WO2023285116A1 - Solenoid valve and hydrogen tank system comprising solenoid valve - Google Patents

Solenoid valve and hydrogen tank system comprising solenoid valve Download PDF

Info

Publication number
WO2023285116A1
WO2023285116A1 PCT/EP2022/067495 EP2022067495W WO2023285116A1 WO 2023285116 A1 WO2023285116 A1 WO 2023285116A1 EP 2022067495 W EP2022067495 W EP 2022067495W WO 2023285116 A1 WO2023285116 A1 WO 2023285116A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
valve body
valve
solenoid valve
armature
Prior art date
Application number
PCT/EP2022/067495
Other languages
German (de)
French (fr)
Inventor
Marco Beier
Joachim Soubari
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2023285116A1 publication Critical patent/WO2023285116A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/083External yoke surrounding the coil bobbin, e.g. made of bent magnetic sheet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/085Yoke or polar piece between coil bobbin and armature having a gap, e.g. filled with nonmagnetic material

Definitions

  • the invention relates to a solenoid valve, in particular a shut-off valve for water fuel tank systems. Furthermore, the invention relates to a hydrogen tank system with a solenoid valve according to the invention as a shut-off valve.
  • Hydrogen tank systems are used to store hydrogen, for example on board a vehicle, in particular on board a fuel cell vehicle.
  • hydrogen tank systems generally comprise several pressurized gas containers which are combined using a frame structure and attached to the vehicle, usually under the chassis. Since the compressed gas tanks are under high pressure, certain safety requirements must be met. Among other things, these provide for a shut-off valve, by means of which the pressurized gas tank can be shut off separately, for example in the event of an accident, in order to prevent gas from escaping.
  • DE 102018221602 A1 shows, for example, a tank device for storing hydrogen with an electromagnetically actuable valve device, which has a movable valve element that interacts with a valve seat for opening and closing an outlet opening.
  • the valve element is acted upon by the spring force of a spring in the direction of the valve seat, so that the valve device is closed when the magnet coil is de-energized.
  • the valve element releases an outlet opening with a diameter d that is smaller than a diameter D of an adjoining passage channel.
  • a com pact designed, single-switching safety solenoid valve should be provided, which meets the safety requirements due to the integrated design and at the same time enables cost savings.
  • the pressure drop across the sealing seat of the extraction valve should be minimal.
  • the valve should therefore have the largest possible opening cross section.
  • the seat diameter and/or the stroke of a valve piston interacting with the sealing seat can be increased.
  • the stroke is limited, since the magnet decreases as the working air gap increases by the force of the magnetic circuit provided for actuating the valve.
  • the magnetic force or the size of a magnetic coil that generates the magnetic force are also limited by the available installation space.
  • the present invention is based on the object of specifying a solenoid valve with a space-optimized magnetic circuit that enables high magnetic forces and thus large opening cross sections.
  • the solenoid valve should be used in particular as a shut-off valve for hydrogen tank systems.
  • the proposed solenoid valve in particular shut-off valve for hydrogen tank systems, comprises a magnet armature and a magnet coil for acting on the magnet armature.
  • the magnet coil is arranged in a coil receiving space, which is delimited radially on the inside by a valve body and radially on the outside by a magnet cup and is sealed by a sealing ring that is inserted into an annular groove on the end face of the valve body and is axially prestressed against the magnet cup, so that the Valve body is magnetically separated from the magnet pot via the sealing ring, preferably solely via the sealing ring.
  • a magnetic valve of the type mentioned at the outset requires a magnetic separation between the valve body and the magnet pot in order to securely integrate the magnet armature into the magnetic circuit.
  • the magnetic separation can be effected with the aid of an additional element, for example with the aid of a non-magnetic disk, alternatively with the aid of a thin turn in the area of an armature guide formed by the valve body.
  • the cross section of the valve body In order to be able to realize the thin turning, the cross section of the valve body must be enlarged outside of the thin turning. This in turn is at the expense of the installation space.
  • the thin twisting in the area of the armature guide cannot prevent an initial magnetic short circuit between the valve body and the magnet pot. Due to the small cross-sectional area in the area of thin turning, however, saturation occurs quickly, so that the magnetic flux is deflected into the magnet armature.
  • This principle also applies to the magnetic valve according to the invention, since the annular groove on the end face for receiving the sealing ring leads to a corresponding reduction in the cross section of the valve body.
  • the cross-sectional area of the valve body can be reduced to such an extent that only thin webs remain on both sides of the annular groove. In this way, rapid saturation is achieved in this area suffices.
  • the only limits to the reduction in cross-sectional area of the valve body are the required strength of the valve body.
  • valve body forms a guide for the magnet armature, with the guide preferably having an uninterrupted, in particular groove-free, guide surface.
  • the armature guide surface has no thin turning, so that the cross-sectional area of the valve body and thus the width of the webs remaining on both sides of the front annular groove can be selected to be as small as possible.
  • the annular groove on the end face of the valve body is preferably delimited by a radially inwardly arranged end face At1 and a radially outwardly arranged end face At2 of the valve body, which in total is equal to or smaller than an armature pole face A of the magnet armature facing the magnet pot. So that the valve body is quickly saturated in the area of the ring groove, the remaining cross section consisting of Atl and At2 should ideally be as small as possible, in particular smaller than the armature pole area A. In principle, however, the principle also works if the remaining cross section consisting of Atl and At2 is the same size as the armature pole area A.
  • the magnetic circuit is advantageously designed in such a way that the armature pole surface A of the magnet armature is larger by a factor of 1.5 to 10 than the sum of the end surfaces At1 and At2 of the valve body.
  • the armature pole area A of the magnet armature and the end faces At1 and At2 of the valve body are preferably smaller in total than a magnetic return area Ar of the magnet pot.
  • the coil receiving space is delimited on two sides arranged diagonally by the valve body and on two further sides arranged diagonally by the magnet pot. In this way, the number of sealing points required to seal the coil receiving space can be reduced.
  • the coil receiving space is limited only by the valve body and the magnet pot. In this case, the number of required sealing points can be reduced to two.
  • the magnet coil, the valve body and the magnet cup preferably form an encapsulated magnetic circuit. This means that the coil accommodation space is sealed off from the outside. This is particularly advantageous if the solenoid valve is to be used as a shut-off valve in a hydrogen tank system. Because then the magnet coil is protected from the hydrogen atmosphere in which the magnet circuit is arranged. This serves to increase safety during operation of the magnet valve.
  • the magnetic valve is preferably designed in such a way that the magnet armature and the magnet pot jointly delimit a working air gap. In this way, the axial length of the solenoid valve can be kept as short as possible.
  • the magnet pot can also serve as a stroke stop for the magnet armature.
  • the magnet armature is preferably coupled or can be coupled to a valve piston, so that the movements of the magnet armature actuate the valve piston in order to open or close the magnet valve.
  • the valve piston preferably interacts with a sealing seat formed by the valve body.
  • a hydrogen tank system includes at least one compressed gas tank and a solenoid valve according to the invention for shutting off the compressed gas tank.
  • a solenoid valve according to the invention for shutting off the compressed gas tank.
  • the advantages of a solenoid valve according to the invention are particularly evident.
  • a compact solenoid valve can be created that nevertheless allows high magnetic forces and thus large opening cross sections, so that a high water material mass flow for supplying a fuel cell system of a fuel cell vehicle with hydrogen can be realized.
  • FIG. 1 shows a schematic longitudinal section through a magnet valve according to the invention
  • FIG. 2 shows an enlarged section of FIG. 1 in the area of the magnetic circuit
  • Figure 3 shows a schematic longitudinal section through a solenoid valve according to the prior art
  • FIG. 4 shows a schematic longitudinal section through a further solenoid valve according to the prior art.
  • the magnetic valve 1 shown in FIG. 1 comprises a magnetic coil 3 for acting on a magnet armature 2 which is coupled to a valve piston 11 .
  • the valve piston 11 interacts with a sealing seat 12 of the magnet valve 1 which is formed by a valve body 5 .
  • the valve body 5 forms a guide 9 for the magnet armature 2 .
  • the valve body 5 has a reduced outer diameter to form a coil receiving space 4 .
  • the valve body 5 and the magnetic coil 3 are surrounded by a magnetic pot 6 .
  • the coil receiving space 4 is thus delimited by the valve body 5 and the magnet cup 6 .
  • the sealing of the coil receiving space 4 is effected by means of sealing rings 7, 7 ', the th in Ringnu 8, 8' of the valve body 5 are used. If the magnet coil 3 is energized, a magnetic field builds up whose magnetic force acts on the magnet armature 2 . In FIG.
  • the magnetic flux 15 is shown by arrows as an example.
  • the magnetic flux 15 is directed via the magnet armature 2 so that it moves in the direction of the magnet pot 6 in order to close a working air gap 10 present between the magnet armature 2 and the magnet pot 6 .
  • saturation occurs very quickly and the magnetic flux is deflected via the magnet armature 2.
  • the cross-sectional areas of the magnetic circuit can be designed analogously to FIG. 2 for energy optimization.
  • A denotes the armature pole area, Atl and At2 the remaining cross-sectional areas or end faces of the valve body 5 in the area of the sealing ring 7 and Ar the magnetic return area of the magnet cup 6, with the areas each extending over the entire circumference of the respective body.
  • the cross-sectional area of the valve body 5 in the area of the annular groove 8 is preferably selected to be so small that the sum of At1 and At2 is smaller than the armature pole area A.
  • the sum of the end faces At1 and At2 and the armature pole area A is preferably smaller than the magnetic return area Ar.
  • FIGS. 3 and 4 show conventional measures for magnetic isolation within a magnetic circuit.
  • a non-magnetic disk 13 is inserted between the valve body 5 and the magnet pot 6 for magnetic separation.
  • the coil receiving space 4 is delimited by the valve body 5 , the magnet pot 6 and the non-magnetic disk 13 . This requires additional space, so that the coil receiving space 4 turns out to be smaller. In addition, an additional sealing point is created, which must be sealed with an additional 7" sealing ring.
  • the magnetic separation is brought about by a thin rotation 14 of the valve body 5 in the area of the guide 9.
  • the thin twist 14 stands one Minimizing the cross-sectional area of the valve body 5 outside the area of thin rotation 14 against, so that no further space optimization can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The invention relates to a solenoid valve (1), in particular a shut-off valve for hydrogen tank systems, comprising a magnetic armature (2) and a magnetic coil (3) for acting on the magnetic armature (2), wherein the magnetic coil (3) is arranged in a coil receiving area (4) which is delimited radially inwards by a valve body (5) and radially outwards by a magnet pot (6) and which is sealed by a seal ring (7) that is inserted into an end-face annular groove (8) of the valve body (5) and is axially pretensioned against the magnet pot (6) such that the valve body (5) is magnetically separated from the magnet pot (6) via the seal ring (7), preferably solely via the seal ring (7). The invention additionally relates to a hydrogen tank system comprising a solenoid valve (1) according to the invention.

Description

Beschreibung description
Magnetventil sowie Wasserstofftanksystem mit Magnetventil Solenoid valve and hydrogen tank system with solenoid valve
Die Erfindung betrifft ein Magnetventil, insbesondere ein Absperrventil für Wasser stofftanksysteme. Ferner betrifft die Erfindung ein Wasserstofftanksystem mit einem er findungsgemäßen Magnetventil als Absperrventil. The invention relates to a solenoid valve, in particular a shut-off valve for water fuel tank systems. Furthermore, the invention relates to a hydrogen tank system with a solenoid valve according to the invention as a shut-off valve.
Stand der Technik State of the art
Wasserstofftanksysteme dienen der Bevorratung von Wasserstoff, beispielsweise an Bord eines Fahrzeugs, insbesondere an Bord eines Brennstoffzellenfahrzeugs. Was serstofftanksysteme umfassen hierzu in der Regel mehrere Druckgasbehälter, die mit Hilfe einer Rahmenstruktur zusammengefasst und am Fahrzeug, üblicherweise unter halb des Chassis, befestigt werden. Da die Druckgasbehälter unter hohem Druck ste hen, sind bestimmte Sicherheitsanforderungen zu erfüllen. Diese sehen unter anderem ein Absperrventil vor, mittels dessen der Druckgasbehälter, beispielsweise im Falle ei nes Unfalls, separat abgesperrt werden kann, um den Austritt von Gas zu verhindern. Hydrogen tank systems are used to store hydrogen, for example on board a vehicle, in particular on board a fuel cell vehicle. For this purpose, hydrogen tank systems generally comprise several pressurized gas containers which are combined using a frame structure and attached to the vehicle, usually under the chassis. Since the compressed gas tanks are under high pressure, certain safety requirements must be met. Among other things, these provide for a shut-off valve, by means of which the pressurized gas tank can be shut off separately, for example in the event of an accident, in order to prevent gas from escaping.
Aus der DE 102018221602 Al geht beispielhaft eine Tankvorrichtung zur Speiche rung von Wasserstoff mit einer elektromagnetisch betätigbaren Ventileinrichtung her vor, die ein mit einem Ventilsitz zusammenwirkendes bewegliches Ventilelement zum Öffnen und Schließen einer Auslassöffnung aufweist. Das Ventilelement ist in Richtung des Ventilsitzes von der Federkraft einer Feder beaufschlagt, so dass bei unbestromter Magnetspule die Ventileinrichtung geschlossen ist. In Offenstellung gibt das Ventilele ment eine Auslassöffnung mit einem Durchmesser d frei, der kleiner als ein Durchmes ser D eines hieran anschließenden Durchlasskanals ist. Auf diese Weise soll ein kom pakt konstruiertes, einfachschaltendes Sicherheitsmagnetventil bereitgestellt werden, das aufgrund der integrierten Bauweise die Sicherheitsanforderungen erfüllt und zu gleich eine Kostenersparnis ermöglicht. Um die Effizienz eines Wasserstofftanksystems zu maximieren, sollte der Druckabfall über den Dichtsitz des der Entnahme dienenden Ventils minimal sein. Das Ventil sollte daher einen möglichst großen Öffnungsquerschnitt aufweisen. Zur Maximierung des Öffnungsquerschnitts kann bzw. können der Sitzdurchmesser und/oder der Hub eines mit dem Dichtsitz zusammenwirkenden Ventilkolbens vergrößert werden. Bei einem elektromagnetisch betätigbaren Ventil ist der Hub jedoch beschränkt, da die Magnet kraft des zur Betätigung des Ventils vorgesehenen Magnetkreises mit größer werden dem Arbeitsluftspalt abnimmt. Der Magnetkraft bzw. der Größe einer die Magnetkraft erzeugenden Magnetspule sind darüber hinaus Grenzen durch den zur Verfügung ste henden Bauraum gesetzt. DE 102018221602 A1 shows, for example, a tank device for storing hydrogen with an electromagnetically actuable valve device, which has a movable valve element that interacts with a valve seat for opening and closing an outlet opening. The valve element is acted upon by the spring force of a spring in the direction of the valve seat, so that the valve device is closed when the magnet coil is de-energized. In the open position, the valve element releases an outlet opening with a diameter d that is smaller than a diameter D of an adjoining passage channel. In this way, a com pact designed, single-switching safety solenoid valve should be provided, which meets the safety requirements due to the integrated design and at the same time enables cost savings. In order to maximize the efficiency of a hydrogen tank system, the pressure drop across the sealing seat of the extraction valve should be minimal. The valve should therefore have the largest possible opening cross section. To maximize the opening cross section, the seat diameter and/or the stroke of a valve piston interacting with the sealing seat can be increased. In the case of an electromagnetically actuated valve, however, the stroke is limited, since the magnet decreases as the working air gap increases by the force of the magnetic circuit provided for actuating the valve. The magnetic force or the size of a magnetic coil that generates the magnetic force are also limited by the available installation space.
Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Magnetventil mit einem bauraumoptimierten Magnetkreis anzugeben, der hohe Magnetkräfte und damit große Öffnungsquerschnitte ermöglicht. Das Magnetventil soll insbesondere als Absperrventil für Wasserstofftank systeme einsetzbar sein. Proceeding from the prior art mentioned above, the present invention is based on the object of specifying a solenoid valve with a space-optimized magnetic circuit that enables high magnetic forces and thus large opening cross sections. The solenoid valve should be used in particular as a shut-off valve for hydrogen tank systems.
Zur Lösung der Aufgabe wird das Magnetventil mit den Merkmalen des Anspruchs 1 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen. Darüber hinaus wird ein Wasserstofftanksystem mit einem erfindungs gemäßen Magnetventil angegeben. To solve the problem, the solenoid valve with the features of claim 1 is proposed. Advantageous developments of the invention can be found in the dependent claims. In addition, a hydrogen tank system is specified with a fiction, contemporary solenoid valve.
Offenbarung der Erfindung Disclosure of Invention
Das vorgeschlagene Magnetventil, insbesondere Absperrventil für Wasserstofftanksys teme, umfasst einen Magnetanker und eine Magnetspule zur Einwirkung auf den Mag netanker. Die Magnetspule ist dabei in einem Spulenaufnahmeraum angeordnet, der radial innen durch einen Ventilkörper und radial außen durch einen Magnettopf be grenzt wird sowie durch einen Dichtring abgedichtet ist, der in eine stirnseitige Ringnut des Ventilkörpers eingesetzt und gegen den Magnettopf axial vorgespannt ist, so dass der Ventilkörper über den Dichtring, vorzugsweise allein über den Dichtring, vom Mag nettopf magnetisch getrennt ist. Bei dem vorgeschlagenen Magnetventil wird mit Hilfe des Dichtelements, das der Ab dichtung des Spulenaufnahmeraums dient, zugleich eine magnetische Trennung zwi schen dem Ventilkörper und dem Magnettopf bewirkt. Dies hat den Vorteil, dass ein separates Element zur magnetischen Trennung, beispielsweise eine amagnetische Scheibe, entbehrlich ist. Die Baulänge in axialer Richtung kann auf diese Weise mini miert werden. Alternativ oder ergänzend kann die Magnetspule größer ausgelegt wer den. Beides - jeweils allein oder in Kombination - wirkt sich positiv auf die Magnetkraft des Magnetkreises aus, so dass große Hübe und damit große Öffnungsquerschnitte realisierbar sind. The proposed solenoid valve, in particular shut-off valve for hydrogen tank systems, comprises a magnet armature and a magnet coil for acting on the magnet armature. The magnet coil is arranged in a coil receiving space, which is delimited radially on the inside by a valve body and radially on the outside by a magnet cup and is sealed by a sealing ring that is inserted into an annular groove on the end face of the valve body and is axially prestressed against the magnet cup, so that the Valve body is magnetically separated from the magnet pot via the sealing ring, preferably solely via the sealing ring. In the proposed solenoid valve with the help of the sealing element, which is used to seal the coil receiving space, at the same time a magnetic separation between the valve body's and the magnet pot is effected. This has the advantage that a separate element for magnetic separation, for example a non-magnetic disk, is not required. The overall length in the axial direction can be minimized in this way. Alternatively or additionally, the magnetic coil can be made larger. Both - alone or in combination - have a positive effect on the magnetic force of the magnetic circuit, so that large strokes and thus large opening cross sections can be implemented.
Des Weiteren kann ein zusätzlicher Dichtring entfallen, der bei einer magnetischen Trennung mit Hilfe eines separaten Elements zwischen diesem und dem Magnettopf zur Abdichtung des Spulenaufnahmeraums benötigt wird. Entsprechend kann die Bau teilzahl weiter reduziert werden. Furthermore, there is no need for an additional sealing ring, which is required for magnetic separation using a separate element between this and the magnet pot to seal off the coil receiving space. Accordingly, the number of construction parts can be further reduced.
Bei einem Magnetventil der eingangs genannten Art ist eine magnetische Trennung zwischen dem Ventilkörper und dem Magnettopf erforderlich, um den Magnetanker in den Magnetkreis sicher einzubinden. Die magnetische Trennung kann - wie bereits erwähnt - mit Hilfe eines zusätzlichen Elements, beispielsweise mit Hilfe einer amag netischen Scheibe, alternativ mit Hilfe einer Dünndrehung im Bereich einer durch den Ventilkörper ausgebildeten Ankerführung bewirkt werden. Um die Dünndrehung reali sieren zu können, muss der Querschnitt des Ventilkörpers außerhalb der Dünndrehung vergrößert werden. Dies geht wiederum zu Lasten des Bauraums. A magnetic valve of the type mentioned at the outset requires a magnetic separation between the valve body and the magnet pot in order to securely integrate the magnet armature into the magnetic circuit. As already mentioned, the magnetic separation can be effected with the aid of an additional element, for example with the aid of a non-magnetic disk, alternatively with the aid of a thin turn in the area of an armature guide formed by the valve body. In order to be able to realize the thin turning, the cross section of the valve body must be enlarged outside of the thin turning. This in turn is at the expense of the installation space.
Die Dünndrehung im Bereich der Ankerführung vermag einen anfänglichen magneti schen Kurzschluss zwischen dem Ventilkörper und dem Magnettopf nicht zu verhin dern. Aufgrund der geringen Querschnittsfläche im Bereich der Dünndrehung kommt es jedoch zu einer schnellen Sättigung, so dass der magnetische Fluss in den Magnet anker umgelenkt wird. Dieses Prinzip kommt auch bei dem erfindungsgemäßen Mag netventil zum Tragen, da die stirnseitige Ringnut zur Aufnahme des Dichtrings zu einer entsprechenden Querschnittsverringerung des Ventilkörpers führt. Zugleich kann bei Wegfall einer Dünndrehung im Bereich der Ankerführungsfläche die Querschnittsfläche des Ventilkörpers soweit verringert werden, dass beidseits der Ringnut lediglich dünne Stege verleiben. Auf diese Weise wird in diesem Bereich eine schnelle Sättigung er- reicht. Der Querschnittsflächenverringerung des Ventilkörpers sind lediglich durch die geforderte Festigkeit des Ventilkörpers Grenzen gesetzt. The thin twisting in the area of the armature guide cannot prevent an initial magnetic short circuit between the valve body and the magnet pot. Due to the small cross-sectional area in the area of thin turning, however, saturation occurs quickly, so that the magnetic flux is deflected into the magnet armature. This principle also applies to the magnetic valve according to the invention, since the annular groove on the end face for receiving the sealing ring leads to a corresponding reduction in the cross section of the valve body. At the same time, if there is no thin turning in the area of the armature guide surface, the cross-sectional area of the valve body can be reduced to such an extent that only thin webs remain on both sides of the annular groove. In this way, rapid saturation is achieved in this area suffices. The only limits to the reduction in cross-sectional area of the valve body are the required strength of the valve body.
In Weiterbildung der Erfindung wird daher vorgeschlagen, dass der Ventilkörper eine Führung für den Magnetanker ausbildet, wobei vorzugsweise die Führung eine unter brechungsfreie, insbesondere nutfreie, Führungsfläche aufweist. Das heißt, dass die Ankerführungsfläche keine Dünndrehung aufweist, so dass die Querschnittsfläche des Ventilkörpers und damit die Breite der beidseits der stirnseitigen Ringnut verbleibenden Stege so klein wie möglich gewählt werden kann. In a further development of the invention, it is therefore proposed that the valve body forms a guide for the magnet armature, with the guide preferably having an uninterrupted, in particular groove-free, guide surface. This means that the armature guide surface has no thin turning, so that the cross-sectional area of the valve body and thus the width of the webs remaining on both sides of the front annular groove can be selected to be as small as possible.
Bevorzugt wird die stirnseitige Ringnut des Ventilkörpers von einer radial innen ange ordneten Stirnfläche Atl sowie einer radial außen angeordneten Stirnfläche At2 des Ventilkörpers begrenzt, die in Summe gleich groß wie oder kleiner als eine dem Mag nettopf zugewandte Ankerpolfläche A des Magnetankers ist. Damit der Ventilkörper im Bereich der Ringnut schnell gesättigt ist, sollte idealerweise der Restquerschnitt beste hend aus Atl und At2 so klein wie möglich sein, insbesondere kleiner als die Ankerpol fläche A. Grundsätzlich funktioniert das Prinzip aber auch, wenn der restquerschnitt bestehend aus Atl und At2 gleich groß wie die Ankerpolfläche A ist. Denn die Sätti gung tritt im Bereich der beidseits der Ringnut verbleibenden Stege schneller als im Bereich eines Arbeitsluftspalts zwischen dem Magnetanker und dem Magnettopf ein, so dass der magnetische Fluss in den Magnetanker umgelenkt wird. Diese Auslegung des Magnetkreises ist jedoch energetisch schlechter. The annular groove on the end face of the valve body is preferably delimited by a radially inwardly arranged end face At1 and a radially outwardly arranged end face At2 of the valve body, which in total is equal to or smaller than an armature pole face A of the magnet armature facing the magnet pot. So that the valve body is quickly saturated in the area of the ring groove, the remaining cross section consisting of Atl and At2 should ideally be as small as possible, in particular smaller than the armature pole area A. In principle, however, the principle also works if the remaining cross section consisting of Atl and At2 is the same size as the armature pole area A. This is because saturation occurs faster in the area of the webs remaining on both sides of the annular groove than in the area of a working air gap between the magnet armature and the magnet pot, so that the magnetic flux is deflected into the magnet armature. However, this design of the magnetic circuit is energetically poorer.
Vorteilhafterweise wird der Magnetkreis in der Weise ausgelegt, dass die Ankerpolflä che A des Magnetankers um den Faktor 1,5 bis 10 größer als die Summe der Stirnflä chen Atl und At2 des Ventilkörpers ist. The magnetic circuit is advantageously designed in such a way that the armature pole surface A of the magnet armature is larger by a factor of 1.5 to 10 than the sum of the end surfaces At1 and At2 of the valve body.
Ferner bevorzugt sind die Ankerpolfläche A des Magnetankers und die Stirnflächen Atl und At2 des Ventilkörpers in Summe kleiner als eine magnetische Rückschlussfläche Ar des Magnettopfes. Furthermore, the armature pole area A of the magnet armature and the end faces At1 and At2 of the valve body are preferably smaller in total than a magnetic return area Ar of the magnet pot.
Beide vorstehend genannte Auslegungsregeln - jeweils allein oder in Kombination - führen zu einer energetischen Optimierung des Magnetkreises. Des Weiteren wird vorgeschlagen, dass der Spulenaufnahmeraum an zwei über Eck angeordneten Seiten durch den Ventilkörper und an zwei weiteren über Eck angeord neten Seiten durch den Magnettopf begrenzt wird. Auf diese Weise kann die Anzahl der zur Abdichtung des Spulenaufnahmeraums erforderlichen Dichtstellen reduziert werden. Vorzugsweise wird der Spulenaufnahmeraum ausschließlich durch den Ventil körper und den Magnettopf begrenzt. Die Anzahl der erforderlichen Dichtstellen kann in diesem Fall auf zwei reduziert werden. Both of the design rules mentioned above—in each case alone or in combination—lead to an energetic optimization of the magnetic circuit. Furthermore, it is proposed that the coil receiving space is delimited on two sides arranged diagonally by the valve body and on two further sides arranged diagonally by the magnet pot. In this way, the number of sealing points required to seal the coil receiving space can be reduced. Preferably, the coil receiving space is limited only by the valve body and the magnet pot. In this case, the number of required sealing points can be reduced to two.
Die Magnetspule, der Ventilkörper und der Magnettopf bilden vorzugsweise einen ge kapselten Magnetkreis aus. Das heißt, dass der Spulenaufnahmeraum nach außen abgedichtet ist. Dies ist insbesondere von Vorteil, wenn das Magnetventil als Absperr ventil in einem Wasserstofftanksystem zum Einsatz gelangen soll. Denn dann ist die Magnetspule gegenüber der Wasserstoffatmosphäre geschützt, in welcher der Mag netkreis angeordnet ist. Dies dient einer erhöhten Sicherheit im Betrieb des Mag netventils. The magnet coil, the valve body and the magnet cup preferably form an encapsulated magnetic circuit. This means that the coil accommodation space is sealed off from the outside. This is particularly advantageous if the solenoid valve is to be used as a shut-off valve in a hydrogen tank system. Because then the magnet coil is protected from the hydrogen atmosphere in which the magnet circuit is arranged. This serves to increase safety during operation of the magnet valve.
Ferner bevorzugt ist das Magnetventil derart ausgelegt, dass der Magnetanker und der Magnettopf gemeinsam einen Arbeitsluftspalt begrenzen. Auf diese Weise kann die axiale Baulänge des Magnetventils möglichst geringgehalten werden. Der Magnettopf kann dabei zugleich als Hubanschlag für den Magnetanker dienen. Furthermore, the magnetic valve is preferably designed in such a way that the magnet armature and the magnet pot jointly delimit a working air gap. In this way, the axial length of the solenoid valve can be kept as short as possible. The magnet pot can also serve as a stroke stop for the magnet armature.
Der Magnetanker ist bevorzugt mit einem Ventilkolben gekoppelt oder koppelbar, so dass über die Bewegungen des Magnetankers der Ventilkolben betätigt wird, um das Magnetventil zu öffnen oder zu schließen. Der Ventilkolben wirkt hierzu bevorzugt mit einem durch den Ventilkörper ausgebildeten Dichtsitz zusammen. Die verschiedenen Funktionen des Ventilkörpers vereinfachen den Aufbau des Magnetventils. The magnet armature is preferably coupled or can be coupled to a valve piston, so that the movements of the magnet armature actuate the valve piston in order to open or close the magnet valve. For this purpose, the valve piston preferably interacts with a sealing seat formed by the valve body. The various functions of the valve body simplify the design of the solenoid valve.
Darüber hinaus wird ein Wasserstofftanksystem vorgeschlagen, das mindestens einen Druckgasbehälter und ein erfindungsgemäßes Magnetventil zum Absperren des Druckgasbehälters umfasst. In dieser Anwendung kommen die Vorteile eines erfin dungsgemäßen Magnetventils besonders deutlich zum Tragen. Denn zum Einen kann ein kompakt bauendes Magnetventil geschaffen werden, das dennoch hohe Magnet kräfte und damit große Öffnungsquerschnitte ermöglicht, so dass ein hoher Wasser- stoffmassenstrom zur Versorgung eines Brennstoffzellensystems eines Brennstoffzel lenfahrzeugs mit Wasserstoff realisierbar ist. In addition, a hydrogen tank system is proposed that includes at least one compressed gas tank and a solenoid valve according to the invention for shutting off the compressed gas tank. In this application, the advantages of a solenoid valve according to the invention are particularly evident. On the one hand, a compact solenoid valve can be created that nevertheless allows high magnetic forces and thus large opening cross sections, so that a high water material mass flow for supplying a fuel cell system of a fuel cell vehicle with hydrogen can be realized.
Eine bevorzugte Ausführungsform der Erfindung und ihre Vorteile werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen: A preferred embodiment of the invention and its advantages are explained in more detail below with reference to the accompanying drawings. These show:
Figur 1 einen schematischen Längsschnitt durch ein erfindungsgemäßes Magnetven til, FIG. 1 shows a schematic longitudinal section through a magnet valve according to the invention,
Figur 2 einen vergrößerten Ausschnitt der Figur 1 im Bereich des Magnetkreises, FIG. 2 shows an enlarged section of FIG. 1 in the area of the magnetic circuit,
Figur 3 einen schematischen Längsschnitt durch ein Magnetventil gemäß dem Stand der Technik und Figure 3 shows a schematic longitudinal section through a solenoid valve according to the prior art and
Figur 4 einen schematischen Längsschnitt durch ein weiteres Magnetventil gemäß dem Stand der Technik. FIG. 4 shows a schematic longitudinal section through a further solenoid valve according to the prior art.
Ausführliche Beschreibung der Zeichnungen Detailed description of the drawings
Das in der Figur 1 dargestellte Magnetventil 1 umfasst einen Magnetspule 3 zur Ein wirkung auf einen Magnetanker 2, der mit einem Ventilkolben 11 gekoppelt ist. Der Ventilkolben 11 wirkt mit einem Dichtsitz 12 des Magnetventils 1 zusammen, der durch einen Ventilkörper 5 ausgebildet wird. Des Weiteren bildet der Ventilkörper 5 eine Füh rung 9 für den Magnetanker 2 aus. The magnetic valve 1 shown in FIG. 1 comprises a magnetic coil 3 for acting on a magnet armature 2 which is coupled to a valve piston 11 . The valve piston 11 interacts with a sealing seat 12 of the magnet valve 1 which is formed by a valve body 5 . Furthermore, the valve body 5 forms a guide 9 for the magnet armature 2 .
Im Bereich der Führung 9 weist der Ventilkörper 5 einen verringerten Außendurchmes ser zur Ausbildung eines Spulenaufnahmeraums 4 auf. Das heißt, dass im Bereich der Führung 9 die Querschnittsfläche des Ventilkörpers 5 verringert ist. Zur Kapselung der im Spulenaufnahmeraum 4 aufgenommenen Magnetspule 3 sind der Ventilkörper 5 und die Magnetspule 3 von einem Magnettopf 6 umgeben. Der Spulenaufnahmeraum 4 wird somit durch den Ventilkörper 5 und den Magnettopf 6 begrenzt. Die Abdichtung des Spulenaufnahmeraums 4 wird mit Hilfe von Dichtringen 7, 7‘ bewirkt, die in Ringnu ten 8, 8‘ des Ventilkörpers 5 eingesetzt sind. Wird die Magnetspule 3 bestromt, baut sich ein Magnetfeld auf, dessen Magnetkraft auf den Magnetanker 2 einwirkt. In der Figur 1 ist beispielhaft der magnetische Fluss 15 durch Pfeile dargestellt. Der magnetische Fluss 15 wird über den Magnetanker 2 gelenkt, so dass dieser sich in Richtung des Magnettopfes 6 bewegt, um einen zwi schen dem Magnetanker 2 und dem Magnettopf 6 vorhandenen Arbeitsluftspalt 10 zu schließen. Anfangs kommt es zwar auch hier zu einem magnetischen Kurzschluss zwi schen dem Ventilkörper 5 und dem Magnettopf 6. Da jedoch die Querschnittsfläche des Ventilkörpers 5 durch die Ringnut 8 zur Aufnahme des Dichtrings 7 stark verklei nert ist, tritt sehr schnell Sättigung ein und der magnetische Fluss wird über den Mag netanker 2 umgelenkt. In the area of the guide 9 , the valve body 5 has a reduced outer diameter to form a coil receiving space 4 . This means that the cross-sectional area of the valve body 5 is reduced in the area of the guide 9 . To encapsulate the magnetic coil 3 accommodated in the coil receiving space 4 , the valve body 5 and the magnetic coil 3 are surrounded by a magnetic pot 6 . The coil receiving space 4 is thus delimited by the valve body 5 and the magnet cup 6 . The sealing of the coil receiving space 4 is effected by means of sealing rings 7, 7 ', the th in Ringnu 8, 8' of the valve body 5 are used. If the magnet coil 3 is energized, a magnetic field builds up whose magnetic force acts on the magnet armature 2 . In FIG. 1, the magnetic flux 15 is shown by arrows as an example. The magnetic flux 15 is directed via the magnet armature 2 so that it moves in the direction of the magnet pot 6 in order to close a working air gap 10 present between the magnet armature 2 and the magnet pot 6 . Initially, there is also a magnetic short circuit between the valve body 5 and the magnet cup 6. However, since the cross-sectional area of the valve body 5 is greatly reduced by the annular groove 8 for accommodating the sealing ring 7, saturation occurs very quickly and the magnetic flux is deflected via the magnet armature 2.
Zur energetischen Optimierung können die Querschnittsflächen des Magnetkreises analog der Figur 2 ausgelegt werden. A bezeichnet die Ankerpolfläche, Atl und At2 die im Bereich des Dichtrings 7 verbleibenden Restquerschnittsflächen bzw. Stirnflächen des Ventilkörpers 5 und Ar die magnetische Rückschlussfläche des Magnettopfes 6, wobei sich die Flächen jeweils über den gesamten Umfang des jeweiligen Körpers er strecken. Bevorzugt ist di Querschnittfläche des Ventilkörpers 5 im Bereich der Ringnut 8 so klein gewählt, dass die Summe aus Atl und At2 kleiner als die Ankerpolfläche A ist. Die Summe wiederum aus den Stirnflächen Atl und At2 sowie der Ankerpolfläche A ist darüber hinaus bevorzugt kleiner als die magnetische Rückschlussfläche Ar. The cross-sectional areas of the magnetic circuit can be designed analogously to FIG. 2 for energy optimization. A denotes the armature pole area, Atl and At2 the remaining cross-sectional areas or end faces of the valve body 5 in the area of the sealing ring 7 and Ar the magnetic return area of the magnet cup 6, with the areas each extending over the entire circumference of the respective body. The cross-sectional area of the valve body 5 in the area of the annular groove 8 is preferably selected to be so small that the sum of At1 and At2 is smaller than the armature pole area A. In addition, the sum of the end faces At1 and At2 and the armature pole area A is preferably smaller than the magnetic return area Ar.
Anhand der Figuren 3 und 4, welche übliche Maßnahmen zur magnetischen Trennung innerhalb eines Magnetkreises zeigen, werden nachfolgend die Vorteile eines erfin dungsgemäßen Magnetventils 1 näher erläutert. The advantages of a solenoid valve 1 according to the invention are explained in more detail below with reference to FIGS. 3 and 4, which show conventional measures for magnetic isolation within a magnetic circuit.
In der Figur 3 ist zur magnetischen Trennung eine amagnetische Scheibe 13 zwischen dem Ventilkörper 5 und dem Magnettopf 6 eingelegt. Der Spulenaufnahmeraum 4 wird in diesem Fall durch den Ventilkörper 5, den Magnettopf 6 und die amagnetische Scheibe 13 begrenzt. Diese benötigt zusätzlichen Bauraum, so dass der Spulenauf nahmeraum 4 kleiner ausfällt. Darüber hinaus wird eine zusätzliche Dichtstelle ge schaffen, die durch einen weiteren Dichtring 7“ abgedichtet werden muss. In FIG. 3, a non-magnetic disk 13 is inserted between the valve body 5 and the magnet pot 6 for magnetic separation. In this case, the coil receiving space 4 is delimited by the valve body 5 , the magnet pot 6 and the non-magnetic disk 13 . This requires additional space, so that the coil receiving space 4 turns out to be smaller. In addition, an additional sealing point is created, which must be sealed with an additional 7" sealing ring.
In der Figur 4 wird die magnetische Trennung durch eine Dünndrehung 14 des Ventil körpers 5 im Bereich der Führung 9 bewirkt. Die Dünndrehung 14 steht jedoch einer Minimierung der Querschnittsfläche des Ventilkörpers 5 außerhalb des Bereichs der Dünndrehung 14 entgegen, so dass keine weitere Bauraumoptimierung erzielbar ist. In FIG. 4, the magnetic separation is brought about by a thin rotation 14 of the valve body 5 in the area of the guide 9. The thin twist 14, however, stands one Minimizing the cross-sectional area of the valve body 5 outside the area of thin rotation 14 against, so that no further space optimization can be achieved.

Claims

Ansprüche Expectations
1. Magnetventil (1), insbesondere Absperrventil für Wasserstofftanksysteme, umfas send einen Magnetanker (2) und eine Magnetspule (3) zur Einwirkung auf den Mag netanker (2), wobei die Magnetspule (3) in einem Spulenaufnahmeraum (4) angeordnet ist, der radial innen durch einen Ventilkörper (5) und radial außen durch einen Magnet topf (6) begrenzt wird sowie durch einen Dichtring (7) abgedichtet ist, der in eine stirn seitige Ringnut (8) des Ventilkörpers (5) eingesetzt und gegen den Magnettopf (6) axial vorgespannt ist, so dass der Ventilkörper (5) über den Dichtring (7), vorzugsweise al lein über den Dichtring (7), vom Magnettopf (6) magnetisch getrennt ist. 1. Solenoid valve (1), in particular shut-off valve for hydrogen tank systems, comprising a magnet armature (2) and a magnet coil (3) for acting on the magnet armature (2), the magnet coil (3) being arranged in a coil receiving space (4), which is delimited radially on the inside by a valve body (5) and radially on the outside by a magnet pot (6) and is sealed by a sealing ring (7) which is inserted into an annular groove (8) on the end face of the valve body (5) and against the magnet pot (6) is axially prestressed, so that the valve body (5) is magnetically separated from the magnet cup (6) via the sealing ring (7), preferably al lein via the sealing ring (7).
2. Magnetventil (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Ventilkörper (5) eine Führung (9) für den Magnet anker (2) ausbildet, wobei vorzugsweise die Führung (9) eine unterbrechungsfreie, ins besondere nutfreie, Führungsfläche aufweist. 2. Solenoid valve (1) according to claim 1, characterized in that the valve body (5) forms a guide (9) for the magnet armature (2), the guide (9) preferably having an uninterrupted, in particular groove-free, guide surface.
3. Magnetventil (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die stirnseitige Ringnut (8) des Ventilkörpers (5) von einer radial innen angeordneten Stirnfläche (Atl) sowie einer radial außen angeordne ten Stirnfläche (At2) des Ventilkörpers (5) begrenzt wird, die in Summe gleich groß wie oder kleiner als eine dem Magnettopf (6) zugewandte Ankerpolfläche (A) des Magne tankers (2) ist. 3. Solenoid valve (1) according to Claim 1 or 2, characterized in that the annular groove (8) on the end face of the valve body (5) is surrounded by a radially inner end face (At1) and a radially outer end face (At2) of the valve body (5 ) is limited, which in total is equal to or smaller than an armature pole surface (A) of the magnet tanker (2) facing the magnet cup (6).
4. Magnetventil (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Ankerpolfläche (A) des Magnetankers (2) um den Faktor 1,5 bis 10 größer als die Summe der Stirnflächen (Atl, At2) des Ventilkörpers (5) ist. 4. Solenoid valve (1) according to claim 3, characterized in that the armature pole face (A) of the magnet armature (2) is greater by a factor of 1.5 to 10 than the sum of the end faces (At1, At2) of the valve body (5).
5. Magnetventil (1) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Ankerpolfläche (A) des Magnetankers (2) und die Stirnflächen (Atl, At2) des Ventilkörpers (5) in Summe kleiner als eine magnetische Rückschlussfläche (Ar) des Magnettopfes (6) sind. 5. Solenoid valve (1) according to Claim 3 or 4, characterized in that the armature pole surface (A) of the armature (2) and the end faces (Atl, At2) of the valve body (5) are smaller in total than a magnetic return surface (Ar) of the Magnet pot (6) are.
6. Magnetventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Spulenaufnahmeraum (4) an zwei über Eck an geordneten Seiten durch den Ventilkörper (5) und an zwei weiteren über Eck angeord neten Seiten durch den Magnettopf (6) begrenzt wird, wobei vorzugsweise der Spulen aufnahmeraum (4) ausschließlich durch den Ventilkörper (5) und den Magnettopf (6) begrenzt wird. 6. Solenoid valve (1) according to one of the preceding claims, characterized in that the coil receiving space (4) is delimited on two sides arranged diagonally by the valve body (5) and on two further sides arranged diagonally by the magnet pot (6). is, preferably the coil receiving space (4) is limited exclusively by the valve body (5) and the magnet pot (6).
7. Magnetventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Magnetspule (3), der Ventilkörper (5) und der Magnettopf (6) einen gekapselten Magnetkreis ausbilden. 7. Solenoid valve (1) according to one of the preceding claims, characterized in that the magnetic coil (3), the valve body (5) and the magnet pot (6) form an encapsulated magnetic circuit.
8. Magnetventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magnetanker (2) und der Magnettopf (6) gemein sam einen Arbeitsluftspalt (10) begrenzen. 8. Solenoid valve (1) according to one of the preceding claims, characterized in that the magnet armature (2) and the magnet pot (6) jointly delimit a working air gap (10).
9. Magnetventil (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magnetanker (2) mit einem Ventilkolben (11) ge koppelt oder koppelbar ist, der vorzugsweise mit einem durch den Ventilkörper (5) aus gebildeten Dichtsitz (12) zusammenwirkt. 9. Solenoid valve (1) according to one of the preceding claims, characterized in that the magnet armature (2) is coupled or can be coupled to a valve piston (11), which preferably interacts with a sealing seat (12) formed by the valve body (5). .
10. Wasserstofftanksystem, umfassend mindestens einen Druckgasbehälter und Magnetventil (1) nach einem der vorhergehenden Ansprüche zum Absperren des Druckgasbehälters. 10. Hydrogen tank system, comprising at least one compressed gas tank and solenoid valve (1) according to one of the preceding claims for shutting off the compressed gas tank.
PCT/EP2022/067495 2021-07-12 2022-06-27 Solenoid valve and hydrogen tank system comprising solenoid valve WO2023285116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021207354.9 2021-07-12
DE102021207354.9A DE102021207354A1 (en) 2021-07-12 2021-07-12 Solenoid valve and hydrogen tank system with solenoid valve

Publications (1)

Publication Number Publication Date
WO2023285116A1 true WO2023285116A1 (en) 2023-01-19

Family

ID=82321571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/067495 WO2023285116A1 (en) 2021-07-12 2022-06-27 Solenoid valve and hydrogen tank system comprising solenoid valve

Country Status (2)

Country Link
DE (1) DE102021207354A1 (en)
WO (1) WO2023285116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018215380A1 (en) * 2018-09-11 2020-03-12 Robert Bosch Gmbh Valve device for a gaseous medium and tank device for storing a gaseous medium
DE102018215384A1 (en) * 2018-09-11 2020-03-12 Robert Bosch Gmbh Tank device for storing a gaseous medium
DE102018221602A1 (en) 2018-12-13 2020-06-18 Robert Bosch Gmbh Tank device for storing a gaseous medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018215380A1 (en) * 2018-09-11 2020-03-12 Robert Bosch Gmbh Valve device for a gaseous medium and tank device for storing a gaseous medium
DE102018215384A1 (en) * 2018-09-11 2020-03-12 Robert Bosch Gmbh Tank device for storing a gaseous medium
DE102018221602A1 (en) 2018-12-13 2020-06-18 Robert Bosch Gmbh Tank device for storing a gaseous medium

Also Published As

Publication number Publication date
DE102021207354A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
DE102006027712B4 (en) Hydrogen valve with pressure compensation
DE4202389A1 (en) HYDRAULIC BRAKE SYSTEM, ESPECIALLY FOR MOTOR VEHICLES
DE102009012688B3 (en) Valve for injecting gas to internal-combustion engine of natural gas motor vehicle, has delivery opening opened in position of closing member that is provided with distance in open position in which delivery opening is completely opened
DE102011105000B4 (en) Magnetic pump
EP2516229A1 (en) Magnetic valve and driver assistance device comprising said type of magnetic valve
DE4330325C2 (en) Electromagnetically actuated valve
DE102015218263A1 (en) magnetic valve
WO2023285116A1 (en) Solenoid valve and hydrogen tank system comprising solenoid valve
DE4321695A1 (en) Valve unit with opposing valves
EP2905669B1 (en) Pressure control valve
EP1907252A1 (en) Solenoid valve arrangement for an automotive braking system
DE102021120039A1 (en) Electromagnetically operated valve
DE102011002422A1 (en) Injection valve for injecting a fluid
DE102015218371A1 (en) Electromagnetically actuated proportional valve
DE102015100650A1 (en) solenoid valve
DE102014224693A1 (en) Solenoid valve for pressure regulation and / or pressure limitation
DE102018208909A1 (en) Electromagnetically operated suction valve and high-pressure fuel pump
WO2023160891A1 (en) Shut-off valve, and hydrogen tank system comprising a shut-off valve
EP2338750B1 (en) Magnetic valve and driver assistance device
WO2023143845A1 (en) Shut-off valve, and hydrogen tank system comprising a shut-off valve
WO2018019483A1 (en) Magnetic circuit, electromagnetically actuatble suction valve and high-pressure fuel pump
DE102022202170A1 (en) Shut-off valve and hydrogen tank system with shut-off valve
DE102018200245A1 (en) Actuator arrangement for a fuel injector, fuel injector
DE102021209468A1 (en) Solenoid valve and hydrogen tank system with solenoid valve
DE102022208071A1 (en) Shut-off valve for a fuel gas tank, fuel gas tank with shut-off valve and fuel gas tank system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22735423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE