and the outside air sent outside by a blower fan (not shown).
  • the second refrigerant/outside air heat exchanger 32 functions as an evaporator of the second refrigerant circuit 3
  • the second refrigerant R2 absorbs heat from the outside air in the second refrigerant/outside air heat exchanger 32 .
  • the second refrigerant/outside air heat exchanger 32 functions as a condenser of the second refrigerant circuit 3
  • the second refrigerant R2 releases heat to the outside air in the second refrigerant/outside air heat exchanger 32 .
  • the first refrigerant R1 circulating in the first refrigerant circuit 1 and the cooling water L circulating in the cooling water circuit 2 exchange heat.
  • the first refrigerant/cooling water heat exchanger 4 functions as a condenser of the first refrigerant circuit 1
  • the first refrigerant R1 releases heat to the cooling water L in the first refrigerant/cooling water heat exchanger 4 .
  • the first refrigerant/cooling water heat exchanger 4 functions as an evaporator of the first refrigerant circuit 1
  • the second refrigerant R2 circulating in the second refrigerant circuit 3 and the cooling water L circulating in the cooling water circuit 2 exchange heat.
  • the second refrigerant/cooling water heat exchanger 5 functions as an evaporator of the second refrigerant circuit 3
  • the second refrigerant R ⁇ b>2 absorbs heat from the cooling water L in the second refrigerant/cooling water heat exchanger 5 .
  • the second refrigerant R2 passes through the second refrigerant/cooling water heat exchanger bypass line 3c, the function of the second refrigerant/cooling water heat exchanger 5 is stopped.
  • the control unit 6 is composed of an electronic control device and controls the operations of the first refrigerant circuit 1 , the cooling water circuit 2 and the second refrigerant circuit 3 .
  • the control unit 6 controls the operations of the first compressor 10, the first three-way valve 11, the second three-way valve 14, and the blower fan (not shown).
  • the control unit 6 controls operations of the water pump 20 and the cooling fan 23 in the cooling water circuit 2 .
  • the control unit 6 controls the second compressor 30, the four-way valve 31, the third three-way valve 33, the fourth three-way valve 35, the fifth three-way valve 36, the sixth three-way valve 39, and the blower fan (not shown). controls the operation of
  • the first refrigerant circuit 1 is switched between the first normal mode and the first stop mode under the control of the controller 6 .
  • the first three-way valve 11 is controlled by the controller 6 so that the first refrigerant R1 flows through the first refrigerant/inside air heat exchanger 12 and the third expansion valve 13 side.
  • the first three-way valve 11 is controlled by the controller 6 so that the first refrigerant R1 flows through the first refrigerant/inside air heat exchanger bypass pipe line 1b side.
  • the first refrigerant circuit 1 is switched between the second normal mode and the second stop mode under the control of the controller 6 .
  • the control unit 6 controls the second three-way valve 14 so that the first refrigerant R1 flows through the inside air cooler 16 and the first expansion valve 15 side.
  • the control unit 6 controls the second three-way valve 14 so that the first refrigerant R1 flows through the internal air cooler bypass pipe line 1c.
  • the second refrigerant circuit 3 is switched between the third normal mode and the third stop mode under the control of the controller 6 .
  • the control unit 6 controls the fifth three-way valve 36 and the sixth three-way valve 39 so that the second refrigerant R2 flows through the battery heat exchanger 38 and the fourth expansion valve 37 side.
  • the control unit 6 controls the fifth three-way valve 36 and the sixth three-way valve 39 so that the second refrigerant R2 flows through the battery heat exchanger bypass pipe 3b.
  • the second refrigerant circuit 3 is switched between the fourth normal mode and the fourth stop mode under the control of the controller 6 .
  • the control unit 6 controls the third three-way valve 33 and the fourth three-way valve 35 so that the second refrigerant R2 flows through the second refrigerant/cooling water heat exchanger 5 and the second expansion valve 34 side.
  • the control unit 6 controls the third three-way valve 33 and the fourth three-way valve 35 so that the second refrigerant R2 flows through the second refrigerant/cooling water heat exchanger bypass pipe 3c.
  • the operation of the vehicle heat management system of this embodiment having the above configuration will be described below.
  • Vehicle interior cooling water cooling mode The first refrigerant circuit 1, the cooling water circuit 2, and the second refrigerant circuit 3 are controlled by the control unit 6 to operate in the vehicle interior cooling water cooling mode, the system configuration of which is shown in FIG.
  • the first refrigerant circuit 1 for air-conditioning the interior of the vehicle operates to cool the interior of the vehicle
  • the second refrigerant circuit 3 for adjusting the temperature of the vehicle battery cools the cooling water circuit 2. It operates to cool the water L.
  • operation is performed in the first stop mode, the second normal mode, the third stop mode, and the fourth normal mode.
  • the second refrigerant circuit 3 in the vehicle interior cooling cooling water cooling mode constitutes a cooling water cooling circuit, and cools the cooling water L of the cooling water circuit 2 without adjusting the temperature of the vehicle battery.
  • the four-way valve 31 is controlled so that the circulation direction of the second refrigerant R2 is the clockwise direction in FIG.
  • the refrigerant R2 goes toward the second refrigerant/outside air heat exchanger 32 side.
  • the second refrigerant circuit 3 in the vehicle interior cooling water cooling mode operates in the third stop mode and the fourth normal mode.
  • the second refrigerant R2 compressed by the second compressor 30 passes through the four-way valve 31 to the second refrigerant circuit 3. 2 into a refrigerant/outside air heat exchanger 32 .
  • the second refrigerant/outside air heat exchanger 32 functions as a condenser of the second refrigerant circuit 3 , and the second refrigerant R2 releases heat to the outside air in the second refrigerant/outside air heat exchanger 32 .
  • the second refrigerant R2 is depressurized by the second expansion valve 34 and introduced into the second refrigerant/cooling water heat exchanger 5 .
  • the second refrigerant/cooling water heat exchanger 5 functions as an evaporator of the second refrigerant circuit 3, and the second refrigerant R2 absorbs heat from the cooling water L of the cooling water circuit 2 in the second refrigerant/cooling water heat exchanger 5. Then, the cooling water L is cooled. After absorbing heat, the second refrigerant R2 passes through the battery heat exchanger bypass line 3b and is introduced into the second compressor 30 via the four-way valve 31. As shown in FIG.
  • the first refrigerant circuit 1 in the vehicle interior cooling water cooling mode forms a cooling water heating circuit, cools the vehicle interior by cooling the indoor air, and radiates heat to the cooling water L of the cooling water circuit 2 .
  • the first refrigerant circuit 1 in the passenger compartment cooling water cooling mode operates in the first stop mode and the second normal mode.
  • the first refrigerant R1 compressed by the first compressor 10 is transferred to the first refrigerant/inside air heat exchanger It is introduced into the first refrigerant/cooling water heat exchanger 4 through the bypass line 1b.
  • the first refrigerant/cooling water heat exchanger 4 functions as a condenser of the first refrigerant circuit 1, and the first refrigerant R1 releases heat to the cooling water L of the cooling water circuit 2 in the first refrigerant/cooling water heat exchanger 4. do.
  • the first refrigerant R1 is decompressed by the first expansion valve 15 and introduced into the internal air cooler 16 .
  • the inside air cooler 16 functions as an evaporator of the first refrigerant circuit 1, and the first refrigerant R1 absorbs heat from the indoor air in the inside air cooler 16 to cool the vehicle interior.
  • the first refrigerant R1 after absorbing heat is introduced into the first compressor 10 .
  • the cooling water circuit 2 in the vehicle interior cooling cooling water cooling mode forms a heat radiation circuit in which the cooling fan 23 operates, and the cooling water L radiates heat to the outside air through the radiator 22 .
  • the cooling water L pressure-fed by the water pump 20 absorbs heat from the electrical components 21, and in the first refrigerant/cooling water heat exchanger 4, the first refrigerant circuit 1 absorbs heat from the first refrigerant R1.
  • the cooling water L radiates heat to the outside air through the radiator 22 and radiates heat to the second refrigerant R2 of the second cooling circuit 3 through the second refrigerant/cooling water heat exchanger 5 .
  • the electric component 21 can be appropriately cooled by the cooling water L that has been cooled by the radiator 22 radiating heat to the outside air and the second refrigerant/cooling water heat exchanger 5 radiating heat to the second refrigerant R2.
  • the cooling water circuit 2 in the vehicle interior cooling water cooling mode heat is absorbed from the electrical component 21, heat is absorbed from the first refrigerant R1 by the first refrigerant/cooling water heat exchanger 4, and heat is released to the outside air by the radiator 22.
  • the cooling water L is cooled according to the cooling capacity of the second refrigerant circuit 3 by dissipating heat to the second refrigerant R2 in the second refrigerant/cooling water heat exchanger 5, so that the temperature of the cooling water L is appropriate.
  • the temperature of the cooling water L in this vehicle interior cooling cooling water cooling mode is preferably in the range of 0 to 40.degree.
  • the control unit 6 executes the vehicle interior cooling water cooling mode when the temperature of the cooling water L in the cooling water circuit 2 exceeds a predetermined range (for example, the range of 0 to 40 ° C.), and the temperature of the cooling water L If it is within the predetermined range, it is preferable not to execute the vehicle interior cooling water cooling mode.
  • a predetermined range for example, the range of 0 to 40 ° C.
  • power consumption of the second compressor 30 can be omitted. In this case, cooling of the cooling water L in the cooling water circuit 2 may be performed only by the radiator 22 .
  • the first refrigerant circuit 1 cools the passenger compartment while the second refrigerant circuit 3 cools the cooling water L in the cooling water circuit 2 . Therefore, it is possible to cool the cooling water L of the cooling water circuit 2 in accordance with the cooling capacity of the second refrigerant circuit 3 while cooling the vehicle interior even in hot summer weather, thereby appropriately cooling the electric parts 21. can be done.
  • this vehicle heat management system can cool the onboard battery according to the cooling capacity of the second refrigerant circuit 3 by operating the second refrigerant circuit 3 in the battery cooling mode as will be described later. Appropriate cooling of the on-vehicle battery becomes possible.
  • the first refrigerant circuit 1 and the cooling water circuit 2 operate in a vehicle interior cooling mode, the system configuration of which is shown in FIG. In the passenger compartment cooling mode, the engine is operated in the first stop mode and the second normal mode.
  • the first refrigerant circuit 1 forms a cooling water heating circuit as in the vehicle interior cooling water cooling mode, and operates in the first stop mode and the second normal mode.
  • the first refrigerant R1 circulating in the first refrigerant circuit 1 releases heat to the cooling water L of the cooling water circuit 2 in the first refrigerant/cooling water heat exchanger 4, and absorbs heat from the room air in the inside air cooler 16. to cool the passenger compartment.
  • the cooling water circuit 2 in the vehicle interior cooling mode forms a heat dissipation circuit in which the cooling fan 23 operates, as in the vehicle interior cooling water cooling mode.
  • the cooling water L circulating in the cooling water circuit 2 absorbs heat from the electric component 21 , absorbs heat from the first refrigerant R ⁇ b>1 in the first refrigerant/cooling water heat exchanger 4 , and radiates heat to the outside air in the radiator 22 . Excessive temperature rise of the cooling water L in the cooling water circuit 2 can be suppressed by heat radiation to the outside air in the radiator 22 .
  • the cooling water L passes through the second refrigerant/cooling water heat exchanger 5, but in the second refrigerant circuit 3, the second compressor 30 is not operating and the second refrigerant R2 is circulating through the second refrigerant circuit 3. or, even if the second compressor 30 is operating, the second refrigerant R2 passes through the second refrigerant/cooling water heat exchanger bypass pipe 3c and the function of the second refrigerant/cooling water heat exchanger 5 is disabled. If it is stopped, the cooling water L in the second refrigerant/cooling water heat exchanger 5 does not substantially release heat to or absorb heat from the second refrigerant R2 of the second refrigerant circuit 3 . This also applies to the vehicle interior heating mode, the vehicle interior cooling battery cooling mode, and the vehicle interior heating battery cooling mode, which will be described later.
  • the cooling water circuit 2 releases heat from the cooling water L to the outside air, while the first refrigerant circuit 1 effectively cools the passenger compartment in accordance with the cooling capacity of the first refrigerant circuit 1. can.
  • the first refrigerant circuit 1 in the vehicle interior heating mode constitutes a heating cooling water cooling circuit, and operates in the first normal mode and the second stop mode.
  • the first refrigerant R1 compressed by the first compressor 10 is introduced into the first refrigerant/inside air heat exchanger 12. be done.
  • the first refrigerant/internal air heat exchanger 12 functions as a condenser of the first refrigerant circuit 1, and the first refrigerant R1 releases heat to the indoor air in the first refrigerant/internal air heat exchanger 12 to heat the vehicle interior. .
  • the first refrigerant R1 is decompressed by the third expansion valve 13 and introduced into the first refrigerant/cooling water heat exchanger 4 .
  • the first refrigerant/cooling water heat exchanger 4 functions as an evaporator of the first refrigerant circuit 1, and the first refrigerant R1 absorbs heat from the cooling water L of the cooling water circuit 2 in the first refrigerant/cooling water heat exchanger 4. do. After absorbing heat, the first refrigerant R1 is introduced into the first compressor 10 through the internal air cooler bypass line 1c.
  • the cooling water circuit 2 in the vehicle interior heating mode forms a non-radiating circuit in which the cooling fan 23 is stopped, and the radiator 22 does not radiate heat from the cooling water L to the outside air.
  • the cooling water L pumped by the water pump 20 passes through the electric component 21 and the first refrigerant/cooling water heat exchanger 4, passes through the radiator 22, and heats the second refrigerant/cooling water. It is introduced into the water pump 20 via the exchanger 5 .
  • the cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, and the first coolant R1 of the first coolant circuit 1 in the first coolant/cooling water heat exchanger 4. to dissipate heat. By dissipating heat to the first refrigerant R1 in the first refrigerant/cooling water heat exchanger 4, it is possible to prevent the cooling water L in the cooling water circuit 2 from becoming excessively hot.
  • the cooling water circuit 2 When the temperature of the outside air is higher than the temperature of the cooling water L in the vehicle interior heating mode, the cooling water circuit 2 forms a non-radiating circuit, and the radiator 22 absorbs heat from the outside air to the cooling water L. good.
  • the cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, absorbs heat from the outside air at the radiator 22, and further flows through the first refrigerant/cooling water heat exchanger 4 into the first heat exchanger. Heat is radiated to the refrigerant R1. As a result, the cooling water L in the cooling water circuit 2 can be prevented from becoming excessively low temperature.
  • the cooling fan 23 is operated as necessary, such as when it is desired to prioritize the cooling of the electrical parts 21, and the cooling water L is transferred from the cooling water L to the outside air by the radiator 22. heat dissipation may be performed. This also applies to the vehicle interior heating battery cooling mode, which will be described later.
  • the first refrigerant R1 in the first refrigerant circuit 1 is effectively heated by using the exhaust heat of the electrical parts 21 that has absorbed heat from the electrical parts 21 in the cooling water circuit 2 as a heat source, thereby effectively heating the passenger compartment. can be heated to
  • the second refrigerant circuit 3 is controlled by the control unit 6 to operate in a battery cooling mode, the system configuration of which is shown in FIG.
  • the second refrigerant circuit 3 in the battery cooling mode forms a battery cooling circuit, radiates heat to the outside air, and cools the onboard battery.
  • the second refrigerant R2 compressed by the second compressor 30 is directed toward the second refrigerant/outside air heat exchanger 32 by controlling the four-way valve 31.
  • the circulation direction of R2 is controlled, and the second refrigerant R2 circulates in the clockwise direction in FIG.
  • the second refrigerant circuit 3 operates in the third normal mode and the fourth stop mode.
  • the second refrigerant R2 circulates in the clockwise direction in FIG.
  • the second refrigerant R2 is introduced into the second refrigerant/outside air heat exchanger 32 via the four-way valve 31 .
  • the second refrigerant/outside air heat exchanger 32 functions as a condenser of the second refrigerant circuit 3 , and the second refrigerant R2 releases heat to the outside air in the second refrigerant/outside air heat exchanger 32 .
  • the second refrigerant R2 is introduced into the fourth expansion valve 37 through the second refrigerant/cooling water heat exchanger bypass pipe 3c.
  • the second refrigerant R ⁇ b>2 decompressed by the fourth expansion valve 37 is introduced into the battery heat exchanger 38 .
  • the battery heat exchanger 38 functions as an evaporator of the second refrigerant circuit 3, and the second refrigerant R2 absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery.
  • the second refrigerant R ⁇ b>2 after absorbing heat is introduced into the second compressor 30 via the four-way valve 31 .
  • the vehicle-mounted battery can be effectively cooled according to the cooling capacity of the second refrigerant circuit 3 .
  • the second refrigerant circuit 3 is controlled by the control unit 6 to operate in a battery warm-up mode, the system configuration of which is shown in FIG.
  • the second refrigerant circuit 3 in the battery warm-up mode forms a battery warm-up circuit, absorbs heat from the outside air, and warms up the vehicle battery.
  • the four-way valve 31 is controlled to circulate the second refrigerant R2 so that the second refrigerant R2 compressed by the second compressor 30 is directed toward the battery heat exchanger 38 side.
  • the direction is controlled, and the second refrigerant R2 circulates in the counterclockwise direction in FIG. 6 through the second refrigerant circuit 3 .
  • the second refrigerant circuit 3 operates in the third normal mode and the fourth stop mode.
  • the second refrigerant R2 circulates in the counterclockwise direction of FIG.
  • the second refrigerant R2 thus obtained is introduced into the battery heat exchanger 38 via the four-way valve 31 .
  • the battery heat exchanger 38 functions as a condenser of the second refrigerant circuit 3.
  • the second refrigerant R2 dissipates heat to the onboard battery to warm up the onboard battery.
  • the second refrigerant R2 is decompressed by the fourth expansion valve 37 and introduced into the second refrigerant/outside air heat exchanger 32 through the second refrigerant/cooling water heat exchanger bypass line 3c.
  • the second refrigerant/outside air heat exchanger 32 functions as an evaporator of the second refrigerant circuit 3, and the second refrigerant R2 absorbs heat from the outside air in the second refrigerant/outside air heat exchanger 32.
  • the second refrigerant R ⁇ b>2 after absorbing heat is introduced into the second compressor 30 via the four-way valve 31 .
  • the onboard battery can be effectively warmed up according to the heating capacity of the second refrigerant circuit 3 .
  • the first refrigerant circuit 1, the cooling water circuit 2, and the second refrigerant circuit 3 are controlled by the control unit 6 to operate in the vehicle interior cooling battery cooling mode, the system configuration of which is shown in FIG.
  • the vehicle In the passenger compartment cooling battery cooling mode, the vehicle is operated in the first stop mode, the second normal mode, the third normal mode, and the fourth stop mode.
  • the first refrigerant circuit 1 in the vehicle interior cooling battery cooling mode forms a cooling water heating circuit in the same manner as in the vehicle interior cooling water cooling mode and vehicle interior cooling mode, and operates in the first stop mode and the second normal mode.
  • the first refrigerant R1 circulating in the first refrigerant circuit 1 radiates heat to the cooling water L in the first refrigerant/cooling water heat exchanger 4, and absorbs heat from the indoor air in the inside air cooler 16 to flow in the vehicle interior. Cool down.
  • the cooling water circuit 2 in the vehicle interior cooling battery cooling mode forms a heat radiation circuit in which the cooling fan 23 operates, as in the vehicle interior cooling water cooling mode and vehicle interior cooling mode.
  • the cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, absorbs heat from the first coolant R1 in the first coolant/cooling water heat exchanger 4, and heats the radiator. At 22, the heat is radiated to the outside air.
  • the second refrigerant circuit 3 in the vehicle interior cooling battery cooling mode forms a battery cooling circuit
  • the second refrigerant R2 circulates through the second refrigerant circuit 3 in the clockwise direction in FIG. 3 Operate in the normal mode and the fourth stop mode.
  • the second refrigerant R2 circulating in the second refrigerant circuit 3 radiates heat to the outside air in the second refrigerant/outside air heat exchanger 32, and absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery. .
  • the cooling water circuit 2 radiates heat from the cooling water L to the outside air, while the first refrigerant circuit 1 effectively cools the vehicle interior according to the cooling capacity of the first refrigerant circuit 1. be able to.
  • the vehicle-mounted battery can be effectively cooled by the second refrigerant circuit 3 according to the cooling capacity of the second refrigerant circuit 3 .
  • the first refrigerant circuit 1, the cooling water circuit 2, and the second refrigerant circuit 3 are controlled by the controller 6 to operate in the vehicle interior heating battery cooling mode, the system configuration of which is shown in FIG.
  • operation is performed in a first normal mode, a second stop mode, a third normal mode, and a fourth stop mode.
  • the first refrigerant circuit 1 in the vehicle interior heating battery cooling mode forms a heating cooling water cooling circuit as in the vehicle interior heating mode, and operates in the first normal mode and the second stop mode.
  • the first refrigerant R1 circulating in the first refrigerant circuit 1 heats the vehicle interior by radiating heat to the indoor air in the first refrigerant/inside air heat exchanger 12, and the first refrigerant/cooling water heat exchanger 4 absorbs heat from the cooling water L.
  • the cooling water circuit 2 in the vehicle interior heating battery cooling mode forms a non-radiating circuit in which the cooling fan 23 is stopped, as in the vehicle interior heating mode.
  • the cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21 , and radiates heat to the first coolant R ⁇ b>1 in the first coolant/cooling water heat exchanger 4 .
  • the cooling water circuit 2 forms a non-radiating circuit, and the radiator 22 absorbs heat from the outside air to the cooling water L.
  • the cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, and after radiating heat to the first coolant R1 in the first coolant/cooling water heat exchanger 4, the radiator 22 It will absorb heat from outside air. As a result, the cooling water L in the cooling water circuit 2 can be prevented from becoming excessively low temperature.
  • the second refrigerant circuit 3 in the vehicle interior heating battery cooling mode forms a battery cooling circuit as in the battery cooling mode
  • the second refrigerant R2 circulates through the second refrigerant circuit 3 in the clockwise direction in FIG. 3 Operate in the normal mode and the fourth stop mode.
  • the second refrigerant R2 circulating in the second refrigerant circuit 3 radiates heat to the outside air in the second refrigerant/outside air heat exchanger 32, and absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery. .
  • the first refrigerant R1 in the first refrigerant circuit 1 is effectively heated by using the exhaust heat of the electrical components 21 that has absorbed heat from the electrical components 21 in the cooling water circuit 2 as a heat source, and the vehicle interior is heated. can be effectively heated.
  • the second refrigerant circuit 3 can effectively cool the vehicle-mounted battery according to the cooling capacity of the second refrigerant circuit 3 .
  • the first stop mode is set by flowing the first refrigerant R1 to the first refrigerant/inside air heat exchanger bypass pipe line 1b side.
  • the first refrigerant R1 is flowed not to the first refrigerant/inside air heat exchanger bypass pipe 1b side but to the first refrigerant pipe 1a side where the first refrigerant/inside air heat exchanger 12 is located, and the third expansion valve 13
  • the first stop mode may be achieved by stopping the expansion and bypassing the indoor air side so that the indoor air does not pass through the first refrigerant/inside air heat exchanger 12 .
  • the second stop mode is set by causing the first refrigerant R1 to flow to the side of the internal air cooler bypass line 1c, but the second stop mode is not limited to this.
  • the first refrigerant R1 is flowed not to the internal air cooler bypass 1c side but to the first refrigerant pipe line 1a side where the internal air cooler 16 is located, and the expansion at the first expansion valve 15 is stopped, and the internal air side is bypassed.
  • the second stop mode may be set by preventing the internal air from passing through the internal air cooler 16 by turning the internal temperature on.
  • the air damper of HVAC Heating, Ventilating and Air Conditioning
  • the blower fan may be stopped.
  • the throttle opening of the third expansion valve 13 and the first expansion valve 15 is fully opened, or the third expansion valve 13 and the first expansion valve
  • the first refrigerant R1 may be prevented from passing through the third expansion valve 13 and the first expansion valve 15 by bypassing the valve 15 .
  • the cooling water circuit 2 is configured as a non-radiating circuit by stopping the cooling fan 23, but the non-radiating circuit is not limited to this.
  • a grille shutter attached to the front grille of the vehicle is closed to prevent outside air from passing through the radiator 22.
  • the cooling water circuit 2 may be provided with a three-way valve that switches between flowing the cooling water to the road side and flowing to the cooling water pipe line 2a side, so that the radiator 22 does not release heat from the cooling water L to the outside air.
  • the fourth stop mode is set by flowing the second refrigerant R2 to the second refrigerant/cooling water heat exchanger bypass pipe 3c side.
  • the second refrigerant R2 is flowed not to the second refrigerant/cooling water heat exchanger bypass pipe 3c side but to the second refrigerant pipe 3a side where the second refrigerant/cooling water heat exchanger 5 is present, and the second expansion valve 34 , and by bypassing the cooling water L side so that the cooling water L does not pass through the second refrigerant/cooling water heat exchanger 5, the fourth stop mode may be set.
  • a bypass pipe that bypasses the second refrigerant/cooling water heat exchanger 5 and a three-way valve that switches the flow path to the bypass pipe or the cooling water pipe 2a are connected to the cooling water. It may be provided in the circuit 2.
  • the throttle opening of the second expansion valve 34 is fully opened, or the second expansion valve 34 is bypassed so that the second refrigerant R2 passes through the second expansion valve 34. You can try not to do it.
  • the circulation direction of the cooling water L in the cooling water circuit 2 in the circulation direction of the cooling water L in the cooling water circuit 2, the water pump 20, the second refrigerant/cooling water heat exchanger 5, the radiator 22, the first refrigerant/cooling water heat exchanger 4, and the electrical component 21
  • the circulation direction of the cooling water L in the cooling water circuit 2 and the arrangement order of the components are not limited to this.
  • the vehicle heat management system of the present invention can be used in a battery-equipped vehicle.
  • first refrigerant circuit cooling water circuit 3 second refrigerant circuit 4 first refrigerant/cooling water heat exchanger 5 second refrigerant/cooling water heat exchanger 6 control unit 10 first compressor 11 first three-way valve (first Refrigerant/inside air heat exchanger bypass switch) 12 first refrigerant/inside air heat exchanger 13 first expansion valve 14 second three-way valve (first refrigerant/inside air heat exchanger bypass switching unit) 15 third expansion valve 16 internal air cooler 1b first refrigerant/internal air heat exchanger bypass line 1c internal air cooler bypass line 20 water pump 21 electrical component 22 radiator 30 second compressor 31 four-way valve (direction switching portion) 32 Second refrigerant/external air heat exchanger 33 Third three-way valve (second refrigerant/cooling water heat exchanger bypass switching unit) 35 Fourth three-way valve (second refrigerant/cooling water heat exchanger bypass switching unit) 34 Second expansion valve 36 Fifth three-way valve (battery heat exchanger bypass switching unit) 39 6th three-way valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

This vehicular heat management system is provided with: a first refrigerant circuit 1 that is for conditioning air in a vehicle cabin and that has an indoor air cooler 16 in which heat is exchanged between a first refrigerant and indoor air; a cooling water circuit 2 that has a radiator 22, and cools an electrical part 21 using cooling water; a second refrigerant circuit 3 that is for regulating the temperature of a battery and that has a second refrigerant/outdoor air heat exchanger 32 in which heat is exchanged between a second refrigerant and outdoor air; a first refrigerant/cooling water heat exchanger 4; and a second refrigerant/cooling water heat exchanger 5. In a vehicle cabin-cooling water-cooling mode in which the vehicle cabin is cooled and cooling water is cooled, heat is absorbed from indoor air by the first refrigerant of the first refrigerant circuit 1 in the indoor air cooler 16, heat is released from the cooling water of the cooling water circuit 2 to outdoor air through the radiator 22, heat is released from the second refrigerant of the second refrigerant circuit 3 to outdoor air in the second refrigerant/outdoor air heat exchanger 32, and heat is absorbed from the cooling water of the cooling water circuit 2 in the second refrigerant/cooling water heat exchanger 5.

Description

車両用熱マネジメントシステムVehicle heat management system
  本発明は車両用熱マネジメントシステムに関する。 The present invention relates to a thermal management system for vehicles.
  電気自動車(EV、Electric  Vehicle)やプラグインハイブリッド自動車(PHV、Plug-in  Hybrid  Vehicle)等、主に電力で走行する車両には、走行用モータへの供給電力を蓄える蓄電装置として、リチウムイオン二次電池やニッケル水素二次電池等が搭載されている。 Vehicles that mainly run on electric power, such as electric vehicles (EV) and plug-in hybrid vehicles (PHV), use lithium-ion batteries as power storage devices that store the power supplied to the motors for running. A secondary battery, a nickel metal hydride secondary battery, etc. are installed.
  電池は充放電時に発熱し、高温状態が継続すると劣化が促進する。走行用モータやCPU(Control  Power  Unit)等の電気部品も高速走行時等に過度に高温になると損傷や作動不良の懸念がある。このため、電気自動車等には、一般に、電池や電気部品を冷却する冷却水回路等の冷却システムが搭載されている。   Batteries generate heat when charging and discharging, and deterioration is accelerated if the high temperature continues. Electric parts such as a running motor and a CPU (Control Power Unit) may also be damaged or malfunction if they become excessively hot during high-speed running. For this reason, electric vehicles and the like are generally equipped with a cooling system such as a cooling water circuit for cooling batteries and electrical parts.
  他方、車室内の暖房に内燃機関の燃焼排熱を利用できない電気自動車等においては、車室内の暖房に、PTC(Positive  Temperature  Coefficient)ヒータやヒートポンプ回路を利用している。 On the other hand, electric vehicles, etc., which cannot use the combustion exhaust heat of the internal combustion engine to heat the vehicle interior, use a PTC (Positive Temperature Coefficient) heater or a heat pump circuit to heat the vehicle interior.
  しかし、車載電池をエネルギー源とするPTCヒータを用いた暖房では、エネルギー消費効率が相対的に低く、航続距離が短くなるという課題がある。また、ヒートポンプ回路を用いた暖房では、車載電池に加えて空気熱もエネルギー源とするため、エネルギー消費効率はPTCヒータを用いた暖房に比べて高いものの、寒冷地などで外気温が低い時に十分に暖房できないという課題がある。 However, heating using a PTC heater that uses an in-vehicle battery as an energy source has the problem of relatively low energy consumption efficiency and a short cruising range. In addition, heating using a heat pump circuit uses air heat as an energy source in addition to the vehicle battery, so energy consumption efficiency is higher than heating using a PTC heater, but it is sufficient when the outside temperature is low in cold regions. There is a problem that heating cannot be done at
  特許文献1には、電気自動車等に適用して好適な従来の車両用熱マネジメントシステムが開示されている。この車両用熱マネジメントシステムでは、ヒートポンプ回路で車室内を空調するとともに、冷却水回路で電池や電気部品を冷却している。そして、冷媒/冷却水熱交換器によってヒートポンプ回路と冷却水回路とを連結し、この冷媒/冷却水熱交換器をヒートポンプ回路の暖房モードにおける蒸発器として機能させている。 Patent Literature 1 discloses a conventional vehicle heat management system suitable for application to electric vehicles and the like. In this vehicle heat management system, the heat pump circuit air-conditions the interior of the vehicle, and the cooling water circuit cools the battery and electrical components. A refrigerant/cooling water heat exchanger connects the heat pump circuit and the cooling water circuit, and the refrigerant/cooling water heat exchanger functions as an evaporator in the heating mode of the heat pump circuit.
  これにより、車室内の暖房時に、電池や電気部品を冷却水で冷却しつつ、冷媒/冷却水熱交換器にて、電池や電気部品を冷却して高温になった冷却水からヒートポンプ回路の冷媒に放熱させている。こうして電池や電気部品の排熱を熱源に有効利用して車室内を暖房することで、車室内の暖房と電池や電気部品の冷却とを効率的に行っている。 As a result, when the vehicle interior is heated, the batteries and electric parts are cooled by the cooling water, and the refrigerant/cooling water heat exchanger cools the batteries and electric parts. heat is dissipated to In this way, the exhaust heat from the batteries and electrical parts is effectively used as a heat source to heat the vehicle interior, thereby efficiently heating the vehicle interior and cooling the batteries and electrical parts.
特開2010-111269号公報JP 2010-111269 A
  近年、地球環境の改善の観点から、自動車業界においては電気自動車等の電池搭載車両が注目され、その普及率も高まっている。このため、電池搭載車両において電池や電気部品の冷却と車室内の空調とを適切に行えるシステムに関しても新規な開発が求められている。   In recent years, from the perspective of improving the global environment, battery-equipped vehicles such as electric vehicles have been attracting attention in the automobile industry, and their penetration rate is increasing. Therefore, there is a demand for a new development of a system for properly cooling the battery and electric parts and air-conditioning the vehicle interior in the battery-equipped vehicle.
  特に、夏季の暑い時は冷却水回路の冷却水が高温になりやすく、例えばラジエータによる冷却水の放熱だけでは冷却水温度を十分に低下させることができず、車載電気部品を適切に冷却できない場合がある。 In particular, when it is hot in the summer, the temperature of the cooling water in the cooling water circuit tends to become high. There is
  本発明は上記実情に鑑みてなされたものであり、電池搭載車両において車載電池の冷却と車室内空調とを適切に行うことができ、しかも外気温が高い時でも車室内を冷房しつつ冷却水温度を低下させて車載電気部品を適切に冷却することのできる車両用熱マネジメントシステムを提供することを解決すべき技術課題とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. A technical problem to be solved is to provide a vehicle thermal management system that can appropriately cool vehicle-mounted electrical components by reducing the temperature.
  本発明の車両用熱マネジメントシステムは、
  第1冷媒を圧縮して前記第1冷媒を回路内で循環させる第1圧縮機と、第1膨張弁と、前記第1冷媒と車室内に供給される室内空気とを熱交換させる内気冷却器とを有し、前記車室内を空調する第1冷媒回路と、
  冷却水を回路内で循環させるウォーターポンプと、前記冷却水と外気とを熱交換させるラジエータとを有し、車載電気部品を冷却する冷却水回路と、
  第2冷媒を圧縮して前記第2冷媒を回路内で循環させる第2圧縮機と、前記第2冷媒と前記外気とを熱交換させる第2冷媒/外気熱交換器と、第2膨張弁とを有し、車載電池の温度を調節する第2冷媒回路と、
  前記第1冷媒回路及び前記冷却水回路に連結され、前記第1冷媒と前記冷却水とを熱交換させる第1冷媒/冷却水熱交換器と、
  前記第2冷媒回路及び前記冷却水回路に連結され、前記第2冷媒と前記冷却水とを熱交換させる第2冷媒/冷却水熱交換器と、
  前記第1冷媒回路、前記冷却水回路及び前記第2冷媒回路の作動を制御する制御部と、を備え、
  前記第1冷媒回路、前記冷却水回路及び前記第2冷媒回路は、前記制御部の制御により、前記車室内を冷房するとともに前記冷却水を冷却する車室内冷房冷却水冷却モードで作動し、
  前記車室内冷房冷却水冷却モードにおける前記第1冷媒回路では、前記第1圧縮機で圧縮された前記第1冷媒が前記第1冷媒回路の凝縮器として機能する前記第1冷媒/冷却水熱交換器にて前記冷却水に放熱し、放熱後に前記第1膨張弁で減圧された前記第1冷媒が前記第1冷媒回路の蒸発器として機能する前記内気冷却器にて前記室内空気から吸熱し、
  前記車室内冷房冷却水冷却モードにおける前記冷却水回路では、回路内を循環する前記冷却水が、前記第1冷媒/冷却水熱交換器にて前記第1冷媒から吸熱し、かつ、前記ラジエータにて前記外気に放熱するとともに前記第2冷媒/冷却水熱交換器にて前記第2冷媒に放熱し、
  前記車室内冷房冷却水冷却モードにおける前記第2冷媒回路では、前記第2圧縮機で圧縮された前記第2冷媒が前記第2冷媒回路の凝縮器として機能する前記第2冷媒/外気熱交換器にて前記外気に放熱し、放熱後に前記第2膨張弁で減圧された前記第2冷媒が前記第2冷媒回路の蒸発器として機能する前記第2冷媒/冷却水熱交換器にて前記冷却水から吸熱することを特徴とする。
The vehicle heat management system of the present invention includes:
A first compressor that compresses a first refrigerant and circulates the first refrigerant in a circuit, a first expansion valve, and an internal air cooler that exchanges heat between the first refrigerant and indoor air supplied to the vehicle interior. and a first refrigerant circuit that air-conditions the interior of the vehicle;
a cooling water circuit for cooling vehicle-mounted electrical components, comprising a water pump for circulating cooling water in the circuit and a radiator for exchanging heat between the cooling water and outside air;
a second compressor that compresses a second refrigerant and circulates the second refrigerant in a circuit; a second refrigerant/outside air heat exchanger that exchanges heat between the second refrigerant and the outside air; and a second expansion valve. and a second refrigerant circuit that adjusts the temperature of the vehicle battery;
a first refrigerant/cooling water heat exchanger connected to the first refrigerant circuit and the cooling water circuit for exchanging heat between the first refrigerant and the cooling water;
a second refrigerant/cooling water heat exchanger connected to the second refrigerant circuit and the cooling water circuit to exchange heat between the second refrigerant and the cooling water;
a control unit that controls operations of the first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit;
The first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit operate in a vehicle interior cooling water cooling mode for cooling the vehicle interior and cooling the cooling water under the control of the control unit,
In the first refrigerant circuit in the vehicle interior cooling water cooling mode, the first refrigerant compressed by the first compressor functions as a condenser of the first refrigerant circuit for heat exchange between the first refrigerant and the cooling water. the first refrigerant decompressed by the first expansion valve after heat dissipation absorbs heat from the room air in the inside air cooler functioning as an evaporator of the first refrigerant circuit;
In the cooling water circuit in the vehicle interior cooling cooling water cooling mode, the cooling water circulating in the circuit absorbs heat from the first refrigerant in the first refrigerant/cooling water heat exchanger, and is transferred to the radiator. radiating heat to the outside air and radiating heat to the second refrigerant at the second refrigerant/cooling water heat exchanger;
In the second refrigerant circuit in the vehicle interior cooling water cooling mode, the second refrigerant/outside air heat exchanger in which the second refrigerant compressed by the second compressor functions as a condenser of the second refrigerant circuit. and the second refrigerant decompressed by the second expansion valve after the heat is released into the cooling water by the second refrigerant/cooling water heat exchanger that functions as an evaporator of the second refrigerant circuit. It is characterized by absorbing heat from
  この車両用熱マネジメントシステムでは、制御部の制御により、第1冷媒回路、冷却水回路及び第2冷媒回路が車室内冷房冷却水冷却モードで作動する。車室内冷房冷却水冷却モードでは、車室内を空調する第1冷媒回路が車室内を冷房するように作動するとともに、車載電池の温度を調節する第2冷媒回路が冷却水回路の冷却水を冷却するように作動する。 In this vehicle heat management system, the first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit operate in the vehicle interior cooling water cooling mode under the control of the control unit. In the passenger compartment cooling water cooling mode, the first refrigerant circuit that air-conditions the passenger compartment operates to cool the passenger compartment, while the second refrigerant circuit that adjusts the temperature of the on-board battery cools the cooling water in the cooling water circuit. to operate.
  車室内冷房冷却水冷却モードにおける第2冷媒回路では、第2冷媒が、蒸発器として機能する第2冷媒/冷却水熱交換器にて冷却水回路の冷却水から吸熱して、冷却水を冷却する。吸熱後の第2冷媒は、第2圧縮機で圧縮されて高温になり、凝縮器として機能する第2冷媒/外気熱交換器にて外気に放熱する。放熱後の第2冷媒は、第2膨張弁で減圧されて、第2冷媒/冷却水熱交換器に導入される。 In the second refrigerant circuit in the vehicle interior cooling water cooling mode, the second refrigerant absorbs heat from the cooling water in the cooling water circuit in the second refrigerant/cooling water heat exchanger that functions as an evaporator, thereby cooling the cooling water. do. After absorbing the heat, the second refrigerant is compressed by the second compressor, becomes hot, and releases heat to the outside air by the second refrigerant/outside air heat exchanger functioning as a condenser. After releasing the heat, the second refrigerant is depressurized by the second expansion valve and introduced into the second refrigerant/cooling water heat exchanger.
  車室内冷房冷却水冷却モードにおける冷却水回路では、回路内を循環する冷却水が、第1冷媒/冷却水熱交換器にて第1冷媒から吸熱するとともに車載電気部品から吸熱し、かつ、ラジエータにて外気に放熱するとともに第2冷媒/冷却水熱交換器にて第2冷媒に放熱する。ラジエータにて外気に放熱するとともに第2冷媒/冷却水熱交換器にて第2冷媒に放熱して冷却された冷却水により、車載電気部品を適切に冷却することができる。 In the cooling water circuit in the vehicle interior cooling water cooling mode, the cooling water circulating in the circuit absorbs heat from the first refrigerant in the first refrigerant/cooling water heat exchanger, absorbs heat from the on-vehicle electrical components, and heats the radiator. , heat is released to the outside air, and heat is released to the second refrigerant at the second refrigerant/cooling water heat exchanger. In-vehicle electrical components can be appropriately cooled by the cooling water that has been cooled by radiating heat to the outside air in the radiator and radiating heat to the second refrigerant in the second refrigerant/cooling water heat exchanger.
  車室内冷房冷却水冷却モードにおける第1冷媒回路では、第1冷媒が、蒸発器として機能する内気冷却器にて室内空気から吸熱して、車室内を冷房する。吸熱後の第1冷媒は、第1圧縮機で圧縮されて高温になり、凝縮器として機能する第1冷媒/冷却水熱交換器にて冷却水回路の冷却水に放熱する。放熱後の第1冷媒は、第1膨張弁で減圧されて、内気冷却器に導入される。 In the first refrigerant circuit in the passenger compartment cooling water cooling mode, the first refrigerant absorbs heat from the indoor air in the inside air cooler that functions as an evaporator, thereby cooling the passenger compartment. After absorbing the heat, the first refrigerant is compressed by the first compressor to a high temperature, and radiates heat to the cooling water of the cooling water circuit in the first refrigerant/cooling water heat exchanger functioning as a condenser. After heat release, the first refrigerant is decompressed by the first expansion valve and introduced into the internal air cooler.
  こうして車室内冷房冷却水冷却モードでは、第1冷媒回路で車室内を冷房しつつ、第2冷媒回路で冷却水回路の冷却水を冷却することができる。このため、夏季の暑い時でも車室内を冷房しつつ、第2冷媒回路による冷却能力に応じて冷却水回路の冷却水を冷却して冷却水温度を低下させることができ、車載電気部品を適切に冷却することができる。 Thus, in the passenger compartment cooling water cooling mode, the cooling water in the cooling water circuit can be cooled by the second refrigerant circuit while the inside of the passenger compartment is cooled by the first refrigerant circuit. Therefore, it is possible to cool the cooling water in the cooling water circuit according to the cooling capacity of the second refrigerant circuit and lower the temperature of the cooling water, while cooling the vehicle interior even in hot summer weather. can be cooled to
  他方、この車両用熱マネジメントシステムは、第2冷媒回路を循環する第2冷媒によって、第2冷媒回路の冷却能力に応じて車載電池を冷却することができるので、車載電池の適切な冷却が可能になる。 On the other hand, in this vehicle heat management system, the second refrigerant circulating in the second refrigerant circuit can cool the on-board battery according to the cooling capacity of the second refrigerant circuit, so the on-board battery can be cooled appropriately. become.
  したがって、この車両用熱マネジメントシステムによれば、電池搭載車両において車載電池の冷却と車室内空調とを適切に行うことができ、しかも外気温が高い時でも車室内を冷房しつつ冷却水温度を低下させて車載電気部品を適切に冷却することができる。 Therefore, according to this vehicle heat management system, in a battery-equipped vehicle, it is possible to appropriately cool the on-board battery and air-condition the vehicle interior. It can be lowered to properly cool the on-vehicle electrical components.
  制御部は、冷却水の温度が所定範囲を超えたときに車室内冷房冷却水冷却モードを実行し、冷却水の温度が所定範囲内にあれば車室内冷房冷却水冷却モードを実行しないことが好ましい。 The control unit may execute the vehicle interior cooling water cooling mode when the temperature of the cooling water exceeds a predetermined range, and may not execute the vehicle interior cooling water cooling mode when the temperature of the cooling water is within the predetermined range. preferable.
  この場合、冷却水の温度が所定範囲内にあれば第2冷媒回路の第2圧縮機が作動しないため、第2圧縮機の消費電力を省略することができる。この場合、冷却水回路における冷却水の冷却はラジエータのみで行えばよい。 In this case, the power consumption of the second compressor can be omitted because the second compressor of the second refrigerant circuit does not operate when the temperature of the cooling water is within the predetermined range. In this case, cooling of the cooling water in the cooling water circuit may be performed only by the radiator.
  第1冷媒回路は、前記第1冷媒と前記室内空気とを熱交換させる第1冷媒/内気熱交換器と、第3膨張弁とを有することが好ましく、第2冷媒回路は、第2冷媒と車載電池とを熱交換させる電池熱交換器と、第4膨張弁とを有することが好ましい。 The first refrigerant circuit preferably has a first refrigerant/inside air heat exchanger that exchanges heat between the first refrigerant and the indoor air, and a third expansion valve. It is preferable to have a battery heat exchanger for exchanging heat with a vehicle-mounted battery, and a fourth expansion valve.
  制御部は、第1冷媒/内気熱交換器にて第1冷媒と室内空気とを熱交換させるとともに、第3膨張弁にて第1冷媒を膨張させる第1通常モードと、第1冷媒/内気熱交換器にて第1冷媒と室内空気との熱交換を停止させるとともに、第3膨張弁での膨張を停止させた状態にて第1冷媒を循環させる第1停止モードとを切り替え可能であることが好ましい。 The control unit includes a first normal mode in which heat is exchanged between the first refrigerant and room air in the first refrigerant/inside air heat exchanger and the first refrigerant is expanded in the third expansion valve; It is possible to switch between a first stop mode in which heat exchange between the first refrigerant and room air is stopped in the heat exchanger and the first refrigerant is circulated in a state where expansion in the third expansion valve is stopped. is preferred.
  制御部は、内気冷却器にて第1冷媒と室内空気とを熱交換させるとともに、第1膨張弁にて第1冷媒を膨張させる第2通常モードと、内気冷却器にて第1冷媒と室内空気との熱交換を停止させるとともに、第1膨張弁での膨張を停止させた状態にて第1冷媒を循環させる第2停止モードとを切り替え可能であることが好ましい。 The control unit performs heat exchange between the first refrigerant and the room air in the inside air cooler, and expands the first refrigerant in the first expansion valve in a second normal mode. It is preferable to switch between a second stop mode in which heat exchange with air is stopped and the first refrigerant is circulated in a state in which expansion in the first expansion valve is stopped.
  制御部は、電池熱交換器にて第2冷媒と車載電池とを熱交換させるとともに、第4膨張弁にて第2冷媒を膨張させる第3通常モードと、電池熱交換器にて第2冷媒と車載電池との熱交換を停止させるとともに、第4膨張弁での膨張を停止させた状態にて第2冷媒を循環させる第3停止モードとを切り替え可能であることが好ましい。 The control unit operates in a third normal mode in which heat is exchanged between the second refrigerant and the on-vehicle battery in the battery heat exchanger and the second refrigerant expands in the fourth expansion valve, and in which the second refrigerant in the battery heat exchanger. It is preferable to be able to switch between a third stop mode in which the second refrigerant is circulated in a state in which the heat exchange with the vehicle battery is stopped and the expansion in the fourth expansion valve is stopped.
  制御部は、第2冷媒/冷却水熱交換器にて第2冷媒と冷却水とを熱交換させるとともに、第2膨張弁にて第2冷媒を膨張させる第4通常モードと、第2冷媒/冷却水熱交換器にて第2冷媒と冷却水との熱交換を停止させるとともに、第2膨張弁での膨張を停止させた状態にて第2冷媒を循環させる第4停止モードとを切り替え可能であることが好ましい。 The controller controls a fourth normal mode in which the second refrigerant/coolant heat exchanger heat-exchanges the second refrigerant and the cooling water and the second expansion valve expands the second refrigerant; It is possible to switch between a fourth stop mode in which the heat exchange between the second refrigerant and the cooling water is stopped in the cooling water heat exchanger and the second refrigerant is circulated while the expansion in the second expansion valve is stopped. is preferably
  制御部は、車室内冷房冷却水冷却モードで、第1停止モード、第2通常モード、第3停止モード及び第4通常モードにて運転するように制御することが好ましい。 It is preferable that the control unit performs control to operate in the first stop mode, the second normal mode, the third stop mode, and the fourth normal mode in the passenger compartment cooling water cooling mode.
  第1冷媒/内気熱交換器及び第3膨張弁を有する第1冷媒回路において、車室内冷房冷却水冷却モードで、第1冷媒/内気熱交換器にて第1冷媒と室内空気との熱交換を停止させるとともに第3膨張弁での膨張を停止させた状態にて第1冷媒を循環させる第1停止モードで運転され、かつ、内気冷却器にて第1冷媒と室内空気とを熱交換させるとともに第1膨張弁にて第1冷媒を膨張させる第2通常モードで運転されることにより、第1冷媒回路を循環する第1冷媒は、凝縮器として機能する第1冷媒/冷却水熱交換器にて冷却水に放熱するとともに、蒸発器として機能する内気冷却器にて室内空気から吸熱して、車室内を冷房することができる。 In a first refrigerant circuit having a first refrigerant/inside air heat exchanger and a third expansion valve, heat exchange between the first refrigerant and the inside air in the first refrigerant/inside air heat exchanger in a vehicle interior cooling water cooling mode. is stopped and the first refrigerant is circulated in a state in which expansion at the third expansion valve is stopped, and heat is exchanged between the first refrigerant and the room air in the inside air cooler The first refrigerant circulating in the first refrigerant circuit is operated in the second normal mode in which the first refrigerant is expanded by the first expansion valve together with the first refrigerant/cooling water heat exchanger functioning as a condenser. In addition to radiating heat to the cooling water, the internal air cooler functioning as an evaporator absorbs heat from the indoor air to cool the vehicle interior.
  電池熱交換器及び第4膨張弁を有する第2冷媒回路において、車室内冷房冷却水冷却モードで、電池熱交換器にて第2冷媒と車載電池との熱交換を停止させるとともに第4膨張弁での膨張を停止させた状態にて第2冷媒を循環させる第3停止モードで運転され、かつ、第2冷媒/冷却水熱交換器にて第2冷媒と冷却水とを熱交換させるとともに第2膨張弁にて第2冷媒を膨張させる第4通常モードで運転されることにより、第2冷媒回路を循環する第2冷媒は、凝縮器として機能する第2冷媒/外気熱交換器にて外気に放熱するとともに、蒸発器として機能する第2冷媒/冷却水熱交換器にて冷却水から吸熱して、冷却水を冷却することができる。 In a second refrigerant circuit having a battery heat exchanger and a fourth expansion valve, in a vehicle interior cooling water cooling mode, the battery heat exchanger stops heat exchange between the second refrigerant and the vehicle battery, and the fourth expansion valve is operated in a third stop mode in which the second refrigerant is circulated while the expansion is stopped, and heat is exchanged between the second refrigerant and the cooling water in the second refrigerant/cooling water heat exchanger, and the second By operating in the fourth normal mode in which the second refrigerant is expanded by the second expansion valve, the second refrigerant circulating in the second refrigerant circuit is transferred to the outside air by the second refrigerant/outside air heat exchanger functioning as a condenser. In addition, heat is absorbed from the cooling water by the second refrigerant/cooling water heat exchanger functioning as an evaporator to cool the cooling water.
  こうして、第1冷媒回路において第1停止モード及び第2通常モードで運転され、かつ、第2冷媒回路において第3停止モード及び第4通常モードで運転されることにより、第1冷媒回路、冷却水回路及び第2冷媒回路が車室内冷房冷却水冷却モードで作動し、車室内を冷房しつつ、冷却水回路の冷却水を効果的に冷却することができる。 Thus, the first refrigerant circuit is operated in the first stop mode and the second normal mode, and the second refrigerant circuit is operated in the third stop mode and the fourth normal mode, whereby the first refrigerant circuit, the cooling water The circuit and the second refrigerant circuit operate in the passenger compartment cooling water cooling mode, and the cooling water in the cooling water circuit can be effectively cooled while cooling the passenger compartment.
  第2冷媒回路は、制御部の制御により、車載電池を冷却する電池冷却モードで作動することが好ましい。 It is preferable that the second refrigerant circuit operates in a battery cooling mode for cooling the onboard battery under the control of the control unit.
  制御部は、電池冷却モードで、第3通常モード及び第4停止モードにて運転するように制御することが好ましい。 It is preferable that the control unit performs control to operate in the battery cooling mode, the third normal mode, and the fourth stop mode.
  電池冷却モードにおける第2冷媒回路では、第2圧縮機で圧縮された第2冷媒が第2冷媒回路の凝縮器として機能する第2冷媒/外気熱交換器にて外気に放熱し、放熱後に第4膨張弁で減圧された第2冷媒が第2冷媒回路の蒸発器として機能する電池熱交換器にて車載電池から吸熱することが好ましい。 In the second refrigerant circuit in the battery cooling mode, the second refrigerant compressed by the second compressor radiates heat to the outside air in the second refrigerant/outside air heat exchanger that functions as a condenser of the second refrigerant circuit. It is preferable that the second refrigerant decompressed by the four expansion valves absorbs heat from the onboard battery in the battery heat exchanger functioning as an evaporator of the second refrigerant circuit.
  第2冷媒回路において、電池熱交換器にて第2冷媒と車載電池とを熱交換させるとともに第4膨張弁にて第2冷媒を膨張させる第3通常モードで運転され、かつ、第2冷媒/冷却水熱交換器にて第2冷媒と冷却水との熱交換を停止させるとともに第2膨張弁での膨張を停止させた状態にて第2冷媒を循環させる第4停止モードで運転されることにより、第2冷媒回路を循環する第2冷媒は、凝縮器として機能する第2冷媒/外気熱交換器にて外気に放熱するとともに、蒸発器として機能する電池熱交換器にて車載電池から吸熱して、車載電池を冷却することができる。 The second refrigerant circuit is operated in a third normal mode in which heat is exchanged between the second refrigerant and the onboard battery in the battery heat exchanger and the second refrigerant is expanded in the fourth expansion valve, and the second refrigerant/ Operation is performed in a fourth stop mode in which the second refrigerant is circulated while stopping the heat exchange between the second refrigerant and the cooling water in the cooling water heat exchanger and stopping the expansion in the second expansion valve. As a result, the second refrigerant circulating in the second refrigerant circuit releases heat to the outside air through the second refrigerant/outside air heat exchanger that functions as a condenser, and absorbs heat from the vehicle battery through the battery heat exchanger that functions as an evaporator. Then, the vehicle battery can be cooled.
  第1冷媒回路及び冷却水回路は、制御部の制御により、車室内を暖房する車室内暖房モードで作動することが好ましい。 It is preferable that the first refrigerant circuit and the cooling water circuit operate in a vehicle interior heating mode for heating the vehicle interior under the control of the control unit.
  制御部は、車室内暖房モードで、第1通常モード及び第2停止モードにて運転するように制御することが好ましい。 It is preferable that the control unit performs control to operate in the vehicle interior heating mode, the first normal mode, and the second stop mode.
  車室内暖房モードにおける第1冷媒回路では、第1圧縮機で圧縮された第1冷媒が第1冷媒回路の凝縮器として機能する第1冷媒/内気熱交換器にて室内空気に放熱し、放熱後に第3膨張弁で減圧された第1冷媒が第1冷媒回路の蒸発器として機能する第1冷媒/冷却水熱交換器にて冷却水から吸熱することが好ましい。 In the first refrigerant circuit in the vehicle interior heating mode, the first refrigerant compressed by the first compressor releases heat to the indoor air in the first refrigerant/inside air heat exchanger that functions as a condenser of the first refrigerant circuit, and heats up. It is preferable that the first refrigerant depressurized later by the third expansion valve absorbs heat from the cooling water in the first refrigerant/cooling water heat exchanger functioning as an evaporator of the first refrigerant circuit.
  車室内暖房モードにおける冷却水回路では、回路内を循環する冷却水が、車載電気部品から吸熱し、かつ、第1冷媒/冷却水熱交換器にて第1冷媒に放熱することが好ましい。外気の温度が冷却水の温度より高い場合は、車載電気部品から吸熱するとともにラジエータにて外気から吸熱したり、あるいは車載電気部品から吸熱する代わりにラジエータにて外気から吸熱したりしてもよい。 In the cooling water circuit in the vehicle interior heating mode, the cooling water circulating in the circuit preferably absorbs heat from the vehicle-mounted electrical components and releases heat to the first refrigerant in the first refrigerant/cooling water heat exchanger. When the temperature of the outside air is higher than the temperature of the cooling water, heat may be absorbed from the outside air by the radiator while absorbing heat from the on-vehicle electric parts, or the heat may be absorbed from the outside air by the radiator instead of absorbing heat from the on-vehicle electric parts. .
  車室内暖房モードでは、冷却水回路で車載電気部品から吸熱した車載電気部品の排熱を熱源として、第1冷媒回路で第1冷媒を効果的に加熱することができるので、第1冷媒回路によって車室内を効果的に暖房することができる。また、ラジエータにて外気から吸熱した空気熱により冷却水が過度に低温になることを抑えることができる。 In the vehicle interior heating mode, the first refrigerant circuit can effectively heat the first refrigerant using the waste heat of the vehicle-mounted electrical components that has absorbed heat from the vehicle-mounted electrical components in the cooling water circuit as a heat source. The interior of the vehicle can be effectively heated. Also, it is possible to prevent the cooling water from becoming excessively low temperature due to the air heat absorbed from the outside air by the radiator.
  第2冷媒回路は、第2冷媒の循環方向を逆転させる方向切替部を有することが好ましい。 The second refrigerant circuit preferably has a direction switching section that reverses the circulation direction of the second refrigerant.
  第2冷媒回路は、制御部の制御により、車載電池を暖機する電池暖機モードで作動することが好ましい。 It is preferable that the second refrigerant circuit operates in a battery warm-up mode in which the vehicle battery is warmed up under the control of the controller.
  制御部は、電池暖機モードで、第3通常モード及び第4停止モードにて運転するように制御し、かつ、第2冷媒回路において、第2圧縮機で圧縮された第2冷媒が電池熱交換器に向かうように方向切替部により第2冷媒の循環方向を制御することが好ましい。 The control unit controls to operate in the third normal mode and the fourth stop mode in the battery warm-up mode, and in the second refrigerant circuit, the second refrigerant compressed by the second compressor heats the battery. It is preferable that the circulation direction of the second refrigerant is controlled by the direction switching unit so as to head toward the exchanger.
  電池暖機モードにおける第2冷媒回路では、第2圧縮機で圧縮された第2冷媒が第2冷媒回路の凝縮器として機能する電池熱交換器にて車載電池に放熱し、放熱後に第4膨張弁で減圧された第2冷媒が第2冷媒回路の蒸発器として機能する第2冷媒/外気熱交換器にて外気から吸熱することが好ましい。 In the second refrigerant circuit in the battery warm-up mode, the second refrigerant compressed by the second compressor radiates heat to the on-vehicle battery in the battery heat exchanger that functions as a condenser of the second refrigerant circuit, and after the heat is released, the second refrigerant expands to the fourth expansion. It is preferable that the second refrigerant depressurized by the valve absorbs heat from outside air in the second refrigerant/outside air heat exchanger that functions as an evaporator of the second refrigerant circuit.
  第2冷媒回路において、第2圧縮機で圧縮された第2冷媒が電池熱交換器に向かうように方向切替部により第2冷媒の循環方向が制御されるとともに、電池熱交換器にて第2冷媒と電池とを熱交換させるとともに第4膨張弁にて第2冷媒を膨張させる第3通常モードで運転され、かつ、第2冷媒/冷却水熱交換器にて第2冷媒と冷却水との熱交換を停止させるとともに第2膨張弁での膨張を停止させた状態にて第2冷媒を循環させる第4停止モードで運転されることにより、第2冷媒回路を循環する第2冷媒は、蒸発器として機能する第2冷媒/外気熱交換器にて外気から吸熱するとともに、凝縮器として機能する電池熱交換器にて車載電池に放熱して、車載電池を暖機することができる。 In the second refrigerant circuit, the direction switching unit controls the circulation direction of the second refrigerant so that the second refrigerant compressed by the second compressor is directed to the battery heat exchanger, and the second refrigerant is directed to the battery heat exchanger. It is operated in a third normal mode in which the refrigerant and the battery are heat-exchanged and the second refrigerant is expanded by the fourth expansion valve, and the second refrigerant and the cooling water are exchanged by the second refrigerant/cooling water heat exchanger. By operating in the fourth stop mode in which the second refrigerant is circulated in a state where heat exchange is stopped and expansion at the second expansion valve is stopped, the second refrigerant circulating in the second refrigerant circuit does not evaporate. The second refrigerant/outside air heat exchanger that functions as a condenser absorbs heat from the outside air, and the battery heat exchanger that functions as a condenser dissipates heat to the onboard battery to warm up the onboard battery.
  第1冷媒回路は、第1冷媒/内気熱交換器及び第3膨張弁をバイパスする第1冷媒/内気熱交換器バイパスと、第1冷媒を第1冷媒/内気熱交換器及び第3膨張弁側に流すか、第1冷媒/内気熱交換器バイパス側に流すかを切り替える第1冷媒/内気熱交換器バイパス切替部とを有することが好ましい。 The first refrigerant circuit includes a first refrigerant/internal air heat exchanger bypass that bypasses the first refrigerant/inside air heat exchanger and the third expansion valve, and a first refrigerant/inside air heat exchanger bypassing the first refrigerant/inside air heat exchanger and the third expansion valve. It is preferable to have a first refrigerant/inside air heat exchanger bypass switching unit for switching between flowing to the first refrigerant/internal air heat exchanger bypass side and flowing to the first refrigerant/inside air heat exchanger bypass side.
  制御部は、第1通常モードにて、第1冷媒/内気熱交換器バイパス切替部により第1冷媒を第1冷媒/内気熱交換器及び第3膨張弁側に流し、かつ、第1停止モードにて、第1冷媒/内気熱交換器機バイパス切替部により第1冷媒を第1冷媒/内気熱交換器バイパス側に流すことが好ましい。 The control unit causes the first refrigerant/inside air heat exchanger bypass switching unit to flow the first refrigerant to the first refrigerant/inside air heat exchanger and the third expansion valve side in the first normal mode, and the first stop mode. , it is preferable to flow the first refrigerant to the first refrigerant/internal air heat exchanger bypass side by the first refrigerant/inside air heat exchanger bypass switching unit.
  第1冷媒/内気熱交換器バイパス及び第1冷媒/内気熱交換器バイパス切替部を有する第1冷媒回路において、第1通常モードにて第1冷媒/内気熱交換器バイパス切替部により第1冷媒を第1冷媒/内気熱交換器及び第3膨張弁側に流すことにより、車室内暖房モードにおいて第1冷媒/内気熱交換器を第1冷媒が室内空気に放熱する凝縮器として機能させることができ、かつ、第1停止モードにて第1冷媒/内気熱交換器機バイパス切替部により第1冷媒を第1冷媒/内気熱交換器バイパス側に流すことにより、車室内冷房冷却水冷却モードにおいて第1冷媒/内気熱交換器の機能を停止させることができる。 In the first refrigerant circuit having the first refrigerant/internal air heat exchanger bypass and the first refrigerant/inside air heat exchanger bypass switching unit, the first refrigerant is switched by the first refrigerant/inside air heat exchanger bypass switching unit in the first normal mode. to the first refrigerant/internal air heat exchanger and the third expansion valve side, the first refrigerant/inside air heat exchanger can function as a condenser in which the first refrigerant releases heat to the indoor air in the vehicle interior heating mode. and by causing the first refrigerant/internal air heat exchanger bypass switching unit to flow the first refrigerant to the first refrigerant/inside air heat exchanger bypass side in the first stop mode, the second 1, the refrigerant/air heat exchanger can be deactivated.
  第1冷媒回路は、内気冷却器及び第1膨張弁をバイパスする内気冷却器バイパスと、第1冷媒を内気冷却器及び第1膨張弁側に流すか、内気冷却器バイパス側に流すかを切り替える内気冷却器バイパス切替部とを有することが好ましい。 The first refrigerant circuit switches between the internal air cooler bypass that bypasses the internal air cooler and the first expansion valve, and whether the first refrigerant flows to the internal air cooler and the first expansion valve side or to the internal air cooler bypass side. It is preferable to have an inside air cooler bypass switching part.
  制御部は、第2通常モードにて、内気冷却器バイパス切替部により第1冷媒を内気冷却器及び第1膨張弁側に流し、かつ、第2停止モードにて、内気冷却器バイパス切替部により第1冷媒を内気冷却器バイパス側に流すことが好ましい。 The control unit causes the inside air cooler bypass switching unit to flow the first refrigerant to the inside air cooler and the first expansion valve side in the second normal mode, and causes the inside air cooler bypass switching unit to flow in the second stop mode. It is preferable to flow the first refrigerant to the internal air cooler bypass side.
  内気冷却器バイパス及び内気冷却器バイパス切替部を有する第1冷媒回路において、第2通常モードにて内気冷却器バイパス切替部により第1冷媒を内気冷却器及び第1膨張弁側に流すことにより、車室内冷房冷却水冷却モードにおいて内気冷却器を第1冷媒が室内空気から吸熱する蒸発器として機能させることができ、かつ、第2停止モードにて内気冷却器バイパス切替部により第1冷媒を内気冷却器バイパス側に流すことにより、車室内暖房モードにおいて内気冷却器の機能を停止させることができる。 In the first refrigerant circuit having the internal air cooler bypass and the internal air cooler bypass switching unit, in the second normal mode, the internal air cooler bypass switching unit causes the first refrigerant to flow toward the internal air cooler and the first expansion valve, In the vehicle interior cooling water cooling mode, the inside air cooler can be made to function as an evaporator in which the first refrigerant absorbs heat from the room air, and in the second stop mode, the inside air cooler bypass switching unit allows the first refrigerant to be transferred to the inside air. By flowing the air to the cooler bypass side, the function of the inside air cooler can be stopped in the passenger compartment heating mode.
  第2冷媒回路は、電池熱交換器及び第4膨張弁をバイパスする電池熱交換器バイパスと、第2冷媒を電池熱交換器及び第4膨張弁側に流すか、電池熱交換器バイパス側に流すかを切り替える電池熱交換器バイパス切替部とを有することが好ましい。 The second refrigerant circuit includes a battery heat exchanger bypass that bypasses the battery heat exchanger and the fourth expansion valve, and a second refrigerant that flows to the battery heat exchanger and the fourth expansion valve side or to the battery heat exchanger bypass side. It is preferable to have a battery heat exchanger bypass switching unit for switching whether to flow or not.
  制御部は、第3通常モードにて、電池熱交換器バイパス切替部により第2冷媒を電池熱交換器及び第4膨張弁側に流し、かつ、第3停止モードにて、電池熱交換器バイパス切替部により第2冷媒を電池熱交換器バイパス側に流すことが好ましい。 The control unit causes the battery heat exchanger bypass switching unit to flow the second refrigerant to the battery heat exchanger and the fourth expansion valve side in the third normal mode, and the battery heat exchanger bypass in the third stop mode. It is preferable that the switching unit causes the second refrigerant to flow to the battery heat exchanger bypass side.
  電池熱交換器バイパス及び電池熱交換器バイパス切替部を有する第2冷媒回路において、第3通常モードにて、電池熱交換器バイパス切替部により第2冷媒を電池熱交換器及び第4膨張弁側に流すことにより、電池冷却モードにおいて電池熱交換器を第2冷媒が車載電池から吸熱する蒸発器として機能させるとともに電池暖機モードにおいて電池熱交換器を第2冷媒が車載電池に放熱する凝縮器として機能させることができ、かつ、第3停止モードにて電池熱交換器バイパス切替部により第2冷媒を電池熱交換器バイパス側に流すことにより、車室内冷房冷却水冷却モードにおいて電池熱交換器の機能を停止させることができる。 In the second refrigerant circuit having the battery heat exchanger bypass and the battery heat exchanger bypass switching unit, in the third normal mode, the second refrigerant is switched to the battery heat exchanger and the fourth expansion valve side by the battery heat exchanger bypass switching unit. In the battery cooling mode, the battery heat exchanger functions as an evaporator in which the second refrigerant absorbs heat from the vehicle battery, and in the battery warm-up mode, the battery heat exchanger is a condenser in which the second refrigerant releases heat to the vehicle battery. and the battery heat exchanger in the vehicle interior cooling water cooling mode by flowing the second refrigerant to the battery heat exchanger bypass side by the battery heat exchanger bypass switching unit in the third stop mode function can be stopped.
  第2冷媒回路は、第2冷媒/冷却水熱交換器及び第2膨張弁をバイパスする第2冷媒/冷却水熱交換器バイパスと、第2冷媒を第2冷媒/冷却水熱交換器及び第2膨張弁側に流すか、第2冷媒/冷却水熱交換器バイパス側に流すかを切り替える第2冷媒/冷却水熱交換器バイパス切替部とを有することが好ましい。 The second refrigerant circuit includes a second refrigerant/coolant heat exchanger bypass that bypasses the second refrigerant/coolant heat exchanger and the second expansion valve, and a second refrigerant/coolant heat exchanger that bypasses the second refrigerant/coolant heat exchanger and the second refrigerant/coolant heat exchanger. It is preferable to have a second refrigerant/cooling water heat exchanger bypass switching unit for switching between flowing to the second expansion valve side and flowing to the second refrigerant/cooling water heat exchanger bypass side.
  制御部は、第4通常モードにて、第2冷媒/冷却水熱交換器バイパス切替部により第2冷媒を第2冷媒/冷却水熱交換器及び第2膨張弁側に流し、かつ、第4停止モードにて、前2冷媒/冷却水熱交換器バイパス切替部により第2冷媒を第2冷媒/冷却水熱交換器バイパス側に流すことが好ましい。 In the fourth normal mode, the control unit causes the second refrigerant/cooling water heat exchanger bypass switching unit to flow the second refrigerant to the second refrigerant/cooling water heat exchanger and the second expansion valve side, and In the stop mode, it is preferable to flow the second refrigerant to the second refrigerant/cooling water heat exchanger bypass side by the front two refrigerant/cooling water heat exchanger bypass switching unit.
  第2冷媒/冷却水熱交換器バイパス及び第2冷媒/冷却水熱交換器バイパス切替部を有する第2冷媒回路において、第4通常モードにて第2冷媒/冷却水熱交換器バイパス切替部により第2冷媒を第2冷媒/冷却水熱交換器及び第2膨張弁側に流すことにより、車室内冷房冷却水冷却モードにおいて第2冷媒/冷却水熱交換器を第2冷媒が冷却水から吸熱する蒸発器として機能させることができ、かつ、第4停止モードにて第2冷媒/冷却水熱交換器バイパス切替部により第2冷媒を第2冷媒/冷却水熱交換器バイパス側に流すことにより、電池冷却モード及び電池暖機モードにおいて第2冷媒/冷却水熱交換器の機能を停止させることができる。 In the second refrigerant circuit having the second refrigerant/cooling water heat exchanger bypass and the second refrigerant/cooling water heat exchanger bypass switching unit, in the fourth normal mode, the second refrigerant/cooling water heat exchanger bypass switching unit By flowing the second refrigerant to the side of the second refrigerant/cooling water heat exchanger and the second expansion valve, the second refrigerant absorbs heat from the cooling water in the second refrigerant/cooling water heat exchanger in the vehicle interior cooling water cooling mode. In the fourth stop mode, the second refrigerant/cooling water heat exchanger bypass switching unit causes the second refrigerant to flow to the second refrigerant/cooling water heat exchanger bypass side. , the function of the second refrigerant/coolant heat exchanger can be deactivated in the battery cooling mode and the battery warming mode.
  本発明の車両用熱マネジメントシステムによれば、電池搭載車両において車載電池の冷却と車室内空調とを適切に行うことができ、しかも外気温が高い時でも車室内を冷房しつつ冷却水温度を低下させて車載電気部品を適切に冷却することができる。 According to the vehicle heat management system of the present invention, it is possible to appropriately cool the on-board battery and air-condition the interior of the vehicle in a battery-equipped vehicle. It can be lowered to properly cool the on-vehicle electrical components.
図1は、実施例の車両用熱マネジメントシステムの全体構成を模式的に示すシステム構成図である。FIG. 1 is a system configuration diagram schematically showing the overall configuration of a vehicle heat management system according to an embodiment. 図2は、実施例の車両用熱マネジメントシステムに係り、車室内冷房冷却水冷却モードを説明するシステム構成図である。FIG. 2 is a system configuration diagram that relates to the vehicle heat management system of the embodiment and explains a vehicle interior cooling water cooling mode. 図3は、実施例の車両用熱マネジメントシステムに係り、車室内冷房モードを説明するシステム構成図である。FIG. 3 is a system configuration diagram for explaining a vehicle interior cooling mode, relating to the vehicle heat management system of the embodiment. 図4は、実施例の車両用熱マネジメントシステムに係り、車室内暖房モードを説明するシステム構成図である。FIG. 4 relates to the vehicle heat management system of the embodiment, and is a system configuration diagram for explaining the vehicle interior heating mode. 図5は、実施例の車両用熱マネジメントシステムに係り、電池冷却モードを説明するシステム構成図である。FIG. 5 is a system configuration diagram for explaining a battery cooling mode, relating to the vehicle heat management system of the embodiment. 図6は、実施例の車両用熱マネジメントシステムに係り、電池暖機モードを説明するシステム構成図である。FIG. 6 is a system configuration diagram for explaining a battery warm-up mode, relating to the vehicle heat management system of the embodiment. 図7は、実施例の車両用熱マネジメントシステムに係り、車室内冷房電池冷却モードを説明するシステム構成図である。FIG. 7 relates to the vehicle heat management system of the embodiment, and is a system configuration diagram illustrating a vehicle interior cooling battery cooling mode. 図8は、実施例の車両用熱マネジメントシステムに係り、車室内暖房電池冷却モードを説明するシステム構成図である。FIG. 8 relates to the vehicle heat management system of the embodiment, and is a system configuration diagram for explaining the vehicle interior heating battery cooling mode.
  以下、本発明を具体化した実施例を図面を参照しつつ説明する。実施例の車両用熱マネジメントシステムは、電動モータから走行用の駆動力を得る電池搭載車両に搭載される。電池搭載車両としては、例えば、電気自動車やプラグインハイブリッド自動車を挙げることができる。実施例の車両用熱マネジメントシステムは、車室内の空調を行うとともに、車載電池の温度調節及び車載電気部品の冷却を行う。 Embodiments embodying the present invention will be described below with reference to the drawings. The vehicle thermal management system of the embodiment is mounted on a battery-equipped vehicle that obtains driving force for running from an electric motor. Examples of battery-equipped vehicles include electric vehicles and plug-in hybrid vehicles. The vehicle thermal management system of the embodiment performs air conditioning in the vehicle interior, temperature control of the vehicle battery, and cooling of the vehicle electrical components.
(実施例)
  この車両用熱マネジメントシステムは、図1に全体構成を模式的に示すように、第1冷媒回路1と、冷却水回路2と、第2冷媒回路3と、第1冷媒/冷却水熱交換器4と、第2冷媒/冷却水熱交換器5と、制御部6とを備えている。
(Example)
As schematically shown in FIG. 1, the vehicle heat management system includes a first refrigerant circuit 1, a cooling water circuit 2, a second refrigerant circuit 3, and a first refrigerant/cooling water heat exchanger. 4 , a second refrigerant/cooling water heat exchanger 5 , and a control unit 6 .
  第1冷媒/冷却水熱交換器4は、第1冷媒回路1及び冷却水回路2の双方に組み込まれて、第1冷媒回路1と冷却水回路2とを連結している。第2冷媒/冷却水熱交換器5は、冷却水回路2及び第2冷媒回路3の双方に組み込まれて、冷却水回路2と第2冷媒回路3とを連結している。 The first refrigerant/cooling water heat exchanger 4 is incorporated in both the first refrigerant circuit 1 and the cooling water circuit 2 to connect the first refrigerant circuit 1 and the cooling water circuit 2 . The second refrigerant/cooling water heat exchanger 5 is incorporated in both the cooling water circuit 2 and the second refrigerant circuit 3 to connect the cooling water circuit 2 and the second refrigerant circuit 3 .
  第1冷媒回路1は、回路内を循環する第1冷媒R1と車室内へ送られる室内空気との熱交換により、車室内の空調を行う。また、第1冷媒回路1は、回路内を循環する第1冷媒R1と冷却水回路2の冷却水Lとの熱交換により、冷却水Lから吸熱して冷却水Lを冷却したり、冷却水Lに放熱して冷却水Lを加熱したりする。 The first refrigerant circuit 1 air-conditions the vehicle interior by heat exchange between the first refrigerant R1 circulating in the circuit and the indoor air sent into the vehicle interior. Further, the first refrigerant circuit 1 absorbs heat from the cooling water L by heat exchange between the first refrigerant R1 circulating in the circuit and the cooling water L of the cooling water circuit 2 to cool the cooling water L, or Heat is radiated to L to heat the cooling water L.
  第1冷媒回路1は、室内空気を冷却して車室内を冷房するとともに冷却水Lに放熱する冷房冷却水加熱回路と、室内空気を加熱して車室内を暖房するとともに冷却水Lから吸熱する車室内暖房冷却水冷却回路とに切り替え可能に構成されている。室内空気を冷却して車室内を冷房することには、車室内を除湿することも含まれる。 The first refrigerant circuit 1 includes a cooling water heating circuit that cools the vehicle interior by cooling the indoor air and heats the vehicle interior to the cooling water L, and a cooling water heating circuit that heats the vehicle interior by heating the indoor air and absorbs heat from the cooling water L. It is configured to be switchable to a vehicle interior heating cooling water cooling circuit. Cooling the vehicle interior by cooling the indoor air also includes dehumidifying the vehicle interior.
  第1冷媒回路1は、第1冷媒管路1aと、第1冷媒/内気熱交換器バイパスとしての第1冷媒/内気熱交換器バイパス管路1bと、内気冷却器バイパスとしての内気冷却器バイパス管路1cとを有している。 The first refrigerant circuit 1 includes a first refrigerant line 1a, a first refrigerant/internal air heat exchanger bypass line 1b as a first refrigerant/internal air heat exchanger bypass, and an internal air cooler bypass as an internal air cooler bypass. and a pipeline 1c.
  第1冷媒回路1は、第1圧縮機10と、第1三方弁11と、第1冷媒/内気熱交換器12と、第3膨張弁13と、第2三方弁14と、第1膨張弁15と、内気冷却器16とを備えており、第1冷媒管路1aにこの順で配置されている。第1冷媒/冷却水熱交換器4は、第3膨張弁13と第2三方弁14との間に組み込まれている。 The first refrigerant circuit 1 includes a first compressor 10, a first three-way valve 11, a first refrigerant/inside air heat exchanger 12, a third expansion valve 13, a second three-way valve 14, and a first expansion valve. 15 and an internal air cooler 16, which are arranged in this order in the first refrigerant pipe line 1a. A first refrigerant/cooling water heat exchanger 4 is incorporated between the third expansion valve 13 and the second three-way valve 14 .
  第1圧縮機10及び後述する第2圧縮機30は、制御部6から出力される制御信号によって、冷媒吐出能力が制御される電動圧縮機である。第1圧縮機10は、第1冷媒R1を圧縮して第1冷媒回路1内を循環させる。第1冷媒回路1における第1冷媒R1の循環方向は図1の反時計回り方向である。すなわち、第1圧縮機10で圧縮された第1冷媒R1は第1三方弁11に向かう。 The first compressor 10 and a second compressor 30 described later are electric compressors whose refrigerant discharge capacities are controlled by control signals output from the control unit 6 . The first compressor 10 compresses the first refrigerant R<b>1 and circulates it through the first refrigerant circuit 1 . The circulation direction of the first refrigerant R1 in the first refrigerant circuit 1 is the counterclockwise direction in FIG. That is, the first refrigerant R<b>1 compressed by the first compressor 10 goes to the first three-way valve 11 .
  第1冷媒/内気熱交換器バイパス管路1bの一端は第1三方弁11に接続され、第1冷媒/内気熱交換器バイパス管路1bの他端は第3膨張弁13と第1冷媒/冷却水熱交換器4との間に位置する第1冷媒管路1aの第1接続部1dに接続されている。第1冷媒/内気熱交換器バイパス管路1bは、第1冷媒/内気熱交換器12及び第3膨張弁13をバイパスする。内気冷却器バイパス管路1cの一端は第2三方弁14に接続され、内気冷却器バイパス管路1cの他端は内気冷却器16と第1圧縮機10との間に位置する第1冷媒管路1aの第2接続部1eに接続されている。内気冷却器バイパス管路1cは、内気冷却器16及び第1膨張弁15をバイパスする。 One end of the first refrigerant/inside air heat exchanger bypass line 1b is connected to the first three-way valve 11, and the other end of the first refrigerant/internal air heat exchanger bypass line 1b is connected to the third expansion valve 13 and the first refrigerant/ It is connected to the first connecting portion 1d of the first refrigerant pipe line 1a located between the cooling water heat exchanger 4 and the cooling water heat exchanger 4 . The first refrigerant/inside air heat exchanger bypass line 1 b bypasses the first refrigerant/inside air heat exchanger 12 and the third expansion valve 13 . One end of the internal air cooler bypass line 1c is connected to the second three-way valve 14, and the other end of the internal air cooler bypass line 1c is the first refrigerant pipe located between the internal air cooler 16 and the first compressor 10. It is connected to the second connection portion 1e of the path 1a. The internal air cooler bypass line 1 c bypasses the internal air cooler 16 and the first expansion valve 15 .
  第1三方弁11及び第2三方弁14、並びに後述する第3三方弁33、第4三方弁35、第5三方弁36及び第6三方弁39は、制御部6からの制御信号に応じて冷媒が流れる管路を切り替える電動三方弁である。 The first three-way valve 11 and the second three-way valve 14, as well as a third three-way valve 33, a fourth three-way valve 35, a fifth three-way valve 36 and a sixth three-way valve 39, which will be described later, are operated according to control signals from the control unit 6. It is an electric three-way valve that switches the pipeline through which the refrigerant flows.
  第1三方弁11は、第1冷媒R1を第1冷媒/内気熱交換器12及び第3膨張弁13側に流すか、第1冷媒/内気熱交換器バイパス管路1b側に流すかを切り替える第1冷媒/内気熱交換器バイパス切替部である。第2三方弁14は、第1冷媒R1を内気冷却器16及び第1膨張弁15側に流すか、内気冷却器バイパス管路1c側に流すかを切り替える内気冷却器バイパス切替部である。 The first three-way valve 11 switches between flowing the first refrigerant R1 to the side of the first refrigerant/inside air heat exchanger 12 and the third expansion valve 13, or to the side of the first refrigerant/inside air heat exchanger bypass line 1b. This is the first refrigerant/inside air heat exchanger bypass switching section. The second three-way valve 14 is an inside air cooler bypass switching unit that switches between flowing the first refrigerant R1 to the inside air cooler 16 and first expansion valve 15 side or to the inside air cooler bypass line 1c side.
  第1冷媒回路1においては、第1冷媒/内気熱交換器12及び内気冷却器16にて、図示しない送風ファンによって車室内に送られる室内空気と第1冷媒R1とが熱交換される。第1冷媒/内気熱交換器12が第1冷媒回路1の凝縮器として機能するときは、第1冷媒/内気熱交換器12にて第1冷媒R1が室内空気に放熱する。第1冷媒R1との熱交換によって加熱された室内空気は、図示しない送風ファンによって車室内に送られて車室内の暖房に供される。第1冷媒R1が第1冷媒/内気熱交換器バイパス管路1bを通るときは、第1冷媒/内気熱交換器12の機能は停止する。内気冷却器16が第1冷媒回路1の蒸発器として機能するときは、内気冷却器16にて第1冷媒R1が室内空気から吸熱する。第1冷媒R1との熱交換によって冷却された室内空気は、図示しない送風ファンによって車室内に送られて車室内の冷房に供される。第1冷媒R1が内気冷却器バイパス管路1cを通るときは、内気冷却器16の機能は停止する。 In the first refrigerant circuit 1, the first refrigerant/inside air heat exchanger 12 and the inside air cooler 16 exchange heat between the first refrigerant R1 and indoor air sent into the vehicle compartment by a blower fan (not shown). When the first refrigerant/internal air heat exchanger 12 functions as the condenser of the first refrigerant circuit 1 , the first refrigerant R1 releases heat to the indoor air in the first refrigerant/internal air heat exchanger 12 . The indoor air heated by heat exchange with the first refrigerant R1 is sent into the passenger compartment by a blower fan (not shown) to heat the passenger compartment. When the first refrigerant R1 passes through the first refrigerant/internal air heat exchanger bypass line 1b, the function of the first refrigerant/inside air heat exchanger 12 is stopped. When the internal air cooler 16 functions as an evaporator of the first refrigerant circuit 1 , the internal air cooler 16 absorbs heat from the indoor air to the first refrigerant R1. The indoor air cooled by heat exchange with the first refrigerant R1 is sent into the passenger compartment by a blower fan (not shown) to cool the passenger compartment. When the first refrigerant R1 passes through the internal air cooler bypass line 1c, the function of the internal air cooler 16 is stopped.
  冷却水回路2は、回路内を循環する冷却水Lと車載電気部品との熱交換により、車載電気部品の冷却を行う。冷却水回路2は、回路内を循環する冷却水Lと外気との熱交換により、外気から吸熱して冷却水Lを加熱したり、外気に放熱して冷却水Lを冷却したりする。冷却水回路2は、回路内を循環する冷却水Lと外気との熱交換が制御されることにより、冷却水Lから外気への放熱や外気から冷却水Lへの吸熱が制御される。冷却水回路2は、冷却水Lが外気に放熱する放熱回路と、冷却水Lが外気への放熱を行わない非放熱回路とに切替可能に構成されている。なお、非放熱回路には、冷却水Lが外気への放熱を行わず、外気から冷却水Lへの吸熱を行うことが含まれる。 The cooling water circuit 2 cools the vehicle-mounted electrical components by heat exchange between the cooling water L circulating in the circuit and the vehicle-mounted electrical components. The cooling water circuit 2 absorbs heat from the outside air to heat the cooling water L, and radiates heat to the outside air to cool the cooling water L by heat exchange between the cooling water L circulating in the circuit and the outside air. In the cooling water circuit 2, the heat exchange between the cooling water L circulating in the circuit and the outside air is controlled, so that the heat dissipation from the cooling water L to the outside air and the heat absorption from the outside air to the cooling water L are controlled. The cooling water circuit 2 is configured to be switchable between a heat radiation circuit in which the cooling water L releases heat to the outside air and a non-heat radiation circuit in which the cooling water L does not release heat to the outside air. It should be noted that the non-radiating circuit includes that the cooling water L does not radiate heat to the outside air, but absorbs heat from the outside air to the cooling water L.
  冷却水回路2は、冷却水管路2aを有している。冷却水回路2は、回路内を冷却水Lが循環して車載電気部品の冷却を行う。車載電気部品としては、車両駆動用の走行用モータやPCU等を挙げることができる。 The cooling water circuit 2 has a cooling water pipeline 2a. In the cooling water circuit 2, cooling water L circulates in the circuit to cool the vehicle-mounted electrical components. Examples of in-vehicle electrical components include a motor for driving a vehicle, a PCU, and the like.
  冷却水回路2は、ウォーターポンプ20と、電気部品21と、ラジエータ22とを備えており、冷却水管路2aにこの順で配置されている。冷却水管路2aは車載電気部品に内蔵又は隣接された冷却用流路に接続されており、電気部品21において車載電気部品の冷却用流路を冷却水Lが流通して、車載電気部品を冷却する。 The cooling water circuit 2 includes a water pump 20, an electric component 21, and a radiator 22, which are arranged in this order in the cooling water pipe 2a. The cooling water pipe 2a is connected to a cooling channel built in or adjacent to the on-vehicle electrical component, and the cooling water L flows through the cooling channel of the on-vehicle electrical component in the electrical component 21 to cool the on-vehicle electrical component. do.
  冷却水回路2において、第1冷媒/冷却水熱交換器4は電気部品21とラジエータ22との間に組み込まれており、第2冷媒/冷却水熱交換器5はラジエータ22とウォーターポンプ20との間に組み込まれている。冷却水回路2における冷却水Lの循環方向は図1の反時計回り方向である。すなわち、ウォーターポンプ20で圧送された冷却水Lは電気部品21に向かい、第1冷媒/冷却水熱交換器4を経てラジエータ22に至る。なお、本明細書における冷却水とは、所謂クーラント(LLC:Long  Life  Coolant)を含む。 In the cooling water circuit 2, the first refrigerant/coolant heat exchanger 4 is installed between the electrical component 21 and the radiator 22, and the second refrigerant/coolant heat exchanger 5 is installed between the radiator 22 and the water pump 20. embedded between. The circulation direction of the cooling water L in the cooling water circuit 2 is the counterclockwise direction in FIG. That is, the cooling water L pressure-fed by the water pump 20 is directed to the electrical component 21 and reaches the radiator 22 via the first refrigerant/cooling water heat exchanger 4 . Cooling water in this specification includes so-called coolant (LLC: Long Life Coolant).
  ラジエータ22の近傍には、ラジエータ22に外気を送風する冷却ファン23が設けられている。冷却水回路2においては、ラジエータ22にて、冷却ファン23によって送られる外気と冷却水Lとが熱交換される。冷却ファン23が停止していれば、冷却水Lが実質的に外気と熱交換することはない。冷却水回路2は、冷却ファン23の作動時や車両の走行時に冷却水Lが外気に放熱する放熱回路となり、冷却ファン23の停止時や車両の停止時に冷却水Lが実質的に外気と熱交換することがない非放熱回路となる。 A cooling fan 23 that blows outside air to the radiator 22 is provided near the radiator 22 . In the cooling water circuit 2 , heat is exchanged between the outside air sent by the cooling fan 23 and the cooling water L in the radiator 22 . If the cooling fan 23 is stopped, the cooling water L does not substantially exchange heat with the outside air. The cooling water circuit 2 serves as a heat dissipation circuit in which the cooling water L releases heat to the outside air when the cooling fan 23 is operating or when the vehicle is running. It becomes a non-heat-dissipating circuit that does not need to be replaced.
  第2冷媒回路3は、回路内を循環する第2冷媒R2と車載電池との熱交換により、車載電池の温度調節を行う。また、第2冷媒回路3は、回路内を循環する第2冷媒R2と冷却水回路2の冷却水Lとの熱交換により、冷却水Lから吸熱して冷却水Lを冷却する。第2冷媒回路3は、車載電池の温度調節を行わずに冷却水Lを冷却する冷却水冷却回路と、外気から吸熱するとともに車載電池を暖機する電池暖機回路と、外気に放熱するとともに車載電池を冷却する電池冷却回路とに切り替え可能に構成されている。 The second refrigerant circuit 3 controls the temperature of the vehicle battery by heat exchange between the second refrigerant R2 circulating in the circuit and the vehicle battery. The second refrigerant circuit 3 cools the cooling water L by absorbing heat from the cooling water L through heat exchange between the second refrigerant R2 circulating in the circuit and the cooling water L of the cooling water circuit 2 . The second refrigerant circuit 3 includes a cooling water cooling circuit that cools the cooling water L without adjusting the temperature of the vehicle-mounted battery, a battery warming circuit that absorbs heat from the outside air and warms up the vehicle-mounted battery, and a circuit that dissipates heat to the outside air. It is configured to be switchable to a battery cooling circuit that cools the on-vehicle battery.
  第2冷媒回路3は、第2冷媒管路3aと、電池熱交換器バイパス管路3bと、第2冷媒/冷却水熱交換器バイパス管路3cとを有している。 The second refrigerant circuit 3 has a second refrigerant line 3a, a battery heat exchanger bypass line 3b, and a second refrigerant/cooling water heat exchanger bypass line 3c.
  第2冷媒回路3は、第2圧縮機30と、四方弁31と、第2冷媒/外気熱交換器32と、第3三方弁33と、第2膨張弁34と、第4三方弁35と、第5三方弁36と、第4膨張弁37と、電池熱交換器38と、第6三方弁39とを備えており、第2冷媒管路3aにこの順で配置されている。第2冷媒/冷却水熱交換器5は、第2膨張弁34と第4三方弁35との間に組み込まれている。 The second refrigerant circuit 3 includes a second compressor 30, a four-way valve 31, a second refrigerant/outside air heat exchanger 32, a third three-way valve 33, a second expansion valve 34, and a fourth three-way valve 35. , a fifth three-way valve 36, a fourth expansion valve 37, a battery heat exchanger 38, and a sixth three-way valve 39, which are arranged in this order in the second refrigerant line 3a. A second refrigerant/cooling water heat exchanger 5 is incorporated between the second expansion valve 34 and the fourth three-way valve 35 .
  第2圧縮機30は、第2冷媒R2を圧縮して第2冷媒回路3内を循環させる。第2冷媒回路3における第2冷媒R2の循環方向は四方弁31によって逆転され、図1において時計回り方向及び反時計回り方向に第2冷媒R2が循環する。 The second compressor 30 compresses the second refrigerant R2 and circulates it in the second refrigerant circuit 3 . The circulation direction of the second refrigerant R2 in the second refrigerant circuit 3 is reversed by the four-way valve 31, and the second refrigerant R2 circulates clockwise and counterclockwise in FIG.
  四方弁31は、制御部6からの制御信号に応じて第1状態と第2状態とを切り替える電動四方弁であり、第2冷媒R2が第2冷媒管路3内を循環する方向を逆転させる方向切替部である。 The four-way valve 31 is an electric four-way valve that switches between a first state and a second state according to a control signal from the control unit 6, and reverses the direction in which the second refrigerant R2 circulates in the second refrigerant pipe 3. It is a direction switching part.
  第1状態の四方弁31は、第2圧縮機30の吸入側を電池熱交換器38側に接続するとともに、第2圧縮機30の吐出側を第2冷媒/外気熱交換器32側に接続する。四方弁31が第1状態にあれば、第2冷媒回路3内の第2冷媒R2の循環方向は図1において時計回り方向になり、第2圧縮機30で圧縮された第2冷媒R2は第2冷媒/外気熱交換器32側に向かう。第2状態の四方弁31は、第2圧縮機30の吸入側を第2冷媒/外気熱交換器32側に接続するとともに、第2圧縮機30の吐出側を電池熱交換器38側に接続する。四方弁31が第2状態にあれば、第2冷媒回路3内の第2冷媒R2の循環方向は図1において反時計回り方向になり、第2圧縮機30で圧縮された第2冷媒R2は電池熱交換器38側に向かう。 The four-way valve 31 in the first state connects the suction side of the second compressor 30 to the battery heat exchanger 38 side and connects the discharge side of the second compressor 30 to the second refrigerant/outside air heat exchanger 32 side. do. If the four-way valve 31 is in the first state, the direction of circulation of the second refrigerant R2 in the second refrigerant circuit 3 is clockwise in FIG. 2 toward the refrigerant/outside air heat exchanger 32 side. The four-way valve 31 in the second state connects the suction side of the second compressor 30 to the second refrigerant/outside air heat exchanger 32 side, and connects the discharge side of the second compressor 30 to the battery heat exchanger 38 side. do. When the four-way valve 31 is in the second state, the circulation direction of the second refrigerant R2 in the second refrigerant circuit 3 is counterclockwise in FIG. It goes to the battery heat exchanger 38 side.
  電池熱交換器バイパス管路3bの一端は第5三方弁36に接続され、電池熱交換器バイパス管路3bの他端は第6三方弁39に接続されている。電池熱交換器バイパス管路3bは、電池熱交換器38及び第4膨張弁37をバイパスする電池熱交換器バイパスである。第2冷媒/冷却水熱交換器バイパス管路3cの一端は第3三方弁33に接続され、第2冷媒/冷却水熱交換器バイパス管路3cの他端は第4三方弁35に接続されている。第2冷媒/冷却水熱交換器バイパス管路3cは、第2冷媒/冷却水熱交換器5及び第2膨張弁34をバイパスする第2冷媒/冷却水熱交換器バイパスである。 One end of the battery heat exchanger bypass line 3b is connected to the fifth three-way valve 36, and the other end of the battery heat exchanger bypass line 3b is connected to the sixth three-way valve 39. The battery heat exchanger bypass line 3 b is a battery heat exchanger bypass that bypasses the battery heat exchanger 38 and the fourth expansion valve 37 . One end of the second refrigerant/cooling water heat exchanger bypass line 3c is connected to the third three-way valve 33, and the other end of the second refrigerant/cooling water heat exchanger bypass line 3c is connected to the fourth three-way valve 35. ing. The second refrigerant/coolant heat exchanger bypass line 3 c is a second refrigerant/coolant heat exchanger bypass that bypasses the second refrigerant/coolant heat exchanger 5 and the second expansion valve 34 .
  第5三方弁36及び第6三方弁39は、第2冷媒R2を電池熱交換器38及び第4膨張弁37側に流すか、電池熱交換器バイパス管路3b側に流すかを切り替える電池熱交換器バイパスである。第3三方弁33及び第4三方弁35は、第2冷媒R2を第2冷媒/冷却水熱交換器5及び第2膨張弁34側に流すか、第2冷媒/冷却水熱交換器バイパス管路3c側に流すかを切り替える第2冷媒/冷却水熱交換器バイパス切替部である。 The fifth three-way valve 36 and the sixth three-way valve 39 switch the flow of the second refrigerant R2 to the side of the battery heat exchanger 38 and the fourth expansion valve 37 or to the side of the battery heat exchanger bypass pipe 3b. Exchanger bypass. The third three-way valve 33 and the fourth three-way valve 35 flow the second refrigerant R2 to the side of the second refrigerant/cooling water heat exchanger 5 and the second expansion valve 34, or the second refrigerant/cooling water heat exchanger bypass pipe. It is a second refrigerant/cooling water heat exchanger bypass switching unit that switches whether to flow to the path 3c side.
  第2冷媒回路3においては、電池熱交換器38にて第2冷媒R2と車載電池とが熱交換される。電池熱交換器38が第2冷媒回路3の蒸発器として機能するときは、電池熱交換器38にて第2冷媒R2が車載電池から吸熱して車載電池を冷却する。電池熱交換器38が第2冷媒回路3の凝縮器として機能するときは、電池熱交換器38にて第2冷媒R2が車載電池に放熱して車載電池を暖機する。第2冷媒R2が電池熱交換器バイパス管路3bを通るときは、電池熱交換器33の機能が停止する。 In the second refrigerant circuit 3, the battery heat exchanger 38 exchanges heat between the second refrigerant R2 and the vehicle-mounted battery. When the battery heat exchanger 38 functions as an evaporator of the second refrigerant circuit 3, the second refrigerant R2 absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery. When the battery heat exchanger 38 functions as a condenser for the second refrigerant circuit 3, the second refrigerant R2 releases heat to the vehicle battery in the battery heat exchanger 38 to warm the vehicle battery. When the second refrigerant R2 passes through the battery heat exchanger bypass line 3b, the function of the battery heat exchanger 33 stops.
  第2冷媒管路3aは車載電池に内蔵または隣接された温調用流路に接続されており、電池熱交換器38において車載電池の温調用流路を第2冷媒R2が流通し、車載電池の温度調節を行う。 The second refrigerant pipe 3a is connected to a temperature control passage built in or adjacent to the vehicle battery. Adjust the temperature.
  第2冷媒回路3においては、第2冷媒/外気熱交換器32にて、図示しない送風ファンによって外部に送られる外気と第2冷媒R2とが熱交換される。第2冷媒/外気熱交換器32が第2冷媒回路3の蒸発器として機能するときは、第2冷媒/外気熱交換器32にて第2冷媒R2が外気から吸熱する。第2冷媒/外気熱交換器32が第2冷媒回路3の凝縮器として機能するときは、第2冷媒/外気熱交換器32にて第2冷媒R2が外気に放熱する。 In the second refrigerant circuit 3, the second refrigerant/outside air heat exchanger 32 exchanges heat between the second refrigerant R2 and the outside air sent outside by a blower fan (not shown). When the second refrigerant/outside air heat exchanger 32 functions as an evaporator of the second refrigerant circuit 3 , the second refrigerant R2 absorbs heat from the outside air in the second refrigerant/outside air heat exchanger 32 . When the second refrigerant/outside air heat exchanger 32 functions as a condenser of the second refrigerant circuit 3 , the second refrigerant R2 releases heat to the outside air in the second refrigerant/outside air heat exchanger 32 .
  第1冷媒/冷却水熱交換器4では、第1冷媒回路1を循環する第1冷媒R1と、冷却水回路2を循環する冷却水Lとが熱交換する。第1冷媒/冷却水熱交換器4が第1冷媒回路1の凝縮器として機能するときは、第1冷媒/冷却水熱交換器4にて第1冷媒R1が冷却水Lに放熱する。第1冷媒/冷却水熱交換器4が第1冷媒回路1の蒸発器として機能するときは、第1冷媒/冷却水熱交換器4にて第1冷媒R1が冷却水Lから吸熱する。 In the first refrigerant/cooling water heat exchanger 4, the first refrigerant R1 circulating in the first refrigerant circuit 1 and the cooling water L circulating in the cooling water circuit 2 exchange heat. When the first refrigerant/cooling water heat exchanger 4 functions as a condenser of the first refrigerant circuit 1 , the first refrigerant R1 releases heat to the cooling water L in the first refrigerant/cooling water heat exchanger 4 . When the first refrigerant/cooling water heat exchanger 4 functions as an evaporator of the first refrigerant circuit 1 , the first refrigerant R1 absorbs heat from the cooling water L in the first refrigerant/cooling water heat exchanger 4 .
  第2冷媒/冷却水熱交換器5では、第2冷媒回路3を循環する第2冷媒R2と、冷却水回路2を循環する冷却水Lとが熱交換する。第2冷媒/冷却水熱交換器5が第2冷媒回路3の蒸発器として機能するときは、第2冷媒/冷却水熱交換器5にて第2冷媒R2が冷却水Lから吸熱する。第2冷媒R2が第2冷媒/冷却水熱交換器バイパス管路3cを通るときは、第2冷媒/冷却水熱交換器5の機能は停止する。 In the second refrigerant/cooling water heat exchanger 5, the second refrigerant R2 circulating in the second refrigerant circuit 3 and the cooling water L circulating in the cooling water circuit 2 exchange heat. When the second refrigerant/cooling water heat exchanger 5 functions as an evaporator of the second refrigerant circuit 3 , the second refrigerant R<b>2 absorbs heat from the cooling water L in the second refrigerant/cooling water heat exchanger 5 . When the second refrigerant R2 passes through the second refrigerant/cooling water heat exchanger bypass line 3c, the function of the second refrigerant/cooling water heat exchanger 5 is stopped.
  制御部6は、電子制御装置よりなり、第1冷媒回路1、冷却水回路2及び第2冷媒回路3の作動を制御する。 The control unit 6 is composed of an electronic control device and controls the operations of the first refrigerant circuit 1 , the cooling water circuit 2 and the second refrigerant circuit 3 .
  制御部6は、第1冷媒回路1において、第1圧縮機10、第1三方弁11、第2三方弁14及び図示しない送風ファンの作動を制御する。制御部6は、冷却水回路2において、ウォーターポンプ20及び冷却ファン23の作動を制御する。制御部6は、第2冷媒回路3において、第2圧縮機30、四方弁31、第3三方弁33、第4三方弁35、第5三方弁36、第6三方弁39及び図示しない送風ファンの作動を制御する。 In the first refrigerant circuit 1, the control unit 6 controls the operations of the first compressor 10, the first three-way valve 11, the second three-way valve 14, and the blower fan (not shown). The control unit 6 controls operations of the water pump 20 and the cooling fan 23 in the cooling water circuit 2 . In the second refrigerant circuit 3, the control unit 6 controls the second compressor 30, the four-way valve 31, the third three-way valve 33, the fourth three-way valve 35, the fifth three-way valve 36, the sixth three-way valve 39, and the blower fan (not shown). controls the operation of
  第1冷媒回路1は、制御部6の制御により、第1通常モードと第1停止モードとに切り替わる。第1通常モードでは、制御部6による第1三方弁11の制御により、第1冷媒R1が第1冷媒/内気熱交換器12及び第3膨張弁13側を流れる。第1停止モードでは、制御部6による第1三方弁11の制御により、第1冷媒R1が第1冷媒/内気熱交換器バイパス管路1b側を流れる。 The first refrigerant circuit 1 is switched between the first normal mode and the first stop mode under the control of the controller 6 . In the first normal mode, the first three-way valve 11 is controlled by the controller 6 so that the first refrigerant R1 flows through the first refrigerant/inside air heat exchanger 12 and the third expansion valve 13 side. In the first stop mode, the first three-way valve 11 is controlled by the controller 6 so that the first refrigerant R1 flows through the first refrigerant/inside air heat exchanger bypass pipe line 1b side.
  第1冷媒回路1は、制御部6の制御により、第2通常モードと第2停止モードとに切り替わる。第2通常モードでは、制御部6による第2三方弁14の制御により、第1冷媒R1が内気冷却器16及び第1膨張弁15側を流れる。第2停止モードでは、制御部6による第2三方弁14の制御により、第1冷媒R1が内気冷却器バイパス管路1c側を流れる。 The first refrigerant circuit 1 is switched between the second normal mode and the second stop mode under the control of the controller 6 . In the second normal mode, the control unit 6 controls the second three-way valve 14 so that the first refrigerant R1 flows through the inside air cooler 16 and the first expansion valve 15 side. In the second stop mode, the control unit 6 controls the second three-way valve 14 so that the first refrigerant R1 flows through the internal air cooler bypass pipe line 1c.
  第2冷媒回路3は、制御部6の制御により、第3通常モードと第3停止モードとに切り替わる。第3通常モードでは、制御部6による第5三方弁36及び第6三方弁39の制御により、第2冷媒R2が電池熱交換器38及び第4膨張弁37側を流れる。第3停止モードでは、制御部6による第5三方弁36及び第6三方弁39の制御により、第2冷媒R2が電池熱交換器バイパス管路3b側を流れる。 The second refrigerant circuit 3 is switched between the third normal mode and the third stop mode under the control of the controller 6 . In the third normal mode, the control unit 6 controls the fifth three-way valve 36 and the sixth three-way valve 39 so that the second refrigerant R2 flows through the battery heat exchanger 38 and the fourth expansion valve 37 side. In the third stop mode, the control unit 6 controls the fifth three-way valve 36 and the sixth three-way valve 39 so that the second refrigerant R2 flows through the battery heat exchanger bypass pipe 3b.
  第2冷媒回路3は、制御部6の制御により、第4通常モードと第4停止モードとに切り替わる。第4通常モードでは、制御部6による第3三方弁33及び第4三方弁35の制御により、第2冷媒R2が第2冷媒/冷却水熱交換器5及び第2膨張弁34側を流れる。第4停止モードでは、制御部6による第3三方弁33及び第4三方弁35の制御により、第2冷媒R2が第2冷媒/冷却水熱交換器バイパス管路3c側を流れる。 The second refrigerant circuit 3 is switched between the fourth normal mode and the fourth stop mode under the control of the controller 6 . In the fourth normal mode, the control unit 6 controls the third three-way valve 33 and the fourth three-way valve 35 so that the second refrigerant R2 flows through the second refrigerant/cooling water heat exchanger 5 and the second expansion valve 34 side. In the fourth stop mode, the control unit 6 controls the third three-way valve 33 and the fourth three-way valve 35 so that the second refrigerant R2 flows through the second refrigerant/cooling water heat exchanger bypass pipe 3c.
  上記構成を有する本実施例の車両用熱マネジメントシステムの作動について、以下説明する。
(車室内冷房冷却水冷却モード)
  第1冷媒回路1、冷却水回路2及び第2冷媒回路3は、制御部6の制御により、図2にシステム構成図を示す車室内冷房冷却水冷却モードで作動する。車室内冷房冷却水冷却モードでは、車室内を空調する第1冷媒回路1が車室内を冷房するように作動するとともに、車載電池の温度を調節する第2冷媒回路3が冷却水回路2の冷却水Lを冷却するように作動する。
The operation of the vehicle heat management system of this embodiment having the above configuration will be described below.
(Vehicle interior cooling water cooling mode)
The first refrigerant circuit 1, the cooling water circuit 2, and the second refrigerant circuit 3 are controlled by the control unit 6 to operate in the vehicle interior cooling water cooling mode, the system configuration of which is shown in FIG. In the vehicle interior cooling water cooling mode, the first refrigerant circuit 1 for air-conditioning the interior of the vehicle operates to cool the interior of the vehicle, and the second refrigerant circuit 3 for adjusting the temperature of the vehicle battery cools the cooling water circuit 2. It operates to cool the water L.
  車室内冷房冷却水冷却モードでは、第1停止モード、第2通常モード、第3停止モード及び第4通常モードにて運転される。   In the vehicle interior cooling water cooling mode, operation is performed in the first stop mode, the second normal mode, the third stop mode, and the fourth normal mode.
  車室内冷房冷却水冷却モードにおける第2冷媒回路3は、冷却水冷却回路をなし、車載電池の温度調節を行わずに冷却水回路2の冷却水Lを冷却する。車室内冷房冷却水冷却モードにおける第2冷媒回路3では、四方弁31の制御により、第2冷媒R2の循環方向が図2の時計回り方向とされ、第2圧縮機30で圧縮された第2冷媒R2は第2冷媒/外気熱交換器32側に向かう。また、車室内冷房冷却水冷却モードにおける第2冷媒回路3は、第3停止モード及び第4通常モードにて運転する。 The second refrigerant circuit 3 in the vehicle interior cooling cooling water cooling mode constitutes a cooling water cooling circuit, and cools the cooling water L of the cooling water circuit 2 without adjusting the temperature of the vehicle battery. In the second refrigerant circuit 3 in the vehicle interior cooling water cooling mode, the four-way valve 31 is controlled so that the circulation direction of the second refrigerant R2 is the clockwise direction in FIG. The refrigerant R2 goes toward the second refrigerant/outside air heat exchanger 32 side. In addition, the second refrigerant circuit 3 in the vehicle interior cooling water cooling mode operates in the third stop mode and the fourth normal mode.
  車室内冷房冷却水冷却モードにおいて第3停止モード及び第4通常モードにて運転する第2冷媒回路3では、第2圧縮機30で圧縮された第2冷媒R2が、四方弁31を介して第2冷媒/外気熱交換器32に導入される。第2冷媒/外気熱交換器32は第2冷媒回路3の凝縮器として機能し、第2冷媒/外気熱交換器32にて第2冷媒R2が外気に放熱する。放熱後の第2冷媒R2は第2膨張弁34で減圧されて第2冷媒/冷却水熱交換器5に導入される。第2冷媒/冷却水熱交換器5は第2冷媒回路3の蒸発器として機能し、第2冷媒/冷却水熱交換器5にて第2冷媒R2が冷却水回路2の冷却水Lから吸熱して、冷却水Lを冷却する。吸熱後の第2冷媒R2は電池熱交換器バイパス管路3bを通り、四方弁31を介して第2圧縮機30に導入される。 In the second refrigerant circuit 3 that operates in the third stop mode and the fourth normal mode in the passenger compartment cooling water cooling mode, the second refrigerant R2 compressed by the second compressor 30 passes through the four-way valve 31 to the second refrigerant circuit 3. 2 into a refrigerant/outside air heat exchanger 32 . The second refrigerant/outside air heat exchanger 32 functions as a condenser of the second refrigerant circuit 3 , and the second refrigerant R2 releases heat to the outside air in the second refrigerant/outside air heat exchanger 32 . After heat release, the second refrigerant R2 is depressurized by the second expansion valve 34 and introduced into the second refrigerant/cooling water heat exchanger 5 . The second refrigerant/cooling water heat exchanger 5 functions as an evaporator of the second refrigerant circuit 3, and the second refrigerant R2 absorbs heat from the cooling water L of the cooling water circuit 2 in the second refrigerant/cooling water heat exchanger 5. Then, the cooling water L is cooled. After absorbing heat, the second refrigerant R2 passes through the battery heat exchanger bypass line 3b and is introduced into the second compressor 30 via the four-way valve 31. As shown in FIG.
  車室内冷房冷却水冷却モードにおける第1冷媒回路1は、冷房冷却水加熱回路をなし、室内空気を冷却して車室内を冷房するとともに、冷却水回路2の冷却水Lに放熱する。車室内冷房冷却水冷却モードにおける第1冷媒回路1は、第1停止モード及び第2通常モードにて運転する。 The first refrigerant circuit 1 in the vehicle interior cooling water cooling mode forms a cooling water heating circuit, cools the vehicle interior by cooling the indoor air, and radiates heat to the cooling water L of the cooling water circuit 2 . The first refrigerant circuit 1 in the passenger compartment cooling water cooling mode operates in the first stop mode and the second normal mode.
  車室内冷房冷却水冷却モードにおいて第1停止モード及び第2通常モードにて運転する第1冷媒回路1では、第1圧縮機10で圧縮された第1冷媒R1が第1冷媒/内気熱交換器バイパス管路1bを通って第1冷媒/冷却水熱交換器4に導入される。第1冷媒/冷却水熱交換器4は第1冷媒回路1の凝縮器として機能し、第1冷媒/冷却水熱交換器4にて第1冷媒R1が冷却水回路2の冷却水Lに放熱する。放熱後の第1冷媒R1は第1膨張弁15で減圧されて内気冷却器16に導入される。内気冷却器16は第1冷媒回路1の蒸発器として機能し、内気冷却器16にて第1冷媒R1が室内空気から吸熱して、車室内を冷房する。吸熱後の第1冷媒R1は第1圧縮機10に導入される。 In the first refrigerant circuit 1 operated in the first stop mode and the second normal mode in the passenger compartment cooling water cooling mode, the first refrigerant R1 compressed by the first compressor 10 is transferred to the first refrigerant/inside air heat exchanger It is introduced into the first refrigerant/cooling water heat exchanger 4 through the bypass line 1b. The first refrigerant/cooling water heat exchanger 4 functions as a condenser of the first refrigerant circuit 1, and the first refrigerant R1 releases heat to the cooling water L of the cooling water circuit 2 in the first refrigerant/cooling water heat exchanger 4. do. After heat release, the first refrigerant R1 is decompressed by the first expansion valve 15 and introduced into the internal air cooler 16 . The inside air cooler 16 functions as an evaporator of the first refrigerant circuit 1, and the first refrigerant R1 absorbs heat from the indoor air in the inside air cooler 16 to cool the vehicle interior. The first refrigerant R1 after absorbing heat is introduced into the first compressor 10 .
  車室内冷房冷却水冷却モードにおける冷却水回路2は、冷却ファン23が作動する放熱回路をなし、ラジエータ22にて冷却水Lが外気に放熱する。 The cooling water circuit 2 in the vehicle interior cooling cooling water cooling mode forms a heat radiation circuit in which the cooling fan 23 operates, and the cooling water L radiates heat to the outside air through the radiator 22 .
  車室内冷房冷却水冷却モードにける冷却水回路2では、ウォーターポンプ20で圧送された冷却水Lが、電気部品21から吸熱するとともに第1冷媒/冷却水熱交換器4にて第1冷媒回路1の第1冷媒R1から吸熱する。吸熱後の冷却水Lはラジエータ22にて外気に放熱するとともに第2冷媒/冷却水熱交換器5にて第2冷却回路3の第2冷媒R2に放熱する。ラジエータ22にて外気に放熱するとともに第2冷媒/冷却水熱交換器5にて第2冷媒R2に放熱して冷却された冷却水Lにより、電気部品21を適切に冷却することができる。 In the cooling water circuit 2 in the vehicle interior cooling water cooling mode, the cooling water L pressure-fed by the water pump 20 absorbs heat from the electrical components 21, and in the first refrigerant/cooling water heat exchanger 4, the first refrigerant circuit 1 absorbs heat from the first refrigerant R1. After absorbing heat, the cooling water L radiates heat to the outside air through the radiator 22 and radiates heat to the second refrigerant R2 of the second cooling circuit 3 through the second refrigerant/cooling water heat exchanger 5 . The electric component 21 can be appropriately cooled by the cooling water L that has been cooled by the radiator 22 radiating heat to the outside air and the second refrigerant/cooling water heat exchanger 5 radiating heat to the second refrigerant R2.
  車室内冷房冷却水冷却モードにおける冷却水回路2では、電気部品21から吸熱するとともに第1冷媒/冷却水熱交換器4にて第1冷媒R1から吸熱し、かつ、ラジエータ22にて外気に放熱した冷却水Lが、第2冷媒/冷却水熱交換器5にて第2冷媒R2に放熱して第2冷媒回路3の冷却能力に応じて冷却されることで、冷却水Lの温度が適切に冷却される。この車室内冷房冷却水冷却モードにおける冷却水Lの温度は0~40℃の範囲とすることが好ましい。 In the cooling water circuit 2 in the vehicle interior cooling water cooling mode, heat is absorbed from the electrical component 21, heat is absorbed from the first refrigerant R1 by the first refrigerant/cooling water heat exchanger 4, and heat is released to the outside air by the radiator 22. The cooling water L is cooled according to the cooling capacity of the second refrigerant circuit 3 by dissipating heat to the second refrigerant R2 in the second refrigerant/cooling water heat exchanger 5, so that the temperature of the cooling water L is appropriate. cooled to The temperature of the cooling water L in this vehicle interior cooling cooling water cooling mode is preferably in the range of 0 to 40.degree.
  制御部6は、冷却水回路2の冷却水Lの温度が所定範囲(例えば、0~40℃の範囲)を超えたときに車室内冷房冷却水冷却モードを実行し、冷却水Lの温度が所定範囲内にあれば車室内冷房冷却水冷却モードを実行しないことが好ましい。第2冷媒回路3の第2圧縮機30を作動させないことにより、第2圧縮機30の消費電力を省略することができる。この場合、冷却水回路2における冷却水Lの冷却はラジエータ22のみで行えばよい。 The control unit 6 executes the vehicle interior cooling water cooling mode when the temperature of the cooling water L in the cooling water circuit 2 exceeds a predetermined range (for example, the range of 0 to 40 ° C.), and the temperature of the cooling water L If it is within the predetermined range, it is preferable not to execute the vehicle interior cooling water cooling mode. By not operating the second compressor 30 of the second refrigerant circuit 3, power consumption of the second compressor 30 can be omitted. In this case, cooling of the cooling water L in the cooling water circuit 2 may be performed only by the radiator 22 .
  こうして車室内冷房冷却水冷却モードでは、第1冷媒回路1で車室内を冷房しつつ、第2冷媒回路3で冷却水回路2の冷却水Lを冷却することができる。このため、夏季の暑い時でも車室内を冷房しつつ、第2冷媒回路3による冷却能力に応じて冷却水回路2の冷却水Lを冷却することができ、電気部品21を適切に冷却することができる。 Thus, in the passenger compartment cooling water cooling mode, the first refrigerant circuit 1 cools the passenger compartment while the second refrigerant circuit 3 cools the cooling water L in the cooling water circuit 2 . Therefore, it is possible to cool the cooling water L of the cooling water circuit 2 in accordance with the cooling capacity of the second refrigerant circuit 3 while cooling the vehicle interior even in hot summer weather, thereby appropriately cooling the electric parts 21. can be done.
  他方、この車両用熱マネジメントシステムは、後述するように第2冷媒回路3を電池冷却モードで作動させることにより、第2冷媒回路3の冷却能力に応じて車載電池を冷却することができるので、車載電池の適切な冷却が可能になる。 On the other hand, this vehicle heat management system can cool the onboard battery according to the cooling capacity of the second refrigerant circuit 3 by operating the second refrigerant circuit 3 in the battery cooling mode as will be described later. Appropriate cooling of the on-vehicle battery becomes possible.
  したがって、この車両用熱マネジメントシステムによれば、電池搭載車両において車載電池の冷却と車室内空調とを適切に行うことができ、しかも外気温が高い時でも車室内を冷房しつつ冷却水温度を低下させて電気部品21を適切に冷却することができる。 Therefore, according to this vehicle heat management system, in a battery-equipped vehicle, it is possible to appropriately cool the on-board battery and air-condition the vehicle interior. It can be lowered to properly cool the electrical component 21 .
(車室内冷房モード)
  第1冷媒回路1及び冷却水回路2は、制御部6の制御により、図3にシステム構成図を示す車室内冷房モードで作動する。車室内冷房モードでは、第1停止モード及び第2通常モードにて運転される。
(Vehicle interior cooling mode)
Under the control of the controller 6, the first refrigerant circuit 1 and the cooling water circuit 2 operate in a vehicle interior cooling mode, the system configuration of which is shown in FIG. In the passenger compartment cooling mode, the engine is operated in the first stop mode and the second normal mode.
  車室内冷房モードにおける第1冷媒回路1は、車室内冷房冷却水冷却モードと同様、冷房冷却水加熱回路をなし、第1停止モード及び第2通常モードにて運転する。第1冷媒回路1を循環する第1冷媒R1は、第1冷媒/冷却水熱交換器4にて冷却水回路2の冷却水Lに放熱し、かつ、内気冷却器16にて室内空気から吸熱して車室内を冷房する。 In the vehicle interior cooling mode, the first refrigerant circuit 1 forms a cooling water heating circuit as in the vehicle interior cooling water cooling mode, and operates in the first stop mode and the second normal mode. The first refrigerant R1 circulating in the first refrigerant circuit 1 releases heat to the cooling water L of the cooling water circuit 2 in the first refrigerant/cooling water heat exchanger 4, and absorbs heat from the room air in the inside air cooler 16. to cool the passenger compartment.
  車室内冷房モードにおける冷却水回路2は、車室内冷房冷却水冷却モードと同様、冷却ファン23が作動する放熱回路をなす。冷却水回路2を循環する冷却水Lは、電気部品21から吸熱するとともに第1冷媒/冷却水熱交換器4にて第1冷媒R1から吸熱し、かつ、ラジエータ22にて外気に放熱する。ラジエータ22での外気への放熱により、冷却水回路2の冷却水Lが過度に高温になることを抑えることができる。 The cooling water circuit 2 in the vehicle interior cooling mode forms a heat dissipation circuit in which the cooling fan 23 operates, as in the vehicle interior cooling water cooling mode. The cooling water L circulating in the cooling water circuit 2 absorbs heat from the electric component 21 , absorbs heat from the first refrigerant R<b>1 in the first refrigerant/cooling water heat exchanger 4 , and radiates heat to the outside air in the radiator 22 . Excessive temperature rise of the cooling water L in the cooling water circuit 2 can be suppressed by heat radiation to the outside air in the radiator 22 .
  冷却水Lは第2冷媒/冷却水熱交換器5を通過するが、第2冷媒回路3において第2圧縮機30が作動しておらず第2冷媒R2が第2冷媒回路3を循環していないか、あるいは第2圧縮機30が作動していても第2冷媒R2が第2冷媒/冷却水熱交換器バイパス管路3cを通っており第2冷媒/冷却水熱交換器5の機能が停止していれば、第2冷媒/冷却水熱交換器5にて冷却水Lが第2冷媒回路3の第2冷媒R2に対して実質的に放熱も吸熱もしない。このことは、後述する車室内暖房モード、車室内冷房電池冷却モード及び車室内暖房電池冷却モードにおいても同様である。 The cooling water L passes through the second refrigerant/cooling water heat exchanger 5, but in the second refrigerant circuit 3, the second compressor 30 is not operating and the second refrigerant R2 is circulating through the second refrigerant circuit 3. or, even if the second compressor 30 is operating, the second refrigerant R2 passes through the second refrigerant/cooling water heat exchanger bypass pipe 3c and the function of the second refrigerant/cooling water heat exchanger 5 is disabled. If it is stopped, the cooling water L in the second refrigerant/cooling water heat exchanger 5 does not substantially release heat to or absorb heat from the second refrigerant R2 of the second refrigerant circuit 3 . This also applies to the vehicle interior heating mode, the vehicle interior cooling battery cooling mode, and the vehicle interior heating battery cooling mode, which will be described later.
  こうして車室内冷房モードでは、冷却水回路2にて冷却水Lから外気に放熱しつつ、第1冷媒回路1で第1冷媒回路1の冷却能力に応じて車室内を効果的に冷房することができる。 Thus, in the passenger compartment cooling mode, the cooling water circuit 2 releases heat from the cooling water L to the outside air, while the first refrigerant circuit 1 effectively cools the passenger compartment in accordance with the cooling capacity of the first refrigerant circuit 1. can.
(車室内暖房モード)
  第1冷媒回路1及び冷却水回路2は、制御部6の制御により、図4にシステム構成図を示す車室内暖房モードで作動する。車室内暖房モードにおける第1冷媒回路1は、暖房冷却水冷却回路をなし、第1通常モード及び第2停止モードにて運転する。
(Vehicle heating mode)
Under the control of the controller 6, the first refrigerant circuit 1 and the cooling water circuit 2 operate in the vehicle interior heating mode, the system configuration of which is shown in FIG. The first refrigerant circuit 1 in the vehicle interior heating mode constitutes a heating cooling water cooling circuit, and operates in the first normal mode and the second stop mode.
  車室内暖房モードにおいて第1通常モード及び第2停止モードにて運転する第1冷媒回路1では、第1圧縮機10で圧縮された第1冷媒R1は第1冷媒/内気熱交換器12に導入される。第1冷媒/内気熱交換器12は第1冷媒回路1の凝縮器として機能し、第1冷媒/内気熱交換器12にて第1冷媒R1が室内空気に放熱して、車室内を暖房する。放熱後の第1冷媒R1は第3膨張弁13で減圧されて第1冷媒/冷却水熱交換器4に導入される。第1冷媒/冷却水熱交換器4は第1冷媒回路1の蒸発器として機能し、第1冷媒/冷却水熱交換器4にて第1冷媒R1が冷却水回路2の冷却水Lから吸熱する。吸熱後の第1冷媒R1は内気冷却器バイパス管路1cを通って第1圧縮機10に導入される。 In the first refrigerant circuit 1 operated in the first normal mode and the second stop mode in the vehicle interior heating mode, the first refrigerant R1 compressed by the first compressor 10 is introduced into the first refrigerant/inside air heat exchanger 12. be done. The first refrigerant/internal air heat exchanger 12 functions as a condenser of the first refrigerant circuit 1, and the first refrigerant R1 releases heat to the indoor air in the first refrigerant/internal air heat exchanger 12 to heat the vehicle interior. . After heat release, the first refrigerant R1 is decompressed by the third expansion valve 13 and introduced into the first refrigerant/cooling water heat exchanger 4 . The first refrigerant/cooling water heat exchanger 4 functions as an evaporator of the first refrigerant circuit 1, and the first refrigerant R1 absorbs heat from the cooling water L of the cooling water circuit 2 in the first refrigerant/cooling water heat exchanger 4. do. After absorbing heat, the first refrigerant R1 is introduced into the first compressor 10 through the internal air cooler bypass line 1c.
  車室内暖房モードにおける冷却水回路2は、冷却ファン23が停止した非放熱回路をなし、ラジエータ22にて冷却水Lから外気への放熱を行わない。 The cooling water circuit 2 in the vehicle interior heating mode forms a non-radiating circuit in which the cooling fan 23 is stopped, and the radiator 22 does not radiate heat from the cooling water L to the outside air.
  車室内暖房モードにおける冷却水回路2では、ウォーターポンプ20で圧送された冷却水Lは電気部品21及び第1冷媒/冷却水熱交換器4を経てラジエータ22を通り、第2冷媒/冷却水熱交換器5を経てウォーターポンプ20に導入される。冷却水回路2を循環する冷却水Lは、電気部品21から吸熱して電気部品21を冷却し、かつ、第1冷媒/冷却水熱交換器4にて第1冷媒回路1の第1冷媒R1に放熱する。第1冷媒/冷却水熱交換器4にて第1冷媒R1に放熱することにより、冷却水回路2の冷却水Lが過度に高温になることを抑えることができる。なお、車室内暖房モードで外気の温度が冷却水Lの温度よりも高い場合には、冷却水回路2は非放熱回路をなし、ラジエータ22にて外気から冷却水Lへの吸熱を行っても良い。冷却水回路2を循環する冷却水Lは、電気部品21から吸熱して電気部品21を冷却し、かつラジエータ22にて外気から吸熱し、さらに第1冷媒/冷却水熱交換器4で第1冷媒R1に放熱することになる。これにより、冷却水回路2の冷却水Lが過度に低温になることを抑えることができる。 In the cooling water circuit 2 in the vehicle interior heating mode, the cooling water L pumped by the water pump 20 passes through the electric component 21 and the first refrigerant/cooling water heat exchanger 4, passes through the radiator 22, and heats the second refrigerant/cooling water. It is introduced into the water pump 20 via the exchanger 5 . The cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, and the first coolant R1 of the first coolant circuit 1 in the first coolant/cooling water heat exchanger 4. to dissipate heat. By dissipating heat to the first refrigerant R1 in the first refrigerant/cooling water heat exchanger 4, it is possible to prevent the cooling water L in the cooling water circuit 2 from becoming excessively hot. When the temperature of the outside air is higher than the temperature of the cooling water L in the vehicle interior heating mode, the cooling water circuit 2 forms a non-radiating circuit, and the radiator 22 absorbs heat from the outside air to the cooling water L. good. The cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, absorbs heat from the outside air at the radiator 22, and further flows through the first refrigerant/cooling water heat exchanger 4 into the first heat exchanger. Heat is radiated to the refrigerant R1. As a result, the cooling water L in the cooling water circuit 2 can be prevented from becoming excessively low temperature.
  車室内暖房モードにおける冷却水回路2では、電気部品21の冷却を優先させたい場合など、必要に応じて冷却ファン23が作動する放熱回路にて運転し、ラジエータ22にて冷却水Lから外気への放熱を行ってもよい。このことは、後述する車室内暖房電池冷却モードにおいても同様である。 In the cooling water circuit 2 in the vehicle interior heating mode, the cooling fan 23 is operated as necessary, such as when it is desired to prioritize the cooling of the electrical parts 21, and the cooling water L is transferred from the cooling water L to the outside air by the radiator 22. heat dissipation may be performed. This also applies to the vehicle interior heating battery cooling mode, which will be described later.
  こうして車室内暖房モードでは、冷却水回路2で電気部品21から吸熱した電気部品21の排熱を熱源として第1冷媒回路1における第1冷媒R1を効果的に加熱して、車室内を効果的に暖房することができる。 In this manner, in the passenger compartment heating mode, the first refrigerant R1 in the first refrigerant circuit 1 is effectively heated by using the exhaust heat of the electrical parts 21 that has absorbed heat from the electrical parts 21 in the cooling water circuit 2 as a heat source, thereby effectively heating the passenger compartment. can be heated to
(電池冷却モード)
  第2冷媒回路3は、制御部6の制御により、図5にシステム構成図を示す電池冷却モードで作動する。電池冷却モードにおける第2冷媒回路3は、電池冷却回路をなし、外気に放熱するとともに車載電池を冷却する。
(battery cooling mode)
The second refrigerant circuit 3 is controlled by the control unit 6 to operate in a battery cooling mode, the system configuration of which is shown in FIG. The second refrigerant circuit 3 in the battery cooling mode forms a battery cooling circuit, radiates heat to the outside air, and cools the onboard battery.
  電池冷却モードにおける第2冷媒回路3では、四方弁31の制御により、第2圧縮機30で圧縮された第2冷媒R2が第2冷媒/外気熱交換器32側に向かうように、第2冷媒R2の循環方向が制御され、第2冷媒R2は第2冷媒回路3を図5の時計回り方向に循環する。また、電池冷却モードにおける第2冷媒回路3では、第3通常モード及び第4停止モードにて運転する。 In the second refrigerant circuit 3 in the battery cooling mode, the second refrigerant R2 compressed by the second compressor 30 is directed toward the second refrigerant/outside air heat exchanger 32 by controlling the four-way valve 31. The circulation direction of R2 is controlled, and the second refrigerant R2 circulates in the clockwise direction in FIG. In the battery cooling mode, the second refrigerant circuit 3 operates in the third normal mode and the fourth stop mode.
  電池冷却モードにおいて第2冷媒R2が図5の時計回り方向に循環し、かつ、第3通常モード及び第4停止モードにて運転する第2冷媒回路3では、第2圧縮機30で圧縮された第2冷媒R2は、四方弁31を介して第2冷媒/外気熱交換器32に導入される。第2冷媒/外気熱交換器32は第2冷媒回路3の凝縮器として機能し、第2冷媒/外気熱交換器32にて第2冷媒R2が外気に放熱する。放熱後の第2冷媒R2は、第2冷媒/冷却水熱交換器バイパス管路3cを通って第4膨張弁37に導入される。第4膨張弁37にて減圧された第2冷媒R2は電池熱交換器38に導入される。電池熱交換器38は第2冷媒回路3の蒸発器として機能し、電池熱交換器38にて第2冷媒R2が車載電池から吸熱して、車載電池を冷却する。吸熱後の第2冷媒R2は四方弁31を介して第2圧縮機30に導入される。 In the battery cooling mode, the second refrigerant R2 circulates in the clockwise direction in FIG. The second refrigerant R2 is introduced into the second refrigerant/outside air heat exchanger 32 via the four-way valve 31 . The second refrigerant/outside air heat exchanger 32 functions as a condenser of the second refrigerant circuit 3 , and the second refrigerant R2 releases heat to the outside air in the second refrigerant/outside air heat exchanger 32 . After the heat is released, the second refrigerant R2 is introduced into the fourth expansion valve 37 through the second refrigerant/cooling water heat exchanger bypass pipe 3c. The second refrigerant R<b>2 decompressed by the fourth expansion valve 37 is introduced into the battery heat exchanger 38 . The battery heat exchanger 38 functions as an evaporator of the second refrigerant circuit 3, and the second refrigerant R2 absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery. The second refrigerant R<b>2 after absorbing heat is introduced into the second compressor 30 via the four-way valve 31 .
  こうして単独で作動する第2冷媒回路3により、第2冷媒回路3の冷却能力に応じて車載電池を効果的に冷却することができる。 With the second refrigerant circuit 3 operating independently in this manner, the vehicle-mounted battery can be effectively cooled according to the cooling capacity of the second refrigerant circuit 3 .
(電池暖機モード)
  第2冷媒回路3は、制御部6の制御により、図6にシステム構成図を示す電池暖機モードで作動する。電池暖機モードにおける第2冷媒回路3は、電池暖機回路をなし、外気から吸熱するとともに車載電池を暖機する。
(battery warm-up mode)
The second refrigerant circuit 3 is controlled by the control unit 6 to operate in a battery warm-up mode, the system configuration of which is shown in FIG. The second refrigerant circuit 3 in the battery warm-up mode forms a battery warm-up circuit, absorbs heat from the outside air, and warms up the vehicle battery.
  電池暖機モードにおける第2冷媒回路3では、四方弁31の制御により、第2圧縮機30で圧縮された第2冷媒R2が電池熱交換器38側に向かうように、第2冷媒R2の循環方向が制御され、第2冷媒R2は第2冷媒回路3を図6の反時計回り方向に循環する。また、電池暖機モードにおける第2冷媒回路3では、第3通常モード及び第4停止モードにて運転される。 In the second refrigerant circuit 3 in the battery warm-up mode, the four-way valve 31 is controlled to circulate the second refrigerant R2 so that the second refrigerant R2 compressed by the second compressor 30 is directed toward the battery heat exchanger 38 side. The direction is controlled, and the second refrigerant R2 circulates in the counterclockwise direction in FIG. 6 through the second refrigerant circuit 3 . In the battery warm-up mode, the second refrigerant circuit 3 operates in the third normal mode and the fourth stop mode.
  電池暖機モードにおいて第2冷媒R2が図6の反時計回り方向に循環し、かつ、第3通常モード及び第4停止モードにて運転する第2冷媒回路3では、第2圧縮機30で圧縮された第2冷媒R2は、四方弁31を介して電池熱交換器38に導入される。電池熱交換器38は第2冷媒回路3の凝縮器として機能し、電池熱交換器38にて第2冷媒R2が車載電池に放熱して、車載電池を暖機する。放熱後の第2冷媒R2は第4膨張弁37で減圧され、第2冷媒/冷却水熱交換器バイパス管路3cを通って第2冷媒/外気熱交換器32に導入される。第2冷媒/外気熱交換器32は第2冷媒回路3の蒸発器として機能し、第2冷媒/外気熱交換器32にて第2冷媒R2が外気から吸熱する。吸熱後の第2冷媒R2は四方弁31を介して第2圧縮機30に導入される。 In the battery warm-up mode, the second refrigerant R2 circulates in the counterclockwise direction of FIG. The second refrigerant R2 thus obtained is introduced into the battery heat exchanger 38 via the four-way valve 31 . The battery heat exchanger 38 functions as a condenser of the second refrigerant circuit 3. In the battery heat exchanger 38, the second refrigerant R2 dissipates heat to the onboard battery to warm up the onboard battery. After the heat is released, the second refrigerant R2 is decompressed by the fourth expansion valve 37 and introduced into the second refrigerant/outside air heat exchanger 32 through the second refrigerant/cooling water heat exchanger bypass line 3c. The second refrigerant/outside air heat exchanger 32 functions as an evaporator of the second refrigerant circuit 3, and the second refrigerant R2 absorbs heat from the outside air in the second refrigerant/outside air heat exchanger 32. The second refrigerant R<b>2 after absorbing heat is introduced into the second compressor 30 via the four-way valve 31 .
  こうして単独で作動する第2冷媒回路3により、第2冷媒回路3の加熱能力に応じて車載電池を効果的に暖機することができる。 With the second refrigerant circuit 3 operating independently in this manner, the onboard battery can be effectively warmed up according to the heating capacity of the second refrigerant circuit 3 .
(車室内冷房電池冷却モード)
  第1冷媒回路1、冷却水回路2及び第2冷媒回路3は、制御部6の制御により、図7にシステム構成図を示す車室内冷房電池冷却モードで作動する。車室内冷房電池冷却モードでは、第1停止モード、第2通常モード、第3通常モード及び第4停止モードにて運転される。
(In-vehicle cooling battery cooling mode)
The first refrigerant circuit 1, the cooling water circuit 2, and the second refrigerant circuit 3 are controlled by the control unit 6 to operate in the vehicle interior cooling battery cooling mode, the system configuration of which is shown in FIG. In the passenger compartment cooling battery cooling mode, the vehicle is operated in the first stop mode, the second normal mode, the third normal mode, and the fourth stop mode.
  車室内冷房電池冷却モードにおける第1冷媒回路1は、車室内冷房冷却水冷却モード及び車室内冷房モードと同様、冷房冷却水加熱回路をなし、第1停止モード及び第2通常モードにて運転する。第1冷媒回路1を循環する第1冷媒R1は、第1冷媒/冷却水熱交換器4にて冷却水Lに放熱し、かつ、内気冷却器16にて室内空気から吸熱して車室内を冷房する。 The first refrigerant circuit 1 in the vehicle interior cooling battery cooling mode forms a cooling water heating circuit in the same manner as in the vehicle interior cooling water cooling mode and vehicle interior cooling mode, and operates in the first stop mode and the second normal mode. . The first refrigerant R1 circulating in the first refrigerant circuit 1 radiates heat to the cooling water L in the first refrigerant/cooling water heat exchanger 4, and absorbs heat from the indoor air in the inside air cooler 16 to flow in the vehicle interior. Cool down.
  車室内冷房電池冷却モードにおける冷却水回路2は、車室内冷房冷却水冷却モード及び車室内冷房モードと同様、冷却ファン23が作動する放熱回路をなす。冷却水回路2を循環する冷却水Lは、電気部品21から吸熱して電気部品21を冷却するとともに、第1冷媒/冷却水熱交換器4にて第1冷媒R1から吸熱し、かつ、ラジエータ22にて外気に放熱する。 The cooling water circuit 2 in the vehicle interior cooling battery cooling mode forms a heat radiation circuit in which the cooling fan 23 operates, as in the vehicle interior cooling water cooling mode and vehicle interior cooling mode. The cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, absorbs heat from the first coolant R1 in the first coolant/cooling water heat exchanger 4, and heats the radiator. At 22, the heat is radiated to the outside air.
  車室内冷房電池冷却モードにおける第2冷媒回路3は、電池冷却モードと同様、電池冷却回路をなし、第2冷媒R2が第2冷媒回路3を図7の時計回り方向に循環し、かつ、第3通常モード及び第4停止モードにて運転する。第2冷媒回路3を循環する第2冷媒R2は、第2冷媒/外気熱交換器32にて外気に放熱し、かつ、電池熱交換器38にて車載電池から吸熱して車載電池を冷却する。 As in the battery cooling mode, the second refrigerant circuit 3 in the vehicle interior cooling battery cooling mode forms a battery cooling circuit, and the second refrigerant R2 circulates through the second refrigerant circuit 3 in the clockwise direction in FIG. 3 Operate in the normal mode and the fourth stop mode. The second refrigerant R2 circulating in the second refrigerant circuit 3 radiates heat to the outside air in the second refrigerant/outside air heat exchanger 32, and absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery. .
  こうして車室内冷房電池冷却モードでは、冷却水回路2にて冷却水Lから外気に放熱しつつ、第1冷媒回路1で第1冷媒回路1の冷却能力に応じて車室内を効果的に冷房することができる。また、また、第2冷媒回路3により、第2冷媒回路3の冷却能力に応じて車載電池を効果的に冷却することができる。 Thus, in the vehicle interior cooling battery cooling mode, the cooling water circuit 2 radiates heat from the cooling water L to the outside air, while the first refrigerant circuit 1 effectively cools the vehicle interior according to the cooling capacity of the first refrigerant circuit 1. be able to. In addition, the vehicle-mounted battery can be effectively cooled by the second refrigerant circuit 3 according to the cooling capacity of the second refrigerant circuit 3 .
(車室内暖房電池冷却モード)
  第1冷媒回路1、冷却水回路2及び第2冷媒回路3は、制御部6の制御により、図8にシステム構成図を示す車室内暖房電池冷却モードで作動する。車室内暖房電池冷却モードでは、第1通常モード、第2停止モード、第3通常モード及び第4停止モードにて運転される。
(In-vehicle heating battery cooling mode)
The first refrigerant circuit 1, the cooling water circuit 2, and the second refrigerant circuit 3 are controlled by the controller 6 to operate in the vehicle interior heating battery cooling mode, the system configuration of which is shown in FIG. In the vehicle interior heating battery cooling mode, operation is performed in a first normal mode, a second stop mode, a third normal mode, and a fourth stop mode.
  車室内暖房電池冷却モードにおける第1冷媒回路1は、車室内暖房モードと同様、暖房冷却水冷却回路をなし、第1通常モード及び第2停止モードにて運転する。第1冷媒回路1を循環する第1冷媒R1は、第1冷媒/内気熱交換器12にて室内空気に放熱して車室内を暖房し、かつ、第1冷媒/冷却水熱交換器4にて冷却水Lから吸熱する。 The first refrigerant circuit 1 in the vehicle interior heating battery cooling mode forms a heating cooling water cooling circuit as in the vehicle interior heating mode, and operates in the first normal mode and the second stop mode. The first refrigerant R1 circulating in the first refrigerant circuit 1 heats the vehicle interior by radiating heat to the indoor air in the first refrigerant/inside air heat exchanger 12, and the first refrigerant/cooling water heat exchanger 4 absorbs heat from the cooling water L.
  車室内暖房電池冷却モードにおける冷却水回路2は、車室内暖房モードと同様、冷却ファン23が停止した非放熱回路をなす。冷却水回路2を循環する冷却水Lは、電気部品21から吸熱して電気部品21を冷却し、かつ、第1冷媒/冷却水熱交換器4にて第1冷媒R1に放熱する。なお、車室内暖房電池冷却モードで外気の温度が冷却水Lの温度よりも高い場合には、冷却水回路2は非放熱回路をなし、ラジエータ22にて外気から冷却水Lへの吸熱を行っても良い。冷却水回路2を循環する冷却水Lは、電気部品21から吸熱して電気部品21を冷却し、第1冷媒/冷却水熱交換器4で第1冷媒R1に放熱した後、ラジエータ22にて外気から吸熱することになる。これにより、冷却水回路2の冷却水Lが過度に低温になることを抑えることができる。 The cooling water circuit 2 in the vehicle interior heating battery cooling mode forms a non-radiating circuit in which the cooling fan 23 is stopped, as in the vehicle interior heating mode. The cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21 , and radiates heat to the first coolant R<b>1 in the first coolant/cooling water heat exchanger 4 . When the temperature of the outside air is higher than the temperature of the cooling water L in the vehicle interior heating battery cooling mode, the cooling water circuit 2 forms a non-radiating circuit, and the radiator 22 absorbs heat from the outside air to the cooling water L. can be The cooling water L circulating in the cooling water circuit 2 absorbs heat from the electrical components 21 to cool the electrical components 21, and after radiating heat to the first coolant R1 in the first coolant/cooling water heat exchanger 4, the radiator 22 It will absorb heat from outside air. As a result, the cooling water L in the cooling water circuit 2 can be prevented from becoming excessively low temperature.
  車室内暖房電池冷却モードにおける第2冷媒回路3は、電池冷却モードと同様、電池冷却回路をなし、第2冷媒R2が第2冷媒回路3を図8の時計回り方向に循環し、かつ、第3通常モード及び第4停止モードにて運転する。第2冷媒回路3を循環する第2冷媒R2は、第2冷媒/外気熱交換器32にて外気に放熱し、かつ、電池熱交換器38にて車載電池から吸熱して車載電池を冷却する。 The second refrigerant circuit 3 in the vehicle interior heating battery cooling mode forms a battery cooling circuit as in the battery cooling mode, the second refrigerant R2 circulates through the second refrigerant circuit 3 in the clockwise direction in FIG. 3 Operate in the normal mode and the fourth stop mode. The second refrigerant R2 circulating in the second refrigerant circuit 3 radiates heat to the outside air in the second refrigerant/outside air heat exchanger 32, and absorbs heat from the vehicle battery in the battery heat exchanger 38 to cool the vehicle battery. .
  こうして車室内暖房電池冷却モードでは、冷却水回路2で電気部品21から吸熱した電気部品21の排熱を熱源として第1冷媒回路1における第1冷媒R1を効果的に加熱して、車室内を効果的に暖房することができる。また、第2冷媒回路3により、第2冷媒回路3の冷却能力に応じて車載電池を効果的に冷却することができる。 Thus, in the vehicle interior heating battery cooling mode, the first refrigerant R1 in the first refrigerant circuit 1 is effectively heated by using the exhaust heat of the electrical components 21 that has absorbed heat from the electrical components 21 in the cooling water circuit 2 as a heat source, and the vehicle interior is heated. can be effectively heated. In addition, the second refrigerant circuit 3 can effectively cool the vehicle-mounted battery according to the cooling capacity of the second refrigerant circuit 3 .
  以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 Although the present invention has been described above with reference to the embodiments, it is needless to say that the present invention is not limited to the above embodiments, and can be appropriately modified and applied without departing from the scope of the invention.
  例えば、上記実施例では、第1冷媒回路1において、第1冷媒R1を第1冷媒/内気熱交換器バイパス管路1b側に流すことにより第1停止モードとしているが、第1停止モードはこれに限らない。例えば、第1冷媒R1を第1冷媒/内気熱交換器バイパス管路1b側ではなく第1冷媒/内気熱交換器12がある第1冷媒管路1a側に流すとともに第3膨張弁13での膨張を停止させ、かつ、室内空気側をバイパスさせて室内空気が第1冷媒/内気熱交換器12を通過しないようにすることにより、第1停止モードとしてもよい。 For example, in the above-described embodiment, in the first refrigerant circuit 1, the first stop mode is set by flowing the first refrigerant R1 to the first refrigerant/inside air heat exchanger bypass pipe line 1b side. is not limited to For example, the first refrigerant R1 is flowed not to the first refrigerant/inside air heat exchanger bypass pipe 1b side but to the first refrigerant pipe 1a side where the first refrigerant/inside air heat exchanger 12 is located, and the third expansion valve 13 The first stop mode may be achieved by stopping the expansion and bypassing the indoor air side so that the indoor air does not pass through the first refrigerant/inside air heat exchanger 12 .
  上記実施例では、第1冷媒回路1において、第1冷媒R1を内気冷却器バイパス管路1c側に流すことにより第2停止モードとしているが、第2停止モードはこれに限らない。例えば、第1冷媒R1を内気冷却器バイパス1c側ではなく内気冷却器16がある第1冷媒管路1a側に流すとともに第1膨張弁15での膨張を停止させ、かつ、室内空気側をバイパスさせて室内空気が内気冷却器16を通過しないようにすることにより、第2停止モードとしてもよい。 In the above embodiment, in the first refrigerant circuit 1, the second stop mode is set by causing the first refrigerant R1 to flow to the side of the internal air cooler bypass line 1c, but the second stop mode is not limited to this. For example, the first refrigerant R1 is flowed not to the internal air cooler bypass 1c side but to the first refrigerant pipe line 1a side where the internal air cooler 16 is located, and the expansion at the first expansion valve 15 is stopped, and the internal air side is bypassed. The second stop mode may be set by preventing the internal air from passing through the internal air cooler 16 by turning the internal temperature on.
  室内空気側をバイパスさせるには、例えば車室内用空調ユニットとしてのHVAC(Heating,Ventilating  and  Air  Conditioning)のエアダンパを切り替えたり、送風ファンを停止したりすればよい。 In order to bypass the indoor air side, for example, the air damper of HVAC (Heating, Ventilating and Air Conditioning) as an air conditioning unit for the vehicle interior may be switched or the blower fan may be stopped.
  第3膨張弁13や第1膨張弁15での膨張を停止させるには、例えば第3膨張弁13や第1膨張弁15の絞り開度を全開にしたり、第3膨張弁13や第1膨張弁15をバイパスさせて第1冷媒R1が第3膨張弁13や第1膨張弁15を通過しないようにしたりすればよい。 In order to stop the expansion at the third expansion valve 13 and the first expansion valve 15, for example, the throttle opening of the third expansion valve 13 and the first expansion valve 15 is fully opened, or the third expansion valve 13 and the first expansion valve The first refrigerant R1 may be prevented from passing through the third expansion valve 13 and the first expansion valve 15 by bypassing the valve 15 .
  上記実施例では、冷却水回路2において、冷却ファン23を停止させることにより非放熱回路としているが、非放熱回路はこれに限らない。例えば、冷却ファン23を作動させつつ、車両前方のグリル部についているグリルシャッタを閉じて外気がラジエータ22を通過しないようにしたり、ラジエータ22をバイパスするバイパス管路と、冷却水Lをそのバイパス管路側に流すか、冷却水管路2a側に流すかを切り替える三方弁とを冷却水回路2に設けたりすることにより、ラジエータ22にて冷却水Lから外気に放熱しないようにしてもよい。 In the above embodiment, the cooling water circuit 2 is configured as a non-radiating circuit by stopping the cooling fan 23, but the non-radiating circuit is not limited to this. For example, while the cooling fan 23 is operating, a grille shutter attached to the front grille of the vehicle is closed to prevent outside air from passing through the radiator 22. The cooling water circuit 2 may be provided with a three-way valve that switches between flowing the cooling water to the road side and flowing to the cooling water pipe line 2a side, so that the radiator 22 does not release heat from the cooling water L to the outside air.
  上記実施例では、第2冷媒回路3において、第2冷媒R2を第2冷媒/冷却水熱交換器バイパス管路3c側に流すことにより第4停止モードとしているが、第4停止モードはこれに限らない。例えば、第2冷媒R2を第2冷媒/冷却水熱交換器バイパス管路3c側ではなく第2冷媒/冷却水熱交換器5がある第2冷媒管路3a側に流すとともに第2膨張弁34での膨張を停止させ、かつ、冷却水L側をバイパスさせて冷却水Lが第2冷媒/冷却水熱交換器5を通過しないようにすることにより、第4停止モードとしてもよい。 In the above embodiment, in the second refrigerant circuit 3, the fourth stop mode is set by flowing the second refrigerant R2 to the second refrigerant/cooling water heat exchanger bypass pipe 3c side. Not exclusively. For example, the second refrigerant R2 is flowed not to the second refrigerant/cooling water heat exchanger bypass pipe 3c side but to the second refrigerant pipe 3a side where the second refrigerant/cooling water heat exchanger 5 is present, and the second expansion valve 34 , and by bypassing the cooling water L side so that the cooling water L does not pass through the second refrigerant/cooling water heat exchanger 5, the fourth stop mode may be set.
  冷却水L側をバイパスさせるには、例えば第2冷媒/冷却水熱交換器5をバイパスするバイパス管路と、そのバイパス管路又は冷却水管路2aへの流路を切り替える三方弁とを冷却水回路2に設ければよい。 In order to bypass the cooling water L side, for example, a bypass pipe that bypasses the second refrigerant/cooling water heat exchanger 5 and a three-way valve that switches the flow path to the bypass pipe or the cooling water pipe 2a are connected to the cooling water. It may be provided in the circuit 2.
  第2膨張弁34での膨張を停止させるには、例えば第2膨張弁34の絞り開度を全開にしたり、第2膨張弁34をバイパスさせて第2冷媒R2が第2膨張弁34を通過しないようにしたりすればよい。 In order to stop the expansion in the second expansion valve 34, for example, the throttle opening of the second expansion valve 34 is fully opened, or the second expansion valve 34 is bypassed so that the second refrigerant R2 passes through the second expansion valve 34. You can try not to do it.
  上記実施例では、冷却水回路2における冷却水Lの循環方向において、ウォーターポンプ20、第2冷媒/冷却水熱交換器5、ラジエータ22、第1冷媒/冷却水熱交換器4及び電気部品21の順で配置しているが、冷却水回路2における冷却水Lの循環方向や部品の配置順はこれに限らない。ただし、冷却水Lによる電気部品21の冷却効果の観点より、冷却水Lの循環方向において、電気部品21、第1冷媒/冷却水熱交換器4、ラジエータ22及び第2冷媒/冷却水熱交換器5の配置順か、あるいは電気部品21、第1冷媒/冷却水熱交換器4、第2冷媒/冷却水熱交換器5及びラジエータ22の配置順であることが好ましい。 In the above embodiment, in the circulation direction of the cooling water L in the cooling water circuit 2, the water pump 20, the second refrigerant/cooling water heat exchanger 5, the radiator 22, the first refrigerant/cooling water heat exchanger 4, and the electrical component 21 However, the circulation direction of the cooling water L in the cooling water circuit 2 and the arrangement order of the components are not limited to this. However, from the viewpoint of the cooling effect of the cooling water L on the electrical component 21, in the circulation direction of the cooling water L, the electrical component 21, the first refrigerant/cooling water heat exchanger 4, the radiator 22, and the second refrigerant/cooling water heat exchange 5, or the electrical component 21, the first refrigerant/coolant heat exchanger 4, the second refrigerant/coolant heat exchanger 5 and the radiator 22.
  本発明の車両用熱マネジメントシステムは、電池搭載車両に利用することができる。   The vehicle heat management system of the present invention can be used in a battery-equipped vehicle.
  1 第1冷媒回路
  2 冷却水回路
  3 第2冷媒回路
  4 第1冷媒/冷却水熱交換器
  5 第2冷媒/冷却水熱交換器
  6 制御部
  10 第1圧縮機
  11 第1三方弁(第1冷媒/内気熱交換器バイパス切替部)
  12 第1冷媒/内気熱交換器
  13 第1膨張弁
  14 第2三方弁(第1冷媒/内気熱交換器バイパス切替部)
  15 第3膨張弁
  16 内気冷却器
  1b 第1冷媒/内気熱交換器バイパス管路
  1c 内気冷却器バイパス管路
  20 ウォーターポンプ
  21 電気部品
  22 ラジエータ
  30 第2圧縮機
  31 四方弁(方向切替部)
  32 第2冷媒/外気熱交換器
  33 第3三方弁(第2冷媒/冷却水熱交換器バイパス切替部)
  35 第4三方弁(第2冷媒/冷却水熱交換器バイパス切替部)
  34 第2膨張弁
  36 第5三方弁(電池熱交換器バイパス切替部)
  39 第6三方弁(電池熱交換器バイパス切替部)
  37 第4膨張弁
  38 電池熱交換器
  3b 電池熱交換器バイパス管路
  3c 第2冷媒/冷却水熱交換器バイパス管路

 
1 first refrigerant circuit 2 cooling water circuit 3 second refrigerant circuit 4 first refrigerant/cooling water heat exchanger 5 second refrigerant/cooling water heat exchanger 6 control unit 10 first compressor 11 first three-way valve (first Refrigerant/inside air heat exchanger bypass switch)
12 first refrigerant/inside air heat exchanger 13 first expansion valve 14 second three-way valve (first refrigerant/inside air heat exchanger bypass switching unit)
15 third expansion valve 16 internal air cooler 1b first refrigerant/internal air heat exchanger bypass line 1c internal air cooler bypass line 20 water pump 21 electrical component 22 radiator 30 second compressor 31 four-way valve (direction switching portion)
32 Second refrigerant/external air heat exchanger 33 Third three-way valve (second refrigerant/cooling water heat exchanger bypass switching unit)
35 Fourth three-way valve (second refrigerant/cooling water heat exchanger bypass switching unit)
34 Second expansion valve 36 Fifth three-way valve (battery heat exchanger bypass switching unit)
39 6th three-way valve (battery heat exchanger bypass switching unit)
37 fourth expansion valve 38 battery heat exchanger 3b battery heat exchanger bypass line 3c second refrigerant/cooling water heat exchanger bypass line

Claims (10)

  1.   第1冷媒を圧縮して前記第1冷媒を回路内で循環させる第1圧縮機と、第1膨張弁と、前記第1冷媒と車室内に供給される室内空気とを熱交換させる内気冷却器とを有し、前記車室内を空調する第1冷媒回路と、
      冷却水を回路内で循環させるウォーターポンプと、前記冷却水と外気とを熱交換させるラジエータとを有し、車載電気部品を冷却する冷却水回路と、
      第2冷媒を圧縮して前記第2冷媒を回路内で循環させる第2圧縮機と、前記第2冷媒と前記外気とを熱交換させる第2冷媒/外気熱交換器と、第2膨張弁とを有し、車載電池の温度を調節する第2冷媒回路と、
      前記第1冷媒回路及び前記冷却水回路に連結され、前記第1冷媒と前記冷却水とを熱交換させる第1冷媒/冷却水熱交換器と、
      前記第2冷媒回路及び前記冷却水回路に連結され、前記第2冷媒と前記冷却水とを熱交換させる第2冷媒/冷却水熱交換器と、
      前記第1冷媒回路、前記冷却水回路及び前記第2冷媒回路の作動を制御する制御部と、を備え、
      前記第1冷媒回路、前記冷却水回路及び前記第2冷媒回路は、前記制御部の制御により、前記車室内を冷房するとともに前記冷却水を冷却する車室内冷房冷却水冷却モードで作動し、
      前記車室内冷房冷却水冷却モードにおける前記第1冷媒回路では、前記第1圧縮機で圧縮された前記第1冷媒が前記第1冷媒回路の凝縮器として機能する前記第1冷媒/冷却水熱交換器にて前記冷却水に放熱し、放熱後に前記第1膨張弁で減圧された前記第1冷媒が前記第1冷媒回路の蒸発器として機能する前記内気冷却器にて前記室内空気から吸熱し、  前記車室内冷房冷却水冷却モードにおける前記冷却水回路では、回路内を循環する前記冷却水が、前記第1冷媒/冷却水熱交換器にて前記第1冷媒から吸熱し、かつ、前記ラジエータにて前記外気に放熱するとともに前記第2冷媒/冷却水熱交換器にて前記第2冷媒に放熱し、
      前記車室内冷房冷却水冷却モードにおける前記第2冷媒回路では、前記第2圧縮機で圧縮された前記第2冷媒が前記第2冷媒回路の凝縮器として機能する前記第2冷媒/外気熱交換器にて前記外気に放熱し、放熱後に前記第2膨張弁で減圧された前記第2冷媒が前記第2冷媒回路の蒸発器として機能する前記第2冷媒/冷却水熱交換器にて前記冷却水から吸熱することを特徴とする車両用熱マネジメントシステム。
    A first compressor that compresses a first refrigerant and circulates the first refrigerant in a circuit, a first expansion valve, and an internal air cooler that exchanges heat between the first refrigerant and indoor air supplied to the vehicle interior. and a first refrigerant circuit that air-conditions the interior of the vehicle;
    a cooling water circuit for cooling vehicle-mounted electrical components, comprising a water pump for circulating cooling water in the circuit and a radiator for exchanging heat between the cooling water and outside air;
    a second compressor that compresses a second refrigerant and circulates the second refrigerant in a circuit; a second refrigerant/outside air heat exchanger that exchanges heat between the second refrigerant and the outside air; and a second expansion valve. and a second refrigerant circuit that adjusts the temperature of the vehicle battery;
    a first refrigerant/cooling water heat exchanger connected to the first refrigerant circuit and the cooling water circuit for exchanging heat between the first refrigerant and the cooling water;
    a second refrigerant/cooling water heat exchanger connected to the second refrigerant circuit and the cooling water circuit to exchange heat between the second refrigerant and the cooling water;
    a control unit that controls operations of the first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit;
    The first refrigerant circuit, the cooling water circuit, and the second refrigerant circuit operate in a vehicle interior cooling water cooling mode for cooling the vehicle interior and cooling the cooling water under the control of the control unit,
    In the first refrigerant circuit in the vehicle interior cooling water cooling mode, the first refrigerant compressed by the first compressor functions as a condenser of the first refrigerant circuit for heat exchange between the first refrigerant and the cooling water. the first refrigerant decompressed by the first expansion valve after heat dissipation absorbs heat from the room air in the inside air cooler functioning as an evaporator of the first refrigerant circuit; In the cooling water circuit in the vehicle interior cooling cooling water cooling mode, the cooling water circulating in the circuit absorbs heat from the first refrigerant in the first refrigerant/cooling water heat exchanger, and is transferred to the radiator. radiating heat to the outside air and radiating heat to the second refrigerant at the second refrigerant/cooling water heat exchanger;
    In the second refrigerant circuit in the vehicle interior cooling water cooling mode, the second refrigerant/outside air heat exchanger in which the second refrigerant compressed by the second compressor functions as a condenser of the second refrigerant circuit. and the second refrigerant decompressed by the second expansion valve after the heat is released into the cooling water by the second refrigerant/cooling water heat exchanger that functions as an evaporator of the second refrigerant circuit. A heat management system for a vehicle characterized by absorbing heat from.
  2.   前記制御部は、前記冷却水の温度が所定範囲を超えたときに前記車室内冷房冷却水冷却モードを実行し、前記冷却水の温度が前記所定範囲内にあれば前記車室内冷房冷却水冷却モードを実行しない請求項1記載の車両用熱マネジメントシステム。 The control unit executes the vehicle interior cooling water cooling mode when the temperature of the cooling water exceeds a predetermined range, and executes the vehicle interior cooling water cooling mode when the temperature of the cooling water is within the predetermined range. 2. The vehicle thermal management system of claim 1, wherein no mode is executed.
  3.   前記第1冷媒回路は、前記第1冷媒と前記室内空気とを熱交換させる第1冷媒/内気熱交換器と、第3膨張弁とを有し、
      前記第2冷媒回路は、前記第2冷媒と前記車載電池とを熱交換させる電池熱交換器と、第4膨張弁とを有し、
      前記制御部は、
      前記第1冷媒/内気熱交換器にて前記第1冷媒と前記室内空気とを熱交換させるとともに、前記第3膨張弁にて前記第1冷媒を膨張させる第1通常モードと、前記第1冷媒/内気熱交換器にて前記第1冷媒と前記室内空気との熱交換を停止させるとともに、前記第3膨張弁での膨張を停止させた状態にて前記第1冷媒を循環させる第1停止モードとを切り替え可能であり、かつ、
      前記内気冷却器にて前記第1冷媒と前記室内空気とを熱交換させるとともに、前記第1膨張弁にて前記第1冷媒を膨張させる第2通常モードと、前記内気冷却器にて前記第1冷媒と前記室内空気との熱交換を停止させるとともに、前記第1膨張弁での膨張を停止させた状態にて前記第1冷媒を循環させる第2停止モードとを切り替え可能であり、かつ、
      前記電池熱交換器にて前記第2冷媒と前記車載電池とを熱交換させるとともに、前記第4膨張弁にて前記第2冷媒を膨張させる第3通常モードと、前記電池熱交換器にて前記第2冷媒と前記車載電池との熱交換を停止させるとともに、前記第4膨張弁での膨張を停止させた状態にて前記第2冷媒を循環させる第3停止モードとを切り替え可能であり、かつ、
      前記第2冷媒/冷却水熱交換器にて前記第2冷媒と前記冷却水とを熱交換させるとともに、前記第2膨張弁にて前記第2冷媒を膨張させる第4通常モードと、前記第2冷媒/冷却水熱交換器にて前記第2冷媒と前記冷却水との熱交換を停止させるとともに、前記第2膨張弁での膨張を停止させた状態にて前記第2冷媒を循環させる第4停止モードとを切り替え可能であり、
      前記制御部は、前記車室内冷房冷却水冷却モードで、前記第1停止モード、前記第2通常モード、前記第3停止モード及び前記第4通常モードにて運転するように制御する請求項1又は2記載の車両用熱マネジメントシステム。
    The first refrigerant circuit has a first refrigerant/inside air heat exchanger that exchanges heat between the first refrigerant and the indoor air, and a third expansion valve,
    The second refrigerant circuit has a battery heat exchanger that exchanges heat between the second refrigerant and the vehicle battery, and a fourth expansion valve,
    The control unit
    a first normal mode in which heat is exchanged between the first refrigerant and the indoor air in the first refrigerant/inside air heat exchanger and the first refrigerant is expanded in the third expansion valve; and the first refrigerant / A first stop mode in which the heat exchange between the first refrigerant and the room air is stopped in the inside air heat exchanger, and the first refrigerant is circulated in a state where the expansion in the third expansion valve is stopped. and can be switched between, and
    A second normal mode in which heat is exchanged between the first refrigerant and the indoor air in the inside air cooler and the first refrigerant is expanded in the first expansion valve, and the first refrigerant in the inside air cooler It is possible to switch between a second stop mode in which heat exchange between the refrigerant and the indoor air is stopped and the first refrigerant is circulated in a state in which the first expansion valve is stopped from expanding, and
    A third normal mode in which heat is exchanged between the second refrigerant and the on-vehicle battery in the battery heat exchanger and the second refrigerant is expanded in the fourth expansion valve; It is possible to switch between a third stop mode in which heat exchange between the second refrigerant and the on-vehicle battery is stopped and the second refrigerant is circulated in a state in which expansion in the fourth expansion valve is stopped, and ,
    a fourth normal mode in which heat is exchanged between the second refrigerant and the cooling water in the second refrigerant/cooling water heat exchanger and the second refrigerant is expanded in the second expansion valve; A fourth refrigerant/cooling water heat exchanger stops heat exchange between the second refrigerant and the cooling water, and the second refrigerant is circulated while stopping the expansion of the second expansion valve. It is possible to switch between stop mode and
    2. The controller controls to operate in the first stop mode, the second normal mode, the third stop mode, and the fourth normal mode in the vehicle interior cooling water cooling mode. 3. The vehicle thermal management system according to claim 2.
  4.   前記第2冷媒回路は、前記制御部の制御により、前記車載電池を冷却する電池冷却モードで作動し、
      前記制御部は、前記電池冷却モードで、前記第3通常モード及び前記第4停止モードにて運転するように制御し、
      前記電池冷却モードにおける前記第2冷媒回路では、前記第2圧縮機で圧縮された前記第2冷媒が前記第2冷媒回路の凝縮器として機能する前記第2冷媒/外気熱交換器にて前記外気に放熱し、放熱後に前記第4膨張弁で減圧された前記第2冷媒が前記第2冷媒回路の蒸発器として機能する前記電池熱交換器にて前記車載電池から吸熱する請求項3記載の車両用熱マネジメントシステム。
    The second refrigerant circuit operates in a battery cooling mode for cooling the vehicle battery under the control of the control unit,
    The control unit controls to operate in the third normal mode and the fourth stop mode in the battery cooling mode,
    In the second refrigerant circuit in the battery cooling mode, the second refrigerant compressed by the second compressor is cooled to the outside air by the second refrigerant/outside air heat exchanger that functions as a condenser of the second refrigerant circuit. 4. The vehicle according to claim 3, wherein the second refrigerant depressurized by the fourth expansion valve after heat dissipation absorbs heat from the onboard battery in the battery heat exchanger functioning as an evaporator of the second refrigerant circuit. thermal management system.
  5.   前記第1冷媒回路及び前記冷却水回路は、前記制御部の制御により、前記車室内を暖房する車室内暖房モードで作動し、
      前記制御部は、前記車室内暖房モードで、前記第1通常モード及び前記第2停止モードにて運転するように制御し、
      前記車室内暖房モードにおける前記第1冷媒回路では、前記第1圧縮機で圧縮された前記第1冷媒が前記第1冷媒回路の凝縮器として機能する前記第1冷媒/内気熱交換器にて前記室内空気に放熱し、放熱後に前記第3膨張弁で減圧された前記第1冷媒が前記第1冷媒回路の蒸発器として機能する前記第1冷媒/冷却水熱交換器にて前記冷却水から吸熱し、
      前記車室内暖房モードにおける前記冷却水回路では、回路内を循環する前記冷却水が、前記車載電気部品から吸熱すること及び/又は前記ラジエータにて外気から吸熱することとし、かつ、前記第1冷媒/冷却水熱交換器にて前記第1冷媒に放熱する請求項3又は4記載の車両用熱マネジメントシステム。
    The first refrigerant circuit and the cooling water circuit operate in a vehicle interior heating mode for heating the vehicle interior under the control of the control unit,
    The control unit controls to operate in the first normal mode and the second stop mode in the vehicle interior heating mode,
    In the first refrigerant circuit in the vehicle interior heating mode, the first refrigerant compressed by the first compressor is passed through the first refrigerant/inside air heat exchanger that functions as a condenser of the first refrigerant circuit. The first refrigerant, which is decompressed by the third expansion valve after radiating heat, absorbs heat from the cooling water in the first refrigerant/cooling water heat exchanger functioning as an evaporator of the first refrigerant circuit. death,
    In the cooling water circuit in the vehicle interior heating mode, the cooling water circulating in the circuit absorbs heat from the in-vehicle electrical component and/or absorbs heat from the outside air in the radiator, and the first refrigerant 5. The vehicle heat management system according to claim 3 or 4, wherein heat is radiated to the first refrigerant in a /cooling water heat exchanger.
  6.   前記第2冷媒回路は、前記第2冷媒の循環方向を逆転させる方向切替部を有し、
      前記第2冷媒回路は、前記制御部の制御により、前記車載電池を暖機する電池暖機モードで作動し、
      前記制御部は、前記電池暖機モードで、前記第3通常モード及び前記第4停止モードにて運転するように制御し、かつ、前記第2冷媒回路において、前記第2圧縮機で圧縮された前記第2冷媒が前記電池熱交換器に向かうように前記方向切替部により前記第2冷媒の循環方向を制御し、
      前記電池暖機モードにおける前記第2冷媒回路では、前記第2圧縮機で圧縮された前記第2冷媒が前記第2冷媒回路の凝縮器として機能する前記電池熱交換器にて前記車載電池に放熱し、放熱後に前記第4膨張弁で減圧された前記第2冷媒が前記第2冷媒回路の蒸発器として機能する前記第2冷媒/外気熱交換器にて前記外気から吸熱する請求項3乃至5のいずれか1項記載の車両用熱マネジメントシステム。
    The second refrigerant circuit has a direction switching unit that reverses the circulation direction of the second refrigerant,
    The second refrigerant circuit operates in a battery warm-up mode for warming up the in-vehicle battery under the control of the control unit,
    The control unit controls to operate in the third normal mode and the fourth stop mode in the battery warm-up mode, and in the second refrigerant circuit, the refrigerant compressed by the second compressor controlling the circulation direction of the second refrigerant by the direction switching unit so that the second refrigerant is directed to the battery heat exchanger;
    In the second refrigerant circuit in the battery warm-up mode, the second refrigerant compressed by the second compressor dissipates heat to the onboard battery in the battery heat exchanger that functions as a condenser of the second refrigerant circuit. and the second refrigerant decompressed by the fourth expansion valve after heat dissipation absorbs heat from the outside air in the second refrigerant/outside air heat exchanger functioning as an evaporator of the second refrigerant circuit. A thermal management system for a vehicle according to any one of Claims 1 to 3.
  7.   前記第1冷媒回路は、前記第1冷媒/内気熱交換器及び前記第3膨張弁をバイパスする第1冷媒/内気熱交換器バイパスと、前記第1冷媒を前記第1冷媒/内気熱交換器及び前記第3膨張弁側に流すか、前記第1冷媒/内気熱交換器バイパス側に流すかを切り替える第1冷媒/内気熱交換器バイパス切替部とを有し、
      前記制御部は、
      前記第1通常モードにて、前記第1冷媒/内気熱交換器バイパス切替部により前記第1冷媒を前記第1冷媒/内気熱交換器及び前記第3膨張弁側に流し、かつ、
      前記第1停止モードにて、前記第1冷媒/内気熱交換器機バイパス切替部により前記第1冷媒を前記第1冷媒/内気熱交換器バイパス側に流す請求項3乃至6のいずれか1項記載の車両用熱マネジメントシステム。
    The first refrigerant circuit includes a first refrigerant/internal air heat exchanger bypass that bypasses the first refrigerant/internal air heat exchanger and the third expansion valve, and a first refrigerant/internal air heat exchanger bypass that bypasses the first refrigerant/internal air heat exchanger. and a first refrigerant/inside air heat exchanger bypass switching unit that switches between flowing to the third expansion valve side and flowing to the first refrigerant/inside air heat exchanger bypass side,
    The control unit
    In the first normal mode, the first refrigerant is caused to flow toward the first refrigerant/inside air heat exchanger and the third expansion valve by the first refrigerant/inside air heat exchanger bypass switching unit, and
    7. The first refrigerant/inside air heat exchanger bypass switching unit causes the first refrigerant to flow to the first refrigerant/inside air heat exchanger bypass side in the first stop mode. of thermal management systems for vehicles.
  8.   前記第1冷媒回路は、前記内気冷却器及び前記第1膨張弁をバイパスする内気冷却器バイパスと、前記第1冷媒を前記内気冷却器及び前記第1膨張弁側に流すか、前記内気冷却器バイパス側に流すかを切り替える内気冷却器バイパス切替部とを有し、
      前記制御部は、
      前記第2通常モードにて、前記内気冷却器バイパス切替部により前記第1冷媒を前記内気冷却器及び前記第1膨張弁側に流し、かつ、
      前記第2停止モードにて、前記内気冷却器バイパス切替部により前記第1冷媒を前記内気冷却器バイパス側に流す請求項3乃至7のいずれか1項記載の車両用熱マネジメントシステム。
    The first refrigerant circuit includes an inside air cooler bypass that bypasses the inside air cooler and the first expansion valve, and a flow of the first refrigerant to the inside air cooler and the first expansion valve side, or the inside air cooler an internal air cooler bypass switching unit that switches whether to flow to the bypass side,
    The control unit
    In the second normal mode, the inside air cooler bypass switching unit causes the first refrigerant to flow toward the inside air cooler and the first expansion valve, and
    8. The vehicle heat management system according to any one of claims 3 to 7, wherein in the second stop mode, the inside air cooler bypass switching unit causes the first refrigerant to flow to the inside air cooler bypass side.
  9.   前記第2冷媒回路は、前記電池熱交換器及び前記第4膨張弁をバイパスする電池熱交換器バイパスと、前記第2冷媒を前記電池熱交換器及び前記第4膨張弁側に流すか、前記電池熱交換器バイパス側に流すかを切り替える電池熱交換器バイパス切替部とを有し、
      前記制御部は、
      前記第3通常モードにて、前記電池熱交換器バイパス切替部により前記第2冷媒を前記電池熱交換器及び前記第4膨張弁側に流し、かつ、
      前記第3停止モードにて、前記電池熱交換器バイパス切替部により前記第2冷媒を前記電池熱交換器バイパス側に流す請求項3乃至8のいずれか1項記載の車両用熱マネジメントシステム。
    The second refrigerant circuit includes a battery heat exchanger bypass that bypasses the battery heat exchanger and the fourth expansion valve, and a second refrigerant that flows to the battery heat exchanger and the fourth expansion valve side, or the a battery heat exchanger bypass switching unit that switches whether to flow to the battery heat exchanger bypass side,
    The control unit
    In the third normal mode, the second refrigerant is caused to flow toward the battery heat exchanger and the fourth expansion valve by the battery heat exchanger bypass switching unit, and
    9. The vehicle heat management system according to any one of claims 3 to 8, wherein in the third stop mode, the second refrigerant is caused to flow to the battery heat exchanger bypass side by the battery heat exchanger bypass switching unit.
  10.   前記第2冷媒回路は、前記第2冷媒/冷却水熱交換器及び前記第2膨張弁をバイパスする第2冷媒/冷却水熱交換器バイパスと、前記第2冷媒を前記第2冷媒/冷却水熱交換器及び前記第2膨張弁側に流すか、前記第2冷媒/冷却水熱交換器バイパス側に流すかを切り替える第2冷媒/冷却水熱交換器バイパス切替部とを有し、
      前記制御部は、
      前記第4通常モードにて、前記第2冷媒/冷却水熱交換器バイパス切替部により前記第2冷媒を前記第2冷媒/冷却水熱交換器及び前記第2膨張弁側に流し、かつ、
      前記第4停止モードにて、前記第2冷媒/冷却水熱交換器バイパス切替部により前記第2冷媒を前記第2冷媒/冷却水熱交換器バイパス側に流す請求項3乃至9のいずれか1項に記載の車両用熱マネジメントシステム。

     
    The second refrigerant circuit includes a second refrigerant/coolant heat exchanger bypass that bypasses the second refrigerant/coolant heat exchanger and the second expansion valve, and a second refrigerant/coolant heat exchanger that bypasses the second refrigerant/coolant heat exchanger. a heat exchanger and a second refrigerant/cooling water heat exchanger bypass switching unit that switches between flowing to the second expansion valve side and flowing to the second refrigerant/cooling water heat exchanger bypass side;
    The control unit
    In the fourth normal mode, the second refrigerant/cooling water heat exchanger bypass switching unit causes the second refrigerant to flow toward the second refrigerant/cooling water heat exchanger and the second expansion valve, and
    10. Any one of claims 3 to 9, wherein in the fourth stop mode, the second refrigerant/cooling water heat exchanger bypass switching unit causes the second refrigerant to flow to the second refrigerant/cooling water heat exchanger bypass side. A vehicle thermal management system as described in paragraph 1.

PCT/JP2022/010966 2021-07-12 2022-03-11 Vehicular heat management system WO2023286349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114772A JP7559692B2 (en) 2021-07-12 2021-07-12 Vehicle Thermal Management Systems
JP2021-114772 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023286349A1 true WO2023286349A1 (en) 2023-01-19

Family

ID=84919245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010966 WO2023286349A1 (en) 2021-07-12 2022-03-11 Vehicular heat management system

Country Status (2)

Country Link
JP (1) JP7559692B2 (en)
WO (1) WO2023286349A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525899A (en) * 2003-02-18 2006-11-16 ベール ゲーエムベーハー ウント コー カーゲー Automotive energy supply system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525899A (en) * 2003-02-18 2006-11-16 ベール ゲーエムベーハー ウント コー カーゲー Automotive energy supply system

Also Published As

Publication number Publication date
JP2023011133A (en) 2023-01-24
JP7559692B2 (en) 2024-10-02

Similar Documents

Publication Publication Date Title
CN109291763B (en) Heat pump air conditioning system, control method thereof and automobile
JP5860361B2 (en) Thermal management system for electric vehicles
US20120049664A1 (en) Drive Unit for Electric Vehicle
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
JP2007069733A (en) Heating element cooling system using air conditioner for vehicle
KR20180131665A (en) Hvac system of vehicle
US10562367B2 (en) Heating, ventilation, and air conditioning system for vehicle
JP2018177219A (en) Vehicular heat management device
JP2009291008A (en) Heat management system of electric drive vehicle
JP2014037179A (en) Thermal management system for electric vehicle
KR102651941B1 (en) Air-conditioning system for electric vehicles
JPH11198637A (en) Air conditioner for electric vehicle
KR102080803B1 (en) Device for absorbing and releasing heat in a heat pump system for a motor vehicle
WO2023286349A1 (en) Vehicular heat management system
WO2023286347A1 (en) Vehicular heat management system
WO2023286348A1 (en) Heat management system for vehicle
CN115465039A (en) Cooling system for vehicle
WO2020246305A1 (en) Vehicle air conditioning device
CN112689570B (en) Air conditioner for vehicle
WO2024009577A1 (en) System for adjusting temperature of battery, and vehicular system for managing heat
WO2022270594A1 (en) Vehicular air conditioning device
WO2024116459A1 (en) Heat management system for vehicle
WO2024116458A1 (en) Vehicle heat management system
WO2023090084A1 (en) Vehicular air conditioner
WO2021261320A1 (en) Vehicle cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841699

Country of ref document: EP

Kind code of ref document: A1