WO2023284444A1 - 用于光纤测量的方法和装置 - Google Patents

用于光纤测量的方法和装置 Download PDF

Info

Publication number
WO2023284444A1
WO2023284444A1 PCT/CN2022/097350 CN2022097350W WO2023284444A1 WO 2023284444 A1 WO2023284444 A1 WO 2023284444A1 CN 2022097350 W CN2022097350 W CN 2022097350W WO 2023284444 A1 WO2023284444 A1 WO 2023284444A1
Authority
WO
WIPO (PCT)
Prior art keywords
otdr
service
service light
light
pulse signal
Prior art date
Application number
PCT/CN2022/097350
Other languages
English (en)
French (fr)
Inventor
李明
艾凡
金丹灵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023284444A1 publication Critical patent/WO2023284444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present application relates to the field of optical communication, and more particularly, to a method and apparatus for optical fiber measurement.
  • optical fiber is widely concerned as an important transmission medium in optical communication systems.
  • the optical fiber itself contains a large number of splicing points, jumpers and single boards, which will affect the quality of signal transmission during use.
  • an optical time domain reflectometer can be used to judge the transmission characteristics of each position of the optical fiber, thereby improving the quality of the optical fiber.
  • the present application provides a method and device for optical fiber measurement, which can enable an OTDR to obtain accurate optical fiber measurement information.
  • a method for optical fiber measurement is provided, which is applied to an optical network system, and the method can be executed by a network manager or by a network element.
  • the method includes: determining the magnitude of the energy transfer of the first stimulated Raman scattering SRS according to the energy transfer relationship between at least two kinds of service light and the corresponding optical time domain reflectometer OTDR pulse signal, the at least two kinds of service lights include the first service light and The second service light, the wavelength or power of the first service light and the second service light are different, the first service light and the first OTDR pulse signal are transmitted at the same time, the second service light and the second OTDR pulse signal are transmitted at the same time, the first SRS energy
  • the transfer size corresponds to the first service light; according to the first OTDR test curve and the first SRS energy transfer size, a target OTDR test curve is generated, and the first OTDR test curve is generated by coupling the first OTDR pulse signal with the first service light, Target OTDR test curves are used for fiber optic measurements.
  • the at least two kinds of service light include at least one of the following optical signals: signal light originating from an optical channel transmission unit OTU, and dummy light used to fill channels.
  • the number of wavelength channels in the optical network system is increased or decreased to obtain the first service light and the second service light, and the distance between the first service light and the second service light The number of wavelength channels or the wavelength range are different between them.
  • the optical power of the service light in the optical network system is adjusted to obtain the first service light and the second service light, and the distance between the first service light and the second service light The optical power is different.
  • the first SRS energy transfer size ⁇ P SRS1 satisfies:
  • the second SRS energy transfer size ⁇ P SRS2 satisfies:
  • the second SRS energy transfer size is determined according to the energy relationship of at least two kinds of service lights, the second SRS energy transfer size corresponds to the second service light, v i is the frequency of the i-th service light, and v j is the j-th service light
  • the frequency of the service light v OTDR1 is the frequency of the first OTDR pulse signal
  • v OTDR2 is the power of the second OTDR pulse signal
  • P si is the power of the i-th service light
  • P sj is the power of the j-th service light
  • P OTDR1 is the power of the first OTDR pulse signal and the second OTDR pulse signal
  • P OTDR2 is the power of the second OTDR pulse signal
  • g R (v i -v OTDR1 ) is the first OTDR pulse signal and the ith service light
  • the Raman gain coefficient between, g R (v j -v OTDR2 ) is the Raman gain coefficient between the second
  • the difference ⁇ trace between the first OTDR test curve trace 1 and the second OTDR test curve trace 2 satisfies:
  • the second OTDR test curve trace 2 is generated by coupling the second OTDR pulse signal with the second service light.
  • the energy transfer amount ⁇ P SRS1 between the OTDR pulse signal and the first service light also satisfies:
  • the target OTDR test curve trace 0 satisfies:
  • trace 0 trace 1 ⁇ PSRS1 .
  • the second SRS energy transfer size ⁇ P SRS2 also satisfies:
  • the target OTDR test curve trace 0 also satisfies:
  • trace 0 trace 2 ⁇ PSRS2 .
  • a device for optical fiber measurement which is applied to an optical network system, and includes: a determining unit, configured to, according to the energy transfer relationship between at least two kinds of service lights and corresponding optical time domain reflectometer OTDR pulse signals, Determine the size of the first stimulated Raman scattering SRS energy transfer, at least two kinds of service light include the first service light and the second service light, the wavelength or power of the first service light and the second service light are different, the first service light and the second service light
  • One OTDR pulse signal is transmitted at the same time, the second service light and the second OTDR pulse signal are transmitted at the same time, the size of the first SRS energy transfer corresponds to the first service light; according to the first OTDR test curve and the size of the first SRS energy transfer, the target OTDR is generated The test curve, the first OTDR test curve is generated by coupling the first OTDR pulse signal with the first service light, and the target OTDR test curve is used for optical fiber measurement.
  • the at least two types of service light include at least one of the following optical signals: signal light originating from the optical channel transmission unit OTU, and dummy light used to fill the channel.
  • the processing unit is configured to increase or decrease the number of wavelength channels in the optical network system to obtain the first service light and the second service light, the first service light The number of wavelength channels or wavelength range is different from that of the second service light.
  • the processing unit is further configured to adjust the optical power of the service light in the optical network system to obtain the first service light and the second service light, the first service light The optical power of the second service light is different from that of the second service light.
  • the first SRS energy transfer size ⁇ P SRS1 satisfies:
  • the second SRS energy transfer size ⁇ P SRS2 satisfies:
  • the second SRS energy transfer size is determined according to the energy relationship of at least two kinds of service lights, the second SRS energy transfer size corresponds to the second service light, v i is the frequency of the i-th service light, and v j is the j-th service light
  • the frequency of each service light v OTDR1 is the frequency of the first OTDR pulse signal
  • v OTDR2 is the power of the second OTDR pulse signal, which is the power of the i-th service light
  • P sj is the power of the j-th service light
  • P OTDR2 is the power of the second OTDR pulse signal
  • g R (v i -v OTDR1 ) is the Raman gain coefficient between the first OTDR pulse signal and the i-th service light
  • g R (v j -v OTDR2 ) is the Raman gain coefficient between the second OTDR pulse signal and the jth service
  • the difference ⁇ trace between the first OTDR test curve trace 1 and the second OTDR test curve trace 2 satisfies:
  • the second OTDR test curve trace 2 is generated by coupling the second OTDR pulse signal with the second service light.
  • the energy transfer amount ⁇ P SRS1 between the OTDR pulse signal and the first service light also satisfies:
  • the target OTDR test curve trace 0 satisfies:
  • trace 0 trace 1 ⁇ PSRS1 .
  • the second SRS energy transfer size ⁇ P SRS2 also satisfies:
  • the target OTDR test curve trace 0 also satisfies:
  • trace 0 trace 2 ⁇ PSRS2 .
  • an optical network system which is characterized in that it includes: an optical time domain reflectometer OTDR, an optical fiber interface unit FIU, and a wavelength selective switch WSS;
  • the wavelength selective switch WSS is used to obtain at least two kinds of service lights, at least two kinds of service lights include the first service light and the second service light, and the wavelength or power of the first service light and the second service light are different;
  • the optical time domain Reflectometer OTDR including a laser, is used to transmit the first OTDR pulse signal and the second OTDR pulse signal to the optical fiber link to be tested, the first OTDR pulse signal is transmitted simultaneously with the first service light, and the second OTDR pulse signal is transmitted with the second Simultaneous transmission of light;
  • optical detector used to receive the first optical signal and the second optical signal reflected from the optical fiber link to be tested, the first optical signal corresponds to the first OTDR pulse signal, and the second optical signal corresponds to the second OTDR pulse Signal correspondence;
  • processor for generating the first OTDR test curve according to the first optical signal received by the optical detector, and generating the second OTDR test curve according to the second optical signal received by the optical detector;
  • the optical fiber interface unit FIU is used for coupling the first OTDR pulse signal with the first service light, and for coupling the second OTDR pulse signal with the second service light.
  • a communication device including: various modules or units configured to implement the method in the first aspect or any possible implementation manner of the first aspect.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on a computer, any one of the first aspect or the first aspect may be implemented. The method in the implementation of is executed.
  • the present application provides a computer program product, the computer program product includes computer program code, when the computer program code is run on a computer, the first aspect or any possible implementation of the first aspect The method in the method is executed.
  • the present application provides a chip, which is characterized in that it includes: a processor, configured to call and run a computer program from a memory, so that the communication device installed with the chip executes any of the first aspect or the first aspect.
  • a processor configured to call and run a computer program from a memory, so that the communication device installed with the chip executes any of the first aspect or the first aspect.
  • a method and device for optical fiber measurement which measure the OTDR test curves of two or more different service lights respectively, and according to the multiple OTDR test curves and the service
  • the energy relationship of light injection is used to calculate the amount of energy transferred by stimulated Raman scattering (SRS) of OTDR signal light, and restore the OTDR signal curve that is not affected by SRS to obtain accurate OTDR measurement results.
  • SRS stimulated Raman scattering
  • the implementation method can enable the OTDR to accurately measure information such as optical fiber attenuation, thereby ensuring the transmission quality of signals.
  • FIG. 1 is a schematic diagram of an example of an online transmission system to which this application is applied.
  • Fig. 2 is a schematic diagram of an example of the structure of an optical time domain reflectometer applicable to the present application.
  • Fig. 3 is a schematic diagram showing an example of power transfer by stimulated Raman scattering to which the present application is applied.
  • Fig. 4 is a schematic diagram of an example of the relationship between the normalized Raman gain coefficient and the frequency difference applicable to the present application.
  • Fig. 5 is a schematic diagram of an example of the test results of the optical time domain reflectometer under different service light injections applicable to the present application.
  • FIG. 6 is a schematic diagram of an example of a method for optical fiber measurement to which the present application is applied.
  • Fig. 7 is a schematic diagram showing an example of the results of optical fiber measurement to which the present application is applied.
  • Fig. 8 is a schematic diagram showing another example of the results of optical fiber measurement to which the present application is applied.
  • Fig. 9 is a schematic diagram of an example of a device for optical fiber measurement to which the present application is applied.
  • Fig. 10 is a schematic diagram of another example of an optical fiber measurement device applicable to the present application.
  • Optical fiber communication is a communication method that uses light waves as the carrier and optical fiber as the transmission medium.
  • the optical fiber can be divided into two parts, namely the near-end fiber and the far-end fiber.
  • the structure between the multiplexing/demultiplexing unit and the optical distribution frame (ODP) is used as the site structure, and the optical fiber used to connect various optical devices in the site is used as the near-end optical fiber.
  • the structure between the ODP and the transmission and receiving end is taken as an off-site structure, and the optical fiber used for signal transmission outside the site is used as the remote optical fiber.
  • the site usually includes optical components such as multiplexing and demultiplexing units, wavelength division multiplexing units, optical fiber connectors, flanges, and optical attenuators connected to the transmission and sending ends.
  • the optical fiber connecting these optical devices is the near-end optical fiber, and the optical fiber pulled out of the site is the far-end optical fiber.
  • Optical fibers contain a large number of splicing points, fiber jumpers, and single boards. During use, these locations are prone to transmission loss and damage. At the same time, most optical fibers are made of glass, which is relatively fragile. Therefore, during use, the connection between the optical device and the near-end optical fiber, the fusion point of the optical fiber itself, the breakage and bending of the optical fiber itself, etc., will affect the quality of signal transmission. These situations can be called events, usually events The types of events can include attenuation, gain, reflection, and tail. Only by accurately identifying these events can the quality of the fiber be repaired and improved. An optical time domain reflectometer (OTDR) was used to determine the location of the event in the fiber.
  • OTDR optical time domain reflectometer
  • the OTDR is connected with the multiplexer and demultiplexer, by sending pulsed laser light to the optical fiber, and receiving the reflected optical signal when the pulsed laser light propagates in the optical fiber. From the changes in the intensity of the received light, the transmission characteristics of each position of the optical fiber can be judged, and then the presence or absence of an event and the location of the event can be judged.
  • FIG. 1 is a schematic diagram of an example of an online transmission system to which this application is applied.
  • the online transmission system includes an optical time domain reflectometer (OTDR) 110, a service light, a wavelength selective switch (wavelength selective switch, WSS), and a fiber interface unit (FIU) 120 , optical fiber 130, etc.
  • ODR optical time domain reflectometer
  • WSS wavelength selective switch
  • FOU fiber interface unit
  • the pulse signal emitted by OTDR and the service light are transmitted at the same time.
  • the wavelength of the OTDR pulse signal is 1490nm to 1510nm
  • the service light includes the signal light from the optical channel transport unit (OTU).
  • spurious light eg, C-band optical signal and/or L-band optical signal
  • service light usually belongs to the capacity range of C band (C band) and L band (L band).
  • the OTDR includes a transmitter Tx, for example, the transmitter may be an optical supervisory channel (OSC) transmitter.
  • the OSC signal modulated by the OTDR is sent from the OTDR and fed to the optical fiber under test.
  • An OTDR utilizes the OSC signal to monitor fiber loss events in the fiber under test, which can include Fresnel reflections and/or Rayleigh backscattering.
  • FIU120 is a coupler for coupling different waveforms.
  • the FIU couples OSC signals and C-band signals.
  • the optical fiber 130 may provide a data link of 155 Mbps for sending OSC signals.
  • An OTDR can be coupled with a computer device (eg, a server) to provide or receive control information and OTDR information.
  • Fig. 2 is a schematic diagram of an example of the structure of an optical time domain reflectometer OTDR applicable to the present application.
  • the OTDR includes: a laser (laser) 201, an optical detector (avalanche photo diode, APD) 202, a processor 203, a laser driver (driver) 204, an optical circulator (circulator) and the like.
  • the processor 203 includes: a transimpedance amplifier (trans-impedance amplifier, TIA), a low noise amplifier (low noise figure, LNA), an analog filter unit, an analog to digital converter (analog to digital converter, ADC), and a logic processing unit , signal processing unit, etc.
  • the OTDR may also include functional devices such as a digital signal processor (DSP), a pulse generator, and an amplifier.
  • DSP digital signal processor
  • the laser is used to transmit test light to the optical fiber link to be tested, and the laser in the traditional OTDR can be used.
  • the DSP triggers the pulse generator of the laser to generate a pulse signal, which is converted into a control signal of the laser through the laser driver, so that the laser emits light, that is, the test light is generated and enters the optical fiber link to be tested.
  • Events such as optical splitters and connection points can be known through the scattered signals and reflected signals generated by the test light in the optical fiber link under test.
  • the optical circulator is used to receive the test optical signal emitted by the laser and output it to the optical fiber link to be tested.
  • the photodetector APD is used to convert the received light signal into a current signal, and the current signal is proportional to the light intensity of the light signal.
  • the digital processor DSP is used to generate instructions for the pulse generator to generate pulse signals, and the instructions may include pulse width, cycle and other information.
  • the DSP generates a periodic trigger pulse, which is adjusted to a signal with a fixed pulse width and duty cycle by a pulse generator.
  • the high-power drive is completed by the laser driver, so that the laser generates pulsed laser light in the monitoring band.
  • the pulse generator is connected with the DSP, and is used to generate corresponding pulse signals when receiving instructions from the DSP.
  • one pulse signal is generated within one test period, or multiple repetitive pulse signals with fixed pulse width and duty ratio are generated within one test period.
  • the laser driver connected with the pulse generator, is used to convert the pulse signal generated by the pulse generator into a control signal.
  • the control signal is used to drive the laser to emit OTDR pulse signals with corresponding pulse width and power intensity.
  • the laser driver 204 is configured to send instructions to the laser 201, and control the laser 201 to emit pulsed laser signals according to the instructions.
  • the laser 201 is used to emit pulsed laser light
  • the optical detector APD 202 is used to receive the optical signal reflected by the optical fiber to be tested
  • the processor 203 is used to process the optical signal received by the APD 202 into test data.
  • the signal processing unit drives the laser 201 to emit OTDR pulse signals corresponding to the pulse width and power intensity through the laser driver 204 according to the parameters configured by the user.
  • the laser 201 emits pulsed laser signals corresponding to the pulse width and power intensity according to the instructions sent by the laser driver.
  • an optical circulator is provided at the port of the optical fiber to be tested to distinguish incident signals from reflected signals.
  • the OTDR pulsed laser signal emitted by the laser 201 is injected into the optical fiber link to be tested through the optical circulator for testing, and the OTDR detection signal reflected back through the optical fiber link is received by the optical detector 202 through the optical circulator.
  • the processor 203 first converts the received optical signal into a current signal, and then converts the current signal into a voltage signal with an appropriate amplitude through the transimpedance amplifier TIA and the low noise amplifier LNA, and reduces the noise in the voltage signal through the analog filter unit, And the noise-reduced voltage signal is converted into a corresponding digital signal through an analog-to-digital converter ADC acquisition unit.
  • the logic processing unit can process the digital signal into displayable OTDR test data according to the logic operation, and transmit it to the signal processing unit.
  • the Rayleigh backscattering and Fresnel reflection optical signals of each branch in the online transmission system will return through the optical fiber backbone, and finally enter the optical detector 202 through the optical circulator.
  • the intensity of the Rayleigh backscattering and Fresnel reflected light signals is related to the pulse width and light intensity of the test light signal sent by the OTDR. Generally, the greater the optical power, the greater the returned optical signal.
  • the optical time domain reflectometer OTDR is an optoelectronic integrated instrument made by using the backscattering produced by the Rayleigh scattering of light in the optical fiber and the Fresnel reflection produced by the discontinuous point in the optical fiber.
  • the basic principle of OTDR work is to analyze the transmission characteristics of optical fiber length, attenuation and fault by detecting the energy distribution curve of backscattered light of pulsed laser on the optical fiber line with time (distance). That is, input an optical pulse to the optical fiber under test. When the optical pulse propagates forward along the optical fiber line, it will scatter and reflect back part of the signal. Continuous high-speed sampling of this signal can obtain a curve reflecting the attenuation and fault characteristics of the optical fiber. .
  • OTDR What OTDR measures is the scattering signal of light.
  • the light scattering signal is related to the peak power and pulse width of the probe pulse light, and decreases with the increase of the transmission distance.
  • OTDR will set the range to be tested during the test process, that is, the test range, which can be equal to the length of the optical fiber to be tested or smaller than the length of the optical fiber to be tested.
  • the test range of OTDR is realized by controlling the test time of each pulse in the pulsed laser.
  • the test time of each pulse is the time required from the pulse OTDR transmitter to the end of the test range, and then from the end of the test range to the OTDR transmitter. time.
  • the emission time interval between two adjacent pulses in the pulsed laser is the test time of each pulse.
  • Fig. 3 is a schematic diagram of an example of the SRS power transfer of the stimulated Raman scattering SRS applicable to the wavelength division multiplexing (wavelength division multiplexing, WDM) signal of the present application.
  • Stimulated Raman scattering is a broadband effect related to the interaction between light and the vibrational modes of silicon atoms. It exists widely in optical fiber transmission systems and mainly leads to energy transfer between optical signals of different frequencies in the optical fiber.
  • wavelength division multiplexing WDM is to combine two or more optical carrier signals of different wavelengths (carrying various information) at the sending end through a multiplexer (also called a multiplexer, multiplexer) and couple them to The technology of transmitting in the same optical fiber of the optical line.
  • a multiplexer also called a multiplexer, multiplexer
  • the left figure is a schematic diagram of the input optical signal. It can be considered that the input power of various input signals with different wavelengths is the same. Schematic diagram of the signal output. It can be seen that the power of the signal with short wavelength is reduced. It can be considered that a short-wavelength signal performs energy transfer to a long-wavelength signal.
  • the OTDR optical signal transfers energy to the service light.
  • the amount of SRS energy transfer between two signals with frequencies v1 and v2 can be calculated by the following formula:
  • P v1 and P v2 are the power of the two signals
  • ⁇ v is the frequency difference between the two signals
  • g R ( ⁇ v) is the Raman gain coefficient between the two signal lights. That is, the graph in the middle of FIG. 3 shows the relationship between the normalized Raman gain coefficient g R ( ⁇ v) (dB) and the signal light wavelength ⁇ . It can be seen that the SRS energy transfer is proportional to the powers P v1 and P v2 of the two signals, and the Raman gain coefficient g R ( ⁇ v).
  • g R ( ⁇ v) is a positive number when the frequency difference ⁇ v of the two signals is positive, and is a negative number when ⁇ v is negative.
  • Fig. 4 is a schematic diagram of an example of the relationship between the normalized Raman gain coefficient and the frequency difference applicable to the present application.
  • the abscissa can represent the frequency difference between the OTDR signal and the service light (in terahertz, THz), and the ordinate is the normalized Raman gain coefficient (in dB).
  • the normalized Raman gain coefficient due to the SRS energy transfer by stimulated Raman scattering, the normalized Raman gain coefficient is the largest near the frequency difference of 13.2THz, and the Raman gain coefficient after the frequency difference exceeds 25THz is very small.
  • the commonly used OTDR wavelengths are around 1625nm, 1510nm, etc., which are all in the low-loss window of optical fiber.
  • the loss of the OTDR with a wavelength of 1310nm in the optical fiber is higher than that of the optical fiber with a wavelength of 1500nm, which limits the detection distance of the OTDR.
  • Fig. 5 is a schematic diagram of an example of an OTDR test result of an optical time domain reflectometer under different service light injections applicable to the online scene of the present application. That is, the OTDR uses the returned optical signal from the optical fiber link to be tested to generate OTDR trace information, and the OTDR trace information includes the power trace of the returned optical signal.
  • OTDR uses the backscattered light generated when light propagates in the fiber to obtain attenuation information, which can be used to measure fiber attenuation, joint loss, locate fiber fault points, and understand the loss distribution along the length of the fiber, etc. Due to the non-uniform density of the fiber material, the non-uniform doping composition and the defects of the fiber itself, when the light is transmitted in the fiber, every point along the length of the fiber will cause scattering. OTDR records the scattered light intensity collected at each time point. Because the speed of light is fixed, the time to collect the signal has a corresponding relationship with the distance the light travels in the fiber, so the time can be converted into the length of the fiber.
  • the OTDR test curve quantifies the degree information of Fresnel reflection and Rayleigh scattering.
  • the abscissa represents the test distance, that is, the length of the optical fiber to be tested (in km)
  • the ordinate represents the relative intensity of the returned optical signal (in dB).
  • the fiber loss coefficient measured when there is no service light is about 0.19dB/km, and after injecting C band service light and C band+L band service light respectively, the measured fiber loss coefficient is about 0.25dB/km and 0.35dB respectively /km. It can be seen from the curve that with the increase of the fiber length, the relative intensity gradually decreases, but the change trend is very gentle.
  • the OTDR trace presents a peak at 80 km, which is a simulated reflection event, attenuation event, etc.
  • OTDR measurement relies on these events to analyze the status of the optical fiber link, and calculates the position of these reflection and attenuation events based on the length of the optical fiber.
  • the OTDR signal will transfer energy to the service light due to the SRS effect. Due to different service lights, the SRS effect is also different. Therefore, OTDR cannot measure the real fiber attenuation and other information, resulting in inaccurate OTDR test results.
  • the technical solution of the present application proposes an optical time domain reflectometer signal detection method, respectively measuring OTDR test curves under two different service light conditions. Through these two curves, and the energy relationship injected by the service light during the two measurements, the magnitude of the SRS transfer energy of the OTDR signal light is calculated, and then the OTDR signal curve that is not affected by the SRS is recovered, and the correct measurement result is obtained.
  • "at least two kinds” means two or more kinds.
  • "And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • a and/or B which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the character "/” indicates that the front and back related objects are in a "division" relationship.
  • "for indicating” may include both for direct indicating and for indirect indicating.
  • indication information for indicating A it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that A must be carried in the indication information.
  • specific indication manners may also be various existing indication manners, such as but not limited to, the above indication manners and various combinations thereof.
  • various indication manners reference may be made to the prior art, which will not be repeated herein. It can be known from the above that, for example, when multiple pieces of information of the same type need to be indicated, there may be a situation where different information is indicated in different ways.
  • the required indication method can be selected according to the specific needs.
  • the embodiment of the present application does not limit the selected indication method. In this way, the indication method involved in the embodiment of the present application should be understood as covering the There are various methods by which a party can obtain the information to be indicated.
  • FIG. 6 is a schematic flowchart of a method for optical fiber measurement provided by an embodiment of the present application, and specific steps 600 include:
  • the at least two kinds of service light include a first service light and a second service light, and the wavelength or power of the first service light is different from that of the second service light.
  • the first SRS energy transfer size is used to indicate the energy transfer amount between the optical time domain reflectometer OTDR pulse signal and the corresponding service light, where the OTDR pulse signal and the corresponding service light signal are transmitted simultaneously.
  • the first SRS energy transfer magnitude corresponds to the first service light, and is used to indicate the amount of energy transfer between the first OTDR pulse and the first service light when they are transmitted simultaneously.
  • the energy transfer relationship between at least two types of service light and the corresponding optical time domain reflectometer OTDR pulse signal includes: the energy transfer relationship ⁇ P SRS1 between the first service light and the corresponding first OTDR pulse signal, and the first The ratio, difference, etc. between the energy transfer relationship ⁇ P SRS2 of the second service light and the corresponding first OTDR pulse signal.
  • the energy value of the first service light and the energy value of the second service light can be determined, and then the OTDR measurement that is not affected by SRS can be recovered curve to obtain accurate fiber loss conditions.
  • each of the at least two service lights includes at least one of the following optical signals: signal light originating from an optical channel transmission unit OTU, and dummy light for filling channels.
  • the second SRS energy transfer size can also be determined according to the energy transfer relationship between at least two kinds of service light and the corresponding OTDR pulse signal, the second SRS energy transfer size corresponds to the second service light, and is used to indicate the second OTDR pulse and the first When the two service lights are transmitted at the same time, the amount of energy transfer between the two.
  • v i is the frequency of the i-th service light
  • v i is the frequency of the j-th service light
  • v OTDR1 is the frequency of the first OTDR pulse signal
  • v OTDR2 is the frequency of the second OTDR pulse signal
  • P si is the i-th
  • the power of the service light P sj is the power of the jth service light
  • P OTDR1 is the power of the first OTDR pulse signal
  • P OTDR2 is the power of the second OTDR pulse signal
  • g R (v i -v OTDR1 ) is the power of the first OTDR pulse signal
  • g R (v j -v OTDR2 ) is the Raman gain coefficient between the second OTDR pulse signal and the j-th service light
  • m and n are respectively It is the number of the first service light and the second service light in the two
  • K and P OTDR may be predicted in advance, or need not be measured. Then when the specific values of K and P OTDR cannot be determined, the energy relationship between ⁇ P SRS1 and ⁇ P SRS2 can be further determined through the quotient of the two. which is:
  • the frequency and power of the first OTDR pulse signal and the second OTDR pulse signal may be the same or different.
  • the present application does not specifically limit this, and here it is only necessary to determine the proportional relationship between the magnitude of the first SRS energy transfer and the magnitude of the second SRS energy transfer in the two measurements.
  • the determination of the first service light and the second service light may be implemented in the following ways. which is:
  • a possible implementation method can increase or decrease the number of wavelength channels in the optical network system, that is, different service light conditions can close or open the channels of service light through devices such as WSS, and then obtain the first service light and the second service light. .
  • the number of wavelength channels or wavelength ranges between the first service light and the second service light are different.
  • both the signal light in the service light and the false light channel used for channel filling are turned on.
  • half of the signal light in the service light and the false light channel used for channel filling are equally spaced off.
  • the number of service light channels is set to X.
  • the channel number of the service light is set to Y. Therefore, the number of wavelength channels of service light in the two measurements is different, and the corresponding wavelength ranges are also different.
  • the service light of the C extended channel as an example, assuming that there are 120 optical signal transmission channels, the number of signal channels occupied by OTDR signal light transmission is 10. Then, in the first measurement, the signal light and false light in the service light occupy all the remaining 110 channels during transmission. In the second measurement, the signal light and false light in the service light only occupy half of the remaining 110 channels during transmission.
  • the channel occupied by the signal light usually does not change, so for the second measurement, half of the signal channels at equal intervals can be considered as false optical channels with half of them being equally spaced off. .
  • the first service light and the second service light may be obtained by adjusting the optical power of the service light in the optical network system, that is, the optical power between the first service light and the second service light is different.
  • the power of the first service light is set to X dB.
  • the power of the second service light is set to Y dB. Therefore, the power of the service light measured twice is different, and the selection of the corresponding service light is also different.
  • the first OTDR test curve corresponding to the first service light and the second OTDR test curve corresponding to the second service light need to be measured respectively.
  • both the signal light in the service light and the dummy light channel used for channel filling are turned on, that is, the first service light.
  • the first OTDR pulse signal and the first service light are transmitted at the same time, the optical signal is generated through FIU coupling, and then transmitted to the optical fiber link to be tested, and the first OTDR test curve is generated according to the reflected optical signal, which is recorded as trace 1 .
  • half of the signal light in the service light and the false light channel used for channel filling are equally spaced off, that is, the second service light.
  • the second OTDR pulse signal and the second service light are transmitted at the same time, the optical signal is generated through FIU coupling, and then transmitted to the optical fiber link to be tested, and the second OTDR test curve is generated according to the reflected optical signal, which is recorded as trace 2 .
  • the service optical power input to the optical fiber 130 is reduced by 3 dB.
  • first OTDR pulse signal and the second OTDR pulse signal may be the same or different.
  • the first OTDR pulse signal when the first OTDR pulse signal is different from the second OTDR pulse signal, that is, the wavelength or power of the first OTDR pulse signal is different from that of the second OTDR pulse signal, it is not only necessary to determine the first service light and the second OTDR pulse signal. For the energy relationship between the second service lights, it is also necessary to determine the energy relationship between the first OTDR pulse signal and the second OTDR pulse signal, and then calculate the energy transfer size of the first SRS.
  • closing service optical channels at equal intervals is only an exemplary description, and is for more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation to the technical solutions provided in the present application.
  • half of the signal channels of the service light are turned off at unequal intervals during measurement, or one-third of the signal channels of the service light are turned off at equal intervals, etc., which is not specifically limited in the present application.
  • the collection of different service lights is only to calculate the size of the SRS power transfer through multiple measurements, and then obtain the OTDR measurement results that are not affected by the SRS.
  • the energy transfer size between the above two OTDR measurement results is also equivalent to the energy transfer size between the two service lights, that is, the formula (4) can also satisfy:
  • the energy transferred by the second SRS satisfies:
  • the energy transferred by the second SRS satisfies:
  • the target OTDR test curve is used for optical fiber measurement.
  • the specific implementation process of the first OTDR test curve has been described in detail in step S610, and will not be repeated here for the sake of brevity.
  • the OTDR signal curve trace 0 not affected by SRS can be recovered as:
  • trace 0 trace 1 - ⁇ P SRS1 (11)
  • the target OTDR test curve trace 0 can also be generated. which is:
  • trace 0 trace 2 - ⁇ P SRS2 (12)
  • this application may also use three different service light situations as an example to perform OTDR measurement, and this application does not specifically limit the number of service lights and the number of measurements.
  • Fig. 7 is a schematic diagram showing an example of the results of optical fiber measurement to which the present application is applied. As shown in FIG. 7 , the abscissa represents the length of the optical fiber (in km), and the ordinate represents the relative intensity of the return optical signal (in dB).
  • the OTDR trace presents a peak at 95 km, which is a simulated reflection event, attenuation event, etc. OTDR measurement relies on these events to analyze the status of the optical fiber link, and calculates the position of these reflection and attenuation events based on the length of the optical fiber.
  • the frequency of the service light is 196.65-190.7 THz.
  • the solid line represents the OTDR test curve measured after all the service lights (that is, including 120 service lights according to the interval of 50 GHz), that is, trace1, and the included SRS transfer energy is ⁇ P SRS1 .
  • the fiber input power of each service light can be measured by a spectrometer and other devices.
  • the power of the i-th service light is recorded as P si .
  • the power of the jth service light is recorded as P sj .
  • the dotted line represents the OTDR test curve measured after closing half of the service optical channels at equal intervals (correspondingly, the service optical power is reduced by 3dB), which is trace2, and the SRS transfer energy contained is ⁇ P SRS2 , and the remaining channels can be obtained through instruments such as spectrometers wavelength and optical power.
  • ⁇ P SRS1 and ⁇ P SRS2 can be calculated according to formulas (3) and (5), and finally the restored OTDR curve can be obtained according to formulas (11) and (12).
  • half of the service channels are closed at equal intervals, which is equivalent to simplifying formulas (6) and (7) to formulas (9) and (10).
  • Fig. 8 is a schematic diagram showing another example of the results of optical fiber measurement to which the present application is applied. As shown in FIG. 8 , the abscissa represents the length of the optical fiber (in km), and the ordinate represents the relative intensity of the return optical signal (in dB).
  • the OTDR trace presents a peak at 95 km, which is a simulated reflection event, attenuation event, etc. OTDR measurement relies on these events to analyze the status of the optical fiber link, and calculates the position of these reflection and attenuation events based on the length of the optical fiber.
  • the dotted line represents the OTDR test curve without the SRS effect of Stimulated Raman Scattering obtained by recovering the online transmission system according to the technical solution provided by the present application.
  • the solid line represents the OTDR curve without SRS effect measured after turning off all service lights in the offline scenario, that is, the OTDR curve without SRS effect.
  • the graphs shown in FIG. 7 and FIG. 8 are only exemplary illustrations for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the OTDR measurement can be performed by taking the L-band of service light as an example, or the OTDR measurement can be performed by taking the C-band+L-band of service light as an example.
  • this application provides an online scene OTDR measurement SRS compensation scheme, which measures the OTDR test curves under two or more different service light conditions respectively, through the above-mentioned multiple measurement curves and the energy injected by the service light in multiple measurements relationship, calculate the size of the OTDR signal light SRS transfer energy, restore the OTDR signal curve not affected by SRS, and obtain the OTDR measurement results not affected by SRS.
  • This implementation method does not require hardware changes, and can be used in both online and offline scenarios. It supports setting the OTDR wavelength in the 1500-1650nm band, which is located in the low-loss window of the optical fiber, making the OTDR distance measurement capability stronger.
  • Fig. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a processing unit 1100 , a determining unit 1200 and a generating unit 1300 .
  • the communication device 1000 may include a unit for performing the method in the method 600 in FIG. 6 . Moreover, each unit in the communication device 1000 and the above-mentioned other operations and/or functions are respectively intended to implement a corresponding flow of the method 600 in FIG. 6 .
  • the determining unit 1200 is configured to determine the magnitude of the energy transfer of the first stimulated Raman scattering SRS according to the energy transfer relationship between the at least two service lights and the corresponding optical time domain reflectometer OTDR pulse signal, the at least two service The light includes the first service light and the second service light, the wavelength or power of the first service light and the second service light are different, the first service light and the first OTDR pulse signal are transmitted at the same time, the second service light and the second OTDR pulse signal Simultaneous transmission, the size of the first SRS energy transfer corresponds to the first service light.
  • the generating unit 1300 is configured to generate a target OTDR test curve according to the first OTDR test curve and the first SRS energy transfer size, the first OTDR test curve is generated by coupling the first OTDR pulse signal with the first service light, and the target OTDR test
  • the curves are for fiber optic measurements.
  • the processing unit 1100 is configured to increase or decrease the number of wavelength channels in the optical network system, so as to obtain the first service light and the second service light, the number of wavelength channels or the wavelength between the first service light and the second service light The range is different.
  • the processing unit 1100 is also used to adjust the optical power of the service light in the optical network system to obtain the first service light and the second service light, and the optical powers of the first service light and the second service light are different.
  • processing unit 1100 in the communication device 1000 may be implemented by at least one processor.
  • processing unit 1100 in the communication device 1000 may be implemented by a processor, a microprocessor, or an integrated circuit integrated on the chip or system-on-a-chip.
  • FIG. 10 is another schematic block diagram of a communication device 2000 provided by an embodiment of the present application.
  • the communication device 2000 includes a processor 2010 , a transceiver 2020 and a memory 2030 .
  • the processor 2010, the transceiver 2020 and the memory 2030 communicate with each other through an internal connection path
  • the memory 2030 is used to store instructions
  • the processor 2010 is used to execute the instructions stored in the memory 2030 to control the transceiver 2020 to send signals and /or to receive a signal.
  • the processor 2010 is configured to determine the magnitude of the first stimulated Raman scattering SRS energy transfer according to the energy transfer relationship between the at least two types of service light and the corresponding optical time domain reflectometer OTDR pulse signal, at least two kinds of service lights Including the first service light and the second service light, the wavelength or power of the first service light and the second service light are different, the first service light and the first OTDR pulse signal are transmitted at the same time, and the second service light and the second OTDR pulse signal are transmitted simultaneously For transmission, the size of the first SRS energy transfer corresponds to the first service light.
  • the processor 2010 is also used to generate a target OTDR test curve according to the first OTDR test curve and the first SRS energy transfer size.
  • the first OTDR test curve is generated by coupling the first OTDR pulse signal with the first service light.
  • the target OTDR test curves are used for optical fiber measurement.
  • the processor 2010 is also used to increase or decrease the number of wavelength channels in the optical network system, so as to obtain the first service light and the second service light, and the wavelength channel between the first service light and the second service light The number or wavelength range is different.
  • the processor 2010 is further configured to adjust the optical power of the service light in the optical network system to obtain the first service light and the second service light, and the optical powers of the first service light and the second service light are different.
  • the communication device 2000 may be used to execute various steps and/or processes in the foregoing method embodiments.
  • the memory 2030 may include read-only memory and random-access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be an independent device, or may be integrated in the processor 2010 .
  • the processor 2010 may be used to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is used to execute the steps and/or process.
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include antennas, and the number of antennas may be one or more.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application is not limited to this.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2020 may be integrated into the same chip, such as a baseband chip.
  • the actions or methods executed by the controller may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the actions or methods performed by the controller may be fully or partially implemented in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium, and the semiconductor medium may be a solid-state hard disk.
  • the memory and the processor in the foregoing apparatus embodiments may be physically independent units, or the memory and the processor may also be integrated together, which is not limited in the present application.
  • the processor in this embodiment of the present application may be an integrated circuit chip capable of processing signals.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the methods disclosed in the embodiments of the present application can be directly implemented by a hardware coding processor, or executed by a combination of hardware and software modules in the coding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and other media capable of storing program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种用于光纤测量的方法和装置,包括:根据至少两种业务光与对应的OTDR脉冲信号的能量转移关系确定第一SRS能量转移大小,至少两种业务光包括第一业务光和第二业务光,第一业务光与第二业务光的波长或功率不同,第一业务光与第一OTDR脉冲信号同时传输,第二业务光与第二OTDR脉冲信号同时传输;根据第一OTDR测试曲线与第一SRS能量转移大小生成目标OTDR测试曲线,用于光纤测量。通过测量不同业务光下的OTDR测试曲线,以及不同业务光的能量关系,计算SRS转移能量的大小,进而恢复不受SRS影响的OTDR测试曲线,用于确定光纤损耗情况。

Description

用于光纤测量的方法和装置
本申请要求于2021年7月12日提交中国国家知识产权局、申请号202110785733.0、申请名称为“用于光纤测量的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,并且更具体地,涉及一种用于光纤测量的方法和装置。
背景技术
目前,光纤作为光通信系统中的重要传输媒介而广受关注。光纤本身包含大量熔接点、跳纤和单板,这些位置在使用过程中会影响信号传输质量。通常,可以采用光时域反射仪(optical time domain reflectometer,OTDR)判断光纤各个位置的传输特性,进而改善光纤的质量。
然而,由于受激拉曼散射效应广泛存在于光纤传输系统中,导致光纤中不同频率的光信号之间容易发生能量转移,使得OTDR测量的光纤损耗结果并不准确。
因此,如何使得OTDR获取准确的光纤测量信息是亟待解决的问题。
发明内容
本申请提供一种用于光纤测量的方法和装置,能够使得OTDR获取准确的光纤测量信息。
第一方面,提供了一种用于光纤测量的方法,应用于光网络系统,该方法可以由网管执行,也可以由网元执行。
该方法包括:根据至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系,确定第一受激拉曼散射SRS能量转移大小,至少两种业务光包括第一业务光和第二业务光,第一业务光与第二业务光的波长或功率不同,第一业务光与第一OTDR脉冲信号同时传输,第二业务光与第二OTDR脉冲信号同时传输,第一SRS能量转移大小与第一业务光对应;根据第一OTDR测试曲线与第一SRS能量转移大小,生成目标OTDR测试曲线,第一OTDR测试曲线是由第一OTDR脉冲信号与第一业务光耦合生成的,目标OTDR测试曲线用于光纤测量。
根据本申请提供的方案,通过多次测量不同业务光情况下的OTDR测试曲线,以及多次测量时每种业务光注入的能量关系,计算SRS转移能量的大小,恢复不受SRS影响的OTDR信号曲线,进而使得OTDR准确测量光纤损耗。
结合第一方面,在第一方面的某些实现方式中,至少两种业务光包括以下光信号中的至少一种:来源于光信道传送单元OTU的信号光、用于填充通道的假光。
结合第一方面,在第一方面的某些实现方式中,增加或减少光网络系统中的波长通道数量,以获取第一业务光和第二业务光,第一业务光和第二业务光之间的波长通道数量或 者波长范围不同。
结合第一方面,在第一方面的某些实现方式中,调整光网络系统中业务光的光功率,以获取第一业务光和第二业务光,第一业务光和第二业务光之间的光功率不同。
结合第一方面,在第一方面的某些实现方式中,第一SRS能量转移大小ΔP SRS1满足:
Figure PCTCN2022097350-appb-000001
第二SRS能量转移大小ΔP SRS2满足:
Figure PCTCN2022097350-appb-000002
其中,第二SRS能量转移大小是根据至少两种业务光的能量关系确定的,第二SRS能量转移大小与第二业务光对应,v i为第i个业务光的频率,v j为第j个业务光的频率,v OTDR1为第一OTDR脉冲信号的频率,v OTDR2为第二OTDR脉冲信号的功率,P si为第i个业务光的功率,P sj为第j个业务光的功率,P OTDR1为第一OTDR脉冲信号和第二OTDR脉冲信号的功率,P OTDR2为第二OTDR脉冲信号的功率,g R(v i-v OTDR1)为第一OTDR脉冲信号与第i个业务光与之间的拉曼增益系数,g R(v j-v OTDR2)为第二OTDR脉冲信号与第j个业务光与之间的拉曼增益系数,m和n分别为第一业务光和第二业务光的个数,m、n、i和j均为大于零的整数,且i小于或等于m,j小于或等于n,K为比例系数,K为实数。
结合第一方面,在第一方面的某些实现方式中,第一OTDR测试曲线trace 1与第二OTDR测试曲线trace 2之间的差异Δtrace满足:
Δtrace=trace 1-trace 2=ΔP SRS1-ΔP SRS2
其中,第二OTDR测试曲线trace 2是由第二OTDR脉冲信号与第二业务光耦合生成的。
结合第一方面,在第一方面的某些实现方式中,OTDR脉冲信号与第一业务光之间的能量转移量ΔP SRS1还满足:
Figure PCTCN2022097350-appb-000003
结合第一方面,在第一方面的某些实现方式中,目标OTDR测试曲线trace 0满足:
trace 0=trace 1-ΔP SRS1
类似地,第二SRS能量转移大小ΔP SRS2还满足:
Figure PCTCN2022097350-appb-000004
对应地,目标OTDR测试曲线trace 0还满足:
trace 0=trace 2-ΔP SRS2
第二方面,提供了一种用于光纤测量的装置,应用于光网络系统,包括:确定单元,用于根据至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系,确定第一受激拉曼散射SRS能量转移大小,至少两种业务光包括第一业务光和第二业务光,第一业务光与第二业务光的波长或功率不同,第一业务光与第一OTDR脉冲信号同时传输,第二业务光与第二OTDR脉冲信号同时传输,第一SRS能量转移大小与第一业务光对应;根据第一OTDR测试曲线与第一SRS能量转移大小,生成目标OTDR测试曲线,第一OTDR测试曲线是由第一OTDR脉冲信号与第一业务光耦合生成的,目标OTDR测试曲线用于光纤测量。
结合第二方面,在第二方面的某些实现方式中,至少两种业务光包括以下光信号中的 至少一种:来源于光信道传送单元OTU的信号光、用于填充通道的假光。
结合第二方面,在第二方面的某些实现方式中,处理单元,用于增加或减少光网络系统中的波长通道数量,以获取第一业务光和第二业务光,该第一业务光和第二业务光之间的波长通道数量或者波长范围不同。
结合第二方面,在第二方面的某些实现方式中,处理单元,还用于调整光网络系统中业务光的光功率,以获取第一业务光和第二业务光,该第一业务光和第二业务光之间的光功率不同。
结合第二方面,在第二方面的某些实现方式中,第一SRS能量转移大小ΔP SRS1满足:
Figure PCTCN2022097350-appb-000005
第二SRS能量转移大小ΔP SRS2满足:
Figure PCTCN2022097350-appb-000006
其中,第二SRS能量转移大小是根据至少两种业务光的能量关系确定的,第二SRS能量转移大小与第二业务光对应,v i为第i个业务光的频率,v j为第j个业务光的频率,v OTDR1为第一OTDR脉冲信号的频率,v OTDR2为第二OTDR脉冲信号的功率,为第i个业务光的功率,P sj为第j个业务光的功率,P OTDR1为第一OTDR脉冲信号的功率,P OTDR2为第二OTDR脉冲信号的功率,g R(v i-v OTDR1)为第一OTDR脉冲信号与第i个业务光与之间的拉曼增益系数,g R(v j-v OTDR2)为第二OTDR脉冲信号与第j个业务光与之间的拉曼增益系数,m和n分别为第一业务光和第二业务光的个数,m、n、i和j均为大于零的整数,且i小于或等于m,j小于或等于n,K为比例系数,K为实数。
结合第二方面,在第二方面的某些实现方式中,第一OTDR测试曲线trace 1与第二OTDR测试曲线trace 2之间的差异Δtrace满足:
Δtrace=trace 1-trace 2=ΔP SRS1-ΔP SRS2
其中,第二OTDR测试曲线trace 2是由第二OTDR脉冲信号与第二业务光耦合生成的。
结合第二方面,在第二方面的某些实现方式中,OTDR脉冲信号与第一业务光之间的能量转移量ΔP SRS1还满足:
Figure PCTCN2022097350-appb-000007
结合第二方面,在第二方面的某些实现方式中,目标OTDR测试曲线trace 0满足:
trace 0=trace 1-ΔP SRS1
类似地,第二SRS能量转移大小ΔP SRS2还满足:
Figure PCTCN2022097350-appb-000008
对应地,目标OTDR测试曲线trace 0还满足:
trace 0=trace 2-ΔP SRS2
第三方面,提供了一种光网络系统,其特征在于,包括:光时域反射仪OTDR、光纤接口单元FIU和波长选择开关WSS;
其中,波长选择开关WSS,用于获取至少两种业务光,至少两种业务光包括第一业务光和第二业务光,第一业务光与第二业务光的波长或功率不同;光时域反射仪OTDR,包括激光器,用于向待测光纤链路发射第一OTDR脉冲信号和第二OTDR脉冲信号,第 一OTDR脉冲信号与第一业务光同时传输,第二OTDR脉冲信号与第二业务光同时传输;光探测器,用于接收来自待测光纤链路反射的第一光信号和第二光信号,第一光信号与第一OTDR脉冲信号对应,第二光信号与第二OTDR脉冲信号对应;处理器,用于根据光探测器接收的第一光信号生成第一OTDR测试曲线,以及根据光探测器接收的第二光信号生成第二OTDR测试曲线;
光纤接口单元FIU,用于将第一OTDR脉冲信号与第一业务光耦合,以及用于将第二OTDR脉冲信号与第二业务光耦合。
第四方面,提供了一种通信装置,包括:用于实现第一方面或第一方面任一种可能实现方式中的方法的各个模块或单元。
第五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面或第一方面任一种可能的实现方式中的方法被执行。
第六方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面或第一方面任一种可能的实现方式中的方法被执行。
第七方面,本申请提供一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信装置执行如第一方面或第一方面任一种可能的实现方式中的方法。
根据本申请实施例的方案,提供了一种用于光纤测量的方法和装置,分别测量两种及以上不同业务光情况下的OTDR测试曲线,根据该多条OTDR测试曲线和多次测量中业务光注入的能量关系,计算OTDR信号光受激拉曼散射(stimulated raman scattering,SRS)转移能量的大小,并恢复不受SRS影响的OTDR信号曲线,获得准确的OTDR测量结果。该实现方法能够使得OTDR准确测量出光纤衰减等信息,保证信号的传输质量。
附图说明
图1是适用本申请的在线传输系统的一例示意图。
图2是适用本申请的光时域反射仪结构的一例示意图。
图3是适用本申请的受激拉曼散射功率转移的一例示意图。
图4是适用本申请的归一化拉曼增益系数与频率差之间关系的一例示意图。
图5是适用本申请的不同业务光注入下的光时域反射仪测试结果的一例示意图.
图6是适用本申请的用于光纤测量的方法的一例示意图。
图7是适用本申请的用于光纤测量的结果的一例示意图。
图8是适用本申请的用于光纤测量的结果的另一例示意图。
图9是适用本申请的用于光纤测量的装置的一例示意图。
图10是适用本申请的用于光纤测量的装置的另一例示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
光纤通信是以光波为载体,以光纤为传输媒介的通信方式。
从物理结构上看,光纤可以分为两部分,即近端光纤和远端光纤。其中,将合分波单 元与光纤配线架(optical distribution frame,ODP)之间作为站点内结构,将站点内用于连接各个光学器件的光纤作为近端光纤。将ODP与传输接收端之间作为站点外结构,将站点外用于传输信号的光纤作为远端光纤。具体地,站点内通常包含连接传输发送端的合分波单元、波分复用单元、光纤连接器、法兰盘和光衰减器等光学元件。连接这些光学器件之间的光纤即为近端光纤,牵引出站点之外的光纤即为远端光纤。
光纤包含大量熔接点、跳纤和单板,在使用过程中,这些位置比较容易出现传输损耗和损坏的情况,同时,光纤的制作材料大多数为玻璃,比较脆弱。因此在使用过程中,光学器件与近端光纤之间的连接、光纤本身的熔接点、光纤本身出现的断裂、弯折等情况,都会影响信号传输的质量,这些情况可以称为事件,通常事件的类型可以包括衰减、增益、反射和尾端四类,只有准确识别这些事件,才能修复和改善光纤的质量。采用光时域反射仪(optical time domain reflectometer,OTDR)确定光纤中事件的位置。一般地,OTDR与合分波器连接,通过向光纤发射脉冲激光,并接收该脉冲激光在光纤内传播时所反射的光信号。从所接收的光的强弱变化,可以判断光纤各个位置的传输特性,进而判断事件的有无以及事件的位置。
图1是适用本申请的在线传输系统的一例示意图。如图1所示,在线传输系统包括光时域反射仪(optical time domain reflectometer,OTDR)110、业务光、波长选择开关(wavelength selective switch,WSS)、光纤接口单元(fiber interface unit,FIU)120、光纤130等。
在在线传输过程中,OTDR发射的脉冲信号与业务光同时传输,通常OTDR脉冲信号的波长为1490nm至1510nm,业务光包括来源于光信道传送单元(optical channel transport unit,OTU)的信号光和用于填充通道的假光(例如,C波段光信号和/或L波段光信号)。其中,业务光通常属于C波段(C band)和L波段(L band)的容量范围。OTDR包括发送器Tx,例如,该发送器可以是光监控信道(optical supervisory channel,OSC)发送器。示例性的,使用OTDR调制的OSC信号从该OTDR发送,并被馈送给被测光纤。OTDR利用OSC信号来监测被测光纤中的光纤损耗事件,该事件可以包括菲涅尔反射和/或瑞利后向散射。其中,FIU120是用于耦合不同波形的耦合器。例如,该FIU耦合OSC信号和C波段信号。示例性的,光纤130可以提供155Mbps的数据链路,用于发送OSC信号。OTDR可以与计算机设备(例如,服务器)耦合,以提供或接收控制信息和OTDR信息。
图2是适用本申请的光时域反射仪OTDR结构的一例示意图。如图2所示,OTDR包括:激光器(laser)201、光探测器(avalanche photo diode,APD)202、处理器203、激光驱动器(driver)204、光环形器(circulator)等。其中,处理器203包括:跨阻放大器(trans-impedance amplifier,TIA)、低噪声放大器(low noise figure,LNA)、模拟滤波单元、模数转换器(analog to digital converter,ADC)、逻辑处理单元、信号处理单元等。应理解,OTDR还可以包括数字处理器(digital signal processor,DSP)、脉冲发生器、放大器(amplifier)等功能器件。
其中,激光器用于向待测光纤链路发射测试光,可采用传统OTDR中的激光器。由DSP触发激光器的脉冲发生器生成脉冲信号,并通过激光驱动器转换为激光器的控制信号,使激光器发光,即生成测试光进入待测光纤链路。通过测试光在待测光纤链路中产生的散射信号和反射信号来获知分光器、连接点等事件。
光环行器用于接收来自激光器发射的测试光信号,并输出到待测光纤链路中。
光探测器APD用于将接收到的光信号转变为电流信号,该电流信号与该光信号的光强成比例。
数字处理器DSP用于产生使脉冲发生器生成脉冲信号的指令,该指令可包含脉宽、周期等信息。示例性的,DSP产生周期触发脉冲,通过脉冲发生器调整为固定脉宽和占空比的信号。之后,由激光驱动器完成大功率驱动,使得激光器产生监控波段的脉冲激光。
脉冲发生器与DSP相连,用于在接收到DSP的指令时,生成相应的脉冲信号。示例性的,在一个测试周期内生成一个脉冲信号,或者在一个测试周期内生成固定脉宽和占空比的多个重复脉冲信号。
激光驱动器,与脉冲发生器相连,用于将脉冲发生器生成的脉冲信号转换为控制信号。该控制信号用来驱动激光器发射相应脉宽宽度和功率强度的OTDR脉冲信号。
示例性的,该激光驱动器204用于向激光器201发送指令,控制激光器201按照所述指令发射脉冲激光信号。该激光器201用于发射脉冲激光,光探测器APD 202用于接收待测光纤反射的光信号,该处理器203用于将APD 202接收的光信号处理为测试数据。
具体地,信号处理单元依据用户配置的参数,通过激光驱动器204,驱动激光器201发射相应脉宽宽度和功率强度的OTDR脉冲信号。激光器201根据激光驱动器发送的指令,发射相应脉宽宽度和功率强度的脉冲激光信号。可选地,在待测光纤的端口处设置光环形器,以区分入射信号和反射信号。激光器201发射的OTDR脉冲激光信号经过光环形器注入到待测的光纤链路中进行测试,经过光纤链路反射回来的OTDR检测信号再经过光环形器被光探测器202接收。处理器203首先将接收到的光信号转化为电流信号,再经过跨阻放大器TIA和低噪声放大器LNA将该电流信号转换为幅度合适的电压信号,经过模拟滤波单元降低该电压信号中的噪声,并通过模数转换器ADC采集单元将降噪后的电压信号转换为对应的数字信号。此时,逻辑处理单元可以根据逻辑运算将数字信号处理为可显示的OTDR测试数据,并传送到信号处理单元。
应理解,在线传输系统中的每个支路的瑞利后向散射和菲涅尔反射光信号都会通过光纤主干返回,最后通过光环行器进入光探测器202。瑞利后向散射和菲涅尔反射光信号的强度与OTDR发出的测试光信号的脉冲宽度和光强相关。一般光功率越大,返回的光信号也越大。
需要说明的是,光时域反射仪OTDR是利用光在光纤中的瑞利散射所产生的背向散射,以及光在光纤中不连续点产生的菲涅尔反射,制成的光电一体化仪表。OTDR工作的基本原理是通过检测脉冲激光在光纤线路上的背向散射光随时间(距离)的能量分布曲线来分析得到光纤的长度、衰减、故障等传输特性。即向被测光纤输入一个光脉冲,当光脉冲沿着光纤线路向前传播的同时,会散射和反射回部分信号,连续高速采样出此信号可得出反映光纤的衰减、故障等特性的曲线。
OTDR测量的是光的散射信号。光的散射信号与探测脉冲光的峰值功率、脉冲宽度有关系,且随着传输距离增大而减小。通常OTDR在测试的过程中会设定需要测试的范围,即测试量程,该测试量程可以等于待测光纤的长度,也可以小于待测光纤的长度。OTDR的测试量程通过控制脉冲激光中每一个脉冲的测试时间来实现,每一个脉冲的测试时间即为该脉冲OTDR发射端到测试量程的终点,再从测试量程的终点到OTDR发射端所需的时间。脉冲激光中相邻两个脉冲之间的发射时间间隔即为每一个脉冲的测试时间。
图3是适用本申请的波分复用(wavelength division multiplexing,WDM)信号的受激 拉曼散射SRS功率转移的一例示意图。受激拉曼散射SRS是光与硅原子振动模式间相互作用有关的宽带效应,在光纤传输系统中广泛存在,主要导致光纤中不同频率的光信号之间出现能量转移。
应理解,波分复用WDM是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(也称合波器,multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术。
如图3所示,左图为输入光信号的示意图,可以认为不同波长的多种输入信号在输入时的功率大小是一样的,经过光纤链路传输后,右图为该多种不同波长光信号的输出示意图。由此可见,波长短的信号功率有所减小。可以认为短波长的信号,向长波长的信号进行能量转移。示例性的,针对在线传输系统,OTDR光信号与业务光同时传输时,通常是OTDR光信号向业务光转移能量。
两个频率为v1和v2的信号之间的SRS能量转移量,可以由以下公式计算:
ΔP SRS∝g R(Δv)*P v1*P v2
其中,P v1和P v2分别为两个信号的功率大小,Δv为两个信号的频率差,g R(Δv)为两个信号光之间的拉曼增益系数。即图3中间的图表示归一化拉曼增益系数g R(Δv)(dB)与信号光波长λ之间的关系。由此可见,SRS能量转移与两个信号的功率P v1和P v2、以及拉曼增益系数g R(Δv)成正比。并且,g R(Δv)在两个信号的频率差Δv取正时即为正数,Δv取负时即为负数。
图4是适用本申请的归一化拉曼增益系数与频率差之间关系的一例示意图。如图4所示,横坐标可以表示OTDR信号与业务光之间的频率差(单位是太赫兹,THz),纵坐标是归一化拉曼增益系数(单位为dB)。其中,由于受激拉曼散射SRS能量转移,归一化拉曼增益系数在频率差为13.2THz附近最大,频率差超过25THz后的拉曼增益系数非常小。
其中,常用的OTDR波长在1625nm、1510nm等附近,均处于光纤低损耗窗口内。实验表明,针对1520nm~1625nm的业务光,使用波长为1310nm的OTDR可以有效规避SRS效应的影响。然而,波长为1310nm的OTDR在光纤中的损耗比波长为1500nm在光纤中的损耗高,这使得OTDR探测距离受限。
图5是适用本申请的在线场景不同业务光注入下的光时域反射仪OTDR测试结果的一例示意图。即OTDR利用来自待测光纤链路中返回的光信号产生OTDR迹线信息,该OTDR迹线信息包括返回光信号的功率迹线。
OTDR利用光在光纤中传播时产生的背向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位、以及了解光纤沿长度的损耗分布情况等。由于光纤材料密度不均匀、掺杂成分不均匀以及光纤本身的缺陷,当光在光纤中传输时,沿光纤长度上的每一点均会引起散射。OTDR记录下每个时间点采集到的散射光强度。因为光速是固定的,采集信号的时间与光在光纤中传输距离具有对应关系,因此可以将时间转换为光纤的长度。
如图5所示,该OTDR测试曲线量化了菲涅尔反射和瑞利散射的程度信息。其中,横坐标表示测试距离,即待测光纤长度(单位为km),纵坐标为返回光信号的相对强度(单位为dB)。其中,无业务光时测量的光纤损耗系数约为0.19dB/km,在分别注入C band业务光和C band+L band业务光后,测量的光纤损耗系数分别约为0.25dB/km和 0.35dB/km。从该曲线可以看出,随着光纤长度的增加,相对强度在逐渐降低,但其变化趋势是很平缓的。由于光纤中存在熔接、断裂现象,进而产生了额外的损耗和反射,例如OTDR迹线在80km处呈现峰值,其为模拟的反射事件、衰减事件等。OTDR测量就是依靠这些事件来分析光纤链路状态的,并根据光纤长度推算出这些反射、衰减事件的位置。
这也就说明,在线传输过程中,OTDR信号会由于SRS效应,与业务光之间发生能量转移。由于业务光不同,则SRS效应也不同。因此OTDR无法测量出真实的光纤衰减等信息,导致OTDR测试结果不准确。
综上所述,针对在线传输场景,OTDR信号与业务光之间由于SRS效应会发生能量转移,导致OTDR无法准确测量光纤损耗等信息。
有鉴于此,本申请的技术方案提出一种光时域反射仪信号检测方法,分别测量两种不同业务光情况下的OTDR测试曲线。通过这两种曲线,以及两次测量时业务光注入的能量关系,计算出OTDR信号光SRS转移能量的大小,进而恢复出不受SRS影响的OTDR信号曲线,获得正确的测量结果。
为了便于理解本申请实施例,作出以下几点说明:
本申请中,“至少两种”是指两种或两种以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中“第一”、“第二”以及各种数字编号指示为了描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。
在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
下面将结合附图详细说明本申请实施例提供的方法。
图6是本申请实施例提供的一种用于光纤测量的方法的示意性流程图,具体步骤600包括:
S610,根据至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系,确定第一受激拉曼散射SRS能量转移大小。
为便于理解本申请的技术方案,下面以两次测量为例,对本申请的技术方案进行示例 性说明。
即,该至少两种业务光包括第一业务光和第二业务光,且第一业务光与第二业务光的波长或功率不同。
其中,第一SRS能量转移大小用于指示光时域反射仪OTDR脉冲信号与对应的业务光之间的能量转移量,这里OTDR脉冲信号和对应的业务光信号是同时传输的。
示例性的,该第一SRS能量转移大小与第一业务光对应,用于指示第一OTDR脉冲和第一业务光在同时传输时,二者之间的能量转移量。
在本申请实施例中,至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系包括:第一业务光与对应的第一OTDR脉冲信号的能量转移关系ΔP SRS1,以及第二业务光与对应的第一OTDR脉冲信号的能量转移关系ΔP SRS2之间的比例值、差值等。例如,根据下列公式(3)的比例关系和公式(5)的差值关系,可以确定第一业务光的能量值与第二业务光的能量值,进而可以恢复出不受SRS影响的OTDR测量曲线,获取准确的光纤损耗情况。
作为示例而非限定,至少两种业务光中的每种业务光包括以下光信号中的至少一种:来源于光信道传送单元OTU的信号光、用于填充通道的假光。
一般地,针对第一SRS能量转移大小ΔP SRS1的计算,可以采用以下公式:
Figure PCTCN2022097350-appb-000009
类似地,第二SRS能量转移大小ΔP SRS2的计算,可以采用以下公式:
Figure PCTCN2022097350-appb-000010
其中,第二SRS能量转移大小也可以根据至少两种业务光与对应的OTDR脉冲信号的能量转移关系确定,第二SRS能量转移大小与第二业务光对应,用于指示第二OTDR脉冲和第二业务光在同时传输时,二者之间的能量转移量。v i为第i个业务光的频率,v i为第j个业务光的频率,v OTDR1为第一OTDR脉冲信号的频率,v OTDR2为第二OTDR脉冲信号的频率,P si为第i个业务光的功率,P sj为第j个业务光的功率,P OTDR1为第一OTDR脉冲信号的功率,P OTDR2为第二OTDR脉冲信号的功率,g R(v i-v OTDR1)为第一OTDR脉冲信号与第i个业务光之间的拉曼增益系数,g R(v j-v OTDR2)为第二OTDR脉冲信号与第j个业务光之间的拉曼增益系数,m和n分别为两次测量中第一业务光和第二业务光的个数,m、n、i和j均为大于零的整数,且i小于或等于m,j小于或等于n,K为比例系数,K为实数。
应理解,在本申请实施例中,K和P OTDR可以提前预知,或者无需测量。那么在K和P OTDR无法确定具体数值时,可以通过二者的商值进一步确定ΔP SRS1和ΔP SRS2之间的能量关系。即:
Figure PCTCN2022097350-appb-000011
需要说明的是,上述公式(3)中,第一OTDR脉冲信号和第二OTDR脉冲信号的频率,以及功率可以相同,也可以不同。本申请对此不作具体限定,这里只需要确定在两次测量中第一SRS能量转移大小和第二SRS能量转移大小之间的比例关系即可。
在本申请实施例中,第一业务光与第二业务光的确定可以通过以下几种方式实现。即:
一种可能的实现方式,可以通过增加或减少光网络系统中的波长通道数量,即不同业务光情况可以通过WSS等器件关闭或打开业务光的通道,进而获取第一业务光与第二业务光。
其中,该第一业务光与第二业务光之间的波长通道数量或者波长范围不同。
示例性的,在第一次测量时,将业务光中的信号光和用于信道填充的假光通道都打开。在第二次测量时,将业务光中的信号光和用于信道填充的假光通道等间隔的关闭一半。
具体地,在第一次测量时,设置业务光的通道数为X。在第二次测量时,设置业务光的通道数为Y。因此,两次测量中业务光的波长通道数量是不同的,对应的波长范围也有所不同。以C扩展波道的业务光为例,假设光信号传输通道有120个,OTDR信号光在传输占用的信号通道数为10。那么,在第一次测量中,业务光中的信号光和假光在传输时占用剩下全部的110个通道。在第二次测量中,业务光中的信号光和假光在传输时仅占用剩下全部的110个通道的一半。
需要说明的是,在具体实现方式中,通常信号光所占用的信道是不发生改变的,那么针对第二次测量中,等间隔关闭一半的信号通道可以认为是等间隔关闭一半的假光通道。
另一种可能的实现方式,可以通过调整光网络系统中业务光的光功率,获取第一业务光与第二业务光,即该第一业务光和第二业务光之间的光功率不同。
示例性的,在第一次测量时,设置第一业务光的功率为X dB。在第二次测量时,设置第二业务光的功率为Y dB。因此,两次测量的业务光的功率不同,对应的业务光的选取也不同。
示例性的,在计算第一SRS能量转移大小之前,需要分别测量与第一业务光对应的第一OTDR测试曲线,以及与第二业务光对应的第二OTDR测试曲线。
具体地,针对图1所示的在线传输系统,在第一次测量时,将业务光中的信号光和用于信道填充的假光通道都打开,即第一业务光。第一OTDR脉冲信号与第一业务光同时传输,经过FIU耦合生成光信号,再传输至待测光纤链路,根据反射回来的光信号生成第一OTDR测试曲线,记为trace 1。在第二次测量时,将业务光中的信号光和用于信道填充的假光通道等间隔的关闭一半,即第二业务光。第二OTDR脉冲信号与第二业务光同时传输,经过FIU耦合生成光信号,再传输至待测光纤链路,根据反射回来的光信号生成第二OTDR测试曲线,记为trace 2。此时,输入光纤130的业务光功率降低3dB。
需要说明的是,第一OTDR脉冲信号和第二OTDR脉冲信号可以相同,也可以不同。
一种实现方式,当第一OTDR脉冲信号和第二OTDR脉冲信号相同时,即第一OTDR脉冲信号与第二OTDR脉冲信号的波长和功率相同,此时只需要确定该第一业务光与第二业务光之间的能量关系,进而计算第一SRS能量转移大小。
另一种实现方式,当第一OTDR脉冲信号和第二OTDR脉冲信号不同时,即第一OTDR脉冲信号与第二OTDR脉冲信号的波长或功率不同,此时不仅需要确定该第一业务光与第二业务光之间的能量关系,还需要确定该第一OTDR脉冲信号与第二OTDR脉冲信号之间的能量关系,进而计算第一SRS能量转移大小。
其中,针对第一OTDR脉冲信号与第二OTDR脉冲信号之间能量关系的具体确定方式可以参照第一业务光与第二业务光之间能量关系的确定方式。为了简洁,此处不再赘述。
应理解,上述两种实现方式均可以解决技术问题,本申请对此不作具体限定。
那么,上述两次OTDR测量结果之间的能量转移大小之差满足:
Δtrace=trace 1-trace 2  (4)
需要说明的是,等间隔的关闭业务光通道仅是一种示例性说明,是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请提供的技术方案的限定。
可选地,在测量时将业务光的信号通道不等间隔的关闭一半,或者将业务光的信号通道等间隔的关闭三等分之一等,本申请对此不作具体限定。不同业务光的采集情况只是为了通过多次测量,计算出SRS功率转移的大小,进而获取不受SRS影响的OTDR测量结果。
其中,上述两次OTDR测量结果之间的能量转移大小也等价于两次业务光之间的能量转移大小,即公式(4)还可以满足:
Δtrace=trace 1-trace 2=ΔP SRS1-ΔP SRS2  (5)
那么,根据上述公式(3)和公式(5),可以进一步计算第一SRS转移的能量大小。即:
Figure PCTCN2022097350-appb-000012
类似地,第二SRS转移的能量大小满足:
Figure PCTCN2022097350-appb-000013
示例性的,针对本申请实施例中的技术方案,第二次测量中业务光的光功率是第一测量的光功率的一半,即ΔP SRS1=2ΔP SRS2(8),将公式(8)代入上述计算公式(6)和公式(7),计算得到的第一SRS转移量满足:
ΔP SRS1=2*(trace 1-trace 2)  (9)
对应地,第二SRS转移的能量大小满足:
ΔP SRS2=Δtrace=trace 1-trace 2  (10)
S620,根据第一OTDR测试曲线与第一SRS能量转移大小,生成目标OTDR测试曲线。
其中,该目标OTDR测试曲线用于光纤测量。第一OTDR测试曲线的具体实现过程在步骤S610中已经详细阐述,为了简洁,这里不再赘述。
因此,根据第一OTDR测试曲线trace 1和公式(6)可以恢复出不受SRS影响的OTDR信号曲线trace 0为:
trace 0=trace 1-ΔP SRS1  (11)
同样地,根据第二OTDR测试曲线trace 2与第二SRS能量转移大小(即,公式(7)),也可以生成目标OTDR测试曲线trace 0。即:
trace 0=trace 2-ΔP SRS2  (12)
需要说明的是,上述公式(11)和公式(12)中恢复的OTDR信号曲线是完全一样的。应理解,上述实施例中,以两种不同业务光情况为例进行光纤测量,计算出SRS能量转移大小,并恢复出不受SRS影响的OTDR测量曲线。该实现方式仅是示例性说明,并不构成对于本申请技术方案的限定。
可选地,本申请还可以三种不同业务光情况为例进行OTDR测量,本申请对业务光的数量以及测量次数不作具体限定。
示例性的,按照上述方法600,此时需要测量三次OTDR测试曲线,并将这三次测量结果两两进行比较,确定三种业务光能量的比例关系和差值关系,进而恢复trace 0,最终再将恢复的3个trace 0取平均值,从而获得不受SRS影响的OTDR测量结果等。
图7是适用本申请的用于光纤测量的结果的一例示意图。如图7所示,横坐标表示光纤长度(单位为km),纵坐标为返回光信号的相对强度(单位为dB)。
从该曲线可以看出,随着光纤长度的增加,相对强度在逐渐降低。由于光纤中存在熔接、断裂现象,进而产生了额外的损耗和反射,例如OTDR迹线在95km处呈现峰值,其为模拟的反射事件、衰减事件等。OTDR测量就是依靠这些事件来分析光纤链路状态的,并根据光纤长度推算出这些反射、衰减事件的位置。
其中,以满波扩展业务光C波段为例,其业务光的频率为196.65~190.7THz。图7所示的点画线表示离线场景下,关闭全部业务光后测量得到的不受SRS影响的OTDR曲线,即无SRS效应的OTDR曲线,满足trace 0=trace 1-ΔP SRS1。实线表示全部业务光(即按照50GHz间隔,包含120个业务光)后测量得到的OTDR测试曲线,即为trace1,包含的SRS转移能量为ΔP SRS1。此时,每个业务光的入纤功率可以通过光谱仪等器件测量得到。例如,在第一测量中,第i个业务光的功率记为P si。在第二次测量中,第j个业务光的功率记为P sj。虚线表示等间隔的关闭一半业务光通道后(对应的,业务光功率降低3dB)测量得到的OTDR测试曲线,即为trace2,包含的SRS转移能量为ΔP SRS2,通过光谱仪等仪表器件可以获得剩余通道的波长和光功率。依据公式(3)和(5)即可求出ΔP SRS1和ΔP SRS2,最终按照公式(11)和(12)即可获得恢复的OTDR曲线。
在本申请实施例中,采用等间隔的关闭一半的业务通道,等价于可以由公式(6)和(7)简化为公式(9)和(10)。
图8是适用本申请用于光纤测量的结果的另一例示意图。如图8所示,横坐标表示光纤长度(单位为km),纵坐标为返回光信号的相对强度(单位为dB)。
从该曲线可以看出,随着光纤长度的增加,相对强度在逐渐降低。由于光纤中存在熔接、断裂现象,进而产生了额外的损耗和反射,例如OTDR迹线在95km处呈现峰值,其为模拟的反射事件、衰减事件等。OTDR测量就是依靠这些事件来分析光纤链路状态的,并根据光纤长度推算出这些反射、衰减事件的位置。
其中,点画线表示针对在线传输系统,根据本申请提供的技术方案,恢复得到的无受激拉曼散射SRS效应的OTDR测试曲线。实线表示离线场景下,关闭全部业务光后测量得到的不受SRS影响的OTDR曲线,即无SRS效应的OTDR曲线。
由此可见,两条曲线几乎是完全重合的,说明基于本申请的技术方案获得的OTDR测量结果是真实准确的,处理效果很好。
应理解,图7和图8所示的曲线图仅是示例性说明,是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。例如,可以以业务光L波段为例进行OTDR测量,或者还可以以业务光C波段+L波段为例进行OTDR测量等。
综上所述,本申请提供一种在线场景OTDR测量SRS补偿方案,分别测量两种及以上不同业务光情况下的OTDR测试曲线,通过上述多条测量曲线和多次测量中业务光注入的能量关系,计算OTDR信号光SRS转移能量的大小,恢复出不受SRS影响的OTDR信号曲线,获得不受SRS影响的OTDR测量结果。该实现方式无须硬件变动,在线场景和 离线场景均能使用,支持将OTDR波长设置在1500~1650nm的波段,位于光纤低损耗窗口,使得OTDR测距能力更强。
上文结合图1至图8,详细描述了本申请的用于光纤测量的方法侧实施例,下面将结合图9和图10,详细描述本申请的用于光纤测量的装置侧实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图9是本申请实施例提供的通信装置的示意性框图。如图9所示,该通信装置1000可以包括处理单元1100、确定单元1200和生成单元1300。
应理解,该通信装置1000可以包括用于执行图6中的方法600中方法的单元。并且,该通信装置1000中的各单元和上述其它操作和/或功能分别为了实现图6中的方法600的相应流程。
示例性的,确定单元1200,用于根据至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系,确定第一受激拉曼散射SRS能量转移大小,该至少两种业务光包括第一业务光和第二业务光,第一业务光与第二业务光的波长或功率不同,第一业务光与第一OTDR脉冲信号同时传输,第二业务光与第二OTDR脉冲信号同时传输,第一SRS能量转移大小与第一业务光对应。
生成单元1300,用于根据第一OTDR测试曲线与第一SRS能量转移大小,生成目标OTDR测试曲线,第一OTDR测试曲线是由第一OTDR脉冲信号与第一业务光耦合生成的,目标OTDR测试曲线用于光纤测量。
可选地,处理单元1100用于增加或减少光网络系统中的波长通道数量,以获取第一业务光和第二业务光,第一业务光和第二业务光之间的波长通道数量或者波长范围不同。
该处理单元1100还用于调整光网络系统中业务光的光功率,以获取第一业务光和第二业务光,第一业务光和第二业务光种业务光之间的光功率不同。
还应理解,该通信装置1000中的处理单元1100可通过至少一个处理器实现。
还应理解,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图10是本申请实施例提供的通信装置2000的另一示意性框图。如图10所示,该通信装置2000包括处理器2010、收发器2020和存储器2030。其中,处理器2010、收发器2020和存储器2030通过内部连接通路互相通信,该存储器2030用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制该收发器2020发送信号和/或接收信号。
示例性的,处理器2010,用于根据至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系,确定第一受激拉曼散射SRS能量转移大小,至少两种业务光包括第一业务光和第二业务光,第一业务光与第二业务光的波长或功率不同,第一业务光与第一OTDR脉冲信号同时传输,第二业务光与第二OTDR脉冲信号同时传输,第一SRS能量转移大小与第一业务光对应。
该处理器2010,还用于根据第一OTDR测试曲线与第一SRS能量转移大小,生成目标OTDR测试曲线,第一OTDR测试曲线是由第一OTDR脉冲信号与第一业务光耦合生成的,目标OTDR测试曲线用于光纤测量。
可选地,该处理器2010,还用于增加或减少光网络系统中的波长通道数量,以获取第一业务光和第二业务光,第一业务光和第二业务光之间的波长通道数量或者波长范围不 同。
该处理器2010,还用于调整光网络系统中业务光的光功率,以获取第一业务光和第二业务光,第一业务光和第二业务光种业务光之间的光功率不同。
应理解,该通信装置2000可以用于执行上述方法实施例中的各个步骤和/或流程。可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与OTDR对应的方法实施例的各个步骤和/或流程。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请的技术方案,上述具体实现方式可以认为是本申请最优的实现方式,而非限制本申请实施例的范围。
需要说明的是,控制器执行的动作或方法,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,控制器执行的动作或方法可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质,半导体介质可以是固态硬盘。
可选地,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本申请对此不做限定。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处 理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种用于光纤测量的方法,其特征在于,应用于光网络系统,所述方法包括:
    根据至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系,确定第一受激拉曼散射SRS能量转移大小,所述至少两种业务光包括第一业务光和第二业务光,所述第一业务光与所述第二业务光的波长或功率不同,所述第一业务光与第一OTDR脉冲信号同时传输,所述第二业务光与第二OTDR脉冲信号同时传输,所述第一SRS能量转移大小与所述第一业务光对应;
    根据第一OTDR测试曲线与所述第一SRS能量转移大小,生成目标OTDR测试曲线,所述第一OTDR测试曲线是由所述第一OTDR脉冲信号与所述第一业务光耦合生成的,所述目标OTDR测试曲线用于所述光纤测量。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两种业务光包括以下光信号中的至少一种:来源于光信道传送单元OTU的信号光、用于填充通道的假光。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    增加或减少所述光网络系统中的波长通道数量,以获取所述第一业务光和所述第二业务光,所述第一业务光与所述第二业务光的波长通道数量或者波长范围不同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    调整所述光网络系统中业务光的光功率,以获取所述第一业务光和所述第二业务光,所述第一业务光与所述第二业务光的光功率不同。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一SRS能量转移大小ΔP SRS1满足:
    Figure PCTCN2022097350-appb-100001
    第二SRS能量转移大小ΔP SRS2满足:
    Figure PCTCN2022097350-appb-100002
    其中,所述第二SRS能量转移大小是根据所述至少两种业务光的能量关系确定的,所述第二SRS能量转移大小与所述第二业务光对应,v i为第i个业务光的频率,v j为第j个业务光的频率,v OTDR1为所述第一OTDR脉冲信号的频率,v OTDR2为所述第二OTDR脉冲信号的频率,P si为所述第i个业务光的功率,P sj为所述第j个业务光的功率,P OTDR为所述第一OTDR脉冲信号的功率,P OTDR2为所述第二OTDR脉冲信号的功率,g R(v i-v OTDR1)为所述第一OTDR脉冲信号与所述第i个业务光与之间的拉曼增益系数,g R(v j-v OTDR2)为所述第二OTDR脉冲信号与所述第j个业务光与之间的拉曼增益系数,m和n分别为所述第一业务光和所述第二业务光的个数,m、n、i和j均为大于零的整数,且i小于或等于m,j小于或等于n,K为比例系数,K为实数。
  6. 根据权利要求5所述的方法,其特征在于,所述第一OTDR测试曲线trace 1与第二OTDR测试曲线trace 2的差异Δtrace满足:
    Δtrace=trace 1-trace 2=ΔP SRS1-ΔP SRS2
    其中,所述第二OTDR测试曲线trace 2是由所述第二OTDR脉冲信号与所述第二业务光耦合生成的。
  7. 根据权利要求6所述的方法,其特征在于,所述第一SRS能量转移大小ΔP SRS1还满足:
    Figure PCTCN2022097350-appb-100003
  8. 根据权利要求7所述的方法,其特征在于,所述目标OTDR测试曲线trace 0满足:
    trace 0=trace 1-ΔP SRS1
  9. 一种用于光纤测量的装置,其特征在于,应用于光网络系统,包括:
    确定单元,用于根据至少两种业务光与对应的光时域反射仪OTDR脉冲信号的能量转移关系,确定第一受激拉曼散射SRS能量转移大小,所述至少两种业务光包括第一业务光和第二业务光,所述第一业务光与所述第二业务光的波长或功率不同,所述第一业务光与第一OTDR脉冲信号同时传输,所述第二业务光与第二OTDR脉冲信号同时传输,所述第一SRS能量转移大小与所述第一业务光对应;
    生成单元,用于根据第一OTDR测试曲线与所述第一SRS能量转移大小,生成目标OTDR测试曲线,所述第一OTDR测试曲线是由所述第一OTDR脉冲信号与所述第一业务光耦合生成的,所述目标OTDR测试曲线用于所述光纤测量。
  10. 根据权利要求9所述的装置,其特征在于,所述至少两种业务光包括以下光信号中的至少一种:来源于光信道传送单元OTU的信号光、用于填充通道的假光。
  11. 根据权利要求9或10所述的装置,其特征在于,还包括:
    处理单元,用于增加或减少所述光网络系统中的波长通道数量,以获取所述第一业务光和所述第二业务光,所述第一业务光与所述第二业务光的波长通道数量或者波长范围不同。
  12. 根据权利要求9至11中任一项所述的装置,其特征在于,
    所述处理单元,还用于调整所述光网络系统中业务光的光功率,以获取所述第一业务光和所述第二业务光,所述第一业务光与所述第二业务光的光功率不同。
  13. 根据权利要求9至12中任一项所述的装置,其特征在于,所述第一SRS能量转移大小ΔP SRS1满足:
    Figure PCTCN2022097350-appb-100004
    第二SRS能量转移大小ΔP SRS2满足:
    Figure PCTCN2022097350-appb-100005
    其中,所述第二SRS能量转移大小是根据所述至少两种业务光的能量关系确定的,所述第二SRS能量转移大小与所述第二业务光对应,v i为第i个业务光的频率,v j为第j个业务光的频率,v OTDR1为所述第一OTDR脉冲信号的频率,v OTDR2为所述第二OTDR脉冲信号的频率,P si为所述第i个业务光的功率,P sj为所述第j个业务光的功率,P OTDR1为所述第一OTDR脉冲信号的功率,P OTDR2为所述第二OTDR脉冲信号的功率,g R(v i-v OTDR1)为所述第一OTDR脉冲信号与所述第i个业务光之间的拉曼增益系数,g R(v j-v OTDR2)为所述第二OTDR脉冲信号与所述第j个业务光与之间的拉曼增益系数,m和n分别为所述第一业务光和所述第二业务光的个数,m、n、i和j均大于零的整数,且i小于或等于m,j小于或等于n,K为比例系数,K为实数。
  14. 根据权利要求13所述的装置,其特征在于,所述第一OTDR测试曲线trace 1与 第二OTDR测试曲线trace 2的差异Δtrace满足:
    Δtrace=trace 1-trace 2=ΔP SRS1-ΔP SRS2
    其中,所述第二OTDR测试曲线trace 2是由所述第二OTDR脉冲信号与所述第二业务光耦合生成的。
  15. 根据权利要求14所述的装置,其特征在于,所述第一SRS能量转移量ΔP SRS1还满足:
    Figure PCTCN2022097350-appb-100006
  16. 根据权利要求15所述的装置,其特征在于,所述目标OTDR测试曲线trace 0满足:
    trace 0=trace 1-ΔP SRS1
  17. 一种光网络系统,其特征在于,包括:光时域反射仪OTDR、光纤接口单元FIU和波长选择开关WSS;
    所述波长选择开关WSS,用于获取至少两种业务光,所述至少两种业务光包括第一业务光和第二业务光,所述第一业务光与所述第二业务光的波长或功率不同;
    所述光时域反射仪OTDR,包括激光器,用于向待测光纤链路发射第一OTDR脉冲信号和第二OTDR脉冲信号,所述第一OTDR脉冲信号与所述第一业务光同时传输,所述第二OTDR脉冲信号与所述第二业务光同时传输;光探测器,用于接收来自所述待测光纤链路反射的第一光信号和第二光信号,所述第一光信号与所述第一OTDR脉冲信号对应,所述第二光信号与所述第二OTDR脉冲信号对应;处理器,用于根据所述光探测器接收的所述第一光信号生成第一OTDR测试曲线,以及根据所述光探测器接收的所述第二光信号生成第二OTDR测试曲线;
    所述光纤接口单元FIU,用于将所述第一OTDR脉冲信号与所述第一业务光耦合,以及用于将所述第二OTDR脉冲信号与所述第二业务光耦合。
  18. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机指令,所述指令在计算机上执行时,使得所述计算机执行如权利要求1至8中任意一项所述的方法。
  19. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信装置执行如权利要求1至8中任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序代码或指令在计算机上执行时,使得所述计算机执行如权利要求1至8中任意一项所述的方法。
PCT/CN2022/097350 2021-07-12 2022-06-07 用于光纤测量的方法和装置 WO2023284444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110785733.0A CN115622618A (zh) 2021-07-12 2021-07-12 用于光纤测量的方法和装置
CN202110785733.0 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023284444A1 true WO2023284444A1 (zh) 2023-01-19

Family

ID=84855273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097350 WO2023284444A1 (zh) 2021-07-12 2022-06-07 用于光纤测量的方法和装置

Country Status (2)

Country Link
CN (1) CN115622618A (zh)
WO (1) WO2023284444A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160072576A1 (en) * 2014-09-04 2016-03-10 Ciena Corporation Live monitoring of raman and fiber degradation in dwdm networks using in-service otdr
CN106105061A (zh) * 2014-03-09 2016-11-09 Ⅱ-Ⅵ有限公司 一种利用拉曼泵浦激光源实现不中断业务的光时域反射计装置
CN110023732A (zh) * 2016-11-22 2019-07-16 骁阳网络有限公司 单向otdr迹线中的增益和夸大损失的检测
CN112880866A (zh) * 2021-03-25 2021-06-01 太原理工大学 长距离高空间分辨率的拉曼光纤多参量传感系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106105061A (zh) * 2014-03-09 2016-11-09 Ⅱ-Ⅵ有限公司 一种利用拉曼泵浦激光源实现不中断业务的光时域反射计装置
US20160072576A1 (en) * 2014-09-04 2016-03-10 Ciena Corporation Live monitoring of raman and fiber degradation in dwdm networks using in-service otdr
CN110023732A (zh) * 2016-11-22 2019-07-16 骁阳网络有限公司 单向otdr迹线中的增益和夸大损失的检测
CN112880866A (zh) * 2021-03-25 2021-06-01 太原理工大学 长距离高空间分辨率的拉曼光纤多参量传感系统及方法

Also Published As

Publication number Publication date
CN115622618A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN107483106B (zh) 一种在线的光时域反射仪结构、检测系统和检测方法
US10374704B2 (en) Raman amplifier system and method with integrated optical time domain reflectometer
EP2846480B1 (en) Method and device for measuring a link loss of an optical transmission line
CN110023732B (zh) 单向otdr迹线中的增益和夸大损失的检测
US6433922B1 (en) Apparatus and method for a self adjusting Raman amplifier
US7872738B2 (en) System and method for monitoring an optical communication system
CN108199767B (zh) 一种高动态范围光时域反射的检测方法和装置
CN103297126B (zh) 基于光学标记法的pon线路故障监测方法及其装置
US7869708B2 (en) COTDR arrangement with swept frequency pulse generator for an optical transmission system
Laferrière et al. Reference guide to fiber optic testing
Kapron et al. Fiber-optic reflection measurements using OCWR and OTDR techniques
US11811450B2 (en) High speed bidirectional optical time-domain reflectometer (OTDR)-based testing of device under test
US10142016B2 (en) Techniques for high-resolution line monitoring with a standardized output and an optical communication system using the same
US6687426B1 (en) Out of band fiber characterization using optical amplifier light sources
CN202522320U (zh) 一种光回损测量装置
WO2023284444A1 (zh) 用于光纤测量的方法和装置
US5801818A (en) Active reflex optical range finder
US10128942B2 (en) Method of transmitting an optical data signal via a fiber optical medium in opposite directions at the same carrier wavelength
CN113329277B (zh) 光通信的方法和装置
CN106595492A (zh) 一种高分辨率光纤计长装置及方法
US6912046B2 (en) Instrument measuring chromatic dispersion in optical fibers
CN108337046B (zh) FTTx终端线路测试仪
US8284391B2 (en) Method and arrangement for measuring a signal power
CN110635842B (zh) 一种无源波分复用网络光纤故障检测系统及其检测方法
CN219834147U (zh) 一种集成otdr功能的光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE