WO2023284242A1 - 声衬综合性能测试平台 - Google Patents

声衬综合性能测试平台 Download PDF

Info

Publication number
WO2023284242A1
WO2023284242A1 PCT/CN2021/137781 CN2021137781W WO2023284242A1 WO 2023284242 A1 WO2023284242 A1 WO 2023284242A1 CN 2021137781 W CN2021137781 W CN 2021137781W WO 2023284242 A1 WO2023284242 A1 WO 2023284242A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
lining
acoustic lining
acoustic
sound
Prior art date
Application number
PCT/CN2021/137781
Other languages
English (en)
French (fr)
Inventor
李晓东
郑铭阳
陈超
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to EP21876746.5A priority Critical patent/EP4145101B1/en
Priority to US17/722,473 priority patent/US11474001B2/en
Publication of WO2023284242A1 publication Critical patent/WO2023284242A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details

Definitions

  • the disclosure relates to the technical field of aerodynamics and acoustic measurement, in particular to a sound lining comprehensive performance testing platform.
  • Aeroengine nacelle acoustic lining is an effective passive noise reduction structure. Due to the structural characteristics of the surface openings, the nacelle acoustic lining will bring about an increase in resistance compared to a smooth plate, which makes the nacelle acoustic lining bring acoustic benefits but also leads to the loss of aerodynamic performance. In addition, the action of incident sound waves will bring additional resistance growth, and the noise with high sound intensity will cause acoustic fatigue of the acoustic lining and induce acoustic resonance, resulting in safety hazards in the structure of the compression system.
  • the existing method for measuring the performance parameters of the acoustic lining is usually to attach the acoustic lining to be tested on the lower wall of the flow tube, then measure the resistance through a force-measuring mechanism, and then arrange a microphone above the acoustic lining to measure the acoustic impedance.
  • Existing studies on the resistance of acoustic linings usually only focus on the influence of the surface configuration of the acoustic lining on the resistance. As an acoustic lining is a sound-absorbing structure, the incoming and outgoing sound waves will also affect the resistance.
  • the existing acoustic lining resistance test and acoustic lining acoustic impedance test are in a separate state.
  • test conditions are completely consistent, resulting in a one-to-one correspondence between the measured resistance and acoustic impedance, which is not conducive to Aerodynamic and acoustic integrated design of acoustic lining.
  • the present disclosure provides an acoustic lining comprehensive performance testing platform.
  • the acoustic lining comprehensive performance testing platform includes: a main flow pipe and a test cavity, the main flow pipe is configured to provide an airflow channel;
  • the main flow pipeline includes a sound source section and a test section, and the test section is located behind the sound source section;
  • the wall of the sound source section is provided with a speaker array
  • the test cavity is installed on the test section, and the test cavity is provided with a tested acoustic lining, an acceleration sensor and a resistance balance, and the tested acoustic lining is provided with strain gauges, and the tested acoustic lining is connected to the tested acoustic lining.
  • the acceleration sensor is connected, the resistance balance is connected to the carrying tray, and the carrying tray is fixedly connected to the measured acoustic lining;
  • the tested acoustic lining is attached to the wall surface of the test section, the wall surface of the test section in front of the tested acoustic lining is provided with a first microphone array, and the tested acoustic lining is opposite to or adjacent to the wall surface of the test section.
  • a second microphone array is arranged on the wall surface of the test section, and a third microphone array is arranged on the wall surface of the test section behind the tested acoustic lining.
  • the wall of the sound source section is provided with N sets of speaker arrays, where N is an integer not less than 1;
  • a set of speaker arrays includes M speakers, and the M speakers in a set of speaker arrays are arranged on the wall of the sound source section along the circumference of the sound source section, and M is an integer not less than 1.
  • strain gauges are arranged on the perforated plate and the honeycomb cavity of the acoustic lining under test.
  • an adjustment mechanism is also provided in the test cavity, and the adjustment mechanism is connected with the resistance balance.
  • the wall of the test section is also provided with a pressure probe array
  • the pressure probes in the pressure probe array and the microphones in the second microphone array are arranged along the center of the main flow duct. Axisymmetric setting.
  • the main flow pipeline further includes a first anechoic section and a second anechoic section, the first anechoic section is arranged before the sound source section, and the second anechoic section is arranged in the test after the paragraph;
  • At least two symmetrically arranged wedge-shaped structures are arranged on the wall surface of each of the sound-absorbing sections, and sound-absorbing materials are arranged in the wedge-shaped structures;
  • each wedge-shaped structure and the sound-absorbing section is a perforated plate with wire mesh.
  • the first anechoic section, the sound source section, the test section and the second anechoic section are connected by flanges.
  • the test platform includes a displacement mechanism and a flow velocity measuring instrument
  • the displacement mechanism includes a first slide rail and a second slide rail
  • the first slide rail and the second slide rail are respectively connected to the flow velocity meter
  • the flow rate measuring instrument is configured to measure the air velocity in the main flow pipeline
  • the first slide rail When the first slide rail is driven by a motor, the first slide rail drives the flow rate measuring instrument to move in a first direction;
  • the second slide rail When the second slide rail is driven by the motor, the second slide rail drives the flow rate measuring instrument to move along the second direction.
  • the first slide rail and/or the second slide rail drive the flow velocity measuring instrument into the main flow duct;
  • the first sliding rail and/or the second sliding rail drive the flow rate measuring instrument out of the main flow pipe;
  • a seal is arranged at the connection between the flow rate measuring instrument and the main flow pipeline.
  • an observation window is also provided on the wall of the test section.
  • the acoustic lining comprehensive performance testing platform can measure the stress of the tested acoustic lining under high sound intensity through the strain gauges arranged on the tested acoustic lining, measure the resistance of the tested acoustic lining through the resistance balance, and measure the resistance of the tested acoustic lining through the microphone array.
  • Acoustic performance parameters of the tested acoustic lining are calculated from the obtained sound pressure data, that is, the stress, resistance and acoustic performance parameters of the tested acoustic lining can be simultaneously measured through the comprehensive performance testing platform of the acoustic lining provided by the embodiment of the present disclosure, which overcomes the existing In the technology, the acoustic lining experiment is carried out separately, which leads to inconsistent experimental conditions and inaccurate experimental data.
  • Fig. 1 is a schematic diagram of an acoustic lining comprehensive performance testing platform provided by an embodiment of the present disclosure
  • Fig. 2 is another schematic diagram of an acoustic lining comprehensive performance testing platform provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a test section of an acoustic lining comprehensive performance test platform provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a wall surface of the test section of the acoustic lining comprehensive performance test platform provided by the embodiment of the present disclosure
  • Fig. 5 is a schematic cross-sectional view of a wedge-shaped structure of an acoustic lining comprehensive performance testing platform provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of the displacement mechanism 107 of the sound lining comprehensive performance testing platform provided by the embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of the flow velocity measuring instrument 108 of the acoustic lining comprehensive performance testing platform provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a sound lining comprehensive performance testing platform, as shown in Figure 1, the testing platform includes:
  • the main flow duct 100 is configured to provide an air flow channel
  • the mainstream pipeline 100 includes a sound source section and a test section, and the test section is located after the sound source section;
  • a speaker array 301 is arranged on the wall of the sound source section
  • the test cavity 200 is installed in the test section, and the test cavity 200 is provided with a tested acoustic lining 201, an acceleration sensor 202 and a resistance balance 203.
  • the tested acoustic lining 201 is arranged with a strain gauge 211, and the tested acoustic lining 201 and the acceleration sensor 202 connection, the resistance balance 203 is connected to the carrying tray 204, and the carrying tray 204 is fixedly connected to the measured acoustic lining 201;
  • the wall surface of the tested acoustic lining 201 is attached to the wall of the test section, the wall surface of the test section before the tested acoustic lining 201 is provided with a first microphone array 101, and the wall surface of the test section opposite or adjacent to the tested acoustic lining 201 is provided with a second microphone array.
  • Two microphone arrays 102, a third microphone array 103 is provided on the wall of the test section behind the acoustic lining 201 to be tested.
  • the acoustic lining comprehensive performance testing platform includes a main pipe 100 and a testing cavity 200 .
  • the cross section of the main flow duct 100 may be rectangular, and the main flow duct 100 is usually a straight pipe, and the airflow may circulate along the main flow duct 100, and the direction of the arrow in FIG. 1 is the flow direction of the airflow and the sound wave.
  • the mainstream duct 100 includes a sound source section and a test section, and the test section is located behind the sound source section, that is, the sound source section is located in front of the test section, so that incident sound waves can be provided to the airflow through the sound source section.
  • the mainstream pipeline 100 may be spliced by multiple pipeline units, and the sound source section and the test section as pipeline units may be spliced to form the mainstream pipeline 100 .
  • the acoustic lining 201 to be tested can be installed on the lower wall of the main flow pipe 100 .
  • the pipe wall of the main flow pipe 100 can be divided into an outer pipe wall and an inner pipe wall, or an outer wall surface and an inner wall surface.
  • the acoustic lining 201 to be tested can be completely and tightly attached to the inner pipe wall or the inner wall of the main flow pipe 100, and the loudspeaker array 301, each microphone array and the pressure probes hereinafter are also It can be arranged on the inner pipe wall of the main flow pipe 100 .
  • the sound-absorbing surface of the liner is also generally rectangular, so when the cross-section of the mainstream duct 100 is rectangular, the sound-absorbing surface of the tested acoustic liner 201 can be completely and closely attached to the lower wall of the main flow duct 100 .
  • the area of the wall surface in contact with the tested acoustic lining 201 and the test section depends on the area of the sound-absorbing surface of the tested acoustic lining 201, and the length of the wall surface in contact with the tested acoustic lining 201 depends on the measured The length of the acoustic liner 201 .
  • the acoustic lining 201 under test is connected to an acceleration sensor 202 , so that the vibration response of the acoustic lining 201 under test under high sound intensity can be measured through the acceleration sensor 202 .
  • the position of the acceleration sensor 202 may be located below the measured acoustic lining 201 along the direction of gravity, or may not be located below the measured acoustic lining 201 along the direction of gravity, that is, the position of the acceleration sensor 202 may be determined according to actual needs. set up.
  • the upper part of the resistance balance 203 along the gravity direction can be connected with the carrying tray 204, and the carrying tray 204 is fixedly connected with the measured acoustic lining 201, so that the force on the tested acoustic lining 201 can be transmitted to the resistance balance 203 through the carrying tray 204, and then The resistance of the acoustic lining 201 to be tested can be directly measured by the resistance balance 203 .
  • the acceleration sensor 202 may be fixed on the carrying tray 204, and the resistance balance 203 may be arranged below the measured acoustic lining 201 and the acceleration sensor 202 along the direction of gravity.
  • N sets of speaker arrays 301 are arranged on the wall of the sound source section, where N is an integer not less than 1.
  • N can be 1, 2, 3...N.
  • a set of speaker arrays may include M speakers, and the M speakers in a set of speaker arrays may be arranged on the outer wall of the sound source section at equal intervals along the circumference of the sound source section, and M is an integer not less than 1.
  • a set of loudspeaker arrays may include 1, 2, 3, 4 or more loudspeakers.
  • a set of right-handed Cartesian coordinate system (X, Y, Z) is cited, and all descriptions related to directions in this disclosure can be referred to this coordinate system.
  • X, Y, and Z represent axial, vertical, and lateral directions, respectively, and the direction of the Y axis is the same as the direction of gravity.
  • the four speakers in one set of speaker arrays can be arranged around the wall of the sound source section.
  • the coordinates of the four speakers in a set of speaker arrays on the X axis are equal.
  • the superposition of multiple groups of loudspeaker arrays can realize the superposition of incident sound waves, and propagate along the X-axis with the airflow, and finally the incident sound pressure level before the test section can reach 150 decibels or more.
  • the distance between each speaker array can be set by the staff according to actual needs.
  • strain gauges 211 can be arranged at the perforated plate and the honeycomb cavity of the tested acoustic lining 201, so that the stress of the tested acoustic lining 201 under high sound intensity can be measured through the strain gauges 211, and according to the measured acoustic The magnitude of the stress of the lining 201 evaluates its vibro-acoustic response characteristics.
  • an adjustment mechanism 205 is also provided in the test cavity 200, and the adjustment mechanism 205 may be arranged below the resistance balance 203 along the direction of gravity. The adjustment mechanism 205 can translate in the X-Y-Z direction, that is, it can realize the translation in the three dimensions of X-Y-Z.
  • the movement of the adjustment mechanism 205 can drive the movement of the resistance balance 203, the acceleration sensor 202 and the measured acoustic lining 201, so that the level of the tested acoustic lining 201 in the X-axis direction can be adjusted through the adjustment mechanism 205, and the accuracy can reach 0.001mm.
  • the adjustment mechanism 205 is disposed in the test cavity, and the adjustment mechanism 205 can be connected with the resistance balance 203 above the gravity direction.
  • a first microphone array 101 , a second microphone array 102 and a third microphone array 103 may be sequentially arranged on the wall of the test section.
  • the first microphone array 101 is arranged in front of the acoustic lining 201 to be tested, and the incident sound pressure level data of the incoming flow can be calculated according to the sound pressure data of the pipe wall of the test section measured by the first microphone array 101 .
  • the second microphone array 102 is arranged on the wall surface of the test section opposite to the tested acoustic lining 201 , or the second microphone array 102 can also be arranged on the wall surface of the test section adjacent to the tested acoustic lining 201 .
  • the sound-absorbing surface of the tested acoustic lining 201 can be attached to a side wall of the test section, and the second microphone array 102 can be arranged on the same side wall as the test section.
  • the acoustic impedance of the tested acoustic lining 201 at the frequency corresponding to the incident sound wave can be obtained according to the sound pressure data of the tube wall of the test section measured by the second microphone array 102 .
  • the third microphone array 103 is arranged on the wall surface of the test section behind the tested acoustic lining 201. According to the sound pressure data of the test section wall measured by the third microphone array 103, the sound can be calculated after the sound passes through the corresponding test section of the tested acoustic lining 201. sound pressure level data. Through the incident sound pressure level data of the incoming flow and the sound pressure level data after the sound passes through the test section corresponding to the tested acoustic lining 201, the transmission loss of the tested acoustic lining 201 at the frequency corresponding to the incident sound wave can be calculated.
  • the number of microphones in the first microphone array 101, the second microphone array 102 and the third microphone array 103 can be selected by the staff according to the actual situation, and the first microphone array 101, the second microphone array 102 and the third microphone array The distance between the three microphone arrays 103 can also be selected by the staff according to the actual situation.
  • the first microphone array 101 and the third microphone array 103 may include at least two microphones, and the number of microphones included in the first microphone array 101 and the third microphone array 103 may be equal, and the second microphone array 102 may be at least Includes 16 microphones.
  • a pressure probe array 104 may also be provided on the wall of the testing section.
  • the pressure probe array 104 is also provided on the wall of the test section opposite to the tested acoustic lining 201 , or the pressure probe array 104 can also be arranged on another wall of the test section adjacent to the tested acoustic lining 201 .
  • the wall surface of the test section opposite to the acoustic lining 201 to be tested is provided with a pressure probe array 104 and a second microphone array 102
  • the pressure probes in the pressure probe array 104 and the second microphone array 102 The microphones in can be arranged symmetrically along the central axis of the main flow duct 100 .
  • the circular mark represents the microphone in the second microphone array 102
  • the rectangular mark represents the pressure probe in the pressure probe array 104
  • the pressure probe in the pressure probe array 104 is the same as that in the second microphone array 102.
  • the microphones can be arranged symmetrically along the central axis of the main flow duct 100. Wherein, the number of probes in the pressure probe array 104 and the number of microphones in the second microphone array 102 may be the same or different.
  • the specific number of probes in the pressure probe array 104 can be set by staff according to actual needs. For example, the number of pressure probes in the pressure probe array 104 can be at least 10.
  • the pressure probes can be used to measure the static pressure of the airflow in the main pipe 100 , and can be used to evaluate the resistance of the acoustic lining 201 under test after processing the static pressure gradient along the flow direction measured by multiple pressure probes.
  • the main flow pipe 100 may include a first noise reduction section and a second noise reduction section.
  • the first anechoic section can be arranged before the sound source section, and the second anechoic section can be arranged after the test section, that is, the first anechoic section and the second anechoic section can be respectively located at the sides of the main flow duct 100. ends.
  • the first anechoic section and the second anechoic section can also be pipeline units, and the first anechoic section, the sound source section, the test section and the second anechoic section can be spliced to form the main pipeline 100 . As shown in FIG.
  • At least two wedge-shaped structures 105 arranged symmetrically may be provided on the wall of each sound-absorbing section, and sound-absorbing materials may be provided in the cavities of the wedge-shaped structures 105 .
  • sound-absorbing cotton may be disposed in the cavity of the wedge-shaped structure 105 .
  • wedge-shaped structures 105 may be respectively provided on two opposite sides of the muffler section, and the two wedge-shaped structures 105 are arranged symmetrically; or , wedge-shaped structures 105 can be provided on the four sides of the sound-absorbing section, and the four wedge-shaped structures 105 are arranged symmetrically.
  • one side of the cavity of the wedge-shaped structure 105 can be a triangular support plate 151 to provide good support, and each wedge-shaped structure 105 and the sound-absorbing section can be connected by a perforated plate 106 with a wire mesh That is, the interface between the wedge-shaped structure 105 and the noise-absorbing section can be a perforated plate 106 with a wire mesh and a large perforation rate, so that the background noise of the incoming flow can enter the wedge-shaped structure 105 through the perforated plate 106 with a wire mesh to be absorbed , and the airflow cannot enter the wedge-shaped structure 105, so that the background noise of the airflow can be eliminated or reduced without affecting the flow.
  • the perforation rate of the perforated plate 106 may be 40%-60%.
  • the first muffler section can be used to reduce or eliminate incoming noise
  • the second muffler section can be used to form a no-reflection boundary condition at the outlet of the main flow pipe 100 .
  • the perforated plate of the acoustic lining 201 under test may be called the first perforated plate
  • the perforated plate 106 with wire mesh at the interface between the wedge structure 105 and the sound-absorbing section may be called the second perforated plate.
  • the acoustic lining comprehensive performance test platform includes a displacement mechanism 107 and a flow velocity measuring instrument 108
  • the displacement mechanism 107 includes a first slide rail 171 and a second slide rail 172
  • the first slide rail 171 and the second sliding rail 172 are respectively connected with the flow velocity measuring instrument 108
  • the flow velocity measuring instrument 108 is configured to measure the airflow velocity in the main flow pipe 100 .
  • Both the first sliding rail 171 and the second sliding rail 172 can be respectively driven by a motor 178 so as to drive the flow velocity measuring instrument 108 to move.
  • the first sliding rail 171 and the second sliding rail 172 may be respectively driven by stepping motors.
  • the first slide rail 171 and the second slide rail 172 may be Y-direction slide rails and Z-direction slide rails, respectively.
  • the flow rate measuring instrument 108 can be driven to move in the Y and Z directions, and the accuracy can reach 0.001mm.
  • the displacement mechanism 107 may further include a slide rail support 173 , a sleeve 174 , a connecting rod 175 and a slide block 176 .
  • the first slide rail 171 can drive the second slide rail 172, the sleeve 174 and the velocity measuring instrument 108 to move along the Y direction;
  • the second sliding rail 172 can drive the first sliding rail 171 , the sleeve 174 and the flow rate measuring instrument 108 to move along the Z direction.
  • the slide rail support 173 is configured to support the first slide rail 171 and the second slide rail 172, the slide rail support 173 can be fixedly connected with the main flow pipeline 100, and the first slide rail 171 and the second slide rail 172 are driven by the motor 178 Relative movement can occur with the slide rail support 173 .
  • a lubricating material such as Teflon can be used to seal between the sliding block 176 and the connecting rod 175, and the connecting rod 175 and the sliding block 176 can be rigidly connected.
  • the sleeve 174 is configured to accommodate the connecting rod 175 when the connecting rod 175 moves along the Y-axis direction, the surface of the connecting rod 175 is smooth, and there may be a slight gap between the connecting rod 175 and the sleeve 174 .
  • the surface of the slider 176 is also smooth, which can ensure smooth sliding between the surface of the slider 176 and the wall surface of the main flow pipe 100 .
  • the rod of the flow rate measuring instrument 108 can be prevented from being damaged by force by driving the slider 176 to move. As shown in FIG.
  • the slider 176 can be a rectangular block, and the flow velocity measuring instrument 108 can penetrate the slider 176 and go deep into the main pipeline 100 , so that the air velocity in the main pipeline 100 can be measured by the flow velocity measuring instrument 108 .
  • the sliding block 176 does not need to move, the sliding block can be fixed by at least two fixing blocks 177 .
  • the fixing block 177, the sliding block 176 and the main flow pipe 100 can be fixed by screws.
  • the screws can be loosened to loosen the fixing block 177, thereby facilitating the slider 176 to move.
  • the flow velocity measuring instrument 108 can be a pitot tube, a hot wire velocimeter or a thermal mass flowmeter, etc., and can be used to measure the airflow velocity in the main pipe 100 .
  • the velocity measuring instrument 108 is driven by the first sliding rail 171 and the second sliding rail 172 to move, and the flow velocity measuring instrument 108 can measure the air velocity of the Y-Z section in the mainstream duct 100, and can also measure the boundary layer velocity on the wall of the mainstream duct 100.
  • the flow rate measuring instrument 108 can be driven by the first slide rail 171 and/or the second slide rail 172 to extend into the main flow duct 100;
  • the main pipe 100 is protruded, so as to prevent the rod of the flow velocity measuring instrument 108 from affecting the air flow and the sound wave flow in the main pipe 100 .
  • first slide rail 171 and/or the second slide rail 172 drive the flow velocity measuring instrument 108 out of the main pipe 100 does not mean that the flow velocity measuring instrument 108 is completely separated from the main flow pipeline 100, as shown in Figure 7(b)
  • driving the flow velocity measuring instrument 108 out of the main flow duct 100 by the first sliding rail 171 and/or the second sliding rail 172 may be to move the tip part of the flow velocity measuring instrument 108 out of the air flow channel in the main flow duct 100, that is, as long as the main flow is not affected.
  • the air flow in the pipeline 100 can be regarded as having driven the flow velocity measuring instrument 108 out of the main pipeline 100 .
  • a sealing member 109 may be provided at the connection between the flow velocity measuring instrument 108 and the main pipe 100 .
  • a sealing ring may be provided at the connection between the flow rate measuring instrument 108 and the main flow pipeline 100 .
  • Fig. 1 and Fig. 7 only show the positions of the displacement mechanism 107 and the flow velocity measuring instrument 108 on the main flow pipeline 100 by way of example. In practical applications, the staff can set the displacement mechanism 107 and the flow velocity The gauge 108 is at the location of the main flow conduit 100 .
  • the first anechoic section, the sound source section, the test section, and the second anechoic section may be connected through a flange 113 to form the main pipe 100 .
  • the staff can add or delete pipeline units according to actual needs, or adjust the position of each pipeline unit, which increases the flexibility of the sound lining comprehensive performance test platform provided by this embodiment.
  • the sound lining comprehensive performance testing platform provided in this embodiment may further include a bracket 110 and a base 111 for supporting the main flow pipe 100 and various devices arranged on the main flow pipe 100 . In order not to affect the flow of air in the main pipe 100 , the contact area between the bracket 110 and the main pipe 100 should be as small as possible.
  • another wall surface of the test section adjacent to or opposite to the acoustic lining 201 under test may be provided with an observation window 112 .
  • the acoustic lining 201 to be tested and the second microphone array 102 can be respectively arranged on two opposite walls of the rectangular test section, and the wall surface of the main flow duct 100 between these two opposite walls can be An observation window 112 is provided, or, when the second microphone array 102 is arranged on another wall surface of the test section adjacent to the acoustic lining 201 under test, the observation window 112 can be arranged on the opposite or adjacent side of the acoustic lining 201 under test.
  • Another wall of the test section is provided.
  • the second microphone array 102 and the pressure probe array 104 can be arranged on the same wall of the test section, but the tested window 112 is generally not arranged on the same wall as the second microphone array 102 or the pressure probe array 104. the same wall.
  • Part of the wall surface of the main flow duct 100 may be made of transparent material, so as to form the observation window 112 .
  • part of the wall of the main flow duct 100 may be made of glass, thereby forming the viewing window 112.
  • the schlieren method or particle tracking technology Partical Image Velocity, PIV
  • the cross-section of the mainstream duct 100 described in the example of this embodiment is a rectangle, it means that the cross-sections of the first noise reduction section, the sound source section, the test section and the second noise elimination section are all rectangles;
  • the cross-section of the first anechoic section, the sound source section, the test section or the second anechoic section described in the example of the embodiment is rectangular, it refers to the first anechoic section, the sound source section, the test section and the second anechoic section.
  • the sections of the sound segments are all rectangular.
  • the acoustic lining comprehensive performance testing platform provided in this embodiment can measure the stress of the tested acoustic lining 201 under high sound intensity through the strain gauge 211 arranged on the tested acoustic lining 201, and measure the stress of the tested acoustic lining 201 through the resistance balance 203. Resistance, the acoustic performance parameters of the tested acoustic lining 201 are calculated through the sound pressure data obtained by the microphone array, that is, the stress, resistance and acoustic performance of the tested acoustic lining 201 can be measured simultaneously through the acoustic lining comprehensive performance testing platform provided by the embodiment of the present disclosure.
  • the performance parameter overcomes the problem of inaccurate experimental data caused by inconsistent experimental conditions caused by separate acoustic lining experiments in the prior art.
  • the loudspeaker array 301 controls the amplitude and phase of the loudspeakers in the loudspeaker array 301, and can control the sound pressure level of the incident sound wave to reach 150 decibels and above under the premise that the main flow duct 100 has airflow;
  • the balance 203 is provided with a pressure probe on the opposite side of the measured acoustic lining 201, and the resistance of the measured acoustic lining 201 can be obtained through direct measurement and indirect measurement at the same time, thereby verifying the accuracy of the experimental results; the resistance of the acoustic lining can be measured simultaneously and acoustic impedance, as well as monitoring the acoustic-vibratory response state, so that the aerodynamic parameters and acoustic parameters of the measured acoustic lining
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本公开涉及空气动力学和声学测量技术领域,尤其涉及一种声衬综合性能测试平台。本实施例提供的声衬综合性能测试平台,能够通过被测声衬上布置的应变片测量高声强下被测声衬的应力大小,通过阻力天平测量被测声衬的阻力,通过麦克阵列获得的声压数据计算被测声衬的声学性能参数,即可以通过本公开实施例提供的声衬综合性能测试平台同时测量被测声衬的应力大小、阻力和声学性能参数,克服了现有技术中分开进行声衬实验导致实验工况不一致从而导致实验数据不准确的问题。

Description

声衬综合性能测试平台 技术领域
本公开涉及空气动力学和声学测量技术领域,尤其涉及一种声衬综合性能测试平台。
背景技术
航空发动机短舱声衬是一种有效的被动降噪结构件。由于表面开孔的结构特征,短舱声衬相对于光滑平板会带来阻力的增长,这使得短舱声衬带来声学收益的同时也导致了气动性能的损失。此外,入射声波作用会带来额外的阻力增长,高声强的噪声会导致声衬声疲劳进而诱发声共振,导致压缩系统结构存在安全隐患。
现有的声衬性能参数测量方法通常是将被测声衬贴在流管的下壁面,然后通过测力机构测量阻力,再在被测声衬上方布置麦克风测量声阻抗。现有的声衬阻力的研究通常仅关注声衬的表面构型对阻力的影响,而声衬作为一种吸声结构,来流入射声波也会对阻力产生影响。此外,现有的声衬阻力试验与声衬声阻抗试验处于割裂状态,若两者不能同时进行,则无法确保试验工况完全一致,导致测得的阻力和声阻抗不能一一对应,不利于声衬的气动和声学综合设计。
发明内容
为了解决上述技术问题中的至少一个,本公开提供了一种声衬综合性能测试平台。
本公开实施例提供的声衬综合性能测试平台包括:主流管道和测试腔体,所述主流管道被配置为提供气流通道;
所述主流管道包括声源段和测试段,所述测试段位于所述声源段之后;
所述声源段的壁面设置有扬声器阵列;
所述测试腔体安装于所述测试段,所述测试腔体内设置有被测声衬、加速度传感器和阻力天平,所述被测声衬布置有应变片,所述被测声衬与所述加速度传感器连接,所述阻力天平和承载托盘连接,所述承载托盘和所述被测声衬固定连接;
所述被测声衬与所述测试段的壁面贴合,所述被测声衬前的所述测试段的壁面设置有第一麦克风阵列,与所述被测声衬相对或相邻的所述测试段的壁面设置有第二麦克风阵列,所述被测声衬后的所述测试段的壁面设置有第三麦克风阵列。
可选地,所述声源段的壁面设置有N组扬声器阵列,N为不小于1的整数;
一组所述扬声器阵列包括M个扬声器,一组所述扬声器阵列中的M个扬声器沿所述声源段的周向设置于所述声源段的壁面,M为不小于1的整数。
可选地,所述应变片布置于所述被测声衬的穿孔板和蜂窝腔。
可选地,所述测试腔体内还设置有调整机构,所述调整机构与所述阻力天平连接。
可选地,所述测试段的壁面还设置有压力探针阵列;
当与所述被测声衬相对的测试段的壁面设置有压力探针阵列时,所述压力探针阵列中的压力探针与所述第二麦克风阵列中的麦克风沿所述主流管道的中心轴线对称设置。
可选地,所述主流管道还包括第一消声段和第二消声段,所述第一消声段设置在所述声源段之前,所述第二消声段设置在所述测试段之后;
每个所述消声段的壁面设置有至少两个对称设置的楔形结构,所述楔形结构内设置有吸声材料;
各所述楔形结构和所述消声段的交界面为带有金属丝网的穿孔板。
可选地,所述第一消声段、所述声源段、所述测试段和所述第二消声段通过法兰连接。
可选地,所述测试平台包括位移机构和流速测量仪,所述位移机 构包括第一滑轨和第二滑轨,所述第一滑轨和第二滑轨分别与所述流量测速仪连接,所述流速测量仪被配置为测量所述主流管道内气流速度;
当所述第一滑轨由电机驱动时,所述第一滑轨带动所述流速测量仪沿第一方向移动;
当所述第二滑轨由电机驱动时,所述第二滑轨带动所述流速测量仪沿第二方向移动。
可选地,当需要测量所述主流管道内气流速度时,所述第一滑轨和/或所述第二滑轨带动所述流速测量仪伸入所述主流管道内;
当不需要测量所述主流管道内气流速度时,所述第一滑轨和/或所述第二滑轨带动所述流速测量仪伸出所述主流管道;
所述流速测量仪与所述主流管道的连接处配置有密封件。
可选地,所述测试段的壁面还设置有观察窗口。
本公开实施例提供的技术方案带来的有益效果至少可以包括:
本实施例提供的声衬综合性能测试平台,能够通过被测声衬上布置的应变片测量高声强下被测声衬的应力大小,通过阻力天平测量被测声衬的阻力,通过麦克阵列获得的声压数据计算被测声衬的声学性能参数,即可以通过本公开实施例提供的声衬综合性能测试平台同时测量被测声衬的应力大小、阻力和声学性能参数,克服了现有技术中分开进行声衬实验导致实验工况不一致从而导致实验数据不准确的问题。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图包括在本说明书中并构成本说明书的一部分,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。为了便于描述,附图中仅示出了与本公开相关的部分。
图1是本公开实施例提供的声衬综合性能测试平台的示意图;
图2是本公开实施例提供的声衬综合性能测试平台的另一示意图;
图3是本公开实施例提供的声衬综合性能测试平台的测试段的示意图;
图4是本公开实施例提供的声衬综合性能测试平台的测试段一壁面的示意图;
图5是本公开实施例提供的声衬综合性能测试平台的楔形结构的剖面示意图;
图6是本公开实施例提供的声衬综合性能测试平台的位移机构107的示意图;
图7是本公开实施例提供的声衬综合性能测试平台的流速测量仪108的示意图。
附图标记:100-主流管道,101-第一麦克风阵列,102-第二麦克风阵列,103-第三麦克风阵列,104-压力探针阵列,105-楔形结构,151-三角形支撑板,106-穿孔板,107-位移机构,108-流速测量仪,109-密封件,110-支架,111-底座,112-观察窗口,113-法兰,171-第一滑轨,172-第二滑轨,173-滑轨支撑,174-套筒,175-连接杆,176-滑块,177-固定块,178-电机,200-测试腔体,201-被测声衬,211-应变片,202-加速度传感器,203-阻力天平,204-承载托盘,205-调整机构,301-扬声器阵列。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例,且在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种声衬综合性能测试平台,如图1所示,该测试平台包括:
主流管道100和测试腔体200,主流管道100被配置为提供气流通道;
主流管道100包括声源段和测试段,测试段位于声源段之后;
声源段的壁面设置有扬声器阵列301;
测试腔体200安装于测试段,测试腔体200内设置有被测声衬201、加速度传感器202和阻力天平203,被测声衬201布置有应变片211,被测声衬201与加速度传感器202连接,阻力天平203和承载托盘204连接,承载托盘204和被测声衬201固定连接;
被测声衬201与测试段的壁面贴合,被测声衬201前的测试段的壁面设置有第一麦克风阵列101,与被测声衬201相对或相邻的测试段的壁面设置有第二麦克风阵列102,被测声衬201后的测试段的壁面设置有第三麦克风阵列103。
本公开实施例提供的声衬综合性能测试平台包括主流管道100和测试腔体200。其中,主流管道100的截面可以是矩形,且主流管道100通常为直管,气流可以沿主流管道100流通,图1中的箭头方向为气流和声波的流动方向。如图1所示,主流管道100包括声源段和测试段,且测试段位于声源段之后,即声源段位于测试段之前,从而可以通过声源段为气流提供入射声波。举例来说,主流管道100可以是由多个管道单元拼接而成,声源段和测试段作为管道单元可以通过拼接成为主流管道100。
如图2所示,被测声衬201可以安装于主流管道100的下壁面。由于主流管道100通常具有一定的厚度,因此可以将主流管道100的管壁分为外管壁和内管壁,或者说是外壁面和内壁面。为了获得更准确的测量数据,可以将被测声衬201与主流管道100的内管壁或者说是内壁面完全、紧密贴合,且扬声器阵列301和各麦克风阵列以及下文中的压力探针也可以设置在主流管道100的内管壁上。需要说明的是,图2中被测声衬201和主流管道100之间留有缝隙仅是为了方便表示被测声衬201 和主流管道100之间的位置关系,而在实际应用中,因为声衬的吸声表面通常也为矩形,因此当主流管道100的截面是矩形时,可以将被测声衬201的吸声表面与主流管道100的下壁面完全、紧密贴合。在该例中,被测声衬201与测试段所接触的壁面的面积取决于被测声衬201吸声表面的面积,被测声衬201与测试段所接触的壁面的长度取决于被测声衬201的长度。
如图3所示,被测声衬201与加速度传感器202连接,从而可以通过加速度传感器202测量高声强下被测声衬201的振动响应。此时,加速度传感器202的位置可以位于被测声衬201的沿重力方向的下方,或者也可以不位于被测声衬201的沿重力方向的下方,即加速度传感器202的位置可以根据实际需要进行设置。阻力天平203沿重力方向的上方可以和承载托盘204连接,承载托盘204和被测声衬201固定连接,从而可通过承载托盘204将被测声衬201所受的力传递给阻力天平203,进而可以通过阻力天平203直接测量被测声衬201的阻力。此时,加速度传感器202可以固定在承载托盘204上,阻力天平203可以布置在被测声衬201和加速度传感器202沿重力方向的下方。
在一种可能的实现方式中,声源段的壁面设置有N组扬声器阵列301,N为不小于1的整数。例如,N可以是1,2,3……N。一组扬声器阵列可以包括M个扬声器,且一组扬声器阵列中的M个扬声器可以沿声源段的周向等间距设置于声源段的外壁面,M为不小于1的整数。例如,一组扬声器阵列可以包括1个、2个、3个、4个或更多个扬声器。为了更清楚地解释本实施例的技术方案,引用一组右手笛卡尔坐标系(X,Y,Z),且本公开中所有涉及方向的描述均可以该坐标系作为参照。其中,X、Y和Z分别表示轴向、垂向和横向,且Y轴方向与重力方向相同。如图1所示,当一组扬声器阵列中包括4个扬声器时,一组扬声器阵列中的四个扬声器可以环绕设置于声源段的壁面。此时,一组扬声器阵列中的四个扬声器在X轴上的坐标相等。通过设置合适的幅值和相位,多组扬声器阵列叠加可实现入射声波的叠加,并随气流沿X轴传播,最终在测试段前入射声压级可达到150分贝或 更多。当声源段的外壁面设置有多组扬声器阵列时,各扬声器阵列之间的距离可以由工作人员根据实际需要进行设置。
如图3所示,被测声衬201的穿孔板和蜂窝腔处可以布置有应变片211,从而可以通过应变片211测量高声强下被测声衬201的应力大小,并根据被测声衬201的应力大小评估其声振响应特性。在一种可能的实现方式中,测试腔体200内还设置有调整机构205,调整机构205可以设置在阻力天平203沿重力方向的下方。调整机构205可以在X-Y-Z方向上平移移动,即可以实现在X-Y-Z三个维度上的平移移动。调整机构205的移动可以带动阻力天平203、加速度传感器202和被测声衬201的移动,从而可以通过调整机构205调整被测声衬201在X轴方向的水平,精度可达到0.001mm。如图3所示,调整机构205设置在测试腔体内,且调整机构205沿重力方向的上方可以与阻力天平203连接。
如图1和2所示,测试段的壁面上可以依次设置有第一麦克风阵列101、第二麦克风阵列102和第三麦克风阵列103。其中,第一麦克风阵列101设置在被测声衬201前,可以根据第一麦克风阵列101测量得到的测试段管壁的声压数据计算来流的入射声压级数据。第二麦克风阵列102设置于与被测声衬201相对的测试段的壁面,或者第二麦克风阵列102也可以设置于与被测声衬201相邻的测试段的壁面。例如,当主流管的截面为矩形时,即测试段的截面为矩形时,被测声衬201的吸声表面可以与测试段的一个侧壁面贴合,而第二麦克风阵列102可以设置于与被测声衬201相对的测试段的另一个壁面或者与被测声衬201相邻的测试段的另一个壁面。根据第二麦克风阵列102测量得到的测试段管壁的声压数据可以得到被测声衬201在入射声波对应频率下的声阻抗。第三麦克风阵列103设置于被测声衬201后的测试段的壁面,根据第三麦克风阵列103测量得到的测试段管壁的声压数据可以计算声音经过被测声衬201对应的测试段之后的声压级数据。通过来流的入射声压级数据以及声音经过被测声衬201对应的测试段之后的声压级数据,可以计算得到被测声衬201在入射声波对应 频率下的传递损失。需要说明的是,第一麦克风阵列101、第二麦克风阵列102和第三麦克风阵列103中麦克风的数量可以由工作人员根据实际情况进行选择,且第一麦克风阵列101、第二麦克风阵列102和第三麦克风阵列103的间距也可以由工作人员根据实际情况进行选择。举例来说,第一麦克风阵列101和第三麦克风阵列103可以至少包括2支麦克风,且第一麦克风阵列101和第三麦克风阵列103中包括的麦克风的数量可以相等,第二麦克风阵列102可以至少包括16支麦克风。
在一种可能的实现方式中,测试段的壁面还可以设置有压力探针阵列104。例如,与被测声衬201相对的测试段的壁面还设置有压力探针阵列104,或者,压力探针阵列104也可以设置在与被测声衬201相邻的测试段的另一个壁面。如图4所示,当与被测声衬201相对的测试段的壁面设置有压力探针阵列104和第二麦克风阵列102时,压力探针阵列104中的压力探针与第二麦克风阵列102中的麦克风可以沿主流管道100的中心轴线对称设置。如图4所示,圆形标记表示第二麦克风阵列102中的麦克风,矩形标记表示压力探针阵列104中的压力探针,压力探针阵列104中的压力探针与第二麦克风阵列102中的麦克风可以沿主流管道100的中心轴线对称设置。其中,压力探针阵列104中探针的数量与第二麦克风阵列102中麦克风的数量可以相同,也可以不同。压力探针阵列104中探针的具体数量可以由工作人员根据实际需要设置。例如,压力探针阵列104中的压力探针的数量至少可以是10支。压力探针可以用来测量主流管道100内气流的静压,在对多个压力探针测量得到的沿流向的静压梯度处理后可用来评估被测声衬201的阻力。
在一种可能的实现方式中,主流管道100可以包括第一消声段和第二消声段。如图1所示,第一消声段可以设置在声源段之前,第二消声段可以设置在测试段之后,即第一消声段和第二消声段可以分别位于主流管道100的两端。需要说明的是,第一消声段和第二消声段也可以是管道单元,第一消声段、声源段、测试段和第二消声段可以通过拼接 形成主流管道100。如图1所示,每个消声段的壁面可以设置有至少两个对称设置的楔形结构105,且楔形结构105的腔体内可以设置有吸声材料。例如,楔形结构105的腔体内可以设置有吸声棉。举例来说,当主流管道100的截面为矩形时,即消声段的截面为矩形时,消声段的两个相对侧面可以分别设置有楔形结构105,且两个楔形结构105对称设置;或者,消声段的四个侧面均可以设置楔形结构105,且四个楔形结构105对称设置。如图5所示,楔形结构105的腔体的一侧外壁可以是三角形支撑板151,以提供良好的支撑,且各楔形结构105和消声段可以通过带有金属丝网的穿孔板106连接,即楔形结构105和消声段的交界面可以是带金属丝网且具有大穿孔率的穿孔板106,从而可以使来流背景噪声通过带金属丝网的穿孔板106进入楔形结构105被吸收,而气流无法进入楔形结构105,从而可以在不影响流动的前提下消除或减小气流背景噪声。穿孔板106的穿孔率可以是40%-60%。其中,第一消声段可以用来减小或消除来流噪声,第二消声段可以用来在主流管道100出口形成无反射边界条件。为了便于区分,被测声衬201的穿孔板可以称为第一穿孔板,楔形结构105和消声段的交界面处的带有金属丝网的穿孔板106可以称为第二穿孔板。
在一种可能的实现方式中,本实施例提供的声衬综合性能测试平台包括位移机构107和流速测量仪108,位移机构107包括第一滑轨171和第二滑轨172,第一滑轨171和第二滑轨172分别与流速测量仪108连接,流速测量仪108被配置为测量主流管道100内气流速度。第一滑轨171和第二滑轨172均可以分别由电机178驱动从而带动流速测量仪108移动。例如,第一滑轨171和第二滑轨172可以分别由步进式电机驱动。第一滑轨171和第二滑轨172分别可以是Y方向滑轨和Z方向滑轨。当第一滑轨171和第二滑轨172由电机178驱动时,可以带动流速测量仪108在Y和Z方向移动,且精度可以达到0.001mm。
举例来说,如图6所示,位移机构107还可以包括滑轨支撑173、套筒174、连接杆175和滑块176。当第一滑轨171被电机178驱动时,第一滑轨171可以带动第二滑轨172、套筒174和流速测量仪108沿 着Y方向移动;当第二滑轨172被电机178驱动时,第二滑轨172可以带动第一滑轨171、套筒174和流速测量仪108沿着Z方向移动。滑轨支撑173被配置为支撑第一滑轨171和第二滑轨172,滑轨支撑173可以与主流管道100固定连接,且第一滑轨171和第二滑轨172在被电机178驱动时可以与滑轨支撑173发生相对运动。滑块176和连接杆175之间可以采用特氟龙等润滑材料密封,且连接杆175和滑块176之间可以是刚性连接。套筒174被配置为当连接杆175沿Y轴方向移动时容纳连接杆175,连接杆175表面光滑,且连接杆175和套筒174之间可以有微小的间隙。滑块176表面也是光滑的,可以保证滑块176表面和主流管道100壁面之间的滑动顺畅。在流速测量仪108沿着Z方向移动时,通过带动滑块176移动,可以避免流速测量仪108的杆子受力损坏。如图6所示,滑块176可以是矩形块,流速测量仪108可以贯穿滑块176并深入至主流管道100内,从而可以通过流速测量仪108测量主流管道100内的气流速度。当不需要滑块176移动时,可以通过至少两个固定块177将滑块固定。例如,可以通过螺钉将固定块177、滑块176和主流管道100固定。当需要滑块176移动时,可以松动螺钉以松动固定块177,从而方便滑块176移动。
流速测量仪108可以是皮托管、热线测速仪或热质式流量计等,可以用来测量主流管道100内气流速度。通过第一滑轨171和第二滑轨172带动流速测量仪108移动,可以通过流速测量仪108测量主流管道100内Y-Z截面的气流速度,且也可以测量主流管道100壁面的边界层速度。当需要测量主流管道100内气流速度时,如图7(a)所示,可以由第一滑轨171和/或第二滑轨172带动流速测量仪108伸入主流管道100内;当不需要测量主流管道100内气流速度时,或者在结束测量主流管道100内气流速度后,如图7(b)所示,可以由第一滑轨171和/或第二滑轨172带动流速测量仪108伸出主流管道100,从而避免流速测量仪108的杆部影响主流管道100内的气流和声波流动。需要说明的是,由第一滑轨171和/或第二滑轨172带动流速测量仪108伸出主流管道100并不意味着流速测量仪108完全脱离主流管道100, 如图7(b)所示,由第一滑轨171和/或第二滑轨172带动流速测量仪108伸出主流管道100可以是将流速测量仪108的尖端部分移出主流管道100内的气流通道,即只要不影响主流管道100内的气流流动就可以视为已带动流速测量仪108伸出主流管道100。为了保证声衬综合性能测试平台整体的密封性,流速测量仪108与主流管道100的连接处可以设置有密封件109。例如,流速测量仪108与主流管道100的连接处可以设置有密封圈。需要说明的是,图1和图7仅是示例性示出了位移机构107和流速测量仪108在主流管道100上的位置,在实际应用中,工作人员可以根据实际需要设置位移机构107和流速测量仪108在主流管道100的位置。
在一种可能的实现方式中,第一消声段、声源段、测试段、第二消声段可以通过法兰113连接成为主流管道100。通过由法兰113连接各段,工作人员可以根据实际需要增删管道单元,或调整各管道单元的位置,增加了本实施例提供的声衬综合性能测试平台的灵活性。本实施例提供的声衬综合性能测试平台还可以包括支架110及底座111,以用于支撑主流管道100以及主流管道100上所设置的各设备。为了不影响主流管道100内气流的流动,支架110与主流管道100的接触面积越小越好。
在一种可能的实现方式中,与被测声衬201相邻或相对的测试段的另一个壁面可以设置有观察窗口112。例如,当测试段的截面为矩形时,被测声衬201和第二麦克风阵列102可以分别设置在矩形测试段的两个相对壁面,在这两个相对壁面之间的主流管道100的壁面可以设置有观察窗口112,或者,当第二麦克风阵列102设置在与被测声衬201相邻的测试段的另一个壁面时,观察窗口112可以设置在与被测声衬201相对或相邻的测试段的另一个壁面。需要说明的是,第二麦克风阵列102和压力探针阵列104可以设置在测试段的同一个壁面,但被测窗口112一般不会与第二麦克风阵列102或压力探针阵列104设置在测试段的同一个壁面。主流管道100的部分壁面可以由透明材料制成,从而形成观察窗口112。例如,主流管道100的部分壁面可 以由玻璃制成,从而形成观察窗口112。通过采用纹影法或者粒子示踪技术(Partical Image VelocitY,PIV),可以通过该观察窗口112观察被测声衬201吸声表面的微观流动情况。
需要说明的是,本实施例的举例中所述的主流管道100的截面为矩形时,是指第一消声段、声源段、测试段和第二消声段的截面均为矩形;本实施例的举例中所述的第一消声段、声源段、测试段或第二消声段的截面为矩形时,是指第一消声段、声源段、测试段和第二消声段的截面均为矩形。
本实施例提供的声衬综合性能测试平台,能够通过被测声衬201上布置的应变片211测量高声强下被测声衬201的应力大小,通过阻力天平203测量被测声衬201的阻力,通过麦克风阵列获得的声压数据计算被测声衬201的声学性能参数,即可以通过本公开实施例提供的声衬综合性能测试平台同时测量被测声衬201的应力大小、阻力和声学性能参数,克服了现有技术中分开进行声衬实验导致实验工况不一致从而导致实验数据不准确的问题。
通过设置第一消声段和第二消声段,可以在不影响气流流动的前提下减小或消除流场背景噪声,以及消除主流管道100出口的声反射;通过在声源段设置不同数量的扬声器阵列301,控制扬声器阵列301中的扬声器的幅值和相位,可以在主流管道100有气流流动的前提下,控制入射声波的声压级达到150分贝及以上;通过在声衬底部设置阻力天平203,在被测声衬201的对面设置压力探针,可以同时通过直接测量和间接测量的方法获得被测声衬201的阻力,从而验证实验结果的准确性;可以同时测量声衬的阻力和声阻抗,以及监测声振响应状态,从而可以获得相同工况下被测声衬201的气动参数和声学参数,各声学参数更能反应实际情况。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结 合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (10)

  1. 一种声衬综合性能测试平台,其特征在于,所述测试平台包括主流管道(100)和测试腔体(200),所述主流管道(100)被配置为提供气流通道;
    所述主流管道(100)包括声源段和测试段,所述测试段位于所述声源段之后;
    所述声源段的壁面设置有扬声器阵列(301);
    所述测试腔体(200)安装于所述测试段,所述测试腔体(200)内设置有被测声衬(201)、加速度传感器(202)和阻力天平(203),所述被测声衬(201)布置有应变片(211),所述被测声衬(201)与所述加速度传感器(202)连接,所述阻力天平(203)和承载托盘(204)连接,所述承载托盘(204)和所述被测声衬(201)固定连接;
    所述被测声衬(201)与所述测试段的壁面贴合,所述被测声衬(201)前的所述测试段的壁面设置有第一麦克风阵列(101),与所述被测声衬(201)相对或相邻的所述测试段的壁面设置有第二麦克风阵列(102),所述被测声衬(201)后的所述测试段的壁面设置有第三麦克风阵列(103)。
  2. 根据权利要求1所述的声衬综合性能测试平台,其特征在于,所述声源段的壁面设置有N组扬声器阵列(301),N为不小于1的整数;
    一组所述扬声器阵列(301)包括M个扬声器,一组所述扬声器阵列(301)中的M个扬声器沿所述声源段的周向设置于所述声源段的壁面,M为不小于1的整数。
  3. 根据权利要求1所述的声衬综合性能测试平台,其特征在于,
    所述应变片(211)布置于所述被测声衬(201)的穿孔板和蜂窝腔。
  4. 根据权利要求3所述的声衬综合性能测试平台,其特征在于,所述测试腔体(200)内还设置有调整机构(205),所述调整机构(205)与所述阻力天平(203)连接。
  5. 根据权利要求1所述的声衬综合性能测试平台,其特征在于,
    所述测试段的壁面还设置有压力探针阵列(104);
    当与所述被测声衬(201)相对的测试段的壁面设置有压力探针阵列(104)时,所述压力探针阵列(104)中的压力探针与所述第二麦克风阵列(102)中的麦克风沿所述主流管道(100)的中心轴线对称设置。
  6. 根据权利要求1-5任一所述的声衬综合性能测试平台,其特征在于,所述主流管道(100)还包括第一消声段和第二消声段,所述第一消声段设置在所述声源段之前,所述第二消声段设置在所述测试段之后;
    每个所述消声段的壁面设置有至少两个对称设置的楔形结构(105),所述楔形结构(105)内设置有吸声材料;
    各所述楔形结构(105)和所述消声段的交界面为带有金属丝网的穿孔板(106)。
  7. 根据权利要求6所述的声衬综合性能测试平台,其特征在于,所述第一消声段、所述声源段、所述测试段和所述第二消声段通过法兰(113)连接。
  8. 根据权利要求6所述的声衬综合性能测试平台,其特征在于,所述测试平台包括位移机构(107)和流速测量仪(108),所述位移机构(107)包括第一滑轨(171)和第二滑轨(172),所述第一滑轨(171)和第二滑轨(172)分别与所述流速测量仪(108)连接,所述 流速测量仪(108)被配置为测量所述主流管道(100)内气流速度;
    当所述第一滑轨(171)由电机(178)驱动时,所述第一滑轨(171)带动所述流速测量仪(108)沿第一方向移动;
    当所述第二滑轨(172)由电机(178)驱动时,所述第二滑轨(172)带动所述流速测量仪(108)沿第二方向移动。
  9. 根据权利要求8所述的声衬综合性能测试平台,其特征在于,
    当需要测量所述主流管道(100)内气流速度时,所述第一滑轨(171)和/或所述第二滑轨(172)带动所述流速测量仪(108)伸入所述主流管道(100)内;
    当不需要测量所述主流管道(100)内气流速度时,所述第一滑轨(171)和/或所述第二滑轨(172)带动所述流速测量仪(108)伸出所述主流管道(100);
    所述流速测量仪(108)与所述主流管道(100)的连接处配置有密封件(109)。
  10. 根据权利要求6所述的声衬综合性能测试平台,其特征在于,所述测试段的壁面还设置有观察窗口(112)。
PCT/CN2021/137781 2021-07-13 2021-12-14 声衬综合性能测试平台 WO2023284242A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21876746.5A EP4145101B1 (en) 2021-07-13 2021-12-14 Test platform for comprehensive performance of acoustic liner
US17/722,473 US11474001B2 (en) 2021-07-13 2022-04-18 Comprehensive performance test platform for acoustic liner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110787602.6 2021-07-13
CN202110787602.6A CN113532827B (zh) 2021-07-13 2021-07-13 声衬综合性能测试平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/722,473 Continuation US11474001B2 (en) 2021-07-13 2022-04-18 Comprehensive performance test platform for acoustic liner

Publications (1)

Publication Number Publication Date
WO2023284242A1 true WO2023284242A1 (zh) 2023-01-19

Family

ID=78098753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137781 WO2023284242A1 (zh) 2021-07-13 2021-12-14 声衬综合性能测试平台

Country Status (2)

Country Link
CN (1) CN113532827B (zh)
WO (1) WO2023284242A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532827B (zh) * 2021-07-13 2022-08-19 北京航空航天大学 声衬综合性能测试平台
CN115243184A (zh) * 2022-07-01 2022-10-25 北京航空航天大学 一种声衬测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684251A (en) * 1995-03-28 1997-11-04 Northrop Grumman Corporation Portable acoustic impedance data acquisition and analysis system
CN101571448A (zh) * 2009-06-08 2009-11-04 南京常荣噪声控制环保工程有限公司 气动声学实验装置
CN111044251A (zh) * 2019-11-29 2020-04-21 中国航天空气动力技术研究院 一种声衬表面流动阻力的直接测量装置和方法
CN113532827A (zh) * 2021-07-13 2021-10-22 北京航空航天大学 声衬综合性能测试平台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768379A (en) * 1986-07-25 1988-09-06 Grumman Aerospace Corporation Method and apparatus for determining flow resistance of fully assembled acoustic liners
CN112665818B (zh) * 2020-12-18 2022-12-13 中国航天空气动力技术研究院 一种声衬流阻测量试验装置和方法
CN112595409A (zh) * 2020-12-18 2021-04-02 中国航天空气动力技术研究院 一种应用于传声器阵列法声阻抗测试系统的声衬安装装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684251A (en) * 1995-03-28 1997-11-04 Northrop Grumman Corporation Portable acoustic impedance data acquisition and analysis system
CN101571448A (zh) * 2009-06-08 2009-11-04 南京常荣噪声控制环保工程有限公司 气动声学实验装置
CN111044251A (zh) * 2019-11-29 2020-04-21 中国航天空气动力技术研究院 一种声衬表面流动阻力的直接测量装置和方法
CN113532827A (zh) * 2021-07-13 2021-10-22 北京航空航天大学 声衬综合性能测试平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANGHAI QIU ET AL.: "Investigation of straightforward impedance eduction method on single- degree-of-freedom acoustic liners", CHINESE JOURNAL OF AERONAUTICS, vol. 31, no. 12, 31 December 2018 (2018-12-31), pages 2224, XP055945510, ISSN: 1000-9361 *

Also Published As

Publication number Publication date
CN113532827B (zh) 2022-08-19
CN113532827A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2023284242A1 (zh) 声衬综合性能测试平台
Jones et al. Effects of flow profile on educed acoustic liner impedance
Casper et al. Hypersonic wind-tunnel measurements of boundary-layer pressure fluctuations
Peters et al. Damping and reflection coefficient measurements for an open pipe at low Mach and low Helmholtz numbers
Greenblatt et al. Experimental investigation of separation control part 1: baseline and steady suction
Schulz et al. Modeling of liner impedance with grazing shear flow using a new momentum transfer boundary condition
CN106018561B (zh) 不同管道结构中声波幅值衰减系数的测量系统及方法
Jones et al. Comparative study of impedance eduction methods, Part 2: NASA tests and methodology
JPH1123358A (ja) 流体が流れるパイプ内のノイズを測定するための装置
US11474001B2 (en) Comprehensive performance test platform for acoustic liner
Aurégan et al. Failures in the discrete models for flow duct with perforations: an experimental investigation
Jones et al. Effects of liner geometry on acoustic impedance
Murray et al. Development and validation of a single degree of freedom perforate impedance model under high SPL and grazing flow
Spencer Statistical investigation of turbulent velocity and pressure fields in a two-stream mixing layer
Chandrasekaran et al. Dynamic calibration technique for thermal shear-stress sensors with mean flow
Jones et al. Comparison of two waveguide methods for educing liner impedance in grazing flow
Doolan et al. The UNSW anechoic wind tunnel
Govinda Ram et al. Studies on unsteady pressure fields in the region of separating and reattaching flows
Maurerlehner et al. Validation setup for the investigation of aeroacoustic and vibroacoustic sound emission of confined turbulent flows
CN115372013B (zh) 一种发动机及引气系统的综合试验平台及测试方法
Tiikoja et al. Experimental investigations of sound reflection from hot and subsonic flow duct termination
Knauss et al. The shock wind tunnel of Stuttgart University-a facility for testing hypersonic vehicles
Plumblee et al. Sound measurements within and in the radiated field of an annular duct with flow
Van Lier et al. Aeroacoustics of diffusers: An experimental study of typical industrial diffusers at Reynolds numbers of O (10 5)
PBOTECTI Pressure Instrumentation for Gas Turbine Engines—a Rewiew of Measurement Technology

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021876746

Country of ref document: EP

Effective date: 20220414

NENP Non-entry into the national phase

Ref country code: DE