WO2023284702A1 - 旋转式三维光激发装置 - Google Patents

旋转式三维光激发装置 Download PDF

Info

Publication number
WO2023284702A1
WO2023284702A1 PCT/CN2022/105032 CN2022105032W WO2023284702A1 WO 2023284702 A1 WO2023284702 A1 WO 2023284702A1 CN 2022105032 W CN2022105032 W CN 2022105032W WO 2023284702 A1 WO2023284702 A1 WO 2023284702A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating base
rotating
sample container
light
rotation
Prior art date
Application number
PCT/CN2022/105032
Other languages
English (en)
French (fr)
Inventor
戴琼海
王旭康
吴嘉敏
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023284702A1 publication Critical patent/WO2023284702A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0933Systems for active beam shaping by rapid movement of an element

Definitions

  • the present application relates to the technical field of optical instruments, in particular to a rotating three-dimensional optical excitation device.
  • the light excitation device can be used in conjunction with fluorescent samples and photocurable 3D printing materials. It can excite specific shapes and areas in fluorescent samples, and can also stimulate the photocuring reaction of materials in light-irradiated areas for 3D printing.
  • the current photoexcitation devices usually can only photoexcite linear or planar regions, but cannot photoexcite three-dimensional regions at the same time, resulting in low efficiency of three-dimensional photoexcitation.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose of this application is to propose a rotating three-dimensional light excitation device.
  • the rotary three-dimensional optical excitation device proposed by the present application includes a rotary base, a periscope group, a light modulation device and a sample container, the periscope group is installed on the rotary base, and the light modulation device The light beam enters the periscope group along the rotation center axis of the rotation base, and the periscope group shifts the light beam of the light modulation device to intersect with the rotation center axis of the rotation base, and the intersection point is located at inside the sample container.
  • the periscope group includes a first reflector and at least one second reflector, the first reflector is fixedly mounted on the rotating base, and it is located on the rotation center axis of the rotating base, the first reflector The two reflectors are fixedly installed on the rotating base, and they are far away from the rotation center axis of the rotating base, and the light beam of the light modulating device is reflected by the first reflecting mirror and the second reflecting mirror in turn and The rotation center axes of the rotation bases intersect.
  • intersection point of the central axis of the light beam of the light modulation device and the central axis of rotation of the rotating base is located at the center of the sample container.
  • the light modulation device emits light beams with corresponding patterns according to the angle of the rotating base.
  • the rotating base is fixedly installed on the rotating shaft of the driving motor.
  • the length direction of the rotating base is perpendicular to the rotation axis of the drive motor, and its width direction is parallel to the rotation axis of the drive motor.
  • the sample container is made of transparent material.
  • the sample container is made of tempered glass.
  • the sample container is made of plexiglass.
  • the sample container is a box structure with a built-in cavity.
  • the present application has the advantage compared with the prior art that: after the light beam is modulated by the light modulation device, it passes through the offset of the periscope group on the rotating base, and under the rotation of the rotating base, it can move from Different angles irradiate the sample in the sample container, and the beams of different angles and shapes are superimposed to excite a specific three-dimensional shape in the three-dimensional space, thereby improving the efficiency of three-dimensional light excitation, and the sample container does not need to be moved, which is convenient for replacement.
  • Fig. 1 is a schematic structural diagram of a rotating three-dimensional optical excitation device proposed by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the structure when the light beam of the light modulation device in the rotating three-dimensional light excitation device proposed by an embodiment of the present application excites a three-dimensional shape in the sample container;
  • FIG. 1 is a schematic structural diagram of a rotating three-dimensional optical excitation device proposed by an embodiment of the present application.
  • the rotating three-dimensional light excitation device includes a rotating base 1 , a periscope group, a light modulation device 2 and a sample container 3 .
  • the rotating base 1 is a rectangular plate structure, which is fixedly mounted on the rotating shaft of the driving motor, and its central axis of rotation coincides with the rotating shaft of the driving motor.
  • the rotation axis of the drive motor is vertical, and its width direction is parallel to the rotation axis of the drive motor.
  • the drive motor is not shown in the drawings, and it is used to drive the rotation base 1 to rotate.
  • the optical modulation device 2 is an optical modulator, which uses optical modulation technology to superimpose a signal carrying information on the carrier light wave, and the optical modulator can make certain parameters of the light wave such as amplitude, frequency, phase, polarization state and duration etc. changes according to a certain rule, the light modulation device 2 is a prior art, and will not be repeated here.
  • the central axis of the light beam coincides with the central axis of rotation of the rotating base 1 , which is used for light beam modulation.
  • the periscope group is installed on the rotating base 1, and the light beam of the light modulation device 2 enters the periscope group along the rotation center axis of the rotating base 1, and the periscope group shifts the light beam of the light modulation device 2 to the rotation of the rotating base 1. Where the central axes intersect.
  • the periscope group includes a first reflector 4 and a second reflector 5, the first reflector 4 is fixedly installed on the rotating base 1, and it is perpendicular to the rotating base 1, meanwhile, the first reflecting mirror 4 is located on the rotating base On the rotation center axis of the seat 1, and there is an angle less than 90 degrees between it and the rotation axis of the rotation base 1, the second reflector 5 is fixedly installed on the rotation base 1, and it is perpendicular to the rotation base 1 , at the same time, the second reflector 5 is far away from the rotation center axis of the rotating base 1, and its included angle with the first reflecting mirror 4 and the rotating axis of the rotating base 1 is less than 90 degrees, so that the optical modulation device 2 After being reflected by the first reflector 4 and the second reflector 5 in sequence, the light beam can intersect the rotation center axis of the spin base 1 .
  • multiple second reflecting mirrors 5 may be provided, so that the light beam of the light modulating device 2 will finally intersect the rotation center axis of the rotation base 1 after multiple reflections.
  • the light modulation device 2 can emit The light beams have corresponding patterns, so as to improve the utilization rate of the light beams emitted by the light modulation device 2 .
  • the angle of the rotating base 1 can be detected by a grating scale, and the grating scale converts the angle signal of the rotating base 1 into an electrical signal, so that the light modulation device 2 emits a light beam with a corresponding pattern according to the electrical signal .
  • the position of the sample container 3 is fixed relative to the light modulation device 2 , and it is made of transparent material, and it is a box structure with a built-in cavity, and the sample is placed in the sample container 3 .
  • the sample container 3 can be made of toughened glass, plexiglass and other materials to ensure that the sample container 3 has good light transmission.
  • the intersection of the central axis of the light beam of the light modulation device 2 and the central axis of rotation of the spin base 1 is located in the sample container 3, so that the light beam of the light modulation device 2 passes through the first reflector 4 and the second reflection mirror 4 in sequence.
  • the reflection of the mirror 5 can pass through the sample container 3, and with the rotation of the rotary base 1, the position of the intersection of the central axis of the light beam of the light modulation device 2 and the central axis of rotation of the rotary base 1 in the sample container 3 is always different. Change.
  • the rotating base 1 when the rotating base 1 is rotated and the sample container 3 is fixed, the light beam of the light modulation device 2 is irradiated into the sample from different angles, and the beams of different angles and shapes are superimposed to excite the three-dimensional space.
  • the specific three-dimensional shape improves the efficiency of three-dimensional light excitation, and the sample container 3 does not need to be moved, which is convenient for replacement.
  • the intersection point of the central axis of the light beam of the light modulating device 2 and the central axis of rotation of the rotating base 1 is located at the center of the sample container 3, so that the light beam of the light modulating device 2 is in the sample container 3, with the intersection point as the center, a three-dimensional area composed of two symmetrical conical shapes is formed to maximize the three-dimensional shape in the three-dimensional space.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种旋转式三维光激发装置,其特征在于:包括旋转基座(1)、潜望镜组、光调制装置(2)及样本容器(3),潜望镜组安装在旋转基座上(1),光调制装置(2)的光束沿旋转基座(1)的旋转中心轴进入潜望镜组内,潜望镜组将光调制装置(2)的光束偏移至与旋转基座(1)的旋转中心轴相交处,且其交点位于样本容器(3)内,光束被光调制装置(2)调制后,经过旋转基座(1)上潜望镜组的偏移,且在旋转基座(1)的旋转下,能够从不同的角度照射进入样本容器(3)内的样本,且不同角度不同形状的光束相叠加,以激发出三维空间中的特定三维形状,从而提升了三维光激发的效率,且样本容器(3)无需移动,方便更换。

Description

旋转式三维光激发装置
相关申请的交叉引用
本申请基于申请号为202110781880.0,申请日为2021年07月12日申请的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光学仪器技术领域,尤其涉及一种旋转式三维光激发装置。
背景技术
光激发装置可配合荧光样本、光固化三维打印材料使用,可激发荧光样本中特定的形状和区域,也可激发光照射区域材料的光固化反应进行三维打印。目前的光激发装置通常只能对线状或面状区域进行光激发,无法同时对三维区域进行光激发,导致三维光激发的效率不高。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的目的在于提出一种旋转式三维光激发装置。
为达到上述目的,本申请提出的旋转式三维光激发装置,包括旋转基座、潜望镜组、光调制装置及样本容器,所述潜望镜组安装在所述旋转基座上,所述光调制装置的光束沿所述旋转基座的旋转中心轴进入所述潜望镜组内,所述潜望镜组将所述光调制装置的光束偏移至与所述旋转基座的旋转中心轴相交处,且其交点位于所述样本容器内。
所述潜望镜组包括第一反射镜及至少一个第二反射镜,所述第一反射镜固定安装在所述旋转基座上,且其位于所述旋转基座的旋转中心轴上,所述第二反射镜固定安装在所述旋转基座上,且其远离所述旋转基座的旋转中心轴,所述光调制装置的光束依次经过所述第一反射镜及第二反射镜的反射后与所述旋转基座的旋转中心轴相交。
所述光调制装置的光束中心轴与所述旋转基座的旋转中心轴的交点位于所述样本容器的中心处。
所述光调制装置根据所述旋转基座的角度发射具有相应图案的光束。
所述旋转基座固定安装在驱动电机的旋转轴上。
所述旋转基座的长度方向与所述驱动电机的旋转轴垂直,其宽度方向与所述驱动电机 的旋转轴平行。
所述样本容器由透明材料制成。
所述样本容器由钢化玻璃制成。
所述样本容器由有机玻璃制成。
所述样本容器为内置空腔的箱体结构。
采用上述技术方案后,本申请和现有技术相比所具有的优点是:光束被光调制装置调制后,经过旋转基座上潜望镜组的偏移,且在旋转基座的旋转下,能够从不同的角度照射进入样本容器内的样本,且不同角度不同形状的光束相叠加,以激发出三维空间中的特定三维形状,从而提升了三维光激发的效率,且样本容器无需移动,方便更换。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一实施例提出的旋转式三维光激发装置的结构示意图;
图2是本申请一实施例提出的旋转式三维光激发装置中光调制装置的光束在样本容器中激发出三维形状时的结构示意图;
如图所示:1、旋转基座,2、光调制装置,3、样本容器,4、第一反射镜,5、第二反射镜。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。相反,本申请的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本申请一实施例提出的旋转式三维光激发装置的结构示意图。
参见图1,旋转式三维光激发装置包括旋转基座1、潜望镜组、光调制装置2及样本容器3。
在本实施例中,旋转基座1为长方形板体结构,其固定安装在驱动电机的旋转轴上,其旋转中心轴即与驱动电机的旋转轴重合,同时,旋转基座1的长度方向与驱动电机的旋转轴垂直,其宽度方向与驱动电机的旋转轴平行,其中,驱动电机在附图中未示出,其用 于驱动旋转基座1旋转。
光调制装置2即为光调制器,其利用光调制技术,能够将携带信息的信号叠加到载波光波上,光调制器能够使光波的某些参数如振幅、频率、相位、偏振状态和持续时间等按一定的规律发生变化,光调制装置2作为现有技术,在此不再赘述。
光调制装置2固定安装时,其光束中心轴与旋转基座1的旋转中心轴重合,其用于光束的调制。
潜望镜组安装在旋转基座1上,其光调制装置2的光束沿旋转基座1的旋转中心轴进入潜望镜组内,潜望镜组将光调制装置2的光束偏移至与旋转基座1的旋转中心轴相交处。
其中,潜望镜组包括第一反射镜4及第二反射镜5,第一反射镜4固定安装在旋转基座1上,且其与旋转基座1垂直,同时,第一反射镜4位于旋转基座1的旋转中心轴上,且其与旋转基座1的旋转轴之间存在小于90度的夹角,第二反射镜5固定安装在旋转基座1上,且其与旋转基座1垂直,同时,第二反射镜5远离旋转基座1的旋转中心轴,且其与第一反射镜4及旋转基座1的旋转轴均存在小于90度的夹角,从而在光调制装置2的光束依次经过第一反射镜4及第二反射镜5的反射后,能够与旋转基座1的旋转中心轴相交。
在一些实施例中,第二反射镜5可设置多个,以使光调制装置2的光束经多次反射后最终与旋转基座1的旋转中心轴相交。
在本实施例中,由于旋转基座1的不断旋转,使光调制装置2的部分光束无法进入到潜望镜组中,为减少该部分光束的浪费,光调制装置2根据旋转基座1的角度发射具有相应图案的光束,以提高光调制装置2发射光束的利用率。
在一些实施例中,旋转基座1的角度可通过光栅尺进行检测,光栅尺将旋转基座1的角度信号转换为电信号,以便于光调制装置2根据该电信号发射具有相应图案的光束。
在本实施例中,样本容器3相对于光调制装置2位置固定,其由透明材料制成,且其为内置空腔的箱体结构,样本置于样本容器3中。
在一些实施例中,样本容器3可由钢化玻璃、有机玻璃等材料制成,以保证样本容器3具有良好的透光性。
在本实施例中,光调制装置2的光束中心轴与旋转基座1的旋转中心轴的交点位于样本容器3内,以使光调制装置2的光束依次经过第一反射镜4及第二反射镜5的反射后能够穿过样本容器3,且随着旋转基座1的旋转,光调制装置2的光束中心轴与旋转基座1的旋转中心轴的交点在样本容器3内的位置始终不变。
从而在旋转基座1的旋转以及样本容器3固定不动的情况下,光调制装置2的光束从不同的角度照射进入样本,且不同角度不同形状的光束相叠加,以激发出三维空间中的特定三维形状,从而提升了三维光激发的效率,且样本容器3无需移动,方便更换。
如图2所示,在本实施例中,光调制装置2的光束中心轴与旋转基座1的旋转中心轴的交点位于样本容器3的中心处,从而使光调制装置2的光束在样本容器3内以该交点为中心,形成两个对称的圆锥形状组合而成的三维区域,使三维空间中的三维形状达到最大。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 旋转式三维光激发装置,其特征在于:包括旋转基座(1)、潜望镜组、光调制装置(2)及样本容器(3),所述潜望镜组安装在所述旋转基座(1)上,所述光调制装置(2)的光束沿所述旋转基座(1)的旋转中心轴进入所述潜望镜组内,所述潜望镜组将所述光调制装置(2)的光束偏移至与所述旋转基座(1)的旋转中心轴相交处,且其交点位于所述样本容器(3)内。
  2. 根据权利要求1所述的旋转式三维光激发装置,其特征在于:所述潜望镜组包括第一反射镜(4)及至少一个第二反射镜(5),所述第一反射镜(4)固定安装在所述旋转基座(1)上,且其位于所述旋转基座(1)的旋转中心轴上,所述第二反射镜(5)固定安装在所述旋转基座(1)上,且其远离所述旋转基座(1)的旋转中心轴,所述光调制装置(2)的光束依次经过所述第一反射镜(4)及第二反射镜(5)的反射后与所述旋转基座(1)的旋转中心轴相交。
  3. 根据权利要求1或2所述的旋转式三维光激发装置,其特征在于:所述光调制装置(2)的光束中心轴与所述旋转基座(1)的旋转中心轴的交点位于所述样本容器(3)的中心处。
  4. 根据权利要求3所述的旋转式三维光激发装置,其特征在于:所述光调制装置(2)根据所述旋转基座(1)的角度发射具有相应图案的光束。
  5. 根据权利要求1或2所述的旋转式三维光激发装置,其特征在于:所述旋转基座(1)固定安装在驱动电机的旋转轴上。
  6. 根据权利要求5所述的旋转式三维光激发装置,其特征在于:所述旋转基座(1)的长度方向与所述驱动电机的旋转轴垂直,其宽度方向与所述驱动电机的旋转轴平行。
  7. 根据权利要求1或2所述的旋转式三维光激发装置,其特征在于:所述样本容器(3)由透明材料制成。
  8. 根据权利要求7所述的旋转式三维光激发装置,其特征在于:所述样本容器(3)由钢化玻璃制成。
  9. 根据权利要求7所述的旋转式三维光激发装置,其特征在于:所述样本容器(3)由有机玻璃制成。
  10. 根据权利要求7所述的旋转式三维光激发装置,其特征在于:所述样本容器(3)为内置空腔的箱体结构。
PCT/CN2022/105032 2021-07-12 2022-07-12 旋转式三维光激发装置 WO2023284702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110781880.0 2021-07-12
CN202110781880.0A CN113253471B (zh) 2021-07-12 2021-07-12 旋转式三维光激发装置

Publications (1)

Publication Number Publication Date
WO2023284702A1 true WO2023284702A1 (zh) 2023-01-19

Family

ID=77191106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105032 WO2023284702A1 (zh) 2021-07-12 2022-07-12 旋转式三维光激发装置

Country Status (2)

Country Link
CN (1) CN113253471B (zh)
WO (1) WO2023284702A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253471B (zh) * 2021-07-12 2022-04-29 清华大学 旋转式三维光激发装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190193204A1 (en) * 2016-08-26 2019-06-27 Multiphoton Optics Gmbh Device and method for laser-assisted processing of bodies or surfaces
CN110239087A (zh) * 2019-06-04 2019-09-17 浙江大学 一种基于成像原理的3d打印设备
CN111168227A (zh) * 2020-01-17 2020-05-19 合肥泰沃达智能装备有限公司 一种导光板网点加工装置及方法
CN111872548A (zh) * 2020-07-30 2020-11-03 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置及激光加工方法
US20210048681A1 (en) * 2018-01-26 2021-02-18 Edmund Optics, Inc. Reflective optical beam conditioners with integrated alignment features
US20210146628A1 (en) * 2019-11-15 2021-05-20 Lawrence Livermore National Security, Llc System and method for in situ volumetric sensing of 3d cure state of resin being used in an additive manufacturing system
CN113253471A (zh) * 2021-07-12 2021-08-13 清华大学 旋转式三维光激发装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672783A (zh) * 2009-09-29 2010-03-17 北京大学 一种单根一维纳米材料光致荧光角度分辨测量系统
CN104266610B (zh) * 2014-10-17 2017-04-05 上海大恒光学精密机械有限公司 校正和标定三维激光扫描仪内部电机空间位置的装置
CN110582715B (zh) * 2017-03-03 2022-04-29 雅普顿生物系统公司 具有加速跟踪的高速扫描系统
US10712546B1 (en) * 2017-10-16 2020-07-14 Keysight Technologies, Inc. Illumination source for structured illumination microscopy
DE102017223014A1 (de) * 2017-12-18 2019-06-19 Carl Zeiss Microscopy Gmbh Verfahren zur Bestimmung der Dicke einer Probenhalterung im Strahlengang eines Mikroskops
CN213318327U (zh) * 2020-07-30 2021-06-01 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190193204A1 (en) * 2016-08-26 2019-06-27 Multiphoton Optics Gmbh Device and method for laser-assisted processing of bodies or surfaces
US20210048681A1 (en) * 2018-01-26 2021-02-18 Edmund Optics, Inc. Reflective optical beam conditioners with integrated alignment features
CN110239087A (zh) * 2019-06-04 2019-09-17 浙江大学 一种基于成像原理的3d打印设备
US20210146628A1 (en) * 2019-11-15 2021-05-20 Lawrence Livermore National Security, Llc System and method for in situ volumetric sensing of 3d cure state of resin being used in an additive manufacturing system
CN111168227A (zh) * 2020-01-17 2020-05-19 合肥泰沃达智能装备有限公司 一种导光板网点加工装置及方法
CN111872548A (zh) * 2020-07-30 2020-11-03 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置及激光加工方法
CN113253471A (zh) * 2021-07-12 2021-08-13 清华大学 旋转式三维光激发装置

Also Published As

Publication number Publication date
CN113253471B (zh) 2022-04-29
CN113253471A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN109490201B (zh) 一种基于光束整形的结构光生成装置和方法
KR100785050B1 (ko) 레이저 디스플레이 장치
WO2023284702A1 (zh) 旋转式三维光激发装置
CN208060906U (zh) 一种液晶移相器阵列及激光扫描仪
JP3837609B2 (ja) レーザー照射装置
CN104166233B (zh) 基于渐开线原理的多反射面旋转光学延迟线装置
EP2541299A1 (en) Microscope device, optical pickup device, and light irradiation device
CN103454765A (zh) 图像显示装置以及头戴式显示器
US9372141B2 (en) Viscosity measuring apparatus
CN107450060A (zh) 一种激光扫描装置
CN103454770A (zh) 图像显示装置以及头戴式显示器
CN110824458A (zh) 一种大范围扫描共轴式mems激光雷达光学系统
JPS6388409A (ja) レ−ザ振動計
US20210223367A1 (en) Laser Radar and Scanning Method Thereof
JP2022165971A (ja) 走査装置及び測距装置
CN114265041A (zh) 扫描装置和扫描方法
CN106645801B (zh) 一种微悬臂梁阵列循环扫描系统
CN209400692U (zh) 一种激光雷达光学系统
CN217360285U (zh) 扫描装置
US7239435B2 (en) High-speed, high resolution, wide-format Cartesian scanning systems
JP3577514B2 (ja) 全反射型蛍光顕微鏡
CN217238376U (zh) 激光雷达
CN105452912A (zh) 树脂固定胶体晶体片、使用其对结构色进行显示的方法、使用其检测被测物的凹凸分布或硬度分布的方法、以及结构色片
CN219758582U (zh) 一种快速光程扫描装置
WO2019151092A1 (ja) 走査装置及び測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841338

Country of ref document: EP

Kind code of ref document: A1