WO2023284408A1 - 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用 - Google Patents

用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用 Download PDF

Info

Publication number
WO2023284408A1
WO2023284408A1 PCT/CN2022/093947 CN2022093947W WO2023284408A1 WO 2023284408 A1 WO2023284408 A1 WO 2023284408A1 CN 2022093947 W CN2022093947 W CN 2022093947W WO 2023284408 A1 WO2023284408 A1 WO 2023284408A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetylcysteine
nac
ncs
kidney injury
acute kidney
Prior art date
Application number
PCT/CN2022/093947
Other languages
English (en)
French (fr)
Inventor
黄鹏
涂天慧
张东阳
林静
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to EP22841048.6A priority Critical patent/EP4371576A1/en
Publication of WO2023284408A1 publication Critical patent/WO2023284408A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/242Gold; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the technical field of biomedical materials, in particular to an acetylcysteine-stabilized gold nanocluster (referred to as Au NCs-NAC) for acute kidney injury and its preparation method and application.
  • Au NCs-NAC acetylcysteine-stabilized gold nanocluster
  • Acute kidney injury is an important health problem in humans. Due to its high morbidity and mortality, it is estimated that 1.7 million people die every year worldwide. Currently, adjuvant therapy and kidney transplantation are the most common treatments. Recent studies have shown that the pathogenesis of acute kidney injury is associated with excess intracellular reactive oxygen and nitrogen species. Previously, some small-molecule drugs, such as amifostine and acetylcysteine, have been shown to act as antioxidants and eliminate reactive oxygen species to alleviate acute kidney injury. However, small molecule drugs have low utilization rate, high toxicity and limited efficacy. These hinder their clinical application. However, the successful development of antioxidants provides an adequate basis for future treatment of acute kidney injury.
  • metal nanomaterials have obvious advantages such as low cost, adjustable catalytic properties, and large-scale preparation.
  • metal nanomaterials especially gold nanoclusters have broad-spectrum active oxygen and active nitrogen scavenging ability, and also have excellent anti-inflammatory ability.
  • the ultra-small metal nanoparticles can be metabolized by the kidney, which provides the possibility for the treatment of acute kidney injury.
  • the present invention develops the use of acetylcysteine-stabilized gold nanoclusters (Au NCs-NAC) for the treatment of acute kidney injury.
  • Au NCs-NAC acetylcysteine-stabilized gold nanoclusters
  • the present invention provides an acetylcysteine-stabilized gold nanocluster (Au NCs-NAC) for acute kidney injury and its preparation method and application, aiming to solve the problems of low utilization rate of existing small molecule drugs, The side effects are large, and it is difficult to be used for technical problems in the treatment of acute kidney injury.
  • Au NCs-NAC acetylcysteine-stabilized gold nanocluster
  • the first aspect of the present invention provides an Au NCs-NAC for acute kidney injury, which includes: gold nanoclusters, and acetylcysteine bound to the surface of the gold nanoclusters.
  • the gold nanoclusters are combined with the acetylcysteine through a gold-sulfur coordination bond.
  • the acetylcysteine (belonging to the surface ligand) of the present invention can effectively stabilize the gold nanoclusters and control the formation of ultra-small size of the gold nanoclusters. Moreover, they all have good water solubility and biological safety, are not easy to interact with serum proteins, and are beneficial to the circulation of Au NCs-NAC in the blood.
  • cysteine can also be used as a surface ligand to stabilize on the surface of gold nanoclusters.
  • the mass ratio of the gold nanoclusters to the acetylcysteine is 1:(1-10).
  • the Au NCs-NAC has a diameter less than or equal to 3 nm spherical cluster particles.
  • the second aspect of the present invention provides a method for preparing Au NCs-NAC for acute kidney injury as described above, which includes the steps of: mixing chloroauric acid, sodium hydroxide and acetylcysteine in water, stirring and heating to obtain a mixed solution; dialyzing the mixed solution to obtain the Au NCs-NAC.
  • the mass ratio of chloroauric acid to acetylcysteine is 1:(1-10), such as 1:6.528.
  • the stirring and heating time is 1-4 hours.
  • the stirring and heating temperature is 25-50 degrees Celsius.
  • the third aspect of the present invention provides an application of the above-mentioned Au NCs-NAC in the preparation of a preparation for treating acute kidney injury;
  • the Au NCs-NAC of the present invention includes a surface ligand acetylcysteine and gold nanoclusters protected by the surface ligand, and the surface ligand can effectively stabilize the gold nanoclusters and control the formation of ultra-small size of the gold nanoclusters . Since the Au NCs-NAC of the present invention has an ultra-small size, which is lower than the filtration threshold of the kidney at 5.5 nm, it can be effectively enriched in the mouse kidney, and relieve the pain and Treatment of acute kidney injury induced by glycerol, and has anti-inflammatory ability, and has a better therapeutic effect than acetylcysteine. In addition, Au NCs-NAC has excellent biocompatibility and biosafety.
  • Fig. 1 is Au in the concrete embodiment of the present invention Synthetic route map of NCs-NAC;
  • Fig. 2 is Au in the concrete embodiment of the present invention TEM image of NCs-NAC;
  • Fig. 3 is Au in the concrete embodiment of the present invention XPS diagram of NCs-NAC;
  • Fig. 4 is Au in the concrete embodiment of the present invention Comparison of hydroxyl radical scavenging rate between NCs-NAC and NAC;
  • Fig. 5 is Au in the concrete embodiment of the present invention NCs-NAC and NAC contrast superoxide anion scavenging rate diagram;
  • Fig. 6 is Au in the concrete embodiment of the present invention NCs-NAC and NAC contrast free radical scavenging rate diagram;
  • Fig. 7 is Au in the specific embodiment of the present invention NCs-NAC treated renal tubular cells (293T) survival rate graph;
  • Fig. 8 is Au in the concrete embodiment of the present invention Comparison of NCs-NAC and NAC in reactive oxygen species staining in renal tubular cells (293T);
  • Fig. 9 is Au in the specific embodiment of the present invention The relative level of TNF- ⁇ in renal tubular cells (293T) compared with NCs-NAC and NAC;
  • Fig. 10 is Au in the specific embodiment of the present invention
  • Fig. 11 is Au in the specific embodiment of the present invention Blood urea nitrogen content in serum of mice in different treatment groups of NCs-NAC;
  • Fig. 12 is Au in the specific embodiment of the present invention Blood creatinine content in serum of mice in different treatment groups of NCs-NAC;
  • Figure 13 is the injection of Au in a specific embodiment of the present invention Graph of survival change of acute renal failure mice with NCs-NAC and phosphate buffer (control).
  • the present invention provides an Au NCs-NAC for acute kidney injury and its preparation method and application.
  • the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
  • An embodiment of the present invention provides an Au NCs-NAC for acute kidney injury, which includes: gold nanoclusters, and acetylcysteine bound on the surface of the gold nanoclusters.
  • Au NCs-NAC includes surface ligand acetylcysteine and gold nanoclusters protected by the surface ligand acetylcysteine, and the gap between the gold nanocluster and the acetylcysteine is Through the gold-sulfur coordination bond, specifically, the gold element on the surface of the gold nanocluster forms a coordination bond with the sulfur element in the acetylcysteine, so that the acetylcysteine is bound to the gold nanocluster surface.
  • the acetylcysteine can effectively stabilize the gold nanoclusters and control the ultrasmall size of the gold nanoclusters, so that the finally obtained Au NCs-NAC has an ultrasmall size.
  • the Au NCs-NAC has an ultra-small size, which is beneficial to effectively reach the mouse kidney, relieve and treat acute kidney injury by removing a large amount of reactive oxygen or nitrogen in the renal tubule, and has excellent anti-inflammatory ability, At the same time, its therapeutic effect is much higher than that of the same dose of acetylcysteine alone.
  • embodiments of the present invention are not limited to the gold nanoclusters.
  • the mass ratio of the gold nanoclusters to the acetylcysteine is 1:(1-10), such as 1:6.528.
  • the Au NCs-NAC obtained in this ratio range has good dispersion and stability, and has a small size.
  • the Au NCs-NAC has a diameter less than or equal to 3 nm spherical particles. Ultra-small nanoparticles facilitate reaching the mouse kidney, and ultra-small nanoparticles facilitate metabolism through the kidney. Further, the Au NCs-NAC has a diameter of 1-3 nm spherical particles.
  • the embodiment of the present invention provides a method for preparing Au NCs-NAC for acute kidney injury as described above, which includes the steps of: mixing chloroauric acid, sodium hydroxide and acetylcysteine in water, stirring and heating to obtain a mixed solution; dialyzing the mixed solution to obtain the Au NCs-NAC.
  • the mixed solution is put into a dialysis bag and dialyzed for one day to obtain the Au NCs-NAC.
  • the mass ratio of chloroauric acid to acetylcysteine is 1:(1-10), such as 1:6.528.
  • Acetylcysteine can reduce chloroauric acid and control the growth of gold nanoclusters to form ultra-small gold nanoclusters.
  • the use of water as a solvent can ensure good dispersion of the material.
  • the stirring and heating time is 1-4 hours (such as 2.5 hours).
  • the stirring and heating temperature is 25-50 degrees Celsius.
  • the chloroauric acid is chloroauric acid trihydrate or chloroauric acid tetrahydrate, but not limited thereto.
  • Embodiment 1 Synthesis of Au NCs-NAC
  • Au NCs-NAC synthesis Add chloroauric acid (2 mL at a concentration of 20 mg/mL) and aqueous NaOH (3 mL at a concentration of 0.5 mol/mL) to aqueous NAC (20 mL at a concentration of 80 mmol/mL) and stirred at 37°C for 2.5 hours. Then, the reacted aqueous solution was dialyzed for two days, and the water was changed every 4 hours. Finally, the resulting solution was stored in a refrigerator at 4°C for future use.
  • Figure 1 shows the synthesis of Au Roadmap of NCs-NAC, where HAuCl4 represents chloroauric acid and NAC represents acetylcysteine.
  • the surface ligand acetylcysteine in the Au NCs-NAC can well stabilize the gold nanoclusters.
  • Figure 2 is the synthesized Au TEM image of NCs-NAC
  • Figure 3 is the synthesized Au XPS patterns of NCs-NAC
  • Figure 2 and Figure 3 show that Au
  • Example 2 Au The ability of NCs-NAC to scavenge various reactive oxygen species and the ability of Au NCs-NAC to scavenge hydroxyl radicals
  • the efficiency of scavenging hydroxyl radicals with different concentrations of Au NCs-NAC was determined by the hydroxyl radical antioxidant capacity (HORAC) kit (Cell Biolabs, Inc., USA) determined. Testing was performed according to the protocol provided by the manufacturer.
  • HORAC hydroxyl radical antioxidant capacity
  • Au NCs-NAC can effectively scavenge hydroxyl radicals in a concentration-dependent manner. Moreover, the clearance efficiency of Au NCs-NAC was significantly better than that of acetylcysteine alone. At 100 ⁇ g/mL concentration, Au NCs-NAC can scavenge 77.7% of hydroxyl radicals while acetylcysteine can only scavenge 47.2%.
  • the superoxide anion scavenging efficiency of different concentrations of Au NCs-NAC was determined by SOD detection kit (Sigma-Aldrich, USA). Testing was performed according to the protocol provided by the manufacturer.
  • Au NCs-NAC can effectively scavenge superoxide anion in a concentration-dependent manner. Moreover, the clearance efficiency of Au NCs-NAC was significantly better than that of acetylcysteine alone. At 100 ⁇ g/mL concentration, Au NCs-NAC can remove 30.4% of superoxide anion, while acetylcysteine can only remove 6%.
  • the radical scavenging ability of Au NCs-NAC was determined by the ABTS radical cation decolorization method. Dissolve ABTS (7 mM) in water, add 2.45 The reaction of mM potassium persulfate for 12 hours can produce ABTS radical cation (•ABTS+). then at 734 Determination of pure ABTS+ solution (AB) and different concentrations (12.5-100 ⁇ g/mL) the absorbance value of the mixed solution of Au NCs-NAC and •ABTS+. The calculation formula of ABTS removal efficiency is [(AB - AP)/AB] * 100. All measurements were performed in triplicate.
  • Au NCs-NAC can effectively scavenge free radicals and has a concentration-dependent characteristic. Moreover, the clearance efficiency of Au NCs-NAC was significantly better than that of acetylcysteine alone. At 100 ⁇ g/mL concentration, Au NCs-NAC can remove 80.6% of •ABTS+ while acetylcysteine can only remove 68.9%.
  • Example 3 Au NCs-NAC cytotoxicity and protection of kidney cells by scavenging various reactive oxygen species/reactive nitrogen species, and the standard MTT assay was used to evaluate the effect of Au NCs-NAC on the survival rate of 293T kidney embryonic cells. And further use TNF- ⁇ and IL-6 ELISA (enzyme-linked immunosorbent assay) kits to evaluate the levels of inflammatory factors in the cells.
  • TNF- ⁇ and IL-6 ELISA enzyme-linked immunosorbent assay
  • 293T cells were seeded into 96-well plates at a density of 1 ⁇ 104 per well, and incubated at 37°C and 5% CO2 for 12 h. Next, suck out the old culture medium in the 96-well plate, and add different concentrations of Au NCs-NAC medium solution. After continuing to culture for 20 h, suck out the old medium in the 96-well plate, and add 100 ⁇ L of MTT medium solution (0.8 mg/mL), continue to culture for 4 h.
  • Cell viability (%) (OD570 value of sample/OD570 value of blank) ⁇ 100%.
  • both macrophages and 293T kidney embryonic cells were seeded in 96-well plates. Then, with 400 ng/mL lipopolysaccharide (LPS) treatment of 293T kidney embryonic cells 1 Hour. Then, the culture supernatant of 293T renal embryonic cells was transferred to a 96-well plate to culture RAW264.7 macrophages overnight. Finally, with TNF- ⁇ /IL-6 ELISA kit was used to detect the concentrations of TNF- ⁇ and IL-6 in the supernatant of RAW264.7 macrophages.
  • LPS lipopolysaccharide
  • the synthesized Au The cell survival rate of NCs-NAC on 293T kidney embryonic cells still maintained a survival rate of more than 80% when the maximum concentration of 200 ⁇ g/mL was reached. It shows that the Au NCs-NAC of this example has low cytotoxicity.
  • NCs-NAC As an example, 293T cells were treated with Au 4 hours in advance After NCs-NAC (100 ⁇ g/mL), the medium containing 2 mM hydrogen peroxide was added. Then use the active oxygen probe DCFH-DA ( Figure 8), and image with a laser confocal microscope after washing. As shown in Figure 8, compared with cells stimulated by hydrogen peroxide, after Au The ROS fluorescence in NCs-NAC-treated cells was significantly weakened, which was close to that of the control cells. This shows that Au NCs-NAC can effectively scavenge reactive oxygen species/reactive nitrogen species in cells, thereby protecting cells.
  • Au NCs-NAC can effectively reduce the production of inflammatory factors (TNF- ⁇ and IL-6) produced by macrophages stimulated by LPS, and it is close to the normal cell level.
  • inflammatory factors TNF- ⁇ and IL-6
  • equivalent doses of acetylcysteine alone cannot be achieved.
  • Example 4 Au NCs-NAC in the treatment of acute kidney injury and biosafety evaluation
  • mice Female athymic mice (six weeks, 20-25 g), intramuscular injection of 8 mL/kg 50% glycerol solution in the hind legs of mice to establish a mouse model of acute renal failure. 2 hours later, inject the small molecule drug acetylcysteine or Au NCs-NAC.
  • mice were randomly divided into 5 groups: (1) healthy mice injected with phosphate buffer; (2) healthy mice injected with Au NCs-NAC; (3) glycerol-induced acute renal failure mice injected with phosphate buffer; (4) glycerol-induced acute renal failure Acute renal failure mice injected with Au NCs-NAC; (5) Glycerol-induced acute renal failure mice injected with Au NCs-NAC equivalent amount of acetylcysteine. Healthy mice and glycerol-induced acute renal failure mice were euthanized 24 hours later, and the blood of the mice was centrifuged to obtain serum, and the contents of creatinine and blood urea nitrogen were measured. For injection use 100 ⁇ L of phosphate buffer, Au The injection dose of NCs-NAC was 4 mg/kg, and the injection dose of acetylcysteine was 4 mg/kg.
  • mice with acute renal failure were injected with phosphate buffer and Au NCs-NAC, and the survival of the mice within fifteen days was recorded. As shown in Figure 13, compared with the control group, the injection of Au The survival rate of mice with NCs-NAC was significantly improved.
  • the present invention can prepare a large amount of ultra-small nanoparticle Au NCs-NAC through a simple synthesis method, the Au NCs-NAC can effectively scavenge various reactive oxygen species/reactive nitrogen species, and has a broad-spectrum reactive oxygen species/reactive nitrogen scavenging ability, which is significantly better than that of acetylcysteine alone. And its toxicity to 293T kidney cells is low, and the cell survival rate reaches more than 80% after co-culture with cells for 24 hours; at the same time, they can protect cells from hydrogen peroxide by removing excess reactive oxygen species/reactive nitrogen in cells Stimulate.
  • Au NCs-NAC showed a good therapeutic effect on glycerol-induced acute renal failure mice, which was significantly better than the same dose of acetylcysteine alone. More importantly, Au NCs-NAC has good biocompatibility and biosafety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Ceramic Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用,所述乙酰半胱氨酸稳定的金纳米簇(Au NCs-NAC)包括:金纳米簇,结合于所述金纳米簇表面的乙酰半胱氨酸。本发明Au NCs-NAC包括表面配体乙酰半胱氨酸以及由所述表面配体保护的金纳米簇。本发明设计的Au NCs-NAC具有超小的尺寸,能够有效的富集于小鼠肾脏,能通过清除肾小管内大量的活性氧或活性氮以缓解和治疗甘油诱导的急性肾损伤,并且具有优异的抗炎能力,同时具有比乙酰半胱氨酸更好的治疗效果。另外,这种Au NCs-NAC具有优异的生物相容性和生物安全性。

Description

用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用 技术领域
本发明涉及生物医学材料技术领域,尤其涉及一种用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇(记为Au NCs-NAC)及其制备方法与应用。
背景技术
急性肾损伤是人类重要的健康问题。由于其高发病率和死亡率,据估计全球每年有170万人死亡。目前,辅助治疗和肾移植是最常见的治疗方法。最近的研究表明,急性肾损伤的发病机理与细胞内过量的活性氧和活性氮物种相关。此前,一些小分子药物,例如,氨磷汀和乙酰半胱氨酸,已经被证明可以作为抗氧化剂,消除活性氧,以此来缓解急性肾损伤。然而,小分子药物具有较低的利用率,较大的毒副作用以及有限的疗效。这些都阻碍了他们的临床应用。但是,抗氧化剂的成功发展为急性肾损伤未来的治疗提供了充分的基础。
技术问题
发明人研究发现,相较于传统蛋白酶,金属纳米材料具有成本低、催化性质可调、可大规模制备等明显优势。同时,金属纳米材料中,尤其是金纳米簇具有广谱的活性氧和活性氮的清除能力,此外,还具有优异的抗炎能力。更重要的是,超小的金属纳米颗粒可以通过肾脏进行代谢,这就为急性肾损伤的治疗提供了可能。
技术解决方案
基于此,本发明开发了利用乙酰半胱氨酸稳定的金纳米簇(Au NCs-NAC)用于急性肾损伤的治疗。
具体地,本发明提供一种用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇(Au NCs-NAC)及其制备方法与应用,旨在解决现有的小分子药物利用率低、副作用大,难以用于急性肾损伤治疗的技术问题。
本发明第一方面,提供一种用于急性肾损伤的Au NCs-NAC,其中,包括:金纳米簇,结合于所述金纳米簇表面的乙酰半胱氨酸。
本发明中,所述金纳米簇与所述乙酰半胱氨酸之间通过金-硫配位键结合。
本发明乙酰半胱氨酸(属于表面配体)能够有效的稳定金纳米簇,控制金纳米簇形成超小的尺寸。并且它们都具有良好的水溶性和生物安全性,不易与血清内蛋白发生作用,有利于Au NCs-NAC在血液中的循环。
需说明的是,本发明不限于乙酰半胱氨酸,半胱氨酸也可作为表面配体稳定在金纳米簇表面。
可选地,所述金纳米簇和所述乙酰半胱氨酸的质量比为1:(1-10)。
可选地,所述Au NCs-NAC为直径小于等于3 nm的球形簇状颗粒。
本发明第二方面,提供一种如上所述的用于急性肾损伤的Au NCs-NAC的制备方法,其中,包括步骤:将氯金酸、氢氧化钠和乙酰半胱氨酸混合于水中,搅拌并加热,得到混合溶液;将所述混合溶液进行透析,得到所述Au NCs-NAC。
可选地,所述氯金酸与乙酰半胱氨酸的质量比为1:(1-10),如1:6.528。
可选地,所述搅拌并加热的时间为1-4小时。
可选地,所述搅拌并加热的温度为25-50摄氏度。
本发明第三方面,提供一种如上所述的Au NCs-NAC在制备治疗急性肾损伤制剂中的应用;
或者,提供一种如上所述的方法制得的Au NCs-NAC在制备治疗急性肾损伤制剂中的应用。
有益效果
本发明Au NCs-NAC包括表面配体乙酰半胱氨酸以及由所述表面配体保护的金纳米簇,所述表面配体能够有效的稳定金纳米簇,控制金纳米簇形成超小的尺寸。由于本发明的Au NCs-NAC具有超小的尺寸,低于肾脏的过滤阈值5.5 nm,因此能够有效的富集于小鼠肾脏,并通过清除肾小管内大量的活性氧或活性氮以缓解和治疗甘油诱导的急性肾损伤,并且具有抗炎的能力,同时具有比乙酰半胱氨酸更好的治疗效果。另外,Au NCs-NAC具有优异的生物相容性和生物安全性。
附图说明
图1为本发明具体的实施例中Au NCs-NAC的合成路线图;
图2为本发明具体的实施例中Au NCs-NAC的TEM图;
图3为本发明具体的实施例中Au NCs-NAC的XPS图;
图4为本发明具体的实施例中Au NCs-NAC和NAC对比羟基自由基清除率图;
图5为本发明具体的实施例中Au NCs-NAC和NAC对比超氧阴离子清除率图;
图6为本发明具体的实施例中Au NCs-NAC和NAC对比自由基清除率图;
图7 为本发明具体的实施例中Au NCs-NAC处理肾小管细胞(293T)存活率图;
图8为本发明具体的实施例中Au NCs-NAC和NAC对比在肾小管细胞(293T)中活性氧染色图;
图9为本发明具体的实施例中Au NCs-NAC和NAC对比在肾小管细胞(293T)中TNF-α相对水平图;
图10为本发明具体的实施例中Au NCs-NAC和NAC对比在肾小管细胞(293T)中IL-6相对水平图;
图11为本发明具体的实施例中Au NCs-NAC不同治疗组小鼠血清中血尿素氮含量图;
图12为本发明具体的实施例中Au NCs-NAC不同治疗组小鼠血清中血肌酐含量图;
图13为本发明具体的实施例中注射Au NCs-NAC和磷酸缓冲液(对照)的急性肾衰竭老鼠的存活变化图。
本发明的最佳实施方式
本发明提供一种用于急性肾损伤的Au NCs-NAC及其制备方法与应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的实施方式
本发明实施例提供一种用于急性肾损伤的Au NCs-NAC,其中,包括:金纳米簇,结合在所述金纳米簇表面的乙酰半胱氨酸。
本发明实施例Au NCs-NAC包括表面配体乙酰半胱氨酸以及由所述表面配体乙酰半胱氨酸保护的金纳米簇,所述金纳米簇与所述乙酰半胱氨酸之间通过金-硫配位键结合,具体是所述金纳米簇表面的金元素与所述乙酰半胱氨酸中的硫元素形成配位键,使所述乙酰半胱氨酸结合在所述金纳米簇表面。所述乙酰半胱氨酸能够有效的稳定金纳米簇,控制金纳米簇形成超小的尺寸,使得最终获得的Au NCs-NAC有超小的尺寸。并且它们都具有良好的水溶性和生物安全性,不易与血清内蛋白发生作用,有利于Au NCs-NAC在血液中的循环。本发明实施例该Au NCs-NAC具有超小的尺寸,利于有效到达小鼠肾脏,通过清除肾小管内大量的活性氧或活性氮以缓解和治疗急性肾损伤,并且具有优异的抗炎能力,同时其治疗效果远高于同等剂量的单独乙酰半胱氨酸。
需说明的是,本发明实施例不限于所述金纳米簇。
在一种实施方式中,所述金纳米簇和所述乙酰半胱氨酸的质量比为1:(1-10),如1:6.528。该比例范围内得到的Au NCs-NAC具有良好的分散性和稳定性,并且具有很小的尺寸。
在一种实施方式中,所述Au NCs-NAC为直径小于等于3 nm的球形颗粒。超小的纳米颗粒有利于到达小鼠肾脏,且超小的纳米颗粒有利于通过肾脏进行代谢。进一步地,所述Au NCs-NAC为直径1-3 nm的球形颗粒。
本发明实施例提供一种如上所述的用于急性肾损伤的Au NCs-NAC的制备方法,其中,包括步骤:将氯金酸、氢氧化钠和乙酰半胱氨酸混合于水中,搅拌并加热,得到混合溶液;将所述混合溶液进行透析,得到所述Au NCs-NAC。
在一种实施方式中,将所述混合溶液装入透析袋透析一天,即得到所述Au NCs-NAC。
在一种实施方式中,所述氯金酸与乙酰半胱氨酸的质量比为1:(1-10),如1:6.528。
在一种实施方式中,以质量比计,氯金酸:氢氧化钠:乙酰半胱氨酸= 1:1.5:6.528。乙酰半胱氨酸能够还原氯金酸并控制金纳米簇的生长,形成超小的金纳米簇,溶剂的水的使用可以保证材料良好的分散性。
在一种实施方式中,所述搅拌并加热的时间为1-4小时(如2.5小时)。
在一种实施方式中,所述搅拌并加热的温度为25-50摄氏度。
在一种实施方式中,所述氯金酸为氯金酸三水合物或氯金酸四水合物,但不限于此。
一种本发明实施例所述的Au NCs-NAC在制备治疗急性肾损伤制剂中的应用。
一种本发明实施例所述的方法制得的Au NCs-NAC在制备治疗急性肾损伤制剂中的应用。
下面通过具体的实施例对本发明的技术方案作进一步地说明。
实施例1:合成Au NCs-NAC
Au NCs-NAC合成:将氯金酸(2毫升,浓度为20毫克/毫升)和NaOH水溶液(3毫升,浓度为0.5摩尔/毫升)添加到NAC水溶液(20毫升,浓度为80毫摩尔/毫升)中,并在37℃搅拌2.5小时。然后,将反应后水溶液透析两天,每4h换一次水。最后,将所得溶液在4℃冰箱中保存备用。
图1为合成Au NCs-NAC的路线图,其中HAuCl4代表氯金酸,NAC代表乙酰半胱氨酸。所述Au NCs-NAC中的表面配体乙酰半胱氨酸能够很好地稳定金纳米簇。
图2是合成的Au NCs-NAC的TEM图;图3是合成的Au NCs-NAC的XPS图;图2和图3表明Au NCs-NAC的成功合成并具有超小的尺寸,并且XPS中的S元素表明了乙酰半胱氨酸的成功修饰。
实施例2:Au NCs-NAC清除各种活性氧能力及Au NCs-NAC清除羟基自由基的能力
不同浓度Au NCs-NAC(25-100 μg/mL)清除羟基自由基的效率是通过羟基自由基抗氧化能力(HORAC)试剂盒(Cell Biolabs, Inc.,USA)测定的。测试是按照制造商提供的方案进行的。
如图4所示,Au NCs-NAC能够有效的清除羟基自由基,并且具有浓度依赖的特性。并且,Au NCs-NAC清除效率明显优于单独的乙酰半胱氨酸。100 μg/mL浓度条件下,Au NCs-NAC能够清除77.7%的羟基自由基而乙酰半胱氨酸只能清除47.2%。
不同浓度Au NCs-NAC(25-100 μg/mL)清除超氧阴离子的效率是通过SOD检测试剂盒(Sigma-Aldrich, USA) 测定的。测试是按照制造商提供的方案进行的。
如图5所示,Au NCs-NAC能够有效的清除超氧阴离子,并且具有浓度依赖的特性。并且,Au NCs-NAC清除效率明显优于单独的乙酰半胱氨酸。100 μg/mL浓度条件下,Au NCs-NAC能够清除30.4%的超氧阴离子而乙酰半胱氨酸只能清除6%。
Au NCs-NAC清除ABTS(2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐)自由基的测试
用ABTS自由基阳离子脱色法测定了Au NCs-NAC的自由基清除能力。将ABTS (7 mM)溶于水,加入2.45 mM过硫酸钾反应12小时,可产生ABTS自由基阳离子(•ABTS+)。然后在734 nm处测定纯•ABTS+溶液(AB)和不同浓度(12.5-100 μg/mL)Au NCs-NAC与•ABTS+混合溶液的吸光度值。ABTS清除效率的计算公式为[(AB - AP)/AB] * 100。所有的测量都是一式三次。
如图6所示,Au NCs-NAC能够有效的清除自由基,并且具有浓度依赖的特性。并且,Au NCs-NAC清除效率明显优于单独的乙酰半胱氨酸。100 μg/mL浓度条件下,Au NCs-NAC能够清除80.6%的•ABTS+而乙酰半胱氨酸只能清除68.9%。
实施例3:Au NCs-NAC细胞毒性和通过清除各种活性氧/活性氮保护肾细胞,并采用标准的MTT法,评价Au NCs-NAC对293T肾胚胎细胞存活率的影响。并进一步使用TNF-α和IL-6的ELISA(酶联免疫吸附剂测定)试剂盒评价细胞中炎症因子水平。
293T细胞以每孔1×104密度接种到96孔板中,并置于37℃、5%CO2条件下培育12 h。接着,吸出96孔板中的旧培养基,分别加入含有不同浓度Au NCs-NAC的培养基溶液。继续培养20 h后,吸出96孔板中的旧培养基,在每个孔中加入100 μL MTT的培养基溶液(0.8 mg/mL),继续培养4 h。吸出96孔板中的残余培养基,在每个孔中加入150 μL DMSO溶液,轻轻摇晃后,在Synergy H1型酶标仪上检测每孔的OD值(检测波长为570 nm),用如下公式计算细胞存活率。细胞存活率(cell viability)(%)=(样品的OD570值/空白OD570值)×100%。
对于体外抗炎情况研究,巨噬细胞和293T肾胚胎细胞都被接种到96孔板中。然后,用400 ng/mL 脂多糖(LPS)处理293T肾胚胎细胞1 小时。然后,将293T肾胚胎细胞培养上清液转入96孔板中培养RAW264.7巨噬细胞过夜。最后,用TNF-α/IL-6 ELISA试剂盒检测RAW264.7巨噬细胞上清中TNF-α和IL-6的浓度。
如图7所示,合成的Au NCs-NAC对293T肾胚胎细胞的细胞存活率,在达到最大使用浓度200 μg/mL时,细胞依然保持80%以上的存活率。表明本实施例的Au NCs-NAC具有低的细胞毒性。
以Au NCs-NAC为例,293T细胞提前4小时处理Au NCs-NAC(100 μg/mL)后,加入含2 mM 过氧化氢的培养基。再分别使用活性氧探针DCFH-DA(图8),洗涤之后使用激光共聚焦显微镜进行成像。如图8所示,与过氧化氢刺激后的细胞相比,经过Au NCs-NAC处理的细胞中的活性氧荧光明显减弱,接近于对照组细胞。这说明Au NCs-NAC能够有效清除细胞中活性氧/活性氮,进而保护细胞。此外,如图9-10所示,Au NCs-NAC能够有效降低巨噬细胞由于LPS刺激产生的炎症因子(TNF-α和IL-6)产生,并接近于正常细胞水平。然而,同等剂量单独的乙酰半胱氨酸则无法实现。
实施例4:Au NCs-NAC治疗急性肾损伤和生物安全性评价
所有的实验操作均按照临床中心动物保健和使用委员会通过的动物使用和保健制度。雌性无胸腺小白鼠(六周, 20-25 g),在小白鼠后腿肌肉注射8 mL/kg 50%的甘油溶液建立老鼠急性肾衰竭模型。2小时后,注射小分子药物乙酰半胱氨酸或者Au NCs-NAC。
小鼠随机分为5组:(1)健康鼠注射磷酸缓冲液;(2)健康鼠注射Au NCs-NAC;(3)甘油诱导的急性肾衰竭鼠注射磷酸缓冲液;(4)甘油诱导的急性肾衰竭鼠注射Au NCs-NAC;(5)甘油诱导的急性肾衰竭鼠注射Au NCs-NAC等量的乙酰半胱氨酸。健康鼠和甘油诱导的急性肾衰竭鼠24小时后安乐死小鼠,取小鼠血液离心获得血清,测量肌酐和血尿素氮含量。注射使用磷酸缓冲液为100 μL,Au NCs-NAC注射剂量为4 mg/kg,乙酰半胱氨酸注射剂量为4 mg/kg。
如图11-12所示,健康鼠注射Au NCs-NAC的肌酐和血尿素氮含量没有明显变化。而注射Au NCs-NAC的急性肾衰竭小鼠肌酐和血尿素氮含量明显低于只注射磷酸缓冲液的小鼠,并接近健康鼠的水平。另一方面,同等剂量的乙酰半胱氨酸并不能有效的降低两个指标。这说明Au NCs-NAC能够有效的缓解和治疗急性肾衰竭,并比单独使用小分子药物乙酰半胱氨酸更好的治疗效果。
此外,使用急性肾衰竭鼠注射磷酸缓冲液和Au NCs-NAC,记录小鼠十五天内的存活情况。如图13所示,与对照组相比,注射Au NCs-NAC的小鼠存活率明显提高。
工业实用性
综上所述,本发明通过简单的合成方法,可大量制备出超小纳米颗粒Au NCs-NAC,该Au NCs-NAC能够有效的清除各类活性氧/活性氮物种,具有广谱的活性氧/活性氮清除能力,明显优于单独的乙酰半胱氨酸。并且其对293T肾细胞的毒副作用较低,与细胞共培养24小时后细胞存活率均达到80%以上;同时它们可以通过清除细胞内多余的活性氧/活性氮来保护细胞免受过氧化氢刺激。此外,能够有效降低炎症因子的产生,而同等剂量条件下单独的乙酰半胱氨酸则无法达到。而且,Au NCs-NAC在甘油诱导的急性肾衰竭小鼠上显示出良好的治疗效果,且明显优于同等剂量的单独的乙酰半胱氨酸。更重要的是,Au NCs-NAC具有良好的生物相容性和生物安全性。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

  1. 一种用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇,其特征在于,所述乙酰半胱氨酸稳定的金纳米簇包括:金纳米簇,结合于所述金纳米簇表面的乙酰半胱氨酸。
  2. 根据权利要求1所述的用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇,其特征在于,所述金纳米簇与所述乙酰半胱氨酸之间通过金-硫配位键结合。
  3. 根据权利要求1所述的用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇,其特征在于,所述金纳米簇和所述乙酰半胱氨酸的质量比为1:(1-10)。
  4. 根据权利要求1所述的用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇,其特征在于,所述乙酰半胱氨酸稳定的金纳米簇为直径小于等于3 nm的球形簇状颗粒。
  5. 一种如权利要求1-4任一所述的用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇的制备方法,其特征在于,包括步骤:将氯金酸、氢氧化钠和乙酰半胱氨酸混合于水中,搅拌并加热,得到混合溶液;将所述混合溶液进行透析,得到所述乙酰半胱氨酸稳定的金纳米簇。
  6. 根据权利要求5所述的用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇的制备方法,其特征在于,所述氯金酸与乙酰半胱氨酸的质量比为1:(1-10)。
  7. 根据权利要求5所述的用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇的制备方法,其特征在于,所述搅拌并加热的时间为1-4小时。
  8. 根据权利要求5所述的用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇的制备方法,其特征在于,所述搅拌并加热的温度为25-50℃。
  9. 一种如权利要求1-4任一所述的乙酰半胱氨酸稳定的金纳米簇在制备治疗急性肾损伤制剂中的应用;
    或者,一种如权利要求5-8任一所述的方法制得的乙酰半胱氨酸稳定的金纳米簇在制备治疗急性肾损伤制剂中的应用。
PCT/CN2022/093947 2021-07-12 2022-05-19 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用 WO2023284408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22841048.6A EP4371576A1 (en) 2021-07-12 2022-05-19 Acetylcysteine-stabilized gold nanoclusters for acute kidney injury, and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110786544.5A CN113663082B (zh) 2021-07-12 2021-07-12 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用
CN202110786544.5 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023284408A1 true WO2023284408A1 (zh) 2023-01-19

Family

ID=78538977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093947 WO2023284408A1 (zh) 2021-07-12 2022-05-19 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用

Country Status (3)

Country Link
EP (1) EP4371576A1 (zh)
CN (1) CN113663082B (zh)
WO (1) WO2023284408A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663082B (zh) * 2021-07-12 2023-06-02 深圳大学 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330393A (zh) * 2014-11-04 2015-02-04 福建医科大学 金纳米簇为荧光探针的葡萄糖测定方法
CN112263686A (zh) * 2020-10-19 2021-01-26 深圳大学 一种用于急性肾损伤的纳米酶诊疗剂及其制备方法与应用
CN113663082A (zh) * 2021-07-12 2021-11-19 深圳大学 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330393A (zh) * 2014-11-04 2015-02-04 福建医科大学 金纳米簇为荧光探针的葡萄糖测定方法
CN112263686A (zh) * 2020-10-19 2021-01-26 深圳大学 一种用于急性肾损伤的纳米酶诊疗剂及其制备方法与应用
CN113663082A (zh) * 2021-07-12 2021-11-19 深圳大学 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 29 May 2017, FUJIAN UNIVERSITY OF MEDICINE, CN, article JIǍN MĚILÌ: "Study on the Electrogenerated Chemiluminescence Properties of N-Acetyl-L-Cysteine ​​Gold Nanocluster and Its Application", pages: 1 - 119, XP093023703 *
DENG HAO-HUA, WU GANG-WEI, HE DONG, PENG HUA-PING, LIU AI-LIN, XIA XING-HUA, CHEN WEI: "Fenton reaction-mediated fluorescence quenching of N-acetyl-l-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection", ANALYST, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 140, no. 22, 21 November 2015 (2015-11-21), UK , pages 7650 - 7656, XP093023697, ISSN: 0003-2654, DOI: 10.1039/C5AN01284H *
LUO JING-HUI, YING-BAO YANG: "Effect of N-acetylcysteine on Oxidative Stress in Acute Kidney Injury Induced by Cisplatin", CHINESE JOURNAL OF EXPERIMENTAL TRADITIONAL MEDICAL FORMULAE, ZHONGGUO ZHONGYI KEXUEYUAN ZHONGYAO YANJIUSUO, CN, vol. 18, no. 19, 19 October 2012 (2012-10-19), CN , pages 170 - 175, XP093023711, ISSN: 1005-9903, DOI: 10.13422/j.cnki.syfjx.2012.19.052 *
ZHANG DONG-YANG, TU TIANHUI, YOUNIS MUHAMMAD RIZWAN, ZHU KATHY S., LIU HENGKE, LEI SHAN, QU JUNLE, LIN JING, HUANG PENG: "Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury", THERANOSTICS, IVYSPRING INTERNATIONAL PUBLISHER, AU, vol. 11, no. 20, 1 January 2021 (2021-01-01), AU , pages 9904 - 9917, XP093023695, ISSN: 1838-7640, DOI: 10.7150/thno.66518 *
ZHAO YI; PU MINGJU; WANG YANAN; YU LIANGMIN; SONG XINYU; HE ZHIYU: "Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 336, 24 June 2021 (2021-06-24), AMSTERDAM, NL , pages 233 - 251, XP086732005, ISSN: 0168-3659, DOI: 10.1016/j.jconrel.2021.06.026 *

Also Published As

Publication number Publication date
CN113663082B (zh) 2023-06-02
CN113663082A (zh) 2021-11-19
EP4371576A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
Ma et al. Hollow, rough, and nitric oxide‐releasing cerium oxide nanoparticles for promoting multiple stages of wound healing
Celardo et al. Pharmacological potential of cerium oxide nanoparticles
Mu et al. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury
Kim et al. Ultrasmall antioxidant cerium oxide nanoparticles for regulation of acute inflammation
US20210212955A1 (en) Nanoparticle for protein delivery
Chen et al. Porous selenium nanozymes targeted scavenging ROS synchronize therapy local inflammation and sepsis injury
Chen et al. Activation of angiogenesis and wound healing in diabetic mice using NO-delivery dinitrosyl iron complexes
JP6382952B2 (ja) 酸化ストレスを治療するためのキレート化ナノセリア
Tian et al. Rational design and biological application of antioxidant nanozymes
CN112569253A (zh) 一种用于急性肾损伤的纳米酶药物及其制备方法与应用
Nethi et al. Engineered nanoparticles for effective redox signaling during angiogenic and antiangiogenic therapy
Yang et al. Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis
CN112263686A (zh) 一种用于急性肾损伤的纳米酶诊疗剂及其制备方法与应用
WO2023284408A1 (zh) 用于急性肾损伤的乙酰半胱氨酸稳定的金纳米簇及其制备方法与应用
Mu et al. Collagen-anchored cascade nanoreactors with prolonged intratumoral retention for combined cancer starvation and chemotherapy
Liu et al. A dual-inhibitor system for the effective antifibrillation of Aβ40 peptides by biodegradable EGCG–Fe (iii)/PVP nanoparticles
Chen et al. PTT/PDT-induced microbial apoptosis and wound healing depend on immune activation and macrophage phenotype transformation
Shi et al. Hyaluronic acid‐based reactive oxygen species‐responsive multifunctional injectable hydrogel platform accelerating diabetic wound healing
Hou et al. Treatment of acute kidney injury using a dual enzyme embedded zeolitic imidazolate frameworks cascade that catalyzes in vivo reactive oxygen species scavenging
Zhang et al. Guanosine-driven hyaluronic acid-based supramolecular hydrogels with peroxidase-like activity for chronic diabetic wound treatment
JP2006028041A (ja) 核酸含有ナノ粒子
Wu et al. Unimolecular Cascaded Multienzyme Conjugates Modulate the Microenvironment of Diabetic Wound to Promote Healing
CN114681482B (zh) 一种纳米酶及其制备方法与应用
KR102138978B1 (ko) 나노입자 구조체 및 그 형성 방법
JP6041811B2 (ja) 細菌由来の感染症を治療する抗細菌剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841048

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841048

Country of ref document: EP

Effective date: 20240212