WO2023284212A1 - 一种超声波器件及超声成像导管 - Google Patents

一种超声波器件及超声成像导管 Download PDF

Info

Publication number
WO2023284212A1
WO2023284212A1 PCT/CN2021/131533 CN2021131533W WO2023284212A1 WO 2023284212 A1 WO2023284212 A1 WO 2023284212A1 CN 2021131533 W CN2021131533 W CN 2021131533W WO 2023284212 A1 WO2023284212 A1 WO 2023284212A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
circuit
analog front
ultrasonic device
catheter
Prior art date
Application number
PCT/CN2021/131533
Other languages
English (en)
French (fr)
Inventor
刘斌
Original Assignee
深圳市赛禾医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市赛禾医疗技术有限公司 filed Critical 深圳市赛禾医疗技术有限公司
Publication of WO2023284212A1 publication Critical patent/WO2023284212A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts

Definitions

  • the application belongs to the technical field of structural heart disease treatment equipment, and more specifically relates to an ultrasonic device and an ultrasonic imaging catheter.
  • Structural heart disease is the fastest growing field in the field of cardiovascular intervention in recent years. With the continuous emergence and promotion of new technologies for the treatment of structural heart disease around the world, the concept of structural heart disease has gradually become well known by cardiology, other specialties, and the general public. Structural heart disease refers to any disease related to the heart and the large blood vessel structure adjacent to the heart other than electrocardiographic disease and coronary artery disease, which is characterized by correcting or changing the structure of the heart to treat the disease. Specific disease categories include:
  • Congenital heart disease ventricular septal defect, atrial septal defect, patent ductus arteriosus, etc.
  • Heart valve disease mitral valve, tricuspid valve, aortic valve, pulmonary valve, etc.
  • Cardiomyopathy hypertrophic cardiomyopathy, dilated cardiomyopathy, etc.
  • Structural heart disease treatment includes drug therapy, surgery and interventional therapy.
  • interventional therapy has become the most important development direction of structural heart disease.
  • Specific vascular interventional therapy techniques include:
  • PBMV percutaneous balloon mitral valvuloplasty
  • PBPV percutaneous balloon pulmonary valvuloplasty
  • aortic valve therapy Percutaneous balloon dilatation of the arterial valve aortic valvuloplasty, PBAV), transcatheter paravalvular leak closure, etc.
  • transcatheter aortic valve replacement TAVR
  • PPVI percutaneous pulmonary valve implantation
  • TEER transcatheter edge-to-edge mitral Transcatheter edge-to-edge mitral valve repair
  • TMVI transcatheter mitral valve implantation
  • TMVI transcatheter tricuspid valve intervention
  • Interventional therapy for cardiomyopathy including alcohol ablation (Percutaneous transluminal septal myocardial ablation, PTSMA) or radiofrequency ablation of hypertrophic cardiomyopathy;
  • Interventional therapy for heart failure left ventricular volume reduction, atrial shunt, transcatheter ventricular assist device, etc.
  • TEE Transesophageal Echocardiography
  • TEE transesophageal ultrasound technology
  • TEE probes are generally used under general anesthesia, otherwise there will be discomfort in intubation;
  • the diameter of the esophageal ultrasound probe is relatively thick, about 9-15mm, which is traumatic during the operation;
  • the intracardiac ultrasound imaging (ICE) catheter can use a flexible catheter, and the ultrasound probe is not limited by the imaging window, and its spatial position and imaging angle can be flexibly adjusted; the ultrasound probe is directly connected to the blood Coupling is not affected by the gas medium, and the sound energy attenuation is small, which improves the detection depth and image resolution; the intracardiac ultrasound imaging (ICE) catheter is delivered to the patient's cardiac cavity through the femoral vein puncture, without general anesthesia, avoiding Discomfort from intubation.
  • ICE intracardiac ultrasound imaging
  • intracardiac ultrasound imaging (ICE) catheters in the industry only support two-dimensional ultrasound images.
  • operations such as foramen ovale occlusion, atrial septal occlusion, left atrial appendage occlusion, and mitral valve repair/replacement, multiple procedures need to be performed step by step.
  • the complete size and shape of the target tissue such as the left atrial appendage can be obtained only by ultrasonic two-dimensional scanning at different angles, so the operation of the catheter is more complicated and requires more operation time.
  • the purpose of the embodiments of the present application is to provide an ultrasonic device and an ultrasonic imaging catheter, so as to solve the problem that the existing two-dimensional intracardiac ultrasonic imaging (ICE) technology cannot obtain the three-dimensional structure and contour data of specific tissues in the cardiac cavity in a timely and efficient manner. technical problems.
  • ICE two-dimensional intracardiac ultrasonic imaging
  • the technical solution adopted by this application is: provide an ultrasonic device supporting three-dimensional ultrasonic imaging, including a plurality of transducer elements arranged in a rectangular array; the distance between adjacent transducer elements Not greater than the wavelength corresponding to the target ultrasonic operating frequency, each transducer array element integrates a transmitting analog front-end circuit and a receiving analog front-end circuit through a CMOS large-scale manufacturing process; the transmitting analog front-end circuit is used to generate ultrasonic waves; the receiving The analog front-end circuit is used to convert the ultrasonic echo signal into an electrical signal.
  • the ultrasonic device further includes a logic control module and an analog-to-digital conversion circuit module, which are used for three-dimensional ultrasonic scanning and output real-time three-dimensional ultrasonic imaging electrical signals.
  • the transducer array element includes four transducer units connected in parallel sequentially, and the transducer unit adopts a diaphragm structure, including a top electrode, a bottom electrode and a vacuum cavity under the diaphragm, the A passive layer material is arranged above the top electrode; the top electrode and the bottom electrode of each transducer unit are electrically connected in one-to-one correspondence.
  • the transmitting analog front-end circuit includes a driver circuit and a DC bias voltage circuit; the DC bias voltage circuit is used to make the transducer unit in the pull-in working mode; The unit transmits an AC excitation signal to make the diaphragm in the transducer unit vibrate to generate ultrasonic waves.
  • the DC bias voltage in the DC bias voltage line does not exceed 150V.
  • the receiving analog front-end circuit includes a switch circuit and a transimpedance amplifier circuit; the switch circuit opens or closes the receiving signal channel; the transimpedance amplifier circuit includes a CSA charge-sensitive amplifier for converting ultrasonic echo The weak current signal is converted into a voltage signal, and the low-noise signal is amplified.
  • the present application also provides an ultrasound imaging catheter supporting three-dimensional ultrasound imaging, including a catheter body and the above-mentioned ultrasonic device, and the ultrasonic device is installed at the first end of the catheter body.
  • the ultrasonic imaging catheter further includes an operating handle; the operating handle is disposed at the second end of the catheter body.
  • the catheter body is a bendable catheter; multiple pulling wires are arranged in the catheter body; one end of the pulling wire is fixedly connected to the first end of the catheter body; the other end of the pulling wire is connected to the first end of the catheter body.
  • the operating handle is flexibly connected.
  • the ultrasonic imaging catheter further includes a transmission wire, the transmission wire is arranged along the inner cavity of the catheter body, one end of the transmission wire is connected to the ultrasonic device, and the other end of the transmission wire is used for external connection Ultrasound imaging equipment.
  • the beneficial effect of the ultrasonic device provided by the application lies in that the application adopts a plurality of transducer array elements arranged in a rectangular array, and the distance between the transducer array elements is not greater than the wavelength corresponding to the target ultrasonic operating frequency.
  • the beneficial effect of the ultrasound imaging catheter provided by the application lies in that the ultrasound imaging catheter provided by the application can provide real-time three-dimensional digital ultrasound imaging electrical signals, and can generate three-dimensional ultrasound images through direct digital signal processing, and can greatly improve the heart cavity. Measurement efficiency and accuracy of target tissue structures (such as foramen ovale, left atrial appendage, mitral valve, etc.) Help doctors more accurately evaluate the treatment effect.
  • target tissue structures such as foramen ovale, left atrial appendage, mitral valve, etc.
  • Fig. 1 is the schematic structural diagram of the ultrasonic device provided by the embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an ultrasound imaging catheter provided in an embodiment of the present application.
  • FIG. 3 is a partially enlarged schematic diagram of A in FIG. 2 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • Ultrasonic devices have multiple transducer elements arranged in a rectangular array; the distance between adjacent transducer elements is not greater than the wavelength corresponding to the target ultrasonic operating frequency, and each transducer element is mass-produced by CMOS
  • the process integrates the transmitting analog front-end circuit and the receiving analog front-end circuit; the transmitting analog front-end circuit is used to generate ultrasonic waves; the receiving analog front-end circuit is used to convert the ultrasonic echo signal into an electrical signal.
  • the ultrasonic device provided by this application adopts a plurality of transducer elements arranged in a rectangular array, and the distance between the transducer elements is not greater than the wavelength corresponding to the target ultrasonic operating frequency.
  • the smaller the distance between the transducer array elements can effectively reduce the side lobe energy in the ultrasonic sound field and enhance the main lobe energy, so that the ultrasonic echo electrical signal can obtain a better signal-to-noise ratio; by integrating the transmitting analog front-end circuit and The receiving analog front-end circuit can automatically complete the ultrasonic transmission and echo reception of multiple transducer array elements, reduce parasitic capacitance and link loss, and improve the signal-to-noise ratio, signal processing efficiency and image resolution of imaging electrical signals.
  • the ultrasonic device further includes a logic control module and an analog-to-digital conversion circuit module, which are used for three-dimensional ultrasonic scanning and output real-time three-dimensional ultrasonic imaging electrical signals.
  • the transmitting analog front-end circuit includes a driver circuit and a DC bias voltage circuit; the DC bias voltage circuit is used to make the transducer unit in the pull-in working mode; the driver circuit sends an AC excitation signal to the transducer unit, so that the transducer unit The diaphragm vibrates to produce ultrasonic waves.
  • the DC bias voltage in the DC bias voltage line does not exceed 150V.
  • the receiving analog front-end circuit includes a switch circuit and a transimpedance amplifier circuit; the switch circuit opens or closes the receiving signal channel; the transimpedance amplifier circuit includes a CSA charge-sensitive amplifier, which is used to convert the weak current signal generated by the ultrasonic echo into a voltage signal, and perform Low noise signal amplification.
  • V TX represents the low-voltage AC excitation signal output by the logic unit at the transmitter
  • C i represents the DC blocking capacitor
  • V DC-bias represents the DC bias voltage
  • C f represents the negative feedback capacitance of the transimpedance amplifier
  • V RX represents the transimpedance The ultrasonic echo electrical signal output by the impedance amplifier.
  • the transducer array element includes four transducer units connected in parallel in sequence.
  • the transducer unit adopts a diaphragm structure, and the diaphragm structure is generally square or other geometric shapes (such as circular or elliptical). shape, etc.), the transducer unit includes a top electrode, a bottom electrode, and a vacuum cavity under the diaphragm, and a passive layer material (such as SiN material) is arranged above the top electrode; the top electrode and bottom electrode of each transducer unit One-to-one electrical connection.
  • the vacuum chamber is made on a silicon substrate by dry or wet etching process.
  • the purpose of setting up the vacuum chamber is to make the diaphragm composed of top electrode, passive layer and other structures realize the ideal "piston" effect. Reduce the resistance that the diaphragm bears when it vibrates, thereby increasing the electroacoustic conversion efficiency of the transducer.
  • the present application also provides an ultrasonic imaging catheter. Please refer to FIG. 2 and FIG. 3 together.
  • the ultrasonic imaging catheter includes a catheter body 1 and the above-mentioned ultrasonic device, and the ultrasonic device is installed at the first end of the catheter body.
  • the ultrasonic imaging catheter provided by this application can provide real-time three-dimensional digital ultrasonic imaging electrical signals, and can generate three-dimensional ultrasonic images through direct digital signal processing, and can greatly improve the Measurement efficiency and accuracy of target tissue structures in the heart chamber (such as foramen ovale, left atrial appendage, mitral valve, etc.), as well as intraoperative monitoring of implanted interventional devices such as occluders, artificial valves, ablation catheters, and ventricular assist devices Positioning accuracy helps doctors to evaluate the treatment effect more accurately.
  • the ultrasonic imaging catheter further includes an operating handle 3 ; the operating handle 3 is disposed at the second end of the catheter body 1 .
  • An identification module 5 is provided on the operating handle.
  • the identification module 5 is equipped with a Flash memory chip for storing product information such as catheter ID, size specification, etc., and is electrically connected to the ultrasonic imaging device through the connector 8 to realize the read and write operation of catheter information.
  • the catheter body 1 is a bendable catheter; a plurality of pulling wires 4 are arranged in the catheter body 1; one end of the pulling wire 4 is fixedly connected with the first end of the catheter body 1; The other end of wire 4 is flexibly connected with operating handle 3 .
  • the operating handle is provided with a knob 6, and the other end of the pulling wire 4 is connected to the knob 6; the effective working length of the pulling wire 4 is adjusted by rotating the knob 6.
  • the effective working length of the pulling wire 4 is less than the length of the catheter body, the pulling wire 4, the second end of the catheter body is turned or bent.
  • the number of pulling wires 4 can be two or four or even more, and the more the number of pulling wires 4 is, the more accurate the bending angle of the catheter body is.
  • This embodiment is not limited to the mode of using the knob 6, and the drawing wire 4 can also be directly pulled to achieve the purpose of bending the catheter body.
  • the ultrasonic device 2 is not limited by the imaging window, and its spatial position and imaging angle can be adjusted flexibly and conveniently, the operation is more convenient, the target tissue can be measured in all directions, and the operation time is effectively reduced.
  • the ultrasound imaging catheter also includes a transmission wire 7, which is arranged along the inner cavity of the catheter body 1, and one end of the transmission wire 7 is connected to the ultrasonic device 2, and the transmission wire 7 The other end of the wire 7 is used for externally connecting the ultrasonic imaging equipment.
  • the transmission wire 7 may be a coaxial cable or an FPC (flexible printed circuit).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Cardiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声波器件(2)和一种超声成像导管,超声波器件(2)包括多个呈矩形阵列排布的换能器阵元,相邻换能器阵元之间的间距不大于目标超声工作频率对应的波长,每个换能器阵元通过CMOS大规模制造工艺集成了对应的发射模拟前端电路和接收模拟前端电路;超声成像导管包括导管本体(1)和设置在导管本体(1)一端的超声波器件(2)。超声波器件(2)通过在换能器阵元集成了发射模拟前端电路和接收模拟前端电路,降低了寄生电容和链路损耗,提升了成像电信号的信噪比,使三维超声影像具备更好的分辨率和测量准确度;超声成像导管能够提大幅提升心腔内目标组织结构的测量效率和准确度,以及在术中对心室辅助装置等植入器械的定位精度,帮助医生更加准确地评价治疗效果。

Description

一种超声波器件及超声成像导管
本申请要求于2021年07月16日在中国专利局提交的、申请号为202110808451.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于结构性心脏病治疗设备技术领域,更具体地说,是涉及一种超声波器件及超声成像导管。
背景技术
结构性心脏病(structural heart disease,SHD)是近年来心血管介入领域发展最快速的领域。随着结构性心脏病治疗新技术在全世界范围内不断产生及推广,结构性心脏病这一概念也逐渐被心内科、其他专科以及社会公众所熟知。结构性心脏病是指心电疾病和冠脉疾病以外任何与心脏和临近心脏的大血管结构有关的疾病,其特点是可通过矫正或改变心脏结构来治疗所患疾病。其具体疾病范畴包括:
(1)先天性心脏病(室间隔缺损、房间隔缺损、动脉导管未闭等);
(2)心脏瓣膜病(二尖瓣、三尖瓣、主动脉瓣、肺动脉瓣等);
(3)心肌病(肥厚性心肌病、扩张型心肌病等);
(4)并发于其它疾病的导致心脏功能的异常,如房颤导致左心耳功能异常等;
(5)其他:心脏内血栓、心脏肿瘤、心包疾病等。
结构性心脏病治疗包括药物治疗、外科手术及介入治疗。目前,介入治疗已成为结构性心脏病最重要的发展方向,具体血管介入治疗技术包括:
(1)先天性心脏病的经导管封堵;
(2)传统的经导管瓣膜治疗术:主要为经皮二尖瓣球囊扩张(percutaneous balloon mitral valvuloplasty,PBMV),经皮肺动脉瓣球囊扩张(percutaneous balloon pulmonary valvuloplasty,PBPV),和经皮主动脉瓣球囊扩张(percutaneous balloon aortic valvuloplasty,PBAV),经导管瓣周漏封堵等;
(3)新兴的经导管瓣膜治疗术:经导管主动脉瓣置换术(Transcatheter Aortic Valve Replacement, TAVR),经皮肺动脉瓣置入术(Percutaneous pulmonary valve implantation,PPVI),经导管缘对缘二尖瓣修复术(Transcatheter edge-to-edge mitral valve repair,TEER),经导管二尖瓣置入术(Transcatheter mitral valve implantation,TMVI),经导管三尖瓣介入等。
(4)经导管左心耳封堵技术(Transcatheter left atrial appendage occlusion);
(5)心肌病的介入治疗:包括肥厚性心肌病的酒精消融(Percutaneous transluminal septal myocardial ablation, PTSMA)或射频消融;
(6)心力衰竭的介入治疗:左心室减容术,心房分流术,经导管心室辅助装置等。
尽最大程度地在术中减少X线使用,能够有效保护患者和医生,所以超声心动图逐渐成为介入治疗领域非常重要的影像辅助技术。自1987年经食道超声心动图(Transesophageal Echocardiography,TEE)经用于临床以来,不仅为心脏疾病的超声诊断提供了新的视窗手段,同时在结构性心脏病的治疗中也扮演着十分重要的角色。在卵圆孔封堵、瓣膜修复/置换、左心耳封堵等介入手术过程中,将TEE 探头置入食管或胃部,并与主机图像处理系统相连接,能够多角度、长短轴、多切面动态观察心脏和血管的结构与功能,连续监测心腔内相关血流动力学指标。因此,TEE不仅适用于结构性心脏病的术前诊断,术中指导,还可以被作为评价手术是否成功、进行瓣膜结构和功能评价,术中心脏功能动态监测等至关重要的手段。但是,TEE经食道超声技术也存在一些明显的不足,如下:
1)TEE探头一般在患者全身麻醉的情况下使用,否则会有插管的不适感;
2)食道超声探头直径较粗,约为9-15mm,在术中具有一定的创伤性;
3)食道上段与心脏之间夹有气管,位于气管前侧的心底结构,如升主动脉上段、主动脉弓近段、上腔静脉上段等不能显示,形成不易逾越的盲区;
4)食道超声探头检查远场时由于声能衰减,分辨率降低,故检测右心室、肺动脉瓣等结构显示较差;
近年来,为了解决经食道超声(TEE)技术存在的缺点,行业内提出了一种经导管的心腔内超声心动图(Intracardiac Echocardiography, ICE)技术。与传统经食道超声(TEE)相比,心腔内超声成像(ICE)导管可以采用可弯曲导管,超声波探头不受成像窗的限制,能够灵活调整其空间位置和成像角度;超声波探头直接与血液耦合,也不受气体介质影响,声能衰减小,提升了检测深度和图像分辨率;心腔内超声成像(ICE)导管经股静脉穿刺输送至患者心腔内,不需要全身麻醉,避免了插管的不适感。
目前行业内的心腔内超声成像(ICE)导管仅支持二维超声图像,对于卵圆孔封堵、房间隔封堵、左心耳封堵和二尖瓣修复/置换等手术,需要逐步进行多个角度的超声波二维扫描,才能获取左心耳等目标组织完整的尺寸和形态,所以导管操作方面比较复杂,需要耗费较多手术时间。因此,临床急需一种心腔内三维超声成像技术和成像导管方案,通过高效地获取卵圆孔、左心耳、心脏瓣膜等目标组织的三维结构影像,从而达到大幅提升术前评估和术中引导的精准度、治疗效果和手术效率的目的。
技术问题
本申请实施例的目的在于提供一种超声波器件及超声成像导管,以解决现有二维心腔内超声成像(ICE)技术中存在的无法及时高效地获取心腔内特定组织三维结构和轮廓数据的技术问题。
技术解决方案
为实现上述目的,本申请采用的技术方案是:提供一种支持三维超声成像的超声波器件,包括多个呈矩形阵列排布的换能器阵元;相邻换能器阵元之间的间距不大于目标超声工作频率对应的波长,每个换能器阵元上通过CMOS大规模制造工艺集成了发射模拟前端电路和接收模拟前端电路;所述发射模拟前端电路用于产生超声波;所述接收模拟前端电路用于将超声回波信号转换为电信号。
可选地,所述超声波器件还包括逻辑控制模块和模数转换电路模块,用于三维超声波扫描,并输出实时的三维超声成像电信号。
可选地,所述换能器阵元包括四个依次并联的换能器单元,所述换能器单元采用振膜结构,包括顶电极、底电极以及振膜下的真空腔体,所述顶电极上方设置有被动层材料;每个所述换能器单元的顶电极和底电极一一对应进行电连接。
可选地,所述发射模拟前端电路包括驱动器电路和直流偏置电压线路;所述直流偏置电压线路用于使换能器单元处于吸合工作模式;所述驱动器电路向所述换能器单元输送交流激励信号,使换能器单元中的振膜振动产生超声波。
可选地,所述直流偏置电压线路中的直流偏置电压不超过150V。
可选地,所述接收模拟前端电路包括开关电路和跨阻放大器电路;所述开关电路打开或关闭接收信号通道;所述跨阻放大器电路包括CSA电荷敏感放大器,用于将超声波回波产生的微弱电流信号转化为电压信号,并进行低噪声信号放大。
本申请还提供了一种支持三维超声成像的超声成像导管,包括导管本体和上述超声波器件,所述超声波器件安装在所述导管本体的第一端。
可选地,所述超声成像导管还包括操作手柄;所述操作手柄设置在导管本体的第二端。
可选地,所述导管本体为可弯曲导管;所述导管本体内设有多根牵引丝;所述牵引丝一端与所述导管本体的第一端固定连接;所述牵引丝的另一端与所述操作手柄活动连接。
可选地,所述超声成像导管还包括传输导线,所述传输导线沿所述导管本体的内部腔体布置,所述传输导线一端与所述超声波器件连接,所述传输导线另一端用于外接超声成像设备。
有益效果
本申请提供的超声波器件的有益效果在于:本申请采用多个呈矩形阵列排布的换能器阵元,换能器阵元之间的间距不大于目标超声工作频率对应的波长,换能器阵元之间的间距越小可有效减少超声波声场中的旁瓣能量,使主瓣能量增强,进而使超声波回波电信号获得较好的信噪比;通过集成发射模拟前端电路和接收模拟前端电路,能够自动完成多个换能器阵元的超声波发射和回波接收,降低了寄生电容和链路损耗,提高了成像电信号的信噪比、信号处理效率和图像分辨率。
本申请提供的超声成像导管的有益效果在于:本申请提供的超声成像导管能够提供实时的三维数字超声成像电信号,经直接的数字信号处理即可生成三维超声图像,同时能够大幅提升心腔内目标组织结构(如卵圆孔、左心耳、二尖瓣等)的测量效率和准确度,以及在术中对封堵器、人工瓣膜、消融导管和心室辅助装置等植介入器械的定位精度,帮助医生更加准确地评价治疗效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的超声波器件的结构示意图;
图2为本申请实施例提供的超声成像导管的结构示意图;
图3为图2中的A局部放大示意图。
其中,图中各附图标记:
1-导管本体;2-超声波器件;3-操作手柄;4-牵引丝;5-标识模块;6-旋钮;7-传输导线;8-连接器。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请一并参阅图1-图3,现对本申请实施例提供的超声波器件及超声成像导管进行说明。超声波器件多个呈矩形阵列排布的换能器阵元;相邻换能器阵元之间的间距不大于目标超声工作频率对应的波长,每个换能器阵元上通过CMOS大规模制造工艺集成了发射模拟前端电路和接收模拟前端电路;发射模拟前端电路用于产生超声波;接收模拟前端电路用于将超声回波信号转换为电信号。
本申请提供的超声波器件,与现有技术相比,本申请采用多个呈矩形阵列排布的换能器阵元,换能器阵元之间的间距不大于目标超声工作频率对应的波长,换能器阵元之间的间距越小可有效减少超声波声场中的旁瓣能量,使主瓣能量增强,进而使超声波回波电信号获得较好的信噪比;通过集成发射模拟前端电路和接收模拟前端电路,能够自动完成多个换能器阵元的超声波发射和回波接收,降低了寄生电容和链路损耗,提高了成像电信号的信噪比、信号处理效率和图像分辨率。
在本申请的一个实施例中,请参阅图1,超声波器件还包括逻辑控制模块和模数转换电路模块,用于三维超声波扫描,并输出实时的三维超声成像电信号。发射模拟前端电路包括驱动器电路和直流偏置电压线路;直流偏置电压线路用于使换能器单元处于吸合工作模式;驱动器电路向换能器单元输送交流激励信号,使换能器单元中的振膜振动产生超声波。直流偏置电压线路中的直流偏置电压不超过150V。接收模拟前端电路包括开关电路和跨阻放大器电路;开关电路打开或关闭接收信号通道;跨阻放大器电路包括CSA电荷敏感放大器,用于将超声波回波产生的微弱电流信号转化为电压信号,并进行低噪声信号放大。图1中,V TX代表发射端逻辑单元输出的低压交流电激励信号;C i代表隔直电容;V DC-bias代表直流偏置电压;C f代表跨阻放大器的负反馈电容;V RX代表跨阻放大器输出的超声回波电信号。
在本申请的一个实施例中,换能器阵元包括四个依次并联的换能器单元,换能器单元采用振膜结构,振膜结构整体呈方形或其他几何形状(例如圆形或椭圆形等),换能器单元包括顶电极、底电极以及振膜下的真空腔体,顶电极上方设置有被动层材料(例如SiN材料);每个换能器单元的顶电极和底电极一一对应进行电连接。真空腔体是在一个硅基板上通过干法或湿法刻蚀工艺进行制作的,设置真空腔体目的是使由顶电极、被动层等结构构成的振膜可以实现理想的“活塞”效应,减少振膜振动时所承受的阻力,进而增加换能器的电声转换效率。
本申请还提供了一种超声成像导管,请一并参阅图2和图3,超声成像导管包括导管本体1和上述超声波器件,超声波器件安装在导管本体的第一端。
本申请提供的超声成像导管,与现有技术相比,本申请提供的超声成像导管能够提供实时的三维数字超声成像电信号,经直接的数字信号处理即可生成三维超声图像,同时能够大幅提升心腔内目标组织结构(如卵圆孔、左心耳、二尖瓣等)的测量效率和准确度,以及在术中对封堵器、人工瓣膜、消融导管和心室辅助装置等植介入器械的定位精度,帮助医生更加准确地评价治疗效果。
在本申请的一个实施例中,请参阅图2,超声成像导管还包括操作手柄3;操作手柄3设置在导管本体1的第二端。操作手柄上设有标识模块5。标识模块5配置有Flash存储芯片,用于存储导管ID,尺寸规格等产品信息,并经连接器8与超声成像设备电连接,实现导管信息的读写操作。
在本申请的一个实施例中,请参阅图2,导管本体1为可弯曲导管;导管本体1内设有多根牵引丝4;牵引丝4一端与导管本体1的第一端固定连接;牵引丝4的另一端与操作手柄3活动连接。操作手柄上设有旋钮6,牵引丝4的另一端与旋钮6连接;通过旋转旋钮6调节牵引丝4的有效工作长度,当牵引丝4的有效工作长度小于导管本体的长度时,在牵引丝4的拉力作用下,使导管本体的第二端转向或弯曲。牵引丝4的数量可以是两根或四根乃至更多,牵引丝4的数量越多导管本体弯曲的角度方向更精确。本实施例也不局限于采用旋钮6的模式,也可以直接拽拉牵引丝4达到弯曲导管本体的目的。采用可弯曲导管,超声波器件2不受成像窗的限制,可以灵活方便地调整其空间位置和成像角度,操作更加便捷,能够全方位测量目标组织,有效减少了手术时间。
在本申请的一个实施例中,请参阅图2,超声成像导管超声成像导管还包括传输导线7,传输导线7沿导管本体1的内部腔体布置,传输导线7一端与超声波器件2连接,传输导线7另一端用于外接超声成像设备。传输导线7可以是同轴线缆或FPC(柔性电路板)。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种超声波器件,其特征在于,包括多个呈矩形阵列排布的换能器阵元;相邻换能器阵元之间的间距不大于目标超声工作频率对应的波长,每个换能器阵元上通过CMOS大规模制造工艺集成了发射模拟前端电路和接收模拟前端电路;所述发射模拟前端电路用于产生超声波;所述接收模拟前端电路用于将超声回波信号转换为电信号。
  2. 如权利要求1所述的超声波器件,其特征在于,所述超声波器件还包括逻辑控制模块和模数转换电路模块,用于三维超声波扫描,并输出实时的三维超声成像电信号。
  3. 如权利要求1所述的超声波器件,其特征在于,所述换能器阵元包括四个依次并联的换能器单元,所述换能器单元采用振膜结构,包括顶电极、底电极以及振膜下的真空腔体,所述顶电极上方设置有被动层材料;每个所述换能器单元的顶电极和底电极一一对应进行电连接。
  4. 如权利要求3所述的超声波器件,其特征在于,所述发射模拟前端电路包括驱动器电路和直流偏置电压线路;所述直流偏置电压线路用于使换能器单元处于吸合工作模式;所述驱动器电路向所述换能器单元输送交流激励信号,使换能器单元中的振膜振动产生超声波。
  5. 如权利要求4所述的超声波器件,其特征在于,所述直流偏置电压线路中的直流偏置电压不超过150V。
  6. 如权利要求1所述的超声波器件,其特征在于:所述接收模拟前端电路包括开关电路和跨阻放大器电路;所述开关电路打开或关闭接收信号通道;所述跨阻放大器电路包括CSA电荷敏感放大器,用于将超声波回波产生的微弱电流信号转化为电压信号,并进行低噪声信号放大。
  7. 一种超声成像导管,其特征在于:包括导管本体(1)和如权利要求1-6任意一项所述超声波器件,所述超声波器件安装在所述导管本体的第一端。
  8. 如权利要求7所述的超声成像导管,其特征在于:还包括操作手柄(3);所述操作手柄(3)设置在导管本体(1)的第二端。
  9. 如权利要求8所述的超声成像导管,其特征在于:所述导管本体(1)为可弯曲导管;所述导管本体(1)内设有多根牵引丝(4);所述牵引丝(4)一端与所述导管本体(1)的第一端固定连接;所述牵引丝(4)的另一端与所述操作手柄(3)活动连接。
  10. 如权利要求8或9所述的超声成像导管,其特征在于:还包括传输导线(7),所述传输导线(7)沿所述导管本体(1)的内部腔体布置,所述传输导线(7)一端与所述超声波器件(2)连接,所述传输导线(7)另一端用于外接超声成像设备。
PCT/CN2021/131533 2021-07-16 2021-11-18 一种超声波器件及超声成像导管 WO2023284212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110808451.8 2021-07-16
CN202110808451.8A CN113647991A (zh) 2021-07-16 2021-07-16 一种超声波器件及超声成像导管

Publications (1)

Publication Number Publication Date
WO2023284212A1 true WO2023284212A1 (zh) 2023-01-19

Family

ID=78489619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131533 WO2023284212A1 (zh) 2021-07-16 2021-11-18 一种超声波器件及超声成像导管

Country Status (2)

Country Link
CN (1) CN113647991A (zh)
WO (1) WO2023284212A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647991A (zh) * 2021-07-16 2021-11-16 深圳市赛禾医疗技术有限公司 一种超声波器件及超声成像导管
CN118356214A (zh) * 2024-06-19 2024-07-19 苏州冰晶智能医疗科技有限公司 心腔内超声探头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698756A (zh) * 2013-12-06 2014-04-02 深圳先进技术研究院 一种便携式超声系统的前端装置
CN106324584A (zh) * 2016-09-23 2017-01-11 天津大学 一种超声内窥镜发射和接收前端装置
CN110057921A (zh) * 2019-04-11 2019-07-26 成都华芯微医疗科技有限公司 一种三维超声成像系统
CN112138970A (zh) * 2020-09-22 2020-12-29 深圳市赛禾医疗技术有限公司 超声波前向环阵列收发器
CN112168140A (zh) * 2019-07-05 2021-01-05 山东大学齐鲁医院 基于人工智能芯片的穿戴式生物信息监测设备及方法
US10928494B1 (en) * 2017-07-10 2021-02-23 Interson Corporation Ultrasound plural display apparatus with light indicator for positional access
CN112826536A (zh) * 2021-02-09 2021-05-25 深圳市赛禾医疗技术有限公司 一种血管内超声成像导管及系统
CN113647991A (zh) * 2021-07-16 2021-11-16 深圳市赛禾医疗技术有限公司 一种超声波器件及超声成像导管
CN215899718U (zh) * 2021-07-16 2022-02-25 深圳市赛禾医疗技术有限公司 一种超声波器件及超声成像导管

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698756A (zh) * 2013-12-06 2014-04-02 深圳先进技术研究院 一种便携式超声系统的前端装置
CN106324584A (zh) * 2016-09-23 2017-01-11 天津大学 一种超声内窥镜发射和接收前端装置
US10928494B1 (en) * 2017-07-10 2021-02-23 Interson Corporation Ultrasound plural display apparatus with light indicator for positional access
CN110057921A (zh) * 2019-04-11 2019-07-26 成都华芯微医疗科技有限公司 一种三维超声成像系统
CN112168140A (zh) * 2019-07-05 2021-01-05 山东大学齐鲁医院 基于人工智能芯片的穿戴式生物信息监测设备及方法
CN112138970A (zh) * 2020-09-22 2020-12-29 深圳市赛禾医疗技术有限公司 超声波前向环阵列收发器
CN112826536A (zh) * 2021-02-09 2021-05-25 深圳市赛禾医疗技术有限公司 一种血管内超声成像导管及系统
CN113647991A (zh) * 2021-07-16 2021-11-16 深圳市赛禾医疗技术有限公司 一种超声波器件及超声成像导管
CN215899718U (zh) * 2021-07-16 2022-02-25 深圳市赛禾医疗技术有限公司 一种超声波器件及超声成像导管

Also Published As

Publication number Publication date
CN113647991A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023284211A1 (zh) 一种心腔内二维超声成像导管及其系统
WO2023284212A1 (zh) 一种超声波器件及超声成像导管
US6246898B1 (en) Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
CN215899718U (zh) 一种超声波器件及超声成像导管
JP4550186B2 (ja) 電気生理マッピング装置
EP4167886B1 (en) High-density electrode catheters with magnetic position tracking
EP2559371B1 (en) Transesophageal echocardiography capsule
WO1998039669A1 (en) A method for carrying out a medical procedure using a three-dimensional tracking and imaging system
JP2000510251A (ja) 三次元デジタル超音波トラッキングシステム
US20110125026A1 (en) Pharyngeal Ultrasound Guide
WO2022242072A1 (zh) 心脏内三维超声成像导管及系统、心脏三维模型构建方法
Schwartz et al. Intracardiac echocardiographic imaging of cardiac abnormalities, ischemic myocardial dysfunction, and myocardial perfusion: studies with a 10 MHz ultrasound catheter
US20210045718A1 (en) Multiple sensor catheter assembly
Tardif et al. Potential applications of intracardiac echocardiography in interventional electrophysiology
Pandian et al. Intracardiac echocardiography: Current developments
Zanchetta et al. Intracardiac echocardiography during catheter‐based procedures: Ultrasound system, examination technique, and image presentation
Lee et al. Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound
CN216167539U (zh) 一种心腔内二维超声成像导管及其系统
Van-Herwerden et al. Intraoperative epicardial two-dimensional echocardiography
CN105232146B (zh) 一种具有超声定位功能的介入消融导管
ROBERSON et al. Transesophageal echocardiography in pediatrics: technique and limitations
EWERT et al. Diagnostic Catheterization and Balloon Sizing of Atrial Septal Defects by Echocardiography Guidance Without Fluoroscopy
Kasprzak et al. Doppler echocardiography
CN205107886U (zh) 一种具有超声定位功能的介入消融导管
US12064283B2 (en) Method for determining ventricle contractility independently of load

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949984

Country of ref document: EP

Kind code of ref document: A1